1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <linux/string_helpers.h> 24 #include <asm/uaccess.h> 25 #include <linux/poll.h> 26 #include <linux/seq_file.h> 27 #include <linux/proc_fs.h> 28 #include <linux/net.h> 29 #include <linux/workqueue.h> 30 #include <linux/mutex.h> 31 #include <linux/pagemap.h> 32 #include <asm/ioctls.h> 33 #include <linux/sunrpc/types.h> 34 #include <linux/sunrpc/cache.h> 35 #include <linux/sunrpc/stats.h> 36 #include <linux/sunrpc/rpc_pipe_fs.h> 37 #include "netns.h" 38 39 #define RPCDBG_FACILITY RPCDBG_CACHE 40 41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 42 static void cache_revisit_request(struct cache_head *item); 43 44 static void cache_init(struct cache_head *h, struct cache_detail *detail) 45 { 46 time_t now = seconds_since_boot(); 47 INIT_HLIST_NODE(&h->cache_list); 48 h->flags = 0; 49 kref_init(&h->ref); 50 h->expiry_time = now + CACHE_NEW_EXPIRY; 51 if (now <= detail->flush_time) 52 /* ensure it isn't already expired */ 53 now = detail->flush_time + 1; 54 h->last_refresh = now; 55 } 56 57 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 58 struct cache_head *key, int hash) 59 { 60 struct cache_head *new = NULL, *freeme = NULL, *tmp = NULL; 61 struct hlist_head *head; 62 63 head = &detail->hash_table[hash]; 64 65 read_lock(&detail->hash_lock); 66 67 hlist_for_each_entry(tmp, head, cache_list) { 68 if (detail->match(tmp, key)) { 69 if (cache_is_expired(detail, tmp)) 70 /* This entry is expired, we will discard it. */ 71 break; 72 cache_get(tmp); 73 read_unlock(&detail->hash_lock); 74 return tmp; 75 } 76 } 77 read_unlock(&detail->hash_lock); 78 /* Didn't find anything, insert an empty entry */ 79 80 new = detail->alloc(); 81 if (!new) 82 return NULL; 83 /* must fully initialise 'new', else 84 * we might get lose if we need to 85 * cache_put it soon. 86 */ 87 cache_init(new, detail); 88 detail->init(new, key); 89 90 write_lock(&detail->hash_lock); 91 92 /* check if entry appeared while we slept */ 93 hlist_for_each_entry(tmp, head, cache_list) { 94 if (detail->match(tmp, key)) { 95 if (cache_is_expired(detail, tmp)) { 96 hlist_del_init(&tmp->cache_list); 97 detail->entries --; 98 freeme = tmp; 99 break; 100 } 101 cache_get(tmp); 102 write_unlock(&detail->hash_lock); 103 cache_put(new, detail); 104 return tmp; 105 } 106 } 107 108 hlist_add_head(&new->cache_list, head); 109 detail->entries++; 110 cache_get(new); 111 write_unlock(&detail->hash_lock); 112 113 if (freeme) 114 cache_put(freeme, detail); 115 return new; 116 } 117 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); 118 119 120 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 121 122 static void cache_fresh_locked(struct cache_head *head, time_t expiry, 123 struct cache_detail *detail) 124 { 125 time_t now = seconds_since_boot(); 126 if (now <= detail->flush_time) 127 /* ensure it isn't immediately treated as expired */ 128 now = detail->flush_time + 1; 129 head->expiry_time = expiry; 130 head->last_refresh = now; 131 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 132 set_bit(CACHE_VALID, &head->flags); 133 } 134 135 static void cache_fresh_unlocked(struct cache_head *head, 136 struct cache_detail *detail) 137 { 138 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 139 cache_revisit_request(head); 140 cache_dequeue(detail, head); 141 } 142 } 143 144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 145 struct cache_head *new, struct cache_head *old, int hash) 146 { 147 /* The 'old' entry is to be replaced by 'new'. 148 * If 'old' is not VALID, we update it directly, 149 * otherwise we need to replace it 150 */ 151 struct cache_head *tmp; 152 153 if (!test_bit(CACHE_VALID, &old->flags)) { 154 write_lock(&detail->hash_lock); 155 if (!test_bit(CACHE_VALID, &old->flags)) { 156 if (test_bit(CACHE_NEGATIVE, &new->flags)) 157 set_bit(CACHE_NEGATIVE, &old->flags); 158 else 159 detail->update(old, new); 160 cache_fresh_locked(old, new->expiry_time, detail); 161 write_unlock(&detail->hash_lock); 162 cache_fresh_unlocked(old, detail); 163 return old; 164 } 165 write_unlock(&detail->hash_lock); 166 } 167 /* We need to insert a new entry */ 168 tmp = detail->alloc(); 169 if (!tmp) { 170 cache_put(old, detail); 171 return NULL; 172 } 173 cache_init(tmp, detail); 174 detail->init(tmp, old); 175 176 write_lock(&detail->hash_lock); 177 if (test_bit(CACHE_NEGATIVE, &new->flags)) 178 set_bit(CACHE_NEGATIVE, &tmp->flags); 179 else 180 detail->update(tmp, new); 181 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 182 detail->entries++; 183 cache_get(tmp); 184 cache_fresh_locked(tmp, new->expiry_time, detail); 185 cache_fresh_locked(old, 0, detail); 186 write_unlock(&detail->hash_lock); 187 cache_fresh_unlocked(tmp, detail); 188 cache_fresh_unlocked(old, detail); 189 cache_put(old, detail); 190 return tmp; 191 } 192 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 193 194 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 195 { 196 if (cd->cache_upcall) 197 return cd->cache_upcall(cd, h); 198 return sunrpc_cache_pipe_upcall(cd, h); 199 } 200 201 static inline int cache_is_valid(struct cache_head *h) 202 { 203 if (!test_bit(CACHE_VALID, &h->flags)) 204 return -EAGAIN; 205 else { 206 /* entry is valid */ 207 if (test_bit(CACHE_NEGATIVE, &h->flags)) 208 return -ENOENT; 209 else { 210 /* 211 * In combination with write barrier in 212 * sunrpc_cache_update, ensures that anyone 213 * using the cache entry after this sees the 214 * updated contents: 215 */ 216 smp_rmb(); 217 return 0; 218 } 219 } 220 } 221 222 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 223 { 224 int rv; 225 226 write_lock(&detail->hash_lock); 227 rv = cache_is_valid(h); 228 if (rv == -EAGAIN) { 229 set_bit(CACHE_NEGATIVE, &h->flags); 230 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 231 detail); 232 rv = -ENOENT; 233 } 234 write_unlock(&detail->hash_lock); 235 cache_fresh_unlocked(h, detail); 236 return rv; 237 } 238 239 /* 240 * This is the generic cache management routine for all 241 * the authentication caches. 242 * It checks the currency of a cache item and will (later) 243 * initiate an upcall to fill it if needed. 244 * 245 * 246 * Returns 0 if the cache_head can be used, or cache_puts it and returns 247 * -EAGAIN if upcall is pending and request has been queued 248 * -ETIMEDOUT if upcall failed or request could not be queue or 249 * upcall completed but item is still invalid (implying that 250 * the cache item has been replaced with a newer one). 251 * -ENOENT if cache entry was negative 252 */ 253 int cache_check(struct cache_detail *detail, 254 struct cache_head *h, struct cache_req *rqstp) 255 { 256 int rv; 257 long refresh_age, age; 258 259 /* First decide return status as best we can */ 260 rv = cache_is_valid(h); 261 262 /* now see if we want to start an upcall */ 263 refresh_age = (h->expiry_time - h->last_refresh); 264 age = seconds_since_boot() - h->last_refresh; 265 266 if (rqstp == NULL) { 267 if (rv == -EAGAIN) 268 rv = -ENOENT; 269 } else if (rv == -EAGAIN || 270 (h->expiry_time != 0 && age > refresh_age/2)) { 271 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 272 refresh_age, age); 273 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 274 switch (cache_make_upcall(detail, h)) { 275 case -EINVAL: 276 rv = try_to_negate_entry(detail, h); 277 break; 278 case -EAGAIN: 279 cache_fresh_unlocked(h, detail); 280 break; 281 } 282 } 283 } 284 285 if (rv == -EAGAIN) { 286 if (!cache_defer_req(rqstp, h)) { 287 /* 288 * Request was not deferred; handle it as best 289 * we can ourselves: 290 */ 291 rv = cache_is_valid(h); 292 if (rv == -EAGAIN) 293 rv = -ETIMEDOUT; 294 } 295 } 296 if (rv) 297 cache_put(h, detail); 298 return rv; 299 } 300 EXPORT_SYMBOL_GPL(cache_check); 301 302 /* 303 * caches need to be periodically cleaned. 304 * For this we maintain a list of cache_detail and 305 * a current pointer into that list and into the table 306 * for that entry. 307 * 308 * Each time cache_clean is called it finds the next non-empty entry 309 * in the current table and walks the list in that entry 310 * looking for entries that can be removed. 311 * 312 * An entry gets removed if: 313 * - The expiry is before current time 314 * - The last_refresh time is before the flush_time for that cache 315 * 316 * later we might drop old entries with non-NEVER expiry if that table 317 * is getting 'full' for some definition of 'full' 318 * 319 * The question of "how often to scan a table" is an interesting one 320 * and is answered in part by the use of the "nextcheck" field in the 321 * cache_detail. 322 * When a scan of a table begins, the nextcheck field is set to a time 323 * that is well into the future. 324 * While scanning, if an expiry time is found that is earlier than the 325 * current nextcheck time, nextcheck is set to that expiry time. 326 * If the flush_time is ever set to a time earlier than the nextcheck 327 * time, the nextcheck time is then set to that flush_time. 328 * 329 * A table is then only scanned if the current time is at least 330 * the nextcheck time. 331 * 332 */ 333 334 static LIST_HEAD(cache_list); 335 static DEFINE_SPINLOCK(cache_list_lock); 336 static struct cache_detail *current_detail; 337 static int current_index; 338 339 static void do_cache_clean(struct work_struct *work); 340 static struct delayed_work cache_cleaner; 341 342 void sunrpc_init_cache_detail(struct cache_detail *cd) 343 { 344 rwlock_init(&cd->hash_lock); 345 INIT_LIST_HEAD(&cd->queue); 346 spin_lock(&cache_list_lock); 347 cd->nextcheck = 0; 348 cd->entries = 0; 349 atomic_set(&cd->readers, 0); 350 cd->last_close = 0; 351 cd->last_warn = -1; 352 list_add(&cd->others, &cache_list); 353 spin_unlock(&cache_list_lock); 354 355 /* start the cleaning process */ 356 schedule_delayed_work(&cache_cleaner, 0); 357 } 358 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 359 360 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 361 { 362 cache_purge(cd); 363 spin_lock(&cache_list_lock); 364 write_lock(&cd->hash_lock); 365 if (cd->entries || atomic_read(&cd->inuse)) { 366 write_unlock(&cd->hash_lock); 367 spin_unlock(&cache_list_lock); 368 goto out; 369 } 370 if (current_detail == cd) 371 current_detail = NULL; 372 list_del_init(&cd->others); 373 write_unlock(&cd->hash_lock); 374 spin_unlock(&cache_list_lock); 375 if (list_empty(&cache_list)) { 376 /* module must be being unloaded so its safe to kill the worker */ 377 cancel_delayed_work_sync(&cache_cleaner); 378 } 379 return; 380 out: 381 printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name); 382 } 383 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 384 385 /* clean cache tries to find something to clean 386 * and cleans it. 387 * It returns 1 if it cleaned something, 388 * 0 if it didn't find anything this time 389 * -1 if it fell off the end of the list. 390 */ 391 static int cache_clean(void) 392 { 393 int rv = 0; 394 struct list_head *next; 395 396 spin_lock(&cache_list_lock); 397 398 /* find a suitable table if we don't already have one */ 399 while (current_detail == NULL || 400 current_index >= current_detail->hash_size) { 401 if (current_detail) 402 next = current_detail->others.next; 403 else 404 next = cache_list.next; 405 if (next == &cache_list) { 406 current_detail = NULL; 407 spin_unlock(&cache_list_lock); 408 return -1; 409 } 410 current_detail = list_entry(next, struct cache_detail, others); 411 if (current_detail->nextcheck > seconds_since_boot()) 412 current_index = current_detail->hash_size; 413 else { 414 current_index = 0; 415 current_detail->nextcheck = seconds_since_boot()+30*60; 416 } 417 } 418 419 /* find a non-empty bucket in the table */ 420 while (current_detail && 421 current_index < current_detail->hash_size && 422 hlist_empty(¤t_detail->hash_table[current_index])) 423 current_index++; 424 425 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 426 427 if (current_detail && current_index < current_detail->hash_size) { 428 struct cache_head *ch = NULL; 429 struct cache_detail *d; 430 struct hlist_head *head; 431 struct hlist_node *tmp; 432 433 write_lock(¤t_detail->hash_lock); 434 435 /* Ok, now to clean this strand */ 436 437 head = ¤t_detail->hash_table[current_index]; 438 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 439 if (current_detail->nextcheck > ch->expiry_time) 440 current_detail->nextcheck = ch->expiry_time+1; 441 if (!cache_is_expired(current_detail, ch)) 442 continue; 443 444 hlist_del_init(&ch->cache_list); 445 current_detail->entries--; 446 rv = 1; 447 break; 448 } 449 450 write_unlock(¤t_detail->hash_lock); 451 d = current_detail; 452 if (!ch) 453 current_index ++; 454 spin_unlock(&cache_list_lock); 455 if (ch) { 456 set_bit(CACHE_CLEANED, &ch->flags); 457 cache_fresh_unlocked(ch, d); 458 cache_put(ch, d); 459 } 460 } else 461 spin_unlock(&cache_list_lock); 462 463 return rv; 464 } 465 466 /* 467 * We want to regularly clean the cache, so we need to schedule some work ... 468 */ 469 static void do_cache_clean(struct work_struct *work) 470 { 471 int delay = 5; 472 if (cache_clean() == -1) 473 delay = round_jiffies_relative(30*HZ); 474 475 if (list_empty(&cache_list)) 476 delay = 0; 477 478 if (delay) 479 schedule_delayed_work(&cache_cleaner, delay); 480 } 481 482 483 /* 484 * Clean all caches promptly. This just calls cache_clean 485 * repeatedly until we are sure that every cache has had a chance to 486 * be fully cleaned 487 */ 488 void cache_flush(void) 489 { 490 while (cache_clean() != -1) 491 cond_resched(); 492 while (cache_clean() != -1) 493 cond_resched(); 494 } 495 EXPORT_SYMBOL_GPL(cache_flush); 496 497 void cache_purge(struct cache_detail *detail) 498 { 499 time_t now = seconds_since_boot(); 500 if (detail->flush_time >= now) 501 now = detail->flush_time + 1; 502 /* 'now' is the maximum value any 'last_refresh' can have */ 503 detail->flush_time = now; 504 detail->nextcheck = seconds_since_boot(); 505 cache_flush(); 506 } 507 EXPORT_SYMBOL_GPL(cache_purge); 508 509 510 /* 511 * Deferral and Revisiting of Requests. 512 * 513 * If a cache lookup finds a pending entry, we 514 * need to defer the request and revisit it later. 515 * All deferred requests are stored in a hash table, 516 * indexed by "struct cache_head *". 517 * As it may be wasteful to store a whole request 518 * structure, we allow the request to provide a 519 * deferred form, which must contain a 520 * 'struct cache_deferred_req' 521 * This cache_deferred_req contains a method to allow 522 * it to be revisited when cache info is available 523 */ 524 525 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 526 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 527 528 #define DFR_MAX 300 /* ??? */ 529 530 static DEFINE_SPINLOCK(cache_defer_lock); 531 static LIST_HEAD(cache_defer_list); 532 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 533 static int cache_defer_cnt; 534 535 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 536 { 537 hlist_del_init(&dreq->hash); 538 if (!list_empty(&dreq->recent)) { 539 list_del_init(&dreq->recent); 540 cache_defer_cnt--; 541 } 542 } 543 544 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 545 { 546 int hash = DFR_HASH(item); 547 548 INIT_LIST_HEAD(&dreq->recent); 549 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 550 } 551 552 static void setup_deferral(struct cache_deferred_req *dreq, 553 struct cache_head *item, 554 int count_me) 555 { 556 557 dreq->item = item; 558 559 spin_lock(&cache_defer_lock); 560 561 __hash_deferred_req(dreq, item); 562 563 if (count_me) { 564 cache_defer_cnt++; 565 list_add(&dreq->recent, &cache_defer_list); 566 } 567 568 spin_unlock(&cache_defer_lock); 569 570 } 571 572 struct thread_deferred_req { 573 struct cache_deferred_req handle; 574 struct completion completion; 575 }; 576 577 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 578 { 579 struct thread_deferred_req *dr = 580 container_of(dreq, struct thread_deferred_req, handle); 581 complete(&dr->completion); 582 } 583 584 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 585 { 586 struct thread_deferred_req sleeper; 587 struct cache_deferred_req *dreq = &sleeper.handle; 588 589 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 590 dreq->revisit = cache_restart_thread; 591 592 setup_deferral(dreq, item, 0); 593 594 if (!test_bit(CACHE_PENDING, &item->flags) || 595 wait_for_completion_interruptible_timeout( 596 &sleeper.completion, req->thread_wait) <= 0) { 597 /* The completion wasn't completed, so we need 598 * to clean up 599 */ 600 spin_lock(&cache_defer_lock); 601 if (!hlist_unhashed(&sleeper.handle.hash)) { 602 __unhash_deferred_req(&sleeper.handle); 603 spin_unlock(&cache_defer_lock); 604 } else { 605 /* cache_revisit_request already removed 606 * this from the hash table, but hasn't 607 * called ->revisit yet. It will very soon 608 * and we need to wait for it. 609 */ 610 spin_unlock(&cache_defer_lock); 611 wait_for_completion(&sleeper.completion); 612 } 613 } 614 } 615 616 static void cache_limit_defers(void) 617 { 618 /* Make sure we haven't exceed the limit of allowed deferred 619 * requests. 620 */ 621 struct cache_deferred_req *discard = NULL; 622 623 if (cache_defer_cnt <= DFR_MAX) 624 return; 625 626 spin_lock(&cache_defer_lock); 627 628 /* Consider removing either the first or the last */ 629 if (cache_defer_cnt > DFR_MAX) { 630 if (prandom_u32() & 1) 631 discard = list_entry(cache_defer_list.next, 632 struct cache_deferred_req, recent); 633 else 634 discard = list_entry(cache_defer_list.prev, 635 struct cache_deferred_req, recent); 636 __unhash_deferred_req(discard); 637 } 638 spin_unlock(&cache_defer_lock); 639 if (discard) 640 discard->revisit(discard, 1); 641 } 642 643 /* Return true if and only if a deferred request is queued. */ 644 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 645 { 646 struct cache_deferred_req *dreq; 647 648 if (req->thread_wait) { 649 cache_wait_req(req, item); 650 if (!test_bit(CACHE_PENDING, &item->flags)) 651 return false; 652 } 653 dreq = req->defer(req); 654 if (dreq == NULL) 655 return false; 656 setup_deferral(dreq, item, 1); 657 if (!test_bit(CACHE_PENDING, &item->flags)) 658 /* Bit could have been cleared before we managed to 659 * set up the deferral, so need to revisit just in case 660 */ 661 cache_revisit_request(item); 662 663 cache_limit_defers(); 664 return true; 665 } 666 667 static void cache_revisit_request(struct cache_head *item) 668 { 669 struct cache_deferred_req *dreq; 670 struct list_head pending; 671 struct hlist_node *tmp; 672 int hash = DFR_HASH(item); 673 674 INIT_LIST_HEAD(&pending); 675 spin_lock(&cache_defer_lock); 676 677 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 678 if (dreq->item == item) { 679 __unhash_deferred_req(dreq); 680 list_add(&dreq->recent, &pending); 681 } 682 683 spin_unlock(&cache_defer_lock); 684 685 while (!list_empty(&pending)) { 686 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 687 list_del_init(&dreq->recent); 688 dreq->revisit(dreq, 0); 689 } 690 } 691 692 void cache_clean_deferred(void *owner) 693 { 694 struct cache_deferred_req *dreq, *tmp; 695 struct list_head pending; 696 697 698 INIT_LIST_HEAD(&pending); 699 spin_lock(&cache_defer_lock); 700 701 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 702 if (dreq->owner == owner) { 703 __unhash_deferred_req(dreq); 704 list_add(&dreq->recent, &pending); 705 } 706 } 707 spin_unlock(&cache_defer_lock); 708 709 while (!list_empty(&pending)) { 710 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 711 list_del_init(&dreq->recent); 712 dreq->revisit(dreq, 1); 713 } 714 } 715 716 /* 717 * communicate with user-space 718 * 719 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 720 * On read, you get a full request, or block. 721 * On write, an update request is processed. 722 * Poll works if anything to read, and always allows write. 723 * 724 * Implemented by linked list of requests. Each open file has 725 * a ->private that also exists in this list. New requests are added 726 * to the end and may wakeup and preceding readers. 727 * New readers are added to the head. If, on read, an item is found with 728 * CACHE_UPCALLING clear, we free it from the list. 729 * 730 */ 731 732 static DEFINE_SPINLOCK(queue_lock); 733 static DEFINE_MUTEX(queue_io_mutex); 734 735 struct cache_queue { 736 struct list_head list; 737 int reader; /* if 0, then request */ 738 }; 739 struct cache_request { 740 struct cache_queue q; 741 struct cache_head *item; 742 char * buf; 743 int len; 744 int readers; 745 }; 746 struct cache_reader { 747 struct cache_queue q; 748 int offset; /* if non-0, we have a refcnt on next request */ 749 }; 750 751 static int cache_request(struct cache_detail *detail, 752 struct cache_request *crq) 753 { 754 char *bp = crq->buf; 755 int len = PAGE_SIZE; 756 757 detail->cache_request(detail, crq->item, &bp, &len); 758 if (len < 0) 759 return -EAGAIN; 760 return PAGE_SIZE - len; 761 } 762 763 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 764 loff_t *ppos, struct cache_detail *cd) 765 { 766 struct cache_reader *rp = filp->private_data; 767 struct cache_request *rq; 768 struct inode *inode = file_inode(filp); 769 int err; 770 771 if (count == 0) 772 return 0; 773 774 inode_lock(inode); /* protect against multiple concurrent 775 * readers on this file */ 776 again: 777 spin_lock(&queue_lock); 778 /* need to find next request */ 779 while (rp->q.list.next != &cd->queue && 780 list_entry(rp->q.list.next, struct cache_queue, list) 781 ->reader) { 782 struct list_head *next = rp->q.list.next; 783 list_move(&rp->q.list, next); 784 } 785 if (rp->q.list.next == &cd->queue) { 786 spin_unlock(&queue_lock); 787 inode_unlock(inode); 788 WARN_ON_ONCE(rp->offset); 789 return 0; 790 } 791 rq = container_of(rp->q.list.next, struct cache_request, q.list); 792 WARN_ON_ONCE(rq->q.reader); 793 if (rp->offset == 0) 794 rq->readers++; 795 spin_unlock(&queue_lock); 796 797 if (rq->len == 0) { 798 err = cache_request(cd, rq); 799 if (err < 0) 800 goto out; 801 rq->len = err; 802 } 803 804 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 805 err = -EAGAIN; 806 spin_lock(&queue_lock); 807 list_move(&rp->q.list, &rq->q.list); 808 spin_unlock(&queue_lock); 809 } else { 810 if (rp->offset + count > rq->len) 811 count = rq->len - rp->offset; 812 err = -EFAULT; 813 if (copy_to_user(buf, rq->buf + rp->offset, count)) 814 goto out; 815 rp->offset += count; 816 if (rp->offset >= rq->len) { 817 rp->offset = 0; 818 spin_lock(&queue_lock); 819 list_move(&rp->q.list, &rq->q.list); 820 spin_unlock(&queue_lock); 821 } 822 err = 0; 823 } 824 out: 825 if (rp->offset == 0) { 826 /* need to release rq */ 827 spin_lock(&queue_lock); 828 rq->readers--; 829 if (rq->readers == 0 && 830 !test_bit(CACHE_PENDING, &rq->item->flags)) { 831 list_del(&rq->q.list); 832 spin_unlock(&queue_lock); 833 cache_put(rq->item, cd); 834 kfree(rq->buf); 835 kfree(rq); 836 } else 837 spin_unlock(&queue_lock); 838 } 839 if (err == -EAGAIN) 840 goto again; 841 inode_unlock(inode); 842 return err ? err : count; 843 } 844 845 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 846 size_t count, struct cache_detail *cd) 847 { 848 ssize_t ret; 849 850 if (count == 0) 851 return -EINVAL; 852 if (copy_from_user(kaddr, buf, count)) 853 return -EFAULT; 854 kaddr[count] = '\0'; 855 ret = cd->cache_parse(cd, kaddr, count); 856 if (!ret) 857 ret = count; 858 return ret; 859 } 860 861 static ssize_t cache_slow_downcall(const char __user *buf, 862 size_t count, struct cache_detail *cd) 863 { 864 static char write_buf[8192]; /* protected by queue_io_mutex */ 865 ssize_t ret = -EINVAL; 866 867 if (count >= sizeof(write_buf)) 868 goto out; 869 mutex_lock(&queue_io_mutex); 870 ret = cache_do_downcall(write_buf, buf, count, cd); 871 mutex_unlock(&queue_io_mutex); 872 out: 873 return ret; 874 } 875 876 static ssize_t cache_downcall(struct address_space *mapping, 877 const char __user *buf, 878 size_t count, struct cache_detail *cd) 879 { 880 struct page *page; 881 char *kaddr; 882 ssize_t ret = -ENOMEM; 883 884 if (count >= PAGE_CACHE_SIZE) 885 goto out_slow; 886 887 page = find_or_create_page(mapping, 0, GFP_KERNEL); 888 if (!page) 889 goto out_slow; 890 891 kaddr = kmap(page); 892 ret = cache_do_downcall(kaddr, buf, count, cd); 893 kunmap(page); 894 unlock_page(page); 895 page_cache_release(page); 896 return ret; 897 out_slow: 898 return cache_slow_downcall(buf, count, cd); 899 } 900 901 static ssize_t cache_write(struct file *filp, const char __user *buf, 902 size_t count, loff_t *ppos, 903 struct cache_detail *cd) 904 { 905 struct address_space *mapping = filp->f_mapping; 906 struct inode *inode = file_inode(filp); 907 ssize_t ret = -EINVAL; 908 909 if (!cd->cache_parse) 910 goto out; 911 912 inode_lock(inode); 913 ret = cache_downcall(mapping, buf, count, cd); 914 inode_unlock(inode); 915 out: 916 return ret; 917 } 918 919 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 920 921 static unsigned int cache_poll(struct file *filp, poll_table *wait, 922 struct cache_detail *cd) 923 { 924 unsigned int mask; 925 struct cache_reader *rp = filp->private_data; 926 struct cache_queue *cq; 927 928 poll_wait(filp, &queue_wait, wait); 929 930 /* alway allow write */ 931 mask = POLLOUT | POLLWRNORM; 932 933 if (!rp) 934 return mask; 935 936 spin_lock(&queue_lock); 937 938 for (cq= &rp->q; &cq->list != &cd->queue; 939 cq = list_entry(cq->list.next, struct cache_queue, list)) 940 if (!cq->reader) { 941 mask |= POLLIN | POLLRDNORM; 942 break; 943 } 944 spin_unlock(&queue_lock); 945 return mask; 946 } 947 948 static int cache_ioctl(struct inode *ino, struct file *filp, 949 unsigned int cmd, unsigned long arg, 950 struct cache_detail *cd) 951 { 952 int len = 0; 953 struct cache_reader *rp = filp->private_data; 954 struct cache_queue *cq; 955 956 if (cmd != FIONREAD || !rp) 957 return -EINVAL; 958 959 spin_lock(&queue_lock); 960 961 /* only find the length remaining in current request, 962 * or the length of the next request 963 */ 964 for (cq= &rp->q; &cq->list != &cd->queue; 965 cq = list_entry(cq->list.next, struct cache_queue, list)) 966 if (!cq->reader) { 967 struct cache_request *cr = 968 container_of(cq, struct cache_request, q); 969 len = cr->len - rp->offset; 970 break; 971 } 972 spin_unlock(&queue_lock); 973 974 return put_user(len, (int __user *)arg); 975 } 976 977 static int cache_open(struct inode *inode, struct file *filp, 978 struct cache_detail *cd) 979 { 980 struct cache_reader *rp = NULL; 981 982 if (!cd || !try_module_get(cd->owner)) 983 return -EACCES; 984 nonseekable_open(inode, filp); 985 if (filp->f_mode & FMODE_READ) { 986 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 987 if (!rp) { 988 module_put(cd->owner); 989 return -ENOMEM; 990 } 991 rp->offset = 0; 992 rp->q.reader = 1; 993 atomic_inc(&cd->readers); 994 spin_lock(&queue_lock); 995 list_add(&rp->q.list, &cd->queue); 996 spin_unlock(&queue_lock); 997 } 998 filp->private_data = rp; 999 return 0; 1000 } 1001 1002 static int cache_release(struct inode *inode, struct file *filp, 1003 struct cache_detail *cd) 1004 { 1005 struct cache_reader *rp = filp->private_data; 1006 1007 if (rp) { 1008 spin_lock(&queue_lock); 1009 if (rp->offset) { 1010 struct cache_queue *cq; 1011 for (cq= &rp->q; &cq->list != &cd->queue; 1012 cq = list_entry(cq->list.next, struct cache_queue, list)) 1013 if (!cq->reader) { 1014 container_of(cq, struct cache_request, q) 1015 ->readers--; 1016 break; 1017 } 1018 rp->offset = 0; 1019 } 1020 list_del(&rp->q.list); 1021 spin_unlock(&queue_lock); 1022 1023 filp->private_data = NULL; 1024 kfree(rp); 1025 1026 cd->last_close = seconds_since_boot(); 1027 atomic_dec(&cd->readers); 1028 } 1029 module_put(cd->owner); 1030 return 0; 1031 } 1032 1033 1034 1035 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1036 { 1037 struct cache_queue *cq, *tmp; 1038 struct cache_request *cr; 1039 struct list_head dequeued; 1040 1041 INIT_LIST_HEAD(&dequeued); 1042 spin_lock(&queue_lock); 1043 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1044 if (!cq->reader) { 1045 cr = container_of(cq, struct cache_request, q); 1046 if (cr->item != ch) 1047 continue; 1048 if (test_bit(CACHE_PENDING, &ch->flags)) 1049 /* Lost a race and it is pending again */ 1050 break; 1051 if (cr->readers != 0) 1052 continue; 1053 list_move(&cr->q.list, &dequeued); 1054 } 1055 spin_unlock(&queue_lock); 1056 while (!list_empty(&dequeued)) { 1057 cr = list_entry(dequeued.next, struct cache_request, q.list); 1058 list_del(&cr->q.list); 1059 cache_put(cr->item, detail); 1060 kfree(cr->buf); 1061 kfree(cr); 1062 } 1063 } 1064 1065 /* 1066 * Support routines for text-based upcalls. 1067 * Fields are separated by spaces. 1068 * Fields are either mangled to quote space tab newline slosh with slosh 1069 * or a hexified with a leading \x 1070 * Record is terminated with newline. 1071 * 1072 */ 1073 1074 void qword_add(char **bpp, int *lp, char *str) 1075 { 1076 char *bp = *bpp; 1077 int len = *lp; 1078 int ret; 1079 1080 if (len < 0) return; 1081 1082 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1083 if (ret >= len) { 1084 bp += len; 1085 len = -1; 1086 } else { 1087 bp += ret; 1088 len -= ret; 1089 *bp++ = ' '; 1090 len--; 1091 } 1092 *bpp = bp; 1093 *lp = len; 1094 } 1095 EXPORT_SYMBOL_GPL(qword_add); 1096 1097 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1098 { 1099 char *bp = *bpp; 1100 int len = *lp; 1101 1102 if (len < 0) return; 1103 1104 if (len > 2) { 1105 *bp++ = '\\'; 1106 *bp++ = 'x'; 1107 len -= 2; 1108 while (blen && len >= 2) { 1109 bp = hex_byte_pack(bp, *buf++); 1110 len -= 2; 1111 blen--; 1112 } 1113 } 1114 if (blen || len<1) len = -1; 1115 else { 1116 *bp++ = ' '; 1117 len--; 1118 } 1119 *bpp = bp; 1120 *lp = len; 1121 } 1122 EXPORT_SYMBOL_GPL(qword_addhex); 1123 1124 static void warn_no_listener(struct cache_detail *detail) 1125 { 1126 if (detail->last_warn != detail->last_close) { 1127 detail->last_warn = detail->last_close; 1128 if (detail->warn_no_listener) 1129 detail->warn_no_listener(detail, detail->last_close != 0); 1130 } 1131 } 1132 1133 static bool cache_listeners_exist(struct cache_detail *detail) 1134 { 1135 if (atomic_read(&detail->readers)) 1136 return true; 1137 if (detail->last_close == 0) 1138 /* This cache was never opened */ 1139 return false; 1140 if (detail->last_close < seconds_since_boot() - 30) 1141 /* 1142 * We allow for the possibility that someone might 1143 * restart a userspace daemon without restarting the 1144 * server; but after 30 seconds, we give up. 1145 */ 1146 return false; 1147 return true; 1148 } 1149 1150 /* 1151 * register an upcall request to user-space and queue it up for read() by the 1152 * upcall daemon. 1153 * 1154 * Each request is at most one page long. 1155 */ 1156 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1157 { 1158 1159 char *buf; 1160 struct cache_request *crq; 1161 int ret = 0; 1162 1163 if (!detail->cache_request) 1164 return -EINVAL; 1165 1166 if (!cache_listeners_exist(detail)) { 1167 warn_no_listener(detail); 1168 return -EINVAL; 1169 } 1170 if (test_bit(CACHE_CLEANED, &h->flags)) 1171 /* Too late to make an upcall */ 1172 return -EAGAIN; 1173 1174 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1175 if (!buf) 1176 return -EAGAIN; 1177 1178 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1179 if (!crq) { 1180 kfree(buf); 1181 return -EAGAIN; 1182 } 1183 1184 crq->q.reader = 0; 1185 crq->item = cache_get(h); 1186 crq->buf = buf; 1187 crq->len = 0; 1188 crq->readers = 0; 1189 spin_lock(&queue_lock); 1190 if (test_bit(CACHE_PENDING, &h->flags)) 1191 list_add_tail(&crq->q.list, &detail->queue); 1192 else 1193 /* Lost a race, no longer PENDING, so don't enqueue */ 1194 ret = -EAGAIN; 1195 spin_unlock(&queue_lock); 1196 wake_up(&queue_wait); 1197 if (ret == -EAGAIN) { 1198 kfree(buf); 1199 kfree(crq); 1200 } 1201 return ret; 1202 } 1203 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1204 1205 /* 1206 * parse a message from user-space and pass it 1207 * to an appropriate cache 1208 * Messages are, like requests, separated into fields by 1209 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1210 * 1211 * Message is 1212 * reply cachename expiry key ... content.... 1213 * 1214 * key and content are both parsed by cache 1215 */ 1216 1217 int qword_get(char **bpp, char *dest, int bufsize) 1218 { 1219 /* return bytes copied, or -1 on error */ 1220 char *bp = *bpp; 1221 int len = 0; 1222 1223 while (*bp == ' ') bp++; 1224 1225 if (bp[0] == '\\' && bp[1] == 'x') { 1226 /* HEX STRING */ 1227 bp += 2; 1228 while (len < bufsize) { 1229 int h, l; 1230 1231 h = hex_to_bin(bp[0]); 1232 if (h < 0) 1233 break; 1234 1235 l = hex_to_bin(bp[1]); 1236 if (l < 0) 1237 break; 1238 1239 *dest++ = (h << 4) | l; 1240 bp += 2; 1241 len++; 1242 } 1243 } else { 1244 /* text with \nnn octal quoting */ 1245 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1246 if (*bp == '\\' && 1247 isodigit(bp[1]) && (bp[1] <= '3') && 1248 isodigit(bp[2]) && 1249 isodigit(bp[3])) { 1250 int byte = (*++bp -'0'); 1251 bp++; 1252 byte = (byte << 3) | (*bp++ - '0'); 1253 byte = (byte << 3) | (*bp++ - '0'); 1254 *dest++ = byte; 1255 len++; 1256 } else { 1257 *dest++ = *bp++; 1258 len++; 1259 } 1260 } 1261 } 1262 1263 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1264 return -1; 1265 while (*bp == ' ') bp++; 1266 *bpp = bp; 1267 *dest = '\0'; 1268 return len; 1269 } 1270 EXPORT_SYMBOL_GPL(qword_get); 1271 1272 1273 /* 1274 * support /proc/sunrpc/cache/$CACHENAME/content 1275 * as a seqfile. 1276 * We call ->cache_show passing NULL for the item to 1277 * get a header, then pass each real item in the cache 1278 */ 1279 1280 void *cache_seq_start(struct seq_file *m, loff_t *pos) 1281 __acquires(cd->hash_lock) 1282 { 1283 loff_t n = *pos; 1284 unsigned int hash, entry; 1285 struct cache_head *ch; 1286 struct cache_detail *cd = m->private; 1287 1288 read_lock(&cd->hash_lock); 1289 if (!n--) 1290 return SEQ_START_TOKEN; 1291 hash = n >> 32; 1292 entry = n & ((1LL<<32) - 1); 1293 1294 hlist_for_each_entry(ch, &cd->hash_table[hash], cache_list) 1295 if (!entry--) 1296 return ch; 1297 n &= ~((1LL<<32) - 1); 1298 do { 1299 hash++; 1300 n += 1LL<<32; 1301 } while(hash < cd->hash_size && 1302 hlist_empty(&cd->hash_table[hash])); 1303 if (hash >= cd->hash_size) 1304 return NULL; 1305 *pos = n+1; 1306 return hlist_entry_safe(cd->hash_table[hash].first, 1307 struct cache_head, cache_list); 1308 } 1309 EXPORT_SYMBOL_GPL(cache_seq_start); 1310 1311 void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1312 { 1313 struct cache_head *ch = p; 1314 int hash = (*pos >> 32); 1315 struct cache_detail *cd = m->private; 1316 1317 if (p == SEQ_START_TOKEN) 1318 hash = 0; 1319 else if (ch->cache_list.next == NULL) { 1320 hash++; 1321 *pos += 1LL<<32; 1322 } else { 1323 ++*pos; 1324 return hlist_entry_safe(ch->cache_list.next, 1325 struct cache_head, cache_list); 1326 } 1327 *pos &= ~((1LL<<32) - 1); 1328 while (hash < cd->hash_size && 1329 hlist_empty(&cd->hash_table[hash])) { 1330 hash++; 1331 *pos += 1LL<<32; 1332 } 1333 if (hash >= cd->hash_size) 1334 return NULL; 1335 ++*pos; 1336 return hlist_entry_safe(cd->hash_table[hash].first, 1337 struct cache_head, cache_list); 1338 } 1339 EXPORT_SYMBOL_GPL(cache_seq_next); 1340 1341 void cache_seq_stop(struct seq_file *m, void *p) 1342 __releases(cd->hash_lock) 1343 { 1344 struct cache_detail *cd = m->private; 1345 read_unlock(&cd->hash_lock); 1346 } 1347 EXPORT_SYMBOL_GPL(cache_seq_stop); 1348 1349 static int c_show(struct seq_file *m, void *p) 1350 { 1351 struct cache_head *cp = p; 1352 struct cache_detail *cd = m->private; 1353 1354 if (p == SEQ_START_TOKEN) 1355 return cd->cache_show(m, cd, NULL); 1356 1357 ifdebug(CACHE) 1358 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1359 convert_to_wallclock(cp->expiry_time), 1360 atomic_read(&cp->ref.refcount), cp->flags); 1361 cache_get(cp); 1362 if (cache_check(cd, cp, NULL)) 1363 /* cache_check does a cache_put on failure */ 1364 seq_printf(m, "# "); 1365 else { 1366 if (cache_is_expired(cd, cp)) 1367 seq_printf(m, "# "); 1368 cache_put(cp, cd); 1369 } 1370 1371 return cd->cache_show(m, cd, cp); 1372 } 1373 1374 static const struct seq_operations cache_content_op = { 1375 .start = cache_seq_start, 1376 .next = cache_seq_next, 1377 .stop = cache_seq_stop, 1378 .show = c_show, 1379 }; 1380 1381 static int content_open(struct inode *inode, struct file *file, 1382 struct cache_detail *cd) 1383 { 1384 struct seq_file *seq; 1385 int err; 1386 1387 if (!cd || !try_module_get(cd->owner)) 1388 return -EACCES; 1389 1390 err = seq_open(file, &cache_content_op); 1391 if (err) { 1392 module_put(cd->owner); 1393 return err; 1394 } 1395 1396 seq = file->private_data; 1397 seq->private = cd; 1398 return 0; 1399 } 1400 1401 static int content_release(struct inode *inode, struct file *file, 1402 struct cache_detail *cd) 1403 { 1404 int ret = seq_release(inode, file); 1405 module_put(cd->owner); 1406 return ret; 1407 } 1408 1409 static int open_flush(struct inode *inode, struct file *file, 1410 struct cache_detail *cd) 1411 { 1412 if (!cd || !try_module_get(cd->owner)) 1413 return -EACCES; 1414 return nonseekable_open(inode, file); 1415 } 1416 1417 static int release_flush(struct inode *inode, struct file *file, 1418 struct cache_detail *cd) 1419 { 1420 module_put(cd->owner); 1421 return 0; 1422 } 1423 1424 static ssize_t read_flush(struct file *file, char __user *buf, 1425 size_t count, loff_t *ppos, 1426 struct cache_detail *cd) 1427 { 1428 char tbuf[22]; 1429 unsigned long p = *ppos; 1430 size_t len; 1431 1432 snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time)); 1433 len = strlen(tbuf); 1434 if (p >= len) 1435 return 0; 1436 len -= p; 1437 if (len > count) 1438 len = count; 1439 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1440 return -EFAULT; 1441 *ppos += len; 1442 return len; 1443 } 1444 1445 static ssize_t write_flush(struct file *file, const char __user *buf, 1446 size_t count, loff_t *ppos, 1447 struct cache_detail *cd) 1448 { 1449 char tbuf[20]; 1450 char *bp, *ep; 1451 time_t then, now; 1452 1453 if (*ppos || count > sizeof(tbuf)-1) 1454 return -EINVAL; 1455 if (copy_from_user(tbuf, buf, count)) 1456 return -EFAULT; 1457 tbuf[count] = 0; 1458 simple_strtoul(tbuf, &ep, 0); 1459 if (*ep && *ep != '\n') 1460 return -EINVAL; 1461 1462 bp = tbuf; 1463 then = get_expiry(&bp); 1464 now = seconds_since_boot(); 1465 cd->nextcheck = now; 1466 /* Can only set flush_time to 1 second beyond "now", or 1467 * possibly 1 second beyond flushtime. This is because 1468 * flush_time never goes backwards so it mustn't get too far 1469 * ahead of time. 1470 */ 1471 if (then >= now) { 1472 /* Want to flush everything, so behave like cache_purge() */ 1473 if (cd->flush_time >= now) 1474 now = cd->flush_time + 1; 1475 then = now; 1476 } 1477 1478 cd->flush_time = then; 1479 cache_flush(); 1480 1481 *ppos += count; 1482 return count; 1483 } 1484 1485 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1486 size_t count, loff_t *ppos) 1487 { 1488 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1489 1490 return cache_read(filp, buf, count, ppos, cd); 1491 } 1492 1493 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1494 size_t count, loff_t *ppos) 1495 { 1496 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1497 1498 return cache_write(filp, buf, count, ppos, cd); 1499 } 1500 1501 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait) 1502 { 1503 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1504 1505 return cache_poll(filp, wait, cd); 1506 } 1507 1508 static long cache_ioctl_procfs(struct file *filp, 1509 unsigned int cmd, unsigned long arg) 1510 { 1511 struct inode *inode = file_inode(filp); 1512 struct cache_detail *cd = PDE_DATA(inode); 1513 1514 return cache_ioctl(inode, filp, cmd, arg, cd); 1515 } 1516 1517 static int cache_open_procfs(struct inode *inode, struct file *filp) 1518 { 1519 struct cache_detail *cd = PDE_DATA(inode); 1520 1521 return cache_open(inode, filp, cd); 1522 } 1523 1524 static int cache_release_procfs(struct inode *inode, struct file *filp) 1525 { 1526 struct cache_detail *cd = PDE_DATA(inode); 1527 1528 return cache_release(inode, filp, cd); 1529 } 1530 1531 static const struct file_operations cache_file_operations_procfs = { 1532 .owner = THIS_MODULE, 1533 .llseek = no_llseek, 1534 .read = cache_read_procfs, 1535 .write = cache_write_procfs, 1536 .poll = cache_poll_procfs, 1537 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1538 .open = cache_open_procfs, 1539 .release = cache_release_procfs, 1540 }; 1541 1542 static int content_open_procfs(struct inode *inode, struct file *filp) 1543 { 1544 struct cache_detail *cd = PDE_DATA(inode); 1545 1546 return content_open(inode, filp, cd); 1547 } 1548 1549 static int content_release_procfs(struct inode *inode, struct file *filp) 1550 { 1551 struct cache_detail *cd = PDE_DATA(inode); 1552 1553 return content_release(inode, filp, cd); 1554 } 1555 1556 static const struct file_operations content_file_operations_procfs = { 1557 .open = content_open_procfs, 1558 .read = seq_read, 1559 .llseek = seq_lseek, 1560 .release = content_release_procfs, 1561 }; 1562 1563 static int open_flush_procfs(struct inode *inode, struct file *filp) 1564 { 1565 struct cache_detail *cd = PDE_DATA(inode); 1566 1567 return open_flush(inode, filp, cd); 1568 } 1569 1570 static int release_flush_procfs(struct inode *inode, struct file *filp) 1571 { 1572 struct cache_detail *cd = PDE_DATA(inode); 1573 1574 return release_flush(inode, filp, cd); 1575 } 1576 1577 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1578 size_t count, loff_t *ppos) 1579 { 1580 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1581 1582 return read_flush(filp, buf, count, ppos, cd); 1583 } 1584 1585 static ssize_t write_flush_procfs(struct file *filp, 1586 const char __user *buf, 1587 size_t count, loff_t *ppos) 1588 { 1589 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1590 1591 return write_flush(filp, buf, count, ppos, cd); 1592 } 1593 1594 static const struct file_operations cache_flush_operations_procfs = { 1595 .open = open_flush_procfs, 1596 .read = read_flush_procfs, 1597 .write = write_flush_procfs, 1598 .release = release_flush_procfs, 1599 .llseek = no_llseek, 1600 }; 1601 1602 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net) 1603 { 1604 struct sunrpc_net *sn; 1605 1606 if (cd->u.procfs.proc_ent == NULL) 1607 return; 1608 if (cd->u.procfs.flush_ent) 1609 remove_proc_entry("flush", cd->u.procfs.proc_ent); 1610 if (cd->u.procfs.channel_ent) 1611 remove_proc_entry("channel", cd->u.procfs.proc_ent); 1612 if (cd->u.procfs.content_ent) 1613 remove_proc_entry("content", cd->u.procfs.proc_ent); 1614 cd->u.procfs.proc_ent = NULL; 1615 sn = net_generic(net, sunrpc_net_id); 1616 remove_proc_entry(cd->name, sn->proc_net_rpc); 1617 } 1618 1619 #ifdef CONFIG_PROC_FS 1620 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1621 { 1622 struct proc_dir_entry *p; 1623 struct sunrpc_net *sn; 1624 1625 sn = net_generic(net, sunrpc_net_id); 1626 cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc); 1627 if (cd->u.procfs.proc_ent == NULL) 1628 goto out_nomem; 1629 cd->u.procfs.channel_ent = NULL; 1630 cd->u.procfs.content_ent = NULL; 1631 1632 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 1633 cd->u.procfs.proc_ent, 1634 &cache_flush_operations_procfs, cd); 1635 cd->u.procfs.flush_ent = p; 1636 if (p == NULL) 1637 goto out_nomem; 1638 1639 if (cd->cache_request || cd->cache_parse) { 1640 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 1641 cd->u.procfs.proc_ent, 1642 &cache_file_operations_procfs, cd); 1643 cd->u.procfs.channel_ent = p; 1644 if (p == NULL) 1645 goto out_nomem; 1646 } 1647 if (cd->cache_show) { 1648 p = proc_create_data("content", S_IFREG|S_IRUSR, 1649 cd->u.procfs.proc_ent, 1650 &content_file_operations_procfs, cd); 1651 cd->u.procfs.content_ent = p; 1652 if (p == NULL) 1653 goto out_nomem; 1654 } 1655 return 0; 1656 out_nomem: 1657 remove_cache_proc_entries(cd, net); 1658 return -ENOMEM; 1659 } 1660 #else /* CONFIG_PROC_FS */ 1661 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1662 { 1663 return 0; 1664 } 1665 #endif 1666 1667 void __init cache_initialize(void) 1668 { 1669 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1670 } 1671 1672 int cache_register_net(struct cache_detail *cd, struct net *net) 1673 { 1674 int ret; 1675 1676 sunrpc_init_cache_detail(cd); 1677 ret = create_cache_proc_entries(cd, net); 1678 if (ret) 1679 sunrpc_destroy_cache_detail(cd); 1680 return ret; 1681 } 1682 EXPORT_SYMBOL_GPL(cache_register_net); 1683 1684 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1685 { 1686 remove_cache_proc_entries(cd, net); 1687 sunrpc_destroy_cache_detail(cd); 1688 } 1689 EXPORT_SYMBOL_GPL(cache_unregister_net); 1690 1691 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net) 1692 { 1693 struct cache_detail *cd; 1694 int i; 1695 1696 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1697 if (cd == NULL) 1698 return ERR_PTR(-ENOMEM); 1699 1700 cd->hash_table = kzalloc(cd->hash_size * sizeof(struct hlist_head), 1701 GFP_KERNEL); 1702 if (cd->hash_table == NULL) { 1703 kfree(cd); 1704 return ERR_PTR(-ENOMEM); 1705 } 1706 1707 for (i = 0; i < cd->hash_size; i++) 1708 INIT_HLIST_HEAD(&cd->hash_table[i]); 1709 cd->net = net; 1710 return cd; 1711 } 1712 EXPORT_SYMBOL_GPL(cache_create_net); 1713 1714 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1715 { 1716 kfree(cd->hash_table); 1717 kfree(cd); 1718 } 1719 EXPORT_SYMBOL_GPL(cache_destroy_net); 1720 1721 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1722 size_t count, loff_t *ppos) 1723 { 1724 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1725 1726 return cache_read(filp, buf, count, ppos, cd); 1727 } 1728 1729 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1730 size_t count, loff_t *ppos) 1731 { 1732 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1733 1734 return cache_write(filp, buf, count, ppos, cd); 1735 } 1736 1737 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait) 1738 { 1739 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1740 1741 return cache_poll(filp, wait, cd); 1742 } 1743 1744 static long cache_ioctl_pipefs(struct file *filp, 1745 unsigned int cmd, unsigned long arg) 1746 { 1747 struct inode *inode = file_inode(filp); 1748 struct cache_detail *cd = RPC_I(inode)->private; 1749 1750 return cache_ioctl(inode, filp, cmd, arg, cd); 1751 } 1752 1753 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1754 { 1755 struct cache_detail *cd = RPC_I(inode)->private; 1756 1757 return cache_open(inode, filp, cd); 1758 } 1759 1760 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1761 { 1762 struct cache_detail *cd = RPC_I(inode)->private; 1763 1764 return cache_release(inode, filp, cd); 1765 } 1766 1767 const struct file_operations cache_file_operations_pipefs = { 1768 .owner = THIS_MODULE, 1769 .llseek = no_llseek, 1770 .read = cache_read_pipefs, 1771 .write = cache_write_pipefs, 1772 .poll = cache_poll_pipefs, 1773 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1774 .open = cache_open_pipefs, 1775 .release = cache_release_pipefs, 1776 }; 1777 1778 static int content_open_pipefs(struct inode *inode, struct file *filp) 1779 { 1780 struct cache_detail *cd = RPC_I(inode)->private; 1781 1782 return content_open(inode, filp, cd); 1783 } 1784 1785 static int content_release_pipefs(struct inode *inode, struct file *filp) 1786 { 1787 struct cache_detail *cd = RPC_I(inode)->private; 1788 1789 return content_release(inode, filp, cd); 1790 } 1791 1792 const struct file_operations content_file_operations_pipefs = { 1793 .open = content_open_pipefs, 1794 .read = seq_read, 1795 .llseek = seq_lseek, 1796 .release = content_release_pipefs, 1797 }; 1798 1799 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1800 { 1801 struct cache_detail *cd = RPC_I(inode)->private; 1802 1803 return open_flush(inode, filp, cd); 1804 } 1805 1806 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1807 { 1808 struct cache_detail *cd = RPC_I(inode)->private; 1809 1810 return release_flush(inode, filp, cd); 1811 } 1812 1813 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1814 size_t count, loff_t *ppos) 1815 { 1816 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1817 1818 return read_flush(filp, buf, count, ppos, cd); 1819 } 1820 1821 static ssize_t write_flush_pipefs(struct file *filp, 1822 const char __user *buf, 1823 size_t count, loff_t *ppos) 1824 { 1825 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1826 1827 return write_flush(filp, buf, count, ppos, cd); 1828 } 1829 1830 const struct file_operations cache_flush_operations_pipefs = { 1831 .open = open_flush_pipefs, 1832 .read = read_flush_pipefs, 1833 .write = write_flush_pipefs, 1834 .release = release_flush_pipefs, 1835 .llseek = no_llseek, 1836 }; 1837 1838 int sunrpc_cache_register_pipefs(struct dentry *parent, 1839 const char *name, umode_t umode, 1840 struct cache_detail *cd) 1841 { 1842 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1843 if (IS_ERR(dir)) 1844 return PTR_ERR(dir); 1845 cd->u.pipefs.dir = dir; 1846 return 0; 1847 } 1848 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1849 1850 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1851 { 1852 rpc_remove_cache_dir(cd->u.pipefs.dir); 1853 cd->u.pipefs.dir = NULL; 1854 } 1855 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1856 1857