1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <asm/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <linux/pagemap.h> 31 #include <asm/ioctls.h> 32 #include <linux/sunrpc/types.h> 33 #include <linux/sunrpc/cache.h> 34 #include <linux/sunrpc/stats.h> 35 #include <linux/sunrpc/rpc_pipe_fs.h> 36 #include "netns.h" 37 38 #define RPCDBG_FACILITY RPCDBG_CACHE 39 40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 41 static void cache_revisit_request(struct cache_head *item); 42 43 static void cache_init(struct cache_head *h) 44 { 45 time_t now = seconds_since_boot(); 46 h->next = NULL; 47 h->flags = 0; 48 kref_init(&h->ref); 49 h->expiry_time = now + CACHE_NEW_EXPIRY; 50 h->last_refresh = now; 51 } 52 53 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 54 struct cache_head *key, int hash) 55 { 56 struct cache_head **head, **hp; 57 struct cache_head *new = NULL, *freeme = NULL; 58 59 head = &detail->hash_table[hash]; 60 61 read_lock(&detail->hash_lock); 62 63 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 64 struct cache_head *tmp = *hp; 65 if (detail->match(tmp, key)) { 66 if (cache_is_expired(detail, tmp)) 67 /* This entry is expired, we will discard it. */ 68 break; 69 cache_get(tmp); 70 read_unlock(&detail->hash_lock); 71 return tmp; 72 } 73 } 74 read_unlock(&detail->hash_lock); 75 /* Didn't find anything, insert an empty entry */ 76 77 new = detail->alloc(); 78 if (!new) 79 return NULL; 80 /* must fully initialise 'new', else 81 * we might get lose if we need to 82 * cache_put it soon. 83 */ 84 cache_init(new); 85 detail->init(new, key); 86 87 write_lock(&detail->hash_lock); 88 89 /* check if entry appeared while we slept */ 90 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 91 struct cache_head *tmp = *hp; 92 if (detail->match(tmp, key)) { 93 if (cache_is_expired(detail, tmp)) { 94 *hp = tmp->next; 95 tmp->next = NULL; 96 detail->entries --; 97 freeme = tmp; 98 break; 99 } 100 cache_get(tmp); 101 write_unlock(&detail->hash_lock); 102 cache_put(new, detail); 103 return tmp; 104 } 105 } 106 new->next = *head; 107 *head = new; 108 detail->entries++; 109 cache_get(new); 110 write_unlock(&detail->hash_lock); 111 112 if (freeme) 113 cache_put(freeme, detail); 114 return new; 115 } 116 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); 117 118 119 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 120 121 static void cache_fresh_locked(struct cache_head *head, time_t expiry) 122 { 123 head->expiry_time = expiry; 124 head->last_refresh = seconds_since_boot(); 125 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 126 set_bit(CACHE_VALID, &head->flags); 127 } 128 129 static void cache_fresh_unlocked(struct cache_head *head, 130 struct cache_detail *detail) 131 { 132 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 133 cache_revisit_request(head); 134 cache_dequeue(detail, head); 135 } 136 } 137 138 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 139 struct cache_head *new, struct cache_head *old, int hash) 140 { 141 /* The 'old' entry is to be replaced by 'new'. 142 * If 'old' is not VALID, we update it directly, 143 * otherwise we need to replace it 144 */ 145 struct cache_head **head; 146 struct cache_head *tmp; 147 148 if (!test_bit(CACHE_VALID, &old->flags)) { 149 write_lock(&detail->hash_lock); 150 if (!test_bit(CACHE_VALID, &old->flags)) { 151 if (test_bit(CACHE_NEGATIVE, &new->flags)) 152 set_bit(CACHE_NEGATIVE, &old->flags); 153 else 154 detail->update(old, new); 155 cache_fresh_locked(old, new->expiry_time); 156 write_unlock(&detail->hash_lock); 157 cache_fresh_unlocked(old, detail); 158 return old; 159 } 160 write_unlock(&detail->hash_lock); 161 } 162 /* We need to insert a new entry */ 163 tmp = detail->alloc(); 164 if (!tmp) { 165 cache_put(old, detail); 166 return NULL; 167 } 168 cache_init(tmp); 169 detail->init(tmp, old); 170 head = &detail->hash_table[hash]; 171 172 write_lock(&detail->hash_lock); 173 if (test_bit(CACHE_NEGATIVE, &new->flags)) 174 set_bit(CACHE_NEGATIVE, &tmp->flags); 175 else 176 detail->update(tmp, new); 177 tmp->next = *head; 178 *head = tmp; 179 detail->entries++; 180 cache_get(tmp); 181 cache_fresh_locked(tmp, new->expiry_time); 182 cache_fresh_locked(old, 0); 183 write_unlock(&detail->hash_lock); 184 cache_fresh_unlocked(tmp, detail); 185 cache_fresh_unlocked(old, detail); 186 cache_put(old, detail); 187 return tmp; 188 } 189 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 190 191 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 192 { 193 if (cd->cache_upcall) 194 return cd->cache_upcall(cd, h); 195 return sunrpc_cache_pipe_upcall(cd, h); 196 } 197 198 static inline int cache_is_valid(struct cache_head *h) 199 { 200 if (!test_bit(CACHE_VALID, &h->flags)) 201 return -EAGAIN; 202 else { 203 /* entry is valid */ 204 if (test_bit(CACHE_NEGATIVE, &h->flags)) 205 return -ENOENT; 206 else { 207 /* 208 * In combination with write barrier in 209 * sunrpc_cache_update, ensures that anyone 210 * using the cache entry after this sees the 211 * updated contents: 212 */ 213 smp_rmb(); 214 return 0; 215 } 216 } 217 } 218 219 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 220 { 221 int rv; 222 223 write_lock(&detail->hash_lock); 224 rv = cache_is_valid(h); 225 if (rv == -EAGAIN) { 226 set_bit(CACHE_NEGATIVE, &h->flags); 227 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY); 228 rv = -ENOENT; 229 } 230 write_unlock(&detail->hash_lock); 231 cache_fresh_unlocked(h, detail); 232 return rv; 233 } 234 235 /* 236 * This is the generic cache management routine for all 237 * the authentication caches. 238 * It checks the currency of a cache item and will (later) 239 * initiate an upcall to fill it if needed. 240 * 241 * 242 * Returns 0 if the cache_head can be used, or cache_puts it and returns 243 * -EAGAIN if upcall is pending and request has been queued 244 * -ETIMEDOUT if upcall failed or request could not be queue or 245 * upcall completed but item is still invalid (implying that 246 * the cache item has been replaced with a newer one). 247 * -ENOENT if cache entry was negative 248 */ 249 int cache_check(struct cache_detail *detail, 250 struct cache_head *h, struct cache_req *rqstp) 251 { 252 int rv; 253 long refresh_age, age; 254 255 /* First decide return status as best we can */ 256 rv = cache_is_valid(h); 257 258 /* now see if we want to start an upcall */ 259 refresh_age = (h->expiry_time - h->last_refresh); 260 age = seconds_since_boot() - h->last_refresh; 261 262 if (rqstp == NULL) { 263 if (rv == -EAGAIN) 264 rv = -ENOENT; 265 } else if (rv == -EAGAIN || 266 (h->expiry_time != 0 && age > refresh_age/2)) { 267 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 268 refresh_age, age); 269 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 270 switch (cache_make_upcall(detail, h)) { 271 case -EINVAL: 272 rv = try_to_negate_entry(detail, h); 273 break; 274 case -EAGAIN: 275 cache_fresh_unlocked(h, detail); 276 break; 277 } 278 } 279 } 280 281 if (rv == -EAGAIN) { 282 if (!cache_defer_req(rqstp, h)) { 283 /* 284 * Request was not deferred; handle it as best 285 * we can ourselves: 286 */ 287 rv = cache_is_valid(h); 288 if (rv == -EAGAIN) 289 rv = -ETIMEDOUT; 290 } 291 } 292 if (rv) 293 cache_put(h, detail); 294 return rv; 295 } 296 EXPORT_SYMBOL_GPL(cache_check); 297 298 /* 299 * caches need to be periodically cleaned. 300 * For this we maintain a list of cache_detail and 301 * a current pointer into that list and into the table 302 * for that entry. 303 * 304 * Each time cache_clean is called it finds the next non-empty entry 305 * in the current table and walks the list in that entry 306 * looking for entries that can be removed. 307 * 308 * An entry gets removed if: 309 * - The expiry is before current time 310 * - The last_refresh time is before the flush_time for that cache 311 * 312 * later we might drop old entries with non-NEVER expiry if that table 313 * is getting 'full' for some definition of 'full' 314 * 315 * The question of "how often to scan a table" is an interesting one 316 * and is answered in part by the use of the "nextcheck" field in the 317 * cache_detail. 318 * When a scan of a table begins, the nextcheck field is set to a time 319 * that is well into the future. 320 * While scanning, if an expiry time is found that is earlier than the 321 * current nextcheck time, nextcheck is set to that expiry time. 322 * If the flush_time is ever set to a time earlier than the nextcheck 323 * time, the nextcheck time is then set to that flush_time. 324 * 325 * A table is then only scanned if the current time is at least 326 * the nextcheck time. 327 * 328 */ 329 330 static LIST_HEAD(cache_list); 331 static DEFINE_SPINLOCK(cache_list_lock); 332 static struct cache_detail *current_detail; 333 static int current_index; 334 335 static void do_cache_clean(struct work_struct *work); 336 static struct delayed_work cache_cleaner; 337 338 void sunrpc_init_cache_detail(struct cache_detail *cd) 339 { 340 rwlock_init(&cd->hash_lock); 341 INIT_LIST_HEAD(&cd->queue); 342 spin_lock(&cache_list_lock); 343 cd->nextcheck = 0; 344 cd->entries = 0; 345 atomic_set(&cd->readers, 0); 346 cd->last_close = 0; 347 cd->last_warn = -1; 348 list_add(&cd->others, &cache_list); 349 spin_unlock(&cache_list_lock); 350 351 /* start the cleaning process */ 352 schedule_delayed_work(&cache_cleaner, 0); 353 } 354 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 355 356 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 357 { 358 cache_purge(cd); 359 spin_lock(&cache_list_lock); 360 write_lock(&cd->hash_lock); 361 if (cd->entries || atomic_read(&cd->inuse)) { 362 write_unlock(&cd->hash_lock); 363 spin_unlock(&cache_list_lock); 364 goto out; 365 } 366 if (current_detail == cd) 367 current_detail = NULL; 368 list_del_init(&cd->others); 369 write_unlock(&cd->hash_lock); 370 spin_unlock(&cache_list_lock); 371 if (list_empty(&cache_list)) { 372 /* module must be being unloaded so its safe to kill the worker */ 373 cancel_delayed_work_sync(&cache_cleaner); 374 } 375 return; 376 out: 377 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name); 378 } 379 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 380 381 /* clean cache tries to find something to clean 382 * and cleans it. 383 * It returns 1 if it cleaned something, 384 * 0 if it didn't find anything this time 385 * -1 if it fell off the end of the list. 386 */ 387 static int cache_clean(void) 388 { 389 int rv = 0; 390 struct list_head *next; 391 392 spin_lock(&cache_list_lock); 393 394 /* find a suitable table if we don't already have one */ 395 while (current_detail == NULL || 396 current_index >= current_detail->hash_size) { 397 if (current_detail) 398 next = current_detail->others.next; 399 else 400 next = cache_list.next; 401 if (next == &cache_list) { 402 current_detail = NULL; 403 spin_unlock(&cache_list_lock); 404 return -1; 405 } 406 current_detail = list_entry(next, struct cache_detail, others); 407 if (current_detail->nextcheck > seconds_since_boot()) 408 current_index = current_detail->hash_size; 409 else { 410 current_index = 0; 411 current_detail->nextcheck = seconds_since_boot()+30*60; 412 } 413 } 414 415 /* find a non-empty bucket in the table */ 416 while (current_detail && 417 current_index < current_detail->hash_size && 418 current_detail->hash_table[current_index] == NULL) 419 current_index++; 420 421 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 422 423 if (current_detail && current_index < current_detail->hash_size) { 424 struct cache_head *ch, **cp; 425 struct cache_detail *d; 426 427 write_lock(¤t_detail->hash_lock); 428 429 /* Ok, now to clean this strand */ 430 431 cp = & current_detail->hash_table[current_index]; 432 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) { 433 if (current_detail->nextcheck > ch->expiry_time) 434 current_detail->nextcheck = ch->expiry_time+1; 435 if (!cache_is_expired(current_detail, ch)) 436 continue; 437 438 *cp = ch->next; 439 ch->next = NULL; 440 current_detail->entries--; 441 rv = 1; 442 break; 443 } 444 445 write_unlock(¤t_detail->hash_lock); 446 d = current_detail; 447 if (!ch) 448 current_index ++; 449 spin_unlock(&cache_list_lock); 450 if (ch) { 451 set_bit(CACHE_CLEANED, &ch->flags); 452 cache_fresh_unlocked(ch, d); 453 cache_put(ch, d); 454 } 455 } else 456 spin_unlock(&cache_list_lock); 457 458 return rv; 459 } 460 461 /* 462 * We want to regularly clean the cache, so we need to schedule some work ... 463 */ 464 static void do_cache_clean(struct work_struct *work) 465 { 466 int delay = 5; 467 if (cache_clean() == -1) 468 delay = round_jiffies_relative(30*HZ); 469 470 if (list_empty(&cache_list)) 471 delay = 0; 472 473 if (delay) 474 schedule_delayed_work(&cache_cleaner, delay); 475 } 476 477 478 /* 479 * Clean all caches promptly. This just calls cache_clean 480 * repeatedly until we are sure that every cache has had a chance to 481 * be fully cleaned 482 */ 483 void cache_flush(void) 484 { 485 while (cache_clean() != -1) 486 cond_resched(); 487 while (cache_clean() != -1) 488 cond_resched(); 489 } 490 EXPORT_SYMBOL_GPL(cache_flush); 491 492 void cache_purge(struct cache_detail *detail) 493 { 494 detail->flush_time = LONG_MAX; 495 detail->nextcheck = seconds_since_boot(); 496 cache_flush(); 497 detail->flush_time = 1; 498 } 499 EXPORT_SYMBOL_GPL(cache_purge); 500 501 502 /* 503 * Deferral and Revisiting of Requests. 504 * 505 * If a cache lookup finds a pending entry, we 506 * need to defer the request and revisit it later. 507 * All deferred requests are stored in a hash table, 508 * indexed by "struct cache_head *". 509 * As it may be wasteful to store a whole request 510 * structure, we allow the request to provide a 511 * deferred form, which must contain a 512 * 'struct cache_deferred_req' 513 * This cache_deferred_req contains a method to allow 514 * it to be revisited when cache info is available 515 */ 516 517 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 518 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 519 520 #define DFR_MAX 300 /* ??? */ 521 522 static DEFINE_SPINLOCK(cache_defer_lock); 523 static LIST_HEAD(cache_defer_list); 524 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 525 static int cache_defer_cnt; 526 527 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 528 { 529 hlist_del_init(&dreq->hash); 530 if (!list_empty(&dreq->recent)) { 531 list_del_init(&dreq->recent); 532 cache_defer_cnt--; 533 } 534 } 535 536 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 537 { 538 int hash = DFR_HASH(item); 539 540 INIT_LIST_HEAD(&dreq->recent); 541 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 542 } 543 544 static void setup_deferral(struct cache_deferred_req *dreq, 545 struct cache_head *item, 546 int count_me) 547 { 548 549 dreq->item = item; 550 551 spin_lock(&cache_defer_lock); 552 553 __hash_deferred_req(dreq, item); 554 555 if (count_me) { 556 cache_defer_cnt++; 557 list_add(&dreq->recent, &cache_defer_list); 558 } 559 560 spin_unlock(&cache_defer_lock); 561 562 } 563 564 struct thread_deferred_req { 565 struct cache_deferred_req handle; 566 struct completion completion; 567 }; 568 569 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 570 { 571 struct thread_deferred_req *dr = 572 container_of(dreq, struct thread_deferred_req, handle); 573 complete(&dr->completion); 574 } 575 576 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 577 { 578 struct thread_deferred_req sleeper; 579 struct cache_deferred_req *dreq = &sleeper.handle; 580 581 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 582 dreq->revisit = cache_restart_thread; 583 584 setup_deferral(dreq, item, 0); 585 586 if (!test_bit(CACHE_PENDING, &item->flags) || 587 wait_for_completion_interruptible_timeout( 588 &sleeper.completion, req->thread_wait) <= 0) { 589 /* The completion wasn't completed, so we need 590 * to clean up 591 */ 592 spin_lock(&cache_defer_lock); 593 if (!hlist_unhashed(&sleeper.handle.hash)) { 594 __unhash_deferred_req(&sleeper.handle); 595 spin_unlock(&cache_defer_lock); 596 } else { 597 /* cache_revisit_request already removed 598 * this from the hash table, but hasn't 599 * called ->revisit yet. It will very soon 600 * and we need to wait for it. 601 */ 602 spin_unlock(&cache_defer_lock); 603 wait_for_completion(&sleeper.completion); 604 } 605 } 606 } 607 608 static void cache_limit_defers(void) 609 { 610 /* Make sure we haven't exceed the limit of allowed deferred 611 * requests. 612 */ 613 struct cache_deferred_req *discard = NULL; 614 615 if (cache_defer_cnt <= DFR_MAX) 616 return; 617 618 spin_lock(&cache_defer_lock); 619 620 /* Consider removing either the first or the last */ 621 if (cache_defer_cnt > DFR_MAX) { 622 if (net_random() & 1) 623 discard = list_entry(cache_defer_list.next, 624 struct cache_deferred_req, recent); 625 else 626 discard = list_entry(cache_defer_list.prev, 627 struct cache_deferred_req, recent); 628 __unhash_deferred_req(discard); 629 } 630 spin_unlock(&cache_defer_lock); 631 if (discard) 632 discard->revisit(discard, 1); 633 } 634 635 /* Return true if and only if a deferred request is queued. */ 636 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 637 { 638 struct cache_deferred_req *dreq; 639 640 if (req->thread_wait) { 641 cache_wait_req(req, item); 642 if (!test_bit(CACHE_PENDING, &item->flags)) 643 return false; 644 } 645 dreq = req->defer(req); 646 if (dreq == NULL) 647 return false; 648 setup_deferral(dreq, item, 1); 649 if (!test_bit(CACHE_PENDING, &item->flags)) 650 /* Bit could have been cleared before we managed to 651 * set up the deferral, so need to revisit just in case 652 */ 653 cache_revisit_request(item); 654 655 cache_limit_defers(); 656 return true; 657 } 658 659 static void cache_revisit_request(struct cache_head *item) 660 { 661 struct cache_deferred_req *dreq; 662 struct list_head pending; 663 struct hlist_node *tmp; 664 int hash = DFR_HASH(item); 665 666 INIT_LIST_HEAD(&pending); 667 spin_lock(&cache_defer_lock); 668 669 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 670 if (dreq->item == item) { 671 __unhash_deferred_req(dreq); 672 list_add(&dreq->recent, &pending); 673 } 674 675 spin_unlock(&cache_defer_lock); 676 677 while (!list_empty(&pending)) { 678 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 679 list_del_init(&dreq->recent); 680 dreq->revisit(dreq, 0); 681 } 682 } 683 684 void cache_clean_deferred(void *owner) 685 { 686 struct cache_deferred_req *dreq, *tmp; 687 struct list_head pending; 688 689 690 INIT_LIST_HEAD(&pending); 691 spin_lock(&cache_defer_lock); 692 693 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 694 if (dreq->owner == owner) { 695 __unhash_deferred_req(dreq); 696 list_add(&dreq->recent, &pending); 697 } 698 } 699 spin_unlock(&cache_defer_lock); 700 701 while (!list_empty(&pending)) { 702 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 703 list_del_init(&dreq->recent); 704 dreq->revisit(dreq, 1); 705 } 706 } 707 708 /* 709 * communicate with user-space 710 * 711 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 712 * On read, you get a full request, or block. 713 * On write, an update request is processed. 714 * Poll works if anything to read, and always allows write. 715 * 716 * Implemented by linked list of requests. Each open file has 717 * a ->private that also exists in this list. New requests are added 718 * to the end and may wakeup and preceding readers. 719 * New readers are added to the head. If, on read, an item is found with 720 * CACHE_UPCALLING clear, we free it from the list. 721 * 722 */ 723 724 static DEFINE_SPINLOCK(queue_lock); 725 static DEFINE_MUTEX(queue_io_mutex); 726 727 struct cache_queue { 728 struct list_head list; 729 int reader; /* if 0, then request */ 730 }; 731 struct cache_request { 732 struct cache_queue q; 733 struct cache_head *item; 734 char * buf; 735 int len; 736 int readers; 737 }; 738 struct cache_reader { 739 struct cache_queue q; 740 int offset; /* if non-0, we have a refcnt on next request */ 741 }; 742 743 static int cache_request(struct cache_detail *detail, 744 struct cache_request *crq) 745 { 746 char *bp = crq->buf; 747 int len = PAGE_SIZE; 748 749 detail->cache_request(detail, crq->item, &bp, &len); 750 if (len < 0) 751 return -EAGAIN; 752 return PAGE_SIZE - len; 753 } 754 755 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 756 loff_t *ppos, struct cache_detail *cd) 757 { 758 struct cache_reader *rp = filp->private_data; 759 struct cache_request *rq; 760 struct inode *inode = file_inode(filp); 761 int err; 762 763 if (count == 0) 764 return 0; 765 766 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent 767 * readers on this file */ 768 again: 769 spin_lock(&queue_lock); 770 /* need to find next request */ 771 while (rp->q.list.next != &cd->queue && 772 list_entry(rp->q.list.next, struct cache_queue, list) 773 ->reader) { 774 struct list_head *next = rp->q.list.next; 775 list_move(&rp->q.list, next); 776 } 777 if (rp->q.list.next == &cd->queue) { 778 spin_unlock(&queue_lock); 779 mutex_unlock(&inode->i_mutex); 780 WARN_ON_ONCE(rp->offset); 781 return 0; 782 } 783 rq = container_of(rp->q.list.next, struct cache_request, q.list); 784 WARN_ON_ONCE(rq->q.reader); 785 if (rp->offset == 0) 786 rq->readers++; 787 spin_unlock(&queue_lock); 788 789 if (rq->len == 0) { 790 err = cache_request(cd, rq); 791 if (err < 0) 792 goto out; 793 rq->len = err; 794 } 795 796 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 797 err = -EAGAIN; 798 spin_lock(&queue_lock); 799 list_move(&rp->q.list, &rq->q.list); 800 spin_unlock(&queue_lock); 801 } else { 802 if (rp->offset + count > rq->len) 803 count = rq->len - rp->offset; 804 err = -EFAULT; 805 if (copy_to_user(buf, rq->buf + rp->offset, count)) 806 goto out; 807 rp->offset += count; 808 if (rp->offset >= rq->len) { 809 rp->offset = 0; 810 spin_lock(&queue_lock); 811 list_move(&rp->q.list, &rq->q.list); 812 spin_unlock(&queue_lock); 813 } 814 err = 0; 815 } 816 out: 817 if (rp->offset == 0) { 818 /* need to release rq */ 819 spin_lock(&queue_lock); 820 rq->readers--; 821 if (rq->readers == 0 && 822 !test_bit(CACHE_PENDING, &rq->item->flags)) { 823 list_del(&rq->q.list); 824 spin_unlock(&queue_lock); 825 cache_put(rq->item, cd); 826 kfree(rq->buf); 827 kfree(rq); 828 } else 829 spin_unlock(&queue_lock); 830 } 831 if (err == -EAGAIN) 832 goto again; 833 mutex_unlock(&inode->i_mutex); 834 return err ? err : count; 835 } 836 837 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 838 size_t count, struct cache_detail *cd) 839 { 840 ssize_t ret; 841 842 if (count == 0) 843 return -EINVAL; 844 if (copy_from_user(kaddr, buf, count)) 845 return -EFAULT; 846 kaddr[count] = '\0'; 847 ret = cd->cache_parse(cd, kaddr, count); 848 if (!ret) 849 ret = count; 850 return ret; 851 } 852 853 static ssize_t cache_slow_downcall(const char __user *buf, 854 size_t count, struct cache_detail *cd) 855 { 856 static char write_buf[8192]; /* protected by queue_io_mutex */ 857 ssize_t ret = -EINVAL; 858 859 if (count >= sizeof(write_buf)) 860 goto out; 861 mutex_lock(&queue_io_mutex); 862 ret = cache_do_downcall(write_buf, buf, count, cd); 863 mutex_unlock(&queue_io_mutex); 864 out: 865 return ret; 866 } 867 868 static ssize_t cache_downcall(struct address_space *mapping, 869 const char __user *buf, 870 size_t count, struct cache_detail *cd) 871 { 872 struct page *page; 873 char *kaddr; 874 ssize_t ret = -ENOMEM; 875 876 if (count >= PAGE_CACHE_SIZE) 877 goto out_slow; 878 879 page = find_or_create_page(mapping, 0, GFP_KERNEL); 880 if (!page) 881 goto out_slow; 882 883 kaddr = kmap(page); 884 ret = cache_do_downcall(kaddr, buf, count, cd); 885 kunmap(page); 886 unlock_page(page); 887 page_cache_release(page); 888 return ret; 889 out_slow: 890 return cache_slow_downcall(buf, count, cd); 891 } 892 893 static ssize_t cache_write(struct file *filp, const char __user *buf, 894 size_t count, loff_t *ppos, 895 struct cache_detail *cd) 896 { 897 struct address_space *mapping = filp->f_mapping; 898 struct inode *inode = file_inode(filp); 899 ssize_t ret = -EINVAL; 900 901 if (!cd->cache_parse) 902 goto out; 903 904 mutex_lock(&inode->i_mutex); 905 ret = cache_downcall(mapping, buf, count, cd); 906 mutex_unlock(&inode->i_mutex); 907 out: 908 return ret; 909 } 910 911 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 912 913 static unsigned int cache_poll(struct file *filp, poll_table *wait, 914 struct cache_detail *cd) 915 { 916 unsigned int mask; 917 struct cache_reader *rp = filp->private_data; 918 struct cache_queue *cq; 919 920 poll_wait(filp, &queue_wait, wait); 921 922 /* alway allow write */ 923 mask = POLL_OUT | POLLWRNORM; 924 925 if (!rp) 926 return mask; 927 928 spin_lock(&queue_lock); 929 930 for (cq= &rp->q; &cq->list != &cd->queue; 931 cq = list_entry(cq->list.next, struct cache_queue, list)) 932 if (!cq->reader) { 933 mask |= POLLIN | POLLRDNORM; 934 break; 935 } 936 spin_unlock(&queue_lock); 937 return mask; 938 } 939 940 static int cache_ioctl(struct inode *ino, struct file *filp, 941 unsigned int cmd, unsigned long arg, 942 struct cache_detail *cd) 943 { 944 int len = 0; 945 struct cache_reader *rp = filp->private_data; 946 struct cache_queue *cq; 947 948 if (cmd != FIONREAD || !rp) 949 return -EINVAL; 950 951 spin_lock(&queue_lock); 952 953 /* only find the length remaining in current request, 954 * or the length of the next request 955 */ 956 for (cq= &rp->q; &cq->list != &cd->queue; 957 cq = list_entry(cq->list.next, struct cache_queue, list)) 958 if (!cq->reader) { 959 struct cache_request *cr = 960 container_of(cq, struct cache_request, q); 961 len = cr->len - rp->offset; 962 break; 963 } 964 spin_unlock(&queue_lock); 965 966 return put_user(len, (int __user *)arg); 967 } 968 969 static int cache_open(struct inode *inode, struct file *filp, 970 struct cache_detail *cd) 971 { 972 struct cache_reader *rp = NULL; 973 974 if (!cd || !try_module_get(cd->owner)) 975 return -EACCES; 976 nonseekable_open(inode, filp); 977 if (filp->f_mode & FMODE_READ) { 978 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 979 if (!rp) { 980 module_put(cd->owner); 981 return -ENOMEM; 982 } 983 rp->offset = 0; 984 rp->q.reader = 1; 985 atomic_inc(&cd->readers); 986 spin_lock(&queue_lock); 987 list_add(&rp->q.list, &cd->queue); 988 spin_unlock(&queue_lock); 989 } 990 filp->private_data = rp; 991 return 0; 992 } 993 994 static int cache_release(struct inode *inode, struct file *filp, 995 struct cache_detail *cd) 996 { 997 struct cache_reader *rp = filp->private_data; 998 999 if (rp) { 1000 spin_lock(&queue_lock); 1001 if (rp->offset) { 1002 struct cache_queue *cq; 1003 for (cq= &rp->q; &cq->list != &cd->queue; 1004 cq = list_entry(cq->list.next, struct cache_queue, list)) 1005 if (!cq->reader) { 1006 container_of(cq, struct cache_request, q) 1007 ->readers--; 1008 break; 1009 } 1010 rp->offset = 0; 1011 } 1012 list_del(&rp->q.list); 1013 spin_unlock(&queue_lock); 1014 1015 filp->private_data = NULL; 1016 kfree(rp); 1017 1018 cd->last_close = seconds_since_boot(); 1019 atomic_dec(&cd->readers); 1020 } 1021 module_put(cd->owner); 1022 return 0; 1023 } 1024 1025 1026 1027 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1028 { 1029 struct cache_queue *cq, *tmp; 1030 struct cache_request *cr; 1031 struct list_head dequeued; 1032 1033 INIT_LIST_HEAD(&dequeued); 1034 spin_lock(&queue_lock); 1035 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1036 if (!cq->reader) { 1037 cr = container_of(cq, struct cache_request, q); 1038 if (cr->item != ch) 1039 continue; 1040 if (test_bit(CACHE_PENDING, &ch->flags)) 1041 /* Lost a race and it is pending again */ 1042 break; 1043 if (cr->readers != 0) 1044 continue; 1045 list_move(&cr->q.list, &dequeued); 1046 } 1047 spin_unlock(&queue_lock); 1048 while (!list_empty(&dequeued)) { 1049 cr = list_entry(dequeued.next, struct cache_request, q.list); 1050 list_del(&cr->q.list); 1051 cache_put(cr->item, detail); 1052 kfree(cr->buf); 1053 kfree(cr); 1054 } 1055 } 1056 1057 /* 1058 * Support routines for text-based upcalls. 1059 * Fields are separated by spaces. 1060 * Fields are either mangled to quote space tab newline slosh with slosh 1061 * or a hexified with a leading \x 1062 * Record is terminated with newline. 1063 * 1064 */ 1065 1066 void qword_add(char **bpp, int *lp, char *str) 1067 { 1068 char *bp = *bpp; 1069 int len = *lp; 1070 char c; 1071 1072 if (len < 0) return; 1073 1074 while ((c=*str++) && len) 1075 switch(c) { 1076 case ' ': 1077 case '\t': 1078 case '\n': 1079 case '\\': 1080 if (len >= 4) { 1081 *bp++ = '\\'; 1082 *bp++ = '0' + ((c & 0300)>>6); 1083 *bp++ = '0' + ((c & 0070)>>3); 1084 *bp++ = '0' + ((c & 0007)>>0); 1085 } 1086 len -= 4; 1087 break; 1088 default: 1089 *bp++ = c; 1090 len--; 1091 } 1092 if (c || len <1) len = -1; 1093 else { 1094 *bp++ = ' '; 1095 len--; 1096 } 1097 *bpp = bp; 1098 *lp = len; 1099 } 1100 EXPORT_SYMBOL_GPL(qword_add); 1101 1102 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1103 { 1104 char *bp = *bpp; 1105 int len = *lp; 1106 1107 if (len < 0) return; 1108 1109 if (len > 2) { 1110 *bp++ = '\\'; 1111 *bp++ = 'x'; 1112 len -= 2; 1113 while (blen && len >= 2) { 1114 unsigned char c = *buf++; 1115 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1); 1116 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1); 1117 len -= 2; 1118 blen--; 1119 } 1120 } 1121 if (blen || len<1) len = -1; 1122 else { 1123 *bp++ = ' '; 1124 len--; 1125 } 1126 *bpp = bp; 1127 *lp = len; 1128 } 1129 EXPORT_SYMBOL_GPL(qword_addhex); 1130 1131 static void warn_no_listener(struct cache_detail *detail) 1132 { 1133 if (detail->last_warn != detail->last_close) { 1134 detail->last_warn = detail->last_close; 1135 if (detail->warn_no_listener) 1136 detail->warn_no_listener(detail, detail->last_close != 0); 1137 } 1138 } 1139 1140 static bool cache_listeners_exist(struct cache_detail *detail) 1141 { 1142 if (atomic_read(&detail->readers)) 1143 return true; 1144 if (detail->last_close == 0) 1145 /* This cache was never opened */ 1146 return false; 1147 if (detail->last_close < seconds_since_boot() - 30) 1148 /* 1149 * We allow for the possibility that someone might 1150 * restart a userspace daemon without restarting the 1151 * server; but after 30 seconds, we give up. 1152 */ 1153 return false; 1154 return true; 1155 } 1156 1157 /* 1158 * register an upcall request to user-space and queue it up for read() by the 1159 * upcall daemon. 1160 * 1161 * Each request is at most one page long. 1162 */ 1163 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1164 { 1165 1166 char *buf; 1167 struct cache_request *crq; 1168 int ret = 0; 1169 1170 if (!detail->cache_request) 1171 return -EINVAL; 1172 1173 if (!cache_listeners_exist(detail)) { 1174 warn_no_listener(detail); 1175 return -EINVAL; 1176 } 1177 if (test_bit(CACHE_CLEANED, &h->flags)) 1178 /* Too late to make an upcall */ 1179 return -EAGAIN; 1180 1181 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1182 if (!buf) 1183 return -EAGAIN; 1184 1185 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1186 if (!crq) { 1187 kfree(buf); 1188 return -EAGAIN; 1189 } 1190 1191 crq->q.reader = 0; 1192 crq->item = cache_get(h); 1193 crq->buf = buf; 1194 crq->len = 0; 1195 crq->readers = 0; 1196 spin_lock(&queue_lock); 1197 if (test_bit(CACHE_PENDING, &h->flags)) 1198 list_add_tail(&crq->q.list, &detail->queue); 1199 else 1200 /* Lost a race, no longer PENDING, so don't enqueue */ 1201 ret = -EAGAIN; 1202 spin_unlock(&queue_lock); 1203 wake_up(&queue_wait); 1204 if (ret == -EAGAIN) { 1205 kfree(buf); 1206 kfree(crq); 1207 } 1208 return ret; 1209 } 1210 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1211 1212 /* 1213 * parse a message from user-space and pass it 1214 * to an appropriate cache 1215 * Messages are, like requests, separated into fields by 1216 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1217 * 1218 * Message is 1219 * reply cachename expiry key ... content.... 1220 * 1221 * key and content are both parsed by cache 1222 */ 1223 1224 int qword_get(char **bpp, char *dest, int bufsize) 1225 { 1226 /* return bytes copied, or -1 on error */ 1227 char *bp = *bpp; 1228 int len = 0; 1229 1230 while (*bp == ' ') bp++; 1231 1232 if (bp[0] == '\\' && bp[1] == 'x') { 1233 /* HEX STRING */ 1234 bp += 2; 1235 while (len < bufsize) { 1236 int h, l; 1237 1238 h = hex_to_bin(bp[0]); 1239 if (h < 0) 1240 break; 1241 1242 l = hex_to_bin(bp[1]); 1243 if (l < 0) 1244 break; 1245 1246 *dest++ = (h << 4) | l; 1247 bp += 2; 1248 len++; 1249 } 1250 } else { 1251 /* text with \nnn octal quoting */ 1252 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1253 if (*bp == '\\' && 1254 isodigit(bp[1]) && (bp[1] <= '3') && 1255 isodigit(bp[2]) && 1256 isodigit(bp[3])) { 1257 int byte = (*++bp -'0'); 1258 bp++; 1259 byte = (byte << 3) | (*bp++ - '0'); 1260 byte = (byte << 3) | (*bp++ - '0'); 1261 *dest++ = byte; 1262 len++; 1263 } else { 1264 *dest++ = *bp++; 1265 len++; 1266 } 1267 } 1268 } 1269 1270 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1271 return -1; 1272 while (*bp == ' ') bp++; 1273 *bpp = bp; 1274 *dest = '\0'; 1275 return len; 1276 } 1277 EXPORT_SYMBOL_GPL(qword_get); 1278 1279 1280 /* 1281 * support /proc/sunrpc/cache/$CACHENAME/content 1282 * as a seqfile. 1283 * We call ->cache_show passing NULL for the item to 1284 * get a header, then pass each real item in the cache 1285 */ 1286 1287 struct handle { 1288 struct cache_detail *cd; 1289 }; 1290 1291 static void *c_start(struct seq_file *m, loff_t *pos) 1292 __acquires(cd->hash_lock) 1293 { 1294 loff_t n = *pos; 1295 unsigned int hash, entry; 1296 struct cache_head *ch; 1297 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1298 1299 1300 read_lock(&cd->hash_lock); 1301 if (!n--) 1302 return SEQ_START_TOKEN; 1303 hash = n >> 32; 1304 entry = n & ((1LL<<32) - 1); 1305 1306 for (ch=cd->hash_table[hash]; ch; ch=ch->next) 1307 if (!entry--) 1308 return ch; 1309 n &= ~((1LL<<32) - 1); 1310 do { 1311 hash++; 1312 n += 1LL<<32; 1313 } while(hash < cd->hash_size && 1314 cd->hash_table[hash]==NULL); 1315 if (hash >= cd->hash_size) 1316 return NULL; 1317 *pos = n+1; 1318 return cd->hash_table[hash]; 1319 } 1320 1321 static void *c_next(struct seq_file *m, void *p, loff_t *pos) 1322 { 1323 struct cache_head *ch = p; 1324 int hash = (*pos >> 32); 1325 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1326 1327 if (p == SEQ_START_TOKEN) 1328 hash = 0; 1329 else if (ch->next == NULL) { 1330 hash++; 1331 *pos += 1LL<<32; 1332 } else { 1333 ++*pos; 1334 return ch->next; 1335 } 1336 *pos &= ~((1LL<<32) - 1); 1337 while (hash < cd->hash_size && 1338 cd->hash_table[hash] == NULL) { 1339 hash++; 1340 *pos += 1LL<<32; 1341 } 1342 if (hash >= cd->hash_size) 1343 return NULL; 1344 ++*pos; 1345 return cd->hash_table[hash]; 1346 } 1347 1348 static void c_stop(struct seq_file *m, void *p) 1349 __releases(cd->hash_lock) 1350 { 1351 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1352 read_unlock(&cd->hash_lock); 1353 } 1354 1355 static int c_show(struct seq_file *m, void *p) 1356 { 1357 struct cache_head *cp = p; 1358 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1359 1360 if (p == SEQ_START_TOKEN) 1361 return cd->cache_show(m, cd, NULL); 1362 1363 ifdebug(CACHE) 1364 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1365 convert_to_wallclock(cp->expiry_time), 1366 atomic_read(&cp->ref.refcount), cp->flags); 1367 cache_get(cp); 1368 if (cache_check(cd, cp, NULL)) 1369 /* cache_check does a cache_put on failure */ 1370 seq_printf(m, "# "); 1371 else { 1372 if (cache_is_expired(cd, cp)) 1373 seq_printf(m, "# "); 1374 cache_put(cp, cd); 1375 } 1376 1377 return cd->cache_show(m, cd, cp); 1378 } 1379 1380 static const struct seq_operations cache_content_op = { 1381 .start = c_start, 1382 .next = c_next, 1383 .stop = c_stop, 1384 .show = c_show, 1385 }; 1386 1387 static int content_open(struct inode *inode, struct file *file, 1388 struct cache_detail *cd) 1389 { 1390 struct handle *han; 1391 1392 if (!cd || !try_module_get(cd->owner)) 1393 return -EACCES; 1394 han = __seq_open_private(file, &cache_content_op, sizeof(*han)); 1395 if (han == NULL) { 1396 module_put(cd->owner); 1397 return -ENOMEM; 1398 } 1399 1400 han->cd = cd; 1401 return 0; 1402 } 1403 1404 static int content_release(struct inode *inode, struct file *file, 1405 struct cache_detail *cd) 1406 { 1407 int ret = seq_release_private(inode, file); 1408 module_put(cd->owner); 1409 return ret; 1410 } 1411 1412 static int open_flush(struct inode *inode, struct file *file, 1413 struct cache_detail *cd) 1414 { 1415 if (!cd || !try_module_get(cd->owner)) 1416 return -EACCES; 1417 return nonseekable_open(inode, file); 1418 } 1419 1420 static int release_flush(struct inode *inode, struct file *file, 1421 struct cache_detail *cd) 1422 { 1423 module_put(cd->owner); 1424 return 0; 1425 } 1426 1427 static ssize_t read_flush(struct file *file, char __user *buf, 1428 size_t count, loff_t *ppos, 1429 struct cache_detail *cd) 1430 { 1431 char tbuf[22]; 1432 unsigned long p = *ppos; 1433 size_t len; 1434 1435 snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time)); 1436 len = strlen(tbuf); 1437 if (p >= len) 1438 return 0; 1439 len -= p; 1440 if (len > count) 1441 len = count; 1442 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1443 return -EFAULT; 1444 *ppos += len; 1445 return len; 1446 } 1447 1448 static ssize_t write_flush(struct file *file, const char __user *buf, 1449 size_t count, loff_t *ppos, 1450 struct cache_detail *cd) 1451 { 1452 char tbuf[20]; 1453 char *bp, *ep; 1454 1455 if (*ppos || count > sizeof(tbuf)-1) 1456 return -EINVAL; 1457 if (copy_from_user(tbuf, buf, count)) 1458 return -EFAULT; 1459 tbuf[count] = 0; 1460 simple_strtoul(tbuf, &ep, 0); 1461 if (*ep && *ep != '\n') 1462 return -EINVAL; 1463 1464 bp = tbuf; 1465 cd->flush_time = get_expiry(&bp); 1466 cd->nextcheck = seconds_since_boot(); 1467 cache_flush(); 1468 1469 *ppos += count; 1470 return count; 1471 } 1472 1473 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1474 size_t count, loff_t *ppos) 1475 { 1476 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1477 1478 return cache_read(filp, buf, count, ppos, cd); 1479 } 1480 1481 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1482 size_t count, loff_t *ppos) 1483 { 1484 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1485 1486 return cache_write(filp, buf, count, ppos, cd); 1487 } 1488 1489 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait) 1490 { 1491 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1492 1493 return cache_poll(filp, wait, cd); 1494 } 1495 1496 static long cache_ioctl_procfs(struct file *filp, 1497 unsigned int cmd, unsigned long arg) 1498 { 1499 struct inode *inode = file_inode(filp); 1500 struct cache_detail *cd = PDE_DATA(inode); 1501 1502 return cache_ioctl(inode, filp, cmd, arg, cd); 1503 } 1504 1505 static int cache_open_procfs(struct inode *inode, struct file *filp) 1506 { 1507 struct cache_detail *cd = PDE_DATA(inode); 1508 1509 return cache_open(inode, filp, cd); 1510 } 1511 1512 static int cache_release_procfs(struct inode *inode, struct file *filp) 1513 { 1514 struct cache_detail *cd = PDE_DATA(inode); 1515 1516 return cache_release(inode, filp, cd); 1517 } 1518 1519 static const struct file_operations cache_file_operations_procfs = { 1520 .owner = THIS_MODULE, 1521 .llseek = no_llseek, 1522 .read = cache_read_procfs, 1523 .write = cache_write_procfs, 1524 .poll = cache_poll_procfs, 1525 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1526 .open = cache_open_procfs, 1527 .release = cache_release_procfs, 1528 }; 1529 1530 static int content_open_procfs(struct inode *inode, struct file *filp) 1531 { 1532 struct cache_detail *cd = PDE_DATA(inode); 1533 1534 return content_open(inode, filp, cd); 1535 } 1536 1537 static int content_release_procfs(struct inode *inode, struct file *filp) 1538 { 1539 struct cache_detail *cd = PDE_DATA(inode); 1540 1541 return content_release(inode, filp, cd); 1542 } 1543 1544 static const struct file_operations content_file_operations_procfs = { 1545 .open = content_open_procfs, 1546 .read = seq_read, 1547 .llseek = seq_lseek, 1548 .release = content_release_procfs, 1549 }; 1550 1551 static int open_flush_procfs(struct inode *inode, struct file *filp) 1552 { 1553 struct cache_detail *cd = PDE_DATA(inode); 1554 1555 return open_flush(inode, filp, cd); 1556 } 1557 1558 static int release_flush_procfs(struct inode *inode, struct file *filp) 1559 { 1560 struct cache_detail *cd = PDE_DATA(inode); 1561 1562 return release_flush(inode, filp, cd); 1563 } 1564 1565 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1566 size_t count, loff_t *ppos) 1567 { 1568 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1569 1570 return read_flush(filp, buf, count, ppos, cd); 1571 } 1572 1573 static ssize_t write_flush_procfs(struct file *filp, 1574 const char __user *buf, 1575 size_t count, loff_t *ppos) 1576 { 1577 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1578 1579 return write_flush(filp, buf, count, ppos, cd); 1580 } 1581 1582 static const struct file_operations cache_flush_operations_procfs = { 1583 .open = open_flush_procfs, 1584 .read = read_flush_procfs, 1585 .write = write_flush_procfs, 1586 .release = release_flush_procfs, 1587 .llseek = no_llseek, 1588 }; 1589 1590 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net) 1591 { 1592 struct sunrpc_net *sn; 1593 1594 if (cd->u.procfs.proc_ent == NULL) 1595 return; 1596 if (cd->u.procfs.flush_ent) 1597 remove_proc_entry("flush", cd->u.procfs.proc_ent); 1598 if (cd->u.procfs.channel_ent) 1599 remove_proc_entry("channel", cd->u.procfs.proc_ent); 1600 if (cd->u.procfs.content_ent) 1601 remove_proc_entry("content", cd->u.procfs.proc_ent); 1602 cd->u.procfs.proc_ent = NULL; 1603 sn = net_generic(net, sunrpc_net_id); 1604 remove_proc_entry(cd->name, sn->proc_net_rpc); 1605 } 1606 1607 #ifdef CONFIG_PROC_FS 1608 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1609 { 1610 struct proc_dir_entry *p; 1611 struct sunrpc_net *sn; 1612 1613 sn = net_generic(net, sunrpc_net_id); 1614 cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc); 1615 if (cd->u.procfs.proc_ent == NULL) 1616 goto out_nomem; 1617 cd->u.procfs.channel_ent = NULL; 1618 cd->u.procfs.content_ent = NULL; 1619 1620 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 1621 cd->u.procfs.proc_ent, 1622 &cache_flush_operations_procfs, cd); 1623 cd->u.procfs.flush_ent = p; 1624 if (p == NULL) 1625 goto out_nomem; 1626 1627 if (cd->cache_request || cd->cache_parse) { 1628 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 1629 cd->u.procfs.proc_ent, 1630 &cache_file_operations_procfs, cd); 1631 cd->u.procfs.channel_ent = p; 1632 if (p == NULL) 1633 goto out_nomem; 1634 } 1635 if (cd->cache_show) { 1636 p = proc_create_data("content", S_IFREG|S_IRUSR, 1637 cd->u.procfs.proc_ent, 1638 &content_file_operations_procfs, cd); 1639 cd->u.procfs.content_ent = p; 1640 if (p == NULL) 1641 goto out_nomem; 1642 } 1643 return 0; 1644 out_nomem: 1645 remove_cache_proc_entries(cd, net); 1646 return -ENOMEM; 1647 } 1648 #else /* CONFIG_PROC_FS */ 1649 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1650 { 1651 return 0; 1652 } 1653 #endif 1654 1655 void __init cache_initialize(void) 1656 { 1657 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1658 } 1659 1660 int cache_register_net(struct cache_detail *cd, struct net *net) 1661 { 1662 int ret; 1663 1664 sunrpc_init_cache_detail(cd); 1665 ret = create_cache_proc_entries(cd, net); 1666 if (ret) 1667 sunrpc_destroy_cache_detail(cd); 1668 return ret; 1669 } 1670 EXPORT_SYMBOL_GPL(cache_register_net); 1671 1672 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1673 { 1674 remove_cache_proc_entries(cd, net); 1675 sunrpc_destroy_cache_detail(cd); 1676 } 1677 EXPORT_SYMBOL_GPL(cache_unregister_net); 1678 1679 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net) 1680 { 1681 struct cache_detail *cd; 1682 1683 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1684 if (cd == NULL) 1685 return ERR_PTR(-ENOMEM); 1686 1687 cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *), 1688 GFP_KERNEL); 1689 if (cd->hash_table == NULL) { 1690 kfree(cd); 1691 return ERR_PTR(-ENOMEM); 1692 } 1693 cd->net = net; 1694 return cd; 1695 } 1696 EXPORT_SYMBOL_GPL(cache_create_net); 1697 1698 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1699 { 1700 kfree(cd->hash_table); 1701 kfree(cd); 1702 } 1703 EXPORT_SYMBOL_GPL(cache_destroy_net); 1704 1705 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1706 size_t count, loff_t *ppos) 1707 { 1708 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1709 1710 return cache_read(filp, buf, count, ppos, cd); 1711 } 1712 1713 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1714 size_t count, loff_t *ppos) 1715 { 1716 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1717 1718 return cache_write(filp, buf, count, ppos, cd); 1719 } 1720 1721 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait) 1722 { 1723 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1724 1725 return cache_poll(filp, wait, cd); 1726 } 1727 1728 static long cache_ioctl_pipefs(struct file *filp, 1729 unsigned int cmd, unsigned long arg) 1730 { 1731 struct inode *inode = file_inode(filp); 1732 struct cache_detail *cd = RPC_I(inode)->private; 1733 1734 return cache_ioctl(inode, filp, cmd, arg, cd); 1735 } 1736 1737 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1738 { 1739 struct cache_detail *cd = RPC_I(inode)->private; 1740 1741 return cache_open(inode, filp, cd); 1742 } 1743 1744 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1745 { 1746 struct cache_detail *cd = RPC_I(inode)->private; 1747 1748 return cache_release(inode, filp, cd); 1749 } 1750 1751 const struct file_operations cache_file_operations_pipefs = { 1752 .owner = THIS_MODULE, 1753 .llseek = no_llseek, 1754 .read = cache_read_pipefs, 1755 .write = cache_write_pipefs, 1756 .poll = cache_poll_pipefs, 1757 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1758 .open = cache_open_pipefs, 1759 .release = cache_release_pipefs, 1760 }; 1761 1762 static int content_open_pipefs(struct inode *inode, struct file *filp) 1763 { 1764 struct cache_detail *cd = RPC_I(inode)->private; 1765 1766 return content_open(inode, filp, cd); 1767 } 1768 1769 static int content_release_pipefs(struct inode *inode, struct file *filp) 1770 { 1771 struct cache_detail *cd = RPC_I(inode)->private; 1772 1773 return content_release(inode, filp, cd); 1774 } 1775 1776 const struct file_operations content_file_operations_pipefs = { 1777 .open = content_open_pipefs, 1778 .read = seq_read, 1779 .llseek = seq_lseek, 1780 .release = content_release_pipefs, 1781 }; 1782 1783 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1784 { 1785 struct cache_detail *cd = RPC_I(inode)->private; 1786 1787 return open_flush(inode, filp, cd); 1788 } 1789 1790 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1791 { 1792 struct cache_detail *cd = RPC_I(inode)->private; 1793 1794 return release_flush(inode, filp, cd); 1795 } 1796 1797 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1798 size_t count, loff_t *ppos) 1799 { 1800 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1801 1802 return read_flush(filp, buf, count, ppos, cd); 1803 } 1804 1805 static ssize_t write_flush_pipefs(struct file *filp, 1806 const char __user *buf, 1807 size_t count, loff_t *ppos) 1808 { 1809 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1810 1811 return write_flush(filp, buf, count, ppos, cd); 1812 } 1813 1814 const struct file_operations cache_flush_operations_pipefs = { 1815 .open = open_flush_pipefs, 1816 .read = read_flush_pipefs, 1817 .write = write_flush_pipefs, 1818 .release = release_flush_pipefs, 1819 .llseek = no_llseek, 1820 }; 1821 1822 int sunrpc_cache_register_pipefs(struct dentry *parent, 1823 const char *name, umode_t umode, 1824 struct cache_detail *cd) 1825 { 1826 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1827 if (IS_ERR(dir)) 1828 return PTR_ERR(dir); 1829 cd->u.pipefs.dir = dir; 1830 return 0; 1831 } 1832 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1833 1834 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1835 { 1836 rpc_remove_cache_dir(cd->u.pipefs.dir); 1837 cd->u.pipefs.dir = NULL; 1838 } 1839 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1840 1841