1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <asm/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <linux/pagemap.h> 31 #include <linux/smp_lock.h> 32 #include <asm/ioctls.h> 33 #include <linux/sunrpc/types.h> 34 #include <linux/sunrpc/cache.h> 35 #include <linux/sunrpc/stats.h> 36 #include <linux/sunrpc/rpc_pipe_fs.h> 37 38 #define RPCDBG_FACILITY RPCDBG_CACHE 39 40 static int cache_defer_req(struct cache_req *req, struct cache_head *item); 41 static void cache_revisit_request(struct cache_head *item); 42 43 static void cache_init(struct cache_head *h) 44 { 45 time_t now = get_seconds(); 46 h->next = NULL; 47 h->flags = 0; 48 kref_init(&h->ref); 49 h->expiry_time = now + CACHE_NEW_EXPIRY; 50 h->last_refresh = now; 51 } 52 53 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h) 54 { 55 return (h->expiry_time < get_seconds()) || 56 (detail->flush_time > h->last_refresh); 57 } 58 59 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 60 struct cache_head *key, int hash) 61 { 62 struct cache_head **head, **hp; 63 struct cache_head *new = NULL, *freeme = NULL; 64 65 head = &detail->hash_table[hash]; 66 67 read_lock(&detail->hash_lock); 68 69 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 70 struct cache_head *tmp = *hp; 71 if (detail->match(tmp, key)) { 72 if (cache_is_expired(detail, tmp)) 73 /* This entry is expired, we will discard it. */ 74 break; 75 cache_get(tmp); 76 read_unlock(&detail->hash_lock); 77 return tmp; 78 } 79 } 80 read_unlock(&detail->hash_lock); 81 /* Didn't find anything, insert an empty entry */ 82 83 new = detail->alloc(); 84 if (!new) 85 return NULL; 86 /* must fully initialise 'new', else 87 * we might get lose if we need to 88 * cache_put it soon. 89 */ 90 cache_init(new); 91 detail->init(new, key); 92 93 write_lock(&detail->hash_lock); 94 95 /* check if entry appeared while we slept */ 96 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 97 struct cache_head *tmp = *hp; 98 if (detail->match(tmp, key)) { 99 if (cache_is_expired(detail, tmp)) { 100 *hp = tmp->next; 101 tmp->next = NULL; 102 detail->entries --; 103 freeme = tmp; 104 break; 105 } 106 cache_get(tmp); 107 write_unlock(&detail->hash_lock); 108 cache_put(new, detail); 109 return tmp; 110 } 111 } 112 new->next = *head; 113 *head = new; 114 detail->entries++; 115 cache_get(new); 116 write_unlock(&detail->hash_lock); 117 118 if (freeme) 119 cache_put(freeme, detail); 120 return new; 121 } 122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); 123 124 125 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 126 127 static void cache_fresh_locked(struct cache_head *head, time_t expiry) 128 { 129 head->expiry_time = expiry; 130 head->last_refresh = get_seconds(); 131 set_bit(CACHE_VALID, &head->flags); 132 } 133 134 static void cache_fresh_unlocked(struct cache_head *head, 135 struct cache_detail *detail) 136 { 137 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 138 cache_revisit_request(head); 139 cache_dequeue(detail, head); 140 } 141 } 142 143 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 144 struct cache_head *new, struct cache_head *old, int hash) 145 { 146 /* The 'old' entry is to be replaced by 'new'. 147 * If 'old' is not VALID, we update it directly, 148 * otherwise we need to replace it 149 */ 150 struct cache_head **head; 151 struct cache_head *tmp; 152 153 if (!test_bit(CACHE_VALID, &old->flags)) { 154 write_lock(&detail->hash_lock); 155 if (!test_bit(CACHE_VALID, &old->flags)) { 156 if (test_bit(CACHE_NEGATIVE, &new->flags)) 157 set_bit(CACHE_NEGATIVE, &old->flags); 158 else 159 detail->update(old, new); 160 cache_fresh_locked(old, new->expiry_time); 161 write_unlock(&detail->hash_lock); 162 cache_fresh_unlocked(old, detail); 163 return old; 164 } 165 write_unlock(&detail->hash_lock); 166 } 167 /* We need to insert a new entry */ 168 tmp = detail->alloc(); 169 if (!tmp) { 170 cache_put(old, detail); 171 return NULL; 172 } 173 cache_init(tmp); 174 detail->init(tmp, old); 175 head = &detail->hash_table[hash]; 176 177 write_lock(&detail->hash_lock); 178 if (test_bit(CACHE_NEGATIVE, &new->flags)) 179 set_bit(CACHE_NEGATIVE, &tmp->flags); 180 else 181 detail->update(tmp, new); 182 tmp->next = *head; 183 *head = tmp; 184 detail->entries++; 185 cache_get(tmp); 186 cache_fresh_locked(tmp, new->expiry_time); 187 cache_fresh_locked(old, 0); 188 write_unlock(&detail->hash_lock); 189 cache_fresh_unlocked(tmp, detail); 190 cache_fresh_unlocked(old, detail); 191 cache_put(old, detail); 192 return tmp; 193 } 194 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 195 196 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 197 { 198 if (!cd->cache_upcall) 199 return -EINVAL; 200 return cd->cache_upcall(cd, h); 201 } 202 203 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h) 204 { 205 if (!test_bit(CACHE_VALID, &h->flags)) 206 return -EAGAIN; 207 else { 208 /* entry is valid */ 209 if (test_bit(CACHE_NEGATIVE, &h->flags)) 210 return -ENOENT; 211 else 212 return 0; 213 } 214 } 215 216 /* 217 * This is the generic cache management routine for all 218 * the authentication caches. 219 * It checks the currency of a cache item and will (later) 220 * initiate an upcall to fill it if needed. 221 * 222 * 223 * Returns 0 if the cache_head can be used, or cache_puts it and returns 224 * -EAGAIN if upcall is pending and request has been queued 225 * -ETIMEDOUT if upcall failed or request could not be queue or 226 * upcall completed but item is still invalid (implying that 227 * the cache item has been replaced with a newer one). 228 * -ENOENT if cache entry was negative 229 */ 230 int cache_check(struct cache_detail *detail, 231 struct cache_head *h, struct cache_req *rqstp) 232 { 233 int rv; 234 long refresh_age, age; 235 236 /* First decide return status as best we can */ 237 rv = cache_is_valid(detail, h); 238 239 /* now see if we want to start an upcall */ 240 refresh_age = (h->expiry_time - h->last_refresh); 241 age = get_seconds() - h->last_refresh; 242 243 if (rqstp == NULL) { 244 if (rv == -EAGAIN) 245 rv = -ENOENT; 246 } else if (rv == -EAGAIN || age > refresh_age/2) { 247 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 248 refresh_age, age); 249 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 250 switch (cache_make_upcall(detail, h)) { 251 case -EINVAL: 252 clear_bit(CACHE_PENDING, &h->flags); 253 cache_revisit_request(h); 254 if (rv == -EAGAIN) { 255 set_bit(CACHE_NEGATIVE, &h->flags); 256 cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY); 257 cache_fresh_unlocked(h, detail); 258 rv = -ENOENT; 259 } 260 break; 261 262 case -EAGAIN: 263 clear_bit(CACHE_PENDING, &h->flags); 264 cache_revisit_request(h); 265 break; 266 } 267 } 268 } 269 270 if (rv == -EAGAIN) { 271 if (cache_defer_req(rqstp, h) < 0) { 272 /* Request is not deferred */ 273 rv = cache_is_valid(detail, h); 274 if (rv == -EAGAIN) 275 rv = -ETIMEDOUT; 276 } 277 } 278 if (rv) 279 cache_put(h, detail); 280 return rv; 281 } 282 EXPORT_SYMBOL_GPL(cache_check); 283 284 /* 285 * caches need to be periodically cleaned. 286 * For this we maintain a list of cache_detail and 287 * a current pointer into that list and into the table 288 * for that entry. 289 * 290 * Each time clean_cache is called it finds the next non-empty entry 291 * in the current table and walks the list in that entry 292 * looking for entries that can be removed. 293 * 294 * An entry gets removed if: 295 * - The expiry is before current time 296 * - The last_refresh time is before the flush_time for that cache 297 * 298 * later we might drop old entries with non-NEVER expiry if that table 299 * is getting 'full' for some definition of 'full' 300 * 301 * The question of "how often to scan a table" is an interesting one 302 * and is answered in part by the use of the "nextcheck" field in the 303 * cache_detail. 304 * When a scan of a table begins, the nextcheck field is set to a time 305 * that is well into the future. 306 * While scanning, if an expiry time is found that is earlier than the 307 * current nextcheck time, nextcheck is set to that expiry time. 308 * If the flush_time is ever set to a time earlier than the nextcheck 309 * time, the nextcheck time is then set to that flush_time. 310 * 311 * A table is then only scanned if the current time is at least 312 * the nextcheck time. 313 * 314 */ 315 316 static LIST_HEAD(cache_list); 317 static DEFINE_SPINLOCK(cache_list_lock); 318 static struct cache_detail *current_detail; 319 static int current_index; 320 321 static void do_cache_clean(struct work_struct *work); 322 static struct delayed_work cache_cleaner; 323 324 static void sunrpc_init_cache_detail(struct cache_detail *cd) 325 { 326 rwlock_init(&cd->hash_lock); 327 INIT_LIST_HEAD(&cd->queue); 328 spin_lock(&cache_list_lock); 329 cd->nextcheck = 0; 330 cd->entries = 0; 331 atomic_set(&cd->readers, 0); 332 cd->last_close = 0; 333 cd->last_warn = -1; 334 list_add(&cd->others, &cache_list); 335 spin_unlock(&cache_list_lock); 336 337 /* start the cleaning process */ 338 schedule_delayed_work(&cache_cleaner, 0); 339 } 340 341 static void sunrpc_destroy_cache_detail(struct cache_detail *cd) 342 { 343 cache_purge(cd); 344 spin_lock(&cache_list_lock); 345 write_lock(&cd->hash_lock); 346 if (cd->entries || atomic_read(&cd->inuse)) { 347 write_unlock(&cd->hash_lock); 348 spin_unlock(&cache_list_lock); 349 goto out; 350 } 351 if (current_detail == cd) 352 current_detail = NULL; 353 list_del_init(&cd->others); 354 write_unlock(&cd->hash_lock); 355 spin_unlock(&cache_list_lock); 356 if (list_empty(&cache_list)) { 357 /* module must be being unloaded so its safe to kill the worker */ 358 cancel_delayed_work_sync(&cache_cleaner); 359 } 360 return; 361 out: 362 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name); 363 } 364 365 /* clean cache tries to find something to clean 366 * and cleans it. 367 * It returns 1 if it cleaned something, 368 * 0 if it didn't find anything this time 369 * -1 if it fell off the end of the list. 370 */ 371 static int cache_clean(void) 372 { 373 int rv = 0; 374 struct list_head *next; 375 376 spin_lock(&cache_list_lock); 377 378 /* find a suitable table if we don't already have one */ 379 while (current_detail == NULL || 380 current_index >= current_detail->hash_size) { 381 if (current_detail) 382 next = current_detail->others.next; 383 else 384 next = cache_list.next; 385 if (next == &cache_list) { 386 current_detail = NULL; 387 spin_unlock(&cache_list_lock); 388 return -1; 389 } 390 current_detail = list_entry(next, struct cache_detail, others); 391 if (current_detail->nextcheck > get_seconds()) 392 current_index = current_detail->hash_size; 393 else { 394 current_index = 0; 395 current_detail->nextcheck = get_seconds()+30*60; 396 } 397 } 398 399 /* find a non-empty bucket in the table */ 400 while (current_detail && 401 current_index < current_detail->hash_size && 402 current_detail->hash_table[current_index] == NULL) 403 current_index++; 404 405 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 406 407 if (current_detail && current_index < current_detail->hash_size) { 408 struct cache_head *ch, **cp; 409 struct cache_detail *d; 410 411 write_lock(¤t_detail->hash_lock); 412 413 /* Ok, now to clean this strand */ 414 415 cp = & current_detail->hash_table[current_index]; 416 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) { 417 if (current_detail->nextcheck > ch->expiry_time) 418 current_detail->nextcheck = ch->expiry_time+1; 419 if (!cache_is_expired(current_detail, ch)) 420 continue; 421 422 *cp = ch->next; 423 ch->next = NULL; 424 current_detail->entries--; 425 rv = 1; 426 break; 427 } 428 429 write_unlock(¤t_detail->hash_lock); 430 d = current_detail; 431 if (!ch) 432 current_index ++; 433 spin_unlock(&cache_list_lock); 434 if (ch) { 435 if (test_and_clear_bit(CACHE_PENDING, &ch->flags)) 436 cache_dequeue(current_detail, ch); 437 cache_revisit_request(ch); 438 cache_put(ch, d); 439 } 440 } else 441 spin_unlock(&cache_list_lock); 442 443 return rv; 444 } 445 446 /* 447 * We want to regularly clean the cache, so we need to schedule some work ... 448 */ 449 static void do_cache_clean(struct work_struct *work) 450 { 451 int delay = 5; 452 if (cache_clean() == -1) 453 delay = round_jiffies_relative(30*HZ); 454 455 if (list_empty(&cache_list)) 456 delay = 0; 457 458 if (delay) 459 schedule_delayed_work(&cache_cleaner, delay); 460 } 461 462 463 /* 464 * Clean all caches promptly. This just calls cache_clean 465 * repeatedly until we are sure that every cache has had a chance to 466 * be fully cleaned 467 */ 468 void cache_flush(void) 469 { 470 while (cache_clean() != -1) 471 cond_resched(); 472 while (cache_clean() != -1) 473 cond_resched(); 474 } 475 EXPORT_SYMBOL_GPL(cache_flush); 476 477 void cache_purge(struct cache_detail *detail) 478 { 479 detail->flush_time = LONG_MAX; 480 detail->nextcheck = get_seconds(); 481 cache_flush(); 482 detail->flush_time = 1; 483 } 484 EXPORT_SYMBOL_GPL(cache_purge); 485 486 487 /* 488 * Deferral and Revisiting of Requests. 489 * 490 * If a cache lookup finds a pending entry, we 491 * need to defer the request and revisit it later. 492 * All deferred requests are stored in a hash table, 493 * indexed by "struct cache_head *". 494 * As it may be wasteful to store a whole request 495 * structure, we allow the request to provide a 496 * deferred form, which must contain a 497 * 'struct cache_deferred_req' 498 * This cache_deferred_req contains a method to allow 499 * it to be revisited when cache info is available 500 */ 501 502 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 503 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 504 505 #define DFR_MAX 300 /* ??? */ 506 507 static DEFINE_SPINLOCK(cache_defer_lock); 508 static LIST_HEAD(cache_defer_list); 509 static struct list_head cache_defer_hash[DFR_HASHSIZE]; 510 static int cache_defer_cnt; 511 512 static int cache_defer_req(struct cache_req *req, struct cache_head *item) 513 { 514 struct cache_deferred_req *dreq, *discard; 515 int hash = DFR_HASH(item); 516 517 if (cache_defer_cnt >= DFR_MAX) { 518 /* too much in the cache, randomly drop this one, 519 * or continue and drop the oldest below 520 */ 521 if (net_random()&1) 522 return -ENOMEM; 523 } 524 dreq = req->defer(req); 525 if (dreq == NULL) 526 return -ENOMEM; 527 528 dreq->item = item; 529 530 spin_lock(&cache_defer_lock); 531 532 list_add(&dreq->recent, &cache_defer_list); 533 534 if (cache_defer_hash[hash].next == NULL) 535 INIT_LIST_HEAD(&cache_defer_hash[hash]); 536 list_add(&dreq->hash, &cache_defer_hash[hash]); 537 538 /* it is in, now maybe clean up */ 539 discard = NULL; 540 if (++cache_defer_cnt > DFR_MAX) { 541 discard = list_entry(cache_defer_list.prev, 542 struct cache_deferred_req, recent); 543 list_del_init(&discard->recent); 544 list_del_init(&discard->hash); 545 cache_defer_cnt--; 546 } 547 spin_unlock(&cache_defer_lock); 548 549 if (discard) 550 /* there was one too many */ 551 discard->revisit(discard, 1); 552 553 if (!test_bit(CACHE_PENDING, &item->flags)) { 554 /* must have just been validated... */ 555 cache_revisit_request(item); 556 return -EAGAIN; 557 } 558 return 0; 559 } 560 561 static void cache_revisit_request(struct cache_head *item) 562 { 563 struct cache_deferred_req *dreq; 564 struct list_head pending; 565 566 struct list_head *lp; 567 int hash = DFR_HASH(item); 568 569 INIT_LIST_HEAD(&pending); 570 spin_lock(&cache_defer_lock); 571 572 lp = cache_defer_hash[hash].next; 573 if (lp) { 574 while (lp != &cache_defer_hash[hash]) { 575 dreq = list_entry(lp, struct cache_deferred_req, hash); 576 lp = lp->next; 577 if (dreq->item == item) { 578 list_del_init(&dreq->hash); 579 list_move(&dreq->recent, &pending); 580 cache_defer_cnt--; 581 } 582 } 583 } 584 spin_unlock(&cache_defer_lock); 585 586 while (!list_empty(&pending)) { 587 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 588 list_del_init(&dreq->recent); 589 dreq->revisit(dreq, 0); 590 } 591 } 592 593 void cache_clean_deferred(void *owner) 594 { 595 struct cache_deferred_req *dreq, *tmp; 596 struct list_head pending; 597 598 599 INIT_LIST_HEAD(&pending); 600 spin_lock(&cache_defer_lock); 601 602 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 603 if (dreq->owner == owner) { 604 list_del_init(&dreq->hash); 605 list_move(&dreq->recent, &pending); 606 cache_defer_cnt--; 607 } 608 } 609 spin_unlock(&cache_defer_lock); 610 611 while (!list_empty(&pending)) { 612 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 613 list_del_init(&dreq->recent); 614 dreq->revisit(dreq, 1); 615 } 616 } 617 618 /* 619 * communicate with user-space 620 * 621 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 622 * On read, you get a full request, or block. 623 * On write, an update request is processed. 624 * Poll works if anything to read, and always allows write. 625 * 626 * Implemented by linked list of requests. Each open file has 627 * a ->private that also exists in this list. New requests are added 628 * to the end and may wakeup and preceding readers. 629 * New readers are added to the head. If, on read, an item is found with 630 * CACHE_UPCALLING clear, we free it from the list. 631 * 632 */ 633 634 static DEFINE_SPINLOCK(queue_lock); 635 static DEFINE_MUTEX(queue_io_mutex); 636 637 struct cache_queue { 638 struct list_head list; 639 int reader; /* if 0, then request */ 640 }; 641 struct cache_request { 642 struct cache_queue q; 643 struct cache_head *item; 644 char * buf; 645 int len; 646 int readers; 647 }; 648 struct cache_reader { 649 struct cache_queue q; 650 int offset; /* if non-0, we have a refcnt on next request */ 651 }; 652 653 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 654 loff_t *ppos, struct cache_detail *cd) 655 { 656 struct cache_reader *rp = filp->private_data; 657 struct cache_request *rq; 658 struct inode *inode = filp->f_path.dentry->d_inode; 659 int err; 660 661 if (count == 0) 662 return 0; 663 664 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent 665 * readers on this file */ 666 again: 667 spin_lock(&queue_lock); 668 /* need to find next request */ 669 while (rp->q.list.next != &cd->queue && 670 list_entry(rp->q.list.next, struct cache_queue, list) 671 ->reader) { 672 struct list_head *next = rp->q.list.next; 673 list_move(&rp->q.list, next); 674 } 675 if (rp->q.list.next == &cd->queue) { 676 spin_unlock(&queue_lock); 677 mutex_unlock(&inode->i_mutex); 678 BUG_ON(rp->offset); 679 return 0; 680 } 681 rq = container_of(rp->q.list.next, struct cache_request, q.list); 682 BUG_ON(rq->q.reader); 683 if (rp->offset == 0) 684 rq->readers++; 685 spin_unlock(&queue_lock); 686 687 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 688 err = -EAGAIN; 689 spin_lock(&queue_lock); 690 list_move(&rp->q.list, &rq->q.list); 691 spin_unlock(&queue_lock); 692 } else { 693 if (rp->offset + count > rq->len) 694 count = rq->len - rp->offset; 695 err = -EFAULT; 696 if (copy_to_user(buf, rq->buf + rp->offset, count)) 697 goto out; 698 rp->offset += count; 699 if (rp->offset >= rq->len) { 700 rp->offset = 0; 701 spin_lock(&queue_lock); 702 list_move(&rp->q.list, &rq->q.list); 703 spin_unlock(&queue_lock); 704 } 705 err = 0; 706 } 707 out: 708 if (rp->offset == 0) { 709 /* need to release rq */ 710 spin_lock(&queue_lock); 711 rq->readers--; 712 if (rq->readers == 0 && 713 !test_bit(CACHE_PENDING, &rq->item->flags)) { 714 list_del(&rq->q.list); 715 spin_unlock(&queue_lock); 716 cache_put(rq->item, cd); 717 kfree(rq->buf); 718 kfree(rq); 719 } else 720 spin_unlock(&queue_lock); 721 } 722 if (err == -EAGAIN) 723 goto again; 724 mutex_unlock(&inode->i_mutex); 725 return err ? err : count; 726 } 727 728 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 729 size_t count, struct cache_detail *cd) 730 { 731 ssize_t ret; 732 733 if (copy_from_user(kaddr, buf, count)) 734 return -EFAULT; 735 kaddr[count] = '\0'; 736 ret = cd->cache_parse(cd, kaddr, count); 737 if (!ret) 738 ret = count; 739 return ret; 740 } 741 742 static ssize_t cache_slow_downcall(const char __user *buf, 743 size_t count, struct cache_detail *cd) 744 { 745 static char write_buf[8192]; /* protected by queue_io_mutex */ 746 ssize_t ret = -EINVAL; 747 748 if (count >= sizeof(write_buf)) 749 goto out; 750 mutex_lock(&queue_io_mutex); 751 ret = cache_do_downcall(write_buf, buf, count, cd); 752 mutex_unlock(&queue_io_mutex); 753 out: 754 return ret; 755 } 756 757 static ssize_t cache_downcall(struct address_space *mapping, 758 const char __user *buf, 759 size_t count, struct cache_detail *cd) 760 { 761 struct page *page; 762 char *kaddr; 763 ssize_t ret = -ENOMEM; 764 765 if (count >= PAGE_CACHE_SIZE) 766 goto out_slow; 767 768 page = find_or_create_page(mapping, 0, GFP_KERNEL); 769 if (!page) 770 goto out_slow; 771 772 kaddr = kmap(page); 773 ret = cache_do_downcall(kaddr, buf, count, cd); 774 kunmap(page); 775 unlock_page(page); 776 page_cache_release(page); 777 return ret; 778 out_slow: 779 return cache_slow_downcall(buf, count, cd); 780 } 781 782 static ssize_t cache_write(struct file *filp, const char __user *buf, 783 size_t count, loff_t *ppos, 784 struct cache_detail *cd) 785 { 786 struct address_space *mapping = filp->f_mapping; 787 struct inode *inode = filp->f_path.dentry->d_inode; 788 ssize_t ret = -EINVAL; 789 790 if (!cd->cache_parse) 791 goto out; 792 793 mutex_lock(&inode->i_mutex); 794 ret = cache_downcall(mapping, buf, count, cd); 795 mutex_unlock(&inode->i_mutex); 796 out: 797 return ret; 798 } 799 800 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 801 802 static unsigned int cache_poll(struct file *filp, poll_table *wait, 803 struct cache_detail *cd) 804 { 805 unsigned int mask; 806 struct cache_reader *rp = filp->private_data; 807 struct cache_queue *cq; 808 809 poll_wait(filp, &queue_wait, wait); 810 811 /* alway allow write */ 812 mask = POLL_OUT | POLLWRNORM; 813 814 if (!rp) 815 return mask; 816 817 spin_lock(&queue_lock); 818 819 for (cq= &rp->q; &cq->list != &cd->queue; 820 cq = list_entry(cq->list.next, struct cache_queue, list)) 821 if (!cq->reader) { 822 mask |= POLLIN | POLLRDNORM; 823 break; 824 } 825 spin_unlock(&queue_lock); 826 return mask; 827 } 828 829 static int cache_ioctl(struct inode *ino, struct file *filp, 830 unsigned int cmd, unsigned long arg, 831 struct cache_detail *cd) 832 { 833 int len = 0; 834 struct cache_reader *rp = filp->private_data; 835 struct cache_queue *cq; 836 837 if (cmd != FIONREAD || !rp) 838 return -EINVAL; 839 840 spin_lock(&queue_lock); 841 842 /* only find the length remaining in current request, 843 * or the length of the next request 844 */ 845 for (cq= &rp->q; &cq->list != &cd->queue; 846 cq = list_entry(cq->list.next, struct cache_queue, list)) 847 if (!cq->reader) { 848 struct cache_request *cr = 849 container_of(cq, struct cache_request, q); 850 len = cr->len - rp->offset; 851 break; 852 } 853 spin_unlock(&queue_lock); 854 855 return put_user(len, (int __user *)arg); 856 } 857 858 static int cache_open(struct inode *inode, struct file *filp, 859 struct cache_detail *cd) 860 { 861 struct cache_reader *rp = NULL; 862 863 if (!cd || !try_module_get(cd->owner)) 864 return -EACCES; 865 nonseekable_open(inode, filp); 866 if (filp->f_mode & FMODE_READ) { 867 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 868 if (!rp) 869 return -ENOMEM; 870 rp->offset = 0; 871 rp->q.reader = 1; 872 atomic_inc(&cd->readers); 873 spin_lock(&queue_lock); 874 list_add(&rp->q.list, &cd->queue); 875 spin_unlock(&queue_lock); 876 } 877 filp->private_data = rp; 878 return 0; 879 } 880 881 static int cache_release(struct inode *inode, struct file *filp, 882 struct cache_detail *cd) 883 { 884 struct cache_reader *rp = filp->private_data; 885 886 if (rp) { 887 spin_lock(&queue_lock); 888 if (rp->offset) { 889 struct cache_queue *cq; 890 for (cq= &rp->q; &cq->list != &cd->queue; 891 cq = list_entry(cq->list.next, struct cache_queue, list)) 892 if (!cq->reader) { 893 container_of(cq, struct cache_request, q) 894 ->readers--; 895 break; 896 } 897 rp->offset = 0; 898 } 899 list_del(&rp->q.list); 900 spin_unlock(&queue_lock); 901 902 filp->private_data = NULL; 903 kfree(rp); 904 905 cd->last_close = get_seconds(); 906 atomic_dec(&cd->readers); 907 } 908 module_put(cd->owner); 909 return 0; 910 } 911 912 913 914 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 915 { 916 struct cache_queue *cq; 917 spin_lock(&queue_lock); 918 list_for_each_entry(cq, &detail->queue, list) 919 if (!cq->reader) { 920 struct cache_request *cr = container_of(cq, struct cache_request, q); 921 if (cr->item != ch) 922 continue; 923 if (cr->readers != 0) 924 continue; 925 list_del(&cr->q.list); 926 spin_unlock(&queue_lock); 927 cache_put(cr->item, detail); 928 kfree(cr->buf); 929 kfree(cr); 930 return; 931 } 932 spin_unlock(&queue_lock); 933 } 934 935 /* 936 * Support routines for text-based upcalls. 937 * Fields are separated by spaces. 938 * Fields are either mangled to quote space tab newline slosh with slosh 939 * or a hexified with a leading \x 940 * Record is terminated with newline. 941 * 942 */ 943 944 void qword_add(char **bpp, int *lp, char *str) 945 { 946 char *bp = *bpp; 947 int len = *lp; 948 char c; 949 950 if (len < 0) return; 951 952 while ((c=*str++) && len) 953 switch(c) { 954 case ' ': 955 case '\t': 956 case '\n': 957 case '\\': 958 if (len >= 4) { 959 *bp++ = '\\'; 960 *bp++ = '0' + ((c & 0300)>>6); 961 *bp++ = '0' + ((c & 0070)>>3); 962 *bp++ = '0' + ((c & 0007)>>0); 963 } 964 len -= 4; 965 break; 966 default: 967 *bp++ = c; 968 len--; 969 } 970 if (c || len <1) len = -1; 971 else { 972 *bp++ = ' '; 973 len--; 974 } 975 *bpp = bp; 976 *lp = len; 977 } 978 EXPORT_SYMBOL_GPL(qword_add); 979 980 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 981 { 982 char *bp = *bpp; 983 int len = *lp; 984 985 if (len < 0) return; 986 987 if (len > 2) { 988 *bp++ = '\\'; 989 *bp++ = 'x'; 990 len -= 2; 991 while (blen && len >= 2) { 992 unsigned char c = *buf++; 993 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1); 994 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1); 995 len -= 2; 996 blen--; 997 } 998 } 999 if (blen || len<1) len = -1; 1000 else { 1001 *bp++ = ' '; 1002 len--; 1003 } 1004 *bpp = bp; 1005 *lp = len; 1006 } 1007 EXPORT_SYMBOL_GPL(qword_addhex); 1008 1009 static void warn_no_listener(struct cache_detail *detail) 1010 { 1011 if (detail->last_warn != detail->last_close) { 1012 detail->last_warn = detail->last_close; 1013 if (detail->warn_no_listener) 1014 detail->warn_no_listener(detail, detail->last_close != 0); 1015 } 1016 } 1017 1018 /* 1019 * register an upcall request to user-space and queue it up for read() by the 1020 * upcall daemon. 1021 * 1022 * Each request is at most one page long. 1023 */ 1024 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h, 1025 void (*cache_request)(struct cache_detail *, 1026 struct cache_head *, 1027 char **, 1028 int *)) 1029 { 1030 1031 char *buf; 1032 struct cache_request *crq; 1033 char *bp; 1034 int len; 1035 1036 if (atomic_read(&detail->readers) == 0 && 1037 detail->last_close < get_seconds() - 30) { 1038 warn_no_listener(detail); 1039 return -EINVAL; 1040 } 1041 1042 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1043 if (!buf) 1044 return -EAGAIN; 1045 1046 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1047 if (!crq) { 1048 kfree(buf); 1049 return -EAGAIN; 1050 } 1051 1052 bp = buf; len = PAGE_SIZE; 1053 1054 cache_request(detail, h, &bp, &len); 1055 1056 if (len < 0) { 1057 kfree(buf); 1058 kfree(crq); 1059 return -EAGAIN; 1060 } 1061 crq->q.reader = 0; 1062 crq->item = cache_get(h); 1063 crq->buf = buf; 1064 crq->len = PAGE_SIZE - len; 1065 crq->readers = 0; 1066 spin_lock(&queue_lock); 1067 list_add_tail(&crq->q.list, &detail->queue); 1068 spin_unlock(&queue_lock); 1069 wake_up(&queue_wait); 1070 return 0; 1071 } 1072 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1073 1074 /* 1075 * parse a message from user-space and pass it 1076 * to an appropriate cache 1077 * Messages are, like requests, separated into fields by 1078 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1079 * 1080 * Message is 1081 * reply cachename expiry key ... content.... 1082 * 1083 * key and content are both parsed by cache 1084 */ 1085 1086 #define isodigit(c) (isdigit(c) && c <= '7') 1087 int qword_get(char **bpp, char *dest, int bufsize) 1088 { 1089 /* return bytes copied, or -1 on error */ 1090 char *bp = *bpp; 1091 int len = 0; 1092 1093 while (*bp == ' ') bp++; 1094 1095 if (bp[0] == '\\' && bp[1] == 'x') { 1096 /* HEX STRING */ 1097 bp += 2; 1098 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) { 1099 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1100 bp++; 1101 byte <<= 4; 1102 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1103 *dest++ = byte; 1104 bp++; 1105 len++; 1106 } 1107 } else { 1108 /* text with \nnn octal quoting */ 1109 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1110 if (*bp == '\\' && 1111 isodigit(bp[1]) && (bp[1] <= '3') && 1112 isodigit(bp[2]) && 1113 isodigit(bp[3])) { 1114 int byte = (*++bp -'0'); 1115 bp++; 1116 byte = (byte << 3) | (*bp++ - '0'); 1117 byte = (byte << 3) | (*bp++ - '0'); 1118 *dest++ = byte; 1119 len++; 1120 } else { 1121 *dest++ = *bp++; 1122 len++; 1123 } 1124 } 1125 } 1126 1127 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1128 return -1; 1129 while (*bp == ' ') bp++; 1130 *bpp = bp; 1131 *dest = '\0'; 1132 return len; 1133 } 1134 EXPORT_SYMBOL_GPL(qword_get); 1135 1136 1137 /* 1138 * support /proc/sunrpc/cache/$CACHENAME/content 1139 * as a seqfile. 1140 * We call ->cache_show passing NULL for the item to 1141 * get a header, then pass each real item in the cache 1142 */ 1143 1144 struct handle { 1145 struct cache_detail *cd; 1146 }; 1147 1148 static void *c_start(struct seq_file *m, loff_t *pos) 1149 __acquires(cd->hash_lock) 1150 { 1151 loff_t n = *pos; 1152 unsigned hash, entry; 1153 struct cache_head *ch; 1154 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1155 1156 1157 read_lock(&cd->hash_lock); 1158 if (!n--) 1159 return SEQ_START_TOKEN; 1160 hash = n >> 32; 1161 entry = n & ((1LL<<32) - 1); 1162 1163 for (ch=cd->hash_table[hash]; ch; ch=ch->next) 1164 if (!entry--) 1165 return ch; 1166 n &= ~((1LL<<32) - 1); 1167 do { 1168 hash++; 1169 n += 1LL<<32; 1170 } while(hash < cd->hash_size && 1171 cd->hash_table[hash]==NULL); 1172 if (hash >= cd->hash_size) 1173 return NULL; 1174 *pos = n+1; 1175 return cd->hash_table[hash]; 1176 } 1177 1178 static void *c_next(struct seq_file *m, void *p, loff_t *pos) 1179 { 1180 struct cache_head *ch = p; 1181 int hash = (*pos >> 32); 1182 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1183 1184 if (p == SEQ_START_TOKEN) 1185 hash = 0; 1186 else if (ch->next == NULL) { 1187 hash++; 1188 *pos += 1LL<<32; 1189 } else { 1190 ++*pos; 1191 return ch->next; 1192 } 1193 *pos &= ~((1LL<<32) - 1); 1194 while (hash < cd->hash_size && 1195 cd->hash_table[hash] == NULL) { 1196 hash++; 1197 *pos += 1LL<<32; 1198 } 1199 if (hash >= cd->hash_size) 1200 return NULL; 1201 ++*pos; 1202 return cd->hash_table[hash]; 1203 } 1204 1205 static void c_stop(struct seq_file *m, void *p) 1206 __releases(cd->hash_lock) 1207 { 1208 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1209 read_unlock(&cd->hash_lock); 1210 } 1211 1212 static int c_show(struct seq_file *m, void *p) 1213 { 1214 struct cache_head *cp = p; 1215 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1216 1217 if (p == SEQ_START_TOKEN) 1218 return cd->cache_show(m, cd, NULL); 1219 1220 ifdebug(CACHE) 1221 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1222 cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags); 1223 cache_get(cp); 1224 if (cache_check(cd, cp, NULL)) 1225 /* cache_check does a cache_put on failure */ 1226 seq_printf(m, "# "); 1227 else 1228 cache_put(cp, cd); 1229 1230 return cd->cache_show(m, cd, cp); 1231 } 1232 1233 static const struct seq_operations cache_content_op = { 1234 .start = c_start, 1235 .next = c_next, 1236 .stop = c_stop, 1237 .show = c_show, 1238 }; 1239 1240 static int content_open(struct inode *inode, struct file *file, 1241 struct cache_detail *cd) 1242 { 1243 struct handle *han; 1244 1245 if (!cd || !try_module_get(cd->owner)) 1246 return -EACCES; 1247 han = __seq_open_private(file, &cache_content_op, sizeof(*han)); 1248 if (han == NULL) { 1249 module_put(cd->owner); 1250 return -ENOMEM; 1251 } 1252 1253 han->cd = cd; 1254 return 0; 1255 } 1256 1257 static int content_release(struct inode *inode, struct file *file, 1258 struct cache_detail *cd) 1259 { 1260 int ret = seq_release_private(inode, file); 1261 module_put(cd->owner); 1262 return ret; 1263 } 1264 1265 static int open_flush(struct inode *inode, struct file *file, 1266 struct cache_detail *cd) 1267 { 1268 if (!cd || !try_module_get(cd->owner)) 1269 return -EACCES; 1270 return nonseekable_open(inode, file); 1271 } 1272 1273 static int release_flush(struct inode *inode, struct file *file, 1274 struct cache_detail *cd) 1275 { 1276 module_put(cd->owner); 1277 return 0; 1278 } 1279 1280 static ssize_t read_flush(struct file *file, char __user *buf, 1281 size_t count, loff_t *ppos, 1282 struct cache_detail *cd) 1283 { 1284 char tbuf[20]; 1285 unsigned long p = *ppos; 1286 size_t len; 1287 1288 sprintf(tbuf, "%lu\n", cd->flush_time); 1289 len = strlen(tbuf); 1290 if (p >= len) 1291 return 0; 1292 len -= p; 1293 if (len > count) 1294 len = count; 1295 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1296 return -EFAULT; 1297 *ppos += len; 1298 return len; 1299 } 1300 1301 static ssize_t write_flush(struct file *file, const char __user *buf, 1302 size_t count, loff_t *ppos, 1303 struct cache_detail *cd) 1304 { 1305 char tbuf[20]; 1306 char *ep; 1307 long flushtime; 1308 if (*ppos || count > sizeof(tbuf)-1) 1309 return -EINVAL; 1310 if (copy_from_user(tbuf, buf, count)) 1311 return -EFAULT; 1312 tbuf[count] = 0; 1313 flushtime = simple_strtoul(tbuf, &ep, 0); 1314 if (*ep && *ep != '\n') 1315 return -EINVAL; 1316 1317 cd->flush_time = flushtime; 1318 cd->nextcheck = get_seconds(); 1319 cache_flush(); 1320 1321 *ppos += count; 1322 return count; 1323 } 1324 1325 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1326 size_t count, loff_t *ppos) 1327 { 1328 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1329 1330 return cache_read(filp, buf, count, ppos, cd); 1331 } 1332 1333 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1334 size_t count, loff_t *ppos) 1335 { 1336 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1337 1338 return cache_write(filp, buf, count, ppos, cd); 1339 } 1340 1341 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait) 1342 { 1343 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1344 1345 return cache_poll(filp, wait, cd); 1346 } 1347 1348 static long cache_ioctl_procfs(struct file *filp, 1349 unsigned int cmd, unsigned long arg) 1350 { 1351 long ret; 1352 struct inode *inode = filp->f_path.dentry->d_inode; 1353 struct cache_detail *cd = PDE(inode)->data; 1354 1355 lock_kernel(); 1356 ret = cache_ioctl(inode, filp, cmd, arg, cd); 1357 unlock_kernel(); 1358 1359 return ret; 1360 } 1361 1362 static int cache_open_procfs(struct inode *inode, struct file *filp) 1363 { 1364 struct cache_detail *cd = PDE(inode)->data; 1365 1366 return cache_open(inode, filp, cd); 1367 } 1368 1369 static int cache_release_procfs(struct inode *inode, struct file *filp) 1370 { 1371 struct cache_detail *cd = PDE(inode)->data; 1372 1373 return cache_release(inode, filp, cd); 1374 } 1375 1376 static const struct file_operations cache_file_operations_procfs = { 1377 .owner = THIS_MODULE, 1378 .llseek = no_llseek, 1379 .read = cache_read_procfs, 1380 .write = cache_write_procfs, 1381 .poll = cache_poll_procfs, 1382 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1383 .open = cache_open_procfs, 1384 .release = cache_release_procfs, 1385 }; 1386 1387 static int content_open_procfs(struct inode *inode, struct file *filp) 1388 { 1389 struct cache_detail *cd = PDE(inode)->data; 1390 1391 return content_open(inode, filp, cd); 1392 } 1393 1394 static int content_release_procfs(struct inode *inode, struct file *filp) 1395 { 1396 struct cache_detail *cd = PDE(inode)->data; 1397 1398 return content_release(inode, filp, cd); 1399 } 1400 1401 static const struct file_operations content_file_operations_procfs = { 1402 .open = content_open_procfs, 1403 .read = seq_read, 1404 .llseek = seq_lseek, 1405 .release = content_release_procfs, 1406 }; 1407 1408 static int open_flush_procfs(struct inode *inode, struct file *filp) 1409 { 1410 struct cache_detail *cd = PDE(inode)->data; 1411 1412 return open_flush(inode, filp, cd); 1413 } 1414 1415 static int release_flush_procfs(struct inode *inode, struct file *filp) 1416 { 1417 struct cache_detail *cd = PDE(inode)->data; 1418 1419 return release_flush(inode, filp, cd); 1420 } 1421 1422 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1423 size_t count, loff_t *ppos) 1424 { 1425 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1426 1427 return read_flush(filp, buf, count, ppos, cd); 1428 } 1429 1430 static ssize_t write_flush_procfs(struct file *filp, 1431 const char __user *buf, 1432 size_t count, loff_t *ppos) 1433 { 1434 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1435 1436 return write_flush(filp, buf, count, ppos, cd); 1437 } 1438 1439 static const struct file_operations cache_flush_operations_procfs = { 1440 .open = open_flush_procfs, 1441 .read = read_flush_procfs, 1442 .write = write_flush_procfs, 1443 .release = release_flush_procfs, 1444 }; 1445 1446 static void remove_cache_proc_entries(struct cache_detail *cd) 1447 { 1448 if (cd->u.procfs.proc_ent == NULL) 1449 return; 1450 if (cd->u.procfs.flush_ent) 1451 remove_proc_entry("flush", cd->u.procfs.proc_ent); 1452 if (cd->u.procfs.channel_ent) 1453 remove_proc_entry("channel", cd->u.procfs.proc_ent); 1454 if (cd->u.procfs.content_ent) 1455 remove_proc_entry("content", cd->u.procfs.proc_ent); 1456 cd->u.procfs.proc_ent = NULL; 1457 remove_proc_entry(cd->name, proc_net_rpc); 1458 } 1459 1460 #ifdef CONFIG_PROC_FS 1461 static int create_cache_proc_entries(struct cache_detail *cd) 1462 { 1463 struct proc_dir_entry *p; 1464 1465 cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc); 1466 if (cd->u.procfs.proc_ent == NULL) 1467 goto out_nomem; 1468 cd->u.procfs.channel_ent = NULL; 1469 cd->u.procfs.content_ent = NULL; 1470 1471 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 1472 cd->u.procfs.proc_ent, 1473 &cache_flush_operations_procfs, cd); 1474 cd->u.procfs.flush_ent = p; 1475 if (p == NULL) 1476 goto out_nomem; 1477 1478 if (cd->cache_upcall || cd->cache_parse) { 1479 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 1480 cd->u.procfs.proc_ent, 1481 &cache_file_operations_procfs, cd); 1482 cd->u.procfs.channel_ent = p; 1483 if (p == NULL) 1484 goto out_nomem; 1485 } 1486 if (cd->cache_show) { 1487 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR, 1488 cd->u.procfs.proc_ent, 1489 &content_file_operations_procfs, cd); 1490 cd->u.procfs.content_ent = p; 1491 if (p == NULL) 1492 goto out_nomem; 1493 } 1494 return 0; 1495 out_nomem: 1496 remove_cache_proc_entries(cd); 1497 return -ENOMEM; 1498 } 1499 #else /* CONFIG_PROC_FS */ 1500 static int create_cache_proc_entries(struct cache_detail *cd) 1501 { 1502 return 0; 1503 } 1504 #endif 1505 1506 void __init cache_initialize(void) 1507 { 1508 INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean); 1509 } 1510 1511 int cache_register(struct cache_detail *cd) 1512 { 1513 int ret; 1514 1515 sunrpc_init_cache_detail(cd); 1516 ret = create_cache_proc_entries(cd); 1517 if (ret) 1518 sunrpc_destroy_cache_detail(cd); 1519 return ret; 1520 } 1521 EXPORT_SYMBOL_GPL(cache_register); 1522 1523 void cache_unregister(struct cache_detail *cd) 1524 { 1525 remove_cache_proc_entries(cd); 1526 sunrpc_destroy_cache_detail(cd); 1527 } 1528 EXPORT_SYMBOL_GPL(cache_unregister); 1529 1530 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1531 size_t count, loff_t *ppos) 1532 { 1533 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1534 1535 return cache_read(filp, buf, count, ppos, cd); 1536 } 1537 1538 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1539 size_t count, loff_t *ppos) 1540 { 1541 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1542 1543 return cache_write(filp, buf, count, ppos, cd); 1544 } 1545 1546 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait) 1547 { 1548 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1549 1550 return cache_poll(filp, wait, cd); 1551 } 1552 1553 static long cache_ioctl_pipefs(struct file *filp, 1554 unsigned int cmd, unsigned long arg) 1555 { 1556 struct inode *inode = filp->f_dentry->d_inode; 1557 struct cache_detail *cd = RPC_I(inode)->private; 1558 long ret; 1559 1560 lock_kernel(); 1561 ret = cache_ioctl(inode, filp, cmd, arg, cd); 1562 unlock_kernel(); 1563 1564 return ret; 1565 } 1566 1567 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1568 { 1569 struct cache_detail *cd = RPC_I(inode)->private; 1570 1571 return cache_open(inode, filp, cd); 1572 } 1573 1574 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1575 { 1576 struct cache_detail *cd = RPC_I(inode)->private; 1577 1578 return cache_release(inode, filp, cd); 1579 } 1580 1581 const struct file_operations cache_file_operations_pipefs = { 1582 .owner = THIS_MODULE, 1583 .llseek = no_llseek, 1584 .read = cache_read_pipefs, 1585 .write = cache_write_pipefs, 1586 .poll = cache_poll_pipefs, 1587 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1588 .open = cache_open_pipefs, 1589 .release = cache_release_pipefs, 1590 }; 1591 1592 static int content_open_pipefs(struct inode *inode, struct file *filp) 1593 { 1594 struct cache_detail *cd = RPC_I(inode)->private; 1595 1596 return content_open(inode, filp, cd); 1597 } 1598 1599 static int content_release_pipefs(struct inode *inode, struct file *filp) 1600 { 1601 struct cache_detail *cd = RPC_I(inode)->private; 1602 1603 return content_release(inode, filp, cd); 1604 } 1605 1606 const struct file_operations content_file_operations_pipefs = { 1607 .open = content_open_pipefs, 1608 .read = seq_read, 1609 .llseek = seq_lseek, 1610 .release = content_release_pipefs, 1611 }; 1612 1613 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1614 { 1615 struct cache_detail *cd = RPC_I(inode)->private; 1616 1617 return open_flush(inode, filp, cd); 1618 } 1619 1620 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1621 { 1622 struct cache_detail *cd = RPC_I(inode)->private; 1623 1624 return release_flush(inode, filp, cd); 1625 } 1626 1627 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1628 size_t count, loff_t *ppos) 1629 { 1630 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1631 1632 return read_flush(filp, buf, count, ppos, cd); 1633 } 1634 1635 static ssize_t write_flush_pipefs(struct file *filp, 1636 const char __user *buf, 1637 size_t count, loff_t *ppos) 1638 { 1639 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1640 1641 return write_flush(filp, buf, count, ppos, cd); 1642 } 1643 1644 const struct file_operations cache_flush_operations_pipefs = { 1645 .open = open_flush_pipefs, 1646 .read = read_flush_pipefs, 1647 .write = write_flush_pipefs, 1648 .release = release_flush_pipefs, 1649 }; 1650 1651 int sunrpc_cache_register_pipefs(struct dentry *parent, 1652 const char *name, mode_t umode, 1653 struct cache_detail *cd) 1654 { 1655 struct qstr q; 1656 struct dentry *dir; 1657 int ret = 0; 1658 1659 sunrpc_init_cache_detail(cd); 1660 q.name = name; 1661 q.len = strlen(name); 1662 q.hash = full_name_hash(q.name, q.len); 1663 dir = rpc_create_cache_dir(parent, &q, umode, cd); 1664 if (!IS_ERR(dir)) 1665 cd->u.pipefs.dir = dir; 1666 else { 1667 sunrpc_destroy_cache_detail(cd); 1668 ret = PTR_ERR(dir); 1669 } 1670 return ret; 1671 } 1672 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1673 1674 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1675 { 1676 rpc_remove_cache_dir(cd->u.pipefs.dir); 1677 cd->u.pipefs.dir = NULL; 1678 sunrpc_destroy_cache_detail(cd); 1679 } 1680 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1681 1682