1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <linux/string_helpers.h> 24 #include <linux/uaccess.h> 25 #include <linux/poll.h> 26 #include <linux/seq_file.h> 27 #include <linux/proc_fs.h> 28 #include <linux/net.h> 29 #include <linux/workqueue.h> 30 #include <linux/mutex.h> 31 #include <linux/pagemap.h> 32 #include <asm/ioctls.h> 33 #include <linux/sunrpc/types.h> 34 #include <linux/sunrpc/cache.h> 35 #include <linux/sunrpc/stats.h> 36 #include <linux/sunrpc/rpc_pipe_fs.h> 37 #include "netns.h" 38 39 #define RPCDBG_FACILITY RPCDBG_CACHE 40 41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 42 static void cache_revisit_request(struct cache_head *item); 43 44 static void cache_init(struct cache_head *h, struct cache_detail *detail) 45 { 46 time_t now = seconds_since_boot(); 47 INIT_HLIST_NODE(&h->cache_list); 48 h->flags = 0; 49 kref_init(&h->ref); 50 h->expiry_time = now + CACHE_NEW_EXPIRY; 51 if (now <= detail->flush_time) 52 /* ensure it isn't already expired */ 53 now = detail->flush_time + 1; 54 h->last_refresh = now; 55 } 56 57 static inline int cache_is_valid(struct cache_head *h); 58 static void cache_fresh_locked(struct cache_head *head, time_t expiry, 59 struct cache_detail *detail); 60 static void cache_fresh_unlocked(struct cache_head *head, 61 struct cache_detail *detail); 62 63 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail, 64 struct cache_head *key, 65 int hash) 66 { 67 struct hlist_head *head = &detail->hash_table[hash]; 68 struct cache_head *tmp; 69 70 rcu_read_lock(); 71 hlist_for_each_entry_rcu(tmp, head, cache_list) { 72 if (detail->match(tmp, key)) { 73 if (cache_is_expired(detail, tmp)) 74 continue; 75 tmp = cache_get_rcu(tmp); 76 rcu_read_unlock(); 77 return tmp; 78 } 79 } 80 rcu_read_unlock(); 81 return NULL; 82 } 83 84 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail, 85 struct cache_head *key, 86 int hash) 87 { 88 struct cache_head *new, *tmp, *freeme = NULL; 89 struct hlist_head *head = &detail->hash_table[hash]; 90 91 new = detail->alloc(); 92 if (!new) 93 return NULL; 94 /* must fully initialise 'new', else 95 * we might get lose if we need to 96 * cache_put it soon. 97 */ 98 cache_init(new, detail); 99 detail->init(new, key); 100 101 spin_lock(&detail->hash_lock); 102 103 /* check if entry appeared while we slept */ 104 hlist_for_each_entry_rcu(tmp, head, cache_list) { 105 if (detail->match(tmp, key)) { 106 if (cache_is_expired(detail, tmp)) { 107 hlist_del_init_rcu(&tmp->cache_list); 108 detail->entries --; 109 if (cache_is_valid(tmp) == -EAGAIN) 110 set_bit(CACHE_NEGATIVE, &tmp->flags); 111 cache_fresh_locked(tmp, 0, detail); 112 freeme = tmp; 113 break; 114 } 115 cache_get(tmp); 116 spin_unlock(&detail->hash_lock); 117 cache_put(new, detail); 118 return tmp; 119 } 120 } 121 122 hlist_add_head_rcu(&new->cache_list, head); 123 detail->entries++; 124 cache_get(new); 125 spin_unlock(&detail->hash_lock); 126 127 if (freeme) { 128 cache_fresh_unlocked(freeme, detail); 129 cache_put(freeme, detail); 130 } 131 return new; 132 } 133 134 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail, 135 struct cache_head *key, int hash) 136 { 137 struct cache_head *ret; 138 139 ret = sunrpc_cache_find_rcu(detail, key, hash); 140 if (ret) 141 return ret; 142 /* Didn't find anything, insert an empty entry */ 143 return sunrpc_cache_add_entry(detail, key, hash); 144 } 145 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu); 146 147 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 148 149 static void cache_fresh_locked(struct cache_head *head, time_t expiry, 150 struct cache_detail *detail) 151 { 152 time_t now = seconds_since_boot(); 153 if (now <= detail->flush_time) 154 /* ensure it isn't immediately treated as expired */ 155 now = detail->flush_time + 1; 156 head->expiry_time = expiry; 157 head->last_refresh = now; 158 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 159 set_bit(CACHE_VALID, &head->flags); 160 } 161 162 static void cache_fresh_unlocked(struct cache_head *head, 163 struct cache_detail *detail) 164 { 165 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 166 cache_revisit_request(head); 167 cache_dequeue(detail, head); 168 } 169 } 170 171 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 172 struct cache_head *new, struct cache_head *old, int hash) 173 { 174 /* The 'old' entry is to be replaced by 'new'. 175 * If 'old' is not VALID, we update it directly, 176 * otherwise we need to replace it 177 */ 178 struct cache_head *tmp; 179 180 if (!test_bit(CACHE_VALID, &old->flags)) { 181 spin_lock(&detail->hash_lock); 182 if (!test_bit(CACHE_VALID, &old->flags)) { 183 if (test_bit(CACHE_NEGATIVE, &new->flags)) 184 set_bit(CACHE_NEGATIVE, &old->flags); 185 else 186 detail->update(old, new); 187 cache_fresh_locked(old, new->expiry_time, detail); 188 spin_unlock(&detail->hash_lock); 189 cache_fresh_unlocked(old, detail); 190 return old; 191 } 192 spin_unlock(&detail->hash_lock); 193 } 194 /* We need to insert a new entry */ 195 tmp = detail->alloc(); 196 if (!tmp) { 197 cache_put(old, detail); 198 return NULL; 199 } 200 cache_init(tmp, detail); 201 detail->init(tmp, old); 202 203 spin_lock(&detail->hash_lock); 204 if (test_bit(CACHE_NEGATIVE, &new->flags)) 205 set_bit(CACHE_NEGATIVE, &tmp->flags); 206 else 207 detail->update(tmp, new); 208 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 209 detail->entries++; 210 cache_get(tmp); 211 cache_fresh_locked(tmp, new->expiry_time, detail); 212 cache_fresh_locked(old, 0, detail); 213 spin_unlock(&detail->hash_lock); 214 cache_fresh_unlocked(tmp, detail); 215 cache_fresh_unlocked(old, detail); 216 cache_put(old, detail); 217 return tmp; 218 } 219 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 220 221 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 222 { 223 if (cd->cache_upcall) 224 return cd->cache_upcall(cd, h); 225 return sunrpc_cache_pipe_upcall(cd, h); 226 } 227 228 static inline int cache_is_valid(struct cache_head *h) 229 { 230 if (!test_bit(CACHE_VALID, &h->flags)) 231 return -EAGAIN; 232 else { 233 /* entry is valid */ 234 if (test_bit(CACHE_NEGATIVE, &h->flags)) 235 return -ENOENT; 236 else { 237 /* 238 * In combination with write barrier in 239 * sunrpc_cache_update, ensures that anyone 240 * using the cache entry after this sees the 241 * updated contents: 242 */ 243 smp_rmb(); 244 return 0; 245 } 246 } 247 } 248 249 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 250 { 251 int rv; 252 253 spin_lock(&detail->hash_lock); 254 rv = cache_is_valid(h); 255 if (rv == -EAGAIN) { 256 set_bit(CACHE_NEGATIVE, &h->flags); 257 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 258 detail); 259 rv = -ENOENT; 260 } 261 spin_unlock(&detail->hash_lock); 262 cache_fresh_unlocked(h, detail); 263 return rv; 264 } 265 266 /* 267 * This is the generic cache management routine for all 268 * the authentication caches. 269 * It checks the currency of a cache item and will (later) 270 * initiate an upcall to fill it if needed. 271 * 272 * 273 * Returns 0 if the cache_head can be used, or cache_puts it and returns 274 * -EAGAIN if upcall is pending and request has been queued 275 * -ETIMEDOUT if upcall failed or request could not be queue or 276 * upcall completed but item is still invalid (implying that 277 * the cache item has been replaced with a newer one). 278 * -ENOENT if cache entry was negative 279 */ 280 int cache_check(struct cache_detail *detail, 281 struct cache_head *h, struct cache_req *rqstp) 282 { 283 int rv; 284 long refresh_age, age; 285 286 /* First decide return status as best we can */ 287 rv = cache_is_valid(h); 288 289 /* now see if we want to start an upcall */ 290 refresh_age = (h->expiry_time - h->last_refresh); 291 age = seconds_since_boot() - h->last_refresh; 292 293 if (rqstp == NULL) { 294 if (rv == -EAGAIN) 295 rv = -ENOENT; 296 } else if (rv == -EAGAIN || 297 (h->expiry_time != 0 && age > refresh_age/2)) { 298 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 299 refresh_age, age); 300 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 301 switch (cache_make_upcall(detail, h)) { 302 case -EINVAL: 303 rv = try_to_negate_entry(detail, h); 304 break; 305 case -EAGAIN: 306 cache_fresh_unlocked(h, detail); 307 break; 308 } 309 } 310 } 311 312 if (rv == -EAGAIN) { 313 if (!cache_defer_req(rqstp, h)) { 314 /* 315 * Request was not deferred; handle it as best 316 * we can ourselves: 317 */ 318 rv = cache_is_valid(h); 319 if (rv == -EAGAIN) 320 rv = -ETIMEDOUT; 321 } 322 } 323 if (rv) 324 cache_put(h, detail); 325 return rv; 326 } 327 EXPORT_SYMBOL_GPL(cache_check); 328 329 /* 330 * caches need to be periodically cleaned. 331 * For this we maintain a list of cache_detail and 332 * a current pointer into that list and into the table 333 * for that entry. 334 * 335 * Each time cache_clean is called it finds the next non-empty entry 336 * in the current table and walks the list in that entry 337 * looking for entries that can be removed. 338 * 339 * An entry gets removed if: 340 * - The expiry is before current time 341 * - The last_refresh time is before the flush_time for that cache 342 * 343 * later we might drop old entries with non-NEVER expiry if that table 344 * is getting 'full' for some definition of 'full' 345 * 346 * The question of "how often to scan a table" is an interesting one 347 * and is answered in part by the use of the "nextcheck" field in the 348 * cache_detail. 349 * When a scan of a table begins, the nextcheck field is set to a time 350 * that is well into the future. 351 * While scanning, if an expiry time is found that is earlier than the 352 * current nextcheck time, nextcheck is set to that expiry time. 353 * If the flush_time is ever set to a time earlier than the nextcheck 354 * time, the nextcheck time is then set to that flush_time. 355 * 356 * A table is then only scanned if the current time is at least 357 * the nextcheck time. 358 * 359 */ 360 361 static LIST_HEAD(cache_list); 362 static DEFINE_SPINLOCK(cache_list_lock); 363 static struct cache_detail *current_detail; 364 static int current_index; 365 366 static void do_cache_clean(struct work_struct *work); 367 static struct delayed_work cache_cleaner; 368 369 void sunrpc_init_cache_detail(struct cache_detail *cd) 370 { 371 spin_lock_init(&cd->hash_lock); 372 INIT_LIST_HEAD(&cd->queue); 373 spin_lock(&cache_list_lock); 374 cd->nextcheck = 0; 375 cd->entries = 0; 376 atomic_set(&cd->readers, 0); 377 cd->last_close = 0; 378 cd->last_warn = -1; 379 list_add(&cd->others, &cache_list); 380 spin_unlock(&cache_list_lock); 381 382 /* start the cleaning process */ 383 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); 384 } 385 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 386 387 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 388 { 389 cache_purge(cd); 390 spin_lock(&cache_list_lock); 391 spin_lock(&cd->hash_lock); 392 if (current_detail == cd) 393 current_detail = NULL; 394 list_del_init(&cd->others); 395 spin_unlock(&cd->hash_lock); 396 spin_unlock(&cache_list_lock); 397 if (list_empty(&cache_list)) { 398 /* module must be being unloaded so its safe to kill the worker */ 399 cancel_delayed_work_sync(&cache_cleaner); 400 } 401 } 402 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 403 404 /* clean cache tries to find something to clean 405 * and cleans it. 406 * It returns 1 if it cleaned something, 407 * 0 if it didn't find anything this time 408 * -1 if it fell off the end of the list. 409 */ 410 static int cache_clean(void) 411 { 412 int rv = 0; 413 struct list_head *next; 414 415 spin_lock(&cache_list_lock); 416 417 /* find a suitable table if we don't already have one */ 418 while (current_detail == NULL || 419 current_index >= current_detail->hash_size) { 420 if (current_detail) 421 next = current_detail->others.next; 422 else 423 next = cache_list.next; 424 if (next == &cache_list) { 425 current_detail = NULL; 426 spin_unlock(&cache_list_lock); 427 return -1; 428 } 429 current_detail = list_entry(next, struct cache_detail, others); 430 if (current_detail->nextcheck > seconds_since_boot()) 431 current_index = current_detail->hash_size; 432 else { 433 current_index = 0; 434 current_detail->nextcheck = seconds_since_boot()+30*60; 435 } 436 } 437 438 /* find a non-empty bucket in the table */ 439 while (current_detail && 440 current_index < current_detail->hash_size && 441 hlist_empty(¤t_detail->hash_table[current_index])) 442 current_index++; 443 444 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 445 446 if (current_detail && current_index < current_detail->hash_size) { 447 struct cache_head *ch = NULL; 448 struct cache_detail *d; 449 struct hlist_head *head; 450 struct hlist_node *tmp; 451 452 spin_lock(¤t_detail->hash_lock); 453 454 /* Ok, now to clean this strand */ 455 456 head = ¤t_detail->hash_table[current_index]; 457 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 458 if (current_detail->nextcheck > ch->expiry_time) 459 current_detail->nextcheck = ch->expiry_time+1; 460 if (!cache_is_expired(current_detail, ch)) 461 continue; 462 463 hlist_del_init_rcu(&ch->cache_list); 464 current_detail->entries--; 465 rv = 1; 466 break; 467 } 468 469 spin_unlock(¤t_detail->hash_lock); 470 d = current_detail; 471 if (!ch) 472 current_index ++; 473 spin_unlock(&cache_list_lock); 474 if (ch) { 475 set_bit(CACHE_CLEANED, &ch->flags); 476 cache_fresh_unlocked(ch, d); 477 cache_put(ch, d); 478 } 479 } else 480 spin_unlock(&cache_list_lock); 481 482 return rv; 483 } 484 485 /* 486 * We want to regularly clean the cache, so we need to schedule some work ... 487 */ 488 static void do_cache_clean(struct work_struct *work) 489 { 490 int delay = 5; 491 if (cache_clean() == -1) 492 delay = round_jiffies_relative(30*HZ); 493 494 if (list_empty(&cache_list)) 495 delay = 0; 496 497 if (delay) 498 queue_delayed_work(system_power_efficient_wq, 499 &cache_cleaner, delay); 500 } 501 502 503 /* 504 * Clean all caches promptly. This just calls cache_clean 505 * repeatedly until we are sure that every cache has had a chance to 506 * be fully cleaned 507 */ 508 void cache_flush(void) 509 { 510 while (cache_clean() != -1) 511 cond_resched(); 512 while (cache_clean() != -1) 513 cond_resched(); 514 } 515 EXPORT_SYMBOL_GPL(cache_flush); 516 517 void cache_purge(struct cache_detail *detail) 518 { 519 struct cache_head *ch = NULL; 520 struct hlist_head *head = NULL; 521 struct hlist_node *tmp = NULL; 522 int i = 0; 523 524 spin_lock(&detail->hash_lock); 525 if (!detail->entries) { 526 spin_unlock(&detail->hash_lock); 527 return; 528 } 529 530 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name); 531 for (i = 0; i < detail->hash_size; i++) { 532 head = &detail->hash_table[i]; 533 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 534 hlist_del_init_rcu(&ch->cache_list); 535 detail->entries--; 536 537 set_bit(CACHE_CLEANED, &ch->flags); 538 spin_unlock(&detail->hash_lock); 539 cache_fresh_unlocked(ch, detail); 540 cache_put(ch, detail); 541 spin_lock(&detail->hash_lock); 542 } 543 } 544 spin_unlock(&detail->hash_lock); 545 } 546 EXPORT_SYMBOL_GPL(cache_purge); 547 548 549 /* 550 * Deferral and Revisiting of Requests. 551 * 552 * If a cache lookup finds a pending entry, we 553 * need to defer the request and revisit it later. 554 * All deferred requests are stored in a hash table, 555 * indexed by "struct cache_head *". 556 * As it may be wasteful to store a whole request 557 * structure, we allow the request to provide a 558 * deferred form, which must contain a 559 * 'struct cache_deferred_req' 560 * This cache_deferred_req contains a method to allow 561 * it to be revisited when cache info is available 562 */ 563 564 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 565 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 566 567 #define DFR_MAX 300 /* ??? */ 568 569 static DEFINE_SPINLOCK(cache_defer_lock); 570 static LIST_HEAD(cache_defer_list); 571 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 572 static int cache_defer_cnt; 573 574 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 575 { 576 hlist_del_init(&dreq->hash); 577 if (!list_empty(&dreq->recent)) { 578 list_del_init(&dreq->recent); 579 cache_defer_cnt--; 580 } 581 } 582 583 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 584 { 585 int hash = DFR_HASH(item); 586 587 INIT_LIST_HEAD(&dreq->recent); 588 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 589 } 590 591 static void setup_deferral(struct cache_deferred_req *dreq, 592 struct cache_head *item, 593 int count_me) 594 { 595 596 dreq->item = item; 597 598 spin_lock(&cache_defer_lock); 599 600 __hash_deferred_req(dreq, item); 601 602 if (count_me) { 603 cache_defer_cnt++; 604 list_add(&dreq->recent, &cache_defer_list); 605 } 606 607 spin_unlock(&cache_defer_lock); 608 609 } 610 611 struct thread_deferred_req { 612 struct cache_deferred_req handle; 613 struct completion completion; 614 }; 615 616 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 617 { 618 struct thread_deferred_req *dr = 619 container_of(dreq, struct thread_deferred_req, handle); 620 complete(&dr->completion); 621 } 622 623 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 624 { 625 struct thread_deferred_req sleeper; 626 struct cache_deferred_req *dreq = &sleeper.handle; 627 628 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 629 dreq->revisit = cache_restart_thread; 630 631 setup_deferral(dreq, item, 0); 632 633 if (!test_bit(CACHE_PENDING, &item->flags) || 634 wait_for_completion_interruptible_timeout( 635 &sleeper.completion, req->thread_wait) <= 0) { 636 /* The completion wasn't completed, so we need 637 * to clean up 638 */ 639 spin_lock(&cache_defer_lock); 640 if (!hlist_unhashed(&sleeper.handle.hash)) { 641 __unhash_deferred_req(&sleeper.handle); 642 spin_unlock(&cache_defer_lock); 643 } else { 644 /* cache_revisit_request already removed 645 * this from the hash table, but hasn't 646 * called ->revisit yet. It will very soon 647 * and we need to wait for it. 648 */ 649 spin_unlock(&cache_defer_lock); 650 wait_for_completion(&sleeper.completion); 651 } 652 } 653 } 654 655 static void cache_limit_defers(void) 656 { 657 /* Make sure we haven't exceed the limit of allowed deferred 658 * requests. 659 */ 660 struct cache_deferred_req *discard = NULL; 661 662 if (cache_defer_cnt <= DFR_MAX) 663 return; 664 665 spin_lock(&cache_defer_lock); 666 667 /* Consider removing either the first or the last */ 668 if (cache_defer_cnt > DFR_MAX) { 669 if (prandom_u32() & 1) 670 discard = list_entry(cache_defer_list.next, 671 struct cache_deferred_req, recent); 672 else 673 discard = list_entry(cache_defer_list.prev, 674 struct cache_deferred_req, recent); 675 __unhash_deferred_req(discard); 676 } 677 spin_unlock(&cache_defer_lock); 678 if (discard) 679 discard->revisit(discard, 1); 680 } 681 682 /* Return true if and only if a deferred request is queued. */ 683 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 684 { 685 struct cache_deferred_req *dreq; 686 687 if (req->thread_wait) { 688 cache_wait_req(req, item); 689 if (!test_bit(CACHE_PENDING, &item->flags)) 690 return false; 691 } 692 dreq = req->defer(req); 693 if (dreq == NULL) 694 return false; 695 setup_deferral(dreq, item, 1); 696 if (!test_bit(CACHE_PENDING, &item->flags)) 697 /* Bit could have been cleared before we managed to 698 * set up the deferral, so need to revisit just in case 699 */ 700 cache_revisit_request(item); 701 702 cache_limit_defers(); 703 return true; 704 } 705 706 static void cache_revisit_request(struct cache_head *item) 707 { 708 struct cache_deferred_req *dreq; 709 struct list_head pending; 710 struct hlist_node *tmp; 711 int hash = DFR_HASH(item); 712 713 INIT_LIST_HEAD(&pending); 714 spin_lock(&cache_defer_lock); 715 716 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 717 if (dreq->item == item) { 718 __unhash_deferred_req(dreq); 719 list_add(&dreq->recent, &pending); 720 } 721 722 spin_unlock(&cache_defer_lock); 723 724 while (!list_empty(&pending)) { 725 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 726 list_del_init(&dreq->recent); 727 dreq->revisit(dreq, 0); 728 } 729 } 730 731 void cache_clean_deferred(void *owner) 732 { 733 struct cache_deferred_req *dreq, *tmp; 734 struct list_head pending; 735 736 737 INIT_LIST_HEAD(&pending); 738 spin_lock(&cache_defer_lock); 739 740 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 741 if (dreq->owner == owner) { 742 __unhash_deferred_req(dreq); 743 list_add(&dreq->recent, &pending); 744 } 745 } 746 spin_unlock(&cache_defer_lock); 747 748 while (!list_empty(&pending)) { 749 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 750 list_del_init(&dreq->recent); 751 dreq->revisit(dreq, 1); 752 } 753 } 754 755 /* 756 * communicate with user-space 757 * 758 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel. 759 * On read, you get a full request, or block. 760 * On write, an update request is processed. 761 * Poll works if anything to read, and always allows write. 762 * 763 * Implemented by linked list of requests. Each open file has 764 * a ->private that also exists in this list. New requests are added 765 * to the end and may wakeup and preceding readers. 766 * New readers are added to the head. If, on read, an item is found with 767 * CACHE_UPCALLING clear, we free it from the list. 768 * 769 */ 770 771 static DEFINE_SPINLOCK(queue_lock); 772 static DEFINE_MUTEX(queue_io_mutex); 773 774 struct cache_queue { 775 struct list_head list; 776 int reader; /* if 0, then request */ 777 }; 778 struct cache_request { 779 struct cache_queue q; 780 struct cache_head *item; 781 char * buf; 782 int len; 783 int readers; 784 }; 785 struct cache_reader { 786 struct cache_queue q; 787 int offset; /* if non-0, we have a refcnt on next request */ 788 }; 789 790 static int cache_request(struct cache_detail *detail, 791 struct cache_request *crq) 792 { 793 char *bp = crq->buf; 794 int len = PAGE_SIZE; 795 796 detail->cache_request(detail, crq->item, &bp, &len); 797 if (len < 0) 798 return -EAGAIN; 799 return PAGE_SIZE - len; 800 } 801 802 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 803 loff_t *ppos, struct cache_detail *cd) 804 { 805 struct cache_reader *rp = filp->private_data; 806 struct cache_request *rq; 807 struct inode *inode = file_inode(filp); 808 int err; 809 810 if (count == 0) 811 return 0; 812 813 inode_lock(inode); /* protect against multiple concurrent 814 * readers on this file */ 815 again: 816 spin_lock(&queue_lock); 817 /* need to find next request */ 818 while (rp->q.list.next != &cd->queue && 819 list_entry(rp->q.list.next, struct cache_queue, list) 820 ->reader) { 821 struct list_head *next = rp->q.list.next; 822 list_move(&rp->q.list, next); 823 } 824 if (rp->q.list.next == &cd->queue) { 825 spin_unlock(&queue_lock); 826 inode_unlock(inode); 827 WARN_ON_ONCE(rp->offset); 828 return 0; 829 } 830 rq = container_of(rp->q.list.next, struct cache_request, q.list); 831 WARN_ON_ONCE(rq->q.reader); 832 if (rp->offset == 0) 833 rq->readers++; 834 spin_unlock(&queue_lock); 835 836 if (rq->len == 0) { 837 err = cache_request(cd, rq); 838 if (err < 0) 839 goto out; 840 rq->len = err; 841 } 842 843 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 844 err = -EAGAIN; 845 spin_lock(&queue_lock); 846 list_move(&rp->q.list, &rq->q.list); 847 spin_unlock(&queue_lock); 848 } else { 849 if (rp->offset + count > rq->len) 850 count = rq->len - rp->offset; 851 err = -EFAULT; 852 if (copy_to_user(buf, rq->buf + rp->offset, count)) 853 goto out; 854 rp->offset += count; 855 if (rp->offset >= rq->len) { 856 rp->offset = 0; 857 spin_lock(&queue_lock); 858 list_move(&rp->q.list, &rq->q.list); 859 spin_unlock(&queue_lock); 860 } 861 err = 0; 862 } 863 out: 864 if (rp->offset == 0) { 865 /* need to release rq */ 866 spin_lock(&queue_lock); 867 rq->readers--; 868 if (rq->readers == 0 && 869 !test_bit(CACHE_PENDING, &rq->item->flags)) { 870 list_del(&rq->q.list); 871 spin_unlock(&queue_lock); 872 cache_put(rq->item, cd); 873 kfree(rq->buf); 874 kfree(rq); 875 } else 876 spin_unlock(&queue_lock); 877 } 878 if (err == -EAGAIN) 879 goto again; 880 inode_unlock(inode); 881 return err ? err : count; 882 } 883 884 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 885 size_t count, struct cache_detail *cd) 886 { 887 ssize_t ret; 888 889 if (count == 0) 890 return -EINVAL; 891 if (copy_from_user(kaddr, buf, count)) 892 return -EFAULT; 893 kaddr[count] = '\0'; 894 ret = cd->cache_parse(cd, kaddr, count); 895 if (!ret) 896 ret = count; 897 return ret; 898 } 899 900 static ssize_t cache_slow_downcall(const char __user *buf, 901 size_t count, struct cache_detail *cd) 902 { 903 static char write_buf[8192]; /* protected by queue_io_mutex */ 904 ssize_t ret = -EINVAL; 905 906 if (count >= sizeof(write_buf)) 907 goto out; 908 mutex_lock(&queue_io_mutex); 909 ret = cache_do_downcall(write_buf, buf, count, cd); 910 mutex_unlock(&queue_io_mutex); 911 out: 912 return ret; 913 } 914 915 static ssize_t cache_downcall(struct address_space *mapping, 916 const char __user *buf, 917 size_t count, struct cache_detail *cd) 918 { 919 struct page *page; 920 char *kaddr; 921 ssize_t ret = -ENOMEM; 922 923 if (count >= PAGE_SIZE) 924 goto out_slow; 925 926 page = find_or_create_page(mapping, 0, GFP_KERNEL); 927 if (!page) 928 goto out_slow; 929 930 kaddr = kmap(page); 931 ret = cache_do_downcall(kaddr, buf, count, cd); 932 kunmap(page); 933 unlock_page(page); 934 put_page(page); 935 return ret; 936 out_slow: 937 return cache_slow_downcall(buf, count, cd); 938 } 939 940 static ssize_t cache_write(struct file *filp, const char __user *buf, 941 size_t count, loff_t *ppos, 942 struct cache_detail *cd) 943 { 944 struct address_space *mapping = filp->f_mapping; 945 struct inode *inode = file_inode(filp); 946 ssize_t ret = -EINVAL; 947 948 if (!cd->cache_parse) 949 goto out; 950 951 inode_lock(inode); 952 ret = cache_downcall(mapping, buf, count, cd); 953 inode_unlock(inode); 954 out: 955 return ret; 956 } 957 958 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 959 960 static __poll_t cache_poll(struct file *filp, poll_table *wait, 961 struct cache_detail *cd) 962 { 963 __poll_t mask; 964 struct cache_reader *rp = filp->private_data; 965 struct cache_queue *cq; 966 967 poll_wait(filp, &queue_wait, wait); 968 969 /* alway allow write */ 970 mask = EPOLLOUT | EPOLLWRNORM; 971 972 if (!rp) 973 return mask; 974 975 spin_lock(&queue_lock); 976 977 for (cq= &rp->q; &cq->list != &cd->queue; 978 cq = list_entry(cq->list.next, struct cache_queue, list)) 979 if (!cq->reader) { 980 mask |= EPOLLIN | EPOLLRDNORM; 981 break; 982 } 983 spin_unlock(&queue_lock); 984 return mask; 985 } 986 987 static int cache_ioctl(struct inode *ino, struct file *filp, 988 unsigned int cmd, unsigned long arg, 989 struct cache_detail *cd) 990 { 991 int len = 0; 992 struct cache_reader *rp = filp->private_data; 993 struct cache_queue *cq; 994 995 if (cmd != FIONREAD || !rp) 996 return -EINVAL; 997 998 spin_lock(&queue_lock); 999 1000 /* only find the length remaining in current request, 1001 * or the length of the next request 1002 */ 1003 for (cq= &rp->q; &cq->list != &cd->queue; 1004 cq = list_entry(cq->list.next, struct cache_queue, list)) 1005 if (!cq->reader) { 1006 struct cache_request *cr = 1007 container_of(cq, struct cache_request, q); 1008 len = cr->len - rp->offset; 1009 break; 1010 } 1011 spin_unlock(&queue_lock); 1012 1013 return put_user(len, (int __user *)arg); 1014 } 1015 1016 static int cache_open(struct inode *inode, struct file *filp, 1017 struct cache_detail *cd) 1018 { 1019 struct cache_reader *rp = NULL; 1020 1021 if (!cd || !try_module_get(cd->owner)) 1022 return -EACCES; 1023 nonseekable_open(inode, filp); 1024 if (filp->f_mode & FMODE_READ) { 1025 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 1026 if (!rp) { 1027 module_put(cd->owner); 1028 return -ENOMEM; 1029 } 1030 rp->offset = 0; 1031 rp->q.reader = 1; 1032 atomic_inc(&cd->readers); 1033 spin_lock(&queue_lock); 1034 list_add(&rp->q.list, &cd->queue); 1035 spin_unlock(&queue_lock); 1036 } 1037 filp->private_data = rp; 1038 return 0; 1039 } 1040 1041 static int cache_release(struct inode *inode, struct file *filp, 1042 struct cache_detail *cd) 1043 { 1044 struct cache_reader *rp = filp->private_data; 1045 1046 if (rp) { 1047 spin_lock(&queue_lock); 1048 if (rp->offset) { 1049 struct cache_queue *cq; 1050 for (cq= &rp->q; &cq->list != &cd->queue; 1051 cq = list_entry(cq->list.next, struct cache_queue, list)) 1052 if (!cq->reader) { 1053 container_of(cq, struct cache_request, q) 1054 ->readers--; 1055 break; 1056 } 1057 rp->offset = 0; 1058 } 1059 list_del(&rp->q.list); 1060 spin_unlock(&queue_lock); 1061 1062 filp->private_data = NULL; 1063 kfree(rp); 1064 1065 cd->last_close = seconds_since_boot(); 1066 atomic_dec(&cd->readers); 1067 } 1068 module_put(cd->owner); 1069 return 0; 1070 } 1071 1072 1073 1074 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1075 { 1076 struct cache_queue *cq, *tmp; 1077 struct cache_request *cr; 1078 struct list_head dequeued; 1079 1080 INIT_LIST_HEAD(&dequeued); 1081 spin_lock(&queue_lock); 1082 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1083 if (!cq->reader) { 1084 cr = container_of(cq, struct cache_request, q); 1085 if (cr->item != ch) 1086 continue; 1087 if (test_bit(CACHE_PENDING, &ch->flags)) 1088 /* Lost a race and it is pending again */ 1089 break; 1090 if (cr->readers != 0) 1091 continue; 1092 list_move(&cr->q.list, &dequeued); 1093 } 1094 spin_unlock(&queue_lock); 1095 while (!list_empty(&dequeued)) { 1096 cr = list_entry(dequeued.next, struct cache_request, q.list); 1097 list_del(&cr->q.list); 1098 cache_put(cr->item, detail); 1099 kfree(cr->buf); 1100 kfree(cr); 1101 } 1102 } 1103 1104 /* 1105 * Support routines for text-based upcalls. 1106 * Fields are separated by spaces. 1107 * Fields are either mangled to quote space tab newline slosh with slosh 1108 * or a hexified with a leading \x 1109 * Record is terminated with newline. 1110 * 1111 */ 1112 1113 void qword_add(char **bpp, int *lp, char *str) 1114 { 1115 char *bp = *bpp; 1116 int len = *lp; 1117 int ret; 1118 1119 if (len < 0) return; 1120 1121 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1122 if (ret >= len) { 1123 bp += len; 1124 len = -1; 1125 } else { 1126 bp += ret; 1127 len -= ret; 1128 *bp++ = ' '; 1129 len--; 1130 } 1131 *bpp = bp; 1132 *lp = len; 1133 } 1134 EXPORT_SYMBOL_GPL(qword_add); 1135 1136 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1137 { 1138 char *bp = *bpp; 1139 int len = *lp; 1140 1141 if (len < 0) return; 1142 1143 if (len > 2) { 1144 *bp++ = '\\'; 1145 *bp++ = 'x'; 1146 len -= 2; 1147 while (blen && len >= 2) { 1148 bp = hex_byte_pack(bp, *buf++); 1149 len -= 2; 1150 blen--; 1151 } 1152 } 1153 if (blen || len<1) len = -1; 1154 else { 1155 *bp++ = ' '; 1156 len--; 1157 } 1158 *bpp = bp; 1159 *lp = len; 1160 } 1161 EXPORT_SYMBOL_GPL(qword_addhex); 1162 1163 static void warn_no_listener(struct cache_detail *detail) 1164 { 1165 if (detail->last_warn != detail->last_close) { 1166 detail->last_warn = detail->last_close; 1167 if (detail->warn_no_listener) 1168 detail->warn_no_listener(detail, detail->last_close != 0); 1169 } 1170 } 1171 1172 static bool cache_listeners_exist(struct cache_detail *detail) 1173 { 1174 if (atomic_read(&detail->readers)) 1175 return true; 1176 if (detail->last_close == 0) 1177 /* This cache was never opened */ 1178 return false; 1179 if (detail->last_close < seconds_since_boot() - 30) 1180 /* 1181 * We allow for the possibility that someone might 1182 * restart a userspace daemon without restarting the 1183 * server; but after 30 seconds, we give up. 1184 */ 1185 return false; 1186 return true; 1187 } 1188 1189 /* 1190 * register an upcall request to user-space and queue it up for read() by the 1191 * upcall daemon. 1192 * 1193 * Each request is at most one page long. 1194 */ 1195 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1196 { 1197 1198 char *buf; 1199 struct cache_request *crq; 1200 int ret = 0; 1201 1202 if (!detail->cache_request) 1203 return -EINVAL; 1204 1205 if (!cache_listeners_exist(detail)) { 1206 warn_no_listener(detail); 1207 return -EINVAL; 1208 } 1209 if (test_bit(CACHE_CLEANED, &h->flags)) 1210 /* Too late to make an upcall */ 1211 return -EAGAIN; 1212 1213 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1214 if (!buf) 1215 return -EAGAIN; 1216 1217 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1218 if (!crq) { 1219 kfree(buf); 1220 return -EAGAIN; 1221 } 1222 1223 crq->q.reader = 0; 1224 crq->buf = buf; 1225 crq->len = 0; 1226 crq->readers = 0; 1227 spin_lock(&queue_lock); 1228 if (test_bit(CACHE_PENDING, &h->flags)) { 1229 crq->item = cache_get(h); 1230 list_add_tail(&crq->q.list, &detail->queue); 1231 } else 1232 /* Lost a race, no longer PENDING, so don't enqueue */ 1233 ret = -EAGAIN; 1234 spin_unlock(&queue_lock); 1235 wake_up(&queue_wait); 1236 if (ret == -EAGAIN) { 1237 kfree(buf); 1238 kfree(crq); 1239 } 1240 return ret; 1241 } 1242 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1243 1244 /* 1245 * parse a message from user-space and pass it 1246 * to an appropriate cache 1247 * Messages are, like requests, separated into fields by 1248 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1249 * 1250 * Message is 1251 * reply cachename expiry key ... content.... 1252 * 1253 * key and content are both parsed by cache 1254 */ 1255 1256 int qword_get(char **bpp, char *dest, int bufsize) 1257 { 1258 /* return bytes copied, or -1 on error */ 1259 char *bp = *bpp; 1260 int len = 0; 1261 1262 while (*bp == ' ') bp++; 1263 1264 if (bp[0] == '\\' && bp[1] == 'x') { 1265 /* HEX STRING */ 1266 bp += 2; 1267 while (len < bufsize - 1) { 1268 int h, l; 1269 1270 h = hex_to_bin(bp[0]); 1271 if (h < 0) 1272 break; 1273 1274 l = hex_to_bin(bp[1]); 1275 if (l < 0) 1276 break; 1277 1278 *dest++ = (h << 4) | l; 1279 bp += 2; 1280 len++; 1281 } 1282 } else { 1283 /* text with \nnn octal quoting */ 1284 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1285 if (*bp == '\\' && 1286 isodigit(bp[1]) && (bp[1] <= '3') && 1287 isodigit(bp[2]) && 1288 isodigit(bp[3])) { 1289 int byte = (*++bp -'0'); 1290 bp++; 1291 byte = (byte << 3) | (*bp++ - '0'); 1292 byte = (byte << 3) | (*bp++ - '0'); 1293 *dest++ = byte; 1294 len++; 1295 } else { 1296 *dest++ = *bp++; 1297 len++; 1298 } 1299 } 1300 } 1301 1302 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1303 return -1; 1304 while (*bp == ' ') bp++; 1305 *bpp = bp; 1306 *dest = '\0'; 1307 return len; 1308 } 1309 EXPORT_SYMBOL_GPL(qword_get); 1310 1311 1312 /* 1313 * support /proc/net/rpc/$CACHENAME/content 1314 * as a seqfile. 1315 * We call ->cache_show passing NULL for the item to 1316 * get a header, then pass each real item in the cache 1317 */ 1318 1319 static void *__cache_seq_start(struct seq_file *m, loff_t *pos) 1320 { 1321 loff_t n = *pos; 1322 unsigned int hash, entry; 1323 struct cache_head *ch; 1324 struct cache_detail *cd = m->private; 1325 1326 if (!n--) 1327 return SEQ_START_TOKEN; 1328 hash = n >> 32; 1329 entry = n & ((1LL<<32) - 1); 1330 1331 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list) 1332 if (!entry--) 1333 return ch; 1334 n &= ~((1LL<<32) - 1); 1335 do { 1336 hash++; 1337 n += 1LL<<32; 1338 } while(hash < cd->hash_size && 1339 hlist_empty(&cd->hash_table[hash])); 1340 if (hash >= cd->hash_size) 1341 return NULL; 1342 *pos = n+1; 1343 return hlist_entry_safe(rcu_dereference_raw( 1344 hlist_first_rcu(&cd->hash_table[hash])), 1345 struct cache_head, cache_list); 1346 } 1347 1348 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1349 { 1350 struct cache_head *ch = p; 1351 int hash = (*pos >> 32); 1352 struct cache_detail *cd = m->private; 1353 1354 if (p == SEQ_START_TOKEN) 1355 hash = 0; 1356 else if (ch->cache_list.next == NULL) { 1357 hash++; 1358 *pos += 1LL<<32; 1359 } else { 1360 ++*pos; 1361 return hlist_entry_safe(rcu_dereference_raw( 1362 hlist_next_rcu(&ch->cache_list)), 1363 struct cache_head, cache_list); 1364 } 1365 *pos &= ~((1LL<<32) - 1); 1366 while (hash < cd->hash_size && 1367 hlist_empty(&cd->hash_table[hash])) { 1368 hash++; 1369 *pos += 1LL<<32; 1370 } 1371 if (hash >= cd->hash_size) 1372 return NULL; 1373 ++*pos; 1374 return hlist_entry_safe(rcu_dereference_raw( 1375 hlist_first_rcu(&cd->hash_table[hash])), 1376 struct cache_head, cache_list); 1377 } 1378 EXPORT_SYMBOL_GPL(cache_seq_next); 1379 1380 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos) 1381 __acquires(RCU) 1382 { 1383 rcu_read_lock(); 1384 return __cache_seq_start(m, pos); 1385 } 1386 EXPORT_SYMBOL_GPL(cache_seq_start_rcu); 1387 1388 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos) 1389 { 1390 return cache_seq_next(file, p, pos); 1391 } 1392 EXPORT_SYMBOL_GPL(cache_seq_next_rcu); 1393 1394 void cache_seq_stop_rcu(struct seq_file *m, void *p) 1395 __releases(RCU) 1396 { 1397 rcu_read_unlock(); 1398 } 1399 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu); 1400 1401 static int c_show(struct seq_file *m, void *p) 1402 { 1403 struct cache_head *cp = p; 1404 struct cache_detail *cd = m->private; 1405 1406 if (p == SEQ_START_TOKEN) 1407 return cd->cache_show(m, cd, NULL); 1408 1409 ifdebug(CACHE) 1410 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1411 convert_to_wallclock(cp->expiry_time), 1412 kref_read(&cp->ref), cp->flags); 1413 cache_get(cp); 1414 if (cache_check(cd, cp, NULL)) 1415 /* cache_check does a cache_put on failure */ 1416 seq_printf(m, "# "); 1417 else { 1418 if (cache_is_expired(cd, cp)) 1419 seq_printf(m, "# "); 1420 cache_put(cp, cd); 1421 } 1422 1423 return cd->cache_show(m, cd, cp); 1424 } 1425 1426 static const struct seq_operations cache_content_op = { 1427 .start = cache_seq_start_rcu, 1428 .next = cache_seq_next_rcu, 1429 .stop = cache_seq_stop_rcu, 1430 .show = c_show, 1431 }; 1432 1433 static int content_open(struct inode *inode, struct file *file, 1434 struct cache_detail *cd) 1435 { 1436 struct seq_file *seq; 1437 int err; 1438 1439 if (!cd || !try_module_get(cd->owner)) 1440 return -EACCES; 1441 1442 err = seq_open(file, &cache_content_op); 1443 if (err) { 1444 module_put(cd->owner); 1445 return err; 1446 } 1447 1448 seq = file->private_data; 1449 seq->private = cd; 1450 return 0; 1451 } 1452 1453 static int content_release(struct inode *inode, struct file *file, 1454 struct cache_detail *cd) 1455 { 1456 int ret = seq_release(inode, file); 1457 module_put(cd->owner); 1458 return ret; 1459 } 1460 1461 static int open_flush(struct inode *inode, struct file *file, 1462 struct cache_detail *cd) 1463 { 1464 if (!cd || !try_module_get(cd->owner)) 1465 return -EACCES; 1466 return nonseekable_open(inode, file); 1467 } 1468 1469 static int release_flush(struct inode *inode, struct file *file, 1470 struct cache_detail *cd) 1471 { 1472 module_put(cd->owner); 1473 return 0; 1474 } 1475 1476 static ssize_t read_flush(struct file *file, char __user *buf, 1477 size_t count, loff_t *ppos, 1478 struct cache_detail *cd) 1479 { 1480 char tbuf[22]; 1481 size_t len; 1482 1483 len = snprintf(tbuf, sizeof(tbuf), "%lu\n", 1484 convert_to_wallclock(cd->flush_time)); 1485 return simple_read_from_buffer(buf, count, ppos, tbuf, len); 1486 } 1487 1488 static ssize_t write_flush(struct file *file, const char __user *buf, 1489 size_t count, loff_t *ppos, 1490 struct cache_detail *cd) 1491 { 1492 char tbuf[20]; 1493 char *ep; 1494 time_t now; 1495 1496 if (*ppos || count > sizeof(tbuf)-1) 1497 return -EINVAL; 1498 if (copy_from_user(tbuf, buf, count)) 1499 return -EFAULT; 1500 tbuf[count] = 0; 1501 simple_strtoul(tbuf, &ep, 0); 1502 if (*ep && *ep != '\n') 1503 return -EINVAL; 1504 /* Note that while we check that 'buf' holds a valid number, 1505 * we always ignore the value and just flush everything. 1506 * Making use of the number leads to races. 1507 */ 1508 1509 now = seconds_since_boot(); 1510 /* Always flush everything, so behave like cache_purge() 1511 * Do this by advancing flush_time to the current time, 1512 * or by one second if it has already reached the current time. 1513 * Newly added cache entries will always have ->last_refresh greater 1514 * that ->flush_time, so they don't get flushed prematurely. 1515 */ 1516 1517 if (cd->flush_time >= now) 1518 now = cd->flush_time + 1; 1519 1520 cd->flush_time = now; 1521 cd->nextcheck = now; 1522 cache_flush(); 1523 1524 *ppos += count; 1525 return count; 1526 } 1527 1528 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1529 size_t count, loff_t *ppos) 1530 { 1531 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1532 1533 return cache_read(filp, buf, count, ppos, cd); 1534 } 1535 1536 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1537 size_t count, loff_t *ppos) 1538 { 1539 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1540 1541 return cache_write(filp, buf, count, ppos, cd); 1542 } 1543 1544 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait) 1545 { 1546 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1547 1548 return cache_poll(filp, wait, cd); 1549 } 1550 1551 static long cache_ioctl_procfs(struct file *filp, 1552 unsigned int cmd, unsigned long arg) 1553 { 1554 struct inode *inode = file_inode(filp); 1555 struct cache_detail *cd = PDE_DATA(inode); 1556 1557 return cache_ioctl(inode, filp, cmd, arg, cd); 1558 } 1559 1560 static int cache_open_procfs(struct inode *inode, struct file *filp) 1561 { 1562 struct cache_detail *cd = PDE_DATA(inode); 1563 1564 return cache_open(inode, filp, cd); 1565 } 1566 1567 static int cache_release_procfs(struct inode *inode, struct file *filp) 1568 { 1569 struct cache_detail *cd = PDE_DATA(inode); 1570 1571 return cache_release(inode, filp, cd); 1572 } 1573 1574 static const struct file_operations cache_file_operations_procfs = { 1575 .owner = THIS_MODULE, 1576 .llseek = no_llseek, 1577 .read = cache_read_procfs, 1578 .write = cache_write_procfs, 1579 .poll = cache_poll_procfs, 1580 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1581 .open = cache_open_procfs, 1582 .release = cache_release_procfs, 1583 }; 1584 1585 static int content_open_procfs(struct inode *inode, struct file *filp) 1586 { 1587 struct cache_detail *cd = PDE_DATA(inode); 1588 1589 return content_open(inode, filp, cd); 1590 } 1591 1592 static int content_release_procfs(struct inode *inode, struct file *filp) 1593 { 1594 struct cache_detail *cd = PDE_DATA(inode); 1595 1596 return content_release(inode, filp, cd); 1597 } 1598 1599 static const struct file_operations content_file_operations_procfs = { 1600 .open = content_open_procfs, 1601 .read = seq_read, 1602 .llseek = seq_lseek, 1603 .release = content_release_procfs, 1604 }; 1605 1606 static int open_flush_procfs(struct inode *inode, struct file *filp) 1607 { 1608 struct cache_detail *cd = PDE_DATA(inode); 1609 1610 return open_flush(inode, filp, cd); 1611 } 1612 1613 static int release_flush_procfs(struct inode *inode, struct file *filp) 1614 { 1615 struct cache_detail *cd = PDE_DATA(inode); 1616 1617 return release_flush(inode, filp, cd); 1618 } 1619 1620 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1621 size_t count, loff_t *ppos) 1622 { 1623 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1624 1625 return read_flush(filp, buf, count, ppos, cd); 1626 } 1627 1628 static ssize_t write_flush_procfs(struct file *filp, 1629 const char __user *buf, 1630 size_t count, loff_t *ppos) 1631 { 1632 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1633 1634 return write_flush(filp, buf, count, ppos, cd); 1635 } 1636 1637 static const struct file_operations cache_flush_operations_procfs = { 1638 .open = open_flush_procfs, 1639 .read = read_flush_procfs, 1640 .write = write_flush_procfs, 1641 .release = release_flush_procfs, 1642 .llseek = no_llseek, 1643 }; 1644 1645 static void remove_cache_proc_entries(struct cache_detail *cd) 1646 { 1647 if (cd->procfs) { 1648 proc_remove(cd->procfs); 1649 cd->procfs = NULL; 1650 } 1651 } 1652 1653 #ifdef CONFIG_PROC_FS 1654 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1655 { 1656 struct proc_dir_entry *p; 1657 struct sunrpc_net *sn; 1658 1659 sn = net_generic(net, sunrpc_net_id); 1660 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc); 1661 if (cd->procfs == NULL) 1662 goto out_nomem; 1663 1664 p = proc_create_data("flush", S_IFREG | 0600, 1665 cd->procfs, &cache_flush_operations_procfs, cd); 1666 if (p == NULL) 1667 goto out_nomem; 1668 1669 if (cd->cache_request || cd->cache_parse) { 1670 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs, 1671 &cache_file_operations_procfs, cd); 1672 if (p == NULL) 1673 goto out_nomem; 1674 } 1675 if (cd->cache_show) { 1676 p = proc_create_data("content", S_IFREG | 0400, cd->procfs, 1677 &content_file_operations_procfs, cd); 1678 if (p == NULL) 1679 goto out_nomem; 1680 } 1681 return 0; 1682 out_nomem: 1683 remove_cache_proc_entries(cd); 1684 return -ENOMEM; 1685 } 1686 #else /* CONFIG_PROC_FS */ 1687 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1688 { 1689 return 0; 1690 } 1691 #endif 1692 1693 void __init cache_initialize(void) 1694 { 1695 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1696 } 1697 1698 int cache_register_net(struct cache_detail *cd, struct net *net) 1699 { 1700 int ret; 1701 1702 sunrpc_init_cache_detail(cd); 1703 ret = create_cache_proc_entries(cd, net); 1704 if (ret) 1705 sunrpc_destroy_cache_detail(cd); 1706 return ret; 1707 } 1708 EXPORT_SYMBOL_GPL(cache_register_net); 1709 1710 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1711 { 1712 remove_cache_proc_entries(cd); 1713 sunrpc_destroy_cache_detail(cd); 1714 } 1715 EXPORT_SYMBOL_GPL(cache_unregister_net); 1716 1717 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net) 1718 { 1719 struct cache_detail *cd; 1720 int i; 1721 1722 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1723 if (cd == NULL) 1724 return ERR_PTR(-ENOMEM); 1725 1726 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head), 1727 GFP_KERNEL); 1728 if (cd->hash_table == NULL) { 1729 kfree(cd); 1730 return ERR_PTR(-ENOMEM); 1731 } 1732 1733 for (i = 0; i < cd->hash_size; i++) 1734 INIT_HLIST_HEAD(&cd->hash_table[i]); 1735 cd->net = net; 1736 return cd; 1737 } 1738 EXPORT_SYMBOL_GPL(cache_create_net); 1739 1740 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1741 { 1742 kfree(cd->hash_table); 1743 kfree(cd); 1744 } 1745 EXPORT_SYMBOL_GPL(cache_destroy_net); 1746 1747 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1748 size_t count, loff_t *ppos) 1749 { 1750 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1751 1752 return cache_read(filp, buf, count, ppos, cd); 1753 } 1754 1755 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1756 size_t count, loff_t *ppos) 1757 { 1758 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1759 1760 return cache_write(filp, buf, count, ppos, cd); 1761 } 1762 1763 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait) 1764 { 1765 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1766 1767 return cache_poll(filp, wait, cd); 1768 } 1769 1770 static long cache_ioctl_pipefs(struct file *filp, 1771 unsigned int cmd, unsigned long arg) 1772 { 1773 struct inode *inode = file_inode(filp); 1774 struct cache_detail *cd = RPC_I(inode)->private; 1775 1776 return cache_ioctl(inode, filp, cmd, arg, cd); 1777 } 1778 1779 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1780 { 1781 struct cache_detail *cd = RPC_I(inode)->private; 1782 1783 return cache_open(inode, filp, cd); 1784 } 1785 1786 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1787 { 1788 struct cache_detail *cd = RPC_I(inode)->private; 1789 1790 return cache_release(inode, filp, cd); 1791 } 1792 1793 const struct file_operations cache_file_operations_pipefs = { 1794 .owner = THIS_MODULE, 1795 .llseek = no_llseek, 1796 .read = cache_read_pipefs, 1797 .write = cache_write_pipefs, 1798 .poll = cache_poll_pipefs, 1799 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1800 .open = cache_open_pipefs, 1801 .release = cache_release_pipefs, 1802 }; 1803 1804 static int content_open_pipefs(struct inode *inode, struct file *filp) 1805 { 1806 struct cache_detail *cd = RPC_I(inode)->private; 1807 1808 return content_open(inode, filp, cd); 1809 } 1810 1811 static int content_release_pipefs(struct inode *inode, struct file *filp) 1812 { 1813 struct cache_detail *cd = RPC_I(inode)->private; 1814 1815 return content_release(inode, filp, cd); 1816 } 1817 1818 const struct file_operations content_file_operations_pipefs = { 1819 .open = content_open_pipefs, 1820 .read = seq_read, 1821 .llseek = seq_lseek, 1822 .release = content_release_pipefs, 1823 }; 1824 1825 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1826 { 1827 struct cache_detail *cd = RPC_I(inode)->private; 1828 1829 return open_flush(inode, filp, cd); 1830 } 1831 1832 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1833 { 1834 struct cache_detail *cd = RPC_I(inode)->private; 1835 1836 return release_flush(inode, filp, cd); 1837 } 1838 1839 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1840 size_t count, loff_t *ppos) 1841 { 1842 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1843 1844 return read_flush(filp, buf, count, ppos, cd); 1845 } 1846 1847 static ssize_t write_flush_pipefs(struct file *filp, 1848 const char __user *buf, 1849 size_t count, loff_t *ppos) 1850 { 1851 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1852 1853 return write_flush(filp, buf, count, ppos, cd); 1854 } 1855 1856 const struct file_operations cache_flush_operations_pipefs = { 1857 .open = open_flush_pipefs, 1858 .read = read_flush_pipefs, 1859 .write = write_flush_pipefs, 1860 .release = release_flush_pipefs, 1861 .llseek = no_llseek, 1862 }; 1863 1864 int sunrpc_cache_register_pipefs(struct dentry *parent, 1865 const char *name, umode_t umode, 1866 struct cache_detail *cd) 1867 { 1868 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1869 if (IS_ERR(dir)) 1870 return PTR_ERR(dir); 1871 cd->pipefs = dir; 1872 return 0; 1873 } 1874 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1875 1876 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1877 { 1878 if (cd->pipefs) { 1879 rpc_remove_cache_dir(cd->pipefs); 1880 cd->pipefs = NULL; 1881 } 1882 } 1883 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1884 1885 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h) 1886 { 1887 spin_lock(&cd->hash_lock); 1888 if (!hlist_unhashed(&h->cache_list)){ 1889 hlist_del_init_rcu(&h->cache_list); 1890 cd->entries--; 1891 spin_unlock(&cd->hash_lock); 1892 cache_put(h, cd); 1893 } else 1894 spin_unlock(&cd->hash_lock); 1895 } 1896 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash); 1897