1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <asm/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <linux/pagemap.h> 31 #include <asm/ioctls.h> 32 #include <linux/sunrpc/types.h> 33 #include <linux/sunrpc/cache.h> 34 #include <linux/sunrpc/stats.h> 35 #include <linux/sunrpc/rpc_pipe_fs.h> 36 #include "netns.h" 37 38 #define RPCDBG_FACILITY RPCDBG_CACHE 39 40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 41 static void cache_revisit_request(struct cache_head *item); 42 43 static void cache_init(struct cache_head *h) 44 { 45 time_t now = seconds_since_boot(); 46 h->next = NULL; 47 h->flags = 0; 48 kref_init(&h->ref); 49 h->expiry_time = now + CACHE_NEW_EXPIRY; 50 h->last_refresh = now; 51 } 52 53 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h) 54 { 55 return (h->expiry_time < seconds_since_boot()) || 56 (detail->flush_time > h->last_refresh); 57 } 58 59 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 60 struct cache_head *key, int hash) 61 { 62 struct cache_head **head, **hp; 63 struct cache_head *new = NULL, *freeme = NULL; 64 65 head = &detail->hash_table[hash]; 66 67 read_lock(&detail->hash_lock); 68 69 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 70 struct cache_head *tmp = *hp; 71 if (detail->match(tmp, key)) { 72 if (cache_is_expired(detail, tmp)) 73 /* This entry is expired, we will discard it. */ 74 break; 75 cache_get(tmp); 76 read_unlock(&detail->hash_lock); 77 return tmp; 78 } 79 } 80 read_unlock(&detail->hash_lock); 81 /* Didn't find anything, insert an empty entry */ 82 83 new = detail->alloc(); 84 if (!new) 85 return NULL; 86 /* must fully initialise 'new', else 87 * we might get lose if we need to 88 * cache_put it soon. 89 */ 90 cache_init(new); 91 detail->init(new, key); 92 93 write_lock(&detail->hash_lock); 94 95 /* check if entry appeared while we slept */ 96 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 97 struct cache_head *tmp = *hp; 98 if (detail->match(tmp, key)) { 99 if (cache_is_expired(detail, tmp)) { 100 *hp = tmp->next; 101 tmp->next = NULL; 102 detail->entries --; 103 freeme = tmp; 104 break; 105 } 106 cache_get(tmp); 107 write_unlock(&detail->hash_lock); 108 cache_put(new, detail); 109 return tmp; 110 } 111 } 112 new->next = *head; 113 *head = new; 114 detail->entries++; 115 cache_get(new); 116 write_unlock(&detail->hash_lock); 117 118 if (freeme) 119 cache_put(freeme, detail); 120 return new; 121 } 122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); 123 124 125 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 126 127 static void cache_fresh_locked(struct cache_head *head, time_t expiry) 128 { 129 head->expiry_time = expiry; 130 head->last_refresh = seconds_since_boot(); 131 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 132 set_bit(CACHE_VALID, &head->flags); 133 } 134 135 static void cache_fresh_unlocked(struct cache_head *head, 136 struct cache_detail *detail) 137 { 138 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 139 cache_revisit_request(head); 140 cache_dequeue(detail, head); 141 } 142 } 143 144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 145 struct cache_head *new, struct cache_head *old, int hash) 146 { 147 /* The 'old' entry is to be replaced by 'new'. 148 * If 'old' is not VALID, we update it directly, 149 * otherwise we need to replace it 150 */ 151 struct cache_head **head; 152 struct cache_head *tmp; 153 154 if (!test_bit(CACHE_VALID, &old->flags)) { 155 write_lock(&detail->hash_lock); 156 if (!test_bit(CACHE_VALID, &old->flags)) { 157 if (test_bit(CACHE_NEGATIVE, &new->flags)) 158 set_bit(CACHE_NEGATIVE, &old->flags); 159 else 160 detail->update(old, new); 161 cache_fresh_locked(old, new->expiry_time); 162 write_unlock(&detail->hash_lock); 163 cache_fresh_unlocked(old, detail); 164 return old; 165 } 166 write_unlock(&detail->hash_lock); 167 } 168 /* We need to insert a new entry */ 169 tmp = detail->alloc(); 170 if (!tmp) { 171 cache_put(old, detail); 172 return NULL; 173 } 174 cache_init(tmp); 175 detail->init(tmp, old); 176 head = &detail->hash_table[hash]; 177 178 write_lock(&detail->hash_lock); 179 if (test_bit(CACHE_NEGATIVE, &new->flags)) 180 set_bit(CACHE_NEGATIVE, &tmp->flags); 181 else 182 detail->update(tmp, new); 183 tmp->next = *head; 184 *head = tmp; 185 detail->entries++; 186 cache_get(tmp); 187 cache_fresh_locked(tmp, new->expiry_time); 188 cache_fresh_locked(old, 0); 189 write_unlock(&detail->hash_lock); 190 cache_fresh_unlocked(tmp, detail); 191 cache_fresh_unlocked(old, detail); 192 cache_put(old, detail); 193 return tmp; 194 } 195 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 196 197 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 198 { 199 if (!cd->cache_upcall) 200 return -EINVAL; 201 return cd->cache_upcall(cd, h); 202 } 203 204 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h) 205 { 206 if (!test_bit(CACHE_VALID, &h->flags)) 207 return -EAGAIN; 208 else { 209 /* entry is valid */ 210 if (test_bit(CACHE_NEGATIVE, &h->flags)) 211 return -ENOENT; 212 else { 213 /* 214 * In combination with write barrier in 215 * sunrpc_cache_update, ensures that anyone 216 * using the cache entry after this sees the 217 * updated contents: 218 */ 219 smp_rmb(); 220 return 0; 221 } 222 } 223 } 224 225 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 226 { 227 int rv; 228 229 write_lock(&detail->hash_lock); 230 rv = cache_is_valid(detail, h); 231 if (rv != -EAGAIN) { 232 write_unlock(&detail->hash_lock); 233 return rv; 234 } 235 set_bit(CACHE_NEGATIVE, &h->flags); 236 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY); 237 write_unlock(&detail->hash_lock); 238 cache_fresh_unlocked(h, detail); 239 return -ENOENT; 240 } 241 242 /* 243 * This is the generic cache management routine for all 244 * the authentication caches. 245 * It checks the currency of a cache item and will (later) 246 * initiate an upcall to fill it if needed. 247 * 248 * 249 * Returns 0 if the cache_head can be used, or cache_puts it and returns 250 * -EAGAIN if upcall is pending and request has been queued 251 * -ETIMEDOUT if upcall failed or request could not be queue or 252 * upcall completed but item is still invalid (implying that 253 * the cache item has been replaced with a newer one). 254 * -ENOENT if cache entry was negative 255 */ 256 int cache_check(struct cache_detail *detail, 257 struct cache_head *h, struct cache_req *rqstp) 258 { 259 int rv; 260 long refresh_age, age; 261 262 /* First decide return status as best we can */ 263 rv = cache_is_valid(detail, h); 264 265 /* now see if we want to start an upcall */ 266 refresh_age = (h->expiry_time - h->last_refresh); 267 age = seconds_since_boot() - h->last_refresh; 268 269 if (rqstp == NULL) { 270 if (rv == -EAGAIN) 271 rv = -ENOENT; 272 } else if (rv == -EAGAIN || age > refresh_age/2) { 273 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 274 refresh_age, age); 275 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 276 switch (cache_make_upcall(detail, h)) { 277 case -EINVAL: 278 clear_bit(CACHE_PENDING, &h->flags); 279 cache_revisit_request(h); 280 rv = try_to_negate_entry(detail, h); 281 break; 282 case -EAGAIN: 283 clear_bit(CACHE_PENDING, &h->flags); 284 cache_revisit_request(h); 285 break; 286 } 287 } 288 } 289 290 if (rv == -EAGAIN) { 291 if (!cache_defer_req(rqstp, h)) { 292 /* 293 * Request was not deferred; handle it as best 294 * we can ourselves: 295 */ 296 rv = cache_is_valid(detail, h); 297 if (rv == -EAGAIN) 298 rv = -ETIMEDOUT; 299 } 300 } 301 if (rv) 302 cache_put(h, detail); 303 return rv; 304 } 305 EXPORT_SYMBOL_GPL(cache_check); 306 307 /* 308 * caches need to be periodically cleaned. 309 * For this we maintain a list of cache_detail and 310 * a current pointer into that list and into the table 311 * for that entry. 312 * 313 * Each time clean_cache is called it finds the next non-empty entry 314 * in the current table and walks the list in that entry 315 * looking for entries that can be removed. 316 * 317 * An entry gets removed if: 318 * - The expiry is before current time 319 * - The last_refresh time is before the flush_time for that cache 320 * 321 * later we might drop old entries with non-NEVER expiry if that table 322 * is getting 'full' for some definition of 'full' 323 * 324 * The question of "how often to scan a table" is an interesting one 325 * and is answered in part by the use of the "nextcheck" field in the 326 * cache_detail. 327 * When a scan of a table begins, the nextcheck field is set to a time 328 * that is well into the future. 329 * While scanning, if an expiry time is found that is earlier than the 330 * current nextcheck time, nextcheck is set to that expiry time. 331 * If the flush_time is ever set to a time earlier than the nextcheck 332 * time, the nextcheck time is then set to that flush_time. 333 * 334 * A table is then only scanned if the current time is at least 335 * the nextcheck time. 336 * 337 */ 338 339 static LIST_HEAD(cache_list); 340 static DEFINE_SPINLOCK(cache_list_lock); 341 static struct cache_detail *current_detail; 342 static int current_index; 343 344 static void do_cache_clean(struct work_struct *work); 345 static struct delayed_work cache_cleaner; 346 347 static void sunrpc_init_cache_detail(struct cache_detail *cd) 348 { 349 rwlock_init(&cd->hash_lock); 350 INIT_LIST_HEAD(&cd->queue); 351 spin_lock(&cache_list_lock); 352 cd->nextcheck = 0; 353 cd->entries = 0; 354 atomic_set(&cd->readers, 0); 355 cd->last_close = 0; 356 cd->last_warn = -1; 357 list_add(&cd->others, &cache_list); 358 spin_unlock(&cache_list_lock); 359 360 /* start the cleaning process */ 361 schedule_delayed_work(&cache_cleaner, 0); 362 } 363 364 static void sunrpc_destroy_cache_detail(struct cache_detail *cd) 365 { 366 cache_purge(cd); 367 spin_lock(&cache_list_lock); 368 write_lock(&cd->hash_lock); 369 if (cd->entries || atomic_read(&cd->inuse)) { 370 write_unlock(&cd->hash_lock); 371 spin_unlock(&cache_list_lock); 372 goto out; 373 } 374 if (current_detail == cd) 375 current_detail = NULL; 376 list_del_init(&cd->others); 377 write_unlock(&cd->hash_lock); 378 spin_unlock(&cache_list_lock); 379 if (list_empty(&cache_list)) { 380 /* module must be being unloaded so its safe to kill the worker */ 381 cancel_delayed_work_sync(&cache_cleaner); 382 } 383 return; 384 out: 385 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name); 386 } 387 388 /* clean cache tries to find something to clean 389 * and cleans it. 390 * It returns 1 if it cleaned something, 391 * 0 if it didn't find anything this time 392 * -1 if it fell off the end of the list. 393 */ 394 static int cache_clean(void) 395 { 396 int rv = 0; 397 struct list_head *next; 398 399 spin_lock(&cache_list_lock); 400 401 /* find a suitable table if we don't already have one */ 402 while (current_detail == NULL || 403 current_index >= current_detail->hash_size) { 404 if (current_detail) 405 next = current_detail->others.next; 406 else 407 next = cache_list.next; 408 if (next == &cache_list) { 409 current_detail = NULL; 410 spin_unlock(&cache_list_lock); 411 return -1; 412 } 413 current_detail = list_entry(next, struct cache_detail, others); 414 if (current_detail->nextcheck > seconds_since_boot()) 415 current_index = current_detail->hash_size; 416 else { 417 current_index = 0; 418 current_detail->nextcheck = seconds_since_boot()+30*60; 419 } 420 } 421 422 /* find a non-empty bucket in the table */ 423 while (current_detail && 424 current_index < current_detail->hash_size && 425 current_detail->hash_table[current_index] == NULL) 426 current_index++; 427 428 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 429 430 if (current_detail && current_index < current_detail->hash_size) { 431 struct cache_head *ch, **cp; 432 struct cache_detail *d; 433 434 write_lock(¤t_detail->hash_lock); 435 436 /* Ok, now to clean this strand */ 437 438 cp = & current_detail->hash_table[current_index]; 439 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) { 440 if (current_detail->nextcheck > ch->expiry_time) 441 current_detail->nextcheck = ch->expiry_time+1; 442 if (!cache_is_expired(current_detail, ch)) 443 continue; 444 445 *cp = ch->next; 446 ch->next = NULL; 447 current_detail->entries--; 448 rv = 1; 449 break; 450 } 451 452 write_unlock(¤t_detail->hash_lock); 453 d = current_detail; 454 if (!ch) 455 current_index ++; 456 spin_unlock(&cache_list_lock); 457 if (ch) { 458 if (test_and_clear_bit(CACHE_PENDING, &ch->flags)) 459 cache_dequeue(current_detail, ch); 460 cache_revisit_request(ch); 461 cache_put(ch, d); 462 } 463 } else 464 spin_unlock(&cache_list_lock); 465 466 return rv; 467 } 468 469 /* 470 * We want to regularly clean the cache, so we need to schedule some work ... 471 */ 472 static void do_cache_clean(struct work_struct *work) 473 { 474 int delay = 5; 475 if (cache_clean() == -1) 476 delay = round_jiffies_relative(30*HZ); 477 478 if (list_empty(&cache_list)) 479 delay = 0; 480 481 if (delay) 482 schedule_delayed_work(&cache_cleaner, delay); 483 } 484 485 486 /* 487 * Clean all caches promptly. This just calls cache_clean 488 * repeatedly until we are sure that every cache has had a chance to 489 * be fully cleaned 490 */ 491 void cache_flush(void) 492 { 493 while (cache_clean() != -1) 494 cond_resched(); 495 while (cache_clean() != -1) 496 cond_resched(); 497 } 498 EXPORT_SYMBOL_GPL(cache_flush); 499 500 void cache_purge(struct cache_detail *detail) 501 { 502 detail->flush_time = LONG_MAX; 503 detail->nextcheck = seconds_since_boot(); 504 cache_flush(); 505 detail->flush_time = 1; 506 } 507 EXPORT_SYMBOL_GPL(cache_purge); 508 509 510 /* 511 * Deferral and Revisiting of Requests. 512 * 513 * If a cache lookup finds a pending entry, we 514 * need to defer the request and revisit it later. 515 * All deferred requests are stored in a hash table, 516 * indexed by "struct cache_head *". 517 * As it may be wasteful to store a whole request 518 * structure, we allow the request to provide a 519 * deferred form, which must contain a 520 * 'struct cache_deferred_req' 521 * This cache_deferred_req contains a method to allow 522 * it to be revisited when cache info is available 523 */ 524 525 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 526 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 527 528 #define DFR_MAX 300 /* ??? */ 529 530 static DEFINE_SPINLOCK(cache_defer_lock); 531 static LIST_HEAD(cache_defer_list); 532 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 533 static int cache_defer_cnt; 534 535 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 536 { 537 hlist_del_init(&dreq->hash); 538 if (!list_empty(&dreq->recent)) { 539 list_del_init(&dreq->recent); 540 cache_defer_cnt--; 541 } 542 } 543 544 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 545 { 546 int hash = DFR_HASH(item); 547 548 INIT_LIST_HEAD(&dreq->recent); 549 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 550 } 551 552 static void setup_deferral(struct cache_deferred_req *dreq, 553 struct cache_head *item, 554 int count_me) 555 { 556 557 dreq->item = item; 558 559 spin_lock(&cache_defer_lock); 560 561 __hash_deferred_req(dreq, item); 562 563 if (count_me) { 564 cache_defer_cnt++; 565 list_add(&dreq->recent, &cache_defer_list); 566 } 567 568 spin_unlock(&cache_defer_lock); 569 570 } 571 572 struct thread_deferred_req { 573 struct cache_deferred_req handle; 574 struct completion completion; 575 }; 576 577 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 578 { 579 struct thread_deferred_req *dr = 580 container_of(dreq, struct thread_deferred_req, handle); 581 complete(&dr->completion); 582 } 583 584 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 585 { 586 struct thread_deferred_req sleeper; 587 struct cache_deferred_req *dreq = &sleeper.handle; 588 589 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 590 dreq->revisit = cache_restart_thread; 591 592 setup_deferral(dreq, item, 0); 593 594 if (!test_bit(CACHE_PENDING, &item->flags) || 595 wait_for_completion_interruptible_timeout( 596 &sleeper.completion, req->thread_wait) <= 0) { 597 /* The completion wasn't completed, so we need 598 * to clean up 599 */ 600 spin_lock(&cache_defer_lock); 601 if (!hlist_unhashed(&sleeper.handle.hash)) { 602 __unhash_deferred_req(&sleeper.handle); 603 spin_unlock(&cache_defer_lock); 604 } else { 605 /* cache_revisit_request already removed 606 * this from the hash table, but hasn't 607 * called ->revisit yet. It will very soon 608 * and we need to wait for it. 609 */ 610 spin_unlock(&cache_defer_lock); 611 wait_for_completion(&sleeper.completion); 612 } 613 } 614 } 615 616 static void cache_limit_defers(void) 617 { 618 /* Make sure we haven't exceed the limit of allowed deferred 619 * requests. 620 */ 621 struct cache_deferred_req *discard = NULL; 622 623 if (cache_defer_cnt <= DFR_MAX) 624 return; 625 626 spin_lock(&cache_defer_lock); 627 628 /* Consider removing either the first or the last */ 629 if (cache_defer_cnt > DFR_MAX) { 630 if (net_random() & 1) 631 discard = list_entry(cache_defer_list.next, 632 struct cache_deferred_req, recent); 633 else 634 discard = list_entry(cache_defer_list.prev, 635 struct cache_deferred_req, recent); 636 __unhash_deferred_req(discard); 637 } 638 spin_unlock(&cache_defer_lock); 639 if (discard) 640 discard->revisit(discard, 1); 641 } 642 643 /* Return true if and only if a deferred request is queued. */ 644 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 645 { 646 struct cache_deferred_req *dreq; 647 648 if (req->thread_wait) { 649 cache_wait_req(req, item); 650 if (!test_bit(CACHE_PENDING, &item->flags)) 651 return false; 652 } 653 dreq = req->defer(req); 654 if (dreq == NULL) 655 return false; 656 setup_deferral(dreq, item, 1); 657 if (!test_bit(CACHE_PENDING, &item->flags)) 658 /* Bit could have been cleared before we managed to 659 * set up the deferral, so need to revisit just in case 660 */ 661 cache_revisit_request(item); 662 663 cache_limit_defers(); 664 return true; 665 } 666 667 static void cache_revisit_request(struct cache_head *item) 668 { 669 struct cache_deferred_req *dreq; 670 struct list_head pending; 671 struct hlist_node *lp, *tmp; 672 int hash = DFR_HASH(item); 673 674 INIT_LIST_HEAD(&pending); 675 spin_lock(&cache_defer_lock); 676 677 hlist_for_each_entry_safe(dreq, lp, tmp, &cache_defer_hash[hash], hash) 678 if (dreq->item == item) { 679 __unhash_deferred_req(dreq); 680 list_add(&dreq->recent, &pending); 681 } 682 683 spin_unlock(&cache_defer_lock); 684 685 while (!list_empty(&pending)) { 686 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 687 list_del_init(&dreq->recent); 688 dreq->revisit(dreq, 0); 689 } 690 } 691 692 void cache_clean_deferred(void *owner) 693 { 694 struct cache_deferred_req *dreq, *tmp; 695 struct list_head pending; 696 697 698 INIT_LIST_HEAD(&pending); 699 spin_lock(&cache_defer_lock); 700 701 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 702 if (dreq->owner == owner) { 703 __unhash_deferred_req(dreq); 704 list_add(&dreq->recent, &pending); 705 } 706 } 707 spin_unlock(&cache_defer_lock); 708 709 while (!list_empty(&pending)) { 710 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 711 list_del_init(&dreq->recent); 712 dreq->revisit(dreq, 1); 713 } 714 } 715 716 /* 717 * communicate with user-space 718 * 719 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 720 * On read, you get a full request, or block. 721 * On write, an update request is processed. 722 * Poll works if anything to read, and always allows write. 723 * 724 * Implemented by linked list of requests. Each open file has 725 * a ->private that also exists in this list. New requests are added 726 * to the end and may wakeup and preceding readers. 727 * New readers are added to the head. If, on read, an item is found with 728 * CACHE_UPCALLING clear, we free it from the list. 729 * 730 */ 731 732 static DEFINE_SPINLOCK(queue_lock); 733 static DEFINE_MUTEX(queue_io_mutex); 734 735 struct cache_queue { 736 struct list_head list; 737 int reader; /* if 0, then request */ 738 }; 739 struct cache_request { 740 struct cache_queue q; 741 struct cache_head *item; 742 char * buf; 743 int len; 744 int readers; 745 }; 746 struct cache_reader { 747 struct cache_queue q; 748 int offset; /* if non-0, we have a refcnt on next request */ 749 }; 750 751 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 752 loff_t *ppos, struct cache_detail *cd) 753 { 754 struct cache_reader *rp = filp->private_data; 755 struct cache_request *rq; 756 struct inode *inode = filp->f_path.dentry->d_inode; 757 int err; 758 759 if (count == 0) 760 return 0; 761 762 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent 763 * readers on this file */ 764 again: 765 spin_lock(&queue_lock); 766 /* need to find next request */ 767 while (rp->q.list.next != &cd->queue && 768 list_entry(rp->q.list.next, struct cache_queue, list) 769 ->reader) { 770 struct list_head *next = rp->q.list.next; 771 list_move(&rp->q.list, next); 772 } 773 if (rp->q.list.next == &cd->queue) { 774 spin_unlock(&queue_lock); 775 mutex_unlock(&inode->i_mutex); 776 BUG_ON(rp->offset); 777 return 0; 778 } 779 rq = container_of(rp->q.list.next, struct cache_request, q.list); 780 BUG_ON(rq->q.reader); 781 if (rp->offset == 0) 782 rq->readers++; 783 spin_unlock(&queue_lock); 784 785 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 786 err = -EAGAIN; 787 spin_lock(&queue_lock); 788 list_move(&rp->q.list, &rq->q.list); 789 spin_unlock(&queue_lock); 790 } else { 791 if (rp->offset + count > rq->len) 792 count = rq->len - rp->offset; 793 err = -EFAULT; 794 if (copy_to_user(buf, rq->buf + rp->offset, count)) 795 goto out; 796 rp->offset += count; 797 if (rp->offset >= rq->len) { 798 rp->offset = 0; 799 spin_lock(&queue_lock); 800 list_move(&rp->q.list, &rq->q.list); 801 spin_unlock(&queue_lock); 802 } 803 err = 0; 804 } 805 out: 806 if (rp->offset == 0) { 807 /* need to release rq */ 808 spin_lock(&queue_lock); 809 rq->readers--; 810 if (rq->readers == 0 && 811 !test_bit(CACHE_PENDING, &rq->item->flags)) { 812 list_del(&rq->q.list); 813 spin_unlock(&queue_lock); 814 cache_put(rq->item, cd); 815 kfree(rq->buf); 816 kfree(rq); 817 } else 818 spin_unlock(&queue_lock); 819 } 820 if (err == -EAGAIN) 821 goto again; 822 mutex_unlock(&inode->i_mutex); 823 return err ? err : count; 824 } 825 826 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 827 size_t count, struct cache_detail *cd) 828 { 829 ssize_t ret; 830 831 if (copy_from_user(kaddr, buf, count)) 832 return -EFAULT; 833 kaddr[count] = '\0'; 834 ret = cd->cache_parse(cd, kaddr, count); 835 if (!ret) 836 ret = count; 837 return ret; 838 } 839 840 static ssize_t cache_slow_downcall(const char __user *buf, 841 size_t count, struct cache_detail *cd) 842 { 843 static char write_buf[8192]; /* protected by queue_io_mutex */ 844 ssize_t ret = -EINVAL; 845 846 if (count >= sizeof(write_buf)) 847 goto out; 848 mutex_lock(&queue_io_mutex); 849 ret = cache_do_downcall(write_buf, buf, count, cd); 850 mutex_unlock(&queue_io_mutex); 851 out: 852 return ret; 853 } 854 855 static ssize_t cache_downcall(struct address_space *mapping, 856 const char __user *buf, 857 size_t count, struct cache_detail *cd) 858 { 859 struct page *page; 860 char *kaddr; 861 ssize_t ret = -ENOMEM; 862 863 if (count >= PAGE_CACHE_SIZE) 864 goto out_slow; 865 866 page = find_or_create_page(mapping, 0, GFP_KERNEL); 867 if (!page) 868 goto out_slow; 869 870 kaddr = kmap(page); 871 ret = cache_do_downcall(kaddr, buf, count, cd); 872 kunmap(page); 873 unlock_page(page); 874 page_cache_release(page); 875 return ret; 876 out_slow: 877 return cache_slow_downcall(buf, count, cd); 878 } 879 880 static ssize_t cache_write(struct file *filp, const char __user *buf, 881 size_t count, loff_t *ppos, 882 struct cache_detail *cd) 883 { 884 struct address_space *mapping = filp->f_mapping; 885 struct inode *inode = filp->f_path.dentry->d_inode; 886 ssize_t ret = -EINVAL; 887 888 if (!cd->cache_parse) 889 goto out; 890 891 mutex_lock(&inode->i_mutex); 892 ret = cache_downcall(mapping, buf, count, cd); 893 mutex_unlock(&inode->i_mutex); 894 out: 895 return ret; 896 } 897 898 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 899 900 static unsigned int cache_poll(struct file *filp, poll_table *wait, 901 struct cache_detail *cd) 902 { 903 unsigned int mask; 904 struct cache_reader *rp = filp->private_data; 905 struct cache_queue *cq; 906 907 poll_wait(filp, &queue_wait, wait); 908 909 /* alway allow write */ 910 mask = POLL_OUT | POLLWRNORM; 911 912 if (!rp) 913 return mask; 914 915 spin_lock(&queue_lock); 916 917 for (cq= &rp->q; &cq->list != &cd->queue; 918 cq = list_entry(cq->list.next, struct cache_queue, list)) 919 if (!cq->reader) { 920 mask |= POLLIN | POLLRDNORM; 921 break; 922 } 923 spin_unlock(&queue_lock); 924 return mask; 925 } 926 927 static int cache_ioctl(struct inode *ino, struct file *filp, 928 unsigned int cmd, unsigned long arg, 929 struct cache_detail *cd) 930 { 931 int len = 0; 932 struct cache_reader *rp = filp->private_data; 933 struct cache_queue *cq; 934 935 if (cmd != FIONREAD || !rp) 936 return -EINVAL; 937 938 spin_lock(&queue_lock); 939 940 /* only find the length remaining in current request, 941 * or the length of the next request 942 */ 943 for (cq= &rp->q; &cq->list != &cd->queue; 944 cq = list_entry(cq->list.next, struct cache_queue, list)) 945 if (!cq->reader) { 946 struct cache_request *cr = 947 container_of(cq, struct cache_request, q); 948 len = cr->len - rp->offset; 949 break; 950 } 951 spin_unlock(&queue_lock); 952 953 return put_user(len, (int __user *)arg); 954 } 955 956 static int cache_open(struct inode *inode, struct file *filp, 957 struct cache_detail *cd) 958 { 959 struct cache_reader *rp = NULL; 960 961 if (!cd || !try_module_get(cd->owner)) 962 return -EACCES; 963 nonseekable_open(inode, filp); 964 if (filp->f_mode & FMODE_READ) { 965 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 966 if (!rp) 967 return -ENOMEM; 968 rp->offset = 0; 969 rp->q.reader = 1; 970 atomic_inc(&cd->readers); 971 spin_lock(&queue_lock); 972 list_add(&rp->q.list, &cd->queue); 973 spin_unlock(&queue_lock); 974 } 975 filp->private_data = rp; 976 return 0; 977 } 978 979 static int cache_release(struct inode *inode, struct file *filp, 980 struct cache_detail *cd) 981 { 982 struct cache_reader *rp = filp->private_data; 983 984 if (rp) { 985 spin_lock(&queue_lock); 986 if (rp->offset) { 987 struct cache_queue *cq; 988 for (cq= &rp->q; &cq->list != &cd->queue; 989 cq = list_entry(cq->list.next, struct cache_queue, list)) 990 if (!cq->reader) { 991 container_of(cq, struct cache_request, q) 992 ->readers--; 993 break; 994 } 995 rp->offset = 0; 996 } 997 list_del(&rp->q.list); 998 spin_unlock(&queue_lock); 999 1000 filp->private_data = NULL; 1001 kfree(rp); 1002 1003 cd->last_close = seconds_since_boot(); 1004 atomic_dec(&cd->readers); 1005 } 1006 module_put(cd->owner); 1007 return 0; 1008 } 1009 1010 1011 1012 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1013 { 1014 struct cache_queue *cq; 1015 spin_lock(&queue_lock); 1016 list_for_each_entry(cq, &detail->queue, list) 1017 if (!cq->reader) { 1018 struct cache_request *cr = container_of(cq, struct cache_request, q); 1019 if (cr->item != ch) 1020 continue; 1021 if (cr->readers != 0) 1022 continue; 1023 list_del(&cr->q.list); 1024 spin_unlock(&queue_lock); 1025 cache_put(cr->item, detail); 1026 kfree(cr->buf); 1027 kfree(cr); 1028 return; 1029 } 1030 spin_unlock(&queue_lock); 1031 } 1032 1033 /* 1034 * Support routines for text-based upcalls. 1035 * Fields are separated by spaces. 1036 * Fields are either mangled to quote space tab newline slosh with slosh 1037 * or a hexified with a leading \x 1038 * Record is terminated with newline. 1039 * 1040 */ 1041 1042 void qword_add(char **bpp, int *lp, char *str) 1043 { 1044 char *bp = *bpp; 1045 int len = *lp; 1046 char c; 1047 1048 if (len < 0) return; 1049 1050 while ((c=*str++) && len) 1051 switch(c) { 1052 case ' ': 1053 case '\t': 1054 case '\n': 1055 case '\\': 1056 if (len >= 4) { 1057 *bp++ = '\\'; 1058 *bp++ = '0' + ((c & 0300)>>6); 1059 *bp++ = '0' + ((c & 0070)>>3); 1060 *bp++ = '0' + ((c & 0007)>>0); 1061 } 1062 len -= 4; 1063 break; 1064 default: 1065 *bp++ = c; 1066 len--; 1067 } 1068 if (c || len <1) len = -1; 1069 else { 1070 *bp++ = ' '; 1071 len--; 1072 } 1073 *bpp = bp; 1074 *lp = len; 1075 } 1076 EXPORT_SYMBOL_GPL(qword_add); 1077 1078 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1079 { 1080 char *bp = *bpp; 1081 int len = *lp; 1082 1083 if (len < 0) return; 1084 1085 if (len > 2) { 1086 *bp++ = '\\'; 1087 *bp++ = 'x'; 1088 len -= 2; 1089 while (blen && len >= 2) { 1090 unsigned char c = *buf++; 1091 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1); 1092 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1); 1093 len -= 2; 1094 blen--; 1095 } 1096 } 1097 if (blen || len<1) len = -1; 1098 else { 1099 *bp++ = ' '; 1100 len--; 1101 } 1102 *bpp = bp; 1103 *lp = len; 1104 } 1105 EXPORT_SYMBOL_GPL(qword_addhex); 1106 1107 static void warn_no_listener(struct cache_detail *detail) 1108 { 1109 if (detail->last_warn != detail->last_close) { 1110 detail->last_warn = detail->last_close; 1111 if (detail->warn_no_listener) 1112 detail->warn_no_listener(detail, detail->last_close != 0); 1113 } 1114 } 1115 1116 static bool cache_listeners_exist(struct cache_detail *detail) 1117 { 1118 if (atomic_read(&detail->readers)) 1119 return true; 1120 if (detail->last_close == 0) 1121 /* This cache was never opened */ 1122 return false; 1123 if (detail->last_close < seconds_since_boot() - 30) 1124 /* 1125 * We allow for the possibility that someone might 1126 * restart a userspace daemon without restarting the 1127 * server; but after 30 seconds, we give up. 1128 */ 1129 return false; 1130 return true; 1131 } 1132 1133 /* 1134 * register an upcall request to user-space and queue it up for read() by the 1135 * upcall daemon. 1136 * 1137 * Each request is at most one page long. 1138 */ 1139 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h, 1140 void (*cache_request)(struct cache_detail *, 1141 struct cache_head *, 1142 char **, 1143 int *)) 1144 { 1145 1146 char *buf; 1147 struct cache_request *crq; 1148 char *bp; 1149 int len; 1150 1151 if (!cache_listeners_exist(detail)) { 1152 warn_no_listener(detail); 1153 return -EINVAL; 1154 } 1155 1156 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1157 if (!buf) 1158 return -EAGAIN; 1159 1160 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1161 if (!crq) { 1162 kfree(buf); 1163 return -EAGAIN; 1164 } 1165 1166 bp = buf; len = PAGE_SIZE; 1167 1168 cache_request(detail, h, &bp, &len); 1169 1170 if (len < 0) { 1171 kfree(buf); 1172 kfree(crq); 1173 return -EAGAIN; 1174 } 1175 crq->q.reader = 0; 1176 crq->item = cache_get(h); 1177 crq->buf = buf; 1178 crq->len = PAGE_SIZE - len; 1179 crq->readers = 0; 1180 spin_lock(&queue_lock); 1181 list_add_tail(&crq->q.list, &detail->queue); 1182 spin_unlock(&queue_lock); 1183 wake_up(&queue_wait); 1184 return 0; 1185 } 1186 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1187 1188 /* 1189 * parse a message from user-space and pass it 1190 * to an appropriate cache 1191 * Messages are, like requests, separated into fields by 1192 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1193 * 1194 * Message is 1195 * reply cachename expiry key ... content.... 1196 * 1197 * key and content are both parsed by cache 1198 */ 1199 1200 #define isodigit(c) (isdigit(c) && c <= '7') 1201 int qword_get(char **bpp, char *dest, int bufsize) 1202 { 1203 /* return bytes copied, or -1 on error */ 1204 char *bp = *bpp; 1205 int len = 0; 1206 1207 while (*bp == ' ') bp++; 1208 1209 if (bp[0] == '\\' && bp[1] == 'x') { 1210 /* HEX STRING */ 1211 bp += 2; 1212 while (len < bufsize) { 1213 int h, l; 1214 1215 h = hex_to_bin(bp[0]); 1216 if (h < 0) 1217 break; 1218 1219 l = hex_to_bin(bp[1]); 1220 if (l < 0) 1221 break; 1222 1223 *dest++ = (h << 4) | l; 1224 bp += 2; 1225 len++; 1226 } 1227 } else { 1228 /* text with \nnn octal quoting */ 1229 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1230 if (*bp == '\\' && 1231 isodigit(bp[1]) && (bp[1] <= '3') && 1232 isodigit(bp[2]) && 1233 isodigit(bp[3])) { 1234 int byte = (*++bp -'0'); 1235 bp++; 1236 byte = (byte << 3) | (*bp++ - '0'); 1237 byte = (byte << 3) | (*bp++ - '0'); 1238 *dest++ = byte; 1239 len++; 1240 } else { 1241 *dest++ = *bp++; 1242 len++; 1243 } 1244 } 1245 } 1246 1247 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1248 return -1; 1249 while (*bp == ' ') bp++; 1250 *bpp = bp; 1251 *dest = '\0'; 1252 return len; 1253 } 1254 EXPORT_SYMBOL_GPL(qword_get); 1255 1256 1257 /* 1258 * support /proc/sunrpc/cache/$CACHENAME/content 1259 * as a seqfile. 1260 * We call ->cache_show passing NULL for the item to 1261 * get a header, then pass each real item in the cache 1262 */ 1263 1264 struct handle { 1265 struct cache_detail *cd; 1266 }; 1267 1268 static void *c_start(struct seq_file *m, loff_t *pos) 1269 __acquires(cd->hash_lock) 1270 { 1271 loff_t n = *pos; 1272 unsigned hash, entry; 1273 struct cache_head *ch; 1274 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1275 1276 1277 read_lock(&cd->hash_lock); 1278 if (!n--) 1279 return SEQ_START_TOKEN; 1280 hash = n >> 32; 1281 entry = n & ((1LL<<32) - 1); 1282 1283 for (ch=cd->hash_table[hash]; ch; ch=ch->next) 1284 if (!entry--) 1285 return ch; 1286 n &= ~((1LL<<32) - 1); 1287 do { 1288 hash++; 1289 n += 1LL<<32; 1290 } while(hash < cd->hash_size && 1291 cd->hash_table[hash]==NULL); 1292 if (hash >= cd->hash_size) 1293 return NULL; 1294 *pos = n+1; 1295 return cd->hash_table[hash]; 1296 } 1297 1298 static void *c_next(struct seq_file *m, void *p, loff_t *pos) 1299 { 1300 struct cache_head *ch = p; 1301 int hash = (*pos >> 32); 1302 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1303 1304 if (p == SEQ_START_TOKEN) 1305 hash = 0; 1306 else if (ch->next == NULL) { 1307 hash++; 1308 *pos += 1LL<<32; 1309 } else { 1310 ++*pos; 1311 return ch->next; 1312 } 1313 *pos &= ~((1LL<<32) - 1); 1314 while (hash < cd->hash_size && 1315 cd->hash_table[hash] == NULL) { 1316 hash++; 1317 *pos += 1LL<<32; 1318 } 1319 if (hash >= cd->hash_size) 1320 return NULL; 1321 ++*pos; 1322 return cd->hash_table[hash]; 1323 } 1324 1325 static void c_stop(struct seq_file *m, void *p) 1326 __releases(cd->hash_lock) 1327 { 1328 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1329 read_unlock(&cd->hash_lock); 1330 } 1331 1332 static int c_show(struct seq_file *m, void *p) 1333 { 1334 struct cache_head *cp = p; 1335 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1336 1337 if (p == SEQ_START_TOKEN) 1338 return cd->cache_show(m, cd, NULL); 1339 1340 ifdebug(CACHE) 1341 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1342 convert_to_wallclock(cp->expiry_time), 1343 atomic_read(&cp->ref.refcount), cp->flags); 1344 cache_get(cp); 1345 if (cache_check(cd, cp, NULL)) 1346 /* cache_check does a cache_put on failure */ 1347 seq_printf(m, "# "); 1348 else 1349 cache_put(cp, cd); 1350 1351 return cd->cache_show(m, cd, cp); 1352 } 1353 1354 static const struct seq_operations cache_content_op = { 1355 .start = c_start, 1356 .next = c_next, 1357 .stop = c_stop, 1358 .show = c_show, 1359 }; 1360 1361 static int content_open(struct inode *inode, struct file *file, 1362 struct cache_detail *cd) 1363 { 1364 struct handle *han; 1365 1366 if (!cd || !try_module_get(cd->owner)) 1367 return -EACCES; 1368 han = __seq_open_private(file, &cache_content_op, sizeof(*han)); 1369 if (han == NULL) { 1370 module_put(cd->owner); 1371 return -ENOMEM; 1372 } 1373 1374 han->cd = cd; 1375 return 0; 1376 } 1377 1378 static int content_release(struct inode *inode, struct file *file, 1379 struct cache_detail *cd) 1380 { 1381 int ret = seq_release_private(inode, file); 1382 module_put(cd->owner); 1383 return ret; 1384 } 1385 1386 static int open_flush(struct inode *inode, struct file *file, 1387 struct cache_detail *cd) 1388 { 1389 if (!cd || !try_module_get(cd->owner)) 1390 return -EACCES; 1391 return nonseekable_open(inode, file); 1392 } 1393 1394 static int release_flush(struct inode *inode, struct file *file, 1395 struct cache_detail *cd) 1396 { 1397 module_put(cd->owner); 1398 return 0; 1399 } 1400 1401 static ssize_t read_flush(struct file *file, char __user *buf, 1402 size_t count, loff_t *ppos, 1403 struct cache_detail *cd) 1404 { 1405 char tbuf[20]; 1406 unsigned long p = *ppos; 1407 size_t len; 1408 1409 sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time)); 1410 len = strlen(tbuf); 1411 if (p >= len) 1412 return 0; 1413 len -= p; 1414 if (len > count) 1415 len = count; 1416 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1417 return -EFAULT; 1418 *ppos += len; 1419 return len; 1420 } 1421 1422 static ssize_t write_flush(struct file *file, const char __user *buf, 1423 size_t count, loff_t *ppos, 1424 struct cache_detail *cd) 1425 { 1426 char tbuf[20]; 1427 char *bp, *ep; 1428 1429 if (*ppos || count > sizeof(tbuf)-1) 1430 return -EINVAL; 1431 if (copy_from_user(tbuf, buf, count)) 1432 return -EFAULT; 1433 tbuf[count] = 0; 1434 simple_strtoul(tbuf, &ep, 0); 1435 if (*ep && *ep != '\n') 1436 return -EINVAL; 1437 1438 bp = tbuf; 1439 cd->flush_time = get_expiry(&bp); 1440 cd->nextcheck = seconds_since_boot(); 1441 cache_flush(); 1442 1443 *ppos += count; 1444 return count; 1445 } 1446 1447 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1448 size_t count, loff_t *ppos) 1449 { 1450 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1451 1452 return cache_read(filp, buf, count, ppos, cd); 1453 } 1454 1455 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1456 size_t count, loff_t *ppos) 1457 { 1458 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1459 1460 return cache_write(filp, buf, count, ppos, cd); 1461 } 1462 1463 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait) 1464 { 1465 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1466 1467 return cache_poll(filp, wait, cd); 1468 } 1469 1470 static long cache_ioctl_procfs(struct file *filp, 1471 unsigned int cmd, unsigned long arg) 1472 { 1473 struct inode *inode = filp->f_path.dentry->d_inode; 1474 struct cache_detail *cd = PDE(inode)->data; 1475 1476 return cache_ioctl(inode, filp, cmd, arg, cd); 1477 } 1478 1479 static int cache_open_procfs(struct inode *inode, struct file *filp) 1480 { 1481 struct cache_detail *cd = PDE(inode)->data; 1482 1483 return cache_open(inode, filp, cd); 1484 } 1485 1486 static int cache_release_procfs(struct inode *inode, struct file *filp) 1487 { 1488 struct cache_detail *cd = PDE(inode)->data; 1489 1490 return cache_release(inode, filp, cd); 1491 } 1492 1493 static const struct file_operations cache_file_operations_procfs = { 1494 .owner = THIS_MODULE, 1495 .llseek = no_llseek, 1496 .read = cache_read_procfs, 1497 .write = cache_write_procfs, 1498 .poll = cache_poll_procfs, 1499 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1500 .open = cache_open_procfs, 1501 .release = cache_release_procfs, 1502 }; 1503 1504 static int content_open_procfs(struct inode *inode, struct file *filp) 1505 { 1506 struct cache_detail *cd = PDE(inode)->data; 1507 1508 return content_open(inode, filp, cd); 1509 } 1510 1511 static int content_release_procfs(struct inode *inode, struct file *filp) 1512 { 1513 struct cache_detail *cd = PDE(inode)->data; 1514 1515 return content_release(inode, filp, cd); 1516 } 1517 1518 static const struct file_operations content_file_operations_procfs = { 1519 .open = content_open_procfs, 1520 .read = seq_read, 1521 .llseek = seq_lseek, 1522 .release = content_release_procfs, 1523 }; 1524 1525 static int open_flush_procfs(struct inode *inode, struct file *filp) 1526 { 1527 struct cache_detail *cd = PDE(inode)->data; 1528 1529 return open_flush(inode, filp, cd); 1530 } 1531 1532 static int release_flush_procfs(struct inode *inode, struct file *filp) 1533 { 1534 struct cache_detail *cd = PDE(inode)->data; 1535 1536 return release_flush(inode, filp, cd); 1537 } 1538 1539 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1540 size_t count, loff_t *ppos) 1541 { 1542 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1543 1544 return read_flush(filp, buf, count, ppos, cd); 1545 } 1546 1547 static ssize_t write_flush_procfs(struct file *filp, 1548 const char __user *buf, 1549 size_t count, loff_t *ppos) 1550 { 1551 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1552 1553 return write_flush(filp, buf, count, ppos, cd); 1554 } 1555 1556 static const struct file_operations cache_flush_operations_procfs = { 1557 .open = open_flush_procfs, 1558 .read = read_flush_procfs, 1559 .write = write_flush_procfs, 1560 .release = release_flush_procfs, 1561 .llseek = no_llseek, 1562 }; 1563 1564 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net) 1565 { 1566 struct sunrpc_net *sn; 1567 1568 if (cd->u.procfs.proc_ent == NULL) 1569 return; 1570 if (cd->u.procfs.flush_ent) 1571 remove_proc_entry("flush", cd->u.procfs.proc_ent); 1572 if (cd->u.procfs.channel_ent) 1573 remove_proc_entry("channel", cd->u.procfs.proc_ent); 1574 if (cd->u.procfs.content_ent) 1575 remove_proc_entry("content", cd->u.procfs.proc_ent); 1576 cd->u.procfs.proc_ent = NULL; 1577 sn = net_generic(net, sunrpc_net_id); 1578 remove_proc_entry(cd->name, sn->proc_net_rpc); 1579 } 1580 1581 #ifdef CONFIG_PROC_FS 1582 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1583 { 1584 struct proc_dir_entry *p; 1585 struct sunrpc_net *sn; 1586 1587 sn = net_generic(net, sunrpc_net_id); 1588 cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc); 1589 if (cd->u.procfs.proc_ent == NULL) 1590 goto out_nomem; 1591 cd->u.procfs.channel_ent = NULL; 1592 cd->u.procfs.content_ent = NULL; 1593 1594 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 1595 cd->u.procfs.proc_ent, 1596 &cache_flush_operations_procfs, cd); 1597 cd->u.procfs.flush_ent = p; 1598 if (p == NULL) 1599 goto out_nomem; 1600 1601 if (cd->cache_upcall || cd->cache_parse) { 1602 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 1603 cd->u.procfs.proc_ent, 1604 &cache_file_operations_procfs, cd); 1605 cd->u.procfs.channel_ent = p; 1606 if (p == NULL) 1607 goto out_nomem; 1608 } 1609 if (cd->cache_show) { 1610 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR, 1611 cd->u.procfs.proc_ent, 1612 &content_file_operations_procfs, cd); 1613 cd->u.procfs.content_ent = p; 1614 if (p == NULL) 1615 goto out_nomem; 1616 } 1617 return 0; 1618 out_nomem: 1619 remove_cache_proc_entries(cd, net); 1620 return -ENOMEM; 1621 } 1622 #else /* CONFIG_PROC_FS */ 1623 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1624 { 1625 return 0; 1626 } 1627 #endif 1628 1629 void __init cache_initialize(void) 1630 { 1631 INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean); 1632 } 1633 1634 int cache_register_net(struct cache_detail *cd, struct net *net) 1635 { 1636 int ret; 1637 1638 sunrpc_init_cache_detail(cd); 1639 ret = create_cache_proc_entries(cd, net); 1640 if (ret) 1641 sunrpc_destroy_cache_detail(cd); 1642 return ret; 1643 } 1644 1645 int cache_register(struct cache_detail *cd) 1646 { 1647 return cache_register_net(cd, &init_net); 1648 } 1649 EXPORT_SYMBOL_GPL(cache_register); 1650 1651 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1652 { 1653 remove_cache_proc_entries(cd, net); 1654 sunrpc_destroy_cache_detail(cd); 1655 } 1656 1657 void cache_unregister(struct cache_detail *cd) 1658 { 1659 cache_unregister_net(cd, &init_net); 1660 } 1661 EXPORT_SYMBOL_GPL(cache_unregister); 1662 1663 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1664 size_t count, loff_t *ppos) 1665 { 1666 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1667 1668 return cache_read(filp, buf, count, ppos, cd); 1669 } 1670 1671 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1672 size_t count, loff_t *ppos) 1673 { 1674 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1675 1676 return cache_write(filp, buf, count, ppos, cd); 1677 } 1678 1679 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait) 1680 { 1681 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1682 1683 return cache_poll(filp, wait, cd); 1684 } 1685 1686 static long cache_ioctl_pipefs(struct file *filp, 1687 unsigned int cmd, unsigned long arg) 1688 { 1689 struct inode *inode = filp->f_dentry->d_inode; 1690 struct cache_detail *cd = RPC_I(inode)->private; 1691 1692 return cache_ioctl(inode, filp, cmd, arg, cd); 1693 } 1694 1695 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1696 { 1697 struct cache_detail *cd = RPC_I(inode)->private; 1698 1699 return cache_open(inode, filp, cd); 1700 } 1701 1702 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1703 { 1704 struct cache_detail *cd = RPC_I(inode)->private; 1705 1706 return cache_release(inode, filp, cd); 1707 } 1708 1709 const struct file_operations cache_file_operations_pipefs = { 1710 .owner = THIS_MODULE, 1711 .llseek = no_llseek, 1712 .read = cache_read_pipefs, 1713 .write = cache_write_pipefs, 1714 .poll = cache_poll_pipefs, 1715 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1716 .open = cache_open_pipefs, 1717 .release = cache_release_pipefs, 1718 }; 1719 1720 static int content_open_pipefs(struct inode *inode, struct file *filp) 1721 { 1722 struct cache_detail *cd = RPC_I(inode)->private; 1723 1724 return content_open(inode, filp, cd); 1725 } 1726 1727 static int content_release_pipefs(struct inode *inode, struct file *filp) 1728 { 1729 struct cache_detail *cd = RPC_I(inode)->private; 1730 1731 return content_release(inode, filp, cd); 1732 } 1733 1734 const struct file_operations content_file_operations_pipefs = { 1735 .open = content_open_pipefs, 1736 .read = seq_read, 1737 .llseek = seq_lseek, 1738 .release = content_release_pipefs, 1739 }; 1740 1741 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1742 { 1743 struct cache_detail *cd = RPC_I(inode)->private; 1744 1745 return open_flush(inode, filp, cd); 1746 } 1747 1748 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1749 { 1750 struct cache_detail *cd = RPC_I(inode)->private; 1751 1752 return release_flush(inode, filp, cd); 1753 } 1754 1755 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1756 size_t count, loff_t *ppos) 1757 { 1758 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1759 1760 return read_flush(filp, buf, count, ppos, cd); 1761 } 1762 1763 static ssize_t write_flush_pipefs(struct file *filp, 1764 const char __user *buf, 1765 size_t count, loff_t *ppos) 1766 { 1767 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1768 1769 return write_flush(filp, buf, count, ppos, cd); 1770 } 1771 1772 const struct file_operations cache_flush_operations_pipefs = { 1773 .open = open_flush_pipefs, 1774 .read = read_flush_pipefs, 1775 .write = write_flush_pipefs, 1776 .release = release_flush_pipefs, 1777 .llseek = no_llseek, 1778 }; 1779 1780 int sunrpc_cache_register_pipefs(struct dentry *parent, 1781 const char *name, mode_t umode, 1782 struct cache_detail *cd) 1783 { 1784 struct qstr q; 1785 struct dentry *dir; 1786 int ret = 0; 1787 1788 sunrpc_init_cache_detail(cd); 1789 q.name = name; 1790 q.len = strlen(name); 1791 q.hash = full_name_hash(q.name, q.len); 1792 dir = rpc_create_cache_dir(parent, &q, umode, cd); 1793 if (!IS_ERR(dir)) 1794 cd->u.pipefs.dir = dir; 1795 else { 1796 sunrpc_destroy_cache_detail(cd); 1797 ret = PTR_ERR(dir); 1798 } 1799 return ret; 1800 } 1801 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1802 1803 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1804 { 1805 rpc_remove_cache_dir(cd->u.pipefs.dir); 1806 cd->u.pipefs.dir = NULL; 1807 sunrpc_destroy_cache_detail(cd); 1808 } 1809 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1810 1811