1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sunrpc/cache.c 4 * 5 * Generic code for various authentication-related caches 6 * used by sunrpc clients and servers. 7 * 8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 9 */ 10 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/signal.h> 16 #include <linux/sched.h> 17 #include <linux/kmod.h> 18 #include <linux/list.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/string_helpers.h> 22 #include <linux/uaccess.h> 23 #include <linux/poll.h> 24 #include <linux/seq_file.h> 25 #include <linux/proc_fs.h> 26 #include <linux/net.h> 27 #include <linux/workqueue.h> 28 #include <linux/mutex.h> 29 #include <linux/pagemap.h> 30 #include <asm/ioctls.h> 31 #include <linux/sunrpc/types.h> 32 #include <linux/sunrpc/cache.h> 33 #include <linux/sunrpc/stats.h> 34 #include <linux/sunrpc/rpc_pipe_fs.h> 35 #include "netns.h" 36 37 #define RPCDBG_FACILITY RPCDBG_CACHE 38 39 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 40 static void cache_revisit_request(struct cache_head *item); 41 static bool cache_listeners_exist(struct cache_detail *detail); 42 43 static void cache_init(struct cache_head *h, struct cache_detail *detail) 44 { 45 time_t now = seconds_since_boot(); 46 INIT_HLIST_NODE(&h->cache_list); 47 h->flags = 0; 48 kref_init(&h->ref); 49 h->expiry_time = now + CACHE_NEW_EXPIRY; 50 if (now <= detail->flush_time) 51 /* ensure it isn't already expired */ 52 now = detail->flush_time + 1; 53 h->last_refresh = now; 54 } 55 56 static void cache_fresh_unlocked(struct cache_head *head, 57 struct cache_detail *detail); 58 59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail, 60 struct cache_head *key, 61 int hash) 62 { 63 struct hlist_head *head = &detail->hash_table[hash]; 64 struct cache_head *tmp; 65 66 rcu_read_lock(); 67 hlist_for_each_entry_rcu(tmp, head, cache_list) { 68 if (detail->match(tmp, key)) { 69 if (cache_is_expired(detail, tmp)) 70 continue; 71 tmp = cache_get_rcu(tmp); 72 rcu_read_unlock(); 73 return tmp; 74 } 75 } 76 rcu_read_unlock(); 77 return NULL; 78 } 79 80 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail, 81 struct cache_head *key, 82 int hash) 83 { 84 struct cache_head *new, *tmp, *freeme = NULL; 85 struct hlist_head *head = &detail->hash_table[hash]; 86 87 new = detail->alloc(); 88 if (!new) 89 return NULL; 90 /* must fully initialise 'new', else 91 * we might get lose if we need to 92 * cache_put it soon. 93 */ 94 cache_init(new, detail); 95 detail->init(new, key); 96 97 spin_lock(&detail->hash_lock); 98 99 /* check if entry appeared while we slept */ 100 hlist_for_each_entry_rcu(tmp, head, cache_list) { 101 if (detail->match(tmp, key)) { 102 if (cache_is_expired(detail, tmp)) { 103 hlist_del_init_rcu(&tmp->cache_list); 104 detail->entries --; 105 freeme = tmp; 106 break; 107 } 108 cache_get(tmp); 109 spin_unlock(&detail->hash_lock); 110 cache_put(new, detail); 111 return tmp; 112 } 113 } 114 115 hlist_add_head_rcu(&new->cache_list, head); 116 detail->entries++; 117 cache_get(new); 118 spin_unlock(&detail->hash_lock); 119 120 if (freeme) { 121 cache_fresh_unlocked(freeme, detail); 122 cache_put(freeme, detail); 123 } 124 return new; 125 } 126 127 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail, 128 struct cache_head *key, int hash) 129 { 130 struct cache_head *ret; 131 132 ret = sunrpc_cache_find_rcu(detail, key, hash); 133 if (ret) 134 return ret; 135 /* Didn't find anything, insert an empty entry */ 136 return sunrpc_cache_add_entry(detail, key, hash); 137 } 138 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu); 139 140 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 141 142 static void cache_fresh_locked(struct cache_head *head, time_t expiry, 143 struct cache_detail *detail) 144 { 145 time_t now = seconds_since_boot(); 146 if (now <= detail->flush_time) 147 /* ensure it isn't immediately treated as expired */ 148 now = detail->flush_time + 1; 149 head->expiry_time = expiry; 150 head->last_refresh = now; 151 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 152 set_bit(CACHE_VALID, &head->flags); 153 } 154 155 static void cache_fresh_unlocked(struct cache_head *head, 156 struct cache_detail *detail) 157 { 158 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 159 cache_revisit_request(head); 160 cache_dequeue(detail, head); 161 } 162 } 163 164 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 165 struct cache_head *new, struct cache_head *old, int hash) 166 { 167 /* The 'old' entry is to be replaced by 'new'. 168 * If 'old' is not VALID, we update it directly, 169 * otherwise we need to replace it 170 */ 171 struct cache_head *tmp; 172 173 if (!test_bit(CACHE_VALID, &old->flags)) { 174 spin_lock(&detail->hash_lock); 175 if (!test_bit(CACHE_VALID, &old->flags)) { 176 if (test_bit(CACHE_NEGATIVE, &new->flags)) 177 set_bit(CACHE_NEGATIVE, &old->flags); 178 else 179 detail->update(old, new); 180 cache_fresh_locked(old, new->expiry_time, detail); 181 spin_unlock(&detail->hash_lock); 182 cache_fresh_unlocked(old, detail); 183 return old; 184 } 185 spin_unlock(&detail->hash_lock); 186 } 187 /* We need to insert a new entry */ 188 tmp = detail->alloc(); 189 if (!tmp) { 190 cache_put(old, detail); 191 return NULL; 192 } 193 cache_init(tmp, detail); 194 detail->init(tmp, old); 195 196 spin_lock(&detail->hash_lock); 197 if (test_bit(CACHE_NEGATIVE, &new->flags)) 198 set_bit(CACHE_NEGATIVE, &tmp->flags); 199 else 200 detail->update(tmp, new); 201 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 202 detail->entries++; 203 cache_get(tmp); 204 cache_fresh_locked(tmp, new->expiry_time, detail); 205 cache_fresh_locked(old, 0, detail); 206 spin_unlock(&detail->hash_lock); 207 cache_fresh_unlocked(tmp, detail); 208 cache_fresh_unlocked(old, detail); 209 cache_put(old, detail); 210 return tmp; 211 } 212 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 213 214 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 215 { 216 if (cd->cache_upcall) 217 return cd->cache_upcall(cd, h); 218 return sunrpc_cache_pipe_upcall(cd, h); 219 } 220 221 static inline int cache_is_valid(struct cache_head *h) 222 { 223 if (!test_bit(CACHE_VALID, &h->flags)) 224 return -EAGAIN; 225 else { 226 /* entry is valid */ 227 if (test_bit(CACHE_NEGATIVE, &h->flags)) 228 return -ENOENT; 229 else { 230 /* 231 * In combination with write barrier in 232 * sunrpc_cache_update, ensures that anyone 233 * using the cache entry after this sees the 234 * updated contents: 235 */ 236 smp_rmb(); 237 return 0; 238 } 239 } 240 } 241 242 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 243 { 244 int rv; 245 246 spin_lock(&detail->hash_lock); 247 rv = cache_is_valid(h); 248 if (rv == -EAGAIN) { 249 set_bit(CACHE_NEGATIVE, &h->flags); 250 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 251 detail); 252 rv = -ENOENT; 253 } 254 spin_unlock(&detail->hash_lock); 255 cache_fresh_unlocked(h, detail); 256 return rv; 257 } 258 259 /* 260 * This is the generic cache management routine for all 261 * the authentication caches. 262 * It checks the currency of a cache item and will (later) 263 * initiate an upcall to fill it if needed. 264 * 265 * 266 * Returns 0 if the cache_head can be used, or cache_puts it and returns 267 * -EAGAIN if upcall is pending and request has been queued 268 * -ETIMEDOUT if upcall failed or request could not be queue or 269 * upcall completed but item is still invalid (implying that 270 * the cache item has been replaced with a newer one). 271 * -ENOENT if cache entry was negative 272 */ 273 int cache_check(struct cache_detail *detail, 274 struct cache_head *h, struct cache_req *rqstp) 275 { 276 int rv; 277 long refresh_age, age; 278 279 /* First decide return status as best we can */ 280 rv = cache_is_valid(h); 281 282 /* now see if we want to start an upcall */ 283 refresh_age = (h->expiry_time - h->last_refresh); 284 age = seconds_since_boot() - h->last_refresh; 285 286 if (rqstp == NULL) { 287 if (rv == -EAGAIN) 288 rv = -ENOENT; 289 } else if (rv == -EAGAIN || 290 (h->expiry_time != 0 && age > refresh_age/2)) { 291 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 292 refresh_age, age); 293 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 294 switch (cache_make_upcall(detail, h)) { 295 case -EINVAL: 296 rv = try_to_negate_entry(detail, h); 297 break; 298 case -EAGAIN: 299 cache_fresh_unlocked(h, detail); 300 break; 301 } 302 } else if (!cache_listeners_exist(detail)) 303 rv = try_to_negate_entry(detail, h); 304 } 305 306 if (rv == -EAGAIN) { 307 if (!cache_defer_req(rqstp, h)) { 308 /* 309 * Request was not deferred; handle it as best 310 * we can ourselves: 311 */ 312 rv = cache_is_valid(h); 313 if (rv == -EAGAIN) 314 rv = -ETIMEDOUT; 315 } 316 } 317 if (rv) 318 cache_put(h, detail); 319 return rv; 320 } 321 EXPORT_SYMBOL_GPL(cache_check); 322 323 /* 324 * caches need to be periodically cleaned. 325 * For this we maintain a list of cache_detail and 326 * a current pointer into that list and into the table 327 * for that entry. 328 * 329 * Each time cache_clean is called it finds the next non-empty entry 330 * in the current table and walks the list in that entry 331 * looking for entries that can be removed. 332 * 333 * An entry gets removed if: 334 * - The expiry is before current time 335 * - The last_refresh time is before the flush_time for that cache 336 * 337 * later we might drop old entries with non-NEVER expiry if that table 338 * is getting 'full' for some definition of 'full' 339 * 340 * The question of "how often to scan a table" is an interesting one 341 * and is answered in part by the use of the "nextcheck" field in the 342 * cache_detail. 343 * When a scan of a table begins, the nextcheck field is set to a time 344 * that is well into the future. 345 * While scanning, if an expiry time is found that is earlier than the 346 * current nextcheck time, nextcheck is set to that expiry time. 347 * If the flush_time is ever set to a time earlier than the nextcheck 348 * time, the nextcheck time is then set to that flush_time. 349 * 350 * A table is then only scanned if the current time is at least 351 * the nextcheck time. 352 * 353 */ 354 355 static LIST_HEAD(cache_list); 356 static DEFINE_SPINLOCK(cache_list_lock); 357 static struct cache_detail *current_detail; 358 static int current_index; 359 360 static void do_cache_clean(struct work_struct *work); 361 static struct delayed_work cache_cleaner; 362 363 void sunrpc_init_cache_detail(struct cache_detail *cd) 364 { 365 spin_lock_init(&cd->hash_lock); 366 INIT_LIST_HEAD(&cd->queue); 367 spin_lock(&cache_list_lock); 368 cd->nextcheck = 0; 369 cd->entries = 0; 370 atomic_set(&cd->writers, 0); 371 cd->last_close = 0; 372 cd->last_warn = -1; 373 list_add(&cd->others, &cache_list); 374 spin_unlock(&cache_list_lock); 375 376 /* start the cleaning process */ 377 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); 378 } 379 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 380 381 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 382 { 383 cache_purge(cd); 384 spin_lock(&cache_list_lock); 385 spin_lock(&cd->hash_lock); 386 if (current_detail == cd) 387 current_detail = NULL; 388 list_del_init(&cd->others); 389 spin_unlock(&cd->hash_lock); 390 spin_unlock(&cache_list_lock); 391 if (list_empty(&cache_list)) { 392 /* module must be being unloaded so its safe to kill the worker */ 393 cancel_delayed_work_sync(&cache_cleaner); 394 } 395 } 396 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 397 398 /* clean cache tries to find something to clean 399 * and cleans it. 400 * It returns 1 if it cleaned something, 401 * 0 if it didn't find anything this time 402 * -1 if it fell off the end of the list. 403 */ 404 static int cache_clean(void) 405 { 406 int rv = 0; 407 struct list_head *next; 408 409 spin_lock(&cache_list_lock); 410 411 /* find a suitable table if we don't already have one */ 412 while (current_detail == NULL || 413 current_index >= current_detail->hash_size) { 414 if (current_detail) 415 next = current_detail->others.next; 416 else 417 next = cache_list.next; 418 if (next == &cache_list) { 419 current_detail = NULL; 420 spin_unlock(&cache_list_lock); 421 return -1; 422 } 423 current_detail = list_entry(next, struct cache_detail, others); 424 if (current_detail->nextcheck > seconds_since_boot()) 425 current_index = current_detail->hash_size; 426 else { 427 current_index = 0; 428 current_detail->nextcheck = seconds_since_boot()+30*60; 429 } 430 } 431 432 /* find a non-empty bucket in the table */ 433 while (current_detail && 434 current_index < current_detail->hash_size && 435 hlist_empty(¤t_detail->hash_table[current_index])) 436 current_index++; 437 438 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 439 440 if (current_detail && current_index < current_detail->hash_size) { 441 struct cache_head *ch = NULL; 442 struct cache_detail *d; 443 struct hlist_head *head; 444 struct hlist_node *tmp; 445 446 spin_lock(¤t_detail->hash_lock); 447 448 /* Ok, now to clean this strand */ 449 450 head = ¤t_detail->hash_table[current_index]; 451 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 452 if (current_detail->nextcheck > ch->expiry_time) 453 current_detail->nextcheck = ch->expiry_time+1; 454 if (!cache_is_expired(current_detail, ch)) 455 continue; 456 457 hlist_del_init_rcu(&ch->cache_list); 458 current_detail->entries--; 459 rv = 1; 460 break; 461 } 462 463 spin_unlock(¤t_detail->hash_lock); 464 d = current_detail; 465 if (!ch) 466 current_index ++; 467 spin_unlock(&cache_list_lock); 468 if (ch) { 469 set_bit(CACHE_CLEANED, &ch->flags); 470 cache_fresh_unlocked(ch, d); 471 cache_put(ch, d); 472 } 473 } else 474 spin_unlock(&cache_list_lock); 475 476 return rv; 477 } 478 479 /* 480 * We want to regularly clean the cache, so we need to schedule some work ... 481 */ 482 static void do_cache_clean(struct work_struct *work) 483 { 484 int delay = 5; 485 if (cache_clean() == -1) 486 delay = round_jiffies_relative(30*HZ); 487 488 if (list_empty(&cache_list)) 489 delay = 0; 490 491 if (delay) 492 queue_delayed_work(system_power_efficient_wq, 493 &cache_cleaner, delay); 494 } 495 496 497 /* 498 * Clean all caches promptly. This just calls cache_clean 499 * repeatedly until we are sure that every cache has had a chance to 500 * be fully cleaned 501 */ 502 void cache_flush(void) 503 { 504 while (cache_clean() != -1) 505 cond_resched(); 506 while (cache_clean() != -1) 507 cond_resched(); 508 } 509 EXPORT_SYMBOL_GPL(cache_flush); 510 511 void cache_purge(struct cache_detail *detail) 512 { 513 struct cache_head *ch = NULL; 514 struct hlist_head *head = NULL; 515 struct hlist_node *tmp = NULL; 516 int i = 0; 517 518 spin_lock(&detail->hash_lock); 519 if (!detail->entries) { 520 spin_unlock(&detail->hash_lock); 521 return; 522 } 523 524 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name); 525 for (i = 0; i < detail->hash_size; i++) { 526 head = &detail->hash_table[i]; 527 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 528 hlist_del_init_rcu(&ch->cache_list); 529 detail->entries--; 530 531 set_bit(CACHE_CLEANED, &ch->flags); 532 spin_unlock(&detail->hash_lock); 533 cache_fresh_unlocked(ch, detail); 534 cache_put(ch, detail); 535 spin_lock(&detail->hash_lock); 536 } 537 } 538 spin_unlock(&detail->hash_lock); 539 } 540 EXPORT_SYMBOL_GPL(cache_purge); 541 542 543 /* 544 * Deferral and Revisiting of Requests. 545 * 546 * If a cache lookup finds a pending entry, we 547 * need to defer the request and revisit it later. 548 * All deferred requests are stored in a hash table, 549 * indexed by "struct cache_head *". 550 * As it may be wasteful to store a whole request 551 * structure, we allow the request to provide a 552 * deferred form, which must contain a 553 * 'struct cache_deferred_req' 554 * This cache_deferred_req contains a method to allow 555 * it to be revisited when cache info is available 556 */ 557 558 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 559 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 560 561 #define DFR_MAX 300 /* ??? */ 562 563 static DEFINE_SPINLOCK(cache_defer_lock); 564 static LIST_HEAD(cache_defer_list); 565 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 566 static int cache_defer_cnt; 567 568 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 569 { 570 hlist_del_init(&dreq->hash); 571 if (!list_empty(&dreq->recent)) { 572 list_del_init(&dreq->recent); 573 cache_defer_cnt--; 574 } 575 } 576 577 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 578 { 579 int hash = DFR_HASH(item); 580 581 INIT_LIST_HEAD(&dreq->recent); 582 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 583 } 584 585 static void setup_deferral(struct cache_deferred_req *dreq, 586 struct cache_head *item, 587 int count_me) 588 { 589 590 dreq->item = item; 591 592 spin_lock(&cache_defer_lock); 593 594 __hash_deferred_req(dreq, item); 595 596 if (count_me) { 597 cache_defer_cnt++; 598 list_add(&dreq->recent, &cache_defer_list); 599 } 600 601 spin_unlock(&cache_defer_lock); 602 603 } 604 605 struct thread_deferred_req { 606 struct cache_deferred_req handle; 607 struct completion completion; 608 }; 609 610 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 611 { 612 struct thread_deferred_req *dr = 613 container_of(dreq, struct thread_deferred_req, handle); 614 complete(&dr->completion); 615 } 616 617 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 618 { 619 struct thread_deferred_req sleeper; 620 struct cache_deferred_req *dreq = &sleeper.handle; 621 622 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 623 dreq->revisit = cache_restart_thread; 624 625 setup_deferral(dreq, item, 0); 626 627 if (!test_bit(CACHE_PENDING, &item->flags) || 628 wait_for_completion_interruptible_timeout( 629 &sleeper.completion, req->thread_wait) <= 0) { 630 /* The completion wasn't completed, so we need 631 * to clean up 632 */ 633 spin_lock(&cache_defer_lock); 634 if (!hlist_unhashed(&sleeper.handle.hash)) { 635 __unhash_deferred_req(&sleeper.handle); 636 spin_unlock(&cache_defer_lock); 637 } else { 638 /* cache_revisit_request already removed 639 * this from the hash table, but hasn't 640 * called ->revisit yet. It will very soon 641 * and we need to wait for it. 642 */ 643 spin_unlock(&cache_defer_lock); 644 wait_for_completion(&sleeper.completion); 645 } 646 } 647 } 648 649 static void cache_limit_defers(void) 650 { 651 /* Make sure we haven't exceed the limit of allowed deferred 652 * requests. 653 */ 654 struct cache_deferred_req *discard = NULL; 655 656 if (cache_defer_cnt <= DFR_MAX) 657 return; 658 659 spin_lock(&cache_defer_lock); 660 661 /* Consider removing either the first or the last */ 662 if (cache_defer_cnt > DFR_MAX) { 663 if (prandom_u32() & 1) 664 discard = list_entry(cache_defer_list.next, 665 struct cache_deferred_req, recent); 666 else 667 discard = list_entry(cache_defer_list.prev, 668 struct cache_deferred_req, recent); 669 __unhash_deferred_req(discard); 670 } 671 spin_unlock(&cache_defer_lock); 672 if (discard) 673 discard->revisit(discard, 1); 674 } 675 676 /* Return true if and only if a deferred request is queued. */ 677 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 678 { 679 struct cache_deferred_req *dreq; 680 681 if (req->thread_wait) { 682 cache_wait_req(req, item); 683 if (!test_bit(CACHE_PENDING, &item->flags)) 684 return false; 685 } 686 dreq = req->defer(req); 687 if (dreq == NULL) 688 return false; 689 setup_deferral(dreq, item, 1); 690 if (!test_bit(CACHE_PENDING, &item->flags)) 691 /* Bit could have been cleared before we managed to 692 * set up the deferral, so need to revisit just in case 693 */ 694 cache_revisit_request(item); 695 696 cache_limit_defers(); 697 return true; 698 } 699 700 static void cache_revisit_request(struct cache_head *item) 701 { 702 struct cache_deferred_req *dreq; 703 struct list_head pending; 704 struct hlist_node *tmp; 705 int hash = DFR_HASH(item); 706 707 INIT_LIST_HEAD(&pending); 708 spin_lock(&cache_defer_lock); 709 710 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 711 if (dreq->item == item) { 712 __unhash_deferred_req(dreq); 713 list_add(&dreq->recent, &pending); 714 } 715 716 spin_unlock(&cache_defer_lock); 717 718 while (!list_empty(&pending)) { 719 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 720 list_del_init(&dreq->recent); 721 dreq->revisit(dreq, 0); 722 } 723 } 724 725 void cache_clean_deferred(void *owner) 726 { 727 struct cache_deferred_req *dreq, *tmp; 728 struct list_head pending; 729 730 731 INIT_LIST_HEAD(&pending); 732 spin_lock(&cache_defer_lock); 733 734 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 735 if (dreq->owner == owner) { 736 __unhash_deferred_req(dreq); 737 list_add(&dreq->recent, &pending); 738 } 739 } 740 spin_unlock(&cache_defer_lock); 741 742 while (!list_empty(&pending)) { 743 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 744 list_del_init(&dreq->recent); 745 dreq->revisit(dreq, 1); 746 } 747 } 748 749 /* 750 * communicate with user-space 751 * 752 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel. 753 * On read, you get a full request, or block. 754 * On write, an update request is processed. 755 * Poll works if anything to read, and always allows write. 756 * 757 * Implemented by linked list of requests. Each open file has 758 * a ->private that also exists in this list. New requests are added 759 * to the end and may wakeup and preceding readers. 760 * New readers are added to the head. If, on read, an item is found with 761 * CACHE_UPCALLING clear, we free it from the list. 762 * 763 */ 764 765 static DEFINE_SPINLOCK(queue_lock); 766 static DEFINE_MUTEX(queue_io_mutex); 767 768 struct cache_queue { 769 struct list_head list; 770 int reader; /* if 0, then request */ 771 }; 772 struct cache_request { 773 struct cache_queue q; 774 struct cache_head *item; 775 char * buf; 776 int len; 777 int readers; 778 }; 779 struct cache_reader { 780 struct cache_queue q; 781 int offset; /* if non-0, we have a refcnt on next request */ 782 }; 783 784 static int cache_request(struct cache_detail *detail, 785 struct cache_request *crq) 786 { 787 char *bp = crq->buf; 788 int len = PAGE_SIZE; 789 790 detail->cache_request(detail, crq->item, &bp, &len); 791 if (len < 0) 792 return -EAGAIN; 793 return PAGE_SIZE - len; 794 } 795 796 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 797 loff_t *ppos, struct cache_detail *cd) 798 { 799 struct cache_reader *rp = filp->private_data; 800 struct cache_request *rq; 801 struct inode *inode = file_inode(filp); 802 int err; 803 804 if (count == 0) 805 return 0; 806 807 inode_lock(inode); /* protect against multiple concurrent 808 * readers on this file */ 809 again: 810 spin_lock(&queue_lock); 811 /* need to find next request */ 812 while (rp->q.list.next != &cd->queue && 813 list_entry(rp->q.list.next, struct cache_queue, list) 814 ->reader) { 815 struct list_head *next = rp->q.list.next; 816 list_move(&rp->q.list, next); 817 } 818 if (rp->q.list.next == &cd->queue) { 819 spin_unlock(&queue_lock); 820 inode_unlock(inode); 821 WARN_ON_ONCE(rp->offset); 822 return 0; 823 } 824 rq = container_of(rp->q.list.next, struct cache_request, q.list); 825 WARN_ON_ONCE(rq->q.reader); 826 if (rp->offset == 0) 827 rq->readers++; 828 spin_unlock(&queue_lock); 829 830 if (rq->len == 0) { 831 err = cache_request(cd, rq); 832 if (err < 0) 833 goto out; 834 rq->len = err; 835 } 836 837 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 838 err = -EAGAIN; 839 spin_lock(&queue_lock); 840 list_move(&rp->q.list, &rq->q.list); 841 spin_unlock(&queue_lock); 842 } else { 843 if (rp->offset + count > rq->len) 844 count = rq->len - rp->offset; 845 err = -EFAULT; 846 if (copy_to_user(buf, rq->buf + rp->offset, count)) 847 goto out; 848 rp->offset += count; 849 if (rp->offset >= rq->len) { 850 rp->offset = 0; 851 spin_lock(&queue_lock); 852 list_move(&rp->q.list, &rq->q.list); 853 spin_unlock(&queue_lock); 854 } 855 err = 0; 856 } 857 out: 858 if (rp->offset == 0) { 859 /* need to release rq */ 860 spin_lock(&queue_lock); 861 rq->readers--; 862 if (rq->readers == 0 && 863 !test_bit(CACHE_PENDING, &rq->item->flags)) { 864 list_del(&rq->q.list); 865 spin_unlock(&queue_lock); 866 cache_put(rq->item, cd); 867 kfree(rq->buf); 868 kfree(rq); 869 } else 870 spin_unlock(&queue_lock); 871 } 872 if (err == -EAGAIN) 873 goto again; 874 inode_unlock(inode); 875 return err ? err : count; 876 } 877 878 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 879 size_t count, struct cache_detail *cd) 880 { 881 ssize_t ret; 882 883 if (count == 0) 884 return -EINVAL; 885 if (copy_from_user(kaddr, buf, count)) 886 return -EFAULT; 887 kaddr[count] = '\0'; 888 ret = cd->cache_parse(cd, kaddr, count); 889 if (!ret) 890 ret = count; 891 return ret; 892 } 893 894 static ssize_t cache_slow_downcall(const char __user *buf, 895 size_t count, struct cache_detail *cd) 896 { 897 static char write_buf[8192]; /* protected by queue_io_mutex */ 898 ssize_t ret = -EINVAL; 899 900 if (count >= sizeof(write_buf)) 901 goto out; 902 mutex_lock(&queue_io_mutex); 903 ret = cache_do_downcall(write_buf, buf, count, cd); 904 mutex_unlock(&queue_io_mutex); 905 out: 906 return ret; 907 } 908 909 static ssize_t cache_downcall(struct address_space *mapping, 910 const char __user *buf, 911 size_t count, struct cache_detail *cd) 912 { 913 struct page *page; 914 char *kaddr; 915 ssize_t ret = -ENOMEM; 916 917 if (count >= PAGE_SIZE) 918 goto out_slow; 919 920 page = find_or_create_page(mapping, 0, GFP_KERNEL); 921 if (!page) 922 goto out_slow; 923 924 kaddr = kmap(page); 925 ret = cache_do_downcall(kaddr, buf, count, cd); 926 kunmap(page); 927 unlock_page(page); 928 put_page(page); 929 return ret; 930 out_slow: 931 return cache_slow_downcall(buf, count, cd); 932 } 933 934 static ssize_t cache_write(struct file *filp, const char __user *buf, 935 size_t count, loff_t *ppos, 936 struct cache_detail *cd) 937 { 938 struct address_space *mapping = filp->f_mapping; 939 struct inode *inode = file_inode(filp); 940 ssize_t ret = -EINVAL; 941 942 if (!cd->cache_parse) 943 goto out; 944 945 inode_lock(inode); 946 ret = cache_downcall(mapping, buf, count, cd); 947 inode_unlock(inode); 948 out: 949 return ret; 950 } 951 952 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 953 954 static __poll_t cache_poll(struct file *filp, poll_table *wait, 955 struct cache_detail *cd) 956 { 957 __poll_t mask; 958 struct cache_reader *rp = filp->private_data; 959 struct cache_queue *cq; 960 961 poll_wait(filp, &queue_wait, wait); 962 963 /* alway allow write */ 964 mask = EPOLLOUT | EPOLLWRNORM; 965 966 if (!rp) 967 return mask; 968 969 spin_lock(&queue_lock); 970 971 for (cq= &rp->q; &cq->list != &cd->queue; 972 cq = list_entry(cq->list.next, struct cache_queue, list)) 973 if (!cq->reader) { 974 mask |= EPOLLIN | EPOLLRDNORM; 975 break; 976 } 977 spin_unlock(&queue_lock); 978 return mask; 979 } 980 981 static int cache_ioctl(struct inode *ino, struct file *filp, 982 unsigned int cmd, unsigned long arg, 983 struct cache_detail *cd) 984 { 985 int len = 0; 986 struct cache_reader *rp = filp->private_data; 987 struct cache_queue *cq; 988 989 if (cmd != FIONREAD || !rp) 990 return -EINVAL; 991 992 spin_lock(&queue_lock); 993 994 /* only find the length remaining in current request, 995 * or the length of the next request 996 */ 997 for (cq= &rp->q; &cq->list != &cd->queue; 998 cq = list_entry(cq->list.next, struct cache_queue, list)) 999 if (!cq->reader) { 1000 struct cache_request *cr = 1001 container_of(cq, struct cache_request, q); 1002 len = cr->len - rp->offset; 1003 break; 1004 } 1005 spin_unlock(&queue_lock); 1006 1007 return put_user(len, (int __user *)arg); 1008 } 1009 1010 static int cache_open(struct inode *inode, struct file *filp, 1011 struct cache_detail *cd) 1012 { 1013 struct cache_reader *rp = NULL; 1014 1015 if (!cd || !try_module_get(cd->owner)) 1016 return -EACCES; 1017 nonseekable_open(inode, filp); 1018 if (filp->f_mode & FMODE_READ) { 1019 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 1020 if (!rp) { 1021 module_put(cd->owner); 1022 return -ENOMEM; 1023 } 1024 rp->offset = 0; 1025 rp->q.reader = 1; 1026 1027 spin_lock(&queue_lock); 1028 list_add(&rp->q.list, &cd->queue); 1029 spin_unlock(&queue_lock); 1030 } 1031 if (filp->f_mode & FMODE_WRITE) 1032 atomic_inc(&cd->writers); 1033 filp->private_data = rp; 1034 return 0; 1035 } 1036 1037 static int cache_release(struct inode *inode, struct file *filp, 1038 struct cache_detail *cd) 1039 { 1040 struct cache_reader *rp = filp->private_data; 1041 1042 if (rp) { 1043 spin_lock(&queue_lock); 1044 if (rp->offset) { 1045 struct cache_queue *cq; 1046 for (cq= &rp->q; &cq->list != &cd->queue; 1047 cq = list_entry(cq->list.next, struct cache_queue, list)) 1048 if (!cq->reader) { 1049 container_of(cq, struct cache_request, q) 1050 ->readers--; 1051 break; 1052 } 1053 rp->offset = 0; 1054 } 1055 list_del(&rp->q.list); 1056 spin_unlock(&queue_lock); 1057 1058 filp->private_data = NULL; 1059 kfree(rp); 1060 1061 } 1062 if (filp->f_mode & FMODE_WRITE) { 1063 atomic_dec(&cd->writers); 1064 cd->last_close = seconds_since_boot(); 1065 } 1066 module_put(cd->owner); 1067 return 0; 1068 } 1069 1070 1071 1072 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1073 { 1074 struct cache_queue *cq, *tmp; 1075 struct cache_request *cr; 1076 struct list_head dequeued; 1077 1078 INIT_LIST_HEAD(&dequeued); 1079 spin_lock(&queue_lock); 1080 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1081 if (!cq->reader) { 1082 cr = container_of(cq, struct cache_request, q); 1083 if (cr->item != ch) 1084 continue; 1085 if (test_bit(CACHE_PENDING, &ch->flags)) 1086 /* Lost a race and it is pending again */ 1087 break; 1088 if (cr->readers != 0) 1089 continue; 1090 list_move(&cr->q.list, &dequeued); 1091 } 1092 spin_unlock(&queue_lock); 1093 while (!list_empty(&dequeued)) { 1094 cr = list_entry(dequeued.next, struct cache_request, q.list); 1095 list_del(&cr->q.list); 1096 cache_put(cr->item, detail); 1097 kfree(cr->buf); 1098 kfree(cr); 1099 } 1100 } 1101 1102 /* 1103 * Support routines for text-based upcalls. 1104 * Fields are separated by spaces. 1105 * Fields are either mangled to quote space tab newline slosh with slosh 1106 * or a hexified with a leading \x 1107 * Record is terminated with newline. 1108 * 1109 */ 1110 1111 void qword_add(char **bpp, int *lp, char *str) 1112 { 1113 char *bp = *bpp; 1114 int len = *lp; 1115 int ret; 1116 1117 if (len < 0) return; 1118 1119 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1120 if (ret >= len) { 1121 bp += len; 1122 len = -1; 1123 } else { 1124 bp += ret; 1125 len -= ret; 1126 *bp++ = ' '; 1127 len--; 1128 } 1129 *bpp = bp; 1130 *lp = len; 1131 } 1132 EXPORT_SYMBOL_GPL(qword_add); 1133 1134 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1135 { 1136 char *bp = *bpp; 1137 int len = *lp; 1138 1139 if (len < 0) return; 1140 1141 if (len > 2) { 1142 *bp++ = '\\'; 1143 *bp++ = 'x'; 1144 len -= 2; 1145 while (blen && len >= 2) { 1146 bp = hex_byte_pack(bp, *buf++); 1147 len -= 2; 1148 blen--; 1149 } 1150 } 1151 if (blen || len<1) len = -1; 1152 else { 1153 *bp++ = ' '; 1154 len--; 1155 } 1156 *bpp = bp; 1157 *lp = len; 1158 } 1159 EXPORT_SYMBOL_GPL(qword_addhex); 1160 1161 static void warn_no_listener(struct cache_detail *detail) 1162 { 1163 if (detail->last_warn != detail->last_close) { 1164 detail->last_warn = detail->last_close; 1165 if (detail->warn_no_listener) 1166 detail->warn_no_listener(detail, detail->last_close != 0); 1167 } 1168 } 1169 1170 static bool cache_listeners_exist(struct cache_detail *detail) 1171 { 1172 if (atomic_read(&detail->writers)) 1173 return true; 1174 if (detail->last_close == 0) 1175 /* This cache was never opened */ 1176 return false; 1177 if (detail->last_close < seconds_since_boot() - 30) 1178 /* 1179 * We allow for the possibility that someone might 1180 * restart a userspace daemon without restarting the 1181 * server; but after 30 seconds, we give up. 1182 */ 1183 return false; 1184 return true; 1185 } 1186 1187 /* 1188 * register an upcall request to user-space and queue it up for read() by the 1189 * upcall daemon. 1190 * 1191 * Each request is at most one page long. 1192 */ 1193 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1194 { 1195 1196 char *buf; 1197 struct cache_request *crq; 1198 int ret = 0; 1199 1200 if (!detail->cache_request) 1201 return -EINVAL; 1202 1203 if (!cache_listeners_exist(detail)) { 1204 warn_no_listener(detail); 1205 return -EINVAL; 1206 } 1207 if (test_bit(CACHE_CLEANED, &h->flags)) 1208 /* Too late to make an upcall */ 1209 return -EAGAIN; 1210 1211 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1212 if (!buf) 1213 return -EAGAIN; 1214 1215 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1216 if (!crq) { 1217 kfree(buf); 1218 return -EAGAIN; 1219 } 1220 1221 crq->q.reader = 0; 1222 crq->buf = buf; 1223 crq->len = 0; 1224 crq->readers = 0; 1225 spin_lock(&queue_lock); 1226 if (test_bit(CACHE_PENDING, &h->flags)) { 1227 crq->item = cache_get(h); 1228 list_add_tail(&crq->q.list, &detail->queue); 1229 } else 1230 /* Lost a race, no longer PENDING, so don't enqueue */ 1231 ret = -EAGAIN; 1232 spin_unlock(&queue_lock); 1233 wake_up(&queue_wait); 1234 if (ret == -EAGAIN) { 1235 kfree(buf); 1236 kfree(crq); 1237 } 1238 return ret; 1239 } 1240 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1241 1242 /* 1243 * parse a message from user-space and pass it 1244 * to an appropriate cache 1245 * Messages are, like requests, separated into fields by 1246 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1247 * 1248 * Message is 1249 * reply cachename expiry key ... content.... 1250 * 1251 * key and content are both parsed by cache 1252 */ 1253 1254 int qword_get(char **bpp, char *dest, int bufsize) 1255 { 1256 /* return bytes copied, or -1 on error */ 1257 char *bp = *bpp; 1258 int len = 0; 1259 1260 while (*bp == ' ') bp++; 1261 1262 if (bp[0] == '\\' && bp[1] == 'x') { 1263 /* HEX STRING */ 1264 bp += 2; 1265 while (len < bufsize - 1) { 1266 int h, l; 1267 1268 h = hex_to_bin(bp[0]); 1269 if (h < 0) 1270 break; 1271 1272 l = hex_to_bin(bp[1]); 1273 if (l < 0) 1274 break; 1275 1276 *dest++ = (h << 4) | l; 1277 bp += 2; 1278 len++; 1279 } 1280 } else { 1281 /* text with \nnn octal quoting */ 1282 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1283 if (*bp == '\\' && 1284 isodigit(bp[1]) && (bp[1] <= '3') && 1285 isodigit(bp[2]) && 1286 isodigit(bp[3])) { 1287 int byte = (*++bp -'0'); 1288 bp++; 1289 byte = (byte << 3) | (*bp++ - '0'); 1290 byte = (byte << 3) | (*bp++ - '0'); 1291 *dest++ = byte; 1292 len++; 1293 } else { 1294 *dest++ = *bp++; 1295 len++; 1296 } 1297 } 1298 } 1299 1300 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1301 return -1; 1302 while (*bp == ' ') bp++; 1303 *bpp = bp; 1304 *dest = '\0'; 1305 return len; 1306 } 1307 EXPORT_SYMBOL_GPL(qword_get); 1308 1309 1310 /* 1311 * support /proc/net/rpc/$CACHENAME/content 1312 * as a seqfile. 1313 * We call ->cache_show passing NULL for the item to 1314 * get a header, then pass each real item in the cache 1315 */ 1316 1317 static void *__cache_seq_start(struct seq_file *m, loff_t *pos) 1318 { 1319 loff_t n = *pos; 1320 unsigned int hash, entry; 1321 struct cache_head *ch; 1322 struct cache_detail *cd = m->private; 1323 1324 if (!n--) 1325 return SEQ_START_TOKEN; 1326 hash = n >> 32; 1327 entry = n & ((1LL<<32) - 1); 1328 1329 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list) 1330 if (!entry--) 1331 return ch; 1332 n &= ~((1LL<<32) - 1); 1333 do { 1334 hash++; 1335 n += 1LL<<32; 1336 } while(hash < cd->hash_size && 1337 hlist_empty(&cd->hash_table[hash])); 1338 if (hash >= cd->hash_size) 1339 return NULL; 1340 *pos = n+1; 1341 return hlist_entry_safe(rcu_dereference_raw( 1342 hlist_first_rcu(&cd->hash_table[hash])), 1343 struct cache_head, cache_list); 1344 } 1345 1346 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1347 { 1348 struct cache_head *ch = p; 1349 int hash = (*pos >> 32); 1350 struct cache_detail *cd = m->private; 1351 1352 if (p == SEQ_START_TOKEN) 1353 hash = 0; 1354 else if (ch->cache_list.next == NULL) { 1355 hash++; 1356 *pos += 1LL<<32; 1357 } else { 1358 ++*pos; 1359 return hlist_entry_safe(rcu_dereference_raw( 1360 hlist_next_rcu(&ch->cache_list)), 1361 struct cache_head, cache_list); 1362 } 1363 *pos &= ~((1LL<<32) - 1); 1364 while (hash < cd->hash_size && 1365 hlist_empty(&cd->hash_table[hash])) { 1366 hash++; 1367 *pos += 1LL<<32; 1368 } 1369 if (hash >= cd->hash_size) 1370 return NULL; 1371 ++*pos; 1372 return hlist_entry_safe(rcu_dereference_raw( 1373 hlist_first_rcu(&cd->hash_table[hash])), 1374 struct cache_head, cache_list); 1375 } 1376 1377 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos) 1378 __acquires(RCU) 1379 { 1380 rcu_read_lock(); 1381 return __cache_seq_start(m, pos); 1382 } 1383 EXPORT_SYMBOL_GPL(cache_seq_start_rcu); 1384 1385 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos) 1386 { 1387 return cache_seq_next(file, p, pos); 1388 } 1389 EXPORT_SYMBOL_GPL(cache_seq_next_rcu); 1390 1391 void cache_seq_stop_rcu(struct seq_file *m, void *p) 1392 __releases(RCU) 1393 { 1394 rcu_read_unlock(); 1395 } 1396 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu); 1397 1398 static int c_show(struct seq_file *m, void *p) 1399 { 1400 struct cache_head *cp = p; 1401 struct cache_detail *cd = m->private; 1402 1403 if (p == SEQ_START_TOKEN) 1404 return cd->cache_show(m, cd, NULL); 1405 1406 ifdebug(CACHE) 1407 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1408 convert_to_wallclock(cp->expiry_time), 1409 kref_read(&cp->ref), cp->flags); 1410 cache_get(cp); 1411 if (cache_check(cd, cp, NULL)) 1412 /* cache_check does a cache_put on failure */ 1413 seq_printf(m, "# "); 1414 else { 1415 if (cache_is_expired(cd, cp)) 1416 seq_printf(m, "# "); 1417 cache_put(cp, cd); 1418 } 1419 1420 return cd->cache_show(m, cd, cp); 1421 } 1422 1423 static const struct seq_operations cache_content_op = { 1424 .start = cache_seq_start_rcu, 1425 .next = cache_seq_next_rcu, 1426 .stop = cache_seq_stop_rcu, 1427 .show = c_show, 1428 }; 1429 1430 static int content_open(struct inode *inode, struct file *file, 1431 struct cache_detail *cd) 1432 { 1433 struct seq_file *seq; 1434 int err; 1435 1436 if (!cd || !try_module_get(cd->owner)) 1437 return -EACCES; 1438 1439 err = seq_open(file, &cache_content_op); 1440 if (err) { 1441 module_put(cd->owner); 1442 return err; 1443 } 1444 1445 seq = file->private_data; 1446 seq->private = cd; 1447 return 0; 1448 } 1449 1450 static int content_release(struct inode *inode, struct file *file, 1451 struct cache_detail *cd) 1452 { 1453 int ret = seq_release(inode, file); 1454 module_put(cd->owner); 1455 return ret; 1456 } 1457 1458 static int open_flush(struct inode *inode, struct file *file, 1459 struct cache_detail *cd) 1460 { 1461 if (!cd || !try_module_get(cd->owner)) 1462 return -EACCES; 1463 return nonseekable_open(inode, file); 1464 } 1465 1466 static int release_flush(struct inode *inode, struct file *file, 1467 struct cache_detail *cd) 1468 { 1469 module_put(cd->owner); 1470 return 0; 1471 } 1472 1473 static ssize_t read_flush(struct file *file, char __user *buf, 1474 size_t count, loff_t *ppos, 1475 struct cache_detail *cd) 1476 { 1477 char tbuf[22]; 1478 size_t len; 1479 1480 len = snprintf(tbuf, sizeof(tbuf), "%lu\n", 1481 convert_to_wallclock(cd->flush_time)); 1482 return simple_read_from_buffer(buf, count, ppos, tbuf, len); 1483 } 1484 1485 static ssize_t write_flush(struct file *file, const char __user *buf, 1486 size_t count, loff_t *ppos, 1487 struct cache_detail *cd) 1488 { 1489 char tbuf[20]; 1490 char *ep; 1491 time_t now; 1492 1493 if (*ppos || count > sizeof(tbuf)-1) 1494 return -EINVAL; 1495 if (copy_from_user(tbuf, buf, count)) 1496 return -EFAULT; 1497 tbuf[count] = 0; 1498 simple_strtoul(tbuf, &ep, 0); 1499 if (*ep && *ep != '\n') 1500 return -EINVAL; 1501 /* Note that while we check that 'buf' holds a valid number, 1502 * we always ignore the value and just flush everything. 1503 * Making use of the number leads to races. 1504 */ 1505 1506 now = seconds_since_boot(); 1507 /* Always flush everything, so behave like cache_purge() 1508 * Do this by advancing flush_time to the current time, 1509 * or by one second if it has already reached the current time. 1510 * Newly added cache entries will always have ->last_refresh greater 1511 * that ->flush_time, so they don't get flushed prematurely. 1512 */ 1513 1514 if (cd->flush_time >= now) 1515 now = cd->flush_time + 1; 1516 1517 cd->flush_time = now; 1518 cd->nextcheck = now; 1519 cache_flush(); 1520 1521 if (cd->flush) 1522 cd->flush(); 1523 1524 *ppos += count; 1525 return count; 1526 } 1527 1528 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1529 size_t count, loff_t *ppos) 1530 { 1531 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1532 1533 return cache_read(filp, buf, count, ppos, cd); 1534 } 1535 1536 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1537 size_t count, loff_t *ppos) 1538 { 1539 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1540 1541 return cache_write(filp, buf, count, ppos, cd); 1542 } 1543 1544 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait) 1545 { 1546 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1547 1548 return cache_poll(filp, wait, cd); 1549 } 1550 1551 static long cache_ioctl_procfs(struct file *filp, 1552 unsigned int cmd, unsigned long arg) 1553 { 1554 struct inode *inode = file_inode(filp); 1555 struct cache_detail *cd = PDE_DATA(inode); 1556 1557 return cache_ioctl(inode, filp, cmd, arg, cd); 1558 } 1559 1560 static int cache_open_procfs(struct inode *inode, struct file *filp) 1561 { 1562 struct cache_detail *cd = PDE_DATA(inode); 1563 1564 return cache_open(inode, filp, cd); 1565 } 1566 1567 static int cache_release_procfs(struct inode *inode, struct file *filp) 1568 { 1569 struct cache_detail *cd = PDE_DATA(inode); 1570 1571 return cache_release(inode, filp, cd); 1572 } 1573 1574 static const struct file_operations cache_file_operations_procfs = { 1575 .owner = THIS_MODULE, 1576 .llseek = no_llseek, 1577 .read = cache_read_procfs, 1578 .write = cache_write_procfs, 1579 .poll = cache_poll_procfs, 1580 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1581 .open = cache_open_procfs, 1582 .release = cache_release_procfs, 1583 }; 1584 1585 static int content_open_procfs(struct inode *inode, struct file *filp) 1586 { 1587 struct cache_detail *cd = PDE_DATA(inode); 1588 1589 return content_open(inode, filp, cd); 1590 } 1591 1592 static int content_release_procfs(struct inode *inode, struct file *filp) 1593 { 1594 struct cache_detail *cd = PDE_DATA(inode); 1595 1596 return content_release(inode, filp, cd); 1597 } 1598 1599 static const struct file_operations content_file_operations_procfs = { 1600 .open = content_open_procfs, 1601 .read = seq_read, 1602 .llseek = seq_lseek, 1603 .release = content_release_procfs, 1604 }; 1605 1606 static int open_flush_procfs(struct inode *inode, struct file *filp) 1607 { 1608 struct cache_detail *cd = PDE_DATA(inode); 1609 1610 return open_flush(inode, filp, cd); 1611 } 1612 1613 static int release_flush_procfs(struct inode *inode, struct file *filp) 1614 { 1615 struct cache_detail *cd = PDE_DATA(inode); 1616 1617 return release_flush(inode, filp, cd); 1618 } 1619 1620 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1621 size_t count, loff_t *ppos) 1622 { 1623 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1624 1625 return read_flush(filp, buf, count, ppos, cd); 1626 } 1627 1628 static ssize_t write_flush_procfs(struct file *filp, 1629 const char __user *buf, 1630 size_t count, loff_t *ppos) 1631 { 1632 struct cache_detail *cd = PDE_DATA(file_inode(filp)); 1633 1634 return write_flush(filp, buf, count, ppos, cd); 1635 } 1636 1637 static const struct file_operations cache_flush_operations_procfs = { 1638 .open = open_flush_procfs, 1639 .read = read_flush_procfs, 1640 .write = write_flush_procfs, 1641 .release = release_flush_procfs, 1642 .llseek = no_llseek, 1643 }; 1644 1645 static void remove_cache_proc_entries(struct cache_detail *cd) 1646 { 1647 if (cd->procfs) { 1648 proc_remove(cd->procfs); 1649 cd->procfs = NULL; 1650 } 1651 } 1652 1653 #ifdef CONFIG_PROC_FS 1654 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1655 { 1656 struct proc_dir_entry *p; 1657 struct sunrpc_net *sn; 1658 1659 sn = net_generic(net, sunrpc_net_id); 1660 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc); 1661 if (cd->procfs == NULL) 1662 goto out_nomem; 1663 1664 p = proc_create_data("flush", S_IFREG | 0600, 1665 cd->procfs, &cache_flush_operations_procfs, cd); 1666 if (p == NULL) 1667 goto out_nomem; 1668 1669 if (cd->cache_request || cd->cache_parse) { 1670 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs, 1671 &cache_file_operations_procfs, cd); 1672 if (p == NULL) 1673 goto out_nomem; 1674 } 1675 if (cd->cache_show) { 1676 p = proc_create_data("content", S_IFREG | 0400, cd->procfs, 1677 &content_file_operations_procfs, cd); 1678 if (p == NULL) 1679 goto out_nomem; 1680 } 1681 return 0; 1682 out_nomem: 1683 remove_cache_proc_entries(cd); 1684 return -ENOMEM; 1685 } 1686 #else /* CONFIG_PROC_FS */ 1687 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1688 { 1689 return 0; 1690 } 1691 #endif 1692 1693 void __init cache_initialize(void) 1694 { 1695 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1696 } 1697 1698 int cache_register_net(struct cache_detail *cd, struct net *net) 1699 { 1700 int ret; 1701 1702 sunrpc_init_cache_detail(cd); 1703 ret = create_cache_proc_entries(cd, net); 1704 if (ret) 1705 sunrpc_destroy_cache_detail(cd); 1706 return ret; 1707 } 1708 EXPORT_SYMBOL_GPL(cache_register_net); 1709 1710 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1711 { 1712 remove_cache_proc_entries(cd); 1713 sunrpc_destroy_cache_detail(cd); 1714 } 1715 EXPORT_SYMBOL_GPL(cache_unregister_net); 1716 1717 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net) 1718 { 1719 struct cache_detail *cd; 1720 int i; 1721 1722 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1723 if (cd == NULL) 1724 return ERR_PTR(-ENOMEM); 1725 1726 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head), 1727 GFP_KERNEL); 1728 if (cd->hash_table == NULL) { 1729 kfree(cd); 1730 return ERR_PTR(-ENOMEM); 1731 } 1732 1733 for (i = 0; i < cd->hash_size; i++) 1734 INIT_HLIST_HEAD(&cd->hash_table[i]); 1735 cd->net = net; 1736 return cd; 1737 } 1738 EXPORT_SYMBOL_GPL(cache_create_net); 1739 1740 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1741 { 1742 kfree(cd->hash_table); 1743 kfree(cd); 1744 } 1745 EXPORT_SYMBOL_GPL(cache_destroy_net); 1746 1747 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1748 size_t count, loff_t *ppos) 1749 { 1750 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1751 1752 return cache_read(filp, buf, count, ppos, cd); 1753 } 1754 1755 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1756 size_t count, loff_t *ppos) 1757 { 1758 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1759 1760 return cache_write(filp, buf, count, ppos, cd); 1761 } 1762 1763 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait) 1764 { 1765 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1766 1767 return cache_poll(filp, wait, cd); 1768 } 1769 1770 static long cache_ioctl_pipefs(struct file *filp, 1771 unsigned int cmd, unsigned long arg) 1772 { 1773 struct inode *inode = file_inode(filp); 1774 struct cache_detail *cd = RPC_I(inode)->private; 1775 1776 return cache_ioctl(inode, filp, cmd, arg, cd); 1777 } 1778 1779 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1780 { 1781 struct cache_detail *cd = RPC_I(inode)->private; 1782 1783 return cache_open(inode, filp, cd); 1784 } 1785 1786 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1787 { 1788 struct cache_detail *cd = RPC_I(inode)->private; 1789 1790 return cache_release(inode, filp, cd); 1791 } 1792 1793 const struct file_operations cache_file_operations_pipefs = { 1794 .owner = THIS_MODULE, 1795 .llseek = no_llseek, 1796 .read = cache_read_pipefs, 1797 .write = cache_write_pipefs, 1798 .poll = cache_poll_pipefs, 1799 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1800 .open = cache_open_pipefs, 1801 .release = cache_release_pipefs, 1802 }; 1803 1804 static int content_open_pipefs(struct inode *inode, struct file *filp) 1805 { 1806 struct cache_detail *cd = RPC_I(inode)->private; 1807 1808 return content_open(inode, filp, cd); 1809 } 1810 1811 static int content_release_pipefs(struct inode *inode, struct file *filp) 1812 { 1813 struct cache_detail *cd = RPC_I(inode)->private; 1814 1815 return content_release(inode, filp, cd); 1816 } 1817 1818 const struct file_operations content_file_operations_pipefs = { 1819 .open = content_open_pipefs, 1820 .read = seq_read, 1821 .llseek = seq_lseek, 1822 .release = content_release_pipefs, 1823 }; 1824 1825 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1826 { 1827 struct cache_detail *cd = RPC_I(inode)->private; 1828 1829 return open_flush(inode, filp, cd); 1830 } 1831 1832 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1833 { 1834 struct cache_detail *cd = RPC_I(inode)->private; 1835 1836 return release_flush(inode, filp, cd); 1837 } 1838 1839 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1840 size_t count, loff_t *ppos) 1841 { 1842 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1843 1844 return read_flush(filp, buf, count, ppos, cd); 1845 } 1846 1847 static ssize_t write_flush_pipefs(struct file *filp, 1848 const char __user *buf, 1849 size_t count, loff_t *ppos) 1850 { 1851 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1852 1853 return write_flush(filp, buf, count, ppos, cd); 1854 } 1855 1856 const struct file_operations cache_flush_operations_pipefs = { 1857 .open = open_flush_pipefs, 1858 .read = read_flush_pipefs, 1859 .write = write_flush_pipefs, 1860 .release = release_flush_pipefs, 1861 .llseek = no_llseek, 1862 }; 1863 1864 int sunrpc_cache_register_pipefs(struct dentry *parent, 1865 const char *name, umode_t umode, 1866 struct cache_detail *cd) 1867 { 1868 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1869 if (IS_ERR(dir)) 1870 return PTR_ERR(dir); 1871 cd->pipefs = dir; 1872 return 0; 1873 } 1874 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1875 1876 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1877 { 1878 if (cd->pipefs) { 1879 rpc_remove_cache_dir(cd->pipefs); 1880 cd->pipefs = NULL; 1881 } 1882 } 1883 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1884 1885 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h) 1886 { 1887 spin_lock(&cd->hash_lock); 1888 if (!hlist_unhashed(&h->cache_list)){ 1889 hlist_del_init_rcu(&h->cache_list); 1890 cd->entries--; 1891 spin_unlock(&cd->hash_lock); 1892 cache_put(h, cd); 1893 } else 1894 spin_unlock(&cd->hash_lock); 1895 } 1896 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash); 1897