xref: /linux/net/sunrpc/cache.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/string_helpers.h>
24 #include <linux/uaccess.h>
25 #include <linux/poll.h>
26 #include <linux/seq_file.h>
27 #include <linux/proc_fs.h>
28 #include <linux/net.h>
29 #include <linux/workqueue.h>
30 #include <linux/mutex.h>
31 #include <linux/pagemap.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include "netns.h"
38 
39 #define	 RPCDBG_FACILITY RPCDBG_CACHE
40 
41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
43 
44 static void cache_init(struct cache_head *h, struct cache_detail *detail)
45 {
46 	time_t now = seconds_since_boot();
47 	INIT_HLIST_NODE(&h->cache_list);
48 	h->flags = 0;
49 	kref_init(&h->ref);
50 	h->expiry_time = now + CACHE_NEW_EXPIRY;
51 	if (now <= detail->flush_time)
52 		/* ensure it isn't already expired */
53 		now = detail->flush_time + 1;
54 	h->last_refresh = now;
55 }
56 
57 static inline int cache_is_valid(struct cache_head *h);
58 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
59 				struct cache_detail *detail);
60 static void cache_fresh_unlocked(struct cache_head *head,
61 				struct cache_detail *detail);
62 
63 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
64 						struct cache_head *key,
65 						int hash)
66 {
67 	struct hlist_head *head = &detail->hash_table[hash];
68 	struct cache_head *tmp;
69 
70 	rcu_read_lock();
71 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
72 		if (detail->match(tmp, key)) {
73 			if (cache_is_expired(detail, tmp))
74 				continue;
75 			tmp = cache_get_rcu(tmp);
76 			rcu_read_unlock();
77 			return tmp;
78 		}
79 	}
80 	rcu_read_unlock();
81 	return NULL;
82 }
83 
84 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
85 						 struct cache_head *key,
86 						 int hash)
87 {
88 	struct cache_head *new, *tmp, *freeme = NULL;
89 	struct hlist_head *head = &detail->hash_table[hash];
90 
91 	new = detail->alloc();
92 	if (!new)
93 		return NULL;
94 	/* must fully initialise 'new', else
95 	 * we might get lose if we need to
96 	 * cache_put it soon.
97 	 */
98 	cache_init(new, detail);
99 	detail->init(new, key);
100 
101 	spin_lock(&detail->hash_lock);
102 
103 	/* check if entry appeared while we slept */
104 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
105 		if (detail->match(tmp, key)) {
106 			if (cache_is_expired(detail, tmp)) {
107 				hlist_del_init_rcu(&tmp->cache_list);
108 				detail->entries --;
109 				if (cache_is_valid(tmp) == -EAGAIN)
110 					set_bit(CACHE_NEGATIVE, &tmp->flags);
111 				cache_fresh_locked(tmp, 0, detail);
112 				freeme = tmp;
113 				break;
114 			}
115 			cache_get(tmp);
116 			spin_unlock(&detail->hash_lock);
117 			cache_put(new, detail);
118 			return tmp;
119 		}
120 	}
121 
122 	hlist_add_head_rcu(&new->cache_list, head);
123 	detail->entries++;
124 	cache_get(new);
125 	spin_unlock(&detail->hash_lock);
126 
127 	if (freeme) {
128 		cache_fresh_unlocked(freeme, detail);
129 		cache_put(freeme, detail);
130 	}
131 	return new;
132 }
133 
134 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
135 					   struct cache_head *key, int hash)
136 {
137 	struct cache_head *ret;
138 
139 	ret = sunrpc_cache_find_rcu(detail, key, hash);
140 	if (ret)
141 		return ret;
142 	/* Didn't find anything, insert an empty entry */
143 	return sunrpc_cache_add_entry(detail, key, hash);
144 }
145 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
146 
147 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
148 
149 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
150 			       struct cache_detail *detail)
151 {
152 	time_t now = seconds_since_boot();
153 	if (now <= detail->flush_time)
154 		/* ensure it isn't immediately treated as expired */
155 		now = detail->flush_time + 1;
156 	head->expiry_time = expiry;
157 	head->last_refresh = now;
158 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
159 	set_bit(CACHE_VALID, &head->flags);
160 }
161 
162 static void cache_fresh_unlocked(struct cache_head *head,
163 				 struct cache_detail *detail)
164 {
165 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
166 		cache_revisit_request(head);
167 		cache_dequeue(detail, head);
168 	}
169 }
170 
171 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
172 				       struct cache_head *new, struct cache_head *old, int hash)
173 {
174 	/* The 'old' entry is to be replaced by 'new'.
175 	 * If 'old' is not VALID, we update it directly,
176 	 * otherwise we need to replace it
177 	 */
178 	struct cache_head *tmp;
179 
180 	if (!test_bit(CACHE_VALID, &old->flags)) {
181 		spin_lock(&detail->hash_lock);
182 		if (!test_bit(CACHE_VALID, &old->flags)) {
183 			if (test_bit(CACHE_NEGATIVE, &new->flags))
184 				set_bit(CACHE_NEGATIVE, &old->flags);
185 			else
186 				detail->update(old, new);
187 			cache_fresh_locked(old, new->expiry_time, detail);
188 			spin_unlock(&detail->hash_lock);
189 			cache_fresh_unlocked(old, detail);
190 			return old;
191 		}
192 		spin_unlock(&detail->hash_lock);
193 	}
194 	/* We need to insert a new entry */
195 	tmp = detail->alloc();
196 	if (!tmp) {
197 		cache_put(old, detail);
198 		return NULL;
199 	}
200 	cache_init(tmp, detail);
201 	detail->init(tmp, old);
202 
203 	spin_lock(&detail->hash_lock);
204 	if (test_bit(CACHE_NEGATIVE, &new->flags))
205 		set_bit(CACHE_NEGATIVE, &tmp->flags);
206 	else
207 		detail->update(tmp, new);
208 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
209 	detail->entries++;
210 	cache_get(tmp);
211 	cache_fresh_locked(tmp, new->expiry_time, detail);
212 	cache_fresh_locked(old, 0, detail);
213 	spin_unlock(&detail->hash_lock);
214 	cache_fresh_unlocked(tmp, detail);
215 	cache_fresh_unlocked(old, detail);
216 	cache_put(old, detail);
217 	return tmp;
218 }
219 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
220 
221 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
222 {
223 	if (cd->cache_upcall)
224 		return cd->cache_upcall(cd, h);
225 	return sunrpc_cache_pipe_upcall(cd, h);
226 }
227 
228 static inline int cache_is_valid(struct cache_head *h)
229 {
230 	if (!test_bit(CACHE_VALID, &h->flags))
231 		return -EAGAIN;
232 	else {
233 		/* entry is valid */
234 		if (test_bit(CACHE_NEGATIVE, &h->flags))
235 			return -ENOENT;
236 		else {
237 			/*
238 			 * In combination with write barrier in
239 			 * sunrpc_cache_update, ensures that anyone
240 			 * using the cache entry after this sees the
241 			 * updated contents:
242 			 */
243 			smp_rmb();
244 			return 0;
245 		}
246 	}
247 }
248 
249 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
250 {
251 	int rv;
252 
253 	spin_lock(&detail->hash_lock);
254 	rv = cache_is_valid(h);
255 	if (rv == -EAGAIN) {
256 		set_bit(CACHE_NEGATIVE, &h->flags);
257 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
258 				   detail);
259 		rv = -ENOENT;
260 	}
261 	spin_unlock(&detail->hash_lock);
262 	cache_fresh_unlocked(h, detail);
263 	return rv;
264 }
265 
266 /*
267  * This is the generic cache management routine for all
268  * the authentication caches.
269  * It checks the currency of a cache item and will (later)
270  * initiate an upcall to fill it if needed.
271  *
272  *
273  * Returns 0 if the cache_head can be used, or cache_puts it and returns
274  * -EAGAIN if upcall is pending and request has been queued
275  * -ETIMEDOUT if upcall failed or request could not be queue or
276  *           upcall completed but item is still invalid (implying that
277  *           the cache item has been replaced with a newer one).
278  * -ENOENT if cache entry was negative
279  */
280 int cache_check(struct cache_detail *detail,
281 		    struct cache_head *h, struct cache_req *rqstp)
282 {
283 	int rv;
284 	long refresh_age, age;
285 
286 	/* First decide return status as best we can */
287 	rv = cache_is_valid(h);
288 
289 	/* now see if we want to start an upcall */
290 	refresh_age = (h->expiry_time - h->last_refresh);
291 	age = seconds_since_boot() - h->last_refresh;
292 
293 	if (rqstp == NULL) {
294 		if (rv == -EAGAIN)
295 			rv = -ENOENT;
296 	} else if (rv == -EAGAIN ||
297 		   (h->expiry_time != 0 && age > refresh_age/2)) {
298 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
299 				refresh_age, age);
300 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
301 			switch (cache_make_upcall(detail, h)) {
302 			case -EINVAL:
303 				rv = try_to_negate_entry(detail, h);
304 				break;
305 			case -EAGAIN:
306 				cache_fresh_unlocked(h, detail);
307 				break;
308 			}
309 		}
310 	}
311 
312 	if (rv == -EAGAIN) {
313 		if (!cache_defer_req(rqstp, h)) {
314 			/*
315 			 * Request was not deferred; handle it as best
316 			 * we can ourselves:
317 			 */
318 			rv = cache_is_valid(h);
319 			if (rv == -EAGAIN)
320 				rv = -ETIMEDOUT;
321 		}
322 	}
323 	if (rv)
324 		cache_put(h, detail);
325 	return rv;
326 }
327 EXPORT_SYMBOL_GPL(cache_check);
328 
329 /*
330  * caches need to be periodically cleaned.
331  * For this we maintain a list of cache_detail and
332  * a current pointer into that list and into the table
333  * for that entry.
334  *
335  * Each time cache_clean is called it finds the next non-empty entry
336  * in the current table and walks the list in that entry
337  * looking for entries that can be removed.
338  *
339  * An entry gets removed if:
340  * - The expiry is before current time
341  * - The last_refresh time is before the flush_time for that cache
342  *
343  * later we might drop old entries with non-NEVER expiry if that table
344  * is getting 'full' for some definition of 'full'
345  *
346  * The question of "how often to scan a table" is an interesting one
347  * and is answered in part by the use of the "nextcheck" field in the
348  * cache_detail.
349  * When a scan of a table begins, the nextcheck field is set to a time
350  * that is well into the future.
351  * While scanning, if an expiry time is found that is earlier than the
352  * current nextcheck time, nextcheck is set to that expiry time.
353  * If the flush_time is ever set to a time earlier than the nextcheck
354  * time, the nextcheck time is then set to that flush_time.
355  *
356  * A table is then only scanned if the current time is at least
357  * the nextcheck time.
358  *
359  */
360 
361 static LIST_HEAD(cache_list);
362 static DEFINE_SPINLOCK(cache_list_lock);
363 static struct cache_detail *current_detail;
364 static int current_index;
365 
366 static void do_cache_clean(struct work_struct *work);
367 static struct delayed_work cache_cleaner;
368 
369 void sunrpc_init_cache_detail(struct cache_detail *cd)
370 {
371 	spin_lock_init(&cd->hash_lock);
372 	INIT_LIST_HEAD(&cd->queue);
373 	spin_lock(&cache_list_lock);
374 	cd->nextcheck = 0;
375 	cd->entries = 0;
376 	atomic_set(&cd->readers, 0);
377 	cd->last_close = 0;
378 	cd->last_warn = -1;
379 	list_add(&cd->others, &cache_list);
380 	spin_unlock(&cache_list_lock);
381 
382 	/* start the cleaning process */
383 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
384 }
385 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
386 
387 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
388 {
389 	cache_purge(cd);
390 	spin_lock(&cache_list_lock);
391 	spin_lock(&cd->hash_lock);
392 	if (current_detail == cd)
393 		current_detail = NULL;
394 	list_del_init(&cd->others);
395 	spin_unlock(&cd->hash_lock);
396 	spin_unlock(&cache_list_lock);
397 	if (list_empty(&cache_list)) {
398 		/* module must be being unloaded so its safe to kill the worker */
399 		cancel_delayed_work_sync(&cache_cleaner);
400 	}
401 }
402 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
403 
404 /* clean cache tries to find something to clean
405  * and cleans it.
406  * It returns 1 if it cleaned something,
407  *            0 if it didn't find anything this time
408  *           -1 if it fell off the end of the list.
409  */
410 static int cache_clean(void)
411 {
412 	int rv = 0;
413 	struct list_head *next;
414 
415 	spin_lock(&cache_list_lock);
416 
417 	/* find a suitable table if we don't already have one */
418 	while (current_detail == NULL ||
419 	    current_index >= current_detail->hash_size) {
420 		if (current_detail)
421 			next = current_detail->others.next;
422 		else
423 			next = cache_list.next;
424 		if (next == &cache_list) {
425 			current_detail = NULL;
426 			spin_unlock(&cache_list_lock);
427 			return -1;
428 		}
429 		current_detail = list_entry(next, struct cache_detail, others);
430 		if (current_detail->nextcheck > seconds_since_boot())
431 			current_index = current_detail->hash_size;
432 		else {
433 			current_index = 0;
434 			current_detail->nextcheck = seconds_since_boot()+30*60;
435 		}
436 	}
437 
438 	/* find a non-empty bucket in the table */
439 	while (current_detail &&
440 	       current_index < current_detail->hash_size &&
441 	       hlist_empty(&current_detail->hash_table[current_index]))
442 		current_index++;
443 
444 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
445 
446 	if (current_detail && current_index < current_detail->hash_size) {
447 		struct cache_head *ch = NULL;
448 		struct cache_detail *d;
449 		struct hlist_head *head;
450 		struct hlist_node *tmp;
451 
452 		spin_lock(&current_detail->hash_lock);
453 
454 		/* Ok, now to clean this strand */
455 
456 		head = &current_detail->hash_table[current_index];
457 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
458 			if (current_detail->nextcheck > ch->expiry_time)
459 				current_detail->nextcheck = ch->expiry_time+1;
460 			if (!cache_is_expired(current_detail, ch))
461 				continue;
462 
463 			hlist_del_init_rcu(&ch->cache_list);
464 			current_detail->entries--;
465 			rv = 1;
466 			break;
467 		}
468 
469 		spin_unlock(&current_detail->hash_lock);
470 		d = current_detail;
471 		if (!ch)
472 			current_index ++;
473 		spin_unlock(&cache_list_lock);
474 		if (ch) {
475 			set_bit(CACHE_CLEANED, &ch->flags);
476 			cache_fresh_unlocked(ch, d);
477 			cache_put(ch, d);
478 		}
479 	} else
480 		spin_unlock(&cache_list_lock);
481 
482 	return rv;
483 }
484 
485 /*
486  * We want to regularly clean the cache, so we need to schedule some work ...
487  */
488 static void do_cache_clean(struct work_struct *work)
489 {
490 	int delay = 5;
491 	if (cache_clean() == -1)
492 		delay = round_jiffies_relative(30*HZ);
493 
494 	if (list_empty(&cache_list))
495 		delay = 0;
496 
497 	if (delay)
498 		queue_delayed_work(system_power_efficient_wq,
499 				   &cache_cleaner, delay);
500 }
501 
502 
503 /*
504  * Clean all caches promptly.  This just calls cache_clean
505  * repeatedly until we are sure that every cache has had a chance to
506  * be fully cleaned
507  */
508 void cache_flush(void)
509 {
510 	while (cache_clean() != -1)
511 		cond_resched();
512 	while (cache_clean() != -1)
513 		cond_resched();
514 }
515 EXPORT_SYMBOL_GPL(cache_flush);
516 
517 void cache_purge(struct cache_detail *detail)
518 {
519 	struct cache_head *ch = NULL;
520 	struct hlist_head *head = NULL;
521 	struct hlist_node *tmp = NULL;
522 	int i = 0;
523 
524 	spin_lock(&detail->hash_lock);
525 	if (!detail->entries) {
526 		spin_unlock(&detail->hash_lock);
527 		return;
528 	}
529 
530 	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
531 	for (i = 0; i < detail->hash_size; i++) {
532 		head = &detail->hash_table[i];
533 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
534 			hlist_del_init_rcu(&ch->cache_list);
535 			detail->entries--;
536 
537 			set_bit(CACHE_CLEANED, &ch->flags);
538 			spin_unlock(&detail->hash_lock);
539 			cache_fresh_unlocked(ch, detail);
540 			cache_put(ch, detail);
541 			spin_lock(&detail->hash_lock);
542 		}
543 	}
544 	spin_unlock(&detail->hash_lock);
545 }
546 EXPORT_SYMBOL_GPL(cache_purge);
547 
548 
549 /*
550  * Deferral and Revisiting of Requests.
551  *
552  * If a cache lookup finds a pending entry, we
553  * need to defer the request and revisit it later.
554  * All deferred requests are stored in a hash table,
555  * indexed by "struct cache_head *".
556  * As it may be wasteful to store a whole request
557  * structure, we allow the request to provide a
558  * deferred form, which must contain a
559  * 'struct cache_deferred_req'
560  * This cache_deferred_req contains a method to allow
561  * it to be revisited when cache info is available
562  */
563 
564 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
565 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
566 
567 #define	DFR_MAX	300	/* ??? */
568 
569 static DEFINE_SPINLOCK(cache_defer_lock);
570 static LIST_HEAD(cache_defer_list);
571 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
572 static int cache_defer_cnt;
573 
574 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
575 {
576 	hlist_del_init(&dreq->hash);
577 	if (!list_empty(&dreq->recent)) {
578 		list_del_init(&dreq->recent);
579 		cache_defer_cnt--;
580 	}
581 }
582 
583 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
584 {
585 	int hash = DFR_HASH(item);
586 
587 	INIT_LIST_HEAD(&dreq->recent);
588 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
589 }
590 
591 static void setup_deferral(struct cache_deferred_req *dreq,
592 			   struct cache_head *item,
593 			   int count_me)
594 {
595 
596 	dreq->item = item;
597 
598 	spin_lock(&cache_defer_lock);
599 
600 	__hash_deferred_req(dreq, item);
601 
602 	if (count_me) {
603 		cache_defer_cnt++;
604 		list_add(&dreq->recent, &cache_defer_list);
605 	}
606 
607 	spin_unlock(&cache_defer_lock);
608 
609 }
610 
611 struct thread_deferred_req {
612 	struct cache_deferred_req handle;
613 	struct completion completion;
614 };
615 
616 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
617 {
618 	struct thread_deferred_req *dr =
619 		container_of(dreq, struct thread_deferred_req, handle);
620 	complete(&dr->completion);
621 }
622 
623 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
624 {
625 	struct thread_deferred_req sleeper;
626 	struct cache_deferred_req *dreq = &sleeper.handle;
627 
628 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
629 	dreq->revisit = cache_restart_thread;
630 
631 	setup_deferral(dreq, item, 0);
632 
633 	if (!test_bit(CACHE_PENDING, &item->flags) ||
634 	    wait_for_completion_interruptible_timeout(
635 		    &sleeper.completion, req->thread_wait) <= 0) {
636 		/* The completion wasn't completed, so we need
637 		 * to clean up
638 		 */
639 		spin_lock(&cache_defer_lock);
640 		if (!hlist_unhashed(&sleeper.handle.hash)) {
641 			__unhash_deferred_req(&sleeper.handle);
642 			spin_unlock(&cache_defer_lock);
643 		} else {
644 			/* cache_revisit_request already removed
645 			 * this from the hash table, but hasn't
646 			 * called ->revisit yet.  It will very soon
647 			 * and we need to wait for it.
648 			 */
649 			spin_unlock(&cache_defer_lock);
650 			wait_for_completion(&sleeper.completion);
651 		}
652 	}
653 }
654 
655 static void cache_limit_defers(void)
656 {
657 	/* Make sure we haven't exceed the limit of allowed deferred
658 	 * requests.
659 	 */
660 	struct cache_deferred_req *discard = NULL;
661 
662 	if (cache_defer_cnt <= DFR_MAX)
663 		return;
664 
665 	spin_lock(&cache_defer_lock);
666 
667 	/* Consider removing either the first or the last */
668 	if (cache_defer_cnt > DFR_MAX) {
669 		if (prandom_u32() & 1)
670 			discard = list_entry(cache_defer_list.next,
671 					     struct cache_deferred_req, recent);
672 		else
673 			discard = list_entry(cache_defer_list.prev,
674 					     struct cache_deferred_req, recent);
675 		__unhash_deferred_req(discard);
676 	}
677 	spin_unlock(&cache_defer_lock);
678 	if (discard)
679 		discard->revisit(discard, 1);
680 }
681 
682 /* Return true if and only if a deferred request is queued. */
683 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
684 {
685 	struct cache_deferred_req *dreq;
686 
687 	if (req->thread_wait) {
688 		cache_wait_req(req, item);
689 		if (!test_bit(CACHE_PENDING, &item->flags))
690 			return false;
691 	}
692 	dreq = req->defer(req);
693 	if (dreq == NULL)
694 		return false;
695 	setup_deferral(dreq, item, 1);
696 	if (!test_bit(CACHE_PENDING, &item->flags))
697 		/* Bit could have been cleared before we managed to
698 		 * set up the deferral, so need to revisit just in case
699 		 */
700 		cache_revisit_request(item);
701 
702 	cache_limit_defers();
703 	return true;
704 }
705 
706 static void cache_revisit_request(struct cache_head *item)
707 {
708 	struct cache_deferred_req *dreq;
709 	struct list_head pending;
710 	struct hlist_node *tmp;
711 	int hash = DFR_HASH(item);
712 
713 	INIT_LIST_HEAD(&pending);
714 	spin_lock(&cache_defer_lock);
715 
716 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
717 		if (dreq->item == item) {
718 			__unhash_deferred_req(dreq);
719 			list_add(&dreq->recent, &pending);
720 		}
721 
722 	spin_unlock(&cache_defer_lock);
723 
724 	while (!list_empty(&pending)) {
725 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
726 		list_del_init(&dreq->recent);
727 		dreq->revisit(dreq, 0);
728 	}
729 }
730 
731 void cache_clean_deferred(void *owner)
732 {
733 	struct cache_deferred_req *dreq, *tmp;
734 	struct list_head pending;
735 
736 
737 	INIT_LIST_HEAD(&pending);
738 	spin_lock(&cache_defer_lock);
739 
740 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
741 		if (dreq->owner == owner) {
742 			__unhash_deferred_req(dreq);
743 			list_add(&dreq->recent, &pending);
744 		}
745 	}
746 	spin_unlock(&cache_defer_lock);
747 
748 	while (!list_empty(&pending)) {
749 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
750 		list_del_init(&dreq->recent);
751 		dreq->revisit(dreq, 1);
752 	}
753 }
754 
755 /*
756  * communicate with user-space
757  *
758  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
759  * On read, you get a full request, or block.
760  * On write, an update request is processed.
761  * Poll works if anything to read, and always allows write.
762  *
763  * Implemented by linked list of requests.  Each open file has
764  * a ->private that also exists in this list.  New requests are added
765  * to the end and may wakeup and preceding readers.
766  * New readers are added to the head.  If, on read, an item is found with
767  * CACHE_UPCALLING clear, we free it from the list.
768  *
769  */
770 
771 static DEFINE_SPINLOCK(queue_lock);
772 static DEFINE_MUTEX(queue_io_mutex);
773 
774 struct cache_queue {
775 	struct list_head	list;
776 	int			reader;	/* if 0, then request */
777 };
778 struct cache_request {
779 	struct cache_queue	q;
780 	struct cache_head	*item;
781 	char			* buf;
782 	int			len;
783 	int			readers;
784 };
785 struct cache_reader {
786 	struct cache_queue	q;
787 	int			offset;	/* if non-0, we have a refcnt on next request */
788 };
789 
790 static int cache_request(struct cache_detail *detail,
791 			       struct cache_request *crq)
792 {
793 	char *bp = crq->buf;
794 	int len = PAGE_SIZE;
795 
796 	detail->cache_request(detail, crq->item, &bp, &len);
797 	if (len < 0)
798 		return -EAGAIN;
799 	return PAGE_SIZE - len;
800 }
801 
802 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
803 			  loff_t *ppos, struct cache_detail *cd)
804 {
805 	struct cache_reader *rp = filp->private_data;
806 	struct cache_request *rq;
807 	struct inode *inode = file_inode(filp);
808 	int err;
809 
810 	if (count == 0)
811 		return 0;
812 
813 	inode_lock(inode); /* protect against multiple concurrent
814 			      * readers on this file */
815  again:
816 	spin_lock(&queue_lock);
817 	/* need to find next request */
818 	while (rp->q.list.next != &cd->queue &&
819 	       list_entry(rp->q.list.next, struct cache_queue, list)
820 	       ->reader) {
821 		struct list_head *next = rp->q.list.next;
822 		list_move(&rp->q.list, next);
823 	}
824 	if (rp->q.list.next == &cd->queue) {
825 		spin_unlock(&queue_lock);
826 		inode_unlock(inode);
827 		WARN_ON_ONCE(rp->offset);
828 		return 0;
829 	}
830 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
831 	WARN_ON_ONCE(rq->q.reader);
832 	if (rp->offset == 0)
833 		rq->readers++;
834 	spin_unlock(&queue_lock);
835 
836 	if (rq->len == 0) {
837 		err = cache_request(cd, rq);
838 		if (err < 0)
839 			goto out;
840 		rq->len = err;
841 	}
842 
843 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
844 		err = -EAGAIN;
845 		spin_lock(&queue_lock);
846 		list_move(&rp->q.list, &rq->q.list);
847 		spin_unlock(&queue_lock);
848 	} else {
849 		if (rp->offset + count > rq->len)
850 			count = rq->len - rp->offset;
851 		err = -EFAULT;
852 		if (copy_to_user(buf, rq->buf + rp->offset, count))
853 			goto out;
854 		rp->offset += count;
855 		if (rp->offset >= rq->len) {
856 			rp->offset = 0;
857 			spin_lock(&queue_lock);
858 			list_move(&rp->q.list, &rq->q.list);
859 			spin_unlock(&queue_lock);
860 		}
861 		err = 0;
862 	}
863  out:
864 	if (rp->offset == 0) {
865 		/* need to release rq */
866 		spin_lock(&queue_lock);
867 		rq->readers--;
868 		if (rq->readers == 0 &&
869 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
870 			list_del(&rq->q.list);
871 			spin_unlock(&queue_lock);
872 			cache_put(rq->item, cd);
873 			kfree(rq->buf);
874 			kfree(rq);
875 		} else
876 			spin_unlock(&queue_lock);
877 	}
878 	if (err == -EAGAIN)
879 		goto again;
880 	inode_unlock(inode);
881 	return err ? err :  count;
882 }
883 
884 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
885 				 size_t count, struct cache_detail *cd)
886 {
887 	ssize_t ret;
888 
889 	if (count == 0)
890 		return -EINVAL;
891 	if (copy_from_user(kaddr, buf, count))
892 		return -EFAULT;
893 	kaddr[count] = '\0';
894 	ret = cd->cache_parse(cd, kaddr, count);
895 	if (!ret)
896 		ret = count;
897 	return ret;
898 }
899 
900 static ssize_t cache_slow_downcall(const char __user *buf,
901 				   size_t count, struct cache_detail *cd)
902 {
903 	static char write_buf[8192]; /* protected by queue_io_mutex */
904 	ssize_t ret = -EINVAL;
905 
906 	if (count >= sizeof(write_buf))
907 		goto out;
908 	mutex_lock(&queue_io_mutex);
909 	ret = cache_do_downcall(write_buf, buf, count, cd);
910 	mutex_unlock(&queue_io_mutex);
911 out:
912 	return ret;
913 }
914 
915 static ssize_t cache_downcall(struct address_space *mapping,
916 			      const char __user *buf,
917 			      size_t count, struct cache_detail *cd)
918 {
919 	struct page *page;
920 	char *kaddr;
921 	ssize_t ret = -ENOMEM;
922 
923 	if (count >= PAGE_SIZE)
924 		goto out_slow;
925 
926 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
927 	if (!page)
928 		goto out_slow;
929 
930 	kaddr = kmap(page);
931 	ret = cache_do_downcall(kaddr, buf, count, cd);
932 	kunmap(page);
933 	unlock_page(page);
934 	put_page(page);
935 	return ret;
936 out_slow:
937 	return cache_slow_downcall(buf, count, cd);
938 }
939 
940 static ssize_t cache_write(struct file *filp, const char __user *buf,
941 			   size_t count, loff_t *ppos,
942 			   struct cache_detail *cd)
943 {
944 	struct address_space *mapping = filp->f_mapping;
945 	struct inode *inode = file_inode(filp);
946 	ssize_t ret = -EINVAL;
947 
948 	if (!cd->cache_parse)
949 		goto out;
950 
951 	inode_lock(inode);
952 	ret = cache_downcall(mapping, buf, count, cd);
953 	inode_unlock(inode);
954 out:
955 	return ret;
956 }
957 
958 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
959 
960 static __poll_t cache_poll(struct file *filp, poll_table *wait,
961 			       struct cache_detail *cd)
962 {
963 	__poll_t mask;
964 	struct cache_reader *rp = filp->private_data;
965 	struct cache_queue *cq;
966 
967 	poll_wait(filp, &queue_wait, wait);
968 
969 	/* alway allow write */
970 	mask = EPOLLOUT | EPOLLWRNORM;
971 
972 	if (!rp)
973 		return mask;
974 
975 	spin_lock(&queue_lock);
976 
977 	for (cq= &rp->q; &cq->list != &cd->queue;
978 	     cq = list_entry(cq->list.next, struct cache_queue, list))
979 		if (!cq->reader) {
980 			mask |= EPOLLIN | EPOLLRDNORM;
981 			break;
982 		}
983 	spin_unlock(&queue_lock);
984 	return mask;
985 }
986 
987 static int cache_ioctl(struct inode *ino, struct file *filp,
988 		       unsigned int cmd, unsigned long arg,
989 		       struct cache_detail *cd)
990 {
991 	int len = 0;
992 	struct cache_reader *rp = filp->private_data;
993 	struct cache_queue *cq;
994 
995 	if (cmd != FIONREAD || !rp)
996 		return -EINVAL;
997 
998 	spin_lock(&queue_lock);
999 
1000 	/* only find the length remaining in current request,
1001 	 * or the length of the next request
1002 	 */
1003 	for (cq= &rp->q; &cq->list != &cd->queue;
1004 	     cq = list_entry(cq->list.next, struct cache_queue, list))
1005 		if (!cq->reader) {
1006 			struct cache_request *cr =
1007 				container_of(cq, struct cache_request, q);
1008 			len = cr->len - rp->offset;
1009 			break;
1010 		}
1011 	spin_unlock(&queue_lock);
1012 
1013 	return put_user(len, (int __user *)arg);
1014 }
1015 
1016 static int cache_open(struct inode *inode, struct file *filp,
1017 		      struct cache_detail *cd)
1018 {
1019 	struct cache_reader *rp = NULL;
1020 
1021 	if (!cd || !try_module_get(cd->owner))
1022 		return -EACCES;
1023 	nonseekable_open(inode, filp);
1024 	if (filp->f_mode & FMODE_READ) {
1025 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1026 		if (!rp) {
1027 			module_put(cd->owner);
1028 			return -ENOMEM;
1029 		}
1030 		rp->offset = 0;
1031 		rp->q.reader = 1;
1032 		atomic_inc(&cd->readers);
1033 		spin_lock(&queue_lock);
1034 		list_add(&rp->q.list, &cd->queue);
1035 		spin_unlock(&queue_lock);
1036 	}
1037 	filp->private_data = rp;
1038 	return 0;
1039 }
1040 
1041 static int cache_release(struct inode *inode, struct file *filp,
1042 			 struct cache_detail *cd)
1043 {
1044 	struct cache_reader *rp = filp->private_data;
1045 
1046 	if (rp) {
1047 		spin_lock(&queue_lock);
1048 		if (rp->offset) {
1049 			struct cache_queue *cq;
1050 			for (cq= &rp->q; &cq->list != &cd->queue;
1051 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1052 				if (!cq->reader) {
1053 					container_of(cq, struct cache_request, q)
1054 						->readers--;
1055 					break;
1056 				}
1057 			rp->offset = 0;
1058 		}
1059 		list_del(&rp->q.list);
1060 		spin_unlock(&queue_lock);
1061 
1062 		filp->private_data = NULL;
1063 		kfree(rp);
1064 
1065 		cd->last_close = seconds_since_boot();
1066 		atomic_dec(&cd->readers);
1067 	}
1068 	module_put(cd->owner);
1069 	return 0;
1070 }
1071 
1072 
1073 
1074 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1075 {
1076 	struct cache_queue *cq, *tmp;
1077 	struct cache_request *cr;
1078 	struct list_head dequeued;
1079 
1080 	INIT_LIST_HEAD(&dequeued);
1081 	spin_lock(&queue_lock);
1082 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1083 		if (!cq->reader) {
1084 			cr = container_of(cq, struct cache_request, q);
1085 			if (cr->item != ch)
1086 				continue;
1087 			if (test_bit(CACHE_PENDING, &ch->flags))
1088 				/* Lost a race and it is pending again */
1089 				break;
1090 			if (cr->readers != 0)
1091 				continue;
1092 			list_move(&cr->q.list, &dequeued);
1093 		}
1094 	spin_unlock(&queue_lock);
1095 	while (!list_empty(&dequeued)) {
1096 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1097 		list_del(&cr->q.list);
1098 		cache_put(cr->item, detail);
1099 		kfree(cr->buf);
1100 		kfree(cr);
1101 	}
1102 }
1103 
1104 /*
1105  * Support routines for text-based upcalls.
1106  * Fields are separated by spaces.
1107  * Fields are either mangled to quote space tab newline slosh with slosh
1108  * or a hexified with a leading \x
1109  * Record is terminated with newline.
1110  *
1111  */
1112 
1113 void qword_add(char **bpp, int *lp, char *str)
1114 {
1115 	char *bp = *bpp;
1116 	int len = *lp;
1117 	int ret;
1118 
1119 	if (len < 0) return;
1120 
1121 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1122 	if (ret >= len) {
1123 		bp += len;
1124 		len = -1;
1125 	} else {
1126 		bp += ret;
1127 		len -= ret;
1128 		*bp++ = ' ';
1129 		len--;
1130 	}
1131 	*bpp = bp;
1132 	*lp = len;
1133 }
1134 EXPORT_SYMBOL_GPL(qword_add);
1135 
1136 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1137 {
1138 	char *bp = *bpp;
1139 	int len = *lp;
1140 
1141 	if (len < 0) return;
1142 
1143 	if (len > 2) {
1144 		*bp++ = '\\';
1145 		*bp++ = 'x';
1146 		len -= 2;
1147 		while (blen && len >= 2) {
1148 			bp = hex_byte_pack(bp, *buf++);
1149 			len -= 2;
1150 			blen--;
1151 		}
1152 	}
1153 	if (blen || len<1) len = -1;
1154 	else {
1155 		*bp++ = ' ';
1156 		len--;
1157 	}
1158 	*bpp = bp;
1159 	*lp = len;
1160 }
1161 EXPORT_SYMBOL_GPL(qword_addhex);
1162 
1163 static void warn_no_listener(struct cache_detail *detail)
1164 {
1165 	if (detail->last_warn != detail->last_close) {
1166 		detail->last_warn = detail->last_close;
1167 		if (detail->warn_no_listener)
1168 			detail->warn_no_listener(detail, detail->last_close != 0);
1169 	}
1170 }
1171 
1172 static bool cache_listeners_exist(struct cache_detail *detail)
1173 {
1174 	if (atomic_read(&detail->readers))
1175 		return true;
1176 	if (detail->last_close == 0)
1177 		/* This cache was never opened */
1178 		return false;
1179 	if (detail->last_close < seconds_since_boot() - 30)
1180 		/*
1181 		 * We allow for the possibility that someone might
1182 		 * restart a userspace daemon without restarting the
1183 		 * server; but after 30 seconds, we give up.
1184 		 */
1185 		 return false;
1186 	return true;
1187 }
1188 
1189 /*
1190  * register an upcall request to user-space and queue it up for read() by the
1191  * upcall daemon.
1192  *
1193  * Each request is at most one page long.
1194  */
1195 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1196 {
1197 
1198 	char *buf;
1199 	struct cache_request *crq;
1200 	int ret = 0;
1201 
1202 	if (!detail->cache_request)
1203 		return -EINVAL;
1204 
1205 	if (!cache_listeners_exist(detail)) {
1206 		warn_no_listener(detail);
1207 		return -EINVAL;
1208 	}
1209 	if (test_bit(CACHE_CLEANED, &h->flags))
1210 		/* Too late to make an upcall */
1211 		return -EAGAIN;
1212 
1213 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1214 	if (!buf)
1215 		return -EAGAIN;
1216 
1217 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1218 	if (!crq) {
1219 		kfree(buf);
1220 		return -EAGAIN;
1221 	}
1222 
1223 	crq->q.reader = 0;
1224 	crq->buf = buf;
1225 	crq->len = 0;
1226 	crq->readers = 0;
1227 	spin_lock(&queue_lock);
1228 	if (test_bit(CACHE_PENDING, &h->flags)) {
1229 		crq->item = cache_get(h);
1230 		list_add_tail(&crq->q.list, &detail->queue);
1231 	} else
1232 		/* Lost a race, no longer PENDING, so don't enqueue */
1233 		ret = -EAGAIN;
1234 	spin_unlock(&queue_lock);
1235 	wake_up(&queue_wait);
1236 	if (ret == -EAGAIN) {
1237 		kfree(buf);
1238 		kfree(crq);
1239 	}
1240 	return ret;
1241 }
1242 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1243 
1244 /*
1245  * parse a message from user-space and pass it
1246  * to an appropriate cache
1247  * Messages are, like requests, separated into fields by
1248  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1249  *
1250  * Message is
1251  *   reply cachename expiry key ... content....
1252  *
1253  * key and content are both parsed by cache
1254  */
1255 
1256 int qword_get(char **bpp, char *dest, int bufsize)
1257 {
1258 	/* return bytes copied, or -1 on error */
1259 	char *bp = *bpp;
1260 	int len = 0;
1261 
1262 	while (*bp == ' ') bp++;
1263 
1264 	if (bp[0] == '\\' && bp[1] == 'x') {
1265 		/* HEX STRING */
1266 		bp += 2;
1267 		while (len < bufsize - 1) {
1268 			int h, l;
1269 
1270 			h = hex_to_bin(bp[0]);
1271 			if (h < 0)
1272 				break;
1273 
1274 			l = hex_to_bin(bp[1]);
1275 			if (l < 0)
1276 				break;
1277 
1278 			*dest++ = (h << 4) | l;
1279 			bp += 2;
1280 			len++;
1281 		}
1282 	} else {
1283 		/* text with \nnn octal quoting */
1284 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1285 			if (*bp == '\\' &&
1286 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1287 			    isodigit(bp[2]) &&
1288 			    isodigit(bp[3])) {
1289 				int byte = (*++bp -'0');
1290 				bp++;
1291 				byte = (byte << 3) | (*bp++ - '0');
1292 				byte = (byte << 3) | (*bp++ - '0');
1293 				*dest++ = byte;
1294 				len++;
1295 			} else {
1296 				*dest++ = *bp++;
1297 				len++;
1298 			}
1299 		}
1300 	}
1301 
1302 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1303 		return -1;
1304 	while (*bp == ' ') bp++;
1305 	*bpp = bp;
1306 	*dest = '\0';
1307 	return len;
1308 }
1309 EXPORT_SYMBOL_GPL(qword_get);
1310 
1311 
1312 /*
1313  * support /proc/net/rpc/$CACHENAME/content
1314  * as a seqfile.
1315  * We call ->cache_show passing NULL for the item to
1316  * get a header, then pass each real item in the cache
1317  */
1318 
1319 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1320 {
1321 	loff_t n = *pos;
1322 	unsigned int hash, entry;
1323 	struct cache_head *ch;
1324 	struct cache_detail *cd = m->private;
1325 
1326 	if (!n--)
1327 		return SEQ_START_TOKEN;
1328 	hash = n >> 32;
1329 	entry = n & ((1LL<<32) - 1);
1330 
1331 	hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1332 		if (!entry--)
1333 			return ch;
1334 	n &= ~((1LL<<32) - 1);
1335 	do {
1336 		hash++;
1337 		n += 1LL<<32;
1338 	} while(hash < cd->hash_size &&
1339 		hlist_empty(&cd->hash_table[hash]));
1340 	if (hash >= cd->hash_size)
1341 		return NULL;
1342 	*pos = n+1;
1343 	return hlist_entry_safe(rcu_dereference_raw(
1344 				hlist_first_rcu(&cd->hash_table[hash])),
1345 				struct cache_head, cache_list);
1346 }
1347 
1348 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1349 {
1350 	struct cache_head *ch = p;
1351 	int hash = (*pos >> 32);
1352 	struct cache_detail *cd = m->private;
1353 
1354 	if (p == SEQ_START_TOKEN)
1355 		hash = 0;
1356 	else if (ch->cache_list.next == NULL) {
1357 		hash++;
1358 		*pos += 1LL<<32;
1359 	} else {
1360 		++*pos;
1361 		return hlist_entry_safe(rcu_dereference_raw(
1362 					hlist_next_rcu(&ch->cache_list)),
1363 					struct cache_head, cache_list);
1364 	}
1365 	*pos &= ~((1LL<<32) - 1);
1366 	while (hash < cd->hash_size &&
1367 	       hlist_empty(&cd->hash_table[hash])) {
1368 		hash++;
1369 		*pos += 1LL<<32;
1370 	}
1371 	if (hash >= cd->hash_size)
1372 		return NULL;
1373 	++*pos;
1374 	return hlist_entry_safe(rcu_dereference_raw(
1375 				hlist_first_rcu(&cd->hash_table[hash])),
1376 				struct cache_head, cache_list);
1377 }
1378 EXPORT_SYMBOL_GPL(cache_seq_next);
1379 
1380 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1381 	__acquires(RCU)
1382 {
1383 	rcu_read_lock();
1384 	return __cache_seq_start(m, pos);
1385 }
1386 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1387 
1388 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1389 {
1390 	return cache_seq_next(file, p, pos);
1391 }
1392 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1393 
1394 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1395 	__releases(RCU)
1396 {
1397 	rcu_read_unlock();
1398 }
1399 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1400 
1401 static int c_show(struct seq_file *m, void *p)
1402 {
1403 	struct cache_head *cp = p;
1404 	struct cache_detail *cd = m->private;
1405 
1406 	if (p == SEQ_START_TOKEN)
1407 		return cd->cache_show(m, cd, NULL);
1408 
1409 	ifdebug(CACHE)
1410 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1411 			   convert_to_wallclock(cp->expiry_time),
1412 			   kref_read(&cp->ref), cp->flags);
1413 	cache_get(cp);
1414 	if (cache_check(cd, cp, NULL))
1415 		/* cache_check does a cache_put on failure */
1416 		seq_printf(m, "# ");
1417 	else {
1418 		if (cache_is_expired(cd, cp))
1419 			seq_printf(m, "# ");
1420 		cache_put(cp, cd);
1421 	}
1422 
1423 	return cd->cache_show(m, cd, cp);
1424 }
1425 
1426 static const struct seq_operations cache_content_op = {
1427 	.start	= cache_seq_start_rcu,
1428 	.next	= cache_seq_next_rcu,
1429 	.stop	= cache_seq_stop_rcu,
1430 	.show	= c_show,
1431 };
1432 
1433 static int content_open(struct inode *inode, struct file *file,
1434 			struct cache_detail *cd)
1435 {
1436 	struct seq_file *seq;
1437 	int err;
1438 
1439 	if (!cd || !try_module_get(cd->owner))
1440 		return -EACCES;
1441 
1442 	err = seq_open(file, &cache_content_op);
1443 	if (err) {
1444 		module_put(cd->owner);
1445 		return err;
1446 	}
1447 
1448 	seq = file->private_data;
1449 	seq->private = cd;
1450 	return 0;
1451 }
1452 
1453 static int content_release(struct inode *inode, struct file *file,
1454 		struct cache_detail *cd)
1455 {
1456 	int ret = seq_release(inode, file);
1457 	module_put(cd->owner);
1458 	return ret;
1459 }
1460 
1461 static int open_flush(struct inode *inode, struct file *file,
1462 			struct cache_detail *cd)
1463 {
1464 	if (!cd || !try_module_get(cd->owner))
1465 		return -EACCES;
1466 	return nonseekable_open(inode, file);
1467 }
1468 
1469 static int release_flush(struct inode *inode, struct file *file,
1470 			struct cache_detail *cd)
1471 {
1472 	module_put(cd->owner);
1473 	return 0;
1474 }
1475 
1476 static ssize_t read_flush(struct file *file, char __user *buf,
1477 			  size_t count, loff_t *ppos,
1478 			  struct cache_detail *cd)
1479 {
1480 	char tbuf[22];
1481 	size_t len;
1482 
1483 	len = snprintf(tbuf, sizeof(tbuf), "%lu\n",
1484 			convert_to_wallclock(cd->flush_time));
1485 	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1486 }
1487 
1488 static ssize_t write_flush(struct file *file, const char __user *buf,
1489 			   size_t count, loff_t *ppos,
1490 			   struct cache_detail *cd)
1491 {
1492 	char tbuf[20];
1493 	char *ep;
1494 	time_t now;
1495 
1496 	if (*ppos || count > sizeof(tbuf)-1)
1497 		return -EINVAL;
1498 	if (copy_from_user(tbuf, buf, count))
1499 		return -EFAULT;
1500 	tbuf[count] = 0;
1501 	simple_strtoul(tbuf, &ep, 0);
1502 	if (*ep && *ep != '\n')
1503 		return -EINVAL;
1504 	/* Note that while we check that 'buf' holds a valid number,
1505 	 * we always ignore the value and just flush everything.
1506 	 * Making use of the number leads to races.
1507 	 */
1508 
1509 	now = seconds_since_boot();
1510 	/* Always flush everything, so behave like cache_purge()
1511 	 * Do this by advancing flush_time to the current time,
1512 	 * or by one second if it has already reached the current time.
1513 	 * Newly added cache entries will always have ->last_refresh greater
1514 	 * that ->flush_time, so they don't get flushed prematurely.
1515 	 */
1516 
1517 	if (cd->flush_time >= now)
1518 		now = cd->flush_time + 1;
1519 
1520 	cd->flush_time = now;
1521 	cd->nextcheck = now;
1522 	cache_flush();
1523 
1524 	*ppos += count;
1525 	return count;
1526 }
1527 
1528 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1529 				 size_t count, loff_t *ppos)
1530 {
1531 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1532 
1533 	return cache_read(filp, buf, count, ppos, cd);
1534 }
1535 
1536 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1537 				  size_t count, loff_t *ppos)
1538 {
1539 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1540 
1541 	return cache_write(filp, buf, count, ppos, cd);
1542 }
1543 
1544 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1545 {
1546 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1547 
1548 	return cache_poll(filp, wait, cd);
1549 }
1550 
1551 static long cache_ioctl_procfs(struct file *filp,
1552 			       unsigned int cmd, unsigned long arg)
1553 {
1554 	struct inode *inode = file_inode(filp);
1555 	struct cache_detail *cd = PDE_DATA(inode);
1556 
1557 	return cache_ioctl(inode, filp, cmd, arg, cd);
1558 }
1559 
1560 static int cache_open_procfs(struct inode *inode, struct file *filp)
1561 {
1562 	struct cache_detail *cd = PDE_DATA(inode);
1563 
1564 	return cache_open(inode, filp, cd);
1565 }
1566 
1567 static int cache_release_procfs(struct inode *inode, struct file *filp)
1568 {
1569 	struct cache_detail *cd = PDE_DATA(inode);
1570 
1571 	return cache_release(inode, filp, cd);
1572 }
1573 
1574 static const struct file_operations cache_file_operations_procfs = {
1575 	.owner		= THIS_MODULE,
1576 	.llseek		= no_llseek,
1577 	.read		= cache_read_procfs,
1578 	.write		= cache_write_procfs,
1579 	.poll		= cache_poll_procfs,
1580 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1581 	.open		= cache_open_procfs,
1582 	.release	= cache_release_procfs,
1583 };
1584 
1585 static int content_open_procfs(struct inode *inode, struct file *filp)
1586 {
1587 	struct cache_detail *cd = PDE_DATA(inode);
1588 
1589 	return content_open(inode, filp, cd);
1590 }
1591 
1592 static int content_release_procfs(struct inode *inode, struct file *filp)
1593 {
1594 	struct cache_detail *cd = PDE_DATA(inode);
1595 
1596 	return content_release(inode, filp, cd);
1597 }
1598 
1599 static const struct file_operations content_file_operations_procfs = {
1600 	.open		= content_open_procfs,
1601 	.read		= seq_read,
1602 	.llseek		= seq_lseek,
1603 	.release	= content_release_procfs,
1604 };
1605 
1606 static int open_flush_procfs(struct inode *inode, struct file *filp)
1607 {
1608 	struct cache_detail *cd = PDE_DATA(inode);
1609 
1610 	return open_flush(inode, filp, cd);
1611 }
1612 
1613 static int release_flush_procfs(struct inode *inode, struct file *filp)
1614 {
1615 	struct cache_detail *cd = PDE_DATA(inode);
1616 
1617 	return release_flush(inode, filp, cd);
1618 }
1619 
1620 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1621 			    size_t count, loff_t *ppos)
1622 {
1623 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1624 
1625 	return read_flush(filp, buf, count, ppos, cd);
1626 }
1627 
1628 static ssize_t write_flush_procfs(struct file *filp,
1629 				  const char __user *buf,
1630 				  size_t count, loff_t *ppos)
1631 {
1632 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1633 
1634 	return write_flush(filp, buf, count, ppos, cd);
1635 }
1636 
1637 static const struct file_operations cache_flush_operations_procfs = {
1638 	.open		= open_flush_procfs,
1639 	.read		= read_flush_procfs,
1640 	.write		= write_flush_procfs,
1641 	.release	= release_flush_procfs,
1642 	.llseek		= no_llseek,
1643 };
1644 
1645 static void remove_cache_proc_entries(struct cache_detail *cd)
1646 {
1647 	if (cd->procfs) {
1648 		proc_remove(cd->procfs);
1649 		cd->procfs = NULL;
1650 	}
1651 }
1652 
1653 #ifdef CONFIG_PROC_FS
1654 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1655 {
1656 	struct proc_dir_entry *p;
1657 	struct sunrpc_net *sn;
1658 
1659 	sn = net_generic(net, sunrpc_net_id);
1660 	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1661 	if (cd->procfs == NULL)
1662 		goto out_nomem;
1663 
1664 	p = proc_create_data("flush", S_IFREG | 0600,
1665 			     cd->procfs, &cache_flush_operations_procfs, cd);
1666 	if (p == NULL)
1667 		goto out_nomem;
1668 
1669 	if (cd->cache_request || cd->cache_parse) {
1670 		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1671 				     &cache_file_operations_procfs, cd);
1672 		if (p == NULL)
1673 			goto out_nomem;
1674 	}
1675 	if (cd->cache_show) {
1676 		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1677 				     &content_file_operations_procfs, cd);
1678 		if (p == NULL)
1679 			goto out_nomem;
1680 	}
1681 	return 0;
1682 out_nomem:
1683 	remove_cache_proc_entries(cd);
1684 	return -ENOMEM;
1685 }
1686 #else /* CONFIG_PROC_FS */
1687 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1688 {
1689 	return 0;
1690 }
1691 #endif
1692 
1693 void __init cache_initialize(void)
1694 {
1695 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1696 }
1697 
1698 int cache_register_net(struct cache_detail *cd, struct net *net)
1699 {
1700 	int ret;
1701 
1702 	sunrpc_init_cache_detail(cd);
1703 	ret = create_cache_proc_entries(cd, net);
1704 	if (ret)
1705 		sunrpc_destroy_cache_detail(cd);
1706 	return ret;
1707 }
1708 EXPORT_SYMBOL_GPL(cache_register_net);
1709 
1710 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1711 {
1712 	remove_cache_proc_entries(cd);
1713 	sunrpc_destroy_cache_detail(cd);
1714 }
1715 EXPORT_SYMBOL_GPL(cache_unregister_net);
1716 
1717 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1718 {
1719 	struct cache_detail *cd;
1720 	int i;
1721 
1722 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1723 	if (cd == NULL)
1724 		return ERR_PTR(-ENOMEM);
1725 
1726 	cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1727 				 GFP_KERNEL);
1728 	if (cd->hash_table == NULL) {
1729 		kfree(cd);
1730 		return ERR_PTR(-ENOMEM);
1731 	}
1732 
1733 	for (i = 0; i < cd->hash_size; i++)
1734 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1735 	cd->net = net;
1736 	return cd;
1737 }
1738 EXPORT_SYMBOL_GPL(cache_create_net);
1739 
1740 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1741 {
1742 	kfree(cd->hash_table);
1743 	kfree(cd);
1744 }
1745 EXPORT_SYMBOL_GPL(cache_destroy_net);
1746 
1747 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1748 				 size_t count, loff_t *ppos)
1749 {
1750 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1751 
1752 	return cache_read(filp, buf, count, ppos, cd);
1753 }
1754 
1755 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1756 				  size_t count, loff_t *ppos)
1757 {
1758 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1759 
1760 	return cache_write(filp, buf, count, ppos, cd);
1761 }
1762 
1763 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1764 {
1765 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1766 
1767 	return cache_poll(filp, wait, cd);
1768 }
1769 
1770 static long cache_ioctl_pipefs(struct file *filp,
1771 			      unsigned int cmd, unsigned long arg)
1772 {
1773 	struct inode *inode = file_inode(filp);
1774 	struct cache_detail *cd = RPC_I(inode)->private;
1775 
1776 	return cache_ioctl(inode, filp, cmd, arg, cd);
1777 }
1778 
1779 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1780 {
1781 	struct cache_detail *cd = RPC_I(inode)->private;
1782 
1783 	return cache_open(inode, filp, cd);
1784 }
1785 
1786 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1787 {
1788 	struct cache_detail *cd = RPC_I(inode)->private;
1789 
1790 	return cache_release(inode, filp, cd);
1791 }
1792 
1793 const struct file_operations cache_file_operations_pipefs = {
1794 	.owner		= THIS_MODULE,
1795 	.llseek		= no_llseek,
1796 	.read		= cache_read_pipefs,
1797 	.write		= cache_write_pipefs,
1798 	.poll		= cache_poll_pipefs,
1799 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1800 	.open		= cache_open_pipefs,
1801 	.release	= cache_release_pipefs,
1802 };
1803 
1804 static int content_open_pipefs(struct inode *inode, struct file *filp)
1805 {
1806 	struct cache_detail *cd = RPC_I(inode)->private;
1807 
1808 	return content_open(inode, filp, cd);
1809 }
1810 
1811 static int content_release_pipefs(struct inode *inode, struct file *filp)
1812 {
1813 	struct cache_detail *cd = RPC_I(inode)->private;
1814 
1815 	return content_release(inode, filp, cd);
1816 }
1817 
1818 const struct file_operations content_file_operations_pipefs = {
1819 	.open		= content_open_pipefs,
1820 	.read		= seq_read,
1821 	.llseek		= seq_lseek,
1822 	.release	= content_release_pipefs,
1823 };
1824 
1825 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1826 {
1827 	struct cache_detail *cd = RPC_I(inode)->private;
1828 
1829 	return open_flush(inode, filp, cd);
1830 }
1831 
1832 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1833 {
1834 	struct cache_detail *cd = RPC_I(inode)->private;
1835 
1836 	return release_flush(inode, filp, cd);
1837 }
1838 
1839 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1840 			    size_t count, loff_t *ppos)
1841 {
1842 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1843 
1844 	return read_flush(filp, buf, count, ppos, cd);
1845 }
1846 
1847 static ssize_t write_flush_pipefs(struct file *filp,
1848 				  const char __user *buf,
1849 				  size_t count, loff_t *ppos)
1850 {
1851 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1852 
1853 	return write_flush(filp, buf, count, ppos, cd);
1854 }
1855 
1856 const struct file_operations cache_flush_operations_pipefs = {
1857 	.open		= open_flush_pipefs,
1858 	.read		= read_flush_pipefs,
1859 	.write		= write_flush_pipefs,
1860 	.release	= release_flush_pipefs,
1861 	.llseek		= no_llseek,
1862 };
1863 
1864 int sunrpc_cache_register_pipefs(struct dentry *parent,
1865 				 const char *name, umode_t umode,
1866 				 struct cache_detail *cd)
1867 {
1868 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1869 	if (IS_ERR(dir))
1870 		return PTR_ERR(dir);
1871 	cd->pipefs = dir;
1872 	return 0;
1873 }
1874 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1875 
1876 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1877 {
1878 	if (cd->pipefs) {
1879 		rpc_remove_cache_dir(cd->pipefs);
1880 		cd->pipefs = NULL;
1881 	}
1882 }
1883 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1884 
1885 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1886 {
1887 	spin_lock(&cd->hash_lock);
1888 	if (!hlist_unhashed(&h->cache_list)){
1889 		hlist_del_init_rcu(&h->cache_list);
1890 		cd->entries--;
1891 		spin_unlock(&cd->hash_lock);
1892 		cache_put(h, cd);
1893 	} else
1894 		spin_unlock(&cd->hash_lock);
1895 }
1896 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1897