xref: /linux/net/sunrpc/cache.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sunrpc/cache.c
4  *
5  * Generic code for various authentication-related caches
6  * used by sunrpc clients and servers.
7  *
8  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9  */
10 
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include <trace/events/sunrpc.h>
36 #include "netns.h"
37 
38 #define	 RPCDBG_FACILITY RPCDBG_CACHE
39 
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42 
43 static void cache_init(struct cache_head *h, struct cache_detail *detail)
44 {
45 	time64_t now = seconds_since_boot();
46 	INIT_HLIST_NODE(&h->cache_list);
47 	h->flags = 0;
48 	kref_init(&h->ref);
49 	h->expiry_time = now + CACHE_NEW_EXPIRY;
50 	if (now <= detail->flush_time)
51 		/* ensure it isn't already expired */
52 		now = detail->flush_time + 1;
53 	h->last_refresh = now;
54 }
55 
56 static void cache_fresh_unlocked(struct cache_head *head,
57 				struct cache_detail *detail);
58 
59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
60 						struct cache_head *key,
61 						int hash)
62 {
63 	struct hlist_head *head = &detail->hash_table[hash];
64 	struct cache_head *tmp;
65 
66 	rcu_read_lock();
67 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
68 		if (!detail->match(tmp, key))
69 			continue;
70 		if (test_bit(CACHE_VALID, &tmp->flags) &&
71 		    cache_is_expired(detail, tmp))
72 			continue;
73 		tmp = cache_get_rcu(tmp);
74 		rcu_read_unlock();
75 		return tmp;
76 	}
77 	rcu_read_unlock();
78 	return NULL;
79 }
80 
81 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch,
82 					    struct cache_detail *cd)
83 {
84 	/* Must be called under cd->hash_lock */
85 	hlist_del_init_rcu(&ch->cache_list);
86 	set_bit(CACHE_CLEANED, &ch->flags);
87 	cd->entries --;
88 }
89 
90 static void sunrpc_end_cache_remove_entry(struct cache_head *ch,
91 					  struct cache_detail *cd)
92 {
93 	cache_fresh_unlocked(ch, cd);
94 	cache_put(ch, cd);
95 }
96 
97 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
98 						 struct cache_head *key,
99 						 int hash)
100 {
101 	struct cache_head *new, *tmp, *freeme = NULL;
102 	struct hlist_head *head = &detail->hash_table[hash];
103 
104 	new = detail->alloc();
105 	if (!new)
106 		return NULL;
107 	/* must fully initialise 'new', else
108 	 * we might get lose if we need to
109 	 * cache_put it soon.
110 	 */
111 	cache_init(new, detail);
112 	detail->init(new, key);
113 
114 	spin_lock(&detail->hash_lock);
115 
116 	/* check if entry appeared while we slept */
117 	hlist_for_each_entry_rcu(tmp, head, cache_list,
118 				 lockdep_is_held(&detail->hash_lock)) {
119 		if (!detail->match(tmp, key))
120 			continue;
121 		if (test_bit(CACHE_VALID, &tmp->flags) &&
122 		    cache_is_expired(detail, tmp)) {
123 			sunrpc_begin_cache_remove_entry(tmp, detail);
124 			trace_cache_entry_expired(detail, tmp);
125 			freeme = tmp;
126 			break;
127 		}
128 		cache_get(tmp);
129 		spin_unlock(&detail->hash_lock);
130 		cache_put(new, detail);
131 		return tmp;
132 	}
133 
134 	hlist_add_head_rcu(&new->cache_list, head);
135 	detail->entries++;
136 	cache_get(new);
137 	spin_unlock(&detail->hash_lock);
138 
139 	if (freeme)
140 		sunrpc_end_cache_remove_entry(freeme, detail);
141 	return new;
142 }
143 
144 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
145 					   struct cache_head *key, int hash)
146 {
147 	struct cache_head *ret;
148 
149 	ret = sunrpc_cache_find_rcu(detail, key, hash);
150 	if (ret)
151 		return ret;
152 	/* Didn't find anything, insert an empty entry */
153 	return sunrpc_cache_add_entry(detail, key, hash);
154 }
155 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
156 
157 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
158 
159 static void cache_fresh_locked(struct cache_head *head, time64_t expiry,
160 			       struct cache_detail *detail)
161 {
162 	time64_t now = seconds_since_boot();
163 	if (now <= detail->flush_time)
164 		/* ensure it isn't immediately treated as expired */
165 		now = detail->flush_time + 1;
166 	head->expiry_time = expiry;
167 	head->last_refresh = now;
168 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
169 	set_bit(CACHE_VALID, &head->flags);
170 }
171 
172 static void cache_fresh_unlocked(struct cache_head *head,
173 				 struct cache_detail *detail)
174 {
175 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
176 		cache_revisit_request(head);
177 		cache_dequeue(detail, head);
178 	}
179 }
180 
181 static void cache_make_negative(struct cache_detail *detail,
182 				struct cache_head *h)
183 {
184 	set_bit(CACHE_NEGATIVE, &h->flags);
185 	trace_cache_entry_make_negative(detail, h);
186 }
187 
188 static void cache_entry_update(struct cache_detail *detail,
189 			       struct cache_head *h,
190 			       struct cache_head *new)
191 {
192 	if (!test_bit(CACHE_NEGATIVE, &new->flags)) {
193 		detail->update(h, new);
194 		trace_cache_entry_update(detail, h);
195 	} else {
196 		cache_make_negative(detail, h);
197 	}
198 }
199 
200 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
201 				       struct cache_head *new, struct cache_head *old, int hash)
202 {
203 	/* The 'old' entry is to be replaced by 'new'.
204 	 * If 'old' is not VALID, we update it directly,
205 	 * otherwise we need to replace it
206 	 */
207 	struct cache_head *tmp;
208 
209 	if (!test_bit(CACHE_VALID, &old->flags)) {
210 		spin_lock(&detail->hash_lock);
211 		if (!test_bit(CACHE_VALID, &old->flags)) {
212 			cache_entry_update(detail, old, new);
213 			cache_fresh_locked(old, new->expiry_time, detail);
214 			spin_unlock(&detail->hash_lock);
215 			cache_fresh_unlocked(old, detail);
216 			return old;
217 		}
218 		spin_unlock(&detail->hash_lock);
219 	}
220 	/* We need to insert a new entry */
221 	tmp = detail->alloc();
222 	if (!tmp) {
223 		cache_put(old, detail);
224 		return NULL;
225 	}
226 	cache_init(tmp, detail);
227 	detail->init(tmp, old);
228 
229 	spin_lock(&detail->hash_lock);
230 	cache_entry_update(detail, tmp, new);
231 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
232 	detail->entries++;
233 	cache_get(tmp);
234 	cache_fresh_locked(tmp, new->expiry_time, detail);
235 	cache_fresh_locked(old, 0, detail);
236 	spin_unlock(&detail->hash_lock);
237 	cache_fresh_unlocked(tmp, detail);
238 	cache_fresh_unlocked(old, detail);
239 	cache_put(old, detail);
240 	return tmp;
241 }
242 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
243 
244 static inline int cache_is_valid(struct cache_head *h)
245 {
246 	if (!test_bit(CACHE_VALID, &h->flags))
247 		return -EAGAIN;
248 	else {
249 		/* entry is valid */
250 		if (test_bit(CACHE_NEGATIVE, &h->flags))
251 			return -ENOENT;
252 		else {
253 			/*
254 			 * In combination with write barrier in
255 			 * sunrpc_cache_update, ensures that anyone
256 			 * using the cache entry after this sees the
257 			 * updated contents:
258 			 */
259 			smp_rmb();
260 			return 0;
261 		}
262 	}
263 }
264 
265 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
266 {
267 	int rv;
268 
269 	spin_lock(&detail->hash_lock);
270 	rv = cache_is_valid(h);
271 	if (rv == -EAGAIN) {
272 		cache_make_negative(detail, h);
273 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
274 				   detail);
275 		rv = -ENOENT;
276 	}
277 	spin_unlock(&detail->hash_lock);
278 	cache_fresh_unlocked(h, detail);
279 	return rv;
280 }
281 
282 /*
283  * This is the generic cache management routine for all
284  * the authentication caches.
285  * It checks the currency of a cache item and will (later)
286  * initiate an upcall to fill it if needed.
287  *
288  *
289  * Returns 0 if the cache_head can be used, or cache_puts it and returns
290  * -EAGAIN if upcall is pending and request has been queued
291  * -ETIMEDOUT if upcall failed or request could not be queue or
292  *           upcall completed but item is still invalid (implying that
293  *           the cache item has been replaced with a newer one).
294  * -ENOENT if cache entry was negative
295  */
296 int cache_check(struct cache_detail *detail,
297 		    struct cache_head *h, struct cache_req *rqstp)
298 {
299 	int rv;
300 	time64_t refresh_age, age;
301 
302 	/* First decide return status as best we can */
303 	rv = cache_is_valid(h);
304 
305 	/* now see if we want to start an upcall */
306 	refresh_age = (h->expiry_time - h->last_refresh);
307 	age = seconds_since_boot() - h->last_refresh;
308 
309 	if (rqstp == NULL) {
310 		if (rv == -EAGAIN)
311 			rv = -ENOENT;
312 	} else if (rv == -EAGAIN ||
313 		   (h->expiry_time != 0 && age > refresh_age/2)) {
314 		dprintk("RPC:       Want update, refage=%lld, age=%lld\n",
315 				refresh_age, age);
316 		switch (detail->cache_upcall(detail, h)) {
317 		case -EINVAL:
318 			rv = try_to_negate_entry(detail, h);
319 			break;
320 		case -EAGAIN:
321 			cache_fresh_unlocked(h, detail);
322 			break;
323 		}
324 	}
325 
326 	if (rv == -EAGAIN) {
327 		if (!cache_defer_req(rqstp, h)) {
328 			/*
329 			 * Request was not deferred; handle it as best
330 			 * we can ourselves:
331 			 */
332 			rv = cache_is_valid(h);
333 			if (rv == -EAGAIN)
334 				rv = -ETIMEDOUT;
335 		}
336 	}
337 	if (rv)
338 		cache_put(h, detail);
339 	return rv;
340 }
341 EXPORT_SYMBOL_GPL(cache_check);
342 
343 /*
344  * caches need to be periodically cleaned.
345  * For this we maintain a list of cache_detail and
346  * a current pointer into that list and into the table
347  * for that entry.
348  *
349  * Each time cache_clean is called it finds the next non-empty entry
350  * in the current table and walks the list in that entry
351  * looking for entries that can be removed.
352  *
353  * An entry gets removed if:
354  * - The expiry is before current time
355  * - The last_refresh time is before the flush_time for that cache
356  *
357  * later we might drop old entries with non-NEVER expiry if that table
358  * is getting 'full' for some definition of 'full'
359  *
360  * The question of "how often to scan a table" is an interesting one
361  * and is answered in part by the use of the "nextcheck" field in the
362  * cache_detail.
363  * When a scan of a table begins, the nextcheck field is set to a time
364  * that is well into the future.
365  * While scanning, if an expiry time is found that is earlier than the
366  * current nextcheck time, nextcheck is set to that expiry time.
367  * If the flush_time is ever set to a time earlier than the nextcheck
368  * time, the nextcheck time is then set to that flush_time.
369  *
370  * A table is then only scanned if the current time is at least
371  * the nextcheck time.
372  *
373  */
374 
375 static LIST_HEAD(cache_list);
376 static DEFINE_SPINLOCK(cache_list_lock);
377 static struct cache_detail *current_detail;
378 static int current_index;
379 
380 static void do_cache_clean(struct work_struct *work);
381 static struct delayed_work cache_cleaner;
382 
383 void sunrpc_init_cache_detail(struct cache_detail *cd)
384 {
385 	spin_lock_init(&cd->hash_lock);
386 	INIT_LIST_HEAD(&cd->queue);
387 	spin_lock(&cache_list_lock);
388 	cd->nextcheck = 0;
389 	cd->entries = 0;
390 	atomic_set(&cd->writers, 0);
391 	cd->last_close = 0;
392 	cd->last_warn = -1;
393 	list_add(&cd->others, &cache_list);
394 	spin_unlock(&cache_list_lock);
395 
396 	/* start the cleaning process */
397 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
398 }
399 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
400 
401 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
402 {
403 	cache_purge(cd);
404 	spin_lock(&cache_list_lock);
405 	spin_lock(&cd->hash_lock);
406 	if (current_detail == cd)
407 		current_detail = NULL;
408 	list_del_init(&cd->others);
409 	spin_unlock(&cd->hash_lock);
410 	spin_unlock(&cache_list_lock);
411 	if (list_empty(&cache_list)) {
412 		/* module must be being unloaded so its safe to kill the worker */
413 		cancel_delayed_work_sync(&cache_cleaner);
414 	}
415 }
416 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
417 
418 /* clean cache tries to find something to clean
419  * and cleans it.
420  * It returns 1 if it cleaned something,
421  *            0 if it didn't find anything this time
422  *           -1 if it fell off the end of the list.
423  */
424 static int cache_clean(void)
425 {
426 	int rv = 0;
427 	struct list_head *next;
428 
429 	spin_lock(&cache_list_lock);
430 
431 	/* find a suitable table if we don't already have one */
432 	while (current_detail == NULL ||
433 	    current_index >= current_detail->hash_size) {
434 		if (current_detail)
435 			next = current_detail->others.next;
436 		else
437 			next = cache_list.next;
438 		if (next == &cache_list) {
439 			current_detail = NULL;
440 			spin_unlock(&cache_list_lock);
441 			return -1;
442 		}
443 		current_detail = list_entry(next, struct cache_detail, others);
444 		if (current_detail->nextcheck > seconds_since_boot())
445 			current_index = current_detail->hash_size;
446 		else {
447 			current_index = 0;
448 			current_detail->nextcheck = seconds_since_boot()+30*60;
449 		}
450 	}
451 
452 	/* find a non-empty bucket in the table */
453 	while (current_detail &&
454 	       current_index < current_detail->hash_size &&
455 	       hlist_empty(&current_detail->hash_table[current_index]))
456 		current_index++;
457 
458 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
459 
460 	if (current_detail && current_index < current_detail->hash_size) {
461 		struct cache_head *ch = NULL;
462 		struct cache_detail *d;
463 		struct hlist_head *head;
464 		struct hlist_node *tmp;
465 
466 		spin_lock(&current_detail->hash_lock);
467 
468 		/* Ok, now to clean this strand */
469 
470 		head = &current_detail->hash_table[current_index];
471 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
472 			if (current_detail->nextcheck > ch->expiry_time)
473 				current_detail->nextcheck = ch->expiry_time+1;
474 			if (!cache_is_expired(current_detail, ch))
475 				continue;
476 
477 			sunrpc_begin_cache_remove_entry(ch, current_detail);
478 			trace_cache_entry_expired(current_detail, ch);
479 			rv = 1;
480 			break;
481 		}
482 
483 		spin_unlock(&current_detail->hash_lock);
484 		d = current_detail;
485 		if (!ch)
486 			current_index ++;
487 		spin_unlock(&cache_list_lock);
488 		if (ch)
489 			sunrpc_end_cache_remove_entry(ch, d);
490 	} else
491 		spin_unlock(&cache_list_lock);
492 
493 	return rv;
494 }
495 
496 /*
497  * We want to regularly clean the cache, so we need to schedule some work ...
498  */
499 static void do_cache_clean(struct work_struct *work)
500 {
501 	int delay;
502 
503 	if (list_empty(&cache_list))
504 		return;
505 
506 	if (cache_clean() == -1)
507 		delay = round_jiffies_relative(30*HZ);
508 	else
509 		delay = 5;
510 
511 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay);
512 }
513 
514 
515 /*
516  * Clean all caches promptly.  This just calls cache_clean
517  * repeatedly until we are sure that every cache has had a chance to
518  * be fully cleaned
519  */
520 void cache_flush(void)
521 {
522 	while (cache_clean() != -1)
523 		cond_resched();
524 	while (cache_clean() != -1)
525 		cond_resched();
526 }
527 EXPORT_SYMBOL_GPL(cache_flush);
528 
529 void cache_purge(struct cache_detail *detail)
530 {
531 	struct cache_head *ch = NULL;
532 	struct hlist_head *head = NULL;
533 	int i = 0;
534 
535 	spin_lock(&detail->hash_lock);
536 	if (!detail->entries) {
537 		spin_unlock(&detail->hash_lock);
538 		return;
539 	}
540 
541 	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
542 	for (i = 0; i < detail->hash_size; i++) {
543 		head = &detail->hash_table[i];
544 		while (!hlist_empty(head)) {
545 			ch = hlist_entry(head->first, struct cache_head,
546 					 cache_list);
547 			sunrpc_begin_cache_remove_entry(ch, detail);
548 			spin_unlock(&detail->hash_lock);
549 			sunrpc_end_cache_remove_entry(ch, detail);
550 			spin_lock(&detail->hash_lock);
551 		}
552 	}
553 	spin_unlock(&detail->hash_lock);
554 }
555 EXPORT_SYMBOL_GPL(cache_purge);
556 
557 
558 /*
559  * Deferral and Revisiting of Requests.
560  *
561  * If a cache lookup finds a pending entry, we
562  * need to defer the request and revisit it later.
563  * All deferred requests are stored in a hash table,
564  * indexed by "struct cache_head *".
565  * As it may be wasteful to store a whole request
566  * structure, we allow the request to provide a
567  * deferred form, which must contain a
568  * 'struct cache_deferred_req'
569  * This cache_deferred_req contains a method to allow
570  * it to be revisited when cache info is available
571  */
572 
573 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
574 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
575 
576 #define	DFR_MAX	300	/* ??? */
577 
578 static DEFINE_SPINLOCK(cache_defer_lock);
579 static LIST_HEAD(cache_defer_list);
580 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
581 static int cache_defer_cnt;
582 
583 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
584 {
585 	hlist_del_init(&dreq->hash);
586 	if (!list_empty(&dreq->recent)) {
587 		list_del_init(&dreq->recent);
588 		cache_defer_cnt--;
589 	}
590 }
591 
592 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
593 {
594 	int hash = DFR_HASH(item);
595 
596 	INIT_LIST_HEAD(&dreq->recent);
597 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
598 }
599 
600 static void setup_deferral(struct cache_deferred_req *dreq,
601 			   struct cache_head *item,
602 			   int count_me)
603 {
604 
605 	dreq->item = item;
606 
607 	spin_lock(&cache_defer_lock);
608 
609 	__hash_deferred_req(dreq, item);
610 
611 	if (count_me) {
612 		cache_defer_cnt++;
613 		list_add(&dreq->recent, &cache_defer_list);
614 	}
615 
616 	spin_unlock(&cache_defer_lock);
617 
618 }
619 
620 struct thread_deferred_req {
621 	struct cache_deferred_req handle;
622 	struct completion completion;
623 };
624 
625 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
626 {
627 	struct thread_deferred_req *dr =
628 		container_of(dreq, struct thread_deferred_req, handle);
629 	complete(&dr->completion);
630 }
631 
632 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
633 {
634 	struct thread_deferred_req sleeper;
635 	struct cache_deferred_req *dreq = &sleeper.handle;
636 
637 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
638 	dreq->revisit = cache_restart_thread;
639 
640 	setup_deferral(dreq, item, 0);
641 
642 	if (!test_bit(CACHE_PENDING, &item->flags) ||
643 	    wait_for_completion_interruptible_timeout(
644 		    &sleeper.completion, req->thread_wait) <= 0) {
645 		/* The completion wasn't completed, so we need
646 		 * to clean up
647 		 */
648 		spin_lock(&cache_defer_lock);
649 		if (!hlist_unhashed(&sleeper.handle.hash)) {
650 			__unhash_deferred_req(&sleeper.handle);
651 			spin_unlock(&cache_defer_lock);
652 		} else {
653 			/* cache_revisit_request already removed
654 			 * this from the hash table, but hasn't
655 			 * called ->revisit yet.  It will very soon
656 			 * and we need to wait for it.
657 			 */
658 			spin_unlock(&cache_defer_lock);
659 			wait_for_completion(&sleeper.completion);
660 		}
661 	}
662 }
663 
664 static void cache_limit_defers(void)
665 {
666 	/* Make sure we haven't exceed the limit of allowed deferred
667 	 * requests.
668 	 */
669 	struct cache_deferred_req *discard = NULL;
670 
671 	if (cache_defer_cnt <= DFR_MAX)
672 		return;
673 
674 	spin_lock(&cache_defer_lock);
675 
676 	/* Consider removing either the first or the last */
677 	if (cache_defer_cnt > DFR_MAX) {
678 		if (prandom_u32() & 1)
679 			discard = list_entry(cache_defer_list.next,
680 					     struct cache_deferred_req, recent);
681 		else
682 			discard = list_entry(cache_defer_list.prev,
683 					     struct cache_deferred_req, recent);
684 		__unhash_deferred_req(discard);
685 	}
686 	spin_unlock(&cache_defer_lock);
687 	if (discard)
688 		discard->revisit(discard, 1);
689 }
690 
691 /* Return true if and only if a deferred request is queued. */
692 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
693 {
694 	struct cache_deferred_req *dreq;
695 
696 	if (req->thread_wait) {
697 		cache_wait_req(req, item);
698 		if (!test_bit(CACHE_PENDING, &item->flags))
699 			return false;
700 	}
701 	dreq = req->defer(req);
702 	if (dreq == NULL)
703 		return false;
704 	setup_deferral(dreq, item, 1);
705 	if (!test_bit(CACHE_PENDING, &item->flags))
706 		/* Bit could have been cleared before we managed to
707 		 * set up the deferral, so need to revisit just in case
708 		 */
709 		cache_revisit_request(item);
710 
711 	cache_limit_defers();
712 	return true;
713 }
714 
715 static void cache_revisit_request(struct cache_head *item)
716 {
717 	struct cache_deferred_req *dreq;
718 	struct list_head pending;
719 	struct hlist_node *tmp;
720 	int hash = DFR_HASH(item);
721 
722 	INIT_LIST_HEAD(&pending);
723 	spin_lock(&cache_defer_lock);
724 
725 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
726 		if (dreq->item == item) {
727 			__unhash_deferred_req(dreq);
728 			list_add(&dreq->recent, &pending);
729 		}
730 
731 	spin_unlock(&cache_defer_lock);
732 
733 	while (!list_empty(&pending)) {
734 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
735 		list_del_init(&dreq->recent);
736 		dreq->revisit(dreq, 0);
737 	}
738 }
739 
740 void cache_clean_deferred(void *owner)
741 {
742 	struct cache_deferred_req *dreq, *tmp;
743 	struct list_head pending;
744 
745 
746 	INIT_LIST_HEAD(&pending);
747 	spin_lock(&cache_defer_lock);
748 
749 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
750 		if (dreq->owner == owner) {
751 			__unhash_deferred_req(dreq);
752 			list_add(&dreq->recent, &pending);
753 		}
754 	}
755 	spin_unlock(&cache_defer_lock);
756 
757 	while (!list_empty(&pending)) {
758 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
759 		list_del_init(&dreq->recent);
760 		dreq->revisit(dreq, 1);
761 	}
762 }
763 
764 /*
765  * communicate with user-space
766  *
767  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
768  * On read, you get a full request, or block.
769  * On write, an update request is processed.
770  * Poll works if anything to read, and always allows write.
771  *
772  * Implemented by linked list of requests.  Each open file has
773  * a ->private that also exists in this list.  New requests are added
774  * to the end and may wakeup and preceding readers.
775  * New readers are added to the head.  If, on read, an item is found with
776  * CACHE_UPCALLING clear, we free it from the list.
777  *
778  */
779 
780 static DEFINE_SPINLOCK(queue_lock);
781 
782 struct cache_queue {
783 	struct list_head	list;
784 	int			reader;	/* if 0, then request */
785 };
786 struct cache_request {
787 	struct cache_queue	q;
788 	struct cache_head	*item;
789 	char			* buf;
790 	int			len;
791 	int			readers;
792 };
793 struct cache_reader {
794 	struct cache_queue	q;
795 	int			offset;	/* if non-0, we have a refcnt on next request */
796 };
797 
798 static int cache_request(struct cache_detail *detail,
799 			       struct cache_request *crq)
800 {
801 	char *bp = crq->buf;
802 	int len = PAGE_SIZE;
803 
804 	detail->cache_request(detail, crq->item, &bp, &len);
805 	if (len < 0)
806 		return -EAGAIN;
807 	return PAGE_SIZE - len;
808 }
809 
810 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
811 			  loff_t *ppos, struct cache_detail *cd)
812 {
813 	struct cache_reader *rp = filp->private_data;
814 	struct cache_request *rq;
815 	struct inode *inode = file_inode(filp);
816 	int err;
817 
818 	if (count == 0)
819 		return 0;
820 
821 	inode_lock(inode); /* protect against multiple concurrent
822 			      * readers on this file */
823  again:
824 	spin_lock(&queue_lock);
825 	/* need to find next request */
826 	while (rp->q.list.next != &cd->queue &&
827 	       list_entry(rp->q.list.next, struct cache_queue, list)
828 	       ->reader) {
829 		struct list_head *next = rp->q.list.next;
830 		list_move(&rp->q.list, next);
831 	}
832 	if (rp->q.list.next == &cd->queue) {
833 		spin_unlock(&queue_lock);
834 		inode_unlock(inode);
835 		WARN_ON_ONCE(rp->offset);
836 		return 0;
837 	}
838 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
839 	WARN_ON_ONCE(rq->q.reader);
840 	if (rp->offset == 0)
841 		rq->readers++;
842 	spin_unlock(&queue_lock);
843 
844 	if (rq->len == 0) {
845 		err = cache_request(cd, rq);
846 		if (err < 0)
847 			goto out;
848 		rq->len = err;
849 	}
850 
851 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
852 		err = -EAGAIN;
853 		spin_lock(&queue_lock);
854 		list_move(&rp->q.list, &rq->q.list);
855 		spin_unlock(&queue_lock);
856 	} else {
857 		if (rp->offset + count > rq->len)
858 			count = rq->len - rp->offset;
859 		err = -EFAULT;
860 		if (copy_to_user(buf, rq->buf + rp->offset, count))
861 			goto out;
862 		rp->offset += count;
863 		if (rp->offset >= rq->len) {
864 			rp->offset = 0;
865 			spin_lock(&queue_lock);
866 			list_move(&rp->q.list, &rq->q.list);
867 			spin_unlock(&queue_lock);
868 		}
869 		err = 0;
870 	}
871  out:
872 	if (rp->offset == 0) {
873 		/* need to release rq */
874 		spin_lock(&queue_lock);
875 		rq->readers--;
876 		if (rq->readers == 0 &&
877 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
878 			list_del(&rq->q.list);
879 			spin_unlock(&queue_lock);
880 			cache_put(rq->item, cd);
881 			kfree(rq->buf);
882 			kfree(rq);
883 		} else
884 			spin_unlock(&queue_lock);
885 	}
886 	if (err == -EAGAIN)
887 		goto again;
888 	inode_unlock(inode);
889 	return err ? err :  count;
890 }
891 
892 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
893 				 size_t count, struct cache_detail *cd)
894 {
895 	ssize_t ret;
896 
897 	if (count == 0)
898 		return -EINVAL;
899 	if (copy_from_user(kaddr, buf, count))
900 		return -EFAULT;
901 	kaddr[count] = '\0';
902 	ret = cd->cache_parse(cd, kaddr, count);
903 	if (!ret)
904 		ret = count;
905 	return ret;
906 }
907 
908 static ssize_t cache_downcall(struct address_space *mapping,
909 			      const char __user *buf,
910 			      size_t count, struct cache_detail *cd)
911 {
912 	char *write_buf;
913 	ssize_t ret = -ENOMEM;
914 
915 	if (count >= 32768) { /* 32k is max userland buffer, lets check anyway */
916 		ret = -EINVAL;
917 		goto out;
918 	}
919 
920 	write_buf = kvmalloc(count + 1, GFP_KERNEL);
921 	if (!write_buf)
922 		goto out;
923 
924 	ret = cache_do_downcall(write_buf, buf, count, cd);
925 	kvfree(write_buf);
926 out:
927 	return ret;
928 }
929 
930 static ssize_t cache_write(struct file *filp, const char __user *buf,
931 			   size_t count, loff_t *ppos,
932 			   struct cache_detail *cd)
933 {
934 	struct address_space *mapping = filp->f_mapping;
935 	struct inode *inode = file_inode(filp);
936 	ssize_t ret = -EINVAL;
937 
938 	if (!cd->cache_parse)
939 		goto out;
940 
941 	inode_lock(inode);
942 	ret = cache_downcall(mapping, buf, count, cd);
943 	inode_unlock(inode);
944 out:
945 	return ret;
946 }
947 
948 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
949 
950 static __poll_t cache_poll(struct file *filp, poll_table *wait,
951 			       struct cache_detail *cd)
952 {
953 	__poll_t mask;
954 	struct cache_reader *rp = filp->private_data;
955 	struct cache_queue *cq;
956 
957 	poll_wait(filp, &queue_wait, wait);
958 
959 	/* alway allow write */
960 	mask = EPOLLOUT | EPOLLWRNORM;
961 
962 	if (!rp)
963 		return mask;
964 
965 	spin_lock(&queue_lock);
966 
967 	for (cq= &rp->q; &cq->list != &cd->queue;
968 	     cq = list_entry(cq->list.next, struct cache_queue, list))
969 		if (!cq->reader) {
970 			mask |= EPOLLIN | EPOLLRDNORM;
971 			break;
972 		}
973 	spin_unlock(&queue_lock);
974 	return mask;
975 }
976 
977 static int cache_ioctl(struct inode *ino, struct file *filp,
978 		       unsigned int cmd, unsigned long arg,
979 		       struct cache_detail *cd)
980 {
981 	int len = 0;
982 	struct cache_reader *rp = filp->private_data;
983 	struct cache_queue *cq;
984 
985 	if (cmd != FIONREAD || !rp)
986 		return -EINVAL;
987 
988 	spin_lock(&queue_lock);
989 
990 	/* only find the length remaining in current request,
991 	 * or the length of the next request
992 	 */
993 	for (cq= &rp->q; &cq->list != &cd->queue;
994 	     cq = list_entry(cq->list.next, struct cache_queue, list))
995 		if (!cq->reader) {
996 			struct cache_request *cr =
997 				container_of(cq, struct cache_request, q);
998 			len = cr->len - rp->offset;
999 			break;
1000 		}
1001 	spin_unlock(&queue_lock);
1002 
1003 	return put_user(len, (int __user *)arg);
1004 }
1005 
1006 static int cache_open(struct inode *inode, struct file *filp,
1007 		      struct cache_detail *cd)
1008 {
1009 	struct cache_reader *rp = NULL;
1010 
1011 	if (!cd || !try_module_get(cd->owner))
1012 		return -EACCES;
1013 	nonseekable_open(inode, filp);
1014 	if (filp->f_mode & FMODE_READ) {
1015 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1016 		if (!rp) {
1017 			module_put(cd->owner);
1018 			return -ENOMEM;
1019 		}
1020 		rp->offset = 0;
1021 		rp->q.reader = 1;
1022 
1023 		spin_lock(&queue_lock);
1024 		list_add(&rp->q.list, &cd->queue);
1025 		spin_unlock(&queue_lock);
1026 	}
1027 	if (filp->f_mode & FMODE_WRITE)
1028 		atomic_inc(&cd->writers);
1029 	filp->private_data = rp;
1030 	return 0;
1031 }
1032 
1033 static int cache_release(struct inode *inode, struct file *filp,
1034 			 struct cache_detail *cd)
1035 {
1036 	struct cache_reader *rp = filp->private_data;
1037 
1038 	if (rp) {
1039 		spin_lock(&queue_lock);
1040 		if (rp->offset) {
1041 			struct cache_queue *cq;
1042 			for (cq= &rp->q; &cq->list != &cd->queue;
1043 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1044 				if (!cq->reader) {
1045 					container_of(cq, struct cache_request, q)
1046 						->readers--;
1047 					break;
1048 				}
1049 			rp->offset = 0;
1050 		}
1051 		list_del(&rp->q.list);
1052 		spin_unlock(&queue_lock);
1053 
1054 		filp->private_data = NULL;
1055 		kfree(rp);
1056 
1057 	}
1058 	if (filp->f_mode & FMODE_WRITE) {
1059 		atomic_dec(&cd->writers);
1060 		cd->last_close = seconds_since_boot();
1061 	}
1062 	module_put(cd->owner);
1063 	return 0;
1064 }
1065 
1066 
1067 
1068 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1069 {
1070 	struct cache_queue *cq, *tmp;
1071 	struct cache_request *cr;
1072 	struct list_head dequeued;
1073 
1074 	INIT_LIST_HEAD(&dequeued);
1075 	spin_lock(&queue_lock);
1076 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1077 		if (!cq->reader) {
1078 			cr = container_of(cq, struct cache_request, q);
1079 			if (cr->item != ch)
1080 				continue;
1081 			if (test_bit(CACHE_PENDING, &ch->flags))
1082 				/* Lost a race and it is pending again */
1083 				break;
1084 			if (cr->readers != 0)
1085 				continue;
1086 			list_move(&cr->q.list, &dequeued);
1087 		}
1088 	spin_unlock(&queue_lock);
1089 	while (!list_empty(&dequeued)) {
1090 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1091 		list_del(&cr->q.list);
1092 		cache_put(cr->item, detail);
1093 		kfree(cr->buf);
1094 		kfree(cr);
1095 	}
1096 }
1097 
1098 /*
1099  * Support routines for text-based upcalls.
1100  * Fields are separated by spaces.
1101  * Fields are either mangled to quote space tab newline slosh with slosh
1102  * or a hexified with a leading \x
1103  * Record is terminated with newline.
1104  *
1105  */
1106 
1107 void qword_add(char **bpp, int *lp, char *str)
1108 {
1109 	char *bp = *bpp;
1110 	int len = *lp;
1111 	int ret;
1112 
1113 	if (len < 0) return;
1114 
1115 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1116 	if (ret >= len) {
1117 		bp += len;
1118 		len = -1;
1119 	} else {
1120 		bp += ret;
1121 		len -= ret;
1122 		*bp++ = ' ';
1123 		len--;
1124 	}
1125 	*bpp = bp;
1126 	*lp = len;
1127 }
1128 EXPORT_SYMBOL_GPL(qword_add);
1129 
1130 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1131 {
1132 	char *bp = *bpp;
1133 	int len = *lp;
1134 
1135 	if (len < 0) return;
1136 
1137 	if (len > 2) {
1138 		*bp++ = '\\';
1139 		*bp++ = 'x';
1140 		len -= 2;
1141 		while (blen && len >= 2) {
1142 			bp = hex_byte_pack(bp, *buf++);
1143 			len -= 2;
1144 			blen--;
1145 		}
1146 	}
1147 	if (blen || len<1) len = -1;
1148 	else {
1149 		*bp++ = ' ';
1150 		len--;
1151 	}
1152 	*bpp = bp;
1153 	*lp = len;
1154 }
1155 EXPORT_SYMBOL_GPL(qword_addhex);
1156 
1157 static void warn_no_listener(struct cache_detail *detail)
1158 {
1159 	if (detail->last_warn != detail->last_close) {
1160 		detail->last_warn = detail->last_close;
1161 		if (detail->warn_no_listener)
1162 			detail->warn_no_listener(detail, detail->last_close != 0);
1163 	}
1164 }
1165 
1166 static bool cache_listeners_exist(struct cache_detail *detail)
1167 {
1168 	if (atomic_read(&detail->writers))
1169 		return true;
1170 	if (detail->last_close == 0)
1171 		/* This cache was never opened */
1172 		return false;
1173 	if (detail->last_close < seconds_since_boot() - 30)
1174 		/*
1175 		 * We allow for the possibility that someone might
1176 		 * restart a userspace daemon without restarting the
1177 		 * server; but after 30 seconds, we give up.
1178 		 */
1179 		 return false;
1180 	return true;
1181 }
1182 
1183 /*
1184  * register an upcall request to user-space and queue it up for read() by the
1185  * upcall daemon.
1186  *
1187  * Each request is at most one page long.
1188  */
1189 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1190 {
1191 	char *buf;
1192 	struct cache_request *crq;
1193 	int ret = 0;
1194 
1195 	if (test_bit(CACHE_CLEANED, &h->flags))
1196 		/* Too late to make an upcall */
1197 		return -EAGAIN;
1198 
1199 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1200 	if (!buf)
1201 		return -EAGAIN;
1202 
1203 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1204 	if (!crq) {
1205 		kfree(buf);
1206 		return -EAGAIN;
1207 	}
1208 
1209 	crq->q.reader = 0;
1210 	crq->buf = buf;
1211 	crq->len = 0;
1212 	crq->readers = 0;
1213 	spin_lock(&queue_lock);
1214 	if (test_bit(CACHE_PENDING, &h->flags)) {
1215 		crq->item = cache_get(h);
1216 		list_add_tail(&crq->q.list, &detail->queue);
1217 		trace_cache_entry_upcall(detail, h);
1218 	} else
1219 		/* Lost a race, no longer PENDING, so don't enqueue */
1220 		ret = -EAGAIN;
1221 	spin_unlock(&queue_lock);
1222 	wake_up(&queue_wait);
1223 	if (ret == -EAGAIN) {
1224 		kfree(buf);
1225 		kfree(crq);
1226 	}
1227 	return ret;
1228 }
1229 
1230 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1231 {
1232 	if (test_and_set_bit(CACHE_PENDING, &h->flags))
1233 		return 0;
1234 	return cache_pipe_upcall(detail, h);
1235 }
1236 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1237 
1238 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail,
1239 				     struct cache_head *h)
1240 {
1241 	if (!cache_listeners_exist(detail)) {
1242 		warn_no_listener(detail);
1243 		trace_cache_entry_no_listener(detail, h);
1244 		return -EINVAL;
1245 	}
1246 	return sunrpc_cache_pipe_upcall(detail, h);
1247 }
1248 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout);
1249 
1250 /*
1251  * parse a message from user-space and pass it
1252  * to an appropriate cache
1253  * Messages are, like requests, separated into fields by
1254  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1255  *
1256  * Message is
1257  *   reply cachename expiry key ... content....
1258  *
1259  * key and content are both parsed by cache
1260  */
1261 
1262 int qword_get(char **bpp, char *dest, int bufsize)
1263 {
1264 	/* return bytes copied, or -1 on error */
1265 	char *bp = *bpp;
1266 	int len = 0;
1267 
1268 	while (*bp == ' ') bp++;
1269 
1270 	if (bp[0] == '\\' && bp[1] == 'x') {
1271 		/* HEX STRING */
1272 		bp += 2;
1273 		while (len < bufsize - 1) {
1274 			int h, l;
1275 
1276 			h = hex_to_bin(bp[0]);
1277 			if (h < 0)
1278 				break;
1279 
1280 			l = hex_to_bin(bp[1]);
1281 			if (l < 0)
1282 				break;
1283 
1284 			*dest++ = (h << 4) | l;
1285 			bp += 2;
1286 			len++;
1287 		}
1288 	} else {
1289 		/* text with \nnn octal quoting */
1290 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1291 			if (*bp == '\\' &&
1292 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1293 			    isodigit(bp[2]) &&
1294 			    isodigit(bp[3])) {
1295 				int byte = (*++bp -'0');
1296 				bp++;
1297 				byte = (byte << 3) | (*bp++ - '0');
1298 				byte = (byte << 3) | (*bp++ - '0');
1299 				*dest++ = byte;
1300 				len++;
1301 			} else {
1302 				*dest++ = *bp++;
1303 				len++;
1304 			}
1305 		}
1306 	}
1307 
1308 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1309 		return -1;
1310 	while (*bp == ' ') bp++;
1311 	*bpp = bp;
1312 	*dest = '\0';
1313 	return len;
1314 }
1315 EXPORT_SYMBOL_GPL(qword_get);
1316 
1317 
1318 /*
1319  * support /proc/net/rpc/$CACHENAME/content
1320  * as a seqfile.
1321  * We call ->cache_show passing NULL for the item to
1322  * get a header, then pass each real item in the cache
1323  */
1324 
1325 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1326 {
1327 	loff_t n = *pos;
1328 	unsigned int hash, entry;
1329 	struct cache_head *ch;
1330 	struct cache_detail *cd = m->private;
1331 
1332 	if (!n--)
1333 		return SEQ_START_TOKEN;
1334 	hash = n >> 32;
1335 	entry = n & ((1LL<<32) - 1);
1336 
1337 	hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1338 		if (!entry--)
1339 			return ch;
1340 	n &= ~((1LL<<32) - 1);
1341 	do {
1342 		hash++;
1343 		n += 1LL<<32;
1344 	} while(hash < cd->hash_size &&
1345 		hlist_empty(&cd->hash_table[hash]));
1346 	if (hash >= cd->hash_size)
1347 		return NULL;
1348 	*pos = n+1;
1349 	return hlist_entry_safe(rcu_dereference_raw(
1350 				hlist_first_rcu(&cd->hash_table[hash])),
1351 				struct cache_head, cache_list);
1352 }
1353 
1354 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1355 {
1356 	struct cache_head *ch = p;
1357 	int hash = (*pos >> 32);
1358 	struct cache_detail *cd = m->private;
1359 
1360 	if (p == SEQ_START_TOKEN)
1361 		hash = 0;
1362 	else if (ch->cache_list.next == NULL) {
1363 		hash++;
1364 		*pos += 1LL<<32;
1365 	} else {
1366 		++*pos;
1367 		return hlist_entry_safe(rcu_dereference_raw(
1368 					hlist_next_rcu(&ch->cache_list)),
1369 					struct cache_head, cache_list);
1370 	}
1371 	*pos &= ~((1LL<<32) - 1);
1372 	while (hash < cd->hash_size &&
1373 	       hlist_empty(&cd->hash_table[hash])) {
1374 		hash++;
1375 		*pos += 1LL<<32;
1376 	}
1377 	if (hash >= cd->hash_size)
1378 		return NULL;
1379 	++*pos;
1380 	return hlist_entry_safe(rcu_dereference_raw(
1381 				hlist_first_rcu(&cd->hash_table[hash])),
1382 				struct cache_head, cache_list);
1383 }
1384 
1385 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1386 	__acquires(RCU)
1387 {
1388 	rcu_read_lock();
1389 	return __cache_seq_start(m, pos);
1390 }
1391 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1392 
1393 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1394 {
1395 	return cache_seq_next(file, p, pos);
1396 }
1397 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1398 
1399 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1400 	__releases(RCU)
1401 {
1402 	rcu_read_unlock();
1403 }
1404 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1405 
1406 static int c_show(struct seq_file *m, void *p)
1407 {
1408 	struct cache_head *cp = p;
1409 	struct cache_detail *cd = m->private;
1410 
1411 	if (p == SEQ_START_TOKEN)
1412 		return cd->cache_show(m, cd, NULL);
1413 
1414 	ifdebug(CACHE)
1415 		seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n",
1416 			   convert_to_wallclock(cp->expiry_time),
1417 			   kref_read(&cp->ref), cp->flags);
1418 	cache_get(cp);
1419 	if (cache_check(cd, cp, NULL))
1420 		/* cache_check does a cache_put on failure */
1421 		seq_puts(m, "# ");
1422 	else {
1423 		if (cache_is_expired(cd, cp))
1424 			seq_puts(m, "# ");
1425 		cache_put(cp, cd);
1426 	}
1427 
1428 	return cd->cache_show(m, cd, cp);
1429 }
1430 
1431 static const struct seq_operations cache_content_op = {
1432 	.start	= cache_seq_start_rcu,
1433 	.next	= cache_seq_next_rcu,
1434 	.stop	= cache_seq_stop_rcu,
1435 	.show	= c_show,
1436 };
1437 
1438 static int content_open(struct inode *inode, struct file *file,
1439 			struct cache_detail *cd)
1440 {
1441 	struct seq_file *seq;
1442 	int err;
1443 
1444 	if (!cd || !try_module_get(cd->owner))
1445 		return -EACCES;
1446 
1447 	err = seq_open(file, &cache_content_op);
1448 	if (err) {
1449 		module_put(cd->owner);
1450 		return err;
1451 	}
1452 
1453 	seq = file->private_data;
1454 	seq->private = cd;
1455 	return 0;
1456 }
1457 
1458 static int content_release(struct inode *inode, struct file *file,
1459 		struct cache_detail *cd)
1460 {
1461 	int ret = seq_release(inode, file);
1462 	module_put(cd->owner);
1463 	return ret;
1464 }
1465 
1466 static int open_flush(struct inode *inode, struct file *file,
1467 			struct cache_detail *cd)
1468 {
1469 	if (!cd || !try_module_get(cd->owner))
1470 		return -EACCES;
1471 	return nonseekable_open(inode, file);
1472 }
1473 
1474 static int release_flush(struct inode *inode, struct file *file,
1475 			struct cache_detail *cd)
1476 {
1477 	module_put(cd->owner);
1478 	return 0;
1479 }
1480 
1481 static ssize_t read_flush(struct file *file, char __user *buf,
1482 			  size_t count, loff_t *ppos,
1483 			  struct cache_detail *cd)
1484 {
1485 	char tbuf[22];
1486 	size_t len;
1487 
1488 	len = snprintf(tbuf, sizeof(tbuf), "%llu\n",
1489 			convert_to_wallclock(cd->flush_time));
1490 	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1491 }
1492 
1493 static ssize_t write_flush(struct file *file, const char __user *buf,
1494 			   size_t count, loff_t *ppos,
1495 			   struct cache_detail *cd)
1496 {
1497 	char tbuf[20];
1498 	char *ep;
1499 	time64_t now;
1500 
1501 	if (*ppos || count > sizeof(tbuf)-1)
1502 		return -EINVAL;
1503 	if (copy_from_user(tbuf, buf, count))
1504 		return -EFAULT;
1505 	tbuf[count] = 0;
1506 	simple_strtoul(tbuf, &ep, 0);
1507 	if (*ep && *ep != '\n')
1508 		return -EINVAL;
1509 	/* Note that while we check that 'buf' holds a valid number,
1510 	 * we always ignore the value and just flush everything.
1511 	 * Making use of the number leads to races.
1512 	 */
1513 
1514 	now = seconds_since_boot();
1515 	/* Always flush everything, so behave like cache_purge()
1516 	 * Do this by advancing flush_time to the current time,
1517 	 * or by one second if it has already reached the current time.
1518 	 * Newly added cache entries will always have ->last_refresh greater
1519 	 * that ->flush_time, so they don't get flushed prematurely.
1520 	 */
1521 
1522 	if (cd->flush_time >= now)
1523 		now = cd->flush_time + 1;
1524 
1525 	cd->flush_time = now;
1526 	cd->nextcheck = now;
1527 	cache_flush();
1528 
1529 	if (cd->flush)
1530 		cd->flush();
1531 
1532 	*ppos += count;
1533 	return count;
1534 }
1535 
1536 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1537 				 size_t count, loff_t *ppos)
1538 {
1539 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1540 
1541 	return cache_read(filp, buf, count, ppos, cd);
1542 }
1543 
1544 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1545 				  size_t count, loff_t *ppos)
1546 {
1547 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1548 
1549 	return cache_write(filp, buf, count, ppos, cd);
1550 }
1551 
1552 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1553 {
1554 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1555 
1556 	return cache_poll(filp, wait, cd);
1557 }
1558 
1559 static long cache_ioctl_procfs(struct file *filp,
1560 			       unsigned int cmd, unsigned long arg)
1561 {
1562 	struct inode *inode = file_inode(filp);
1563 	struct cache_detail *cd = PDE_DATA(inode);
1564 
1565 	return cache_ioctl(inode, filp, cmd, arg, cd);
1566 }
1567 
1568 static int cache_open_procfs(struct inode *inode, struct file *filp)
1569 {
1570 	struct cache_detail *cd = PDE_DATA(inode);
1571 
1572 	return cache_open(inode, filp, cd);
1573 }
1574 
1575 static int cache_release_procfs(struct inode *inode, struct file *filp)
1576 {
1577 	struct cache_detail *cd = PDE_DATA(inode);
1578 
1579 	return cache_release(inode, filp, cd);
1580 }
1581 
1582 static const struct proc_ops cache_channel_proc_ops = {
1583 	.proc_lseek	= no_llseek,
1584 	.proc_read	= cache_read_procfs,
1585 	.proc_write	= cache_write_procfs,
1586 	.proc_poll	= cache_poll_procfs,
1587 	.proc_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1588 	.proc_open	= cache_open_procfs,
1589 	.proc_release	= cache_release_procfs,
1590 };
1591 
1592 static int content_open_procfs(struct inode *inode, struct file *filp)
1593 {
1594 	struct cache_detail *cd = PDE_DATA(inode);
1595 
1596 	return content_open(inode, filp, cd);
1597 }
1598 
1599 static int content_release_procfs(struct inode *inode, struct file *filp)
1600 {
1601 	struct cache_detail *cd = PDE_DATA(inode);
1602 
1603 	return content_release(inode, filp, cd);
1604 }
1605 
1606 static const struct proc_ops content_proc_ops = {
1607 	.proc_open	= content_open_procfs,
1608 	.proc_read	= seq_read,
1609 	.proc_lseek	= seq_lseek,
1610 	.proc_release	= content_release_procfs,
1611 };
1612 
1613 static int open_flush_procfs(struct inode *inode, struct file *filp)
1614 {
1615 	struct cache_detail *cd = PDE_DATA(inode);
1616 
1617 	return open_flush(inode, filp, cd);
1618 }
1619 
1620 static int release_flush_procfs(struct inode *inode, struct file *filp)
1621 {
1622 	struct cache_detail *cd = PDE_DATA(inode);
1623 
1624 	return release_flush(inode, filp, cd);
1625 }
1626 
1627 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1628 			    size_t count, loff_t *ppos)
1629 {
1630 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1631 
1632 	return read_flush(filp, buf, count, ppos, cd);
1633 }
1634 
1635 static ssize_t write_flush_procfs(struct file *filp,
1636 				  const char __user *buf,
1637 				  size_t count, loff_t *ppos)
1638 {
1639 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1640 
1641 	return write_flush(filp, buf, count, ppos, cd);
1642 }
1643 
1644 static const struct proc_ops cache_flush_proc_ops = {
1645 	.proc_open	= open_flush_procfs,
1646 	.proc_read	= read_flush_procfs,
1647 	.proc_write	= write_flush_procfs,
1648 	.proc_release	= release_flush_procfs,
1649 	.proc_lseek	= no_llseek,
1650 };
1651 
1652 static void remove_cache_proc_entries(struct cache_detail *cd)
1653 {
1654 	if (cd->procfs) {
1655 		proc_remove(cd->procfs);
1656 		cd->procfs = NULL;
1657 	}
1658 }
1659 
1660 #ifdef CONFIG_PROC_FS
1661 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1662 {
1663 	struct proc_dir_entry *p;
1664 	struct sunrpc_net *sn;
1665 
1666 	sn = net_generic(net, sunrpc_net_id);
1667 	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1668 	if (cd->procfs == NULL)
1669 		goto out_nomem;
1670 
1671 	p = proc_create_data("flush", S_IFREG | 0600,
1672 			     cd->procfs, &cache_flush_proc_ops, cd);
1673 	if (p == NULL)
1674 		goto out_nomem;
1675 
1676 	if (cd->cache_request || cd->cache_parse) {
1677 		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1678 				     &cache_channel_proc_ops, cd);
1679 		if (p == NULL)
1680 			goto out_nomem;
1681 	}
1682 	if (cd->cache_show) {
1683 		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1684 				     &content_proc_ops, cd);
1685 		if (p == NULL)
1686 			goto out_nomem;
1687 	}
1688 	return 0;
1689 out_nomem:
1690 	remove_cache_proc_entries(cd);
1691 	return -ENOMEM;
1692 }
1693 #else /* CONFIG_PROC_FS */
1694 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1695 {
1696 	return 0;
1697 }
1698 #endif
1699 
1700 void __init cache_initialize(void)
1701 {
1702 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1703 }
1704 
1705 int cache_register_net(struct cache_detail *cd, struct net *net)
1706 {
1707 	int ret;
1708 
1709 	sunrpc_init_cache_detail(cd);
1710 	ret = create_cache_proc_entries(cd, net);
1711 	if (ret)
1712 		sunrpc_destroy_cache_detail(cd);
1713 	return ret;
1714 }
1715 EXPORT_SYMBOL_GPL(cache_register_net);
1716 
1717 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1718 {
1719 	remove_cache_proc_entries(cd);
1720 	sunrpc_destroy_cache_detail(cd);
1721 }
1722 EXPORT_SYMBOL_GPL(cache_unregister_net);
1723 
1724 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1725 {
1726 	struct cache_detail *cd;
1727 	int i;
1728 
1729 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1730 	if (cd == NULL)
1731 		return ERR_PTR(-ENOMEM);
1732 
1733 	cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1734 				 GFP_KERNEL);
1735 	if (cd->hash_table == NULL) {
1736 		kfree(cd);
1737 		return ERR_PTR(-ENOMEM);
1738 	}
1739 
1740 	for (i = 0; i < cd->hash_size; i++)
1741 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1742 	cd->net = net;
1743 	return cd;
1744 }
1745 EXPORT_SYMBOL_GPL(cache_create_net);
1746 
1747 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1748 {
1749 	kfree(cd->hash_table);
1750 	kfree(cd);
1751 }
1752 EXPORT_SYMBOL_GPL(cache_destroy_net);
1753 
1754 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1755 				 size_t count, loff_t *ppos)
1756 {
1757 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1758 
1759 	return cache_read(filp, buf, count, ppos, cd);
1760 }
1761 
1762 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1763 				  size_t count, loff_t *ppos)
1764 {
1765 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1766 
1767 	return cache_write(filp, buf, count, ppos, cd);
1768 }
1769 
1770 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1771 {
1772 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1773 
1774 	return cache_poll(filp, wait, cd);
1775 }
1776 
1777 static long cache_ioctl_pipefs(struct file *filp,
1778 			      unsigned int cmd, unsigned long arg)
1779 {
1780 	struct inode *inode = file_inode(filp);
1781 	struct cache_detail *cd = RPC_I(inode)->private;
1782 
1783 	return cache_ioctl(inode, filp, cmd, arg, cd);
1784 }
1785 
1786 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1787 {
1788 	struct cache_detail *cd = RPC_I(inode)->private;
1789 
1790 	return cache_open(inode, filp, cd);
1791 }
1792 
1793 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1794 {
1795 	struct cache_detail *cd = RPC_I(inode)->private;
1796 
1797 	return cache_release(inode, filp, cd);
1798 }
1799 
1800 const struct file_operations cache_file_operations_pipefs = {
1801 	.owner		= THIS_MODULE,
1802 	.llseek		= no_llseek,
1803 	.read		= cache_read_pipefs,
1804 	.write		= cache_write_pipefs,
1805 	.poll		= cache_poll_pipefs,
1806 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1807 	.open		= cache_open_pipefs,
1808 	.release	= cache_release_pipefs,
1809 };
1810 
1811 static int content_open_pipefs(struct inode *inode, struct file *filp)
1812 {
1813 	struct cache_detail *cd = RPC_I(inode)->private;
1814 
1815 	return content_open(inode, filp, cd);
1816 }
1817 
1818 static int content_release_pipefs(struct inode *inode, struct file *filp)
1819 {
1820 	struct cache_detail *cd = RPC_I(inode)->private;
1821 
1822 	return content_release(inode, filp, cd);
1823 }
1824 
1825 const struct file_operations content_file_operations_pipefs = {
1826 	.open		= content_open_pipefs,
1827 	.read		= seq_read,
1828 	.llseek		= seq_lseek,
1829 	.release	= content_release_pipefs,
1830 };
1831 
1832 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1833 {
1834 	struct cache_detail *cd = RPC_I(inode)->private;
1835 
1836 	return open_flush(inode, filp, cd);
1837 }
1838 
1839 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1840 {
1841 	struct cache_detail *cd = RPC_I(inode)->private;
1842 
1843 	return release_flush(inode, filp, cd);
1844 }
1845 
1846 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1847 			    size_t count, loff_t *ppos)
1848 {
1849 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1850 
1851 	return read_flush(filp, buf, count, ppos, cd);
1852 }
1853 
1854 static ssize_t write_flush_pipefs(struct file *filp,
1855 				  const char __user *buf,
1856 				  size_t count, loff_t *ppos)
1857 {
1858 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1859 
1860 	return write_flush(filp, buf, count, ppos, cd);
1861 }
1862 
1863 const struct file_operations cache_flush_operations_pipefs = {
1864 	.open		= open_flush_pipefs,
1865 	.read		= read_flush_pipefs,
1866 	.write		= write_flush_pipefs,
1867 	.release	= release_flush_pipefs,
1868 	.llseek		= no_llseek,
1869 };
1870 
1871 int sunrpc_cache_register_pipefs(struct dentry *parent,
1872 				 const char *name, umode_t umode,
1873 				 struct cache_detail *cd)
1874 {
1875 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1876 	if (IS_ERR(dir))
1877 		return PTR_ERR(dir);
1878 	cd->pipefs = dir;
1879 	return 0;
1880 }
1881 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1882 
1883 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1884 {
1885 	if (cd->pipefs) {
1886 		rpc_remove_cache_dir(cd->pipefs);
1887 		cd->pipefs = NULL;
1888 	}
1889 }
1890 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1891 
1892 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1893 {
1894 	spin_lock(&cd->hash_lock);
1895 	if (!hlist_unhashed(&h->cache_list)){
1896 		sunrpc_begin_cache_remove_entry(h, cd);
1897 		spin_unlock(&cd->hash_lock);
1898 		sunrpc_end_cache_remove_entry(h, cd);
1899 	} else
1900 		spin_unlock(&cd->hash_lock);
1901 }
1902 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1903