1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sunrpc/cache.c 4 * 5 * Generic code for various authentication-related caches 6 * used by sunrpc clients and servers. 7 * 8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 9 */ 10 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/signal.h> 16 #include <linux/sched.h> 17 #include <linux/kmod.h> 18 #include <linux/list.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/string_helpers.h> 22 #include <linux/uaccess.h> 23 #include <linux/poll.h> 24 #include <linux/seq_file.h> 25 #include <linux/proc_fs.h> 26 #include <linux/net.h> 27 #include <linux/workqueue.h> 28 #include <linux/mutex.h> 29 #include <linux/pagemap.h> 30 #include <asm/ioctls.h> 31 #include <linux/sunrpc/types.h> 32 #include <linux/sunrpc/cache.h> 33 #include <linux/sunrpc/stats.h> 34 #include <linux/sunrpc/rpc_pipe_fs.h> 35 #include <trace/events/sunrpc.h> 36 37 #include "netns.h" 38 #include "fail.h" 39 40 #define RPCDBG_FACILITY RPCDBG_CACHE 41 42 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 43 static void cache_revisit_request(struct cache_head *item); 44 45 static void cache_init(struct cache_head *h, struct cache_detail *detail) 46 { 47 time64_t now = seconds_since_boot(); 48 INIT_HLIST_NODE(&h->cache_list); 49 h->flags = 0; 50 kref_init(&h->ref); 51 h->expiry_time = now + CACHE_NEW_EXPIRY; 52 if (now <= detail->flush_time) 53 /* ensure it isn't already expired */ 54 now = detail->flush_time + 1; 55 h->last_refresh = now; 56 } 57 58 static void cache_fresh_unlocked(struct cache_head *head, 59 struct cache_detail *detail); 60 61 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail, 62 struct cache_head *key, 63 int hash) 64 { 65 struct hlist_head *head = &detail->hash_table[hash]; 66 struct cache_head *tmp; 67 68 rcu_read_lock(); 69 hlist_for_each_entry_rcu(tmp, head, cache_list) { 70 if (!detail->match(tmp, key)) 71 continue; 72 if (test_bit(CACHE_VALID, &tmp->flags) && 73 cache_is_expired(detail, tmp)) 74 continue; 75 tmp = cache_get_rcu(tmp); 76 rcu_read_unlock(); 77 return tmp; 78 } 79 rcu_read_unlock(); 80 return NULL; 81 } 82 83 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch, 84 struct cache_detail *cd) 85 { 86 /* Must be called under cd->hash_lock */ 87 hlist_del_init_rcu(&ch->cache_list); 88 set_bit(CACHE_CLEANED, &ch->flags); 89 cd->entries --; 90 } 91 92 static void sunrpc_end_cache_remove_entry(struct cache_head *ch, 93 struct cache_detail *cd) 94 { 95 cache_fresh_unlocked(ch, cd); 96 cache_put(ch, cd); 97 } 98 99 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail, 100 struct cache_head *key, 101 int hash) 102 { 103 struct cache_head *new, *tmp, *freeme = NULL; 104 struct hlist_head *head = &detail->hash_table[hash]; 105 106 new = detail->alloc(); 107 if (!new) 108 return NULL; 109 /* must fully initialise 'new', else 110 * we might get lose if we need to 111 * cache_put it soon. 112 */ 113 cache_init(new, detail); 114 detail->init(new, key); 115 116 spin_lock(&detail->hash_lock); 117 118 /* check if entry appeared while we slept */ 119 hlist_for_each_entry_rcu(tmp, head, cache_list, 120 lockdep_is_held(&detail->hash_lock)) { 121 if (!detail->match(tmp, key)) 122 continue; 123 if (test_bit(CACHE_VALID, &tmp->flags) && 124 cache_is_expired(detail, tmp)) { 125 sunrpc_begin_cache_remove_entry(tmp, detail); 126 trace_cache_entry_expired(detail, tmp); 127 freeme = tmp; 128 break; 129 } 130 cache_get(tmp); 131 spin_unlock(&detail->hash_lock); 132 cache_put(new, detail); 133 return tmp; 134 } 135 136 hlist_add_head_rcu(&new->cache_list, head); 137 detail->entries++; 138 cache_get(new); 139 spin_unlock(&detail->hash_lock); 140 141 if (freeme) 142 sunrpc_end_cache_remove_entry(freeme, detail); 143 return new; 144 } 145 146 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail, 147 struct cache_head *key, int hash) 148 { 149 struct cache_head *ret; 150 151 ret = sunrpc_cache_find_rcu(detail, key, hash); 152 if (ret) 153 return ret; 154 /* Didn't find anything, insert an empty entry */ 155 return sunrpc_cache_add_entry(detail, key, hash); 156 } 157 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu); 158 159 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 160 161 static void cache_fresh_locked(struct cache_head *head, time64_t expiry, 162 struct cache_detail *detail) 163 { 164 time64_t now = seconds_since_boot(); 165 if (now <= detail->flush_time) 166 /* ensure it isn't immediately treated as expired */ 167 now = detail->flush_time + 1; 168 head->expiry_time = expiry; 169 head->last_refresh = now; 170 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 171 set_bit(CACHE_VALID, &head->flags); 172 } 173 174 static void cache_fresh_unlocked(struct cache_head *head, 175 struct cache_detail *detail) 176 { 177 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 178 cache_revisit_request(head); 179 cache_dequeue(detail, head); 180 } 181 } 182 183 static void cache_make_negative(struct cache_detail *detail, 184 struct cache_head *h) 185 { 186 set_bit(CACHE_NEGATIVE, &h->flags); 187 trace_cache_entry_make_negative(detail, h); 188 } 189 190 static void cache_entry_update(struct cache_detail *detail, 191 struct cache_head *h, 192 struct cache_head *new) 193 { 194 if (!test_bit(CACHE_NEGATIVE, &new->flags)) { 195 detail->update(h, new); 196 trace_cache_entry_update(detail, h); 197 } else { 198 cache_make_negative(detail, h); 199 } 200 } 201 202 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 203 struct cache_head *new, struct cache_head *old, int hash) 204 { 205 /* The 'old' entry is to be replaced by 'new'. 206 * If 'old' is not VALID, we update it directly, 207 * otherwise we need to replace it 208 */ 209 struct cache_head *tmp; 210 211 if (!test_bit(CACHE_VALID, &old->flags)) { 212 spin_lock(&detail->hash_lock); 213 if (!test_bit(CACHE_VALID, &old->flags)) { 214 cache_entry_update(detail, old, new); 215 cache_fresh_locked(old, new->expiry_time, detail); 216 spin_unlock(&detail->hash_lock); 217 cache_fresh_unlocked(old, detail); 218 return old; 219 } 220 spin_unlock(&detail->hash_lock); 221 } 222 /* We need to insert a new entry */ 223 tmp = detail->alloc(); 224 if (!tmp) { 225 cache_put(old, detail); 226 return NULL; 227 } 228 cache_init(tmp, detail); 229 detail->init(tmp, old); 230 231 spin_lock(&detail->hash_lock); 232 cache_entry_update(detail, tmp, new); 233 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 234 detail->entries++; 235 cache_get(tmp); 236 cache_fresh_locked(tmp, new->expiry_time, detail); 237 cache_fresh_locked(old, 0, detail); 238 spin_unlock(&detail->hash_lock); 239 cache_fresh_unlocked(tmp, detail); 240 cache_fresh_unlocked(old, detail); 241 cache_put(old, detail); 242 return tmp; 243 } 244 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 245 246 static inline int cache_is_valid(struct cache_head *h) 247 { 248 if (!test_bit(CACHE_VALID, &h->flags)) 249 return -EAGAIN; 250 else { 251 /* entry is valid */ 252 if (test_bit(CACHE_NEGATIVE, &h->flags)) 253 return -ENOENT; 254 else { 255 /* 256 * In combination with write barrier in 257 * sunrpc_cache_update, ensures that anyone 258 * using the cache entry after this sees the 259 * updated contents: 260 */ 261 smp_rmb(); 262 return 0; 263 } 264 } 265 } 266 267 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 268 { 269 int rv; 270 271 spin_lock(&detail->hash_lock); 272 rv = cache_is_valid(h); 273 if (rv == -EAGAIN) { 274 cache_make_negative(detail, h); 275 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 276 detail); 277 rv = -ENOENT; 278 } 279 spin_unlock(&detail->hash_lock); 280 cache_fresh_unlocked(h, detail); 281 return rv; 282 } 283 284 /* 285 * This is the generic cache management routine for all 286 * the authentication caches. 287 * It checks the currency of a cache item and will (later) 288 * initiate an upcall to fill it if needed. 289 * 290 * 291 * Returns 0 if the cache_head can be used, or cache_puts it and returns 292 * -EAGAIN if upcall is pending and request has been queued 293 * -ETIMEDOUT if upcall failed or request could not be queue or 294 * upcall completed but item is still invalid (implying that 295 * the cache item has been replaced with a newer one). 296 * -ENOENT if cache entry was negative 297 */ 298 int cache_check(struct cache_detail *detail, 299 struct cache_head *h, struct cache_req *rqstp) 300 { 301 int rv; 302 time64_t refresh_age, age; 303 304 /* First decide return status as best we can */ 305 rv = cache_is_valid(h); 306 307 /* now see if we want to start an upcall */ 308 refresh_age = (h->expiry_time - h->last_refresh); 309 age = seconds_since_boot() - h->last_refresh; 310 311 if (rqstp == NULL) { 312 if (rv == -EAGAIN) 313 rv = -ENOENT; 314 } else if (rv == -EAGAIN || 315 (h->expiry_time != 0 && age > refresh_age/2)) { 316 dprintk("RPC: Want update, refage=%lld, age=%lld\n", 317 refresh_age, age); 318 switch (detail->cache_upcall(detail, h)) { 319 case -EINVAL: 320 rv = try_to_negate_entry(detail, h); 321 break; 322 case -EAGAIN: 323 cache_fresh_unlocked(h, detail); 324 break; 325 } 326 } 327 328 if (rv == -EAGAIN) { 329 if (!cache_defer_req(rqstp, h)) { 330 /* 331 * Request was not deferred; handle it as best 332 * we can ourselves: 333 */ 334 rv = cache_is_valid(h); 335 if (rv == -EAGAIN) 336 rv = -ETIMEDOUT; 337 } 338 } 339 if (rv) 340 cache_put(h, detail); 341 return rv; 342 } 343 EXPORT_SYMBOL_GPL(cache_check); 344 345 /* 346 * caches need to be periodically cleaned. 347 * For this we maintain a list of cache_detail and 348 * a current pointer into that list and into the table 349 * for that entry. 350 * 351 * Each time cache_clean is called it finds the next non-empty entry 352 * in the current table and walks the list in that entry 353 * looking for entries that can be removed. 354 * 355 * An entry gets removed if: 356 * - The expiry is before current time 357 * - The last_refresh time is before the flush_time for that cache 358 * 359 * later we might drop old entries with non-NEVER expiry if that table 360 * is getting 'full' for some definition of 'full' 361 * 362 * The question of "how often to scan a table" is an interesting one 363 * and is answered in part by the use of the "nextcheck" field in the 364 * cache_detail. 365 * When a scan of a table begins, the nextcheck field is set to a time 366 * that is well into the future. 367 * While scanning, if an expiry time is found that is earlier than the 368 * current nextcheck time, nextcheck is set to that expiry time. 369 * If the flush_time is ever set to a time earlier than the nextcheck 370 * time, the nextcheck time is then set to that flush_time. 371 * 372 * A table is then only scanned if the current time is at least 373 * the nextcheck time. 374 * 375 */ 376 377 static LIST_HEAD(cache_list); 378 static DEFINE_SPINLOCK(cache_list_lock); 379 static struct cache_detail *current_detail; 380 static int current_index; 381 382 static void do_cache_clean(struct work_struct *work); 383 static struct delayed_work cache_cleaner; 384 385 void sunrpc_init_cache_detail(struct cache_detail *cd) 386 { 387 spin_lock_init(&cd->hash_lock); 388 INIT_LIST_HEAD(&cd->queue); 389 spin_lock(&cache_list_lock); 390 cd->nextcheck = 0; 391 cd->entries = 0; 392 atomic_set(&cd->writers, 0); 393 cd->last_close = 0; 394 cd->last_warn = -1; 395 list_add(&cd->others, &cache_list); 396 spin_unlock(&cache_list_lock); 397 398 /* start the cleaning process */ 399 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); 400 } 401 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 402 403 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 404 { 405 cache_purge(cd); 406 spin_lock(&cache_list_lock); 407 spin_lock(&cd->hash_lock); 408 if (current_detail == cd) 409 current_detail = NULL; 410 list_del_init(&cd->others); 411 spin_unlock(&cd->hash_lock); 412 spin_unlock(&cache_list_lock); 413 if (list_empty(&cache_list)) { 414 /* module must be being unloaded so its safe to kill the worker */ 415 cancel_delayed_work_sync(&cache_cleaner); 416 } 417 } 418 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 419 420 /* clean cache tries to find something to clean 421 * and cleans it. 422 * It returns 1 if it cleaned something, 423 * 0 if it didn't find anything this time 424 * -1 if it fell off the end of the list. 425 */ 426 static int cache_clean(void) 427 { 428 int rv = 0; 429 struct list_head *next; 430 431 spin_lock(&cache_list_lock); 432 433 /* find a suitable table if we don't already have one */ 434 while (current_detail == NULL || 435 current_index >= current_detail->hash_size) { 436 if (current_detail) 437 next = current_detail->others.next; 438 else 439 next = cache_list.next; 440 if (next == &cache_list) { 441 current_detail = NULL; 442 spin_unlock(&cache_list_lock); 443 return -1; 444 } 445 current_detail = list_entry(next, struct cache_detail, others); 446 if (current_detail->nextcheck > seconds_since_boot()) 447 current_index = current_detail->hash_size; 448 else { 449 current_index = 0; 450 current_detail->nextcheck = seconds_since_boot()+30*60; 451 } 452 } 453 454 /* find a non-empty bucket in the table */ 455 while (current_detail && 456 current_index < current_detail->hash_size && 457 hlist_empty(¤t_detail->hash_table[current_index])) 458 current_index++; 459 460 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 461 462 if (current_detail && current_index < current_detail->hash_size) { 463 struct cache_head *ch = NULL; 464 struct cache_detail *d; 465 struct hlist_head *head; 466 struct hlist_node *tmp; 467 468 spin_lock(¤t_detail->hash_lock); 469 470 /* Ok, now to clean this strand */ 471 472 head = ¤t_detail->hash_table[current_index]; 473 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 474 if (current_detail->nextcheck > ch->expiry_time) 475 current_detail->nextcheck = ch->expiry_time+1; 476 if (!cache_is_expired(current_detail, ch)) 477 continue; 478 479 sunrpc_begin_cache_remove_entry(ch, current_detail); 480 trace_cache_entry_expired(current_detail, ch); 481 rv = 1; 482 break; 483 } 484 485 spin_unlock(¤t_detail->hash_lock); 486 d = current_detail; 487 if (!ch) 488 current_index ++; 489 spin_unlock(&cache_list_lock); 490 if (ch) 491 sunrpc_end_cache_remove_entry(ch, d); 492 } else 493 spin_unlock(&cache_list_lock); 494 495 return rv; 496 } 497 498 /* 499 * We want to regularly clean the cache, so we need to schedule some work ... 500 */ 501 static void do_cache_clean(struct work_struct *work) 502 { 503 int delay; 504 505 if (list_empty(&cache_list)) 506 return; 507 508 if (cache_clean() == -1) 509 delay = round_jiffies_relative(30*HZ); 510 else 511 delay = 5; 512 513 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay); 514 } 515 516 517 /* 518 * Clean all caches promptly. This just calls cache_clean 519 * repeatedly until we are sure that every cache has had a chance to 520 * be fully cleaned 521 */ 522 void cache_flush(void) 523 { 524 while (cache_clean() != -1) 525 cond_resched(); 526 while (cache_clean() != -1) 527 cond_resched(); 528 } 529 EXPORT_SYMBOL_GPL(cache_flush); 530 531 void cache_purge(struct cache_detail *detail) 532 { 533 struct cache_head *ch = NULL; 534 struct hlist_head *head = NULL; 535 int i = 0; 536 537 spin_lock(&detail->hash_lock); 538 if (!detail->entries) { 539 spin_unlock(&detail->hash_lock); 540 return; 541 } 542 543 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name); 544 for (i = 0; i < detail->hash_size; i++) { 545 head = &detail->hash_table[i]; 546 while (!hlist_empty(head)) { 547 ch = hlist_entry(head->first, struct cache_head, 548 cache_list); 549 sunrpc_begin_cache_remove_entry(ch, detail); 550 spin_unlock(&detail->hash_lock); 551 sunrpc_end_cache_remove_entry(ch, detail); 552 spin_lock(&detail->hash_lock); 553 } 554 } 555 spin_unlock(&detail->hash_lock); 556 } 557 EXPORT_SYMBOL_GPL(cache_purge); 558 559 560 /* 561 * Deferral and Revisiting of Requests. 562 * 563 * If a cache lookup finds a pending entry, we 564 * need to defer the request and revisit it later. 565 * All deferred requests are stored in a hash table, 566 * indexed by "struct cache_head *". 567 * As it may be wasteful to store a whole request 568 * structure, we allow the request to provide a 569 * deferred form, which must contain a 570 * 'struct cache_deferred_req' 571 * This cache_deferred_req contains a method to allow 572 * it to be revisited when cache info is available 573 */ 574 575 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 576 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 577 578 #define DFR_MAX 300 /* ??? */ 579 580 static DEFINE_SPINLOCK(cache_defer_lock); 581 static LIST_HEAD(cache_defer_list); 582 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 583 static int cache_defer_cnt; 584 585 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 586 { 587 hlist_del_init(&dreq->hash); 588 if (!list_empty(&dreq->recent)) { 589 list_del_init(&dreq->recent); 590 cache_defer_cnt--; 591 } 592 } 593 594 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 595 { 596 int hash = DFR_HASH(item); 597 598 INIT_LIST_HEAD(&dreq->recent); 599 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 600 } 601 602 static void setup_deferral(struct cache_deferred_req *dreq, 603 struct cache_head *item, 604 int count_me) 605 { 606 607 dreq->item = item; 608 609 spin_lock(&cache_defer_lock); 610 611 __hash_deferred_req(dreq, item); 612 613 if (count_me) { 614 cache_defer_cnt++; 615 list_add(&dreq->recent, &cache_defer_list); 616 } 617 618 spin_unlock(&cache_defer_lock); 619 620 } 621 622 struct thread_deferred_req { 623 struct cache_deferred_req handle; 624 struct completion completion; 625 }; 626 627 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 628 { 629 struct thread_deferred_req *dr = 630 container_of(dreq, struct thread_deferred_req, handle); 631 complete(&dr->completion); 632 } 633 634 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 635 { 636 struct thread_deferred_req sleeper; 637 struct cache_deferred_req *dreq = &sleeper.handle; 638 639 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 640 dreq->revisit = cache_restart_thread; 641 642 setup_deferral(dreq, item, 0); 643 644 if (!test_bit(CACHE_PENDING, &item->flags) || 645 wait_for_completion_interruptible_timeout( 646 &sleeper.completion, req->thread_wait) <= 0) { 647 /* The completion wasn't completed, so we need 648 * to clean up 649 */ 650 spin_lock(&cache_defer_lock); 651 if (!hlist_unhashed(&sleeper.handle.hash)) { 652 __unhash_deferred_req(&sleeper.handle); 653 spin_unlock(&cache_defer_lock); 654 } else { 655 /* cache_revisit_request already removed 656 * this from the hash table, but hasn't 657 * called ->revisit yet. It will very soon 658 * and we need to wait for it. 659 */ 660 spin_unlock(&cache_defer_lock); 661 wait_for_completion(&sleeper.completion); 662 } 663 } 664 } 665 666 static void cache_limit_defers(void) 667 { 668 /* Make sure we haven't exceed the limit of allowed deferred 669 * requests. 670 */ 671 struct cache_deferred_req *discard = NULL; 672 673 if (cache_defer_cnt <= DFR_MAX) 674 return; 675 676 spin_lock(&cache_defer_lock); 677 678 /* Consider removing either the first or the last */ 679 if (cache_defer_cnt > DFR_MAX) { 680 if (get_random_u32_below(2)) 681 discard = list_entry(cache_defer_list.next, 682 struct cache_deferred_req, recent); 683 else 684 discard = list_entry(cache_defer_list.prev, 685 struct cache_deferred_req, recent); 686 __unhash_deferred_req(discard); 687 } 688 spin_unlock(&cache_defer_lock); 689 if (discard) 690 discard->revisit(discard, 1); 691 } 692 693 #if IS_ENABLED(CONFIG_FAIL_SUNRPC) 694 static inline bool cache_defer_immediately(void) 695 { 696 return !fail_sunrpc.ignore_cache_wait && 697 should_fail(&fail_sunrpc.attr, 1); 698 } 699 #else 700 static inline bool cache_defer_immediately(void) 701 { 702 return false; 703 } 704 #endif 705 706 /* Return true if and only if a deferred request is queued. */ 707 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 708 { 709 struct cache_deferred_req *dreq; 710 711 if (!cache_defer_immediately()) { 712 cache_wait_req(req, item); 713 if (!test_bit(CACHE_PENDING, &item->flags)) 714 return false; 715 } 716 717 dreq = req->defer(req); 718 if (dreq == NULL) 719 return false; 720 setup_deferral(dreq, item, 1); 721 if (!test_bit(CACHE_PENDING, &item->flags)) 722 /* Bit could have been cleared before we managed to 723 * set up the deferral, so need to revisit just in case 724 */ 725 cache_revisit_request(item); 726 727 cache_limit_defers(); 728 return true; 729 } 730 731 static void cache_revisit_request(struct cache_head *item) 732 { 733 struct cache_deferred_req *dreq; 734 struct hlist_node *tmp; 735 int hash = DFR_HASH(item); 736 LIST_HEAD(pending); 737 738 spin_lock(&cache_defer_lock); 739 740 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 741 if (dreq->item == item) { 742 __unhash_deferred_req(dreq); 743 list_add(&dreq->recent, &pending); 744 } 745 746 spin_unlock(&cache_defer_lock); 747 748 while (!list_empty(&pending)) { 749 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 750 list_del_init(&dreq->recent); 751 dreq->revisit(dreq, 0); 752 } 753 } 754 755 void cache_clean_deferred(void *owner) 756 { 757 struct cache_deferred_req *dreq, *tmp; 758 LIST_HEAD(pending); 759 760 spin_lock(&cache_defer_lock); 761 762 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 763 if (dreq->owner == owner) { 764 __unhash_deferred_req(dreq); 765 list_add(&dreq->recent, &pending); 766 } 767 } 768 spin_unlock(&cache_defer_lock); 769 770 while (!list_empty(&pending)) { 771 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 772 list_del_init(&dreq->recent); 773 dreq->revisit(dreq, 1); 774 } 775 } 776 777 /* 778 * communicate with user-space 779 * 780 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel. 781 * On read, you get a full request, or block. 782 * On write, an update request is processed. 783 * Poll works if anything to read, and always allows write. 784 * 785 * Implemented by linked list of requests. Each open file has 786 * a ->private that also exists in this list. New requests are added 787 * to the end and may wakeup and preceding readers. 788 * New readers are added to the head. If, on read, an item is found with 789 * CACHE_UPCALLING clear, we free it from the list. 790 * 791 */ 792 793 static DEFINE_SPINLOCK(queue_lock); 794 795 struct cache_queue { 796 struct list_head list; 797 int reader; /* if 0, then request */ 798 }; 799 struct cache_request { 800 struct cache_queue q; 801 struct cache_head *item; 802 char * buf; 803 int len; 804 int readers; 805 }; 806 struct cache_reader { 807 struct cache_queue q; 808 int offset; /* if non-0, we have a refcnt on next request */ 809 }; 810 811 static int cache_request(struct cache_detail *detail, 812 struct cache_request *crq) 813 { 814 char *bp = crq->buf; 815 int len = PAGE_SIZE; 816 817 detail->cache_request(detail, crq->item, &bp, &len); 818 if (len < 0) 819 return -E2BIG; 820 return PAGE_SIZE - len; 821 } 822 823 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 824 loff_t *ppos, struct cache_detail *cd) 825 { 826 struct cache_reader *rp = filp->private_data; 827 struct cache_request *rq; 828 struct inode *inode = file_inode(filp); 829 int err; 830 831 if (count == 0) 832 return 0; 833 834 inode_lock(inode); /* protect against multiple concurrent 835 * readers on this file */ 836 again: 837 spin_lock(&queue_lock); 838 /* need to find next request */ 839 while (rp->q.list.next != &cd->queue && 840 list_entry(rp->q.list.next, struct cache_queue, list) 841 ->reader) { 842 struct list_head *next = rp->q.list.next; 843 list_move(&rp->q.list, next); 844 } 845 if (rp->q.list.next == &cd->queue) { 846 spin_unlock(&queue_lock); 847 inode_unlock(inode); 848 WARN_ON_ONCE(rp->offset); 849 return 0; 850 } 851 rq = container_of(rp->q.list.next, struct cache_request, q.list); 852 WARN_ON_ONCE(rq->q.reader); 853 if (rp->offset == 0) 854 rq->readers++; 855 spin_unlock(&queue_lock); 856 857 if (rq->len == 0) { 858 err = cache_request(cd, rq); 859 if (err < 0) 860 goto out; 861 rq->len = err; 862 } 863 864 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 865 err = -EAGAIN; 866 spin_lock(&queue_lock); 867 list_move(&rp->q.list, &rq->q.list); 868 spin_unlock(&queue_lock); 869 } else { 870 if (rp->offset + count > rq->len) 871 count = rq->len - rp->offset; 872 err = -EFAULT; 873 if (copy_to_user(buf, rq->buf + rp->offset, count)) 874 goto out; 875 rp->offset += count; 876 if (rp->offset >= rq->len) { 877 rp->offset = 0; 878 spin_lock(&queue_lock); 879 list_move(&rp->q.list, &rq->q.list); 880 spin_unlock(&queue_lock); 881 } 882 err = 0; 883 } 884 out: 885 if (rp->offset == 0) { 886 /* need to release rq */ 887 spin_lock(&queue_lock); 888 rq->readers--; 889 if (rq->readers == 0 && 890 !test_bit(CACHE_PENDING, &rq->item->flags)) { 891 list_del(&rq->q.list); 892 spin_unlock(&queue_lock); 893 cache_put(rq->item, cd); 894 kfree(rq->buf); 895 kfree(rq); 896 } else 897 spin_unlock(&queue_lock); 898 } 899 if (err == -EAGAIN) 900 goto again; 901 inode_unlock(inode); 902 return err ? err : count; 903 } 904 905 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 906 size_t count, struct cache_detail *cd) 907 { 908 ssize_t ret; 909 910 if (count == 0) 911 return -EINVAL; 912 if (copy_from_user(kaddr, buf, count)) 913 return -EFAULT; 914 kaddr[count] = '\0'; 915 ret = cd->cache_parse(cd, kaddr, count); 916 if (!ret) 917 ret = count; 918 return ret; 919 } 920 921 static ssize_t cache_downcall(struct address_space *mapping, 922 const char __user *buf, 923 size_t count, struct cache_detail *cd) 924 { 925 char *write_buf; 926 ssize_t ret = -ENOMEM; 927 928 if (count >= 32768) { /* 32k is max userland buffer, lets check anyway */ 929 ret = -EINVAL; 930 goto out; 931 } 932 933 write_buf = kvmalloc(count + 1, GFP_KERNEL); 934 if (!write_buf) 935 goto out; 936 937 ret = cache_do_downcall(write_buf, buf, count, cd); 938 kvfree(write_buf); 939 out: 940 return ret; 941 } 942 943 static ssize_t cache_write(struct file *filp, const char __user *buf, 944 size_t count, loff_t *ppos, 945 struct cache_detail *cd) 946 { 947 struct address_space *mapping = filp->f_mapping; 948 struct inode *inode = file_inode(filp); 949 ssize_t ret = -EINVAL; 950 951 if (!cd->cache_parse) 952 goto out; 953 954 inode_lock(inode); 955 ret = cache_downcall(mapping, buf, count, cd); 956 inode_unlock(inode); 957 out: 958 return ret; 959 } 960 961 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 962 963 static __poll_t cache_poll(struct file *filp, poll_table *wait, 964 struct cache_detail *cd) 965 { 966 __poll_t mask; 967 struct cache_reader *rp = filp->private_data; 968 struct cache_queue *cq; 969 970 poll_wait(filp, &queue_wait, wait); 971 972 /* alway allow write */ 973 mask = EPOLLOUT | EPOLLWRNORM; 974 975 if (!rp) 976 return mask; 977 978 spin_lock(&queue_lock); 979 980 for (cq= &rp->q; &cq->list != &cd->queue; 981 cq = list_entry(cq->list.next, struct cache_queue, list)) 982 if (!cq->reader) { 983 mask |= EPOLLIN | EPOLLRDNORM; 984 break; 985 } 986 spin_unlock(&queue_lock); 987 return mask; 988 } 989 990 static int cache_ioctl(struct inode *ino, struct file *filp, 991 unsigned int cmd, unsigned long arg, 992 struct cache_detail *cd) 993 { 994 int len = 0; 995 struct cache_reader *rp = filp->private_data; 996 struct cache_queue *cq; 997 998 if (cmd != FIONREAD || !rp) 999 return -EINVAL; 1000 1001 spin_lock(&queue_lock); 1002 1003 /* only find the length remaining in current request, 1004 * or the length of the next request 1005 */ 1006 for (cq= &rp->q; &cq->list != &cd->queue; 1007 cq = list_entry(cq->list.next, struct cache_queue, list)) 1008 if (!cq->reader) { 1009 struct cache_request *cr = 1010 container_of(cq, struct cache_request, q); 1011 len = cr->len - rp->offset; 1012 break; 1013 } 1014 spin_unlock(&queue_lock); 1015 1016 return put_user(len, (int __user *)arg); 1017 } 1018 1019 static int cache_open(struct inode *inode, struct file *filp, 1020 struct cache_detail *cd) 1021 { 1022 struct cache_reader *rp = NULL; 1023 1024 if (!cd || !try_module_get(cd->owner)) 1025 return -EACCES; 1026 nonseekable_open(inode, filp); 1027 if (filp->f_mode & FMODE_READ) { 1028 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 1029 if (!rp) { 1030 module_put(cd->owner); 1031 return -ENOMEM; 1032 } 1033 rp->offset = 0; 1034 rp->q.reader = 1; 1035 1036 spin_lock(&queue_lock); 1037 list_add(&rp->q.list, &cd->queue); 1038 spin_unlock(&queue_lock); 1039 } 1040 if (filp->f_mode & FMODE_WRITE) 1041 atomic_inc(&cd->writers); 1042 filp->private_data = rp; 1043 return 0; 1044 } 1045 1046 static int cache_release(struct inode *inode, struct file *filp, 1047 struct cache_detail *cd) 1048 { 1049 struct cache_reader *rp = filp->private_data; 1050 1051 if (rp) { 1052 spin_lock(&queue_lock); 1053 if (rp->offset) { 1054 struct cache_queue *cq; 1055 for (cq= &rp->q; &cq->list != &cd->queue; 1056 cq = list_entry(cq->list.next, struct cache_queue, list)) 1057 if (!cq->reader) { 1058 container_of(cq, struct cache_request, q) 1059 ->readers--; 1060 break; 1061 } 1062 rp->offset = 0; 1063 } 1064 list_del(&rp->q.list); 1065 spin_unlock(&queue_lock); 1066 1067 filp->private_data = NULL; 1068 kfree(rp); 1069 1070 } 1071 if (filp->f_mode & FMODE_WRITE) { 1072 atomic_dec(&cd->writers); 1073 cd->last_close = seconds_since_boot(); 1074 } 1075 module_put(cd->owner); 1076 return 0; 1077 } 1078 1079 1080 1081 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1082 { 1083 struct cache_queue *cq, *tmp; 1084 struct cache_request *cr; 1085 LIST_HEAD(dequeued); 1086 1087 spin_lock(&queue_lock); 1088 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1089 if (!cq->reader) { 1090 cr = container_of(cq, struct cache_request, q); 1091 if (cr->item != ch) 1092 continue; 1093 if (test_bit(CACHE_PENDING, &ch->flags)) 1094 /* Lost a race and it is pending again */ 1095 break; 1096 if (cr->readers != 0) 1097 continue; 1098 list_move(&cr->q.list, &dequeued); 1099 } 1100 spin_unlock(&queue_lock); 1101 while (!list_empty(&dequeued)) { 1102 cr = list_entry(dequeued.next, struct cache_request, q.list); 1103 list_del(&cr->q.list); 1104 cache_put(cr->item, detail); 1105 kfree(cr->buf); 1106 kfree(cr); 1107 } 1108 } 1109 1110 /* 1111 * Support routines for text-based upcalls. 1112 * Fields are separated by spaces. 1113 * Fields are either mangled to quote space tab newline slosh with slosh 1114 * or a hexified with a leading \x 1115 * Record is terminated with newline. 1116 * 1117 */ 1118 1119 void qword_add(char **bpp, int *lp, char *str) 1120 { 1121 char *bp = *bpp; 1122 int len = *lp; 1123 int ret; 1124 1125 if (len < 0) return; 1126 1127 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1128 if (ret >= len) { 1129 bp += len; 1130 len = -1; 1131 } else { 1132 bp += ret; 1133 len -= ret; 1134 *bp++ = ' '; 1135 len--; 1136 } 1137 *bpp = bp; 1138 *lp = len; 1139 } 1140 EXPORT_SYMBOL_GPL(qword_add); 1141 1142 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1143 { 1144 char *bp = *bpp; 1145 int len = *lp; 1146 1147 if (len < 0) return; 1148 1149 if (len > 2) { 1150 *bp++ = '\\'; 1151 *bp++ = 'x'; 1152 len -= 2; 1153 while (blen && len >= 2) { 1154 bp = hex_byte_pack(bp, *buf++); 1155 len -= 2; 1156 blen--; 1157 } 1158 } 1159 if (blen || len<1) len = -1; 1160 else { 1161 *bp++ = ' '; 1162 len--; 1163 } 1164 *bpp = bp; 1165 *lp = len; 1166 } 1167 EXPORT_SYMBOL_GPL(qword_addhex); 1168 1169 static void warn_no_listener(struct cache_detail *detail) 1170 { 1171 if (detail->last_warn != detail->last_close) { 1172 detail->last_warn = detail->last_close; 1173 if (detail->warn_no_listener) 1174 detail->warn_no_listener(detail, detail->last_close != 0); 1175 } 1176 } 1177 1178 static bool cache_listeners_exist(struct cache_detail *detail) 1179 { 1180 if (atomic_read(&detail->writers)) 1181 return true; 1182 if (detail->last_close == 0) 1183 /* This cache was never opened */ 1184 return false; 1185 if (detail->last_close < seconds_since_boot() - 30) 1186 /* 1187 * We allow for the possibility that someone might 1188 * restart a userspace daemon without restarting the 1189 * server; but after 30 seconds, we give up. 1190 */ 1191 return false; 1192 return true; 1193 } 1194 1195 /* 1196 * register an upcall request to user-space and queue it up for read() by the 1197 * upcall daemon. 1198 * 1199 * Each request is at most one page long. 1200 */ 1201 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1202 { 1203 char *buf; 1204 struct cache_request *crq; 1205 int ret = 0; 1206 1207 if (test_bit(CACHE_CLEANED, &h->flags)) 1208 /* Too late to make an upcall */ 1209 return -EAGAIN; 1210 1211 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1212 if (!buf) 1213 return -EAGAIN; 1214 1215 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1216 if (!crq) { 1217 kfree(buf); 1218 return -EAGAIN; 1219 } 1220 1221 crq->q.reader = 0; 1222 crq->buf = buf; 1223 crq->len = 0; 1224 crq->readers = 0; 1225 spin_lock(&queue_lock); 1226 if (test_bit(CACHE_PENDING, &h->flags)) { 1227 crq->item = cache_get(h); 1228 list_add_tail(&crq->q.list, &detail->queue); 1229 trace_cache_entry_upcall(detail, h); 1230 } else 1231 /* Lost a race, no longer PENDING, so don't enqueue */ 1232 ret = -EAGAIN; 1233 spin_unlock(&queue_lock); 1234 wake_up(&queue_wait); 1235 if (ret == -EAGAIN) { 1236 kfree(buf); 1237 kfree(crq); 1238 } 1239 return ret; 1240 } 1241 1242 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1243 { 1244 if (test_and_set_bit(CACHE_PENDING, &h->flags)) 1245 return 0; 1246 return cache_pipe_upcall(detail, h); 1247 } 1248 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1249 1250 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail, 1251 struct cache_head *h) 1252 { 1253 if (!cache_listeners_exist(detail)) { 1254 warn_no_listener(detail); 1255 trace_cache_entry_no_listener(detail, h); 1256 return -EINVAL; 1257 } 1258 return sunrpc_cache_pipe_upcall(detail, h); 1259 } 1260 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout); 1261 1262 /* 1263 * parse a message from user-space and pass it 1264 * to an appropriate cache 1265 * Messages are, like requests, separated into fields by 1266 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1267 * 1268 * Message is 1269 * reply cachename expiry key ... content.... 1270 * 1271 * key and content are both parsed by cache 1272 */ 1273 1274 int qword_get(char **bpp, char *dest, int bufsize) 1275 { 1276 /* return bytes copied, or -1 on error */ 1277 char *bp = *bpp; 1278 int len = 0; 1279 1280 while (*bp == ' ') bp++; 1281 1282 if (bp[0] == '\\' && bp[1] == 'x') { 1283 /* HEX STRING */ 1284 bp += 2; 1285 while (len < bufsize - 1) { 1286 int h, l; 1287 1288 h = hex_to_bin(bp[0]); 1289 if (h < 0) 1290 break; 1291 1292 l = hex_to_bin(bp[1]); 1293 if (l < 0) 1294 break; 1295 1296 *dest++ = (h << 4) | l; 1297 bp += 2; 1298 len++; 1299 } 1300 } else { 1301 /* text with \nnn octal quoting */ 1302 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1303 if (*bp == '\\' && 1304 isodigit(bp[1]) && (bp[1] <= '3') && 1305 isodigit(bp[2]) && 1306 isodigit(bp[3])) { 1307 int byte = (*++bp -'0'); 1308 bp++; 1309 byte = (byte << 3) | (*bp++ - '0'); 1310 byte = (byte << 3) | (*bp++ - '0'); 1311 *dest++ = byte; 1312 len++; 1313 } else { 1314 *dest++ = *bp++; 1315 len++; 1316 } 1317 } 1318 } 1319 1320 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1321 return -1; 1322 while (*bp == ' ') bp++; 1323 *bpp = bp; 1324 *dest = '\0'; 1325 return len; 1326 } 1327 EXPORT_SYMBOL_GPL(qword_get); 1328 1329 1330 /* 1331 * support /proc/net/rpc/$CACHENAME/content 1332 * as a seqfile. 1333 * We call ->cache_show passing NULL for the item to 1334 * get a header, then pass each real item in the cache 1335 */ 1336 1337 static void *__cache_seq_start(struct seq_file *m, loff_t *pos) 1338 { 1339 loff_t n = *pos; 1340 unsigned int hash, entry; 1341 struct cache_head *ch; 1342 struct cache_detail *cd = m->private; 1343 1344 if (!n--) 1345 return SEQ_START_TOKEN; 1346 hash = n >> 32; 1347 entry = n & ((1LL<<32) - 1); 1348 1349 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list) 1350 if (!entry--) 1351 return ch; 1352 n &= ~((1LL<<32) - 1); 1353 do { 1354 hash++; 1355 n += 1LL<<32; 1356 } while(hash < cd->hash_size && 1357 hlist_empty(&cd->hash_table[hash])); 1358 if (hash >= cd->hash_size) 1359 return NULL; 1360 *pos = n+1; 1361 return hlist_entry_safe(rcu_dereference_raw( 1362 hlist_first_rcu(&cd->hash_table[hash])), 1363 struct cache_head, cache_list); 1364 } 1365 1366 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1367 { 1368 struct cache_head *ch = p; 1369 int hash = (*pos >> 32); 1370 struct cache_detail *cd = m->private; 1371 1372 if (p == SEQ_START_TOKEN) 1373 hash = 0; 1374 else if (ch->cache_list.next == NULL) { 1375 hash++; 1376 *pos += 1LL<<32; 1377 } else { 1378 ++*pos; 1379 return hlist_entry_safe(rcu_dereference_raw( 1380 hlist_next_rcu(&ch->cache_list)), 1381 struct cache_head, cache_list); 1382 } 1383 *pos &= ~((1LL<<32) - 1); 1384 while (hash < cd->hash_size && 1385 hlist_empty(&cd->hash_table[hash])) { 1386 hash++; 1387 *pos += 1LL<<32; 1388 } 1389 if (hash >= cd->hash_size) 1390 return NULL; 1391 ++*pos; 1392 return hlist_entry_safe(rcu_dereference_raw( 1393 hlist_first_rcu(&cd->hash_table[hash])), 1394 struct cache_head, cache_list); 1395 } 1396 1397 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos) 1398 __acquires(RCU) 1399 { 1400 rcu_read_lock(); 1401 return __cache_seq_start(m, pos); 1402 } 1403 EXPORT_SYMBOL_GPL(cache_seq_start_rcu); 1404 1405 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos) 1406 { 1407 return cache_seq_next(file, p, pos); 1408 } 1409 EXPORT_SYMBOL_GPL(cache_seq_next_rcu); 1410 1411 void cache_seq_stop_rcu(struct seq_file *m, void *p) 1412 __releases(RCU) 1413 { 1414 rcu_read_unlock(); 1415 } 1416 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu); 1417 1418 static int c_show(struct seq_file *m, void *p) 1419 { 1420 struct cache_head *cp = p; 1421 struct cache_detail *cd = m->private; 1422 1423 if (p == SEQ_START_TOKEN) 1424 return cd->cache_show(m, cd, NULL); 1425 1426 ifdebug(CACHE) 1427 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n", 1428 convert_to_wallclock(cp->expiry_time), 1429 kref_read(&cp->ref), cp->flags); 1430 if (!cache_get_rcu(cp)) 1431 return 0; 1432 1433 if (cache_check(cd, cp, NULL)) 1434 /* cache_check does a cache_put on failure */ 1435 seq_puts(m, "# "); 1436 else { 1437 if (cache_is_expired(cd, cp)) 1438 seq_puts(m, "# "); 1439 cache_put(cp, cd); 1440 } 1441 1442 return cd->cache_show(m, cd, cp); 1443 } 1444 1445 static const struct seq_operations cache_content_op = { 1446 .start = cache_seq_start_rcu, 1447 .next = cache_seq_next_rcu, 1448 .stop = cache_seq_stop_rcu, 1449 .show = c_show, 1450 }; 1451 1452 static int content_open(struct inode *inode, struct file *file, 1453 struct cache_detail *cd) 1454 { 1455 struct seq_file *seq; 1456 int err; 1457 1458 if (!cd || !try_module_get(cd->owner)) 1459 return -EACCES; 1460 1461 err = seq_open(file, &cache_content_op); 1462 if (err) { 1463 module_put(cd->owner); 1464 return err; 1465 } 1466 1467 seq = file->private_data; 1468 seq->private = cd; 1469 return 0; 1470 } 1471 1472 static int content_release(struct inode *inode, struct file *file, 1473 struct cache_detail *cd) 1474 { 1475 int ret = seq_release(inode, file); 1476 module_put(cd->owner); 1477 return ret; 1478 } 1479 1480 static int open_flush(struct inode *inode, struct file *file, 1481 struct cache_detail *cd) 1482 { 1483 if (!cd || !try_module_get(cd->owner)) 1484 return -EACCES; 1485 return nonseekable_open(inode, file); 1486 } 1487 1488 static int release_flush(struct inode *inode, struct file *file, 1489 struct cache_detail *cd) 1490 { 1491 module_put(cd->owner); 1492 return 0; 1493 } 1494 1495 static ssize_t read_flush(struct file *file, char __user *buf, 1496 size_t count, loff_t *ppos, 1497 struct cache_detail *cd) 1498 { 1499 char tbuf[22]; 1500 size_t len; 1501 1502 len = snprintf(tbuf, sizeof(tbuf), "%llu\n", 1503 convert_to_wallclock(cd->flush_time)); 1504 return simple_read_from_buffer(buf, count, ppos, tbuf, len); 1505 } 1506 1507 static ssize_t write_flush(struct file *file, const char __user *buf, 1508 size_t count, loff_t *ppos, 1509 struct cache_detail *cd) 1510 { 1511 char tbuf[20]; 1512 char *ep; 1513 time64_t now; 1514 1515 if (*ppos || count > sizeof(tbuf)-1) 1516 return -EINVAL; 1517 if (copy_from_user(tbuf, buf, count)) 1518 return -EFAULT; 1519 tbuf[count] = 0; 1520 simple_strtoul(tbuf, &ep, 0); 1521 if (*ep && *ep != '\n') 1522 return -EINVAL; 1523 /* Note that while we check that 'buf' holds a valid number, 1524 * we always ignore the value and just flush everything. 1525 * Making use of the number leads to races. 1526 */ 1527 1528 now = seconds_since_boot(); 1529 /* Always flush everything, so behave like cache_purge() 1530 * Do this by advancing flush_time to the current time, 1531 * or by one second if it has already reached the current time. 1532 * Newly added cache entries will always have ->last_refresh greater 1533 * that ->flush_time, so they don't get flushed prematurely. 1534 */ 1535 1536 if (cd->flush_time >= now) 1537 now = cd->flush_time + 1; 1538 1539 cd->flush_time = now; 1540 cd->nextcheck = now; 1541 cache_flush(); 1542 1543 if (cd->flush) 1544 cd->flush(); 1545 1546 *ppos += count; 1547 return count; 1548 } 1549 1550 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1551 size_t count, loff_t *ppos) 1552 { 1553 struct cache_detail *cd = pde_data(file_inode(filp)); 1554 1555 return cache_read(filp, buf, count, ppos, cd); 1556 } 1557 1558 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1559 size_t count, loff_t *ppos) 1560 { 1561 struct cache_detail *cd = pde_data(file_inode(filp)); 1562 1563 return cache_write(filp, buf, count, ppos, cd); 1564 } 1565 1566 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait) 1567 { 1568 struct cache_detail *cd = pde_data(file_inode(filp)); 1569 1570 return cache_poll(filp, wait, cd); 1571 } 1572 1573 static long cache_ioctl_procfs(struct file *filp, 1574 unsigned int cmd, unsigned long arg) 1575 { 1576 struct inode *inode = file_inode(filp); 1577 struct cache_detail *cd = pde_data(inode); 1578 1579 return cache_ioctl(inode, filp, cmd, arg, cd); 1580 } 1581 1582 static int cache_open_procfs(struct inode *inode, struct file *filp) 1583 { 1584 struct cache_detail *cd = pde_data(inode); 1585 1586 return cache_open(inode, filp, cd); 1587 } 1588 1589 static int cache_release_procfs(struct inode *inode, struct file *filp) 1590 { 1591 struct cache_detail *cd = pde_data(inode); 1592 1593 return cache_release(inode, filp, cd); 1594 } 1595 1596 static const struct proc_ops cache_channel_proc_ops = { 1597 .proc_read = cache_read_procfs, 1598 .proc_write = cache_write_procfs, 1599 .proc_poll = cache_poll_procfs, 1600 .proc_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1601 .proc_open = cache_open_procfs, 1602 .proc_release = cache_release_procfs, 1603 }; 1604 1605 static int content_open_procfs(struct inode *inode, struct file *filp) 1606 { 1607 struct cache_detail *cd = pde_data(inode); 1608 1609 return content_open(inode, filp, cd); 1610 } 1611 1612 static int content_release_procfs(struct inode *inode, struct file *filp) 1613 { 1614 struct cache_detail *cd = pde_data(inode); 1615 1616 return content_release(inode, filp, cd); 1617 } 1618 1619 static const struct proc_ops content_proc_ops = { 1620 .proc_open = content_open_procfs, 1621 .proc_read = seq_read, 1622 .proc_lseek = seq_lseek, 1623 .proc_release = content_release_procfs, 1624 }; 1625 1626 static int open_flush_procfs(struct inode *inode, struct file *filp) 1627 { 1628 struct cache_detail *cd = pde_data(inode); 1629 1630 return open_flush(inode, filp, cd); 1631 } 1632 1633 static int release_flush_procfs(struct inode *inode, struct file *filp) 1634 { 1635 struct cache_detail *cd = pde_data(inode); 1636 1637 return release_flush(inode, filp, cd); 1638 } 1639 1640 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1641 size_t count, loff_t *ppos) 1642 { 1643 struct cache_detail *cd = pde_data(file_inode(filp)); 1644 1645 return read_flush(filp, buf, count, ppos, cd); 1646 } 1647 1648 static ssize_t write_flush_procfs(struct file *filp, 1649 const char __user *buf, 1650 size_t count, loff_t *ppos) 1651 { 1652 struct cache_detail *cd = pde_data(file_inode(filp)); 1653 1654 return write_flush(filp, buf, count, ppos, cd); 1655 } 1656 1657 static const struct proc_ops cache_flush_proc_ops = { 1658 .proc_open = open_flush_procfs, 1659 .proc_read = read_flush_procfs, 1660 .proc_write = write_flush_procfs, 1661 .proc_release = release_flush_procfs, 1662 }; 1663 1664 static void remove_cache_proc_entries(struct cache_detail *cd) 1665 { 1666 if (cd->procfs) { 1667 proc_remove(cd->procfs); 1668 cd->procfs = NULL; 1669 } 1670 } 1671 1672 #ifdef CONFIG_PROC_FS 1673 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1674 { 1675 struct proc_dir_entry *p; 1676 struct sunrpc_net *sn; 1677 1678 sn = net_generic(net, sunrpc_net_id); 1679 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc); 1680 if (cd->procfs == NULL) 1681 goto out_nomem; 1682 1683 p = proc_create_data("flush", S_IFREG | 0600, 1684 cd->procfs, &cache_flush_proc_ops, cd); 1685 if (p == NULL) 1686 goto out_nomem; 1687 1688 if (cd->cache_request || cd->cache_parse) { 1689 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs, 1690 &cache_channel_proc_ops, cd); 1691 if (p == NULL) 1692 goto out_nomem; 1693 } 1694 if (cd->cache_show) { 1695 p = proc_create_data("content", S_IFREG | 0400, cd->procfs, 1696 &content_proc_ops, cd); 1697 if (p == NULL) 1698 goto out_nomem; 1699 } 1700 return 0; 1701 out_nomem: 1702 remove_cache_proc_entries(cd); 1703 return -ENOMEM; 1704 } 1705 #else /* CONFIG_PROC_FS */ 1706 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1707 { 1708 return 0; 1709 } 1710 #endif 1711 1712 void __init cache_initialize(void) 1713 { 1714 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1715 } 1716 1717 int cache_register_net(struct cache_detail *cd, struct net *net) 1718 { 1719 int ret; 1720 1721 sunrpc_init_cache_detail(cd); 1722 ret = create_cache_proc_entries(cd, net); 1723 if (ret) 1724 sunrpc_destroy_cache_detail(cd); 1725 return ret; 1726 } 1727 EXPORT_SYMBOL_GPL(cache_register_net); 1728 1729 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1730 { 1731 remove_cache_proc_entries(cd); 1732 sunrpc_destroy_cache_detail(cd); 1733 } 1734 EXPORT_SYMBOL_GPL(cache_unregister_net); 1735 1736 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net) 1737 { 1738 struct cache_detail *cd; 1739 int i; 1740 1741 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1742 if (cd == NULL) 1743 return ERR_PTR(-ENOMEM); 1744 1745 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head), 1746 GFP_KERNEL); 1747 if (cd->hash_table == NULL) { 1748 kfree(cd); 1749 return ERR_PTR(-ENOMEM); 1750 } 1751 1752 for (i = 0; i < cd->hash_size; i++) 1753 INIT_HLIST_HEAD(&cd->hash_table[i]); 1754 cd->net = net; 1755 return cd; 1756 } 1757 EXPORT_SYMBOL_GPL(cache_create_net); 1758 1759 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1760 { 1761 kfree(cd->hash_table); 1762 kfree(cd); 1763 } 1764 EXPORT_SYMBOL_GPL(cache_destroy_net); 1765 1766 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1767 size_t count, loff_t *ppos) 1768 { 1769 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1770 1771 return cache_read(filp, buf, count, ppos, cd); 1772 } 1773 1774 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1775 size_t count, loff_t *ppos) 1776 { 1777 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1778 1779 return cache_write(filp, buf, count, ppos, cd); 1780 } 1781 1782 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait) 1783 { 1784 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1785 1786 return cache_poll(filp, wait, cd); 1787 } 1788 1789 static long cache_ioctl_pipefs(struct file *filp, 1790 unsigned int cmd, unsigned long arg) 1791 { 1792 struct inode *inode = file_inode(filp); 1793 struct cache_detail *cd = RPC_I(inode)->private; 1794 1795 return cache_ioctl(inode, filp, cmd, arg, cd); 1796 } 1797 1798 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1799 { 1800 struct cache_detail *cd = RPC_I(inode)->private; 1801 1802 return cache_open(inode, filp, cd); 1803 } 1804 1805 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1806 { 1807 struct cache_detail *cd = RPC_I(inode)->private; 1808 1809 return cache_release(inode, filp, cd); 1810 } 1811 1812 const struct file_operations cache_file_operations_pipefs = { 1813 .owner = THIS_MODULE, 1814 .read = cache_read_pipefs, 1815 .write = cache_write_pipefs, 1816 .poll = cache_poll_pipefs, 1817 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1818 .open = cache_open_pipefs, 1819 .release = cache_release_pipefs, 1820 }; 1821 1822 static int content_open_pipefs(struct inode *inode, struct file *filp) 1823 { 1824 struct cache_detail *cd = RPC_I(inode)->private; 1825 1826 return content_open(inode, filp, cd); 1827 } 1828 1829 static int content_release_pipefs(struct inode *inode, struct file *filp) 1830 { 1831 struct cache_detail *cd = RPC_I(inode)->private; 1832 1833 return content_release(inode, filp, cd); 1834 } 1835 1836 const struct file_operations content_file_operations_pipefs = { 1837 .open = content_open_pipefs, 1838 .read = seq_read, 1839 .llseek = seq_lseek, 1840 .release = content_release_pipefs, 1841 }; 1842 1843 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1844 { 1845 struct cache_detail *cd = RPC_I(inode)->private; 1846 1847 return open_flush(inode, filp, cd); 1848 } 1849 1850 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1851 { 1852 struct cache_detail *cd = RPC_I(inode)->private; 1853 1854 return release_flush(inode, filp, cd); 1855 } 1856 1857 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1858 size_t count, loff_t *ppos) 1859 { 1860 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1861 1862 return read_flush(filp, buf, count, ppos, cd); 1863 } 1864 1865 static ssize_t write_flush_pipefs(struct file *filp, 1866 const char __user *buf, 1867 size_t count, loff_t *ppos) 1868 { 1869 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1870 1871 return write_flush(filp, buf, count, ppos, cd); 1872 } 1873 1874 const struct file_operations cache_flush_operations_pipefs = { 1875 .open = open_flush_pipefs, 1876 .read = read_flush_pipefs, 1877 .write = write_flush_pipefs, 1878 .release = release_flush_pipefs, 1879 }; 1880 1881 int sunrpc_cache_register_pipefs(struct dentry *parent, 1882 const char *name, umode_t umode, 1883 struct cache_detail *cd) 1884 { 1885 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1886 if (IS_ERR(dir)) 1887 return PTR_ERR(dir); 1888 cd->pipefs = dir; 1889 return 0; 1890 } 1891 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1892 1893 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1894 { 1895 if (cd->pipefs) { 1896 rpc_remove_cache_dir(cd->pipefs); 1897 cd->pipefs = NULL; 1898 } 1899 } 1900 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1901 1902 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h) 1903 { 1904 spin_lock(&cd->hash_lock); 1905 if (!hlist_unhashed(&h->cache_list)){ 1906 sunrpc_begin_cache_remove_entry(h, cd); 1907 spin_unlock(&cd->hash_lock); 1908 sunrpc_end_cache_remove_entry(h, cd); 1909 } else 1910 spin_unlock(&cd->hash_lock); 1911 } 1912 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash); 1913