xref: /linux/net/sunrpc/cache.c (revision d524dac9279b6a41ffdf7ff7958c577f2e387db6)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35 #include <linux/sunrpc/rpc_pipe_fs.h>
36 #include "netns.h"
37 
38 #define	 RPCDBG_FACILITY RPCDBG_CACHE
39 
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42 
43 static void cache_init(struct cache_head *h)
44 {
45 	time_t now = seconds_since_boot();
46 	h->next = NULL;
47 	h->flags = 0;
48 	kref_init(&h->ref);
49 	h->expiry_time = now + CACHE_NEW_EXPIRY;
50 	h->last_refresh = now;
51 }
52 
53 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54 {
55 	return  (h->expiry_time < seconds_since_boot()) ||
56 		(detail->flush_time > h->last_refresh);
57 }
58 
59 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60 				       struct cache_head *key, int hash)
61 {
62 	struct cache_head **head,  **hp;
63 	struct cache_head *new = NULL, *freeme = NULL;
64 
65 	head = &detail->hash_table[hash];
66 
67 	read_lock(&detail->hash_lock);
68 
69 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70 		struct cache_head *tmp = *hp;
71 		if (detail->match(tmp, key)) {
72 			if (cache_is_expired(detail, tmp))
73 				/* This entry is expired, we will discard it. */
74 				break;
75 			cache_get(tmp);
76 			read_unlock(&detail->hash_lock);
77 			return tmp;
78 		}
79 	}
80 	read_unlock(&detail->hash_lock);
81 	/* Didn't find anything, insert an empty entry */
82 
83 	new = detail->alloc();
84 	if (!new)
85 		return NULL;
86 	/* must fully initialise 'new', else
87 	 * we might get lose if we need to
88 	 * cache_put it soon.
89 	 */
90 	cache_init(new);
91 	detail->init(new, key);
92 
93 	write_lock(&detail->hash_lock);
94 
95 	/* check if entry appeared while we slept */
96 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97 		struct cache_head *tmp = *hp;
98 		if (detail->match(tmp, key)) {
99 			if (cache_is_expired(detail, tmp)) {
100 				*hp = tmp->next;
101 				tmp->next = NULL;
102 				detail->entries --;
103 				freeme = tmp;
104 				break;
105 			}
106 			cache_get(tmp);
107 			write_unlock(&detail->hash_lock);
108 			cache_put(new, detail);
109 			return tmp;
110 		}
111 	}
112 	new->next = *head;
113 	*head = new;
114 	detail->entries++;
115 	cache_get(new);
116 	write_unlock(&detail->hash_lock);
117 
118 	if (freeme)
119 		cache_put(freeme, detail);
120 	return new;
121 }
122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123 
124 
125 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126 
127 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128 {
129 	head->expiry_time = expiry;
130 	head->last_refresh = seconds_since_boot();
131 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132 	set_bit(CACHE_VALID, &head->flags);
133 }
134 
135 static void cache_fresh_unlocked(struct cache_head *head,
136 				 struct cache_detail *detail)
137 {
138 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139 		cache_revisit_request(head);
140 		cache_dequeue(detail, head);
141 	}
142 }
143 
144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145 				       struct cache_head *new, struct cache_head *old, int hash)
146 {
147 	/* The 'old' entry is to be replaced by 'new'.
148 	 * If 'old' is not VALID, we update it directly,
149 	 * otherwise we need to replace it
150 	 */
151 	struct cache_head **head;
152 	struct cache_head *tmp;
153 
154 	if (!test_bit(CACHE_VALID, &old->flags)) {
155 		write_lock(&detail->hash_lock);
156 		if (!test_bit(CACHE_VALID, &old->flags)) {
157 			if (test_bit(CACHE_NEGATIVE, &new->flags))
158 				set_bit(CACHE_NEGATIVE, &old->flags);
159 			else
160 				detail->update(old, new);
161 			cache_fresh_locked(old, new->expiry_time);
162 			write_unlock(&detail->hash_lock);
163 			cache_fresh_unlocked(old, detail);
164 			return old;
165 		}
166 		write_unlock(&detail->hash_lock);
167 	}
168 	/* We need to insert a new entry */
169 	tmp = detail->alloc();
170 	if (!tmp) {
171 		cache_put(old, detail);
172 		return NULL;
173 	}
174 	cache_init(tmp);
175 	detail->init(tmp, old);
176 	head = &detail->hash_table[hash];
177 
178 	write_lock(&detail->hash_lock);
179 	if (test_bit(CACHE_NEGATIVE, &new->flags))
180 		set_bit(CACHE_NEGATIVE, &tmp->flags);
181 	else
182 		detail->update(tmp, new);
183 	tmp->next = *head;
184 	*head = tmp;
185 	detail->entries++;
186 	cache_get(tmp);
187 	cache_fresh_locked(tmp, new->expiry_time);
188 	cache_fresh_locked(old, 0);
189 	write_unlock(&detail->hash_lock);
190 	cache_fresh_unlocked(tmp, detail);
191 	cache_fresh_unlocked(old, detail);
192 	cache_put(old, detail);
193 	return tmp;
194 }
195 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
196 
197 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198 {
199 	if (!cd->cache_upcall)
200 		return -EINVAL;
201 	return cd->cache_upcall(cd, h);
202 }
203 
204 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
205 {
206 	if (!test_bit(CACHE_VALID, &h->flags))
207 		return -EAGAIN;
208 	else {
209 		/* entry is valid */
210 		if (test_bit(CACHE_NEGATIVE, &h->flags))
211 			return -ENOENT;
212 		else {
213 			/*
214 			 * In combination with write barrier in
215 			 * sunrpc_cache_update, ensures that anyone
216 			 * using the cache entry after this sees the
217 			 * updated contents:
218 			 */
219 			smp_rmb();
220 			return 0;
221 		}
222 	}
223 }
224 
225 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
226 {
227 	int rv;
228 
229 	write_lock(&detail->hash_lock);
230 	rv = cache_is_valid(detail, h);
231 	if (rv != -EAGAIN) {
232 		write_unlock(&detail->hash_lock);
233 		return rv;
234 	}
235 	set_bit(CACHE_NEGATIVE, &h->flags);
236 	cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
237 	write_unlock(&detail->hash_lock);
238 	cache_fresh_unlocked(h, detail);
239 	return -ENOENT;
240 }
241 
242 /*
243  * This is the generic cache management routine for all
244  * the authentication caches.
245  * It checks the currency of a cache item and will (later)
246  * initiate an upcall to fill it if needed.
247  *
248  *
249  * Returns 0 if the cache_head can be used, or cache_puts it and returns
250  * -EAGAIN if upcall is pending and request has been queued
251  * -ETIMEDOUT if upcall failed or request could not be queue or
252  *           upcall completed but item is still invalid (implying that
253  *           the cache item has been replaced with a newer one).
254  * -ENOENT if cache entry was negative
255  */
256 int cache_check(struct cache_detail *detail,
257 		    struct cache_head *h, struct cache_req *rqstp)
258 {
259 	int rv;
260 	long refresh_age, age;
261 
262 	/* First decide return status as best we can */
263 	rv = cache_is_valid(detail, h);
264 
265 	/* now see if we want to start an upcall */
266 	refresh_age = (h->expiry_time - h->last_refresh);
267 	age = seconds_since_boot() - h->last_refresh;
268 
269 	if (rqstp == NULL) {
270 		if (rv == -EAGAIN)
271 			rv = -ENOENT;
272 	} else if (rv == -EAGAIN || age > refresh_age/2) {
273 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
274 				refresh_age, age);
275 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
276 			switch (cache_make_upcall(detail, h)) {
277 			case -EINVAL:
278 				clear_bit(CACHE_PENDING, &h->flags);
279 				cache_revisit_request(h);
280 				rv = try_to_negate_entry(detail, h);
281 				break;
282 			case -EAGAIN:
283 				clear_bit(CACHE_PENDING, &h->flags);
284 				cache_revisit_request(h);
285 				break;
286 			}
287 		}
288 	}
289 
290 	if (rv == -EAGAIN) {
291 		if (!cache_defer_req(rqstp, h)) {
292 			/*
293 			 * Request was not deferred; handle it as best
294 			 * we can ourselves:
295 			 */
296 			rv = cache_is_valid(detail, h);
297 			if (rv == -EAGAIN)
298 				rv = -ETIMEDOUT;
299 		}
300 	}
301 	if (rv)
302 		cache_put(h, detail);
303 	return rv;
304 }
305 EXPORT_SYMBOL_GPL(cache_check);
306 
307 /*
308  * caches need to be periodically cleaned.
309  * For this we maintain a list of cache_detail and
310  * a current pointer into that list and into the table
311  * for that entry.
312  *
313  * Each time clean_cache is called it finds the next non-empty entry
314  * in the current table and walks the list in that entry
315  * looking for entries that can be removed.
316  *
317  * An entry gets removed if:
318  * - The expiry is before current time
319  * - The last_refresh time is before the flush_time for that cache
320  *
321  * later we might drop old entries with non-NEVER expiry if that table
322  * is getting 'full' for some definition of 'full'
323  *
324  * The question of "how often to scan a table" is an interesting one
325  * and is answered in part by the use of the "nextcheck" field in the
326  * cache_detail.
327  * When a scan of a table begins, the nextcheck field is set to a time
328  * that is well into the future.
329  * While scanning, if an expiry time is found that is earlier than the
330  * current nextcheck time, nextcheck is set to that expiry time.
331  * If the flush_time is ever set to a time earlier than the nextcheck
332  * time, the nextcheck time is then set to that flush_time.
333  *
334  * A table is then only scanned if the current time is at least
335  * the nextcheck time.
336  *
337  */
338 
339 static LIST_HEAD(cache_list);
340 static DEFINE_SPINLOCK(cache_list_lock);
341 static struct cache_detail *current_detail;
342 static int current_index;
343 
344 static void do_cache_clean(struct work_struct *work);
345 static struct delayed_work cache_cleaner;
346 
347 static void sunrpc_init_cache_detail(struct cache_detail *cd)
348 {
349 	rwlock_init(&cd->hash_lock);
350 	INIT_LIST_HEAD(&cd->queue);
351 	spin_lock(&cache_list_lock);
352 	cd->nextcheck = 0;
353 	cd->entries = 0;
354 	atomic_set(&cd->readers, 0);
355 	cd->last_close = 0;
356 	cd->last_warn = -1;
357 	list_add(&cd->others, &cache_list);
358 	spin_unlock(&cache_list_lock);
359 
360 	/* start the cleaning process */
361 	schedule_delayed_work(&cache_cleaner, 0);
362 }
363 
364 static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
365 {
366 	cache_purge(cd);
367 	spin_lock(&cache_list_lock);
368 	write_lock(&cd->hash_lock);
369 	if (cd->entries || atomic_read(&cd->inuse)) {
370 		write_unlock(&cd->hash_lock);
371 		spin_unlock(&cache_list_lock);
372 		goto out;
373 	}
374 	if (current_detail == cd)
375 		current_detail = NULL;
376 	list_del_init(&cd->others);
377 	write_unlock(&cd->hash_lock);
378 	spin_unlock(&cache_list_lock);
379 	if (list_empty(&cache_list)) {
380 		/* module must be being unloaded so its safe to kill the worker */
381 		cancel_delayed_work_sync(&cache_cleaner);
382 	}
383 	return;
384 out:
385 	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
386 }
387 
388 /* clean cache tries to find something to clean
389  * and cleans it.
390  * It returns 1 if it cleaned something,
391  *            0 if it didn't find anything this time
392  *           -1 if it fell off the end of the list.
393  */
394 static int cache_clean(void)
395 {
396 	int rv = 0;
397 	struct list_head *next;
398 
399 	spin_lock(&cache_list_lock);
400 
401 	/* find a suitable table if we don't already have one */
402 	while (current_detail == NULL ||
403 	    current_index >= current_detail->hash_size) {
404 		if (current_detail)
405 			next = current_detail->others.next;
406 		else
407 			next = cache_list.next;
408 		if (next == &cache_list) {
409 			current_detail = NULL;
410 			spin_unlock(&cache_list_lock);
411 			return -1;
412 		}
413 		current_detail = list_entry(next, struct cache_detail, others);
414 		if (current_detail->nextcheck > seconds_since_boot())
415 			current_index = current_detail->hash_size;
416 		else {
417 			current_index = 0;
418 			current_detail->nextcheck = seconds_since_boot()+30*60;
419 		}
420 	}
421 
422 	/* find a non-empty bucket in the table */
423 	while (current_detail &&
424 	       current_index < current_detail->hash_size &&
425 	       current_detail->hash_table[current_index] == NULL)
426 		current_index++;
427 
428 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
429 
430 	if (current_detail && current_index < current_detail->hash_size) {
431 		struct cache_head *ch, **cp;
432 		struct cache_detail *d;
433 
434 		write_lock(&current_detail->hash_lock);
435 
436 		/* Ok, now to clean this strand */
437 
438 		cp = & current_detail->hash_table[current_index];
439 		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
440 			if (current_detail->nextcheck > ch->expiry_time)
441 				current_detail->nextcheck = ch->expiry_time+1;
442 			if (!cache_is_expired(current_detail, ch))
443 				continue;
444 
445 			*cp = ch->next;
446 			ch->next = NULL;
447 			current_detail->entries--;
448 			rv = 1;
449 			break;
450 		}
451 
452 		write_unlock(&current_detail->hash_lock);
453 		d = current_detail;
454 		if (!ch)
455 			current_index ++;
456 		spin_unlock(&cache_list_lock);
457 		if (ch) {
458 			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
459 				cache_dequeue(current_detail, ch);
460 			cache_revisit_request(ch);
461 			cache_put(ch, d);
462 		}
463 	} else
464 		spin_unlock(&cache_list_lock);
465 
466 	return rv;
467 }
468 
469 /*
470  * We want to regularly clean the cache, so we need to schedule some work ...
471  */
472 static void do_cache_clean(struct work_struct *work)
473 {
474 	int delay = 5;
475 	if (cache_clean() == -1)
476 		delay = round_jiffies_relative(30*HZ);
477 
478 	if (list_empty(&cache_list))
479 		delay = 0;
480 
481 	if (delay)
482 		schedule_delayed_work(&cache_cleaner, delay);
483 }
484 
485 
486 /*
487  * Clean all caches promptly.  This just calls cache_clean
488  * repeatedly until we are sure that every cache has had a chance to
489  * be fully cleaned
490  */
491 void cache_flush(void)
492 {
493 	while (cache_clean() != -1)
494 		cond_resched();
495 	while (cache_clean() != -1)
496 		cond_resched();
497 }
498 EXPORT_SYMBOL_GPL(cache_flush);
499 
500 void cache_purge(struct cache_detail *detail)
501 {
502 	detail->flush_time = LONG_MAX;
503 	detail->nextcheck = seconds_since_boot();
504 	cache_flush();
505 	detail->flush_time = 1;
506 }
507 EXPORT_SYMBOL_GPL(cache_purge);
508 
509 
510 /*
511  * Deferral and Revisiting of Requests.
512  *
513  * If a cache lookup finds a pending entry, we
514  * need to defer the request and revisit it later.
515  * All deferred requests are stored in a hash table,
516  * indexed by "struct cache_head *".
517  * As it may be wasteful to store a whole request
518  * structure, we allow the request to provide a
519  * deferred form, which must contain a
520  * 'struct cache_deferred_req'
521  * This cache_deferred_req contains a method to allow
522  * it to be revisited when cache info is available
523  */
524 
525 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
526 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
527 
528 #define	DFR_MAX	300	/* ??? */
529 
530 static DEFINE_SPINLOCK(cache_defer_lock);
531 static LIST_HEAD(cache_defer_list);
532 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
533 static int cache_defer_cnt;
534 
535 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
536 {
537 	hlist_del_init(&dreq->hash);
538 	if (!list_empty(&dreq->recent)) {
539 		list_del_init(&dreq->recent);
540 		cache_defer_cnt--;
541 	}
542 }
543 
544 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
545 {
546 	int hash = DFR_HASH(item);
547 
548 	INIT_LIST_HEAD(&dreq->recent);
549 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
550 }
551 
552 static void setup_deferral(struct cache_deferred_req *dreq,
553 			   struct cache_head *item,
554 			   int count_me)
555 {
556 
557 	dreq->item = item;
558 
559 	spin_lock(&cache_defer_lock);
560 
561 	__hash_deferred_req(dreq, item);
562 
563 	if (count_me) {
564 		cache_defer_cnt++;
565 		list_add(&dreq->recent, &cache_defer_list);
566 	}
567 
568 	spin_unlock(&cache_defer_lock);
569 
570 }
571 
572 struct thread_deferred_req {
573 	struct cache_deferred_req handle;
574 	struct completion completion;
575 };
576 
577 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
578 {
579 	struct thread_deferred_req *dr =
580 		container_of(dreq, struct thread_deferred_req, handle);
581 	complete(&dr->completion);
582 }
583 
584 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
585 {
586 	struct thread_deferred_req sleeper;
587 	struct cache_deferred_req *dreq = &sleeper.handle;
588 
589 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
590 	dreq->revisit = cache_restart_thread;
591 
592 	setup_deferral(dreq, item, 0);
593 
594 	if (!test_bit(CACHE_PENDING, &item->flags) ||
595 	    wait_for_completion_interruptible_timeout(
596 		    &sleeper.completion, req->thread_wait) <= 0) {
597 		/* The completion wasn't completed, so we need
598 		 * to clean up
599 		 */
600 		spin_lock(&cache_defer_lock);
601 		if (!hlist_unhashed(&sleeper.handle.hash)) {
602 			__unhash_deferred_req(&sleeper.handle);
603 			spin_unlock(&cache_defer_lock);
604 		} else {
605 			/* cache_revisit_request already removed
606 			 * this from the hash table, but hasn't
607 			 * called ->revisit yet.  It will very soon
608 			 * and we need to wait for it.
609 			 */
610 			spin_unlock(&cache_defer_lock);
611 			wait_for_completion(&sleeper.completion);
612 		}
613 	}
614 }
615 
616 static void cache_limit_defers(void)
617 {
618 	/* Make sure we haven't exceed the limit of allowed deferred
619 	 * requests.
620 	 */
621 	struct cache_deferred_req *discard = NULL;
622 
623 	if (cache_defer_cnt <= DFR_MAX)
624 		return;
625 
626 	spin_lock(&cache_defer_lock);
627 
628 	/* Consider removing either the first or the last */
629 	if (cache_defer_cnt > DFR_MAX) {
630 		if (net_random() & 1)
631 			discard = list_entry(cache_defer_list.next,
632 					     struct cache_deferred_req, recent);
633 		else
634 			discard = list_entry(cache_defer_list.prev,
635 					     struct cache_deferred_req, recent);
636 		__unhash_deferred_req(discard);
637 	}
638 	spin_unlock(&cache_defer_lock);
639 	if (discard)
640 		discard->revisit(discard, 1);
641 }
642 
643 /* Return true if and only if a deferred request is queued. */
644 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
645 {
646 	struct cache_deferred_req *dreq;
647 
648 	if (req->thread_wait) {
649 		cache_wait_req(req, item);
650 		if (!test_bit(CACHE_PENDING, &item->flags))
651 			return false;
652 	}
653 	dreq = req->defer(req);
654 	if (dreq == NULL)
655 		return false;
656 	setup_deferral(dreq, item, 1);
657 	if (!test_bit(CACHE_PENDING, &item->flags))
658 		/* Bit could have been cleared before we managed to
659 		 * set up the deferral, so need to revisit just in case
660 		 */
661 		cache_revisit_request(item);
662 
663 	cache_limit_defers();
664 	return true;
665 }
666 
667 static void cache_revisit_request(struct cache_head *item)
668 {
669 	struct cache_deferred_req *dreq;
670 	struct list_head pending;
671 	struct hlist_node *lp, *tmp;
672 	int hash = DFR_HASH(item);
673 
674 	INIT_LIST_HEAD(&pending);
675 	spin_lock(&cache_defer_lock);
676 
677 	hlist_for_each_entry_safe(dreq, lp, tmp, &cache_defer_hash[hash], hash)
678 		if (dreq->item == item) {
679 			__unhash_deferred_req(dreq);
680 			list_add(&dreq->recent, &pending);
681 		}
682 
683 	spin_unlock(&cache_defer_lock);
684 
685 	while (!list_empty(&pending)) {
686 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
687 		list_del_init(&dreq->recent);
688 		dreq->revisit(dreq, 0);
689 	}
690 }
691 
692 void cache_clean_deferred(void *owner)
693 {
694 	struct cache_deferred_req *dreq, *tmp;
695 	struct list_head pending;
696 
697 
698 	INIT_LIST_HEAD(&pending);
699 	spin_lock(&cache_defer_lock);
700 
701 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
702 		if (dreq->owner == owner) {
703 			__unhash_deferred_req(dreq);
704 			list_add(&dreq->recent, &pending);
705 		}
706 	}
707 	spin_unlock(&cache_defer_lock);
708 
709 	while (!list_empty(&pending)) {
710 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
711 		list_del_init(&dreq->recent);
712 		dreq->revisit(dreq, 1);
713 	}
714 }
715 
716 /*
717  * communicate with user-space
718  *
719  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
720  * On read, you get a full request, or block.
721  * On write, an update request is processed.
722  * Poll works if anything to read, and always allows write.
723  *
724  * Implemented by linked list of requests.  Each open file has
725  * a ->private that also exists in this list.  New requests are added
726  * to the end and may wakeup and preceding readers.
727  * New readers are added to the head.  If, on read, an item is found with
728  * CACHE_UPCALLING clear, we free it from the list.
729  *
730  */
731 
732 static DEFINE_SPINLOCK(queue_lock);
733 static DEFINE_MUTEX(queue_io_mutex);
734 
735 struct cache_queue {
736 	struct list_head	list;
737 	int			reader;	/* if 0, then request */
738 };
739 struct cache_request {
740 	struct cache_queue	q;
741 	struct cache_head	*item;
742 	char			* buf;
743 	int			len;
744 	int			readers;
745 };
746 struct cache_reader {
747 	struct cache_queue	q;
748 	int			offset;	/* if non-0, we have a refcnt on next request */
749 };
750 
751 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
752 			  loff_t *ppos, struct cache_detail *cd)
753 {
754 	struct cache_reader *rp = filp->private_data;
755 	struct cache_request *rq;
756 	struct inode *inode = filp->f_path.dentry->d_inode;
757 	int err;
758 
759 	if (count == 0)
760 		return 0;
761 
762 	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
763 			      * readers on this file */
764  again:
765 	spin_lock(&queue_lock);
766 	/* need to find next request */
767 	while (rp->q.list.next != &cd->queue &&
768 	       list_entry(rp->q.list.next, struct cache_queue, list)
769 	       ->reader) {
770 		struct list_head *next = rp->q.list.next;
771 		list_move(&rp->q.list, next);
772 	}
773 	if (rp->q.list.next == &cd->queue) {
774 		spin_unlock(&queue_lock);
775 		mutex_unlock(&inode->i_mutex);
776 		BUG_ON(rp->offset);
777 		return 0;
778 	}
779 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
780 	BUG_ON(rq->q.reader);
781 	if (rp->offset == 0)
782 		rq->readers++;
783 	spin_unlock(&queue_lock);
784 
785 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
786 		err = -EAGAIN;
787 		spin_lock(&queue_lock);
788 		list_move(&rp->q.list, &rq->q.list);
789 		spin_unlock(&queue_lock);
790 	} else {
791 		if (rp->offset + count > rq->len)
792 			count = rq->len - rp->offset;
793 		err = -EFAULT;
794 		if (copy_to_user(buf, rq->buf + rp->offset, count))
795 			goto out;
796 		rp->offset += count;
797 		if (rp->offset >= rq->len) {
798 			rp->offset = 0;
799 			spin_lock(&queue_lock);
800 			list_move(&rp->q.list, &rq->q.list);
801 			spin_unlock(&queue_lock);
802 		}
803 		err = 0;
804 	}
805  out:
806 	if (rp->offset == 0) {
807 		/* need to release rq */
808 		spin_lock(&queue_lock);
809 		rq->readers--;
810 		if (rq->readers == 0 &&
811 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
812 			list_del(&rq->q.list);
813 			spin_unlock(&queue_lock);
814 			cache_put(rq->item, cd);
815 			kfree(rq->buf);
816 			kfree(rq);
817 		} else
818 			spin_unlock(&queue_lock);
819 	}
820 	if (err == -EAGAIN)
821 		goto again;
822 	mutex_unlock(&inode->i_mutex);
823 	return err ? err :  count;
824 }
825 
826 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
827 				 size_t count, struct cache_detail *cd)
828 {
829 	ssize_t ret;
830 
831 	if (copy_from_user(kaddr, buf, count))
832 		return -EFAULT;
833 	kaddr[count] = '\0';
834 	ret = cd->cache_parse(cd, kaddr, count);
835 	if (!ret)
836 		ret = count;
837 	return ret;
838 }
839 
840 static ssize_t cache_slow_downcall(const char __user *buf,
841 				   size_t count, struct cache_detail *cd)
842 {
843 	static char write_buf[8192]; /* protected by queue_io_mutex */
844 	ssize_t ret = -EINVAL;
845 
846 	if (count >= sizeof(write_buf))
847 		goto out;
848 	mutex_lock(&queue_io_mutex);
849 	ret = cache_do_downcall(write_buf, buf, count, cd);
850 	mutex_unlock(&queue_io_mutex);
851 out:
852 	return ret;
853 }
854 
855 static ssize_t cache_downcall(struct address_space *mapping,
856 			      const char __user *buf,
857 			      size_t count, struct cache_detail *cd)
858 {
859 	struct page *page;
860 	char *kaddr;
861 	ssize_t ret = -ENOMEM;
862 
863 	if (count >= PAGE_CACHE_SIZE)
864 		goto out_slow;
865 
866 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
867 	if (!page)
868 		goto out_slow;
869 
870 	kaddr = kmap(page);
871 	ret = cache_do_downcall(kaddr, buf, count, cd);
872 	kunmap(page);
873 	unlock_page(page);
874 	page_cache_release(page);
875 	return ret;
876 out_slow:
877 	return cache_slow_downcall(buf, count, cd);
878 }
879 
880 static ssize_t cache_write(struct file *filp, const char __user *buf,
881 			   size_t count, loff_t *ppos,
882 			   struct cache_detail *cd)
883 {
884 	struct address_space *mapping = filp->f_mapping;
885 	struct inode *inode = filp->f_path.dentry->d_inode;
886 	ssize_t ret = -EINVAL;
887 
888 	if (!cd->cache_parse)
889 		goto out;
890 
891 	mutex_lock(&inode->i_mutex);
892 	ret = cache_downcall(mapping, buf, count, cd);
893 	mutex_unlock(&inode->i_mutex);
894 out:
895 	return ret;
896 }
897 
898 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
899 
900 static unsigned int cache_poll(struct file *filp, poll_table *wait,
901 			       struct cache_detail *cd)
902 {
903 	unsigned int mask;
904 	struct cache_reader *rp = filp->private_data;
905 	struct cache_queue *cq;
906 
907 	poll_wait(filp, &queue_wait, wait);
908 
909 	/* alway allow write */
910 	mask = POLL_OUT | POLLWRNORM;
911 
912 	if (!rp)
913 		return mask;
914 
915 	spin_lock(&queue_lock);
916 
917 	for (cq= &rp->q; &cq->list != &cd->queue;
918 	     cq = list_entry(cq->list.next, struct cache_queue, list))
919 		if (!cq->reader) {
920 			mask |= POLLIN | POLLRDNORM;
921 			break;
922 		}
923 	spin_unlock(&queue_lock);
924 	return mask;
925 }
926 
927 static int cache_ioctl(struct inode *ino, struct file *filp,
928 		       unsigned int cmd, unsigned long arg,
929 		       struct cache_detail *cd)
930 {
931 	int len = 0;
932 	struct cache_reader *rp = filp->private_data;
933 	struct cache_queue *cq;
934 
935 	if (cmd != FIONREAD || !rp)
936 		return -EINVAL;
937 
938 	spin_lock(&queue_lock);
939 
940 	/* only find the length remaining in current request,
941 	 * or the length of the next request
942 	 */
943 	for (cq= &rp->q; &cq->list != &cd->queue;
944 	     cq = list_entry(cq->list.next, struct cache_queue, list))
945 		if (!cq->reader) {
946 			struct cache_request *cr =
947 				container_of(cq, struct cache_request, q);
948 			len = cr->len - rp->offset;
949 			break;
950 		}
951 	spin_unlock(&queue_lock);
952 
953 	return put_user(len, (int __user *)arg);
954 }
955 
956 static int cache_open(struct inode *inode, struct file *filp,
957 		      struct cache_detail *cd)
958 {
959 	struct cache_reader *rp = NULL;
960 
961 	if (!cd || !try_module_get(cd->owner))
962 		return -EACCES;
963 	nonseekable_open(inode, filp);
964 	if (filp->f_mode & FMODE_READ) {
965 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
966 		if (!rp)
967 			return -ENOMEM;
968 		rp->offset = 0;
969 		rp->q.reader = 1;
970 		atomic_inc(&cd->readers);
971 		spin_lock(&queue_lock);
972 		list_add(&rp->q.list, &cd->queue);
973 		spin_unlock(&queue_lock);
974 	}
975 	filp->private_data = rp;
976 	return 0;
977 }
978 
979 static int cache_release(struct inode *inode, struct file *filp,
980 			 struct cache_detail *cd)
981 {
982 	struct cache_reader *rp = filp->private_data;
983 
984 	if (rp) {
985 		spin_lock(&queue_lock);
986 		if (rp->offset) {
987 			struct cache_queue *cq;
988 			for (cq= &rp->q; &cq->list != &cd->queue;
989 			     cq = list_entry(cq->list.next, struct cache_queue, list))
990 				if (!cq->reader) {
991 					container_of(cq, struct cache_request, q)
992 						->readers--;
993 					break;
994 				}
995 			rp->offset = 0;
996 		}
997 		list_del(&rp->q.list);
998 		spin_unlock(&queue_lock);
999 
1000 		filp->private_data = NULL;
1001 		kfree(rp);
1002 
1003 		cd->last_close = seconds_since_boot();
1004 		atomic_dec(&cd->readers);
1005 	}
1006 	module_put(cd->owner);
1007 	return 0;
1008 }
1009 
1010 
1011 
1012 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1013 {
1014 	struct cache_queue *cq;
1015 	spin_lock(&queue_lock);
1016 	list_for_each_entry(cq, &detail->queue, list)
1017 		if (!cq->reader) {
1018 			struct cache_request *cr = container_of(cq, struct cache_request, q);
1019 			if (cr->item != ch)
1020 				continue;
1021 			if (cr->readers != 0)
1022 				continue;
1023 			list_del(&cr->q.list);
1024 			spin_unlock(&queue_lock);
1025 			cache_put(cr->item, detail);
1026 			kfree(cr->buf);
1027 			kfree(cr);
1028 			return;
1029 		}
1030 	spin_unlock(&queue_lock);
1031 }
1032 
1033 /*
1034  * Support routines for text-based upcalls.
1035  * Fields are separated by spaces.
1036  * Fields are either mangled to quote space tab newline slosh with slosh
1037  * or a hexified with a leading \x
1038  * Record is terminated with newline.
1039  *
1040  */
1041 
1042 void qword_add(char **bpp, int *lp, char *str)
1043 {
1044 	char *bp = *bpp;
1045 	int len = *lp;
1046 	char c;
1047 
1048 	if (len < 0) return;
1049 
1050 	while ((c=*str++) && len)
1051 		switch(c) {
1052 		case ' ':
1053 		case '\t':
1054 		case '\n':
1055 		case '\\':
1056 			if (len >= 4) {
1057 				*bp++ = '\\';
1058 				*bp++ = '0' + ((c & 0300)>>6);
1059 				*bp++ = '0' + ((c & 0070)>>3);
1060 				*bp++ = '0' + ((c & 0007)>>0);
1061 			}
1062 			len -= 4;
1063 			break;
1064 		default:
1065 			*bp++ = c;
1066 			len--;
1067 		}
1068 	if (c || len <1) len = -1;
1069 	else {
1070 		*bp++ = ' ';
1071 		len--;
1072 	}
1073 	*bpp = bp;
1074 	*lp = len;
1075 }
1076 EXPORT_SYMBOL_GPL(qword_add);
1077 
1078 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1079 {
1080 	char *bp = *bpp;
1081 	int len = *lp;
1082 
1083 	if (len < 0) return;
1084 
1085 	if (len > 2) {
1086 		*bp++ = '\\';
1087 		*bp++ = 'x';
1088 		len -= 2;
1089 		while (blen && len >= 2) {
1090 			unsigned char c = *buf++;
1091 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1092 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1093 			len -= 2;
1094 			blen--;
1095 		}
1096 	}
1097 	if (blen || len<1) len = -1;
1098 	else {
1099 		*bp++ = ' ';
1100 		len--;
1101 	}
1102 	*bpp = bp;
1103 	*lp = len;
1104 }
1105 EXPORT_SYMBOL_GPL(qword_addhex);
1106 
1107 static void warn_no_listener(struct cache_detail *detail)
1108 {
1109 	if (detail->last_warn != detail->last_close) {
1110 		detail->last_warn = detail->last_close;
1111 		if (detail->warn_no_listener)
1112 			detail->warn_no_listener(detail, detail->last_close != 0);
1113 	}
1114 }
1115 
1116 static bool cache_listeners_exist(struct cache_detail *detail)
1117 {
1118 	if (atomic_read(&detail->readers))
1119 		return true;
1120 	if (detail->last_close == 0)
1121 		/* This cache was never opened */
1122 		return false;
1123 	if (detail->last_close < seconds_since_boot() - 30)
1124 		/*
1125 		 * We allow for the possibility that someone might
1126 		 * restart a userspace daemon without restarting the
1127 		 * server; but after 30 seconds, we give up.
1128 		 */
1129 		 return false;
1130 	return true;
1131 }
1132 
1133 /*
1134  * register an upcall request to user-space and queue it up for read() by the
1135  * upcall daemon.
1136  *
1137  * Each request is at most one page long.
1138  */
1139 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1140 		void (*cache_request)(struct cache_detail *,
1141 				      struct cache_head *,
1142 				      char **,
1143 				      int *))
1144 {
1145 
1146 	char *buf;
1147 	struct cache_request *crq;
1148 	char *bp;
1149 	int len;
1150 
1151 	if (!cache_listeners_exist(detail)) {
1152 		warn_no_listener(detail);
1153 		return -EINVAL;
1154 	}
1155 
1156 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1157 	if (!buf)
1158 		return -EAGAIN;
1159 
1160 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1161 	if (!crq) {
1162 		kfree(buf);
1163 		return -EAGAIN;
1164 	}
1165 
1166 	bp = buf; len = PAGE_SIZE;
1167 
1168 	cache_request(detail, h, &bp, &len);
1169 
1170 	if (len < 0) {
1171 		kfree(buf);
1172 		kfree(crq);
1173 		return -EAGAIN;
1174 	}
1175 	crq->q.reader = 0;
1176 	crq->item = cache_get(h);
1177 	crq->buf = buf;
1178 	crq->len = PAGE_SIZE - len;
1179 	crq->readers = 0;
1180 	spin_lock(&queue_lock);
1181 	list_add_tail(&crq->q.list, &detail->queue);
1182 	spin_unlock(&queue_lock);
1183 	wake_up(&queue_wait);
1184 	return 0;
1185 }
1186 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1187 
1188 /*
1189  * parse a message from user-space and pass it
1190  * to an appropriate cache
1191  * Messages are, like requests, separated into fields by
1192  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1193  *
1194  * Message is
1195  *   reply cachename expiry key ... content....
1196  *
1197  * key and content are both parsed by cache
1198  */
1199 
1200 #define isodigit(c) (isdigit(c) && c <= '7')
1201 int qword_get(char **bpp, char *dest, int bufsize)
1202 {
1203 	/* return bytes copied, or -1 on error */
1204 	char *bp = *bpp;
1205 	int len = 0;
1206 
1207 	while (*bp == ' ') bp++;
1208 
1209 	if (bp[0] == '\\' && bp[1] == 'x') {
1210 		/* HEX STRING */
1211 		bp += 2;
1212 		while (len < bufsize) {
1213 			int h, l;
1214 
1215 			h = hex_to_bin(bp[0]);
1216 			if (h < 0)
1217 				break;
1218 
1219 			l = hex_to_bin(bp[1]);
1220 			if (l < 0)
1221 				break;
1222 
1223 			*dest++ = (h << 4) | l;
1224 			bp += 2;
1225 			len++;
1226 		}
1227 	} else {
1228 		/* text with \nnn octal quoting */
1229 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1230 			if (*bp == '\\' &&
1231 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1232 			    isodigit(bp[2]) &&
1233 			    isodigit(bp[3])) {
1234 				int byte = (*++bp -'0');
1235 				bp++;
1236 				byte = (byte << 3) | (*bp++ - '0');
1237 				byte = (byte << 3) | (*bp++ - '0');
1238 				*dest++ = byte;
1239 				len++;
1240 			} else {
1241 				*dest++ = *bp++;
1242 				len++;
1243 			}
1244 		}
1245 	}
1246 
1247 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1248 		return -1;
1249 	while (*bp == ' ') bp++;
1250 	*bpp = bp;
1251 	*dest = '\0';
1252 	return len;
1253 }
1254 EXPORT_SYMBOL_GPL(qword_get);
1255 
1256 
1257 /*
1258  * support /proc/sunrpc/cache/$CACHENAME/content
1259  * as a seqfile.
1260  * We call ->cache_show passing NULL for the item to
1261  * get a header, then pass each real item in the cache
1262  */
1263 
1264 struct handle {
1265 	struct cache_detail *cd;
1266 };
1267 
1268 static void *c_start(struct seq_file *m, loff_t *pos)
1269 	__acquires(cd->hash_lock)
1270 {
1271 	loff_t n = *pos;
1272 	unsigned hash, entry;
1273 	struct cache_head *ch;
1274 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1275 
1276 
1277 	read_lock(&cd->hash_lock);
1278 	if (!n--)
1279 		return SEQ_START_TOKEN;
1280 	hash = n >> 32;
1281 	entry = n & ((1LL<<32) - 1);
1282 
1283 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1284 		if (!entry--)
1285 			return ch;
1286 	n &= ~((1LL<<32) - 1);
1287 	do {
1288 		hash++;
1289 		n += 1LL<<32;
1290 	} while(hash < cd->hash_size &&
1291 		cd->hash_table[hash]==NULL);
1292 	if (hash >= cd->hash_size)
1293 		return NULL;
1294 	*pos = n+1;
1295 	return cd->hash_table[hash];
1296 }
1297 
1298 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1299 {
1300 	struct cache_head *ch = p;
1301 	int hash = (*pos >> 32);
1302 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1303 
1304 	if (p == SEQ_START_TOKEN)
1305 		hash = 0;
1306 	else if (ch->next == NULL) {
1307 		hash++;
1308 		*pos += 1LL<<32;
1309 	} else {
1310 		++*pos;
1311 		return ch->next;
1312 	}
1313 	*pos &= ~((1LL<<32) - 1);
1314 	while (hash < cd->hash_size &&
1315 	       cd->hash_table[hash] == NULL) {
1316 		hash++;
1317 		*pos += 1LL<<32;
1318 	}
1319 	if (hash >= cd->hash_size)
1320 		return NULL;
1321 	++*pos;
1322 	return cd->hash_table[hash];
1323 }
1324 
1325 static void c_stop(struct seq_file *m, void *p)
1326 	__releases(cd->hash_lock)
1327 {
1328 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1329 	read_unlock(&cd->hash_lock);
1330 }
1331 
1332 static int c_show(struct seq_file *m, void *p)
1333 {
1334 	struct cache_head *cp = p;
1335 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1336 
1337 	if (p == SEQ_START_TOKEN)
1338 		return cd->cache_show(m, cd, NULL);
1339 
1340 	ifdebug(CACHE)
1341 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1342 			   convert_to_wallclock(cp->expiry_time),
1343 			   atomic_read(&cp->ref.refcount), cp->flags);
1344 	cache_get(cp);
1345 	if (cache_check(cd, cp, NULL))
1346 		/* cache_check does a cache_put on failure */
1347 		seq_printf(m, "# ");
1348 	else
1349 		cache_put(cp, cd);
1350 
1351 	return cd->cache_show(m, cd, cp);
1352 }
1353 
1354 static const struct seq_operations cache_content_op = {
1355 	.start	= c_start,
1356 	.next	= c_next,
1357 	.stop	= c_stop,
1358 	.show	= c_show,
1359 };
1360 
1361 static int content_open(struct inode *inode, struct file *file,
1362 			struct cache_detail *cd)
1363 {
1364 	struct handle *han;
1365 
1366 	if (!cd || !try_module_get(cd->owner))
1367 		return -EACCES;
1368 	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1369 	if (han == NULL) {
1370 		module_put(cd->owner);
1371 		return -ENOMEM;
1372 	}
1373 
1374 	han->cd = cd;
1375 	return 0;
1376 }
1377 
1378 static int content_release(struct inode *inode, struct file *file,
1379 		struct cache_detail *cd)
1380 {
1381 	int ret = seq_release_private(inode, file);
1382 	module_put(cd->owner);
1383 	return ret;
1384 }
1385 
1386 static int open_flush(struct inode *inode, struct file *file,
1387 			struct cache_detail *cd)
1388 {
1389 	if (!cd || !try_module_get(cd->owner))
1390 		return -EACCES;
1391 	return nonseekable_open(inode, file);
1392 }
1393 
1394 static int release_flush(struct inode *inode, struct file *file,
1395 			struct cache_detail *cd)
1396 {
1397 	module_put(cd->owner);
1398 	return 0;
1399 }
1400 
1401 static ssize_t read_flush(struct file *file, char __user *buf,
1402 			  size_t count, loff_t *ppos,
1403 			  struct cache_detail *cd)
1404 {
1405 	char tbuf[20];
1406 	unsigned long p = *ppos;
1407 	size_t len;
1408 
1409 	sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
1410 	len = strlen(tbuf);
1411 	if (p >= len)
1412 		return 0;
1413 	len -= p;
1414 	if (len > count)
1415 		len = count;
1416 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1417 		return -EFAULT;
1418 	*ppos += len;
1419 	return len;
1420 }
1421 
1422 static ssize_t write_flush(struct file *file, const char __user *buf,
1423 			   size_t count, loff_t *ppos,
1424 			   struct cache_detail *cd)
1425 {
1426 	char tbuf[20];
1427 	char *bp, *ep;
1428 
1429 	if (*ppos || count > sizeof(tbuf)-1)
1430 		return -EINVAL;
1431 	if (copy_from_user(tbuf, buf, count))
1432 		return -EFAULT;
1433 	tbuf[count] = 0;
1434 	simple_strtoul(tbuf, &ep, 0);
1435 	if (*ep && *ep != '\n')
1436 		return -EINVAL;
1437 
1438 	bp = tbuf;
1439 	cd->flush_time = get_expiry(&bp);
1440 	cd->nextcheck = seconds_since_boot();
1441 	cache_flush();
1442 
1443 	*ppos += count;
1444 	return count;
1445 }
1446 
1447 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1448 				 size_t count, loff_t *ppos)
1449 {
1450 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1451 
1452 	return cache_read(filp, buf, count, ppos, cd);
1453 }
1454 
1455 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1456 				  size_t count, loff_t *ppos)
1457 {
1458 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1459 
1460 	return cache_write(filp, buf, count, ppos, cd);
1461 }
1462 
1463 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1464 {
1465 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1466 
1467 	return cache_poll(filp, wait, cd);
1468 }
1469 
1470 static long cache_ioctl_procfs(struct file *filp,
1471 			       unsigned int cmd, unsigned long arg)
1472 {
1473 	struct inode *inode = filp->f_path.dentry->d_inode;
1474 	struct cache_detail *cd = PDE(inode)->data;
1475 
1476 	return cache_ioctl(inode, filp, cmd, arg, cd);
1477 }
1478 
1479 static int cache_open_procfs(struct inode *inode, struct file *filp)
1480 {
1481 	struct cache_detail *cd = PDE(inode)->data;
1482 
1483 	return cache_open(inode, filp, cd);
1484 }
1485 
1486 static int cache_release_procfs(struct inode *inode, struct file *filp)
1487 {
1488 	struct cache_detail *cd = PDE(inode)->data;
1489 
1490 	return cache_release(inode, filp, cd);
1491 }
1492 
1493 static const struct file_operations cache_file_operations_procfs = {
1494 	.owner		= THIS_MODULE,
1495 	.llseek		= no_llseek,
1496 	.read		= cache_read_procfs,
1497 	.write		= cache_write_procfs,
1498 	.poll		= cache_poll_procfs,
1499 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1500 	.open		= cache_open_procfs,
1501 	.release	= cache_release_procfs,
1502 };
1503 
1504 static int content_open_procfs(struct inode *inode, struct file *filp)
1505 {
1506 	struct cache_detail *cd = PDE(inode)->data;
1507 
1508 	return content_open(inode, filp, cd);
1509 }
1510 
1511 static int content_release_procfs(struct inode *inode, struct file *filp)
1512 {
1513 	struct cache_detail *cd = PDE(inode)->data;
1514 
1515 	return content_release(inode, filp, cd);
1516 }
1517 
1518 static const struct file_operations content_file_operations_procfs = {
1519 	.open		= content_open_procfs,
1520 	.read		= seq_read,
1521 	.llseek		= seq_lseek,
1522 	.release	= content_release_procfs,
1523 };
1524 
1525 static int open_flush_procfs(struct inode *inode, struct file *filp)
1526 {
1527 	struct cache_detail *cd = PDE(inode)->data;
1528 
1529 	return open_flush(inode, filp, cd);
1530 }
1531 
1532 static int release_flush_procfs(struct inode *inode, struct file *filp)
1533 {
1534 	struct cache_detail *cd = PDE(inode)->data;
1535 
1536 	return release_flush(inode, filp, cd);
1537 }
1538 
1539 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1540 			    size_t count, loff_t *ppos)
1541 {
1542 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1543 
1544 	return read_flush(filp, buf, count, ppos, cd);
1545 }
1546 
1547 static ssize_t write_flush_procfs(struct file *filp,
1548 				  const char __user *buf,
1549 				  size_t count, loff_t *ppos)
1550 {
1551 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1552 
1553 	return write_flush(filp, buf, count, ppos, cd);
1554 }
1555 
1556 static const struct file_operations cache_flush_operations_procfs = {
1557 	.open		= open_flush_procfs,
1558 	.read		= read_flush_procfs,
1559 	.write		= write_flush_procfs,
1560 	.release	= release_flush_procfs,
1561 	.llseek		= no_llseek,
1562 };
1563 
1564 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1565 {
1566 	struct sunrpc_net *sn;
1567 
1568 	if (cd->u.procfs.proc_ent == NULL)
1569 		return;
1570 	if (cd->u.procfs.flush_ent)
1571 		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1572 	if (cd->u.procfs.channel_ent)
1573 		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1574 	if (cd->u.procfs.content_ent)
1575 		remove_proc_entry("content", cd->u.procfs.proc_ent);
1576 	cd->u.procfs.proc_ent = NULL;
1577 	sn = net_generic(net, sunrpc_net_id);
1578 	remove_proc_entry(cd->name, sn->proc_net_rpc);
1579 }
1580 
1581 #ifdef CONFIG_PROC_FS
1582 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1583 {
1584 	struct proc_dir_entry *p;
1585 	struct sunrpc_net *sn;
1586 
1587 	sn = net_generic(net, sunrpc_net_id);
1588 	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1589 	if (cd->u.procfs.proc_ent == NULL)
1590 		goto out_nomem;
1591 	cd->u.procfs.channel_ent = NULL;
1592 	cd->u.procfs.content_ent = NULL;
1593 
1594 	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1595 			     cd->u.procfs.proc_ent,
1596 			     &cache_flush_operations_procfs, cd);
1597 	cd->u.procfs.flush_ent = p;
1598 	if (p == NULL)
1599 		goto out_nomem;
1600 
1601 	if (cd->cache_upcall || cd->cache_parse) {
1602 		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1603 				     cd->u.procfs.proc_ent,
1604 				     &cache_file_operations_procfs, cd);
1605 		cd->u.procfs.channel_ent = p;
1606 		if (p == NULL)
1607 			goto out_nomem;
1608 	}
1609 	if (cd->cache_show) {
1610 		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1611 				cd->u.procfs.proc_ent,
1612 				&content_file_operations_procfs, cd);
1613 		cd->u.procfs.content_ent = p;
1614 		if (p == NULL)
1615 			goto out_nomem;
1616 	}
1617 	return 0;
1618 out_nomem:
1619 	remove_cache_proc_entries(cd, net);
1620 	return -ENOMEM;
1621 }
1622 #else /* CONFIG_PROC_FS */
1623 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1624 {
1625 	return 0;
1626 }
1627 #endif
1628 
1629 void __init cache_initialize(void)
1630 {
1631 	INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1632 }
1633 
1634 int cache_register_net(struct cache_detail *cd, struct net *net)
1635 {
1636 	int ret;
1637 
1638 	sunrpc_init_cache_detail(cd);
1639 	ret = create_cache_proc_entries(cd, net);
1640 	if (ret)
1641 		sunrpc_destroy_cache_detail(cd);
1642 	return ret;
1643 }
1644 
1645 int cache_register(struct cache_detail *cd)
1646 {
1647 	return cache_register_net(cd, &init_net);
1648 }
1649 EXPORT_SYMBOL_GPL(cache_register);
1650 
1651 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1652 {
1653 	remove_cache_proc_entries(cd, net);
1654 	sunrpc_destroy_cache_detail(cd);
1655 }
1656 
1657 void cache_unregister(struct cache_detail *cd)
1658 {
1659 	cache_unregister_net(cd, &init_net);
1660 }
1661 EXPORT_SYMBOL_GPL(cache_unregister);
1662 
1663 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1664 				 size_t count, loff_t *ppos)
1665 {
1666 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1667 
1668 	return cache_read(filp, buf, count, ppos, cd);
1669 }
1670 
1671 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1672 				  size_t count, loff_t *ppos)
1673 {
1674 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1675 
1676 	return cache_write(filp, buf, count, ppos, cd);
1677 }
1678 
1679 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1680 {
1681 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1682 
1683 	return cache_poll(filp, wait, cd);
1684 }
1685 
1686 static long cache_ioctl_pipefs(struct file *filp,
1687 			      unsigned int cmd, unsigned long arg)
1688 {
1689 	struct inode *inode = filp->f_dentry->d_inode;
1690 	struct cache_detail *cd = RPC_I(inode)->private;
1691 
1692 	return cache_ioctl(inode, filp, cmd, arg, cd);
1693 }
1694 
1695 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1696 {
1697 	struct cache_detail *cd = RPC_I(inode)->private;
1698 
1699 	return cache_open(inode, filp, cd);
1700 }
1701 
1702 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1703 {
1704 	struct cache_detail *cd = RPC_I(inode)->private;
1705 
1706 	return cache_release(inode, filp, cd);
1707 }
1708 
1709 const struct file_operations cache_file_operations_pipefs = {
1710 	.owner		= THIS_MODULE,
1711 	.llseek		= no_llseek,
1712 	.read		= cache_read_pipefs,
1713 	.write		= cache_write_pipefs,
1714 	.poll		= cache_poll_pipefs,
1715 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1716 	.open		= cache_open_pipefs,
1717 	.release	= cache_release_pipefs,
1718 };
1719 
1720 static int content_open_pipefs(struct inode *inode, struct file *filp)
1721 {
1722 	struct cache_detail *cd = RPC_I(inode)->private;
1723 
1724 	return content_open(inode, filp, cd);
1725 }
1726 
1727 static int content_release_pipefs(struct inode *inode, struct file *filp)
1728 {
1729 	struct cache_detail *cd = RPC_I(inode)->private;
1730 
1731 	return content_release(inode, filp, cd);
1732 }
1733 
1734 const struct file_operations content_file_operations_pipefs = {
1735 	.open		= content_open_pipefs,
1736 	.read		= seq_read,
1737 	.llseek		= seq_lseek,
1738 	.release	= content_release_pipefs,
1739 };
1740 
1741 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1742 {
1743 	struct cache_detail *cd = RPC_I(inode)->private;
1744 
1745 	return open_flush(inode, filp, cd);
1746 }
1747 
1748 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1749 {
1750 	struct cache_detail *cd = RPC_I(inode)->private;
1751 
1752 	return release_flush(inode, filp, cd);
1753 }
1754 
1755 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1756 			    size_t count, loff_t *ppos)
1757 {
1758 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1759 
1760 	return read_flush(filp, buf, count, ppos, cd);
1761 }
1762 
1763 static ssize_t write_flush_pipefs(struct file *filp,
1764 				  const char __user *buf,
1765 				  size_t count, loff_t *ppos)
1766 {
1767 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1768 
1769 	return write_flush(filp, buf, count, ppos, cd);
1770 }
1771 
1772 const struct file_operations cache_flush_operations_pipefs = {
1773 	.open		= open_flush_pipefs,
1774 	.read		= read_flush_pipefs,
1775 	.write		= write_flush_pipefs,
1776 	.release	= release_flush_pipefs,
1777 	.llseek		= no_llseek,
1778 };
1779 
1780 int sunrpc_cache_register_pipefs(struct dentry *parent,
1781 				 const char *name, mode_t umode,
1782 				 struct cache_detail *cd)
1783 {
1784 	struct qstr q;
1785 	struct dentry *dir;
1786 	int ret = 0;
1787 
1788 	sunrpc_init_cache_detail(cd);
1789 	q.name = name;
1790 	q.len = strlen(name);
1791 	q.hash = full_name_hash(q.name, q.len);
1792 	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1793 	if (!IS_ERR(dir))
1794 		cd->u.pipefs.dir = dir;
1795 	else {
1796 		sunrpc_destroy_cache_detail(cd);
1797 		ret = PTR_ERR(dir);
1798 	}
1799 	return ret;
1800 }
1801 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1802 
1803 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1804 {
1805 	rpc_remove_cache_dir(cd->u.pipefs.dir);
1806 	cd->u.pipefs.dir = NULL;
1807 	sunrpc_destroy_cache_detail(cd);
1808 }
1809 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1810 
1811