1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sunrpc/cache.c 4 * 5 * Generic code for various authentication-related caches 6 * used by sunrpc clients and servers. 7 * 8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 9 */ 10 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/signal.h> 16 #include <linux/sched.h> 17 #include <linux/kmod.h> 18 #include <linux/list.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/string_helpers.h> 22 #include <linux/uaccess.h> 23 #include <linux/poll.h> 24 #include <linux/seq_file.h> 25 #include <linux/proc_fs.h> 26 #include <linux/net.h> 27 #include <linux/workqueue.h> 28 #include <linux/mutex.h> 29 #include <linux/pagemap.h> 30 #include <asm/ioctls.h> 31 #include <linux/sunrpc/types.h> 32 #include <linux/sunrpc/cache.h> 33 #include <linux/sunrpc/stats.h> 34 #include <linux/sunrpc/rpc_pipe_fs.h> 35 #include <trace/events/sunrpc.h> 36 37 #include "netns.h" 38 #include "fail.h" 39 40 #define RPCDBG_FACILITY RPCDBG_CACHE 41 42 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 43 static void cache_revisit_request(struct cache_head *item); 44 45 static void cache_init(struct cache_head *h, struct cache_detail *detail) 46 { 47 time64_t now = seconds_since_boot(); 48 INIT_HLIST_NODE(&h->cache_list); 49 h->flags = 0; 50 kref_init(&h->ref); 51 h->expiry_time = now + CACHE_NEW_EXPIRY; 52 if (now <= detail->flush_time) 53 /* ensure it isn't already expired */ 54 now = detail->flush_time + 1; 55 h->last_refresh = now; 56 } 57 58 static void cache_fresh_unlocked(struct cache_head *head, 59 struct cache_detail *detail); 60 61 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail, 62 struct cache_head *key, 63 int hash) 64 { 65 struct hlist_head *head = &detail->hash_table[hash]; 66 struct cache_head *tmp; 67 68 rcu_read_lock(); 69 hlist_for_each_entry_rcu(tmp, head, cache_list) { 70 if (!detail->match(tmp, key)) 71 continue; 72 if (test_bit(CACHE_VALID, &tmp->flags) && 73 cache_is_expired(detail, tmp)) 74 continue; 75 tmp = cache_get_rcu(tmp); 76 rcu_read_unlock(); 77 return tmp; 78 } 79 rcu_read_unlock(); 80 return NULL; 81 } 82 83 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch, 84 struct cache_detail *cd) 85 { 86 /* Must be called under cd->hash_lock */ 87 hlist_del_init_rcu(&ch->cache_list); 88 set_bit(CACHE_CLEANED, &ch->flags); 89 cd->entries --; 90 } 91 92 static void sunrpc_end_cache_remove_entry(struct cache_head *ch, 93 struct cache_detail *cd) 94 { 95 cache_fresh_unlocked(ch, cd); 96 cache_put(ch, cd); 97 } 98 99 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail, 100 struct cache_head *key, 101 int hash) 102 { 103 struct cache_head *new, *tmp, *freeme = NULL; 104 struct hlist_head *head = &detail->hash_table[hash]; 105 106 new = detail->alloc(); 107 if (!new) 108 return NULL; 109 /* must fully initialise 'new', else 110 * we might get lose if we need to 111 * cache_put it soon. 112 */ 113 cache_init(new, detail); 114 detail->init(new, key); 115 116 spin_lock(&detail->hash_lock); 117 118 /* check if entry appeared while we slept */ 119 hlist_for_each_entry_rcu(tmp, head, cache_list, 120 lockdep_is_held(&detail->hash_lock)) { 121 if (!detail->match(tmp, key)) 122 continue; 123 if (test_bit(CACHE_VALID, &tmp->flags) && 124 cache_is_expired(detail, tmp)) { 125 sunrpc_begin_cache_remove_entry(tmp, detail); 126 trace_cache_entry_expired(detail, tmp); 127 freeme = tmp; 128 break; 129 } 130 cache_get(tmp); 131 spin_unlock(&detail->hash_lock); 132 cache_put(new, detail); 133 return tmp; 134 } 135 136 hlist_add_head_rcu(&new->cache_list, head); 137 detail->entries++; 138 cache_get(new); 139 spin_unlock(&detail->hash_lock); 140 141 if (freeme) 142 sunrpc_end_cache_remove_entry(freeme, detail); 143 return new; 144 } 145 146 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail, 147 struct cache_head *key, int hash) 148 { 149 struct cache_head *ret; 150 151 ret = sunrpc_cache_find_rcu(detail, key, hash); 152 if (ret) 153 return ret; 154 /* Didn't find anything, insert an empty entry */ 155 return sunrpc_cache_add_entry(detail, key, hash); 156 } 157 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu); 158 159 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 160 161 static void cache_fresh_locked(struct cache_head *head, time64_t expiry, 162 struct cache_detail *detail) 163 { 164 time64_t now = seconds_since_boot(); 165 if (now <= detail->flush_time) 166 /* ensure it isn't immediately treated as expired */ 167 now = detail->flush_time + 1; 168 head->expiry_time = expiry; 169 head->last_refresh = now; 170 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 171 set_bit(CACHE_VALID, &head->flags); 172 } 173 174 static void cache_fresh_unlocked(struct cache_head *head, 175 struct cache_detail *detail) 176 { 177 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 178 cache_revisit_request(head); 179 cache_dequeue(detail, head); 180 } 181 } 182 183 static void cache_make_negative(struct cache_detail *detail, 184 struct cache_head *h) 185 { 186 set_bit(CACHE_NEGATIVE, &h->flags); 187 trace_cache_entry_make_negative(detail, h); 188 } 189 190 static void cache_entry_update(struct cache_detail *detail, 191 struct cache_head *h, 192 struct cache_head *new) 193 { 194 if (!test_bit(CACHE_NEGATIVE, &new->flags)) { 195 detail->update(h, new); 196 trace_cache_entry_update(detail, h); 197 } else { 198 cache_make_negative(detail, h); 199 } 200 } 201 202 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 203 struct cache_head *new, struct cache_head *old, int hash) 204 { 205 /* The 'old' entry is to be replaced by 'new'. 206 * If 'old' is not VALID, we update it directly, 207 * otherwise we need to replace it 208 */ 209 struct cache_head *tmp; 210 211 if (!test_bit(CACHE_VALID, &old->flags)) { 212 spin_lock(&detail->hash_lock); 213 if (!test_bit(CACHE_VALID, &old->flags)) { 214 cache_entry_update(detail, old, new); 215 cache_fresh_locked(old, new->expiry_time, detail); 216 spin_unlock(&detail->hash_lock); 217 cache_fresh_unlocked(old, detail); 218 return old; 219 } 220 spin_unlock(&detail->hash_lock); 221 } 222 /* We need to insert a new entry */ 223 tmp = detail->alloc(); 224 if (!tmp) { 225 cache_put(old, detail); 226 return NULL; 227 } 228 cache_init(tmp, detail); 229 detail->init(tmp, old); 230 231 spin_lock(&detail->hash_lock); 232 cache_entry_update(detail, tmp, new); 233 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 234 detail->entries++; 235 cache_get(tmp); 236 cache_fresh_locked(tmp, new->expiry_time, detail); 237 cache_fresh_locked(old, 0, detail); 238 spin_unlock(&detail->hash_lock); 239 cache_fresh_unlocked(tmp, detail); 240 cache_fresh_unlocked(old, detail); 241 cache_put(old, detail); 242 return tmp; 243 } 244 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 245 246 static inline int cache_is_valid(struct cache_head *h) 247 { 248 if (!test_bit(CACHE_VALID, &h->flags)) 249 return -EAGAIN; 250 else { 251 /* entry is valid */ 252 if (test_bit(CACHE_NEGATIVE, &h->flags)) 253 return -ENOENT; 254 else { 255 /* 256 * In combination with write barrier in 257 * sunrpc_cache_update, ensures that anyone 258 * using the cache entry after this sees the 259 * updated contents: 260 */ 261 smp_rmb(); 262 return 0; 263 } 264 } 265 } 266 267 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 268 { 269 int rv; 270 271 spin_lock(&detail->hash_lock); 272 rv = cache_is_valid(h); 273 if (rv == -EAGAIN) { 274 cache_make_negative(detail, h); 275 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 276 detail); 277 rv = -ENOENT; 278 } 279 spin_unlock(&detail->hash_lock); 280 cache_fresh_unlocked(h, detail); 281 return rv; 282 } 283 284 int cache_check_rcu(struct cache_detail *detail, 285 struct cache_head *h, struct cache_req *rqstp) 286 { 287 int rv; 288 time64_t refresh_age, age; 289 290 /* First decide return status as best we can */ 291 rv = cache_is_valid(h); 292 293 /* now see if we want to start an upcall */ 294 refresh_age = (h->expiry_time - h->last_refresh); 295 age = seconds_since_boot() - h->last_refresh; 296 297 if (rqstp == NULL) { 298 if (rv == -EAGAIN) 299 rv = -ENOENT; 300 } else if (rv == -EAGAIN || 301 (h->expiry_time != 0 && age > refresh_age/2)) { 302 dprintk("RPC: Want update, refage=%lld, age=%lld\n", 303 refresh_age, age); 304 switch (detail->cache_upcall(detail, h)) { 305 case -EINVAL: 306 rv = try_to_negate_entry(detail, h); 307 break; 308 case -EAGAIN: 309 cache_fresh_unlocked(h, detail); 310 break; 311 } 312 } 313 314 if (rv == -EAGAIN) { 315 if (!cache_defer_req(rqstp, h)) { 316 /* 317 * Request was not deferred; handle it as best 318 * we can ourselves: 319 */ 320 rv = cache_is_valid(h); 321 if (rv == -EAGAIN) 322 rv = -ETIMEDOUT; 323 } 324 } 325 326 return rv; 327 } 328 EXPORT_SYMBOL_GPL(cache_check_rcu); 329 330 /* 331 * This is the generic cache management routine for all 332 * the authentication caches. 333 * It checks the currency of a cache item and will (later) 334 * initiate an upcall to fill it if needed. 335 * 336 * 337 * Returns 0 if the cache_head can be used, or cache_puts it and returns 338 * -EAGAIN if upcall is pending and request has been queued 339 * -ETIMEDOUT if upcall failed or request could not be queue or 340 * upcall completed but item is still invalid (implying that 341 * the cache item has been replaced with a newer one). 342 * -ENOENT if cache entry was negative 343 */ 344 int cache_check(struct cache_detail *detail, 345 struct cache_head *h, struct cache_req *rqstp) 346 { 347 int rv; 348 349 rv = cache_check_rcu(detail, h, rqstp); 350 if (rv) 351 cache_put(h, detail); 352 return rv; 353 } 354 EXPORT_SYMBOL_GPL(cache_check); 355 356 /* 357 * caches need to be periodically cleaned. 358 * For this we maintain a list of cache_detail and 359 * a current pointer into that list and into the table 360 * for that entry. 361 * 362 * Each time cache_clean is called it finds the next non-empty entry 363 * in the current table and walks the list in that entry 364 * looking for entries that can be removed. 365 * 366 * An entry gets removed if: 367 * - The expiry is before current time 368 * - The last_refresh time is before the flush_time for that cache 369 * 370 * later we might drop old entries with non-NEVER expiry if that table 371 * is getting 'full' for some definition of 'full' 372 * 373 * The question of "how often to scan a table" is an interesting one 374 * and is answered in part by the use of the "nextcheck" field in the 375 * cache_detail. 376 * When a scan of a table begins, the nextcheck field is set to a time 377 * that is well into the future. 378 * While scanning, if an expiry time is found that is earlier than the 379 * current nextcheck time, nextcheck is set to that expiry time. 380 * If the flush_time is ever set to a time earlier than the nextcheck 381 * time, the nextcheck time is then set to that flush_time. 382 * 383 * A table is then only scanned if the current time is at least 384 * the nextcheck time. 385 * 386 */ 387 388 static LIST_HEAD(cache_list); 389 static DEFINE_SPINLOCK(cache_list_lock); 390 static struct cache_detail *current_detail; 391 static int current_index; 392 393 static void do_cache_clean(struct work_struct *work); 394 static struct delayed_work cache_cleaner; 395 396 void sunrpc_init_cache_detail(struct cache_detail *cd) 397 { 398 spin_lock_init(&cd->hash_lock); 399 INIT_LIST_HEAD(&cd->queue); 400 spin_lock(&cache_list_lock); 401 cd->nextcheck = 0; 402 cd->entries = 0; 403 atomic_set(&cd->writers, 0); 404 cd->last_close = 0; 405 cd->last_warn = -1; 406 list_add(&cd->others, &cache_list); 407 spin_unlock(&cache_list_lock); 408 409 /* start the cleaning process */ 410 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); 411 } 412 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 413 414 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 415 { 416 cache_purge(cd); 417 spin_lock(&cache_list_lock); 418 spin_lock(&cd->hash_lock); 419 if (current_detail == cd) 420 current_detail = NULL; 421 list_del_init(&cd->others); 422 spin_unlock(&cd->hash_lock); 423 spin_unlock(&cache_list_lock); 424 if (list_empty(&cache_list)) { 425 /* module must be being unloaded so its safe to kill the worker */ 426 cancel_delayed_work_sync(&cache_cleaner); 427 } 428 } 429 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 430 431 /* clean cache tries to find something to clean 432 * and cleans it. 433 * It returns 1 if it cleaned something, 434 * 0 if it didn't find anything this time 435 * -1 if it fell off the end of the list. 436 */ 437 static int cache_clean(void) 438 { 439 int rv = 0; 440 struct list_head *next; 441 442 spin_lock(&cache_list_lock); 443 444 /* find a suitable table if we don't already have one */ 445 while (current_detail == NULL || 446 current_index >= current_detail->hash_size) { 447 if (current_detail) 448 next = current_detail->others.next; 449 else 450 next = cache_list.next; 451 if (next == &cache_list) { 452 current_detail = NULL; 453 spin_unlock(&cache_list_lock); 454 return -1; 455 } 456 current_detail = list_entry(next, struct cache_detail, others); 457 if (current_detail->nextcheck > seconds_since_boot()) 458 current_index = current_detail->hash_size; 459 else { 460 current_index = 0; 461 current_detail->nextcheck = seconds_since_boot()+30*60; 462 } 463 } 464 465 /* find a non-empty bucket in the table */ 466 while (current_detail && 467 current_index < current_detail->hash_size && 468 hlist_empty(¤t_detail->hash_table[current_index])) 469 current_index++; 470 471 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 472 473 if (current_detail && current_index < current_detail->hash_size) { 474 struct cache_head *ch = NULL; 475 struct cache_detail *d; 476 struct hlist_head *head; 477 struct hlist_node *tmp; 478 479 spin_lock(¤t_detail->hash_lock); 480 481 /* Ok, now to clean this strand */ 482 483 head = ¤t_detail->hash_table[current_index]; 484 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 485 if (current_detail->nextcheck > ch->expiry_time) 486 current_detail->nextcheck = ch->expiry_time+1; 487 if (!cache_is_expired(current_detail, ch)) 488 continue; 489 490 sunrpc_begin_cache_remove_entry(ch, current_detail); 491 trace_cache_entry_expired(current_detail, ch); 492 rv = 1; 493 break; 494 } 495 496 spin_unlock(¤t_detail->hash_lock); 497 d = current_detail; 498 if (!ch) 499 current_index ++; 500 spin_unlock(&cache_list_lock); 501 if (ch) 502 sunrpc_end_cache_remove_entry(ch, d); 503 } else 504 spin_unlock(&cache_list_lock); 505 506 return rv; 507 } 508 509 /* 510 * We want to regularly clean the cache, so we need to schedule some work ... 511 */ 512 static void do_cache_clean(struct work_struct *work) 513 { 514 int delay; 515 516 if (list_empty(&cache_list)) 517 return; 518 519 if (cache_clean() == -1) 520 delay = round_jiffies_relative(30*HZ); 521 else 522 delay = 5; 523 524 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay); 525 } 526 527 528 /* 529 * Clean all caches promptly. This just calls cache_clean 530 * repeatedly until we are sure that every cache has had a chance to 531 * be fully cleaned 532 */ 533 void cache_flush(void) 534 { 535 while (cache_clean() != -1) 536 cond_resched(); 537 while (cache_clean() != -1) 538 cond_resched(); 539 } 540 EXPORT_SYMBOL_GPL(cache_flush); 541 542 void cache_purge(struct cache_detail *detail) 543 { 544 struct cache_head *ch = NULL; 545 struct hlist_head *head = NULL; 546 int i = 0; 547 548 spin_lock(&detail->hash_lock); 549 if (!detail->entries) { 550 spin_unlock(&detail->hash_lock); 551 return; 552 } 553 554 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name); 555 for (i = 0; i < detail->hash_size; i++) { 556 head = &detail->hash_table[i]; 557 while (!hlist_empty(head)) { 558 ch = hlist_entry(head->first, struct cache_head, 559 cache_list); 560 sunrpc_begin_cache_remove_entry(ch, detail); 561 spin_unlock(&detail->hash_lock); 562 sunrpc_end_cache_remove_entry(ch, detail); 563 spin_lock(&detail->hash_lock); 564 } 565 } 566 spin_unlock(&detail->hash_lock); 567 } 568 EXPORT_SYMBOL_GPL(cache_purge); 569 570 571 /* 572 * Deferral and Revisiting of Requests. 573 * 574 * If a cache lookup finds a pending entry, we 575 * need to defer the request and revisit it later. 576 * All deferred requests are stored in a hash table, 577 * indexed by "struct cache_head *". 578 * As it may be wasteful to store a whole request 579 * structure, we allow the request to provide a 580 * deferred form, which must contain a 581 * 'struct cache_deferred_req' 582 * This cache_deferred_req contains a method to allow 583 * it to be revisited when cache info is available 584 */ 585 586 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 587 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 588 589 #define DFR_MAX 300 /* ??? */ 590 591 static DEFINE_SPINLOCK(cache_defer_lock); 592 static LIST_HEAD(cache_defer_list); 593 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 594 static int cache_defer_cnt; 595 596 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 597 { 598 hlist_del_init(&dreq->hash); 599 if (!list_empty(&dreq->recent)) { 600 list_del_init(&dreq->recent); 601 cache_defer_cnt--; 602 } 603 } 604 605 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 606 { 607 int hash = DFR_HASH(item); 608 609 INIT_LIST_HEAD(&dreq->recent); 610 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 611 } 612 613 static void setup_deferral(struct cache_deferred_req *dreq, 614 struct cache_head *item, 615 int count_me) 616 { 617 618 dreq->item = item; 619 620 spin_lock(&cache_defer_lock); 621 622 __hash_deferred_req(dreq, item); 623 624 if (count_me) { 625 cache_defer_cnt++; 626 list_add(&dreq->recent, &cache_defer_list); 627 } 628 629 spin_unlock(&cache_defer_lock); 630 631 } 632 633 struct thread_deferred_req { 634 struct cache_deferred_req handle; 635 struct completion completion; 636 }; 637 638 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 639 { 640 struct thread_deferred_req *dr = 641 container_of(dreq, struct thread_deferred_req, handle); 642 complete(&dr->completion); 643 } 644 645 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 646 { 647 struct thread_deferred_req sleeper; 648 struct cache_deferred_req *dreq = &sleeper.handle; 649 650 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 651 dreq->revisit = cache_restart_thread; 652 653 setup_deferral(dreq, item, 0); 654 655 if (!test_bit(CACHE_PENDING, &item->flags) || 656 wait_for_completion_interruptible_timeout( 657 &sleeper.completion, req->thread_wait) <= 0) { 658 /* The completion wasn't completed, so we need 659 * to clean up 660 */ 661 spin_lock(&cache_defer_lock); 662 if (!hlist_unhashed(&sleeper.handle.hash)) { 663 __unhash_deferred_req(&sleeper.handle); 664 spin_unlock(&cache_defer_lock); 665 } else { 666 /* cache_revisit_request already removed 667 * this from the hash table, but hasn't 668 * called ->revisit yet. It will very soon 669 * and we need to wait for it. 670 */ 671 spin_unlock(&cache_defer_lock); 672 wait_for_completion(&sleeper.completion); 673 } 674 } 675 } 676 677 static void cache_limit_defers(void) 678 { 679 /* Make sure we haven't exceed the limit of allowed deferred 680 * requests. 681 */ 682 struct cache_deferred_req *discard = NULL; 683 684 if (cache_defer_cnt <= DFR_MAX) 685 return; 686 687 spin_lock(&cache_defer_lock); 688 689 /* Consider removing either the first or the last */ 690 if (cache_defer_cnt > DFR_MAX) { 691 if (get_random_u32_below(2)) 692 discard = list_entry(cache_defer_list.next, 693 struct cache_deferred_req, recent); 694 else 695 discard = list_entry(cache_defer_list.prev, 696 struct cache_deferred_req, recent); 697 __unhash_deferred_req(discard); 698 } 699 spin_unlock(&cache_defer_lock); 700 if (discard) 701 discard->revisit(discard, 1); 702 } 703 704 #if IS_ENABLED(CONFIG_FAIL_SUNRPC) 705 static inline bool cache_defer_immediately(void) 706 { 707 return !fail_sunrpc.ignore_cache_wait && 708 should_fail(&fail_sunrpc.attr, 1); 709 } 710 #else 711 static inline bool cache_defer_immediately(void) 712 { 713 return false; 714 } 715 #endif 716 717 /* Return true if and only if a deferred request is queued. */ 718 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 719 { 720 struct cache_deferred_req *dreq; 721 722 if (!cache_defer_immediately()) { 723 cache_wait_req(req, item); 724 if (!test_bit(CACHE_PENDING, &item->flags)) 725 return false; 726 } 727 728 dreq = req->defer(req); 729 if (dreq == NULL) 730 return false; 731 setup_deferral(dreq, item, 1); 732 if (!test_bit(CACHE_PENDING, &item->flags)) 733 /* Bit could have been cleared before we managed to 734 * set up the deferral, so need to revisit just in case 735 */ 736 cache_revisit_request(item); 737 738 cache_limit_defers(); 739 return true; 740 } 741 742 static void cache_revisit_request(struct cache_head *item) 743 { 744 struct cache_deferred_req *dreq; 745 struct hlist_node *tmp; 746 int hash = DFR_HASH(item); 747 LIST_HEAD(pending); 748 749 spin_lock(&cache_defer_lock); 750 751 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 752 if (dreq->item == item) { 753 __unhash_deferred_req(dreq); 754 list_add(&dreq->recent, &pending); 755 } 756 757 spin_unlock(&cache_defer_lock); 758 759 while (!list_empty(&pending)) { 760 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 761 list_del_init(&dreq->recent); 762 dreq->revisit(dreq, 0); 763 } 764 } 765 766 void cache_clean_deferred(void *owner) 767 { 768 struct cache_deferred_req *dreq, *tmp; 769 LIST_HEAD(pending); 770 771 spin_lock(&cache_defer_lock); 772 773 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 774 if (dreq->owner == owner) { 775 __unhash_deferred_req(dreq); 776 list_add(&dreq->recent, &pending); 777 } 778 } 779 spin_unlock(&cache_defer_lock); 780 781 while (!list_empty(&pending)) { 782 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 783 list_del_init(&dreq->recent); 784 dreq->revisit(dreq, 1); 785 } 786 } 787 788 /* 789 * communicate with user-space 790 * 791 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel. 792 * On read, you get a full request, or block. 793 * On write, an update request is processed. 794 * Poll works if anything to read, and always allows write. 795 * 796 * Implemented by linked list of requests. Each open file has 797 * a ->private that also exists in this list. New requests are added 798 * to the end and may wakeup and preceding readers. 799 * New readers are added to the head. If, on read, an item is found with 800 * CACHE_UPCALLING clear, we free it from the list. 801 * 802 */ 803 804 static DEFINE_SPINLOCK(queue_lock); 805 806 struct cache_queue { 807 struct list_head list; 808 int reader; /* if 0, then request */ 809 }; 810 struct cache_request { 811 struct cache_queue q; 812 struct cache_head *item; 813 char * buf; 814 int len; 815 int readers; 816 }; 817 struct cache_reader { 818 struct cache_queue q; 819 int offset; /* if non-0, we have a refcnt on next request */ 820 }; 821 822 static int cache_request(struct cache_detail *detail, 823 struct cache_request *crq) 824 { 825 char *bp = crq->buf; 826 int len = PAGE_SIZE; 827 828 detail->cache_request(detail, crq->item, &bp, &len); 829 if (len < 0) 830 return -E2BIG; 831 return PAGE_SIZE - len; 832 } 833 834 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 835 loff_t *ppos, struct cache_detail *cd) 836 { 837 struct cache_reader *rp = filp->private_data; 838 struct cache_request *rq; 839 struct inode *inode = file_inode(filp); 840 int err; 841 842 if (count == 0) 843 return 0; 844 845 inode_lock(inode); /* protect against multiple concurrent 846 * readers on this file */ 847 again: 848 spin_lock(&queue_lock); 849 /* need to find next request */ 850 while (rp->q.list.next != &cd->queue && 851 list_entry(rp->q.list.next, struct cache_queue, list) 852 ->reader) { 853 struct list_head *next = rp->q.list.next; 854 list_move(&rp->q.list, next); 855 } 856 if (rp->q.list.next == &cd->queue) { 857 spin_unlock(&queue_lock); 858 inode_unlock(inode); 859 WARN_ON_ONCE(rp->offset); 860 return 0; 861 } 862 rq = container_of(rp->q.list.next, struct cache_request, q.list); 863 WARN_ON_ONCE(rq->q.reader); 864 if (rp->offset == 0) 865 rq->readers++; 866 spin_unlock(&queue_lock); 867 868 if (rq->len == 0) { 869 err = cache_request(cd, rq); 870 if (err < 0) 871 goto out; 872 rq->len = err; 873 } 874 875 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 876 err = -EAGAIN; 877 spin_lock(&queue_lock); 878 list_move(&rp->q.list, &rq->q.list); 879 spin_unlock(&queue_lock); 880 } else { 881 if (rp->offset + count > rq->len) 882 count = rq->len - rp->offset; 883 err = -EFAULT; 884 if (copy_to_user(buf, rq->buf + rp->offset, count)) 885 goto out; 886 rp->offset += count; 887 if (rp->offset >= rq->len) { 888 rp->offset = 0; 889 spin_lock(&queue_lock); 890 list_move(&rp->q.list, &rq->q.list); 891 spin_unlock(&queue_lock); 892 } 893 err = 0; 894 } 895 out: 896 if (rp->offset == 0) { 897 /* need to release rq */ 898 spin_lock(&queue_lock); 899 rq->readers--; 900 if (rq->readers == 0 && 901 !test_bit(CACHE_PENDING, &rq->item->flags)) { 902 list_del(&rq->q.list); 903 spin_unlock(&queue_lock); 904 cache_put(rq->item, cd); 905 kfree(rq->buf); 906 kfree(rq); 907 } else 908 spin_unlock(&queue_lock); 909 } 910 if (err == -EAGAIN) 911 goto again; 912 inode_unlock(inode); 913 return err ? err : count; 914 } 915 916 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 917 size_t count, struct cache_detail *cd) 918 { 919 ssize_t ret; 920 921 if (count == 0) 922 return -EINVAL; 923 if (copy_from_user(kaddr, buf, count)) 924 return -EFAULT; 925 kaddr[count] = '\0'; 926 ret = cd->cache_parse(cd, kaddr, count); 927 if (!ret) 928 ret = count; 929 return ret; 930 } 931 932 static ssize_t cache_downcall(struct address_space *mapping, 933 const char __user *buf, 934 size_t count, struct cache_detail *cd) 935 { 936 char *write_buf; 937 ssize_t ret = -ENOMEM; 938 939 if (count >= 32768) { /* 32k is max userland buffer, lets check anyway */ 940 ret = -EINVAL; 941 goto out; 942 } 943 944 write_buf = kvmalloc(count + 1, GFP_KERNEL); 945 if (!write_buf) 946 goto out; 947 948 ret = cache_do_downcall(write_buf, buf, count, cd); 949 kvfree(write_buf); 950 out: 951 return ret; 952 } 953 954 static ssize_t cache_write(struct file *filp, const char __user *buf, 955 size_t count, loff_t *ppos, 956 struct cache_detail *cd) 957 { 958 struct address_space *mapping = filp->f_mapping; 959 struct inode *inode = file_inode(filp); 960 ssize_t ret = -EINVAL; 961 962 if (!cd->cache_parse) 963 goto out; 964 965 inode_lock(inode); 966 ret = cache_downcall(mapping, buf, count, cd); 967 inode_unlock(inode); 968 out: 969 return ret; 970 } 971 972 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 973 974 static __poll_t cache_poll(struct file *filp, poll_table *wait, 975 struct cache_detail *cd) 976 { 977 __poll_t mask; 978 struct cache_reader *rp = filp->private_data; 979 struct cache_queue *cq; 980 981 poll_wait(filp, &queue_wait, wait); 982 983 /* alway allow write */ 984 mask = EPOLLOUT | EPOLLWRNORM; 985 986 if (!rp) 987 return mask; 988 989 spin_lock(&queue_lock); 990 991 for (cq= &rp->q; &cq->list != &cd->queue; 992 cq = list_entry(cq->list.next, struct cache_queue, list)) 993 if (!cq->reader) { 994 mask |= EPOLLIN | EPOLLRDNORM; 995 break; 996 } 997 spin_unlock(&queue_lock); 998 return mask; 999 } 1000 1001 static int cache_ioctl(struct inode *ino, struct file *filp, 1002 unsigned int cmd, unsigned long arg, 1003 struct cache_detail *cd) 1004 { 1005 int len = 0; 1006 struct cache_reader *rp = filp->private_data; 1007 struct cache_queue *cq; 1008 1009 if (cmd != FIONREAD || !rp) 1010 return -EINVAL; 1011 1012 spin_lock(&queue_lock); 1013 1014 /* only find the length remaining in current request, 1015 * or the length of the next request 1016 */ 1017 for (cq= &rp->q; &cq->list != &cd->queue; 1018 cq = list_entry(cq->list.next, struct cache_queue, list)) 1019 if (!cq->reader) { 1020 struct cache_request *cr = 1021 container_of(cq, struct cache_request, q); 1022 len = cr->len - rp->offset; 1023 break; 1024 } 1025 spin_unlock(&queue_lock); 1026 1027 return put_user(len, (int __user *)arg); 1028 } 1029 1030 static int cache_open(struct inode *inode, struct file *filp, 1031 struct cache_detail *cd) 1032 { 1033 struct cache_reader *rp = NULL; 1034 1035 if (!cd || !try_module_get(cd->owner)) 1036 return -EACCES; 1037 nonseekable_open(inode, filp); 1038 if (filp->f_mode & FMODE_READ) { 1039 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 1040 if (!rp) { 1041 module_put(cd->owner); 1042 return -ENOMEM; 1043 } 1044 rp->offset = 0; 1045 rp->q.reader = 1; 1046 1047 spin_lock(&queue_lock); 1048 list_add(&rp->q.list, &cd->queue); 1049 spin_unlock(&queue_lock); 1050 } 1051 if (filp->f_mode & FMODE_WRITE) 1052 atomic_inc(&cd->writers); 1053 filp->private_data = rp; 1054 return 0; 1055 } 1056 1057 static int cache_release(struct inode *inode, struct file *filp, 1058 struct cache_detail *cd) 1059 { 1060 struct cache_reader *rp = filp->private_data; 1061 1062 if (rp) { 1063 spin_lock(&queue_lock); 1064 if (rp->offset) { 1065 struct cache_queue *cq; 1066 for (cq= &rp->q; &cq->list != &cd->queue; 1067 cq = list_entry(cq->list.next, struct cache_queue, list)) 1068 if (!cq->reader) { 1069 container_of(cq, struct cache_request, q) 1070 ->readers--; 1071 break; 1072 } 1073 rp->offset = 0; 1074 } 1075 list_del(&rp->q.list); 1076 spin_unlock(&queue_lock); 1077 1078 filp->private_data = NULL; 1079 kfree(rp); 1080 1081 } 1082 if (filp->f_mode & FMODE_WRITE) { 1083 atomic_dec(&cd->writers); 1084 cd->last_close = seconds_since_boot(); 1085 } 1086 module_put(cd->owner); 1087 return 0; 1088 } 1089 1090 1091 1092 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1093 { 1094 struct cache_queue *cq, *tmp; 1095 struct cache_request *cr; 1096 LIST_HEAD(dequeued); 1097 1098 spin_lock(&queue_lock); 1099 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1100 if (!cq->reader) { 1101 cr = container_of(cq, struct cache_request, q); 1102 if (cr->item != ch) 1103 continue; 1104 if (test_bit(CACHE_PENDING, &ch->flags)) 1105 /* Lost a race and it is pending again */ 1106 break; 1107 if (cr->readers != 0) 1108 continue; 1109 list_move(&cr->q.list, &dequeued); 1110 } 1111 spin_unlock(&queue_lock); 1112 while (!list_empty(&dequeued)) { 1113 cr = list_entry(dequeued.next, struct cache_request, q.list); 1114 list_del(&cr->q.list); 1115 cache_put(cr->item, detail); 1116 kfree(cr->buf); 1117 kfree(cr); 1118 } 1119 } 1120 1121 /* 1122 * Support routines for text-based upcalls. 1123 * Fields are separated by spaces. 1124 * Fields are either mangled to quote space tab newline slosh with slosh 1125 * or a hexified with a leading \x 1126 * Record is terminated with newline. 1127 * 1128 */ 1129 1130 void qword_add(char **bpp, int *lp, char *str) 1131 { 1132 char *bp = *bpp; 1133 int len = *lp; 1134 int ret; 1135 1136 if (len < 0) return; 1137 1138 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1139 if (ret >= len) { 1140 bp += len; 1141 len = -1; 1142 } else { 1143 bp += ret; 1144 len -= ret; 1145 *bp++ = ' '; 1146 len--; 1147 } 1148 *bpp = bp; 1149 *lp = len; 1150 } 1151 EXPORT_SYMBOL_GPL(qword_add); 1152 1153 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1154 { 1155 char *bp = *bpp; 1156 int len = *lp; 1157 1158 if (len < 0) return; 1159 1160 if (len > 2) { 1161 *bp++ = '\\'; 1162 *bp++ = 'x'; 1163 len -= 2; 1164 while (blen && len >= 2) { 1165 bp = hex_byte_pack(bp, *buf++); 1166 len -= 2; 1167 blen--; 1168 } 1169 } 1170 if (blen || len<1) len = -1; 1171 else { 1172 *bp++ = ' '; 1173 len--; 1174 } 1175 *bpp = bp; 1176 *lp = len; 1177 } 1178 EXPORT_SYMBOL_GPL(qword_addhex); 1179 1180 static void warn_no_listener(struct cache_detail *detail) 1181 { 1182 if (detail->last_warn != detail->last_close) { 1183 detail->last_warn = detail->last_close; 1184 if (detail->warn_no_listener) 1185 detail->warn_no_listener(detail, detail->last_close != 0); 1186 } 1187 } 1188 1189 static bool cache_listeners_exist(struct cache_detail *detail) 1190 { 1191 if (atomic_read(&detail->writers)) 1192 return true; 1193 if (detail->last_close == 0) 1194 /* This cache was never opened */ 1195 return false; 1196 if (detail->last_close < seconds_since_boot() - 30) 1197 /* 1198 * We allow for the possibility that someone might 1199 * restart a userspace daemon without restarting the 1200 * server; but after 30 seconds, we give up. 1201 */ 1202 return false; 1203 return true; 1204 } 1205 1206 /* 1207 * register an upcall request to user-space and queue it up for read() by the 1208 * upcall daemon. 1209 * 1210 * Each request is at most one page long. 1211 */ 1212 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1213 { 1214 char *buf; 1215 struct cache_request *crq; 1216 int ret = 0; 1217 1218 if (test_bit(CACHE_CLEANED, &h->flags)) 1219 /* Too late to make an upcall */ 1220 return -EAGAIN; 1221 1222 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1223 if (!buf) 1224 return -EAGAIN; 1225 1226 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1227 if (!crq) { 1228 kfree(buf); 1229 return -EAGAIN; 1230 } 1231 1232 crq->q.reader = 0; 1233 crq->buf = buf; 1234 crq->len = 0; 1235 crq->readers = 0; 1236 spin_lock(&queue_lock); 1237 if (test_bit(CACHE_PENDING, &h->flags)) { 1238 crq->item = cache_get(h); 1239 list_add_tail(&crq->q.list, &detail->queue); 1240 trace_cache_entry_upcall(detail, h); 1241 } else 1242 /* Lost a race, no longer PENDING, so don't enqueue */ 1243 ret = -EAGAIN; 1244 spin_unlock(&queue_lock); 1245 wake_up(&queue_wait); 1246 if (ret == -EAGAIN) { 1247 kfree(buf); 1248 kfree(crq); 1249 } 1250 return ret; 1251 } 1252 1253 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1254 { 1255 if (test_and_set_bit(CACHE_PENDING, &h->flags)) 1256 return 0; 1257 return cache_pipe_upcall(detail, h); 1258 } 1259 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1260 1261 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail, 1262 struct cache_head *h) 1263 { 1264 if (!cache_listeners_exist(detail)) { 1265 warn_no_listener(detail); 1266 trace_cache_entry_no_listener(detail, h); 1267 return -EINVAL; 1268 } 1269 return sunrpc_cache_pipe_upcall(detail, h); 1270 } 1271 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout); 1272 1273 /* 1274 * parse a message from user-space and pass it 1275 * to an appropriate cache 1276 * Messages are, like requests, separated into fields by 1277 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1278 * 1279 * Message is 1280 * reply cachename expiry key ... content.... 1281 * 1282 * key and content are both parsed by cache 1283 */ 1284 1285 int qword_get(char **bpp, char *dest, int bufsize) 1286 { 1287 /* return bytes copied, or -1 on error */ 1288 char *bp = *bpp; 1289 int len = 0; 1290 1291 while (*bp == ' ') bp++; 1292 1293 if (bp[0] == '\\' && bp[1] == 'x') { 1294 /* HEX STRING */ 1295 bp += 2; 1296 while (len < bufsize - 1) { 1297 int h, l; 1298 1299 h = hex_to_bin(bp[0]); 1300 if (h < 0) 1301 break; 1302 1303 l = hex_to_bin(bp[1]); 1304 if (l < 0) 1305 break; 1306 1307 *dest++ = (h << 4) | l; 1308 bp += 2; 1309 len++; 1310 } 1311 } else { 1312 /* text with \nnn octal quoting */ 1313 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1314 if (*bp == '\\' && 1315 isodigit(bp[1]) && (bp[1] <= '3') && 1316 isodigit(bp[2]) && 1317 isodigit(bp[3])) { 1318 int byte = (*++bp -'0'); 1319 bp++; 1320 byte = (byte << 3) | (*bp++ - '0'); 1321 byte = (byte << 3) | (*bp++ - '0'); 1322 *dest++ = byte; 1323 len++; 1324 } else { 1325 *dest++ = *bp++; 1326 len++; 1327 } 1328 } 1329 } 1330 1331 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1332 return -1; 1333 while (*bp == ' ') bp++; 1334 *bpp = bp; 1335 *dest = '\0'; 1336 return len; 1337 } 1338 EXPORT_SYMBOL_GPL(qword_get); 1339 1340 1341 /* 1342 * support /proc/net/rpc/$CACHENAME/content 1343 * as a seqfile. 1344 * We call ->cache_show passing NULL for the item to 1345 * get a header, then pass each real item in the cache 1346 */ 1347 1348 static void *__cache_seq_start(struct seq_file *m, loff_t *pos) 1349 { 1350 loff_t n = *pos; 1351 unsigned int hash, entry; 1352 struct cache_head *ch; 1353 struct cache_detail *cd = m->private; 1354 1355 if (!n--) 1356 return SEQ_START_TOKEN; 1357 hash = n >> 32; 1358 entry = n & ((1LL<<32) - 1); 1359 1360 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list) 1361 if (!entry--) 1362 return ch; 1363 n &= ~((1LL<<32) - 1); 1364 do { 1365 hash++; 1366 n += 1LL<<32; 1367 } while(hash < cd->hash_size && 1368 hlist_empty(&cd->hash_table[hash])); 1369 if (hash >= cd->hash_size) 1370 return NULL; 1371 *pos = n+1; 1372 return hlist_entry_safe(rcu_dereference_raw( 1373 hlist_first_rcu(&cd->hash_table[hash])), 1374 struct cache_head, cache_list); 1375 } 1376 1377 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1378 { 1379 struct cache_head *ch = p; 1380 int hash = (*pos >> 32); 1381 struct cache_detail *cd = m->private; 1382 1383 if (p == SEQ_START_TOKEN) 1384 hash = 0; 1385 else if (ch->cache_list.next == NULL) { 1386 hash++; 1387 *pos += 1LL<<32; 1388 } else { 1389 ++*pos; 1390 return hlist_entry_safe(rcu_dereference_raw( 1391 hlist_next_rcu(&ch->cache_list)), 1392 struct cache_head, cache_list); 1393 } 1394 *pos &= ~((1LL<<32) - 1); 1395 while (hash < cd->hash_size && 1396 hlist_empty(&cd->hash_table[hash])) { 1397 hash++; 1398 *pos += 1LL<<32; 1399 } 1400 if (hash >= cd->hash_size) 1401 return NULL; 1402 ++*pos; 1403 return hlist_entry_safe(rcu_dereference_raw( 1404 hlist_first_rcu(&cd->hash_table[hash])), 1405 struct cache_head, cache_list); 1406 } 1407 1408 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos) 1409 __acquires(RCU) 1410 { 1411 rcu_read_lock(); 1412 return __cache_seq_start(m, pos); 1413 } 1414 EXPORT_SYMBOL_GPL(cache_seq_start_rcu); 1415 1416 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos) 1417 { 1418 return cache_seq_next(file, p, pos); 1419 } 1420 EXPORT_SYMBOL_GPL(cache_seq_next_rcu); 1421 1422 void cache_seq_stop_rcu(struct seq_file *m, void *p) 1423 __releases(RCU) 1424 { 1425 rcu_read_unlock(); 1426 } 1427 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu); 1428 1429 static int c_show(struct seq_file *m, void *p) 1430 { 1431 struct cache_head *cp = p; 1432 struct cache_detail *cd = m->private; 1433 1434 if (p == SEQ_START_TOKEN) 1435 return cd->cache_show(m, cd, NULL); 1436 1437 ifdebug(CACHE) 1438 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n", 1439 convert_to_wallclock(cp->expiry_time), 1440 kref_read(&cp->ref), cp->flags); 1441 1442 if (cache_check_rcu(cd, cp, NULL)) 1443 seq_puts(m, "# "); 1444 else if (cache_is_expired(cd, cp)) 1445 seq_puts(m, "# "); 1446 1447 return cd->cache_show(m, cd, cp); 1448 } 1449 1450 static const struct seq_operations cache_content_op = { 1451 .start = cache_seq_start_rcu, 1452 .next = cache_seq_next_rcu, 1453 .stop = cache_seq_stop_rcu, 1454 .show = c_show, 1455 }; 1456 1457 static int content_open(struct inode *inode, struct file *file, 1458 struct cache_detail *cd) 1459 { 1460 struct seq_file *seq; 1461 int err; 1462 1463 if (!cd || !try_module_get(cd->owner)) 1464 return -EACCES; 1465 1466 err = seq_open(file, &cache_content_op); 1467 if (err) { 1468 module_put(cd->owner); 1469 return err; 1470 } 1471 1472 seq = file->private_data; 1473 seq->private = cd; 1474 return 0; 1475 } 1476 1477 static int content_release(struct inode *inode, struct file *file, 1478 struct cache_detail *cd) 1479 { 1480 int ret = seq_release(inode, file); 1481 module_put(cd->owner); 1482 return ret; 1483 } 1484 1485 static int open_flush(struct inode *inode, struct file *file, 1486 struct cache_detail *cd) 1487 { 1488 if (!cd || !try_module_get(cd->owner)) 1489 return -EACCES; 1490 return nonseekable_open(inode, file); 1491 } 1492 1493 static int release_flush(struct inode *inode, struct file *file, 1494 struct cache_detail *cd) 1495 { 1496 module_put(cd->owner); 1497 return 0; 1498 } 1499 1500 static ssize_t read_flush(struct file *file, char __user *buf, 1501 size_t count, loff_t *ppos, 1502 struct cache_detail *cd) 1503 { 1504 char tbuf[22]; 1505 size_t len; 1506 1507 len = snprintf(tbuf, sizeof(tbuf), "%llu\n", 1508 convert_to_wallclock(cd->flush_time)); 1509 return simple_read_from_buffer(buf, count, ppos, tbuf, len); 1510 } 1511 1512 static ssize_t write_flush(struct file *file, const char __user *buf, 1513 size_t count, loff_t *ppos, 1514 struct cache_detail *cd) 1515 { 1516 char tbuf[20]; 1517 char *ep; 1518 time64_t now; 1519 1520 if (*ppos || count > sizeof(tbuf)-1) 1521 return -EINVAL; 1522 if (copy_from_user(tbuf, buf, count)) 1523 return -EFAULT; 1524 tbuf[count] = 0; 1525 simple_strtoul(tbuf, &ep, 0); 1526 if (*ep && *ep != '\n') 1527 return -EINVAL; 1528 /* Note that while we check that 'buf' holds a valid number, 1529 * we always ignore the value and just flush everything. 1530 * Making use of the number leads to races. 1531 */ 1532 1533 now = seconds_since_boot(); 1534 /* Always flush everything, so behave like cache_purge() 1535 * Do this by advancing flush_time to the current time, 1536 * or by one second if it has already reached the current time. 1537 * Newly added cache entries will always have ->last_refresh greater 1538 * that ->flush_time, so they don't get flushed prematurely. 1539 */ 1540 1541 if (cd->flush_time >= now) 1542 now = cd->flush_time + 1; 1543 1544 cd->flush_time = now; 1545 cd->nextcheck = now; 1546 cache_flush(); 1547 1548 if (cd->flush) 1549 cd->flush(); 1550 1551 *ppos += count; 1552 return count; 1553 } 1554 1555 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1556 size_t count, loff_t *ppos) 1557 { 1558 struct cache_detail *cd = pde_data(file_inode(filp)); 1559 1560 return cache_read(filp, buf, count, ppos, cd); 1561 } 1562 1563 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1564 size_t count, loff_t *ppos) 1565 { 1566 struct cache_detail *cd = pde_data(file_inode(filp)); 1567 1568 return cache_write(filp, buf, count, ppos, cd); 1569 } 1570 1571 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait) 1572 { 1573 struct cache_detail *cd = pde_data(file_inode(filp)); 1574 1575 return cache_poll(filp, wait, cd); 1576 } 1577 1578 static long cache_ioctl_procfs(struct file *filp, 1579 unsigned int cmd, unsigned long arg) 1580 { 1581 struct inode *inode = file_inode(filp); 1582 struct cache_detail *cd = pde_data(inode); 1583 1584 return cache_ioctl(inode, filp, cmd, arg, cd); 1585 } 1586 1587 static int cache_open_procfs(struct inode *inode, struct file *filp) 1588 { 1589 struct cache_detail *cd = pde_data(inode); 1590 1591 return cache_open(inode, filp, cd); 1592 } 1593 1594 static int cache_release_procfs(struct inode *inode, struct file *filp) 1595 { 1596 struct cache_detail *cd = pde_data(inode); 1597 1598 return cache_release(inode, filp, cd); 1599 } 1600 1601 static const struct proc_ops cache_channel_proc_ops = { 1602 .proc_read = cache_read_procfs, 1603 .proc_write = cache_write_procfs, 1604 .proc_poll = cache_poll_procfs, 1605 .proc_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1606 .proc_open = cache_open_procfs, 1607 .proc_release = cache_release_procfs, 1608 }; 1609 1610 static int content_open_procfs(struct inode *inode, struct file *filp) 1611 { 1612 struct cache_detail *cd = pde_data(inode); 1613 1614 return content_open(inode, filp, cd); 1615 } 1616 1617 static int content_release_procfs(struct inode *inode, struct file *filp) 1618 { 1619 struct cache_detail *cd = pde_data(inode); 1620 1621 return content_release(inode, filp, cd); 1622 } 1623 1624 static const struct proc_ops content_proc_ops = { 1625 .proc_open = content_open_procfs, 1626 .proc_read = seq_read, 1627 .proc_lseek = seq_lseek, 1628 .proc_release = content_release_procfs, 1629 }; 1630 1631 static int open_flush_procfs(struct inode *inode, struct file *filp) 1632 { 1633 struct cache_detail *cd = pde_data(inode); 1634 1635 return open_flush(inode, filp, cd); 1636 } 1637 1638 static int release_flush_procfs(struct inode *inode, struct file *filp) 1639 { 1640 struct cache_detail *cd = pde_data(inode); 1641 1642 return release_flush(inode, filp, cd); 1643 } 1644 1645 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1646 size_t count, loff_t *ppos) 1647 { 1648 struct cache_detail *cd = pde_data(file_inode(filp)); 1649 1650 return read_flush(filp, buf, count, ppos, cd); 1651 } 1652 1653 static ssize_t write_flush_procfs(struct file *filp, 1654 const char __user *buf, 1655 size_t count, loff_t *ppos) 1656 { 1657 struct cache_detail *cd = pde_data(file_inode(filp)); 1658 1659 return write_flush(filp, buf, count, ppos, cd); 1660 } 1661 1662 static const struct proc_ops cache_flush_proc_ops = { 1663 .proc_open = open_flush_procfs, 1664 .proc_read = read_flush_procfs, 1665 .proc_write = write_flush_procfs, 1666 .proc_release = release_flush_procfs, 1667 }; 1668 1669 static void remove_cache_proc_entries(struct cache_detail *cd) 1670 { 1671 if (cd->procfs) { 1672 proc_remove(cd->procfs); 1673 cd->procfs = NULL; 1674 } 1675 } 1676 1677 #ifdef CONFIG_PROC_FS 1678 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1679 { 1680 struct proc_dir_entry *p; 1681 struct sunrpc_net *sn; 1682 1683 sn = net_generic(net, sunrpc_net_id); 1684 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc); 1685 if (cd->procfs == NULL) 1686 goto out_nomem; 1687 1688 p = proc_create_data("flush", S_IFREG | 0600, 1689 cd->procfs, &cache_flush_proc_ops, cd); 1690 if (p == NULL) 1691 goto out_nomem; 1692 1693 if (cd->cache_request || cd->cache_parse) { 1694 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs, 1695 &cache_channel_proc_ops, cd); 1696 if (p == NULL) 1697 goto out_nomem; 1698 } 1699 if (cd->cache_show) { 1700 p = proc_create_data("content", S_IFREG | 0400, cd->procfs, 1701 &content_proc_ops, cd); 1702 if (p == NULL) 1703 goto out_nomem; 1704 } 1705 return 0; 1706 out_nomem: 1707 remove_cache_proc_entries(cd); 1708 return -ENOMEM; 1709 } 1710 #else /* CONFIG_PROC_FS */ 1711 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1712 { 1713 return 0; 1714 } 1715 #endif 1716 1717 void __init cache_initialize(void) 1718 { 1719 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1720 } 1721 1722 int cache_register_net(struct cache_detail *cd, struct net *net) 1723 { 1724 int ret; 1725 1726 sunrpc_init_cache_detail(cd); 1727 ret = create_cache_proc_entries(cd, net); 1728 if (ret) 1729 sunrpc_destroy_cache_detail(cd); 1730 return ret; 1731 } 1732 EXPORT_SYMBOL_GPL(cache_register_net); 1733 1734 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1735 { 1736 remove_cache_proc_entries(cd); 1737 sunrpc_destroy_cache_detail(cd); 1738 } 1739 EXPORT_SYMBOL_GPL(cache_unregister_net); 1740 1741 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net) 1742 { 1743 struct cache_detail *cd; 1744 int i; 1745 1746 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1747 if (cd == NULL) 1748 return ERR_PTR(-ENOMEM); 1749 1750 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head), 1751 GFP_KERNEL); 1752 if (cd->hash_table == NULL) { 1753 kfree(cd); 1754 return ERR_PTR(-ENOMEM); 1755 } 1756 1757 for (i = 0; i < cd->hash_size; i++) 1758 INIT_HLIST_HEAD(&cd->hash_table[i]); 1759 cd->net = net; 1760 return cd; 1761 } 1762 EXPORT_SYMBOL_GPL(cache_create_net); 1763 1764 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1765 { 1766 kfree(cd->hash_table); 1767 kfree(cd); 1768 } 1769 EXPORT_SYMBOL_GPL(cache_destroy_net); 1770 1771 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1772 size_t count, loff_t *ppos) 1773 { 1774 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1775 1776 return cache_read(filp, buf, count, ppos, cd); 1777 } 1778 1779 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1780 size_t count, loff_t *ppos) 1781 { 1782 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1783 1784 return cache_write(filp, buf, count, ppos, cd); 1785 } 1786 1787 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait) 1788 { 1789 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1790 1791 return cache_poll(filp, wait, cd); 1792 } 1793 1794 static long cache_ioctl_pipefs(struct file *filp, 1795 unsigned int cmd, unsigned long arg) 1796 { 1797 struct inode *inode = file_inode(filp); 1798 struct cache_detail *cd = RPC_I(inode)->private; 1799 1800 return cache_ioctl(inode, filp, cmd, arg, cd); 1801 } 1802 1803 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1804 { 1805 struct cache_detail *cd = RPC_I(inode)->private; 1806 1807 return cache_open(inode, filp, cd); 1808 } 1809 1810 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1811 { 1812 struct cache_detail *cd = RPC_I(inode)->private; 1813 1814 return cache_release(inode, filp, cd); 1815 } 1816 1817 const struct file_operations cache_file_operations_pipefs = { 1818 .owner = THIS_MODULE, 1819 .read = cache_read_pipefs, 1820 .write = cache_write_pipefs, 1821 .poll = cache_poll_pipefs, 1822 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1823 .open = cache_open_pipefs, 1824 .release = cache_release_pipefs, 1825 }; 1826 1827 static int content_open_pipefs(struct inode *inode, struct file *filp) 1828 { 1829 struct cache_detail *cd = RPC_I(inode)->private; 1830 1831 return content_open(inode, filp, cd); 1832 } 1833 1834 static int content_release_pipefs(struct inode *inode, struct file *filp) 1835 { 1836 struct cache_detail *cd = RPC_I(inode)->private; 1837 1838 return content_release(inode, filp, cd); 1839 } 1840 1841 const struct file_operations content_file_operations_pipefs = { 1842 .open = content_open_pipefs, 1843 .read = seq_read, 1844 .llseek = seq_lseek, 1845 .release = content_release_pipefs, 1846 }; 1847 1848 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1849 { 1850 struct cache_detail *cd = RPC_I(inode)->private; 1851 1852 return open_flush(inode, filp, cd); 1853 } 1854 1855 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1856 { 1857 struct cache_detail *cd = RPC_I(inode)->private; 1858 1859 return release_flush(inode, filp, cd); 1860 } 1861 1862 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1863 size_t count, loff_t *ppos) 1864 { 1865 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1866 1867 return read_flush(filp, buf, count, ppos, cd); 1868 } 1869 1870 static ssize_t write_flush_pipefs(struct file *filp, 1871 const char __user *buf, 1872 size_t count, loff_t *ppos) 1873 { 1874 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1875 1876 return write_flush(filp, buf, count, ppos, cd); 1877 } 1878 1879 const struct file_operations cache_flush_operations_pipefs = { 1880 .open = open_flush_pipefs, 1881 .read = read_flush_pipefs, 1882 .write = write_flush_pipefs, 1883 .release = release_flush_pipefs, 1884 }; 1885 1886 int sunrpc_cache_register_pipefs(struct dentry *parent, 1887 const char *name, umode_t umode, 1888 struct cache_detail *cd) 1889 { 1890 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1891 if (IS_ERR(dir)) 1892 return PTR_ERR(dir); 1893 cd->pipefs = dir; 1894 return 0; 1895 } 1896 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1897 1898 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1899 { 1900 if (cd->pipefs) { 1901 rpc_remove_cache_dir(cd->pipefs); 1902 cd->pipefs = NULL; 1903 } 1904 } 1905 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1906 1907 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h) 1908 { 1909 spin_lock(&cd->hash_lock); 1910 if (!hlist_unhashed(&h->cache_list)){ 1911 sunrpc_begin_cache_remove_entry(h, cd); 1912 spin_unlock(&cd->hash_lock); 1913 sunrpc_end_cache_remove_entry(h, cd); 1914 } else 1915 spin_unlock(&cd->hash_lock); 1916 } 1917 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash); 1918