xref: /linux/net/sunrpc/cache.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35 #include <linux/sunrpc/rpc_pipe_fs.h>
36 
37 #define	 RPCDBG_FACILITY RPCDBG_CACHE
38 
39 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
40 static void cache_revisit_request(struct cache_head *item);
41 
42 static void cache_init(struct cache_head *h)
43 {
44 	time_t now = get_seconds();
45 	h->next = NULL;
46 	h->flags = 0;
47 	kref_init(&h->ref);
48 	h->expiry_time = now + CACHE_NEW_EXPIRY;
49 	h->last_refresh = now;
50 }
51 
52 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
53 				       struct cache_head *key, int hash)
54 {
55 	struct cache_head **head,  **hp;
56 	struct cache_head *new = NULL;
57 
58 	head = &detail->hash_table[hash];
59 
60 	read_lock(&detail->hash_lock);
61 
62 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
63 		struct cache_head *tmp = *hp;
64 		if (detail->match(tmp, key)) {
65 			cache_get(tmp);
66 			read_unlock(&detail->hash_lock);
67 			return tmp;
68 		}
69 	}
70 	read_unlock(&detail->hash_lock);
71 	/* Didn't find anything, insert an empty entry */
72 
73 	new = detail->alloc();
74 	if (!new)
75 		return NULL;
76 	/* must fully initialise 'new', else
77 	 * we might get lose if we need to
78 	 * cache_put it soon.
79 	 */
80 	cache_init(new);
81 	detail->init(new, key);
82 
83 	write_lock(&detail->hash_lock);
84 
85 	/* check if entry appeared while we slept */
86 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
87 		struct cache_head *tmp = *hp;
88 		if (detail->match(tmp, key)) {
89 			cache_get(tmp);
90 			write_unlock(&detail->hash_lock);
91 			cache_put(new, detail);
92 			return tmp;
93 		}
94 	}
95 	new->next = *head;
96 	*head = new;
97 	detail->entries++;
98 	cache_get(new);
99 	write_unlock(&detail->hash_lock);
100 
101 	return new;
102 }
103 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
104 
105 
106 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
107 
108 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
109 {
110 	head->expiry_time = expiry;
111 	head->last_refresh = get_seconds();
112 	set_bit(CACHE_VALID, &head->flags);
113 }
114 
115 static void cache_fresh_unlocked(struct cache_head *head,
116 				 struct cache_detail *detail)
117 {
118 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119 		cache_revisit_request(head);
120 		cache_dequeue(detail, head);
121 	}
122 }
123 
124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125 				       struct cache_head *new, struct cache_head *old, int hash)
126 {
127 	/* The 'old' entry is to be replaced by 'new'.
128 	 * If 'old' is not VALID, we update it directly,
129 	 * otherwise we need to replace it
130 	 */
131 	struct cache_head **head;
132 	struct cache_head *tmp;
133 
134 	if (!test_bit(CACHE_VALID, &old->flags)) {
135 		write_lock(&detail->hash_lock);
136 		if (!test_bit(CACHE_VALID, &old->flags)) {
137 			if (test_bit(CACHE_NEGATIVE, &new->flags))
138 				set_bit(CACHE_NEGATIVE, &old->flags);
139 			else
140 				detail->update(old, new);
141 			cache_fresh_locked(old, new->expiry_time);
142 			write_unlock(&detail->hash_lock);
143 			cache_fresh_unlocked(old, detail);
144 			return old;
145 		}
146 		write_unlock(&detail->hash_lock);
147 	}
148 	/* We need to insert a new entry */
149 	tmp = detail->alloc();
150 	if (!tmp) {
151 		cache_put(old, detail);
152 		return NULL;
153 	}
154 	cache_init(tmp);
155 	detail->init(tmp, old);
156 	head = &detail->hash_table[hash];
157 
158 	write_lock(&detail->hash_lock);
159 	if (test_bit(CACHE_NEGATIVE, &new->flags))
160 		set_bit(CACHE_NEGATIVE, &tmp->flags);
161 	else
162 		detail->update(tmp, new);
163 	tmp->next = *head;
164 	*head = tmp;
165 	detail->entries++;
166 	cache_get(tmp);
167 	cache_fresh_locked(tmp, new->expiry_time);
168 	cache_fresh_locked(old, 0);
169 	write_unlock(&detail->hash_lock);
170 	cache_fresh_unlocked(tmp, detail);
171 	cache_fresh_unlocked(old, detail);
172 	cache_put(old, detail);
173 	return tmp;
174 }
175 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
176 
177 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
178 {
179 	if (!cd->cache_upcall)
180 		return -EINVAL;
181 	return cd->cache_upcall(cd, h);
182 }
183 
184 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
185 {
186 	if (!test_bit(CACHE_VALID, &h->flags) ||
187 	    h->expiry_time < get_seconds())
188 		return -EAGAIN;
189 	else if (detail->flush_time > h->last_refresh)
190 		return -EAGAIN;
191 	else {
192 		/* entry is valid */
193 		if (test_bit(CACHE_NEGATIVE, &h->flags))
194 			return -ENOENT;
195 		else
196 			return 0;
197 	}
198 }
199 
200 /*
201  * This is the generic cache management routine for all
202  * the authentication caches.
203  * It checks the currency of a cache item and will (later)
204  * initiate an upcall to fill it if needed.
205  *
206  *
207  * Returns 0 if the cache_head can be used, or cache_puts it and returns
208  * -EAGAIN if upcall is pending and request has been queued
209  * -ETIMEDOUT if upcall failed or request could not be queue or
210  *           upcall completed but item is still invalid (implying that
211  *           the cache item has been replaced with a newer one).
212  * -ENOENT if cache entry was negative
213  */
214 int cache_check(struct cache_detail *detail,
215 		    struct cache_head *h, struct cache_req *rqstp)
216 {
217 	int rv;
218 	long refresh_age, age;
219 
220 	/* First decide return status as best we can */
221 	rv = cache_is_valid(detail, h);
222 
223 	/* now see if we want to start an upcall */
224 	refresh_age = (h->expiry_time - h->last_refresh);
225 	age = get_seconds() - h->last_refresh;
226 
227 	if (rqstp == NULL) {
228 		if (rv == -EAGAIN)
229 			rv = -ENOENT;
230 	} else if (rv == -EAGAIN || age > refresh_age/2) {
231 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
232 				refresh_age, age);
233 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
234 			switch (cache_make_upcall(detail, h)) {
235 			case -EINVAL:
236 				clear_bit(CACHE_PENDING, &h->flags);
237 				cache_revisit_request(h);
238 				if (rv == -EAGAIN) {
239 					set_bit(CACHE_NEGATIVE, &h->flags);
240 					cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY);
241 					cache_fresh_unlocked(h, detail);
242 					rv = -ENOENT;
243 				}
244 				break;
245 
246 			case -EAGAIN:
247 				clear_bit(CACHE_PENDING, &h->flags);
248 				cache_revisit_request(h);
249 				break;
250 			}
251 		}
252 	}
253 
254 	if (rv == -EAGAIN) {
255 		if (cache_defer_req(rqstp, h) < 0) {
256 			/* Request is not deferred */
257 			rv = cache_is_valid(detail, h);
258 			if (rv == -EAGAIN)
259 				rv = -ETIMEDOUT;
260 		}
261 	}
262 	if (rv)
263 		cache_put(h, detail);
264 	return rv;
265 }
266 EXPORT_SYMBOL_GPL(cache_check);
267 
268 /*
269  * caches need to be periodically cleaned.
270  * For this we maintain a list of cache_detail and
271  * a current pointer into that list and into the table
272  * for that entry.
273  *
274  * Each time clean_cache is called it finds the next non-empty entry
275  * in the current table and walks the list in that entry
276  * looking for entries that can be removed.
277  *
278  * An entry gets removed if:
279  * - The expiry is before current time
280  * - The last_refresh time is before the flush_time for that cache
281  *
282  * later we might drop old entries with non-NEVER expiry if that table
283  * is getting 'full' for some definition of 'full'
284  *
285  * The question of "how often to scan a table" is an interesting one
286  * and is answered in part by the use of the "nextcheck" field in the
287  * cache_detail.
288  * When a scan of a table begins, the nextcheck field is set to a time
289  * that is well into the future.
290  * While scanning, if an expiry time is found that is earlier than the
291  * current nextcheck time, nextcheck is set to that expiry time.
292  * If the flush_time is ever set to a time earlier than the nextcheck
293  * time, the nextcheck time is then set to that flush_time.
294  *
295  * A table is then only scanned if the current time is at least
296  * the nextcheck time.
297  *
298  */
299 
300 static LIST_HEAD(cache_list);
301 static DEFINE_SPINLOCK(cache_list_lock);
302 static struct cache_detail *current_detail;
303 static int current_index;
304 
305 static void do_cache_clean(struct work_struct *work);
306 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
307 
308 static void sunrpc_init_cache_detail(struct cache_detail *cd)
309 {
310 	rwlock_init(&cd->hash_lock);
311 	INIT_LIST_HEAD(&cd->queue);
312 	spin_lock(&cache_list_lock);
313 	cd->nextcheck = 0;
314 	cd->entries = 0;
315 	atomic_set(&cd->readers, 0);
316 	cd->last_close = 0;
317 	cd->last_warn = -1;
318 	list_add(&cd->others, &cache_list);
319 	spin_unlock(&cache_list_lock);
320 
321 	/* start the cleaning process */
322 	schedule_delayed_work(&cache_cleaner, 0);
323 }
324 
325 static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
326 {
327 	cache_purge(cd);
328 	spin_lock(&cache_list_lock);
329 	write_lock(&cd->hash_lock);
330 	if (cd->entries || atomic_read(&cd->inuse)) {
331 		write_unlock(&cd->hash_lock);
332 		spin_unlock(&cache_list_lock);
333 		goto out;
334 	}
335 	if (current_detail == cd)
336 		current_detail = NULL;
337 	list_del_init(&cd->others);
338 	write_unlock(&cd->hash_lock);
339 	spin_unlock(&cache_list_lock);
340 	if (list_empty(&cache_list)) {
341 		/* module must be being unloaded so its safe to kill the worker */
342 		cancel_delayed_work_sync(&cache_cleaner);
343 	}
344 	return;
345 out:
346 	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
347 }
348 
349 /* clean cache tries to find something to clean
350  * and cleans it.
351  * It returns 1 if it cleaned something,
352  *            0 if it didn't find anything this time
353  *           -1 if it fell off the end of the list.
354  */
355 static int cache_clean(void)
356 {
357 	int rv = 0;
358 	struct list_head *next;
359 
360 	spin_lock(&cache_list_lock);
361 
362 	/* find a suitable table if we don't already have one */
363 	while (current_detail == NULL ||
364 	    current_index >= current_detail->hash_size) {
365 		if (current_detail)
366 			next = current_detail->others.next;
367 		else
368 			next = cache_list.next;
369 		if (next == &cache_list) {
370 			current_detail = NULL;
371 			spin_unlock(&cache_list_lock);
372 			return -1;
373 		}
374 		current_detail = list_entry(next, struct cache_detail, others);
375 		if (current_detail->nextcheck > get_seconds())
376 			current_index = current_detail->hash_size;
377 		else {
378 			current_index = 0;
379 			current_detail->nextcheck = get_seconds()+30*60;
380 		}
381 	}
382 
383 	/* find a non-empty bucket in the table */
384 	while (current_detail &&
385 	       current_index < current_detail->hash_size &&
386 	       current_detail->hash_table[current_index] == NULL)
387 		current_index++;
388 
389 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
390 
391 	if (current_detail && current_index < current_detail->hash_size) {
392 		struct cache_head *ch, **cp;
393 		struct cache_detail *d;
394 
395 		write_lock(&current_detail->hash_lock);
396 
397 		/* Ok, now to clean this strand */
398 
399 		cp = & current_detail->hash_table[current_index];
400 		ch = *cp;
401 		for (; ch; cp= & ch->next, ch= *cp) {
402 			if (current_detail->nextcheck > ch->expiry_time)
403 				current_detail->nextcheck = ch->expiry_time+1;
404 			if (ch->expiry_time >= get_seconds()
405 			    && ch->last_refresh >= current_detail->flush_time
406 				)
407 				continue;
408 			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
409 				cache_dequeue(current_detail, ch);
410 
411 			if (atomic_read(&ch->ref.refcount) == 1)
412 				break;
413 		}
414 		if (ch) {
415 			*cp = ch->next;
416 			ch->next = NULL;
417 			current_detail->entries--;
418 			rv = 1;
419 		}
420 		write_unlock(&current_detail->hash_lock);
421 		d = current_detail;
422 		if (!ch)
423 			current_index ++;
424 		spin_unlock(&cache_list_lock);
425 		if (ch) {
426 			cache_revisit_request(ch);
427 			cache_put(ch, d);
428 		}
429 	} else
430 		spin_unlock(&cache_list_lock);
431 
432 	return rv;
433 }
434 
435 /*
436  * We want to regularly clean the cache, so we need to schedule some work ...
437  */
438 static void do_cache_clean(struct work_struct *work)
439 {
440 	int delay = 5;
441 	if (cache_clean() == -1)
442 		delay = round_jiffies_relative(30*HZ);
443 
444 	if (list_empty(&cache_list))
445 		delay = 0;
446 
447 	if (delay)
448 		schedule_delayed_work(&cache_cleaner, delay);
449 }
450 
451 
452 /*
453  * Clean all caches promptly.  This just calls cache_clean
454  * repeatedly until we are sure that every cache has had a chance to
455  * be fully cleaned
456  */
457 void cache_flush(void)
458 {
459 	while (cache_clean() != -1)
460 		cond_resched();
461 	while (cache_clean() != -1)
462 		cond_resched();
463 }
464 EXPORT_SYMBOL_GPL(cache_flush);
465 
466 void cache_purge(struct cache_detail *detail)
467 {
468 	detail->flush_time = LONG_MAX;
469 	detail->nextcheck = get_seconds();
470 	cache_flush();
471 	detail->flush_time = 1;
472 }
473 EXPORT_SYMBOL_GPL(cache_purge);
474 
475 
476 /*
477  * Deferral and Revisiting of Requests.
478  *
479  * If a cache lookup finds a pending entry, we
480  * need to defer the request and revisit it later.
481  * All deferred requests are stored in a hash table,
482  * indexed by "struct cache_head *".
483  * As it may be wasteful to store a whole request
484  * structure, we allow the request to provide a
485  * deferred form, which must contain a
486  * 'struct cache_deferred_req'
487  * This cache_deferred_req contains a method to allow
488  * it to be revisited when cache info is available
489  */
490 
491 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
492 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
493 
494 #define	DFR_MAX	300	/* ??? */
495 
496 static DEFINE_SPINLOCK(cache_defer_lock);
497 static LIST_HEAD(cache_defer_list);
498 static struct list_head cache_defer_hash[DFR_HASHSIZE];
499 static int cache_defer_cnt;
500 
501 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
502 {
503 	struct cache_deferred_req *dreq, *discard;
504 	int hash = DFR_HASH(item);
505 
506 	if (cache_defer_cnt >= DFR_MAX) {
507 		/* too much in the cache, randomly drop this one,
508 		 * or continue and drop the oldest below
509 		 */
510 		if (net_random()&1)
511 			return -ENOMEM;
512 	}
513 	dreq = req->defer(req);
514 	if (dreq == NULL)
515 		return -ENOMEM;
516 
517 	dreq->item = item;
518 
519 	spin_lock(&cache_defer_lock);
520 
521 	list_add(&dreq->recent, &cache_defer_list);
522 
523 	if (cache_defer_hash[hash].next == NULL)
524 		INIT_LIST_HEAD(&cache_defer_hash[hash]);
525 	list_add(&dreq->hash, &cache_defer_hash[hash]);
526 
527 	/* it is in, now maybe clean up */
528 	discard = NULL;
529 	if (++cache_defer_cnt > DFR_MAX) {
530 		discard = list_entry(cache_defer_list.prev,
531 				     struct cache_deferred_req, recent);
532 		list_del_init(&discard->recent);
533 		list_del_init(&discard->hash);
534 		cache_defer_cnt--;
535 	}
536 	spin_unlock(&cache_defer_lock);
537 
538 	if (discard)
539 		/* there was one too many */
540 		discard->revisit(discard, 1);
541 
542 	if (!test_bit(CACHE_PENDING, &item->flags)) {
543 		/* must have just been validated... */
544 		cache_revisit_request(item);
545 		return -EAGAIN;
546 	}
547 	return 0;
548 }
549 
550 static void cache_revisit_request(struct cache_head *item)
551 {
552 	struct cache_deferred_req *dreq;
553 	struct list_head pending;
554 
555 	struct list_head *lp;
556 	int hash = DFR_HASH(item);
557 
558 	INIT_LIST_HEAD(&pending);
559 	spin_lock(&cache_defer_lock);
560 
561 	lp = cache_defer_hash[hash].next;
562 	if (lp) {
563 		while (lp != &cache_defer_hash[hash]) {
564 			dreq = list_entry(lp, struct cache_deferred_req, hash);
565 			lp = lp->next;
566 			if (dreq->item == item) {
567 				list_del_init(&dreq->hash);
568 				list_move(&dreq->recent, &pending);
569 				cache_defer_cnt--;
570 			}
571 		}
572 	}
573 	spin_unlock(&cache_defer_lock);
574 
575 	while (!list_empty(&pending)) {
576 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
577 		list_del_init(&dreq->recent);
578 		dreq->revisit(dreq, 0);
579 	}
580 }
581 
582 void cache_clean_deferred(void *owner)
583 {
584 	struct cache_deferred_req *dreq, *tmp;
585 	struct list_head pending;
586 
587 
588 	INIT_LIST_HEAD(&pending);
589 	spin_lock(&cache_defer_lock);
590 
591 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
592 		if (dreq->owner == owner) {
593 			list_del_init(&dreq->hash);
594 			list_move(&dreq->recent, &pending);
595 			cache_defer_cnt--;
596 		}
597 	}
598 	spin_unlock(&cache_defer_lock);
599 
600 	while (!list_empty(&pending)) {
601 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
602 		list_del_init(&dreq->recent);
603 		dreq->revisit(dreq, 1);
604 	}
605 }
606 
607 /*
608  * communicate with user-space
609  *
610  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
611  * On read, you get a full request, or block.
612  * On write, an update request is processed.
613  * Poll works if anything to read, and always allows write.
614  *
615  * Implemented by linked list of requests.  Each open file has
616  * a ->private that also exists in this list.  New requests are added
617  * to the end and may wakeup and preceding readers.
618  * New readers are added to the head.  If, on read, an item is found with
619  * CACHE_UPCALLING clear, we free it from the list.
620  *
621  */
622 
623 static DEFINE_SPINLOCK(queue_lock);
624 static DEFINE_MUTEX(queue_io_mutex);
625 
626 struct cache_queue {
627 	struct list_head	list;
628 	int			reader;	/* if 0, then request */
629 };
630 struct cache_request {
631 	struct cache_queue	q;
632 	struct cache_head	*item;
633 	char			* buf;
634 	int			len;
635 	int			readers;
636 };
637 struct cache_reader {
638 	struct cache_queue	q;
639 	int			offset;	/* if non-0, we have a refcnt on next request */
640 };
641 
642 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
643 			  loff_t *ppos, struct cache_detail *cd)
644 {
645 	struct cache_reader *rp = filp->private_data;
646 	struct cache_request *rq;
647 	struct inode *inode = filp->f_path.dentry->d_inode;
648 	int err;
649 
650 	if (count == 0)
651 		return 0;
652 
653 	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
654 			      * readers on this file */
655  again:
656 	spin_lock(&queue_lock);
657 	/* need to find next request */
658 	while (rp->q.list.next != &cd->queue &&
659 	       list_entry(rp->q.list.next, struct cache_queue, list)
660 	       ->reader) {
661 		struct list_head *next = rp->q.list.next;
662 		list_move(&rp->q.list, next);
663 	}
664 	if (rp->q.list.next == &cd->queue) {
665 		spin_unlock(&queue_lock);
666 		mutex_unlock(&inode->i_mutex);
667 		BUG_ON(rp->offset);
668 		return 0;
669 	}
670 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
671 	BUG_ON(rq->q.reader);
672 	if (rp->offset == 0)
673 		rq->readers++;
674 	spin_unlock(&queue_lock);
675 
676 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
677 		err = -EAGAIN;
678 		spin_lock(&queue_lock);
679 		list_move(&rp->q.list, &rq->q.list);
680 		spin_unlock(&queue_lock);
681 	} else {
682 		if (rp->offset + count > rq->len)
683 			count = rq->len - rp->offset;
684 		err = -EFAULT;
685 		if (copy_to_user(buf, rq->buf + rp->offset, count))
686 			goto out;
687 		rp->offset += count;
688 		if (rp->offset >= rq->len) {
689 			rp->offset = 0;
690 			spin_lock(&queue_lock);
691 			list_move(&rp->q.list, &rq->q.list);
692 			spin_unlock(&queue_lock);
693 		}
694 		err = 0;
695 	}
696  out:
697 	if (rp->offset == 0) {
698 		/* need to release rq */
699 		spin_lock(&queue_lock);
700 		rq->readers--;
701 		if (rq->readers == 0 &&
702 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
703 			list_del(&rq->q.list);
704 			spin_unlock(&queue_lock);
705 			cache_put(rq->item, cd);
706 			kfree(rq->buf);
707 			kfree(rq);
708 		} else
709 			spin_unlock(&queue_lock);
710 	}
711 	if (err == -EAGAIN)
712 		goto again;
713 	mutex_unlock(&inode->i_mutex);
714 	return err ? err :  count;
715 }
716 
717 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
718 				 size_t count, struct cache_detail *cd)
719 {
720 	ssize_t ret;
721 
722 	if (copy_from_user(kaddr, buf, count))
723 		return -EFAULT;
724 	kaddr[count] = '\0';
725 	ret = cd->cache_parse(cd, kaddr, count);
726 	if (!ret)
727 		ret = count;
728 	return ret;
729 }
730 
731 static ssize_t cache_slow_downcall(const char __user *buf,
732 				   size_t count, struct cache_detail *cd)
733 {
734 	static char write_buf[8192]; /* protected by queue_io_mutex */
735 	ssize_t ret = -EINVAL;
736 
737 	if (count >= sizeof(write_buf))
738 		goto out;
739 	mutex_lock(&queue_io_mutex);
740 	ret = cache_do_downcall(write_buf, buf, count, cd);
741 	mutex_unlock(&queue_io_mutex);
742 out:
743 	return ret;
744 }
745 
746 static ssize_t cache_downcall(struct address_space *mapping,
747 			      const char __user *buf,
748 			      size_t count, struct cache_detail *cd)
749 {
750 	struct page *page;
751 	char *kaddr;
752 	ssize_t ret = -ENOMEM;
753 
754 	if (count >= PAGE_CACHE_SIZE)
755 		goto out_slow;
756 
757 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
758 	if (!page)
759 		goto out_slow;
760 
761 	kaddr = kmap(page);
762 	ret = cache_do_downcall(kaddr, buf, count, cd);
763 	kunmap(page);
764 	unlock_page(page);
765 	page_cache_release(page);
766 	return ret;
767 out_slow:
768 	return cache_slow_downcall(buf, count, cd);
769 }
770 
771 static ssize_t cache_write(struct file *filp, const char __user *buf,
772 			   size_t count, loff_t *ppos,
773 			   struct cache_detail *cd)
774 {
775 	struct address_space *mapping = filp->f_mapping;
776 	struct inode *inode = filp->f_path.dentry->d_inode;
777 	ssize_t ret = -EINVAL;
778 
779 	if (!cd->cache_parse)
780 		goto out;
781 
782 	mutex_lock(&inode->i_mutex);
783 	ret = cache_downcall(mapping, buf, count, cd);
784 	mutex_unlock(&inode->i_mutex);
785 out:
786 	return ret;
787 }
788 
789 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
790 
791 static unsigned int cache_poll(struct file *filp, poll_table *wait,
792 			       struct cache_detail *cd)
793 {
794 	unsigned int mask;
795 	struct cache_reader *rp = filp->private_data;
796 	struct cache_queue *cq;
797 
798 	poll_wait(filp, &queue_wait, wait);
799 
800 	/* alway allow write */
801 	mask = POLL_OUT | POLLWRNORM;
802 
803 	if (!rp)
804 		return mask;
805 
806 	spin_lock(&queue_lock);
807 
808 	for (cq= &rp->q; &cq->list != &cd->queue;
809 	     cq = list_entry(cq->list.next, struct cache_queue, list))
810 		if (!cq->reader) {
811 			mask |= POLLIN | POLLRDNORM;
812 			break;
813 		}
814 	spin_unlock(&queue_lock);
815 	return mask;
816 }
817 
818 static int cache_ioctl(struct inode *ino, struct file *filp,
819 		       unsigned int cmd, unsigned long arg,
820 		       struct cache_detail *cd)
821 {
822 	int len = 0;
823 	struct cache_reader *rp = filp->private_data;
824 	struct cache_queue *cq;
825 
826 	if (cmd != FIONREAD || !rp)
827 		return -EINVAL;
828 
829 	spin_lock(&queue_lock);
830 
831 	/* only find the length remaining in current request,
832 	 * or the length of the next request
833 	 */
834 	for (cq= &rp->q; &cq->list != &cd->queue;
835 	     cq = list_entry(cq->list.next, struct cache_queue, list))
836 		if (!cq->reader) {
837 			struct cache_request *cr =
838 				container_of(cq, struct cache_request, q);
839 			len = cr->len - rp->offset;
840 			break;
841 		}
842 	spin_unlock(&queue_lock);
843 
844 	return put_user(len, (int __user *)arg);
845 }
846 
847 static int cache_open(struct inode *inode, struct file *filp,
848 		      struct cache_detail *cd)
849 {
850 	struct cache_reader *rp = NULL;
851 
852 	if (!cd || !try_module_get(cd->owner))
853 		return -EACCES;
854 	nonseekable_open(inode, filp);
855 	if (filp->f_mode & FMODE_READ) {
856 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
857 		if (!rp)
858 			return -ENOMEM;
859 		rp->offset = 0;
860 		rp->q.reader = 1;
861 		atomic_inc(&cd->readers);
862 		spin_lock(&queue_lock);
863 		list_add(&rp->q.list, &cd->queue);
864 		spin_unlock(&queue_lock);
865 	}
866 	filp->private_data = rp;
867 	return 0;
868 }
869 
870 static int cache_release(struct inode *inode, struct file *filp,
871 			 struct cache_detail *cd)
872 {
873 	struct cache_reader *rp = filp->private_data;
874 
875 	if (rp) {
876 		spin_lock(&queue_lock);
877 		if (rp->offset) {
878 			struct cache_queue *cq;
879 			for (cq= &rp->q; &cq->list != &cd->queue;
880 			     cq = list_entry(cq->list.next, struct cache_queue, list))
881 				if (!cq->reader) {
882 					container_of(cq, struct cache_request, q)
883 						->readers--;
884 					break;
885 				}
886 			rp->offset = 0;
887 		}
888 		list_del(&rp->q.list);
889 		spin_unlock(&queue_lock);
890 
891 		filp->private_data = NULL;
892 		kfree(rp);
893 
894 		cd->last_close = get_seconds();
895 		atomic_dec(&cd->readers);
896 	}
897 	module_put(cd->owner);
898 	return 0;
899 }
900 
901 
902 
903 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
904 {
905 	struct cache_queue *cq;
906 	spin_lock(&queue_lock);
907 	list_for_each_entry(cq, &detail->queue, list)
908 		if (!cq->reader) {
909 			struct cache_request *cr = container_of(cq, struct cache_request, q);
910 			if (cr->item != ch)
911 				continue;
912 			if (cr->readers != 0)
913 				continue;
914 			list_del(&cr->q.list);
915 			spin_unlock(&queue_lock);
916 			cache_put(cr->item, detail);
917 			kfree(cr->buf);
918 			kfree(cr);
919 			return;
920 		}
921 	spin_unlock(&queue_lock);
922 }
923 
924 /*
925  * Support routines for text-based upcalls.
926  * Fields are separated by spaces.
927  * Fields are either mangled to quote space tab newline slosh with slosh
928  * or a hexified with a leading \x
929  * Record is terminated with newline.
930  *
931  */
932 
933 void qword_add(char **bpp, int *lp, char *str)
934 {
935 	char *bp = *bpp;
936 	int len = *lp;
937 	char c;
938 
939 	if (len < 0) return;
940 
941 	while ((c=*str++) && len)
942 		switch(c) {
943 		case ' ':
944 		case '\t':
945 		case '\n':
946 		case '\\':
947 			if (len >= 4) {
948 				*bp++ = '\\';
949 				*bp++ = '0' + ((c & 0300)>>6);
950 				*bp++ = '0' + ((c & 0070)>>3);
951 				*bp++ = '0' + ((c & 0007)>>0);
952 			}
953 			len -= 4;
954 			break;
955 		default:
956 			*bp++ = c;
957 			len--;
958 		}
959 	if (c || len <1) len = -1;
960 	else {
961 		*bp++ = ' ';
962 		len--;
963 	}
964 	*bpp = bp;
965 	*lp = len;
966 }
967 EXPORT_SYMBOL_GPL(qword_add);
968 
969 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
970 {
971 	char *bp = *bpp;
972 	int len = *lp;
973 
974 	if (len < 0) return;
975 
976 	if (len > 2) {
977 		*bp++ = '\\';
978 		*bp++ = 'x';
979 		len -= 2;
980 		while (blen && len >= 2) {
981 			unsigned char c = *buf++;
982 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
983 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
984 			len -= 2;
985 			blen--;
986 		}
987 	}
988 	if (blen || len<1) len = -1;
989 	else {
990 		*bp++ = ' ';
991 		len--;
992 	}
993 	*bpp = bp;
994 	*lp = len;
995 }
996 EXPORT_SYMBOL_GPL(qword_addhex);
997 
998 static void warn_no_listener(struct cache_detail *detail)
999 {
1000 	if (detail->last_warn != detail->last_close) {
1001 		detail->last_warn = detail->last_close;
1002 		if (detail->warn_no_listener)
1003 			detail->warn_no_listener(detail, detail->last_close != 0);
1004 	}
1005 }
1006 
1007 /*
1008  * register an upcall request to user-space and queue it up for read() by the
1009  * upcall daemon.
1010  *
1011  * Each request is at most one page long.
1012  */
1013 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1014 		void (*cache_request)(struct cache_detail *,
1015 				      struct cache_head *,
1016 				      char **,
1017 				      int *))
1018 {
1019 
1020 	char *buf;
1021 	struct cache_request *crq;
1022 	char *bp;
1023 	int len;
1024 
1025 	if (atomic_read(&detail->readers) == 0 &&
1026 	    detail->last_close < get_seconds() - 30) {
1027 			warn_no_listener(detail);
1028 			return -EINVAL;
1029 	}
1030 
1031 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1032 	if (!buf)
1033 		return -EAGAIN;
1034 
1035 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1036 	if (!crq) {
1037 		kfree(buf);
1038 		return -EAGAIN;
1039 	}
1040 
1041 	bp = buf; len = PAGE_SIZE;
1042 
1043 	cache_request(detail, h, &bp, &len);
1044 
1045 	if (len < 0) {
1046 		kfree(buf);
1047 		kfree(crq);
1048 		return -EAGAIN;
1049 	}
1050 	crq->q.reader = 0;
1051 	crq->item = cache_get(h);
1052 	crq->buf = buf;
1053 	crq->len = PAGE_SIZE - len;
1054 	crq->readers = 0;
1055 	spin_lock(&queue_lock);
1056 	list_add_tail(&crq->q.list, &detail->queue);
1057 	spin_unlock(&queue_lock);
1058 	wake_up(&queue_wait);
1059 	return 0;
1060 }
1061 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1062 
1063 /*
1064  * parse a message from user-space and pass it
1065  * to an appropriate cache
1066  * Messages are, like requests, separated into fields by
1067  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1068  *
1069  * Message is
1070  *   reply cachename expiry key ... content....
1071  *
1072  * key and content are both parsed by cache
1073  */
1074 
1075 #define isodigit(c) (isdigit(c) && c <= '7')
1076 int qword_get(char **bpp, char *dest, int bufsize)
1077 {
1078 	/* return bytes copied, or -1 on error */
1079 	char *bp = *bpp;
1080 	int len = 0;
1081 
1082 	while (*bp == ' ') bp++;
1083 
1084 	if (bp[0] == '\\' && bp[1] == 'x') {
1085 		/* HEX STRING */
1086 		bp += 2;
1087 		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1088 			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1089 			bp++;
1090 			byte <<= 4;
1091 			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1092 			*dest++ = byte;
1093 			bp++;
1094 			len++;
1095 		}
1096 	} else {
1097 		/* text with \nnn octal quoting */
1098 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1099 			if (*bp == '\\' &&
1100 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1101 			    isodigit(bp[2]) &&
1102 			    isodigit(bp[3])) {
1103 				int byte = (*++bp -'0');
1104 				bp++;
1105 				byte = (byte << 3) | (*bp++ - '0');
1106 				byte = (byte << 3) | (*bp++ - '0');
1107 				*dest++ = byte;
1108 				len++;
1109 			} else {
1110 				*dest++ = *bp++;
1111 				len++;
1112 			}
1113 		}
1114 	}
1115 
1116 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1117 		return -1;
1118 	while (*bp == ' ') bp++;
1119 	*bpp = bp;
1120 	*dest = '\0';
1121 	return len;
1122 }
1123 EXPORT_SYMBOL_GPL(qword_get);
1124 
1125 
1126 /*
1127  * support /proc/sunrpc/cache/$CACHENAME/content
1128  * as a seqfile.
1129  * We call ->cache_show passing NULL for the item to
1130  * get a header, then pass each real item in the cache
1131  */
1132 
1133 struct handle {
1134 	struct cache_detail *cd;
1135 };
1136 
1137 static void *c_start(struct seq_file *m, loff_t *pos)
1138 	__acquires(cd->hash_lock)
1139 {
1140 	loff_t n = *pos;
1141 	unsigned hash, entry;
1142 	struct cache_head *ch;
1143 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1144 
1145 
1146 	read_lock(&cd->hash_lock);
1147 	if (!n--)
1148 		return SEQ_START_TOKEN;
1149 	hash = n >> 32;
1150 	entry = n & ((1LL<<32) - 1);
1151 
1152 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1153 		if (!entry--)
1154 			return ch;
1155 	n &= ~((1LL<<32) - 1);
1156 	do {
1157 		hash++;
1158 		n += 1LL<<32;
1159 	} while(hash < cd->hash_size &&
1160 		cd->hash_table[hash]==NULL);
1161 	if (hash >= cd->hash_size)
1162 		return NULL;
1163 	*pos = n+1;
1164 	return cd->hash_table[hash];
1165 }
1166 
1167 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1168 {
1169 	struct cache_head *ch = p;
1170 	int hash = (*pos >> 32);
1171 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1172 
1173 	if (p == SEQ_START_TOKEN)
1174 		hash = 0;
1175 	else if (ch->next == NULL) {
1176 		hash++;
1177 		*pos += 1LL<<32;
1178 	} else {
1179 		++*pos;
1180 		return ch->next;
1181 	}
1182 	*pos &= ~((1LL<<32) - 1);
1183 	while (hash < cd->hash_size &&
1184 	       cd->hash_table[hash] == NULL) {
1185 		hash++;
1186 		*pos += 1LL<<32;
1187 	}
1188 	if (hash >= cd->hash_size)
1189 		return NULL;
1190 	++*pos;
1191 	return cd->hash_table[hash];
1192 }
1193 
1194 static void c_stop(struct seq_file *m, void *p)
1195 	__releases(cd->hash_lock)
1196 {
1197 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1198 	read_unlock(&cd->hash_lock);
1199 }
1200 
1201 static int c_show(struct seq_file *m, void *p)
1202 {
1203 	struct cache_head *cp = p;
1204 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1205 
1206 	if (p == SEQ_START_TOKEN)
1207 		return cd->cache_show(m, cd, NULL);
1208 
1209 	ifdebug(CACHE)
1210 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1211 			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1212 	cache_get(cp);
1213 	if (cache_check(cd, cp, NULL))
1214 		/* cache_check does a cache_put on failure */
1215 		seq_printf(m, "# ");
1216 	else
1217 		cache_put(cp, cd);
1218 
1219 	return cd->cache_show(m, cd, cp);
1220 }
1221 
1222 static const struct seq_operations cache_content_op = {
1223 	.start	= c_start,
1224 	.next	= c_next,
1225 	.stop	= c_stop,
1226 	.show	= c_show,
1227 };
1228 
1229 static int content_open(struct inode *inode, struct file *file,
1230 			struct cache_detail *cd)
1231 {
1232 	struct handle *han;
1233 
1234 	if (!cd || !try_module_get(cd->owner))
1235 		return -EACCES;
1236 	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1237 	if (han == NULL)
1238 		return -ENOMEM;
1239 
1240 	han->cd = cd;
1241 	return 0;
1242 }
1243 
1244 static int content_release(struct inode *inode, struct file *file,
1245 		struct cache_detail *cd)
1246 {
1247 	int ret = seq_release_private(inode, file);
1248 	module_put(cd->owner);
1249 	return ret;
1250 }
1251 
1252 static int open_flush(struct inode *inode, struct file *file,
1253 			struct cache_detail *cd)
1254 {
1255 	if (!cd || !try_module_get(cd->owner))
1256 		return -EACCES;
1257 	return nonseekable_open(inode, file);
1258 }
1259 
1260 static int release_flush(struct inode *inode, struct file *file,
1261 			struct cache_detail *cd)
1262 {
1263 	module_put(cd->owner);
1264 	return 0;
1265 }
1266 
1267 static ssize_t read_flush(struct file *file, char __user *buf,
1268 			  size_t count, loff_t *ppos,
1269 			  struct cache_detail *cd)
1270 {
1271 	char tbuf[20];
1272 	unsigned long p = *ppos;
1273 	size_t len;
1274 
1275 	sprintf(tbuf, "%lu\n", cd->flush_time);
1276 	len = strlen(tbuf);
1277 	if (p >= len)
1278 		return 0;
1279 	len -= p;
1280 	if (len > count)
1281 		len = count;
1282 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1283 		return -EFAULT;
1284 	*ppos += len;
1285 	return len;
1286 }
1287 
1288 static ssize_t write_flush(struct file *file, const char __user *buf,
1289 			   size_t count, loff_t *ppos,
1290 			   struct cache_detail *cd)
1291 {
1292 	char tbuf[20];
1293 	char *ep;
1294 	long flushtime;
1295 	if (*ppos || count > sizeof(tbuf)-1)
1296 		return -EINVAL;
1297 	if (copy_from_user(tbuf, buf, count))
1298 		return -EFAULT;
1299 	tbuf[count] = 0;
1300 	flushtime = simple_strtoul(tbuf, &ep, 0);
1301 	if (*ep && *ep != '\n')
1302 		return -EINVAL;
1303 
1304 	cd->flush_time = flushtime;
1305 	cd->nextcheck = get_seconds();
1306 	cache_flush();
1307 
1308 	*ppos += count;
1309 	return count;
1310 }
1311 
1312 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1313 				 size_t count, loff_t *ppos)
1314 {
1315 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1316 
1317 	return cache_read(filp, buf, count, ppos, cd);
1318 }
1319 
1320 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1321 				  size_t count, loff_t *ppos)
1322 {
1323 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1324 
1325 	return cache_write(filp, buf, count, ppos, cd);
1326 }
1327 
1328 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1329 {
1330 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1331 
1332 	return cache_poll(filp, wait, cd);
1333 }
1334 
1335 static int cache_ioctl_procfs(struct inode *inode, struct file *filp,
1336 			      unsigned int cmd, unsigned long arg)
1337 {
1338 	struct cache_detail *cd = PDE(inode)->data;
1339 
1340 	return cache_ioctl(inode, filp, cmd, arg, cd);
1341 }
1342 
1343 static int cache_open_procfs(struct inode *inode, struct file *filp)
1344 {
1345 	struct cache_detail *cd = PDE(inode)->data;
1346 
1347 	return cache_open(inode, filp, cd);
1348 }
1349 
1350 static int cache_release_procfs(struct inode *inode, struct file *filp)
1351 {
1352 	struct cache_detail *cd = PDE(inode)->data;
1353 
1354 	return cache_release(inode, filp, cd);
1355 }
1356 
1357 static const struct file_operations cache_file_operations_procfs = {
1358 	.owner		= THIS_MODULE,
1359 	.llseek		= no_llseek,
1360 	.read		= cache_read_procfs,
1361 	.write		= cache_write_procfs,
1362 	.poll		= cache_poll_procfs,
1363 	.ioctl		= cache_ioctl_procfs, /* for FIONREAD */
1364 	.open		= cache_open_procfs,
1365 	.release	= cache_release_procfs,
1366 };
1367 
1368 static int content_open_procfs(struct inode *inode, struct file *filp)
1369 {
1370 	struct cache_detail *cd = PDE(inode)->data;
1371 
1372 	return content_open(inode, filp, cd);
1373 }
1374 
1375 static int content_release_procfs(struct inode *inode, struct file *filp)
1376 {
1377 	struct cache_detail *cd = PDE(inode)->data;
1378 
1379 	return content_release(inode, filp, cd);
1380 }
1381 
1382 static const struct file_operations content_file_operations_procfs = {
1383 	.open		= content_open_procfs,
1384 	.read		= seq_read,
1385 	.llseek		= seq_lseek,
1386 	.release	= content_release_procfs,
1387 };
1388 
1389 static int open_flush_procfs(struct inode *inode, struct file *filp)
1390 {
1391 	struct cache_detail *cd = PDE(inode)->data;
1392 
1393 	return open_flush(inode, filp, cd);
1394 }
1395 
1396 static int release_flush_procfs(struct inode *inode, struct file *filp)
1397 {
1398 	struct cache_detail *cd = PDE(inode)->data;
1399 
1400 	return release_flush(inode, filp, cd);
1401 }
1402 
1403 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1404 			    size_t count, loff_t *ppos)
1405 {
1406 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1407 
1408 	return read_flush(filp, buf, count, ppos, cd);
1409 }
1410 
1411 static ssize_t write_flush_procfs(struct file *filp,
1412 				  const char __user *buf,
1413 				  size_t count, loff_t *ppos)
1414 {
1415 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1416 
1417 	return write_flush(filp, buf, count, ppos, cd);
1418 }
1419 
1420 static const struct file_operations cache_flush_operations_procfs = {
1421 	.open		= open_flush_procfs,
1422 	.read		= read_flush_procfs,
1423 	.write		= write_flush_procfs,
1424 	.release	= release_flush_procfs,
1425 };
1426 
1427 static void remove_cache_proc_entries(struct cache_detail *cd)
1428 {
1429 	if (cd->u.procfs.proc_ent == NULL)
1430 		return;
1431 	if (cd->u.procfs.flush_ent)
1432 		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1433 	if (cd->u.procfs.channel_ent)
1434 		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1435 	if (cd->u.procfs.content_ent)
1436 		remove_proc_entry("content", cd->u.procfs.proc_ent);
1437 	cd->u.procfs.proc_ent = NULL;
1438 	remove_proc_entry(cd->name, proc_net_rpc);
1439 }
1440 
1441 #ifdef CONFIG_PROC_FS
1442 static int create_cache_proc_entries(struct cache_detail *cd)
1443 {
1444 	struct proc_dir_entry *p;
1445 
1446 	cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
1447 	if (cd->u.procfs.proc_ent == NULL)
1448 		goto out_nomem;
1449 	cd->u.procfs.channel_ent = NULL;
1450 	cd->u.procfs.content_ent = NULL;
1451 
1452 	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1453 			     cd->u.procfs.proc_ent,
1454 			     &cache_flush_operations_procfs, cd);
1455 	cd->u.procfs.flush_ent = p;
1456 	if (p == NULL)
1457 		goto out_nomem;
1458 
1459 	if (cd->cache_upcall || cd->cache_parse) {
1460 		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1461 				     cd->u.procfs.proc_ent,
1462 				     &cache_file_operations_procfs, cd);
1463 		cd->u.procfs.channel_ent = p;
1464 		if (p == NULL)
1465 			goto out_nomem;
1466 	}
1467 	if (cd->cache_show) {
1468 		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1469 				cd->u.procfs.proc_ent,
1470 				&content_file_operations_procfs, cd);
1471 		cd->u.procfs.content_ent = p;
1472 		if (p == NULL)
1473 			goto out_nomem;
1474 	}
1475 	return 0;
1476 out_nomem:
1477 	remove_cache_proc_entries(cd);
1478 	return -ENOMEM;
1479 }
1480 #else /* CONFIG_PROC_FS */
1481 static int create_cache_proc_entries(struct cache_detail *cd)
1482 {
1483 	return 0;
1484 }
1485 #endif
1486 
1487 int cache_register(struct cache_detail *cd)
1488 {
1489 	int ret;
1490 
1491 	sunrpc_init_cache_detail(cd);
1492 	ret = create_cache_proc_entries(cd);
1493 	if (ret)
1494 		sunrpc_destroy_cache_detail(cd);
1495 	return ret;
1496 }
1497 EXPORT_SYMBOL_GPL(cache_register);
1498 
1499 void cache_unregister(struct cache_detail *cd)
1500 {
1501 	remove_cache_proc_entries(cd);
1502 	sunrpc_destroy_cache_detail(cd);
1503 }
1504 EXPORT_SYMBOL_GPL(cache_unregister);
1505 
1506 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1507 				 size_t count, loff_t *ppos)
1508 {
1509 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1510 
1511 	return cache_read(filp, buf, count, ppos, cd);
1512 }
1513 
1514 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1515 				  size_t count, loff_t *ppos)
1516 {
1517 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1518 
1519 	return cache_write(filp, buf, count, ppos, cd);
1520 }
1521 
1522 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1523 {
1524 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1525 
1526 	return cache_poll(filp, wait, cd);
1527 }
1528 
1529 static int cache_ioctl_pipefs(struct inode *inode, struct file *filp,
1530 			      unsigned int cmd, unsigned long arg)
1531 {
1532 	struct cache_detail *cd = RPC_I(inode)->private;
1533 
1534 	return cache_ioctl(inode, filp, cmd, arg, cd);
1535 }
1536 
1537 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1538 {
1539 	struct cache_detail *cd = RPC_I(inode)->private;
1540 
1541 	return cache_open(inode, filp, cd);
1542 }
1543 
1544 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1545 {
1546 	struct cache_detail *cd = RPC_I(inode)->private;
1547 
1548 	return cache_release(inode, filp, cd);
1549 }
1550 
1551 const struct file_operations cache_file_operations_pipefs = {
1552 	.owner		= THIS_MODULE,
1553 	.llseek		= no_llseek,
1554 	.read		= cache_read_pipefs,
1555 	.write		= cache_write_pipefs,
1556 	.poll		= cache_poll_pipefs,
1557 	.ioctl		= cache_ioctl_pipefs, /* for FIONREAD */
1558 	.open		= cache_open_pipefs,
1559 	.release	= cache_release_pipefs,
1560 };
1561 
1562 static int content_open_pipefs(struct inode *inode, struct file *filp)
1563 {
1564 	struct cache_detail *cd = RPC_I(inode)->private;
1565 
1566 	return content_open(inode, filp, cd);
1567 }
1568 
1569 static int content_release_pipefs(struct inode *inode, struct file *filp)
1570 {
1571 	struct cache_detail *cd = RPC_I(inode)->private;
1572 
1573 	return content_release(inode, filp, cd);
1574 }
1575 
1576 const struct file_operations content_file_operations_pipefs = {
1577 	.open		= content_open_pipefs,
1578 	.read		= seq_read,
1579 	.llseek		= seq_lseek,
1580 	.release	= content_release_pipefs,
1581 };
1582 
1583 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1584 {
1585 	struct cache_detail *cd = RPC_I(inode)->private;
1586 
1587 	return open_flush(inode, filp, cd);
1588 }
1589 
1590 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1591 {
1592 	struct cache_detail *cd = RPC_I(inode)->private;
1593 
1594 	return release_flush(inode, filp, cd);
1595 }
1596 
1597 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1598 			    size_t count, loff_t *ppos)
1599 {
1600 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1601 
1602 	return read_flush(filp, buf, count, ppos, cd);
1603 }
1604 
1605 static ssize_t write_flush_pipefs(struct file *filp,
1606 				  const char __user *buf,
1607 				  size_t count, loff_t *ppos)
1608 {
1609 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1610 
1611 	return write_flush(filp, buf, count, ppos, cd);
1612 }
1613 
1614 const struct file_operations cache_flush_operations_pipefs = {
1615 	.open		= open_flush_pipefs,
1616 	.read		= read_flush_pipefs,
1617 	.write		= write_flush_pipefs,
1618 	.release	= release_flush_pipefs,
1619 };
1620 
1621 int sunrpc_cache_register_pipefs(struct dentry *parent,
1622 				 const char *name, mode_t umode,
1623 				 struct cache_detail *cd)
1624 {
1625 	struct qstr q;
1626 	struct dentry *dir;
1627 	int ret = 0;
1628 
1629 	sunrpc_init_cache_detail(cd);
1630 	q.name = name;
1631 	q.len = strlen(name);
1632 	q.hash = full_name_hash(q.name, q.len);
1633 	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1634 	if (!IS_ERR(dir))
1635 		cd->u.pipefs.dir = dir;
1636 	else {
1637 		sunrpc_destroy_cache_detail(cd);
1638 		ret = PTR_ERR(dir);
1639 	}
1640 	return ret;
1641 }
1642 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1643 
1644 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1645 {
1646 	rpc_remove_cache_dir(cd->u.pipefs.dir);
1647 	cd->u.pipefs.dir = NULL;
1648 	sunrpc_destroy_cache_detail(cd);
1649 }
1650 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1651 
1652