1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sunrpc/cache.c 4 * 5 * Generic code for various authentication-related caches 6 * used by sunrpc clients and servers. 7 * 8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 9 */ 10 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/signal.h> 16 #include <linux/sched.h> 17 #include <linux/kmod.h> 18 #include <linux/list.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/string_helpers.h> 22 #include <linux/uaccess.h> 23 #include <linux/poll.h> 24 #include <linux/seq_file.h> 25 #include <linux/proc_fs.h> 26 #include <linux/net.h> 27 #include <linux/workqueue.h> 28 #include <linux/mutex.h> 29 #include <linux/pagemap.h> 30 #include <asm/ioctls.h> 31 #include <linux/sunrpc/types.h> 32 #include <linux/sunrpc/cache.h> 33 #include <linux/sunrpc/stats.h> 34 #include <linux/sunrpc/rpc_pipe_fs.h> 35 #include <trace/events/sunrpc.h> 36 #include "netns.h" 37 38 #define RPCDBG_FACILITY RPCDBG_CACHE 39 40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 41 static void cache_revisit_request(struct cache_head *item); 42 43 static void cache_init(struct cache_head *h, struct cache_detail *detail) 44 { 45 time64_t now = seconds_since_boot(); 46 INIT_HLIST_NODE(&h->cache_list); 47 h->flags = 0; 48 kref_init(&h->ref); 49 h->expiry_time = now + CACHE_NEW_EXPIRY; 50 if (now <= detail->flush_time) 51 /* ensure it isn't already expired */ 52 now = detail->flush_time + 1; 53 h->last_refresh = now; 54 } 55 56 static void cache_fresh_unlocked(struct cache_head *head, 57 struct cache_detail *detail); 58 59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail, 60 struct cache_head *key, 61 int hash) 62 { 63 struct hlist_head *head = &detail->hash_table[hash]; 64 struct cache_head *tmp; 65 66 rcu_read_lock(); 67 hlist_for_each_entry_rcu(tmp, head, cache_list) { 68 if (!detail->match(tmp, key)) 69 continue; 70 if (test_bit(CACHE_VALID, &tmp->flags) && 71 cache_is_expired(detail, tmp)) 72 continue; 73 tmp = cache_get_rcu(tmp); 74 rcu_read_unlock(); 75 return tmp; 76 } 77 rcu_read_unlock(); 78 return NULL; 79 } 80 81 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch, 82 struct cache_detail *cd) 83 { 84 /* Must be called under cd->hash_lock */ 85 hlist_del_init_rcu(&ch->cache_list); 86 set_bit(CACHE_CLEANED, &ch->flags); 87 cd->entries --; 88 } 89 90 static void sunrpc_end_cache_remove_entry(struct cache_head *ch, 91 struct cache_detail *cd) 92 { 93 cache_fresh_unlocked(ch, cd); 94 cache_put(ch, cd); 95 } 96 97 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail, 98 struct cache_head *key, 99 int hash) 100 { 101 struct cache_head *new, *tmp, *freeme = NULL; 102 struct hlist_head *head = &detail->hash_table[hash]; 103 104 new = detail->alloc(); 105 if (!new) 106 return NULL; 107 /* must fully initialise 'new', else 108 * we might get lose if we need to 109 * cache_put it soon. 110 */ 111 cache_init(new, detail); 112 detail->init(new, key); 113 114 spin_lock(&detail->hash_lock); 115 116 /* check if entry appeared while we slept */ 117 hlist_for_each_entry_rcu(tmp, head, cache_list, 118 lockdep_is_held(&detail->hash_lock)) { 119 if (!detail->match(tmp, key)) 120 continue; 121 if (test_bit(CACHE_VALID, &tmp->flags) && 122 cache_is_expired(detail, tmp)) { 123 sunrpc_begin_cache_remove_entry(tmp, detail); 124 trace_cache_entry_expired(detail, tmp); 125 freeme = tmp; 126 break; 127 } 128 cache_get(tmp); 129 spin_unlock(&detail->hash_lock); 130 cache_put(new, detail); 131 return tmp; 132 } 133 134 hlist_add_head_rcu(&new->cache_list, head); 135 detail->entries++; 136 cache_get(new); 137 spin_unlock(&detail->hash_lock); 138 139 if (freeme) 140 sunrpc_end_cache_remove_entry(freeme, detail); 141 return new; 142 } 143 144 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail, 145 struct cache_head *key, int hash) 146 { 147 struct cache_head *ret; 148 149 ret = sunrpc_cache_find_rcu(detail, key, hash); 150 if (ret) 151 return ret; 152 /* Didn't find anything, insert an empty entry */ 153 return sunrpc_cache_add_entry(detail, key, hash); 154 } 155 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu); 156 157 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 158 159 static void cache_fresh_locked(struct cache_head *head, time64_t expiry, 160 struct cache_detail *detail) 161 { 162 time64_t now = seconds_since_boot(); 163 if (now <= detail->flush_time) 164 /* ensure it isn't immediately treated as expired */ 165 now = detail->flush_time + 1; 166 head->expiry_time = expiry; 167 head->last_refresh = now; 168 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 169 set_bit(CACHE_VALID, &head->flags); 170 } 171 172 static void cache_fresh_unlocked(struct cache_head *head, 173 struct cache_detail *detail) 174 { 175 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 176 cache_revisit_request(head); 177 cache_dequeue(detail, head); 178 } 179 } 180 181 static void cache_make_negative(struct cache_detail *detail, 182 struct cache_head *h) 183 { 184 set_bit(CACHE_NEGATIVE, &h->flags); 185 trace_cache_entry_make_negative(detail, h); 186 } 187 188 static void cache_entry_update(struct cache_detail *detail, 189 struct cache_head *h, 190 struct cache_head *new) 191 { 192 if (!test_bit(CACHE_NEGATIVE, &new->flags)) { 193 detail->update(h, new); 194 trace_cache_entry_update(detail, h); 195 } else { 196 cache_make_negative(detail, h); 197 } 198 } 199 200 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 201 struct cache_head *new, struct cache_head *old, int hash) 202 { 203 /* The 'old' entry is to be replaced by 'new'. 204 * If 'old' is not VALID, we update it directly, 205 * otherwise we need to replace it 206 */ 207 struct cache_head *tmp; 208 209 if (!test_bit(CACHE_VALID, &old->flags)) { 210 spin_lock(&detail->hash_lock); 211 if (!test_bit(CACHE_VALID, &old->flags)) { 212 cache_entry_update(detail, old, new); 213 cache_fresh_locked(old, new->expiry_time, detail); 214 spin_unlock(&detail->hash_lock); 215 cache_fresh_unlocked(old, detail); 216 return old; 217 } 218 spin_unlock(&detail->hash_lock); 219 } 220 /* We need to insert a new entry */ 221 tmp = detail->alloc(); 222 if (!tmp) { 223 cache_put(old, detail); 224 return NULL; 225 } 226 cache_init(tmp, detail); 227 detail->init(tmp, old); 228 229 spin_lock(&detail->hash_lock); 230 cache_entry_update(detail, tmp, new); 231 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 232 detail->entries++; 233 cache_get(tmp); 234 cache_fresh_locked(tmp, new->expiry_time, detail); 235 cache_fresh_locked(old, 0, detail); 236 spin_unlock(&detail->hash_lock); 237 cache_fresh_unlocked(tmp, detail); 238 cache_fresh_unlocked(old, detail); 239 cache_put(old, detail); 240 return tmp; 241 } 242 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 243 244 static inline int cache_is_valid(struct cache_head *h) 245 { 246 if (!test_bit(CACHE_VALID, &h->flags)) 247 return -EAGAIN; 248 else { 249 /* entry is valid */ 250 if (test_bit(CACHE_NEGATIVE, &h->flags)) 251 return -ENOENT; 252 else { 253 /* 254 * In combination with write barrier in 255 * sunrpc_cache_update, ensures that anyone 256 * using the cache entry after this sees the 257 * updated contents: 258 */ 259 smp_rmb(); 260 return 0; 261 } 262 } 263 } 264 265 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 266 { 267 int rv; 268 269 spin_lock(&detail->hash_lock); 270 rv = cache_is_valid(h); 271 if (rv == -EAGAIN) { 272 cache_make_negative(detail, h); 273 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 274 detail); 275 rv = -ENOENT; 276 } 277 spin_unlock(&detail->hash_lock); 278 cache_fresh_unlocked(h, detail); 279 return rv; 280 } 281 282 /* 283 * This is the generic cache management routine for all 284 * the authentication caches. 285 * It checks the currency of a cache item and will (later) 286 * initiate an upcall to fill it if needed. 287 * 288 * 289 * Returns 0 if the cache_head can be used, or cache_puts it and returns 290 * -EAGAIN if upcall is pending and request has been queued 291 * -ETIMEDOUT if upcall failed or request could not be queue or 292 * upcall completed but item is still invalid (implying that 293 * the cache item has been replaced with a newer one). 294 * -ENOENT if cache entry was negative 295 */ 296 int cache_check(struct cache_detail *detail, 297 struct cache_head *h, struct cache_req *rqstp) 298 { 299 int rv; 300 time64_t refresh_age, age; 301 302 /* First decide return status as best we can */ 303 rv = cache_is_valid(h); 304 305 /* now see if we want to start an upcall */ 306 refresh_age = (h->expiry_time - h->last_refresh); 307 age = seconds_since_boot() - h->last_refresh; 308 309 if (rqstp == NULL) { 310 if (rv == -EAGAIN) 311 rv = -ENOENT; 312 } else if (rv == -EAGAIN || 313 (h->expiry_time != 0 && age > refresh_age/2)) { 314 dprintk("RPC: Want update, refage=%lld, age=%lld\n", 315 refresh_age, age); 316 switch (detail->cache_upcall(detail, h)) { 317 case -EINVAL: 318 rv = try_to_negate_entry(detail, h); 319 break; 320 case -EAGAIN: 321 cache_fresh_unlocked(h, detail); 322 break; 323 } 324 } 325 326 if (rv == -EAGAIN) { 327 if (!cache_defer_req(rqstp, h)) { 328 /* 329 * Request was not deferred; handle it as best 330 * we can ourselves: 331 */ 332 rv = cache_is_valid(h); 333 if (rv == -EAGAIN) 334 rv = -ETIMEDOUT; 335 } 336 } 337 if (rv) 338 cache_put(h, detail); 339 return rv; 340 } 341 EXPORT_SYMBOL_GPL(cache_check); 342 343 /* 344 * caches need to be periodically cleaned. 345 * For this we maintain a list of cache_detail and 346 * a current pointer into that list and into the table 347 * for that entry. 348 * 349 * Each time cache_clean is called it finds the next non-empty entry 350 * in the current table and walks the list in that entry 351 * looking for entries that can be removed. 352 * 353 * An entry gets removed if: 354 * - The expiry is before current time 355 * - The last_refresh time is before the flush_time for that cache 356 * 357 * later we might drop old entries with non-NEVER expiry if that table 358 * is getting 'full' for some definition of 'full' 359 * 360 * The question of "how often to scan a table" is an interesting one 361 * and is answered in part by the use of the "nextcheck" field in the 362 * cache_detail. 363 * When a scan of a table begins, the nextcheck field is set to a time 364 * that is well into the future. 365 * While scanning, if an expiry time is found that is earlier than the 366 * current nextcheck time, nextcheck is set to that expiry time. 367 * If the flush_time is ever set to a time earlier than the nextcheck 368 * time, the nextcheck time is then set to that flush_time. 369 * 370 * A table is then only scanned if the current time is at least 371 * the nextcheck time. 372 * 373 */ 374 375 static LIST_HEAD(cache_list); 376 static DEFINE_SPINLOCK(cache_list_lock); 377 static struct cache_detail *current_detail; 378 static int current_index; 379 380 static void do_cache_clean(struct work_struct *work); 381 static struct delayed_work cache_cleaner; 382 383 void sunrpc_init_cache_detail(struct cache_detail *cd) 384 { 385 spin_lock_init(&cd->hash_lock); 386 INIT_LIST_HEAD(&cd->queue); 387 spin_lock(&cache_list_lock); 388 cd->nextcheck = 0; 389 cd->entries = 0; 390 atomic_set(&cd->writers, 0); 391 cd->last_close = 0; 392 cd->last_warn = -1; 393 list_add(&cd->others, &cache_list); 394 spin_unlock(&cache_list_lock); 395 396 /* start the cleaning process */ 397 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); 398 } 399 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 400 401 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 402 { 403 cache_purge(cd); 404 spin_lock(&cache_list_lock); 405 spin_lock(&cd->hash_lock); 406 if (current_detail == cd) 407 current_detail = NULL; 408 list_del_init(&cd->others); 409 spin_unlock(&cd->hash_lock); 410 spin_unlock(&cache_list_lock); 411 if (list_empty(&cache_list)) { 412 /* module must be being unloaded so its safe to kill the worker */ 413 cancel_delayed_work_sync(&cache_cleaner); 414 } 415 } 416 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 417 418 /* clean cache tries to find something to clean 419 * and cleans it. 420 * It returns 1 if it cleaned something, 421 * 0 if it didn't find anything this time 422 * -1 if it fell off the end of the list. 423 */ 424 static int cache_clean(void) 425 { 426 int rv = 0; 427 struct list_head *next; 428 429 spin_lock(&cache_list_lock); 430 431 /* find a suitable table if we don't already have one */ 432 while (current_detail == NULL || 433 current_index >= current_detail->hash_size) { 434 if (current_detail) 435 next = current_detail->others.next; 436 else 437 next = cache_list.next; 438 if (next == &cache_list) { 439 current_detail = NULL; 440 spin_unlock(&cache_list_lock); 441 return -1; 442 } 443 current_detail = list_entry(next, struct cache_detail, others); 444 if (current_detail->nextcheck > seconds_since_boot()) 445 current_index = current_detail->hash_size; 446 else { 447 current_index = 0; 448 current_detail->nextcheck = seconds_since_boot()+30*60; 449 } 450 } 451 452 /* find a non-empty bucket in the table */ 453 while (current_detail && 454 current_index < current_detail->hash_size && 455 hlist_empty(¤t_detail->hash_table[current_index])) 456 current_index++; 457 458 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 459 460 if (current_detail && current_index < current_detail->hash_size) { 461 struct cache_head *ch = NULL; 462 struct cache_detail *d; 463 struct hlist_head *head; 464 struct hlist_node *tmp; 465 466 spin_lock(¤t_detail->hash_lock); 467 468 /* Ok, now to clean this strand */ 469 470 head = ¤t_detail->hash_table[current_index]; 471 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 472 if (current_detail->nextcheck > ch->expiry_time) 473 current_detail->nextcheck = ch->expiry_time+1; 474 if (!cache_is_expired(current_detail, ch)) 475 continue; 476 477 sunrpc_begin_cache_remove_entry(ch, current_detail); 478 trace_cache_entry_expired(current_detail, ch); 479 rv = 1; 480 break; 481 } 482 483 spin_unlock(¤t_detail->hash_lock); 484 d = current_detail; 485 if (!ch) 486 current_index ++; 487 spin_unlock(&cache_list_lock); 488 if (ch) 489 sunrpc_end_cache_remove_entry(ch, d); 490 } else 491 spin_unlock(&cache_list_lock); 492 493 return rv; 494 } 495 496 /* 497 * We want to regularly clean the cache, so we need to schedule some work ... 498 */ 499 static void do_cache_clean(struct work_struct *work) 500 { 501 int delay; 502 503 if (list_empty(&cache_list)) 504 return; 505 506 if (cache_clean() == -1) 507 delay = round_jiffies_relative(30*HZ); 508 else 509 delay = 5; 510 511 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay); 512 } 513 514 515 /* 516 * Clean all caches promptly. This just calls cache_clean 517 * repeatedly until we are sure that every cache has had a chance to 518 * be fully cleaned 519 */ 520 void cache_flush(void) 521 { 522 while (cache_clean() != -1) 523 cond_resched(); 524 while (cache_clean() != -1) 525 cond_resched(); 526 } 527 EXPORT_SYMBOL_GPL(cache_flush); 528 529 void cache_purge(struct cache_detail *detail) 530 { 531 struct cache_head *ch = NULL; 532 struct hlist_head *head = NULL; 533 int i = 0; 534 535 spin_lock(&detail->hash_lock); 536 if (!detail->entries) { 537 spin_unlock(&detail->hash_lock); 538 return; 539 } 540 541 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name); 542 for (i = 0; i < detail->hash_size; i++) { 543 head = &detail->hash_table[i]; 544 while (!hlist_empty(head)) { 545 ch = hlist_entry(head->first, struct cache_head, 546 cache_list); 547 sunrpc_begin_cache_remove_entry(ch, detail); 548 spin_unlock(&detail->hash_lock); 549 sunrpc_end_cache_remove_entry(ch, detail); 550 spin_lock(&detail->hash_lock); 551 } 552 } 553 spin_unlock(&detail->hash_lock); 554 } 555 EXPORT_SYMBOL_GPL(cache_purge); 556 557 558 /* 559 * Deferral and Revisiting of Requests. 560 * 561 * If a cache lookup finds a pending entry, we 562 * need to defer the request and revisit it later. 563 * All deferred requests are stored in a hash table, 564 * indexed by "struct cache_head *". 565 * As it may be wasteful to store a whole request 566 * structure, we allow the request to provide a 567 * deferred form, which must contain a 568 * 'struct cache_deferred_req' 569 * This cache_deferred_req contains a method to allow 570 * it to be revisited when cache info is available 571 */ 572 573 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 574 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 575 576 #define DFR_MAX 300 /* ??? */ 577 578 static DEFINE_SPINLOCK(cache_defer_lock); 579 static LIST_HEAD(cache_defer_list); 580 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 581 static int cache_defer_cnt; 582 583 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 584 { 585 hlist_del_init(&dreq->hash); 586 if (!list_empty(&dreq->recent)) { 587 list_del_init(&dreq->recent); 588 cache_defer_cnt--; 589 } 590 } 591 592 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 593 { 594 int hash = DFR_HASH(item); 595 596 INIT_LIST_HEAD(&dreq->recent); 597 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 598 } 599 600 static void setup_deferral(struct cache_deferred_req *dreq, 601 struct cache_head *item, 602 int count_me) 603 { 604 605 dreq->item = item; 606 607 spin_lock(&cache_defer_lock); 608 609 __hash_deferred_req(dreq, item); 610 611 if (count_me) { 612 cache_defer_cnt++; 613 list_add(&dreq->recent, &cache_defer_list); 614 } 615 616 spin_unlock(&cache_defer_lock); 617 618 } 619 620 struct thread_deferred_req { 621 struct cache_deferred_req handle; 622 struct completion completion; 623 }; 624 625 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 626 { 627 struct thread_deferred_req *dr = 628 container_of(dreq, struct thread_deferred_req, handle); 629 complete(&dr->completion); 630 } 631 632 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 633 { 634 struct thread_deferred_req sleeper; 635 struct cache_deferred_req *dreq = &sleeper.handle; 636 637 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 638 dreq->revisit = cache_restart_thread; 639 640 setup_deferral(dreq, item, 0); 641 642 if (!test_bit(CACHE_PENDING, &item->flags) || 643 wait_for_completion_interruptible_timeout( 644 &sleeper.completion, req->thread_wait) <= 0) { 645 /* The completion wasn't completed, so we need 646 * to clean up 647 */ 648 spin_lock(&cache_defer_lock); 649 if (!hlist_unhashed(&sleeper.handle.hash)) { 650 __unhash_deferred_req(&sleeper.handle); 651 spin_unlock(&cache_defer_lock); 652 } else { 653 /* cache_revisit_request already removed 654 * this from the hash table, but hasn't 655 * called ->revisit yet. It will very soon 656 * and we need to wait for it. 657 */ 658 spin_unlock(&cache_defer_lock); 659 wait_for_completion(&sleeper.completion); 660 } 661 } 662 } 663 664 static void cache_limit_defers(void) 665 { 666 /* Make sure we haven't exceed the limit of allowed deferred 667 * requests. 668 */ 669 struct cache_deferred_req *discard = NULL; 670 671 if (cache_defer_cnt <= DFR_MAX) 672 return; 673 674 spin_lock(&cache_defer_lock); 675 676 /* Consider removing either the first or the last */ 677 if (cache_defer_cnt > DFR_MAX) { 678 if (prandom_u32() & 1) 679 discard = list_entry(cache_defer_list.next, 680 struct cache_deferred_req, recent); 681 else 682 discard = list_entry(cache_defer_list.prev, 683 struct cache_deferred_req, recent); 684 __unhash_deferred_req(discard); 685 } 686 spin_unlock(&cache_defer_lock); 687 if (discard) 688 discard->revisit(discard, 1); 689 } 690 691 /* Return true if and only if a deferred request is queued. */ 692 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 693 { 694 struct cache_deferred_req *dreq; 695 696 if (req->thread_wait) { 697 cache_wait_req(req, item); 698 if (!test_bit(CACHE_PENDING, &item->flags)) 699 return false; 700 } 701 dreq = req->defer(req); 702 if (dreq == NULL) 703 return false; 704 setup_deferral(dreq, item, 1); 705 if (!test_bit(CACHE_PENDING, &item->flags)) 706 /* Bit could have been cleared before we managed to 707 * set up the deferral, so need to revisit just in case 708 */ 709 cache_revisit_request(item); 710 711 cache_limit_defers(); 712 return true; 713 } 714 715 static void cache_revisit_request(struct cache_head *item) 716 { 717 struct cache_deferred_req *dreq; 718 struct list_head pending; 719 struct hlist_node *tmp; 720 int hash = DFR_HASH(item); 721 722 INIT_LIST_HEAD(&pending); 723 spin_lock(&cache_defer_lock); 724 725 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 726 if (dreq->item == item) { 727 __unhash_deferred_req(dreq); 728 list_add(&dreq->recent, &pending); 729 } 730 731 spin_unlock(&cache_defer_lock); 732 733 while (!list_empty(&pending)) { 734 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 735 list_del_init(&dreq->recent); 736 dreq->revisit(dreq, 0); 737 } 738 } 739 740 void cache_clean_deferred(void *owner) 741 { 742 struct cache_deferred_req *dreq, *tmp; 743 struct list_head pending; 744 745 746 INIT_LIST_HEAD(&pending); 747 spin_lock(&cache_defer_lock); 748 749 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 750 if (dreq->owner == owner) { 751 __unhash_deferred_req(dreq); 752 list_add(&dreq->recent, &pending); 753 } 754 } 755 spin_unlock(&cache_defer_lock); 756 757 while (!list_empty(&pending)) { 758 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 759 list_del_init(&dreq->recent); 760 dreq->revisit(dreq, 1); 761 } 762 } 763 764 /* 765 * communicate with user-space 766 * 767 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel. 768 * On read, you get a full request, or block. 769 * On write, an update request is processed. 770 * Poll works if anything to read, and always allows write. 771 * 772 * Implemented by linked list of requests. Each open file has 773 * a ->private that also exists in this list. New requests are added 774 * to the end and may wakeup and preceding readers. 775 * New readers are added to the head. If, on read, an item is found with 776 * CACHE_UPCALLING clear, we free it from the list. 777 * 778 */ 779 780 static DEFINE_SPINLOCK(queue_lock); 781 782 struct cache_queue { 783 struct list_head list; 784 int reader; /* if 0, then request */ 785 }; 786 struct cache_request { 787 struct cache_queue q; 788 struct cache_head *item; 789 char * buf; 790 int len; 791 int readers; 792 }; 793 struct cache_reader { 794 struct cache_queue q; 795 int offset; /* if non-0, we have a refcnt on next request */ 796 }; 797 798 static int cache_request(struct cache_detail *detail, 799 struct cache_request *crq) 800 { 801 char *bp = crq->buf; 802 int len = PAGE_SIZE; 803 804 detail->cache_request(detail, crq->item, &bp, &len); 805 if (len < 0) 806 return -E2BIG; 807 return PAGE_SIZE - len; 808 } 809 810 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 811 loff_t *ppos, struct cache_detail *cd) 812 { 813 struct cache_reader *rp = filp->private_data; 814 struct cache_request *rq; 815 struct inode *inode = file_inode(filp); 816 int err; 817 818 if (count == 0) 819 return 0; 820 821 inode_lock(inode); /* protect against multiple concurrent 822 * readers on this file */ 823 again: 824 spin_lock(&queue_lock); 825 /* need to find next request */ 826 while (rp->q.list.next != &cd->queue && 827 list_entry(rp->q.list.next, struct cache_queue, list) 828 ->reader) { 829 struct list_head *next = rp->q.list.next; 830 list_move(&rp->q.list, next); 831 } 832 if (rp->q.list.next == &cd->queue) { 833 spin_unlock(&queue_lock); 834 inode_unlock(inode); 835 WARN_ON_ONCE(rp->offset); 836 return 0; 837 } 838 rq = container_of(rp->q.list.next, struct cache_request, q.list); 839 WARN_ON_ONCE(rq->q.reader); 840 if (rp->offset == 0) 841 rq->readers++; 842 spin_unlock(&queue_lock); 843 844 if (rq->len == 0) { 845 err = cache_request(cd, rq); 846 if (err < 0) 847 goto out; 848 rq->len = err; 849 } 850 851 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 852 err = -EAGAIN; 853 spin_lock(&queue_lock); 854 list_move(&rp->q.list, &rq->q.list); 855 spin_unlock(&queue_lock); 856 } else { 857 if (rp->offset + count > rq->len) 858 count = rq->len - rp->offset; 859 err = -EFAULT; 860 if (copy_to_user(buf, rq->buf + rp->offset, count)) 861 goto out; 862 rp->offset += count; 863 if (rp->offset >= rq->len) { 864 rp->offset = 0; 865 spin_lock(&queue_lock); 866 list_move(&rp->q.list, &rq->q.list); 867 spin_unlock(&queue_lock); 868 } 869 err = 0; 870 } 871 out: 872 if (rp->offset == 0) { 873 /* need to release rq */ 874 spin_lock(&queue_lock); 875 rq->readers--; 876 if (rq->readers == 0 && 877 !test_bit(CACHE_PENDING, &rq->item->flags)) { 878 list_del(&rq->q.list); 879 spin_unlock(&queue_lock); 880 cache_put(rq->item, cd); 881 kfree(rq->buf); 882 kfree(rq); 883 } else 884 spin_unlock(&queue_lock); 885 } 886 if (err == -EAGAIN) 887 goto again; 888 inode_unlock(inode); 889 return err ? err : count; 890 } 891 892 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 893 size_t count, struct cache_detail *cd) 894 { 895 ssize_t ret; 896 897 if (count == 0) 898 return -EINVAL; 899 if (copy_from_user(kaddr, buf, count)) 900 return -EFAULT; 901 kaddr[count] = '\0'; 902 ret = cd->cache_parse(cd, kaddr, count); 903 if (!ret) 904 ret = count; 905 return ret; 906 } 907 908 static ssize_t cache_downcall(struct address_space *mapping, 909 const char __user *buf, 910 size_t count, struct cache_detail *cd) 911 { 912 char *write_buf; 913 ssize_t ret = -ENOMEM; 914 915 if (count >= 32768) { /* 32k is max userland buffer, lets check anyway */ 916 ret = -EINVAL; 917 goto out; 918 } 919 920 write_buf = kvmalloc(count + 1, GFP_KERNEL); 921 if (!write_buf) 922 goto out; 923 924 ret = cache_do_downcall(write_buf, buf, count, cd); 925 kvfree(write_buf); 926 out: 927 return ret; 928 } 929 930 static ssize_t cache_write(struct file *filp, const char __user *buf, 931 size_t count, loff_t *ppos, 932 struct cache_detail *cd) 933 { 934 struct address_space *mapping = filp->f_mapping; 935 struct inode *inode = file_inode(filp); 936 ssize_t ret = -EINVAL; 937 938 if (!cd->cache_parse) 939 goto out; 940 941 inode_lock(inode); 942 ret = cache_downcall(mapping, buf, count, cd); 943 inode_unlock(inode); 944 out: 945 return ret; 946 } 947 948 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 949 950 static __poll_t cache_poll(struct file *filp, poll_table *wait, 951 struct cache_detail *cd) 952 { 953 __poll_t mask; 954 struct cache_reader *rp = filp->private_data; 955 struct cache_queue *cq; 956 957 poll_wait(filp, &queue_wait, wait); 958 959 /* alway allow write */ 960 mask = EPOLLOUT | EPOLLWRNORM; 961 962 if (!rp) 963 return mask; 964 965 spin_lock(&queue_lock); 966 967 for (cq= &rp->q; &cq->list != &cd->queue; 968 cq = list_entry(cq->list.next, struct cache_queue, list)) 969 if (!cq->reader) { 970 mask |= EPOLLIN | EPOLLRDNORM; 971 break; 972 } 973 spin_unlock(&queue_lock); 974 return mask; 975 } 976 977 static int cache_ioctl(struct inode *ino, struct file *filp, 978 unsigned int cmd, unsigned long arg, 979 struct cache_detail *cd) 980 { 981 int len = 0; 982 struct cache_reader *rp = filp->private_data; 983 struct cache_queue *cq; 984 985 if (cmd != FIONREAD || !rp) 986 return -EINVAL; 987 988 spin_lock(&queue_lock); 989 990 /* only find the length remaining in current request, 991 * or the length of the next request 992 */ 993 for (cq= &rp->q; &cq->list != &cd->queue; 994 cq = list_entry(cq->list.next, struct cache_queue, list)) 995 if (!cq->reader) { 996 struct cache_request *cr = 997 container_of(cq, struct cache_request, q); 998 len = cr->len - rp->offset; 999 break; 1000 } 1001 spin_unlock(&queue_lock); 1002 1003 return put_user(len, (int __user *)arg); 1004 } 1005 1006 static int cache_open(struct inode *inode, struct file *filp, 1007 struct cache_detail *cd) 1008 { 1009 struct cache_reader *rp = NULL; 1010 1011 if (!cd || !try_module_get(cd->owner)) 1012 return -EACCES; 1013 nonseekable_open(inode, filp); 1014 if (filp->f_mode & FMODE_READ) { 1015 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 1016 if (!rp) { 1017 module_put(cd->owner); 1018 return -ENOMEM; 1019 } 1020 rp->offset = 0; 1021 rp->q.reader = 1; 1022 1023 spin_lock(&queue_lock); 1024 list_add(&rp->q.list, &cd->queue); 1025 spin_unlock(&queue_lock); 1026 } 1027 if (filp->f_mode & FMODE_WRITE) 1028 atomic_inc(&cd->writers); 1029 filp->private_data = rp; 1030 return 0; 1031 } 1032 1033 static int cache_release(struct inode *inode, struct file *filp, 1034 struct cache_detail *cd) 1035 { 1036 struct cache_reader *rp = filp->private_data; 1037 1038 if (rp) { 1039 spin_lock(&queue_lock); 1040 if (rp->offset) { 1041 struct cache_queue *cq; 1042 for (cq= &rp->q; &cq->list != &cd->queue; 1043 cq = list_entry(cq->list.next, struct cache_queue, list)) 1044 if (!cq->reader) { 1045 container_of(cq, struct cache_request, q) 1046 ->readers--; 1047 break; 1048 } 1049 rp->offset = 0; 1050 } 1051 list_del(&rp->q.list); 1052 spin_unlock(&queue_lock); 1053 1054 filp->private_data = NULL; 1055 kfree(rp); 1056 1057 } 1058 if (filp->f_mode & FMODE_WRITE) { 1059 atomic_dec(&cd->writers); 1060 cd->last_close = seconds_since_boot(); 1061 } 1062 module_put(cd->owner); 1063 return 0; 1064 } 1065 1066 1067 1068 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1069 { 1070 struct cache_queue *cq, *tmp; 1071 struct cache_request *cr; 1072 struct list_head dequeued; 1073 1074 INIT_LIST_HEAD(&dequeued); 1075 spin_lock(&queue_lock); 1076 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1077 if (!cq->reader) { 1078 cr = container_of(cq, struct cache_request, q); 1079 if (cr->item != ch) 1080 continue; 1081 if (test_bit(CACHE_PENDING, &ch->flags)) 1082 /* Lost a race and it is pending again */ 1083 break; 1084 if (cr->readers != 0) 1085 continue; 1086 list_move(&cr->q.list, &dequeued); 1087 } 1088 spin_unlock(&queue_lock); 1089 while (!list_empty(&dequeued)) { 1090 cr = list_entry(dequeued.next, struct cache_request, q.list); 1091 list_del(&cr->q.list); 1092 cache_put(cr->item, detail); 1093 kfree(cr->buf); 1094 kfree(cr); 1095 } 1096 } 1097 1098 /* 1099 * Support routines for text-based upcalls. 1100 * Fields are separated by spaces. 1101 * Fields are either mangled to quote space tab newline slosh with slosh 1102 * or a hexified with a leading \x 1103 * Record is terminated with newline. 1104 * 1105 */ 1106 1107 void qword_add(char **bpp, int *lp, char *str) 1108 { 1109 char *bp = *bpp; 1110 int len = *lp; 1111 int ret; 1112 1113 if (len < 0) return; 1114 1115 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1116 if (ret >= len) { 1117 bp += len; 1118 len = -1; 1119 } else { 1120 bp += ret; 1121 len -= ret; 1122 *bp++ = ' '; 1123 len--; 1124 } 1125 *bpp = bp; 1126 *lp = len; 1127 } 1128 EXPORT_SYMBOL_GPL(qword_add); 1129 1130 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1131 { 1132 char *bp = *bpp; 1133 int len = *lp; 1134 1135 if (len < 0) return; 1136 1137 if (len > 2) { 1138 *bp++ = '\\'; 1139 *bp++ = 'x'; 1140 len -= 2; 1141 while (blen && len >= 2) { 1142 bp = hex_byte_pack(bp, *buf++); 1143 len -= 2; 1144 blen--; 1145 } 1146 } 1147 if (blen || len<1) len = -1; 1148 else { 1149 *bp++ = ' '; 1150 len--; 1151 } 1152 *bpp = bp; 1153 *lp = len; 1154 } 1155 EXPORT_SYMBOL_GPL(qword_addhex); 1156 1157 static void warn_no_listener(struct cache_detail *detail) 1158 { 1159 if (detail->last_warn != detail->last_close) { 1160 detail->last_warn = detail->last_close; 1161 if (detail->warn_no_listener) 1162 detail->warn_no_listener(detail, detail->last_close != 0); 1163 } 1164 } 1165 1166 static bool cache_listeners_exist(struct cache_detail *detail) 1167 { 1168 if (atomic_read(&detail->writers)) 1169 return true; 1170 if (detail->last_close == 0) 1171 /* This cache was never opened */ 1172 return false; 1173 if (detail->last_close < seconds_since_boot() - 30) 1174 /* 1175 * We allow for the possibility that someone might 1176 * restart a userspace daemon without restarting the 1177 * server; but after 30 seconds, we give up. 1178 */ 1179 return false; 1180 return true; 1181 } 1182 1183 /* 1184 * register an upcall request to user-space and queue it up for read() by the 1185 * upcall daemon. 1186 * 1187 * Each request is at most one page long. 1188 */ 1189 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1190 { 1191 char *buf; 1192 struct cache_request *crq; 1193 int ret = 0; 1194 1195 if (test_bit(CACHE_CLEANED, &h->flags)) 1196 /* Too late to make an upcall */ 1197 return -EAGAIN; 1198 1199 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1200 if (!buf) 1201 return -EAGAIN; 1202 1203 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1204 if (!crq) { 1205 kfree(buf); 1206 return -EAGAIN; 1207 } 1208 1209 crq->q.reader = 0; 1210 crq->buf = buf; 1211 crq->len = 0; 1212 crq->readers = 0; 1213 spin_lock(&queue_lock); 1214 if (test_bit(CACHE_PENDING, &h->flags)) { 1215 crq->item = cache_get(h); 1216 list_add_tail(&crq->q.list, &detail->queue); 1217 trace_cache_entry_upcall(detail, h); 1218 } else 1219 /* Lost a race, no longer PENDING, so don't enqueue */ 1220 ret = -EAGAIN; 1221 spin_unlock(&queue_lock); 1222 wake_up(&queue_wait); 1223 if (ret == -EAGAIN) { 1224 kfree(buf); 1225 kfree(crq); 1226 } 1227 return ret; 1228 } 1229 1230 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1231 { 1232 if (test_and_set_bit(CACHE_PENDING, &h->flags)) 1233 return 0; 1234 return cache_pipe_upcall(detail, h); 1235 } 1236 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1237 1238 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail, 1239 struct cache_head *h) 1240 { 1241 if (!cache_listeners_exist(detail)) { 1242 warn_no_listener(detail); 1243 trace_cache_entry_no_listener(detail, h); 1244 return -EINVAL; 1245 } 1246 return sunrpc_cache_pipe_upcall(detail, h); 1247 } 1248 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout); 1249 1250 /* 1251 * parse a message from user-space and pass it 1252 * to an appropriate cache 1253 * Messages are, like requests, separated into fields by 1254 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1255 * 1256 * Message is 1257 * reply cachename expiry key ... content.... 1258 * 1259 * key and content are both parsed by cache 1260 */ 1261 1262 int qword_get(char **bpp, char *dest, int bufsize) 1263 { 1264 /* return bytes copied, or -1 on error */ 1265 char *bp = *bpp; 1266 int len = 0; 1267 1268 while (*bp == ' ') bp++; 1269 1270 if (bp[0] == '\\' && bp[1] == 'x') { 1271 /* HEX STRING */ 1272 bp += 2; 1273 while (len < bufsize - 1) { 1274 int h, l; 1275 1276 h = hex_to_bin(bp[0]); 1277 if (h < 0) 1278 break; 1279 1280 l = hex_to_bin(bp[1]); 1281 if (l < 0) 1282 break; 1283 1284 *dest++ = (h << 4) | l; 1285 bp += 2; 1286 len++; 1287 } 1288 } else { 1289 /* text with \nnn octal quoting */ 1290 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1291 if (*bp == '\\' && 1292 isodigit(bp[1]) && (bp[1] <= '3') && 1293 isodigit(bp[2]) && 1294 isodigit(bp[3])) { 1295 int byte = (*++bp -'0'); 1296 bp++; 1297 byte = (byte << 3) | (*bp++ - '0'); 1298 byte = (byte << 3) | (*bp++ - '0'); 1299 *dest++ = byte; 1300 len++; 1301 } else { 1302 *dest++ = *bp++; 1303 len++; 1304 } 1305 } 1306 } 1307 1308 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1309 return -1; 1310 while (*bp == ' ') bp++; 1311 *bpp = bp; 1312 *dest = '\0'; 1313 return len; 1314 } 1315 EXPORT_SYMBOL_GPL(qword_get); 1316 1317 1318 /* 1319 * support /proc/net/rpc/$CACHENAME/content 1320 * as a seqfile. 1321 * We call ->cache_show passing NULL for the item to 1322 * get a header, then pass each real item in the cache 1323 */ 1324 1325 static void *__cache_seq_start(struct seq_file *m, loff_t *pos) 1326 { 1327 loff_t n = *pos; 1328 unsigned int hash, entry; 1329 struct cache_head *ch; 1330 struct cache_detail *cd = m->private; 1331 1332 if (!n--) 1333 return SEQ_START_TOKEN; 1334 hash = n >> 32; 1335 entry = n & ((1LL<<32) - 1); 1336 1337 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list) 1338 if (!entry--) 1339 return ch; 1340 n &= ~((1LL<<32) - 1); 1341 do { 1342 hash++; 1343 n += 1LL<<32; 1344 } while(hash < cd->hash_size && 1345 hlist_empty(&cd->hash_table[hash])); 1346 if (hash >= cd->hash_size) 1347 return NULL; 1348 *pos = n+1; 1349 return hlist_entry_safe(rcu_dereference_raw( 1350 hlist_first_rcu(&cd->hash_table[hash])), 1351 struct cache_head, cache_list); 1352 } 1353 1354 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1355 { 1356 struct cache_head *ch = p; 1357 int hash = (*pos >> 32); 1358 struct cache_detail *cd = m->private; 1359 1360 if (p == SEQ_START_TOKEN) 1361 hash = 0; 1362 else if (ch->cache_list.next == NULL) { 1363 hash++; 1364 *pos += 1LL<<32; 1365 } else { 1366 ++*pos; 1367 return hlist_entry_safe(rcu_dereference_raw( 1368 hlist_next_rcu(&ch->cache_list)), 1369 struct cache_head, cache_list); 1370 } 1371 *pos &= ~((1LL<<32) - 1); 1372 while (hash < cd->hash_size && 1373 hlist_empty(&cd->hash_table[hash])) { 1374 hash++; 1375 *pos += 1LL<<32; 1376 } 1377 if (hash >= cd->hash_size) 1378 return NULL; 1379 ++*pos; 1380 return hlist_entry_safe(rcu_dereference_raw( 1381 hlist_first_rcu(&cd->hash_table[hash])), 1382 struct cache_head, cache_list); 1383 } 1384 1385 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos) 1386 __acquires(RCU) 1387 { 1388 rcu_read_lock(); 1389 return __cache_seq_start(m, pos); 1390 } 1391 EXPORT_SYMBOL_GPL(cache_seq_start_rcu); 1392 1393 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos) 1394 { 1395 return cache_seq_next(file, p, pos); 1396 } 1397 EXPORT_SYMBOL_GPL(cache_seq_next_rcu); 1398 1399 void cache_seq_stop_rcu(struct seq_file *m, void *p) 1400 __releases(RCU) 1401 { 1402 rcu_read_unlock(); 1403 } 1404 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu); 1405 1406 static int c_show(struct seq_file *m, void *p) 1407 { 1408 struct cache_head *cp = p; 1409 struct cache_detail *cd = m->private; 1410 1411 if (p == SEQ_START_TOKEN) 1412 return cd->cache_show(m, cd, NULL); 1413 1414 ifdebug(CACHE) 1415 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n", 1416 convert_to_wallclock(cp->expiry_time), 1417 kref_read(&cp->ref), cp->flags); 1418 cache_get(cp); 1419 if (cache_check(cd, cp, NULL)) 1420 /* cache_check does a cache_put on failure */ 1421 seq_puts(m, "# "); 1422 else { 1423 if (cache_is_expired(cd, cp)) 1424 seq_puts(m, "# "); 1425 cache_put(cp, cd); 1426 } 1427 1428 return cd->cache_show(m, cd, cp); 1429 } 1430 1431 static const struct seq_operations cache_content_op = { 1432 .start = cache_seq_start_rcu, 1433 .next = cache_seq_next_rcu, 1434 .stop = cache_seq_stop_rcu, 1435 .show = c_show, 1436 }; 1437 1438 static int content_open(struct inode *inode, struct file *file, 1439 struct cache_detail *cd) 1440 { 1441 struct seq_file *seq; 1442 int err; 1443 1444 if (!cd || !try_module_get(cd->owner)) 1445 return -EACCES; 1446 1447 err = seq_open(file, &cache_content_op); 1448 if (err) { 1449 module_put(cd->owner); 1450 return err; 1451 } 1452 1453 seq = file->private_data; 1454 seq->private = cd; 1455 return 0; 1456 } 1457 1458 static int content_release(struct inode *inode, struct file *file, 1459 struct cache_detail *cd) 1460 { 1461 int ret = seq_release(inode, file); 1462 module_put(cd->owner); 1463 return ret; 1464 } 1465 1466 static int open_flush(struct inode *inode, struct file *file, 1467 struct cache_detail *cd) 1468 { 1469 if (!cd || !try_module_get(cd->owner)) 1470 return -EACCES; 1471 return nonseekable_open(inode, file); 1472 } 1473 1474 static int release_flush(struct inode *inode, struct file *file, 1475 struct cache_detail *cd) 1476 { 1477 module_put(cd->owner); 1478 return 0; 1479 } 1480 1481 static ssize_t read_flush(struct file *file, char __user *buf, 1482 size_t count, loff_t *ppos, 1483 struct cache_detail *cd) 1484 { 1485 char tbuf[22]; 1486 size_t len; 1487 1488 len = snprintf(tbuf, sizeof(tbuf), "%llu\n", 1489 convert_to_wallclock(cd->flush_time)); 1490 return simple_read_from_buffer(buf, count, ppos, tbuf, len); 1491 } 1492 1493 static ssize_t write_flush(struct file *file, const char __user *buf, 1494 size_t count, loff_t *ppos, 1495 struct cache_detail *cd) 1496 { 1497 char tbuf[20]; 1498 char *ep; 1499 time64_t now; 1500 1501 if (*ppos || count > sizeof(tbuf)-1) 1502 return -EINVAL; 1503 if (copy_from_user(tbuf, buf, count)) 1504 return -EFAULT; 1505 tbuf[count] = 0; 1506 simple_strtoul(tbuf, &ep, 0); 1507 if (*ep && *ep != '\n') 1508 return -EINVAL; 1509 /* Note that while we check that 'buf' holds a valid number, 1510 * we always ignore the value and just flush everything. 1511 * Making use of the number leads to races. 1512 */ 1513 1514 now = seconds_since_boot(); 1515 /* Always flush everything, so behave like cache_purge() 1516 * Do this by advancing flush_time to the current time, 1517 * or by one second if it has already reached the current time. 1518 * Newly added cache entries will always have ->last_refresh greater 1519 * that ->flush_time, so they don't get flushed prematurely. 1520 */ 1521 1522 if (cd->flush_time >= now) 1523 now = cd->flush_time + 1; 1524 1525 cd->flush_time = now; 1526 cd->nextcheck = now; 1527 cache_flush(); 1528 1529 if (cd->flush) 1530 cd->flush(); 1531 1532 *ppos += count; 1533 return count; 1534 } 1535 1536 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1537 size_t count, loff_t *ppos) 1538 { 1539 struct cache_detail *cd = pde_data(file_inode(filp)); 1540 1541 return cache_read(filp, buf, count, ppos, cd); 1542 } 1543 1544 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1545 size_t count, loff_t *ppos) 1546 { 1547 struct cache_detail *cd = pde_data(file_inode(filp)); 1548 1549 return cache_write(filp, buf, count, ppos, cd); 1550 } 1551 1552 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait) 1553 { 1554 struct cache_detail *cd = pde_data(file_inode(filp)); 1555 1556 return cache_poll(filp, wait, cd); 1557 } 1558 1559 static long cache_ioctl_procfs(struct file *filp, 1560 unsigned int cmd, unsigned long arg) 1561 { 1562 struct inode *inode = file_inode(filp); 1563 struct cache_detail *cd = pde_data(inode); 1564 1565 return cache_ioctl(inode, filp, cmd, arg, cd); 1566 } 1567 1568 static int cache_open_procfs(struct inode *inode, struct file *filp) 1569 { 1570 struct cache_detail *cd = pde_data(inode); 1571 1572 return cache_open(inode, filp, cd); 1573 } 1574 1575 static int cache_release_procfs(struct inode *inode, struct file *filp) 1576 { 1577 struct cache_detail *cd = pde_data(inode); 1578 1579 return cache_release(inode, filp, cd); 1580 } 1581 1582 static const struct proc_ops cache_channel_proc_ops = { 1583 .proc_lseek = no_llseek, 1584 .proc_read = cache_read_procfs, 1585 .proc_write = cache_write_procfs, 1586 .proc_poll = cache_poll_procfs, 1587 .proc_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1588 .proc_open = cache_open_procfs, 1589 .proc_release = cache_release_procfs, 1590 }; 1591 1592 static int content_open_procfs(struct inode *inode, struct file *filp) 1593 { 1594 struct cache_detail *cd = pde_data(inode); 1595 1596 return content_open(inode, filp, cd); 1597 } 1598 1599 static int content_release_procfs(struct inode *inode, struct file *filp) 1600 { 1601 struct cache_detail *cd = pde_data(inode); 1602 1603 return content_release(inode, filp, cd); 1604 } 1605 1606 static const struct proc_ops content_proc_ops = { 1607 .proc_open = content_open_procfs, 1608 .proc_read = seq_read, 1609 .proc_lseek = seq_lseek, 1610 .proc_release = content_release_procfs, 1611 }; 1612 1613 static int open_flush_procfs(struct inode *inode, struct file *filp) 1614 { 1615 struct cache_detail *cd = pde_data(inode); 1616 1617 return open_flush(inode, filp, cd); 1618 } 1619 1620 static int release_flush_procfs(struct inode *inode, struct file *filp) 1621 { 1622 struct cache_detail *cd = pde_data(inode); 1623 1624 return release_flush(inode, filp, cd); 1625 } 1626 1627 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1628 size_t count, loff_t *ppos) 1629 { 1630 struct cache_detail *cd = pde_data(file_inode(filp)); 1631 1632 return read_flush(filp, buf, count, ppos, cd); 1633 } 1634 1635 static ssize_t write_flush_procfs(struct file *filp, 1636 const char __user *buf, 1637 size_t count, loff_t *ppos) 1638 { 1639 struct cache_detail *cd = pde_data(file_inode(filp)); 1640 1641 return write_flush(filp, buf, count, ppos, cd); 1642 } 1643 1644 static const struct proc_ops cache_flush_proc_ops = { 1645 .proc_open = open_flush_procfs, 1646 .proc_read = read_flush_procfs, 1647 .proc_write = write_flush_procfs, 1648 .proc_release = release_flush_procfs, 1649 .proc_lseek = no_llseek, 1650 }; 1651 1652 static void remove_cache_proc_entries(struct cache_detail *cd) 1653 { 1654 if (cd->procfs) { 1655 proc_remove(cd->procfs); 1656 cd->procfs = NULL; 1657 } 1658 } 1659 1660 #ifdef CONFIG_PROC_FS 1661 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1662 { 1663 struct proc_dir_entry *p; 1664 struct sunrpc_net *sn; 1665 1666 sn = net_generic(net, sunrpc_net_id); 1667 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc); 1668 if (cd->procfs == NULL) 1669 goto out_nomem; 1670 1671 p = proc_create_data("flush", S_IFREG | 0600, 1672 cd->procfs, &cache_flush_proc_ops, cd); 1673 if (p == NULL) 1674 goto out_nomem; 1675 1676 if (cd->cache_request || cd->cache_parse) { 1677 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs, 1678 &cache_channel_proc_ops, cd); 1679 if (p == NULL) 1680 goto out_nomem; 1681 } 1682 if (cd->cache_show) { 1683 p = proc_create_data("content", S_IFREG | 0400, cd->procfs, 1684 &content_proc_ops, cd); 1685 if (p == NULL) 1686 goto out_nomem; 1687 } 1688 return 0; 1689 out_nomem: 1690 remove_cache_proc_entries(cd); 1691 return -ENOMEM; 1692 } 1693 #else /* CONFIG_PROC_FS */ 1694 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1695 { 1696 return 0; 1697 } 1698 #endif 1699 1700 void __init cache_initialize(void) 1701 { 1702 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1703 } 1704 1705 int cache_register_net(struct cache_detail *cd, struct net *net) 1706 { 1707 int ret; 1708 1709 sunrpc_init_cache_detail(cd); 1710 ret = create_cache_proc_entries(cd, net); 1711 if (ret) 1712 sunrpc_destroy_cache_detail(cd); 1713 return ret; 1714 } 1715 EXPORT_SYMBOL_GPL(cache_register_net); 1716 1717 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1718 { 1719 remove_cache_proc_entries(cd); 1720 sunrpc_destroy_cache_detail(cd); 1721 } 1722 EXPORT_SYMBOL_GPL(cache_unregister_net); 1723 1724 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net) 1725 { 1726 struct cache_detail *cd; 1727 int i; 1728 1729 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1730 if (cd == NULL) 1731 return ERR_PTR(-ENOMEM); 1732 1733 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head), 1734 GFP_KERNEL); 1735 if (cd->hash_table == NULL) { 1736 kfree(cd); 1737 return ERR_PTR(-ENOMEM); 1738 } 1739 1740 for (i = 0; i < cd->hash_size; i++) 1741 INIT_HLIST_HEAD(&cd->hash_table[i]); 1742 cd->net = net; 1743 return cd; 1744 } 1745 EXPORT_SYMBOL_GPL(cache_create_net); 1746 1747 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1748 { 1749 kfree(cd->hash_table); 1750 kfree(cd); 1751 } 1752 EXPORT_SYMBOL_GPL(cache_destroy_net); 1753 1754 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1755 size_t count, loff_t *ppos) 1756 { 1757 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1758 1759 return cache_read(filp, buf, count, ppos, cd); 1760 } 1761 1762 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1763 size_t count, loff_t *ppos) 1764 { 1765 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1766 1767 return cache_write(filp, buf, count, ppos, cd); 1768 } 1769 1770 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait) 1771 { 1772 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1773 1774 return cache_poll(filp, wait, cd); 1775 } 1776 1777 static long cache_ioctl_pipefs(struct file *filp, 1778 unsigned int cmd, unsigned long arg) 1779 { 1780 struct inode *inode = file_inode(filp); 1781 struct cache_detail *cd = RPC_I(inode)->private; 1782 1783 return cache_ioctl(inode, filp, cmd, arg, cd); 1784 } 1785 1786 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1787 { 1788 struct cache_detail *cd = RPC_I(inode)->private; 1789 1790 return cache_open(inode, filp, cd); 1791 } 1792 1793 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1794 { 1795 struct cache_detail *cd = RPC_I(inode)->private; 1796 1797 return cache_release(inode, filp, cd); 1798 } 1799 1800 const struct file_operations cache_file_operations_pipefs = { 1801 .owner = THIS_MODULE, 1802 .llseek = no_llseek, 1803 .read = cache_read_pipefs, 1804 .write = cache_write_pipefs, 1805 .poll = cache_poll_pipefs, 1806 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1807 .open = cache_open_pipefs, 1808 .release = cache_release_pipefs, 1809 }; 1810 1811 static int content_open_pipefs(struct inode *inode, struct file *filp) 1812 { 1813 struct cache_detail *cd = RPC_I(inode)->private; 1814 1815 return content_open(inode, filp, cd); 1816 } 1817 1818 static int content_release_pipefs(struct inode *inode, struct file *filp) 1819 { 1820 struct cache_detail *cd = RPC_I(inode)->private; 1821 1822 return content_release(inode, filp, cd); 1823 } 1824 1825 const struct file_operations content_file_operations_pipefs = { 1826 .open = content_open_pipefs, 1827 .read = seq_read, 1828 .llseek = seq_lseek, 1829 .release = content_release_pipefs, 1830 }; 1831 1832 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1833 { 1834 struct cache_detail *cd = RPC_I(inode)->private; 1835 1836 return open_flush(inode, filp, cd); 1837 } 1838 1839 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1840 { 1841 struct cache_detail *cd = RPC_I(inode)->private; 1842 1843 return release_flush(inode, filp, cd); 1844 } 1845 1846 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1847 size_t count, loff_t *ppos) 1848 { 1849 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1850 1851 return read_flush(filp, buf, count, ppos, cd); 1852 } 1853 1854 static ssize_t write_flush_pipefs(struct file *filp, 1855 const char __user *buf, 1856 size_t count, loff_t *ppos) 1857 { 1858 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1859 1860 return write_flush(filp, buf, count, ppos, cd); 1861 } 1862 1863 const struct file_operations cache_flush_operations_pipefs = { 1864 .open = open_flush_pipefs, 1865 .read = read_flush_pipefs, 1866 .write = write_flush_pipefs, 1867 .release = release_flush_pipefs, 1868 .llseek = no_llseek, 1869 }; 1870 1871 int sunrpc_cache_register_pipefs(struct dentry *parent, 1872 const char *name, umode_t umode, 1873 struct cache_detail *cd) 1874 { 1875 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1876 if (IS_ERR(dir)) 1877 return PTR_ERR(dir); 1878 cd->pipefs = dir; 1879 return 0; 1880 } 1881 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1882 1883 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1884 { 1885 if (cd->pipefs) { 1886 rpc_remove_cache_dir(cd->pipefs); 1887 cd->pipefs = NULL; 1888 } 1889 } 1890 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1891 1892 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h) 1893 { 1894 spin_lock(&cd->hash_lock); 1895 if (!hlist_unhashed(&h->cache_list)){ 1896 sunrpc_begin_cache_remove_entry(h, cd); 1897 spin_unlock(&cd->hash_lock); 1898 sunrpc_end_cache_remove_entry(h, cd); 1899 } else 1900 spin_unlock(&cd->hash_lock); 1901 } 1902 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash); 1903