xref: /linux/net/sunrpc/cache.c (revision 36110669ddf832e6c9ceba4dd203749d5be31d31)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sunrpc/cache.c
4  *
5  * Generic code for various authentication-related caches
6  * used by sunrpc clients and servers.
7  *
8  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9  */
10 
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include <trace/events/sunrpc.h>
36 
37 #include "netns.h"
38 #include "fail.h"
39 
40 #define	 RPCDBG_FACILITY RPCDBG_CACHE
41 
42 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
43 static void cache_revisit_request(struct cache_head *item);
44 
45 static void cache_init(struct cache_head *h, struct cache_detail *detail)
46 {
47 	time64_t now = seconds_since_boot();
48 	INIT_HLIST_NODE(&h->cache_list);
49 	h->flags = 0;
50 	kref_init(&h->ref);
51 	h->expiry_time = now + CACHE_NEW_EXPIRY;
52 	if (now <= detail->flush_time)
53 		/* ensure it isn't already expired */
54 		now = detail->flush_time + 1;
55 	h->last_refresh = now;
56 }
57 
58 static void cache_fresh_unlocked(struct cache_head *head,
59 				struct cache_detail *detail);
60 
61 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
62 						struct cache_head *key,
63 						int hash)
64 {
65 	struct hlist_head *head = &detail->hash_table[hash];
66 	struct cache_head *tmp;
67 
68 	rcu_read_lock();
69 	hlist_for_each_entry_rcu(tmp, head, cache_list) {
70 		if (!detail->match(tmp, key))
71 			continue;
72 		if (test_bit(CACHE_VALID, &tmp->flags) &&
73 		    cache_is_expired(detail, tmp))
74 			continue;
75 		tmp = cache_get_rcu(tmp);
76 		rcu_read_unlock();
77 		return tmp;
78 	}
79 	rcu_read_unlock();
80 	return NULL;
81 }
82 
83 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch,
84 					    struct cache_detail *cd)
85 {
86 	/* Must be called under cd->hash_lock */
87 	hlist_del_init_rcu(&ch->cache_list);
88 	set_bit(CACHE_CLEANED, &ch->flags);
89 	cd->entries --;
90 }
91 
92 static void sunrpc_end_cache_remove_entry(struct cache_head *ch,
93 					  struct cache_detail *cd)
94 {
95 	cache_fresh_unlocked(ch, cd);
96 	cache_put(ch, cd);
97 }
98 
99 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
100 						 struct cache_head *key,
101 						 int hash)
102 {
103 	struct cache_head *new, *tmp, *freeme = NULL;
104 	struct hlist_head *head = &detail->hash_table[hash];
105 
106 	new = detail->alloc();
107 	if (!new)
108 		return NULL;
109 	/* must fully initialise 'new', else
110 	 * we might get lose if we need to
111 	 * cache_put it soon.
112 	 */
113 	cache_init(new, detail);
114 	detail->init(new, key);
115 
116 	spin_lock(&detail->hash_lock);
117 
118 	/* check if entry appeared while we slept */
119 	hlist_for_each_entry_rcu(tmp, head, cache_list,
120 				 lockdep_is_held(&detail->hash_lock)) {
121 		if (!detail->match(tmp, key))
122 			continue;
123 		if (test_bit(CACHE_VALID, &tmp->flags) &&
124 		    cache_is_expired(detail, tmp)) {
125 			sunrpc_begin_cache_remove_entry(tmp, detail);
126 			trace_cache_entry_expired(detail, tmp);
127 			freeme = tmp;
128 			break;
129 		}
130 		cache_get(tmp);
131 		spin_unlock(&detail->hash_lock);
132 		cache_put(new, detail);
133 		return tmp;
134 	}
135 
136 	hlist_add_head_rcu(&new->cache_list, head);
137 	detail->entries++;
138 	cache_get(new);
139 	spin_unlock(&detail->hash_lock);
140 
141 	if (freeme)
142 		sunrpc_end_cache_remove_entry(freeme, detail);
143 	return new;
144 }
145 
146 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
147 					   struct cache_head *key, int hash)
148 {
149 	struct cache_head *ret;
150 
151 	ret = sunrpc_cache_find_rcu(detail, key, hash);
152 	if (ret)
153 		return ret;
154 	/* Didn't find anything, insert an empty entry */
155 	return sunrpc_cache_add_entry(detail, key, hash);
156 }
157 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
158 
159 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
160 
161 static void cache_fresh_locked(struct cache_head *head, time64_t expiry,
162 			       struct cache_detail *detail)
163 {
164 	time64_t now = seconds_since_boot();
165 	if (now <= detail->flush_time)
166 		/* ensure it isn't immediately treated as expired */
167 		now = detail->flush_time + 1;
168 	head->expiry_time = expiry;
169 	head->last_refresh = now;
170 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
171 	set_bit(CACHE_VALID, &head->flags);
172 }
173 
174 static void cache_fresh_unlocked(struct cache_head *head,
175 				 struct cache_detail *detail)
176 {
177 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
178 		cache_revisit_request(head);
179 		cache_dequeue(detail, head);
180 	}
181 }
182 
183 static void cache_make_negative(struct cache_detail *detail,
184 				struct cache_head *h)
185 {
186 	set_bit(CACHE_NEGATIVE, &h->flags);
187 	trace_cache_entry_make_negative(detail, h);
188 }
189 
190 static void cache_entry_update(struct cache_detail *detail,
191 			       struct cache_head *h,
192 			       struct cache_head *new)
193 {
194 	if (!test_bit(CACHE_NEGATIVE, &new->flags)) {
195 		detail->update(h, new);
196 		trace_cache_entry_update(detail, h);
197 	} else {
198 		cache_make_negative(detail, h);
199 	}
200 }
201 
202 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
203 				       struct cache_head *new, struct cache_head *old, int hash)
204 {
205 	/* The 'old' entry is to be replaced by 'new'.
206 	 * If 'old' is not VALID, we update it directly,
207 	 * otherwise we need to replace it
208 	 */
209 	struct cache_head *tmp;
210 
211 	if (!test_bit(CACHE_VALID, &old->flags)) {
212 		spin_lock(&detail->hash_lock);
213 		if (!test_bit(CACHE_VALID, &old->flags)) {
214 			cache_entry_update(detail, old, new);
215 			cache_fresh_locked(old, new->expiry_time, detail);
216 			spin_unlock(&detail->hash_lock);
217 			cache_fresh_unlocked(old, detail);
218 			return old;
219 		}
220 		spin_unlock(&detail->hash_lock);
221 	}
222 	/* We need to insert a new entry */
223 	tmp = detail->alloc();
224 	if (!tmp) {
225 		cache_put(old, detail);
226 		return NULL;
227 	}
228 	cache_init(tmp, detail);
229 	detail->init(tmp, old);
230 
231 	spin_lock(&detail->hash_lock);
232 	cache_entry_update(detail, tmp, new);
233 	hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
234 	detail->entries++;
235 	cache_get(tmp);
236 	cache_fresh_locked(tmp, new->expiry_time, detail);
237 	cache_fresh_locked(old, 0, detail);
238 	spin_unlock(&detail->hash_lock);
239 	cache_fresh_unlocked(tmp, detail);
240 	cache_fresh_unlocked(old, detail);
241 	cache_put(old, detail);
242 	return tmp;
243 }
244 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
245 
246 static inline int cache_is_valid(struct cache_head *h)
247 {
248 	if (!test_bit(CACHE_VALID, &h->flags))
249 		return -EAGAIN;
250 	else {
251 		/* entry is valid */
252 		if (test_bit(CACHE_NEGATIVE, &h->flags))
253 			return -ENOENT;
254 		else {
255 			/*
256 			 * In combination with write barrier in
257 			 * sunrpc_cache_update, ensures that anyone
258 			 * using the cache entry after this sees the
259 			 * updated contents:
260 			 */
261 			smp_rmb();
262 			return 0;
263 		}
264 	}
265 }
266 
267 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
268 {
269 	int rv;
270 
271 	spin_lock(&detail->hash_lock);
272 	rv = cache_is_valid(h);
273 	if (rv == -EAGAIN) {
274 		cache_make_negative(detail, h);
275 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
276 				   detail);
277 		rv = -ENOENT;
278 	}
279 	spin_unlock(&detail->hash_lock);
280 	cache_fresh_unlocked(h, detail);
281 	return rv;
282 }
283 
284 /*
285  * This is the generic cache management routine for all
286  * the authentication caches.
287  * It checks the currency of a cache item and will (later)
288  * initiate an upcall to fill it if needed.
289  *
290  *
291  * Returns 0 if the cache_head can be used, or cache_puts it and returns
292  * -EAGAIN if upcall is pending and request has been queued
293  * -ETIMEDOUT if upcall failed or request could not be queue or
294  *           upcall completed but item is still invalid (implying that
295  *           the cache item has been replaced with a newer one).
296  * -ENOENT if cache entry was negative
297  */
298 int cache_check(struct cache_detail *detail,
299 		    struct cache_head *h, struct cache_req *rqstp)
300 {
301 	int rv;
302 	time64_t refresh_age, age;
303 
304 	/* First decide return status as best we can */
305 	rv = cache_is_valid(h);
306 
307 	/* now see if we want to start an upcall */
308 	refresh_age = (h->expiry_time - h->last_refresh);
309 	age = seconds_since_boot() - h->last_refresh;
310 
311 	if (rqstp == NULL) {
312 		if (rv == -EAGAIN)
313 			rv = -ENOENT;
314 	} else if (rv == -EAGAIN ||
315 		   (h->expiry_time != 0 && age > refresh_age/2)) {
316 		dprintk("RPC:       Want update, refage=%lld, age=%lld\n",
317 				refresh_age, age);
318 		switch (detail->cache_upcall(detail, h)) {
319 		case -EINVAL:
320 			rv = try_to_negate_entry(detail, h);
321 			break;
322 		case -EAGAIN:
323 			cache_fresh_unlocked(h, detail);
324 			break;
325 		}
326 	}
327 
328 	if (rv == -EAGAIN) {
329 		if (!cache_defer_req(rqstp, h)) {
330 			/*
331 			 * Request was not deferred; handle it as best
332 			 * we can ourselves:
333 			 */
334 			rv = cache_is_valid(h);
335 			if (rv == -EAGAIN)
336 				rv = -ETIMEDOUT;
337 		}
338 	}
339 	if (rv)
340 		cache_put(h, detail);
341 	return rv;
342 }
343 EXPORT_SYMBOL_GPL(cache_check);
344 
345 /*
346  * caches need to be periodically cleaned.
347  * For this we maintain a list of cache_detail and
348  * a current pointer into that list and into the table
349  * for that entry.
350  *
351  * Each time cache_clean is called it finds the next non-empty entry
352  * in the current table and walks the list in that entry
353  * looking for entries that can be removed.
354  *
355  * An entry gets removed if:
356  * - The expiry is before current time
357  * - The last_refresh time is before the flush_time for that cache
358  *
359  * later we might drop old entries with non-NEVER expiry if that table
360  * is getting 'full' for some definition of 'full'
361  *
362  * The question of "how often to scan a table" is an interesting one
363  * and is answered in part by the use of the "nextcheck" field in the
364  * cache_detail.
365  * When a scan of a table begins, the nextcheck field is set to a time
366  * that is well into the future.
367  * While scanning, if an expiry time is found that is earlier than the
368  * current nextcheck time, nextcheck is set to that expiry time.
369  * If the flush_time is ever set to a time earlier than the nextcheck
370  * time, the nextcheck time is then set to that flush_time.
371  *
372  * A table is then only scanned if the current time is at least
373  * the nextcheck time.
374  *
375  */
376 
377 static LIST_HEAD(cache_list);
378 static DEFINE_SPINLOCK(cache_list_lock);
379 static struct cache_detail *current_detail;
380 static int current_index;
381 
382 static void do_cache_clean(struct work_struct *work);
383 static struct delayed_work cache_cleaner;
384 
385 void sunrpc_init_cache_detail(struct cache_detail *cd)
386 {
387 	spin_lock_init(&cd->hash_lock);
388 	INIT_LIST_HEAD(&cd->queue);
389 	spin_lock(&cache_list_lock);
390 	cd->nextcheck = 0;
391 	cd->entries = 0;
392 	atomic_set(&cd->writers, 0);
393 	cd->last_close = 0;
394 	cd->last_warn = -1;
395 	list_add(&cd->others, &cache_list);
396 	spin_unlock(&cache_list_lock);
397 
398 	/* start the cleaning process */
399 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
400 }
401 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
402 
403 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
404 {
405 	cache_purge(cd);
406 	spin_lock(&cache_list_lock);
407 	spin_lock(&cd->hash_lock);
408 	if (current_detail == cd)
409 		current_detail = NULL;
410 	list_del_init(&cd->others);
411 	spin_unlock(&cd->hash_lock);
412 	spin_unlock(&cache_list_lock);
413 	if (list_empty(&cache_list)) {
414 		/* module must be being unloaded so its safe to kill the worker */
415 		cancel_delayed_work_sync(&cache_cleaner);
416 	}
417 }
418 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
419 
420 /* clean cache tries to find something to clean
421  * and cleans it.
422  * It returns 1 if it cleaned something,
423  *            0 if it didn't find anything this time
424  *           -1 if it fell off the end of the list.
425  */
426 static int cache_clean(void)
427 {
428 	int rv = 0;
429 	struct list_head *next;
430 
431 	spin_lock(&cache_list_lock);
432 
433 	/* find a suitable table if we don't already have one */
434 	while (current_detail == NULL ||
435 	    current_index >= current_detail->hash_size) {
436 		if (current_detail)
437 			next = current_detail->others.next;
438 		else
439 			next = cache_list.next;
440 		if (next == &cache_list) {
441 			current_detail = NULL;
442 			spin_unlock(&cache_list_lock);
443 			return -1;
444 		}
445 		current_detail = list_entry(next, struct cache_detail, others);
446 		if (current_detail->nextcheck > seconds_since_boot())
447 			current_index = current_detail->hash_size;
448 		else {
449 			current_index = 0;
450 			current_detail->nextcheck = seconds_since_boot()+30*60;
451 		}
452 	}
453 
454 	/* find a non-empty bucket in the table */
455 	while (current_detail &&
456 	       current_index < current_detail->hash_size &&
457 	       hlist_empty(&current_detail->hash_table[current_index]))
458 		current_index++;
459 
460 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
461 
462 	if (current_detail && current_index < current_detail->hash_size) {
463 		struct cache_head *ch = NULL;
464 		struct cache_detail *d;
465 		struct hlist_head *head;
466 		struct hlist_node *tmp;
467 
468 		spin_lock(&current_detail->hash_lock);
469 
470 		/* Ok, now to clean this strand */
471 
472 		head = &current_detail->hash_table[current_index];
473 		hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
474 			if (current_detail->nextcheck > ch->expiry_time)
475 				current_detail->nextcheck = ch->expiry_time+1;
476 			if (!cache_is_expired(current_detail, ch))
477 				continue;
478 
479 			sunrpc_begin_cache_remove_entry(ch, current_detail);
480 			trace_cache_entry_expired(current_detail, ch);
481 			rv = 1;
482 			break;
483 		}
484 
485 		spin_unlock(&current_detail->hash_lock);
486 		d = current_detail;
487 		if (!ch)
488 			current_index ++;
489 		spin_unlock(&cache_list_lock);
490 		if (ch)
491 			sunrpc_end_cache_remove_entry(ch, d);
492 	} else
493 		spin_unlock(&cache_list_lock);
494 
495 	return rv;
496 }
497 
498 /*
499  * We want to regularly clean the cache, so we need to schedule some work ...
500  */
501 static void do_cache_clean(struct work_struct *work)
502 {
503 	int delay;
504 
505 	if (list_empty(&cache_list))
506 		return;
507 
508 	if (cache_clean() == -1)
509 		delay = round_jiffies_relative(30*HZ);
510 	else
511 		delay = 5;
512 
513 	queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay);
514 }
515 
516 
517 /*
518  * Clean all caches promptly.  This just calls cache_clean
519  * repeatedly until we are sure that every cache has had a chance to
520  * be fully cleaned
521  */
522 void cache_flush(void)
523 {
524 	while (cache_clean() != -1)
525 		cond_resched();
526 	while (cache_clean() != -1)
527 		cond_resched();
528 }
529 EXPORT_SYMBOL_GPL(cache_flush);
530 
531 void cache_purge(struct cache_detail *detail)
532 {
533 	struct cache_head *ch = NULL;
534 	struct hlist_head *head = NULL;
535 	int i = 0;
536 
537 	spin_lock(&detail->hash_lock);
538 	if (!detail->entries) {
539 		spin_unlock(&detail->hash_lock);
540 		return;
541 	}
542 
543 	dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
544 	for (i = 0; i < detail->hash_size; i++) {
545 		head = &detail->hash_table[i];
546 		while (!hlist_empty(head)) {
547 			ch = hlist_entry(head->first, struct cache_head,
548 					 cache_list);
549 			sunrpc_begin_cache_remove_entry(ch, detail);
550 			spin_unlock(&detail->hash_lock);
551 			sunrpc_end_cache_remove_entry(ch, detail);
552 			spin_lock(&detail->hash_lock);
553 		}
554 	}
555 	spin_unlock(&detail->hash_lock);
556 }
557 EXPORT_SYMBOL_GPL(cache_purge);
558 
559 
560 /*
561  * Deferral and Revisiting of Requests.
562  *
563  * If a cache lookup finds a pending entry, we
564  * need to defer the request and revisit it later.
565  * All deferred requests are stored in a hash table,
566  * indexed by "struct cache_head *".
567  * As it may be wasteful to store a whole request
568  * structure, we allow the request to provide a
569  * deferred form, which must contain a
570  * 'struct cache_deferred_req'
571  * This cache_deferred_req contains a method to allow
572  * it to be revisited when cache info is available
573  */
574 
575 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
576 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
577 
578 #define	DFR_MAX	300	/* ??? */
579 
580 static DEFINE_SPINLOCK(cache_defer_lock);
581 static LIST_HEAD(cache_defer_list);
582 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
583 static int cache_defer_cnt;
584 
585 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
586 {
587 	hlist_del_init(&dreq->hash);
588 	if (!list_empty(&dreq->recent)) {
589 		list_del_init(&dreq->recent);
590 		cache_defer_cnt--;
591 	}
592 }
593 
594 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
595 {
596 	int hash = DFR_HASH(item);
597 
598 	INIT_LIST_HEAD(&dreq->recent);
599 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
600 }
601 
602 static void setup_deferral(struct cache_deferred_req *dreq,
603 			   struct cache_head *item,
604 			   int count_me)
605 {
606 
607 	dreq->item = item;
608 
609 	spin_lock(&cache_defer_lock);
610 
611 	__hash_deferred_req(dreq, item);
612 
613 	if (count_me) {
614 		cache_defer_cnt++;
615 		list_add(&dreq->recent, &cache_defer_list);
616 	}
617 
618 	spin_unlock(&cache_defer_lock);
619 
620 }
621 
622 struct thread_deferred_req {
623 	struct cache_deferred_req handle;
624 	struct completion completion;
625 };
626 
627 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
628 {
629 	struct thread_deferred_req *dr =
630 		container_of(dreq, struct thread_deferred_req, handle);
631 	complete(&dr->completion);
632 }
633 
634 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
635 {
636 	struct thread_deferred_req sleeper;
637 	struct cache_deferred_req *dreq = &sleeper.handle;
638 
639 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
640 	dreq->revisit = cache_restart_thread;
641 
642 	setup_deferral(dreq, item, 0);
643 
644 	if (!test_bit(CACHE_PENDING, &item->flags) ||
645 	    wait_for_completion_interruptible_timeout(
646 		    &sleeper.completion, req->thread_wait) <= 0) {
647 		/* The completion wasn't completed, so we need
648 		 * to clean up
649 		 */
650 		spin_lock(&cache_defer_lock);
651 		if (!hlist_unhashed(&sleeper.handle.hash)) {
652 			__unhash_deferred_req(&sleeper.handle);
653 			spin_unlock(&cache_defer_lock);
654 		} else {
655 			/* cache_revisit_request already removed
656 			 * this from the hash table, but hasn't
657 			 * called ->revisit yet.  It will very soon
658 			 * and we need to wait for it.
659 			 */
660 			spin_unlock(&cache_defer_lock);
661 			wait_for_completion(&sleeper.completion);
662 		}
663 	}
664 }
665 
666 static void cache_limit_defers(void)
667 {
668 	/* Make sure we haven't exceed the limit of allowed deferred
669 	 * requests.
670 	 */
671 	struct cache_deferred_req *discard = NULL;
672 
673 	if (cache_defer_cnt <= DFR_MAX)
674 		return;
675 
676 	spin_lock(&cache_defer_lock);
677 
678 	/* Consider removing either the first or the last */
679 	if (cache_defer_cnt > DFR_MAX) {
680 		if (get_random_u32_below(2))
681 			discard = list_entry(cache_defer_list.next,
682 					     struct cache_deferred_req, recent);
683 		else
684 			discard = list_entry(cache_defer_list.prev,
685 					     struct cache_deferred_req, recent);
686 		__unhash_deferred_req(discard);
687 	}
688 	spin_unlock(&cache_defer_lock);
689 	if (discard)
690 		discard->revisit(discard, 1);
691 }
692 
693 #if IS_ENABLED(CONFIG_FAIL_SUNRPC)
694 static inline bool cache_defer_immediately(void)
695 {
696 	return !fail_sunrpc.ignore_cache_wait &&
697 		should_fail(&fail_sunrpc.attr, 1);
698 }
699 #else
700 static inline bool cache_defer_immediately(void)
701 {
702 	return false;
703 }
704 #endif
705 
706 /* Return true if and only if a deferred request is queued. */
707 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
708 {
709 	struct cache_deferred_req *dreq;
710 
711 	if (!cache_defer_immediately()) {
712 		cache_wait_req(req, item);
713 		if (!test_bit(CACHE_PENDING, &item->flags))
714 			return false;
715 	}
716 
717 	dreq = req->defer(req);
718 	if (dreq == NULL)
719 		return false;
720 	setup_deferral(dreq, item, 1);
721 	if (!test_bit(CACHE_PENDING, &item->flags))
722 		/* Bit could have been cleared before we managed to
723 		 * set up the deferral, so need to revisit just in case
724 		 */
725 		cache_revisit_request(item);
726 
727 	cache_limit_defers();
728 	return true;
729 }
730 
731 static void cache_revisit_request(struct cache_head *item)
732 {
733 	struct cache_deferred_req *dreq;
734 	struct hlist_node *tmp;
735 	int hash = DFR_HASH(item);
736 	LIST_HEAD(pending);
737 
738 	spin_lock(&cache_defer_lock);
739 
740 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
741 		if (dreq->item == item) {
742 			__unhash_deferred_req(dreq);
743 			list_add(&dreq->recent, &pending);
744 		}
745 
746 	spin_unlock(&cache_defer_lock);
747 
748 	while (!list_empty(&pending)) {
749 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
750 		list_del_init(&dreq->recent);
751 		dreq->revisit(dreq, 0);
752 	}
753 }
754 
755 void cache_clean_deferred(void *owner)
756 {
757 	struct cache_deferred_req *dreq, *tmp;
758 	LIST_HEAD(pending);
759 
760 	spin_lock(&cache_defer_lock);
761 
762 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
763 		if (dreq->owner == owner) {
764 			__unhash_deferred_req(dreq);
765 			list_add(&dreq->recent, &pending);
766 		}
767 	}
768 	spin_unlock(&cache_defer_lock);
769 
770 	while (!list_empty(&pending)) {
771 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
772 		list_del_init(&dreq->recent);
773 		dreq->revisit(dreq, 1);
774 	}
775 }
776 
777 /*
778  * communicate with user-space
779  *
780  * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
781  * On read, you get a full request, or block.
782  * On write, an update request is processed.
783  * Poll works if anything to read, and always allows write.
784  *
785  * Implemented by linked list of requests.  Each open file has
786  * a ->private that also exists in this list.  New requests are added
787  * to the end and may wakeup and preceding readers.
788  * New readers are added to the head.  If, on read, an item is found with
789  * CACHE_UPCALLING clear, we free it from the list.
790  *
791  */
792 
793 static DEFINE_SPINLOCK(queue_lock);
794 
795 struct cache_queue {
796 	struct list_head	list;
797 	int			reader;	/* if 0, then request */
798 };
799 struct cache_request {
800 	struct cache_queue	q;
801 	struct cache_head	*item;
802 	char			* buf;
803 	int			len;
804 	int			readers;
805 };
806 struct cache_reader {
807 	struct cache_queue	q;
808 	int			offset;	/* if non-0, we have a refcnt on next request */
809 };
810 
811 static int cache_request(struct cache_detail *detail,
812 			       struct cache_request *crq)
813 {
814 	char *bp = crq->buf;
815 	int len = PAGE_SIZE;
816 
817 	detail->cache_request(detail, crq->item, &bp, &len);
818 	if (len < 0)
819 		return -E2BIG;
820 	return PAGE_SIZE - len;
821 }
822 
823 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
824 			  loff_t *ppos, struct cache_detail *cd)
825 {
826 	struct cache_reader *rp = filp->private_data;
827 	struct cache_request *rq;
828 	struct inode *inode = file_inode(filp);
829 	int err;
830 
831 	if (count == 0)
832 		return 0;
833 
834 	inode_lock(inode); /* protect against multiple concurrent
835 			      * readers on this file */
836  again:
837 	spin_lock(&queue_lock);
838 	/* need to find next request */
839 	while (rp->q.list.next != &cd->queue &&
840 	       list_entry(rp->q.list.next, struct cache_queue, list)
841 	       ->reader) {
842 		struct list_head *next = rp->q.list.next;
843 		list_move(&rp->q.list, next);
844 	}
845 	if (rp->q.list.next == &cd->queue) {
846 		spin_unlock(&queue_lock);
847 		inode_unlock(inode);
848 		WARN_ON_ONCE(rp->offset);
849 		return 0;
850 	}
851 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
852 	WARN_ON_ONCE(rq->q.reader);
853 	if (rp->offset == 0)
854 		rq->readers++;
855 	spin_unlock(&queue_lock);
856 
857 	if (rq->len == 0) {
858 		err = cache_request(cd, rq);
859 		if (err < 0)
860 			goto out;
861 		rq->len = err;
862 	}
863 
864 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
865 		err = -EAGAIN;
866 		spin_lock(&queue_lock);
867 		list_move(&rp->q.list, &rq->q.list);
868 		spin_unlock(&queue_lock);
869 	} else {
870 		if (rp->offset + count > rq->len)
871 			count = rq->len - rp->offset;
872 		err = -EFAULT;
873 		if (copy_to_user(buf, rq->buf + rp->offset, count))
874 			goto out;
875 		rp->offset += count;
876 		if (rp->offset >= rq->len) {
877 			rp->offset = 0;
878 			spin_lock(&queue_lock);
879 			list_move(&rp->q.list, &rq->q.list);
880 			spin_unlock(&queue_lock);
881 		}
882 		err = 0;
883 	}
884  out:
885 	if (rp->offset == 0) {
886 		/* need to release rq */
887 		spin_lock(&queue_lock);
888 		rq->readers--;
889 		if (rq->readers == 0 &&
890 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
891 			list_del(&rq->q.list);
892 			spin_unlock(&queue_lock);
893 			cache_put(rq->item, cd);
894 			kfree(rq->buf);
895 			kfree(rq);
896 		} else
897 			spin_unlock(&queue_lock);
898 	}
899 	if (err == -EAGAIN)
900 		goto again;
901 	inode_unlock(inode);
902 	return err ? err :  count;
903 }
904 
905 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
906 				 size_t count, struct cache_detail *cd)
907 {
908 	ssize_t ret;
909 
910 	if (count == 0)
911 		return -EINVAL;
912 	if (copy_from_user(kaddr, buf, count))
913 		return -EFAULT;
914 	kaddr[count] = '\0';
915 	ret = cd->cache_parse(cd, kaddr, count);
916 	if (!ret)
917 		ret = count;
918 	return ret;
919 }
920 
921 static ssize_t cache_downcall(struct address_space *mapping,
922 			      const char __user *buf,
923 			      size_t count, struct cache_detail *cd)
924 {
925 	char *write_buf;
926 	ssize_t ret = -ENOMEM;
927 
928 	if (count >= 32768) { /* 32k is max userland buffer, lets check anyway */
929 		ret = -EINVAL;
930 		goto out;
931 	}
932 
933 	write_buf = kvmalloc(count + 1, GFP_KERNEL);
934 	if (!write_buf)
935 		goto out;
936 
937 	ret = cache_do_downcall(write_buf, buf, count, cd);
938 	kvfree(write_buf);
939 out:
940 	return ret;
941 }
942 
943 static ssize_t cache_write(struct file *filp, const char __user *buf,
944 			   size_t count, loff_t *ppos,
945 			   struct cache_detail *cd)
946 {
947 	struct address_space *mapping = filp->f_mapping;
948 	struct inode *inode = file_inode(filp);
949 	ssize_t ret = -EINVAL;
950 
951 	if (!cd->cache_parse)
952 		goto out;
953 
954 	inode_lock(inode);
955 	ret = cache_downcall(mapping, buf, count, cd);
956 	inode_unlock(inode);
957 out:
958 	return ret;
959 }
960 
961 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
962 
963 static __poll_t cache_poll(struct file *filp, poll_table *wait,
964 			       struct cache_detail *cd)
965 {
966 	__poll_t mask;
967 	struct cache_reader *rp = filp->private_data;
968 	struct cache_queue *cq;
969 
970 	poll_wait(filp, &queue_wait, wait);
971 
972 	/* alway allow write */
973 	mask = EPOLLOUT | EPOLLWRNORM;
974 
975 	if (!rp)
976 		return mask;
977 
978 	spin_lock(&queue_lock);
979 
980 	for (cq= &rp->q; &cq->list != &cd->queue;
981 	     cq = list_entry(cq->list.next, struct cache_queue, list))
982 		if (!cq->reader) {
983 			mask |= EPOLLIN | EPOLLRDNORM;
984 			break;
985 		}
986 	spin_unlock(&queue_lock);
987 	return mask;
988 }
989 
990 static int cache_ioctl(struct inode *ino, struct file *filp,
991 		       unsigned int cmd, unsigned long arg,
992 		       struct cache_detail *cd)
993 {
994 	int len = 0;
995 	struct cache_reader *rp = filp->private_data;
996 	struct cache_queue *cq;
997 
998 	if (cmd != FIONREAD || !rp)
999 		return -EINVAL;
1000 
1001 	spin_lock(&queue_lock);
1002 
1003 	/* only find the length remaining in current request,
1004 	 * or the length of the next request
1005 	 */
1006 	for (cq= &rp->q; &cq->list != &cd->queue;
1007 	     cq = list_entry(cq->list.next, struct cache_queue, list))
1008 		if (!cq->reader) {
1009 			struct cache_request *cr =
1010 				container_of(cq, struct cache_request, q);
1011 			len = cr->len - rp->offset;
1012 			break;
1013 		}
1014 	spin_unlock(&queue_lock);
1015 
1016 	return put_user(len, (int __user *)arg);
1017 }
1018 
1019 static int cache_open(struct inode *inode, struct file *filp,
1020 		      struct cache_detail *cd)
1021 {
1022 	struct cache_reader *rp = NULL;
1023 
1024 	if (!cd || !try_module_get(cd->owner))
1025 		return -EACCES;
1026 	nonseekable_open(inode, filp);
1027 	if (filp->f_mode & FMODE_READ) {
1028 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1029 		if (!rp) {
1030 			module_put(cd->owner);
1031 			return -ENOMEM;
1032 		}
1033 		rp->offset = 0;
1034 		rp->q.reader = 1;
1035 
1036 		spin_lock(&queue_lock);
1037 		list_add(&rp->q.list, &cd->queue);
1038 		spin_unlock(&queue_lock);
1039 	}
1040 	if (filp->f_mode & FMODE_WRITE)
1041 		atomic_inc(&cd->writers);
1042 	filp->private_data = rp;
1043 	return 0;
1044 }
1045 
1046 static int cache_release(struct inode *inode, struct file *filp,
1047 			 struct cache_detail *cd)
1048 {
1049 	struct cache_reader *rp = filp->private_data;
1050 
1051 	if (rp) {
1052 		spin_lock(&queue_lock);
1053 		if (rp->offset) {
1054 			struct cache_queue *cq;
1055 			for (cq= &rp->q; &cq->list != &cd->queue;
1056 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1057 				if (!cq->reader) {
1058 					container_of(cq, struct cache_request, q)
1059 						->readers--;
1060 					break;
1061 				}
1062 			rp->offset = 0;
1063 		}
1064 		list_del(&rp->q.list);
1065 		spin_unlock(&queue_lock);
1066 
1067 		filp->private_data = NULL;
1068 		kfree(rp);
1069 
1070 	}
1071 	if (filp->f_mode & FMODE_WRITE) {
1072 		atomic_dec(&cd->writers);
1073 		cd->last_close = seconds_since_boot();
1074 	}
1075 	module_put(cd->owner);
1076 	return 0;
1077 }
1078 
1079 
1080 
1081 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1082 {
1083 	struct cache_queue *cq, *tmp;
1084 	struct cache_request *cr;
1085 	LIST_HEAD(dequeued);
1086 
1087 	spin_lock(&queue_lock);
1088 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1089 		if (!cq->reader) {
1090 			cr = container_of(cq, struct cache_request, q);
1091 			if (cr->item != ch)
1092 				continue;
1093 			if (test_bit(CACHE_PENDING, &ch->flags))
1094 				/* Lost a race and it is pending again */
1095 				break;
1096 			if (cr->readers != 0)
1097 				continue;
1098 			list_move(&cr->q.list, &dequeued);
1099 		}
1100 	spin_unlock(&queue_lock);
1101 	while (!list_empty(&dequeued)) {
1102 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1103 		list_del(&cr->q.list);
1104 		cache_put(cr->item, detail);
1105 		kfree(cr->buf);
1106 		kfree(cr);
1107 	}
1108 }
1109 
1110 /*
1111  * Support routines for text-based upcalls.
1112  * Fields are separated by spaces.
1113  * Fields are either mangled to quote space tab newline slosh with slosh
1114  * or a hexified with a leading \x
1115  * Record is terminated with newline.
1116  *
1117  */
1118 
1119 void qword_add(char **bpp, int *lp, char *str)
1120 {
1121 	char *bp = *bpp;
1122 	int len = *lp;
1123 	int ret;
1124 
1125 	if (len < 0) return;
1126 
1127 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1128 	if (ret >= len) {
1129 		bp += len;
1130 		len = -1;
1131 	} else {
1132 		bp += ret;
1133 		len -= ret;
1134 		*bp++ = ' ';
1135 		len--;
1136 	}
1137 	*bpp = bp;
1138 	*lp = len;
1139 }
1140 EXPORT_SYMBOL_GPL(qword_add);
1141 
1142 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1143 {
1144 	char *bp = *bpp;
1145 	int len = *lp;
1146 
1147 	if (len < 0) return;
1148 
1149 	if (len > 2) {
1150 		*bp++ = '\\';
1151 		*bp++ = 'x';
1152 		len -= 2;
1153 		while (blen && len >= 2) {
1154 			bp = hex_byte_pack(bp, *buf++);
1155 			len -= 2;
1156 			blen--;
1157 		}
1158 	}
1159 	if (blen || len<1) len = -1;
1160 	else {
1161 		*bp++ = ' ';
1162 		len--;
1163 	}
1164 	*bpp = bp;
1165 	*lp = len;
1166 }
1167 EXPORT_SYMBOL_GPL(qword_addhex);
1168 
1169 static void warn_no_listener(struct cache_detail *detail)
1170 {
1171 	if (detail->last_warn != detail->last_close) {
1172 		detail->last_warn = detail->last_close;
1173 		if (detail->warn_no_listener)
1174 			detail->warn_no_listener(detail, detail->last_close != 0);
1175 	}
1176 }
1177 
1178 static bool cache_listeners_exist(struct cache_detail *detail)
1179 {
1180 	if (atomic_read(&detail->writers))
1181 		return true;
1182 	if (detail->last_close == 0)
1183 		/* This cache was never opened */
1184 		return false;
1185 	if (detail->last_close < seconds_since_boot() - 30)
1186 		/*
1187 		 * We allow for the possibility that someone might
1188 		 * restart a userspace daemon without restarting the
1189 		 * server; but after 30 seconds, we give up.
1190 		 */
1191 		 return false;
1192 	return true;
1193 }
1194 
1195 /*
1196  * register an upcall request to user-space and queue it up for read() by the
1197  * upcall daemon.
1198  *
1199  * Each request is at most one page long.
1200  */
1201 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1202 {
1203 	char *buf;
1204 	struct cache_request *crq;
1205 	int ret = 0;
1206 
1207 	if (test_bit(CACHE_CLEANED, &h->flags))
1208 		/* Too late to make an upcall */
1209 		return -EAGAIN;
1210 
1211 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1212 	if (!buf)
1213 		return -EAGAIN;
1214 
1215 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1216 	if (!crq) {
1217 		kfree(buf);
1218 		return -EAGAIN;
1219 	}
1220 
1221 	crq->q.reader = 0;
1222 	crq->buf = buf;
1223 	crq->len = 0;
1224 	crq->readers = 0;
1225 	spin_lock(&queue_lock);
1226 	if (test_bit(CACHE_PENDING, &h->flags)) {
1227 		crq->item = cache_get(h);
1228 		list_add_tail(&crq->q.list, &detail->queue);
1229 		trace_cache_entry_upcall(detail, h);
1230 	} else
1231 		/* Lost a race, no longer PENDING, so don't enqueue */
1232 		ret = -EAGAIN;
1233 	spin_unlock(&queue_lock);
1234 	wake_up(&queue_wait);
1235 	if (ret == -EAGAIN) {
1236 		kfree(buf);
1237 		kfree(crq);
1238 	}
1239 	return ret;
1240 }
1241 
1242 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1243 {
1244 	if (test_and_set_bit(CACHE_PENDING, &h->flags))
1245 		return 0;
1246 	return cache_pipe_upcall(detail, h);
1247 }
1248 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1249 
1250 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail,
1251 				     struct cache_head *h)
1252 {
1253 	if (!cache_listeners_exist(detail)) {
1254 		warn_no_listener(detail);
1255 		trace_cache_entry_no_listener(detail, h);
1256 		return -EINVAL;
1257 	}
1258 	return sunrpc_cache_pipe_upcall(detail, h);
1259 }
1260 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout);
1261 
1262 /*
1263  * parse a message from user-space and pass it
1264  * to an appropriate cache
1265  * Messages are, like requests, separated into fields by
1266  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1267  *
1268  * Message is
1269  *   reply cachename expiry key ... content....
1270  *
1271  * key and content are both parsed by cache
1272  */
1273 
1274 int qword_get(char **bpp, char *dest, int bufsize)
1275 {
1276 	/* return bytes copied, or -1 on error */
1277 	char *bp = *bpp;
1278 	int len = 0;
1279 
1280 	while (*bp == ' ') bp++;
1281 
1282 	if (bp[0] == '\\' && bp[1] == 'x') {
1283 		/* HEX STRING */
1284 		bp += 2;
1285 		while (len < bufsize - 1) {
1286 			int h, l;
1287 
1288 			h = hex_to_bin(bp[0]);
1289 			if (h < 0)
1290 				break;
1291 
1292 			l = hex_to_bin(bp[1]);
1293 			if (l < 0)
1294 				break;
1295 
1296 			*dest++ = (h << 4) | l;
1297 			bp += 2;
1298 			len++;
1299 		}
1300 	} else {
1301 		/* text with \nnn octal quoting */
1302 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1303 			if (*bp == '\\' &&
1304 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1305 			    isodigit(bp[2]) &&
1306 			    isodigit(bp[3])) {
1307 				int byte = (*++bp -'0');
1308 				bp++;
1309 				byte = (byte << 3) | (*bp++ - '0');
1310 				byte = (byte << 3) | (*bp++ - '0');
1311 				*dest++ = byte;
1312 				len++;
1313 			} else {
1314 				*dest++ = *bp++;
1315 				len++;
1316 			}
1317 		}
1318 	}
1319 
1320 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1321 		return -1;
1322 	while (*bp == ' ') bp++;
1323 	*bpp = bp;
1324 	*dest = '\0';
1325 	return len;
1326 }
1327 EXPORT_SYMBOL_GPL(qword_get);
1328 
1329 
1330 /*
1331  * support /proc/net/rpc/$CACHENAME/content
1332  * as a seqfile.
1333  * We call ->cache_show passing NULL for the item to
1334  * get a header, then pass each real item in the cache
1335  */
1336 
1337 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1338 {
1339 	loff_t n = *pos;
1340 	unsigned int hash, entry;
1341 	struct cache_head *ch;
1342 	struct cache_detail *cd = m->private;
1343 
1344 	if (!n--)
1345 		return SEQ_START_TOKEN;
1346 	hash = n >> 32;
1347 	entry = n & ((1LL<<32) - 1);
1348 
1349 	hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1350 		if (!entry--)
1351 			return ch;
1352 	n &= ~((1LL<<32) - 1);
1353 	do {
1354 		hash++;
1355 		n += 1LL<<32;
1356 	} while(hash < cd->hash_size &&
1357 		hlist_empty(&cd->hash_table[hash]));
1358 	if (hash >= cd->hash_size)
1359 		return NULL;
1360 	*pos = n+1;
1361 	return hlist_entry_safe(rcu_dereference_raw(
1362 				hlist_first_rcu(&cd->hash_table[hash])),
1363 				struct cache_head, cache_list);
1364 }
1365 
1366 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1367 {
1368 	struct cache_head *ch = p;
1369 	int hash = (*pos >> 32);
1370 	struct cache_detail *cd = m->private;
1371 
1372 	if (p == SEQ_START_TOKEN)
1373 		hash = 0;
1374 	else if (ch->cache_list.next == NULL) {
1375 		hash++;
1376 		*pos += 1LL<<32;
1377 	} else {
1378 		++*pos;
1379 		return hlist_entry_safe(rcu_dereference_raw(
1380 					hlist_next_rcu(&ch->cache_list)),
1381 					struct cache_head, cache_list);
1382 	}
1383 	*pos &= ~((1LL<<32) - 1);
1384 	while (hash < cd->hash_size &&
1385 	       hlist_empty(&cd->hash_table[hash])) {
1386 		hash++;
1387 		*pos += 1LL<<32;
1388 	}
1389 	if (hash >= cd->hash_size)
1390 		return NULL;
1391 	++*pos;
1392 	return hlist_entry_safe(rcu_dereference_raw(
1393 				hlist_first_rcu(&cd->hash_table[hash])),
1394 				struct cache_head, cache_list);
1395 }
1396 
1397 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1398 	__acquires(RCU)
1399 {
1400 	rcu_read_lock();
1401 	return __cache_seq_start(m, pos);
1402 }
1403 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1404 
1405 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1406 {
1407 	return cache_seq_next(file, p, pos);
1408 }
1409 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1410 
1411 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1412 	__releases(RCU)
1413 {
1414 	rcu_read_unlock();
1415 }
1416 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1417 
1418 static int c_show(struct seq_file *m, void *p)
1419 {
1420 	struct cache_head *cp = p;
1421 	struct cache_detail *cd = m->private;
1422 
1423 	if (p == SEQ_START_TOKEN)
1424 		return cd->cache_show(m, cd, NULL);
1425 
1426 	ifdebug(CACHE)
1427 		seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n",
1428 			   convert_to_wallclock(cp->expiry_time),
1429 			   kref_read(&cp->ref), cp->flags);
1430 	cache_get(cp);
1431 	if (cache_check(cd, cp, NULL))
1432 		/* cache_check does a cache_put on failure */
1433 		seq_puts(m, "# ");
1434 	else {
1435 		if (cache_is_expired(cd, cp))
1436 			seq_puts(m, "# ");
1437 		cache_put(cp, cd);
1438 	}
1439 
1440 	return cd->cache_show(m, cd, cp);
1441 }
1442 
1443 static const struct seq_operations cache_content_op = {
1444 	.start	= cache_seq_start_rcu,
1445 	.next	= cache_seq_next_rcu,
1446 	.stop	= cache_seq_stop_rcu,
1447 	.show	= c_show,
1448 };
1449 
1450 static int content_open(struct inode *inode, struct file *file,
1451 			struct cache_detail *cd)
1452 {
1453 	struct seq_file *seq;
1454 	int err;
1455 
1456 	if (!cd || !try_module_get(cd->owner))
1457 		return -EACCES;
1458 
1459 	err = seq_open(file, &cache_content_op);
1460 	if (err) {
1461 		module_put(cd->owner);
1462 		return err;
1463 	}
1464 
1465 	seq = file->private_data;
1466 	seq->private = cd;
1467 	return 0;
1468 }
1469 
1470 static int content_release(struct inode *inode, struct file *file,
1471 		struct cache_detail *cd)
1472 {
1473 	int ret = seq_release(inode, file);
1474 	module_put(cd->owner);
1475 	return ret;
1476 }
1477 
1478 static int open_flush(struct inode *inode, struct file *file,
1479 			struct cache_detail *cd)
1480 {
1481 	if (!cd || !try_module_get(cd->owner))
1482 		return -EACCES;
1483 	return nonseekable_open(inode, file);
1484 }
1485 
1486 static int release_flush(struct inode *inode, struct file *file,
1487 			struct cache_detail *cd)
1488 {
1489 	module_put(cd->owner);
1490 	return 0;
1491 }
1492 
1493 static ssize_t read_flush(struct file *file, char __user *buf,
1494 			  size_t count, loff_t *ppos,
1495 			  struct cache_detail *cd)
1496 {
1497 	char tbuf[22];
1498 	size_t len;
1499 
1500 	len = snprintf(tbuf, sizeof(tbuf), "%llu\n",
1501 			convert_to_wallclock(cd->flush_time));
1502 	return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1503 }
1504 
1505 static ssize_t write_flush(struct file *file, const char __user *buf,
1506 			   size_t count, loff_t *ppos,
1507 			   struct cache_detail *cd)
1508 {
1509 	char tbuf[20];
1510 	char *ep;
1511 	time64_t now;
1512 
1513 	if (*ppos || count > sizeof(tbuf)-1)
1514 		return -EINVAL;
1515 	if (copy_from_user(tbuf, buf, count))
1516 		return -EFAULT;
1517 	tbuf[count] = 0;
1518 	simple_strtoul(tbuf, &ep, 0);
1519 	if (*ep && *ep != '\n')
1520 		return -EINVAL;
1521 	/* Note that while we check that 'buf' holds a valid number,
1522 	 * we always ignore the value and just flush everything.
1523 	 * Making use of the number leads to races.
1524 	 */
1525 
1526 	now = seconds_since_boot();
1527 	/* Always flush everything, so behave like cache_purge()
1528 	 * Do this by advancing flush_time to the current time,
1529 	 * or by one second if it has already reached the current time.
1530 	 * Newly added cache entries will always have ->last_refresh greater
1531 	 * that ->flush_time, so they don't get flushed prematurely.
1532 	 */
1533 
1534 	if (cd->flush_time >= now)
1535 		now = cd->flush_time + 1;
1536 
1537 	cd->flush_time = now;
1538 	cd->nextcheck = now;
1539 	cache_flush();
1540 
1541 	if (cd->flush)
1542 		cd->flush();
1543 
1544 	*ppos += count;
1545 	return count;
1546 }
1547 
1548 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1549 				 size_t count, loff_t *ppos)
1550 {
1551 	struct cache_detail *cd = pde_data(file_inode(filp));
1552 
1553 	return cache_read(filp, buf, count, ppos, cd);
1554 }
1555 
1556 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1557 				  size_t count, loff_t *ppos)
1558 {
1559 	struct cache_detail *cd = pde_data(file_inode(filp));
1560 
1561 	return cache_write(filp, buf, count, ppos, cd);
1562 }
1563 
1564 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1565 {
1566 	struct cache_detail *cd = pde_data(file_inode(filp));
1567 
1568 	return cache_poll(filp, wait, cd);
1569 }
1570 
1571 static long cache_ioctl_procfs(struct file *filp,
1572 			       unsigned int cmd, unsigned long arg)
1573 {
1574 	struct inode *inode = file_inode(filp);
1575 	struct cache_detail *cd = pde_data(inode);
1576 
1577 	return cache_ioctl(inode, filp, cmd, arg, cd);
1578 }
1579 
1580 static int cache_open_procfs(struct inode *inode, struct file *filp)
1581 {
1582 	struct cache_detail *cd = pde_data(inode);
1583 
1584 	return cache_open(inode, filp, cd);
1585 }
1586 
1587 static int cache_release_procfs(struct inode *inode, struct file *filp)
1588 {
1589 	struct cache_detail *cd = pde_data(inode);
1590 
1591 	return cache_release(inode, filp, cd);
1592 }
1593 
1594 static const struct proc_ops cache_channel_proc_ops = {
1595 	.proc_read	= cache_read_procfs,
1596 	.proc_write	= cache_write_procfs,
1597 	.proc_poll	= cache_poll_procfs,
1598 	.proc_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1599 	.proc_open	= cache_open_procfs,
1600 	.proc_release	= cache_release_procfs,
1601 };
1602 
1603 static int content_open_procfs(struct inode *inode, struct file *filp)
1604 {
1605 	struct cache_detail *cd = pde_data(inode);
1606 
1607 	return content_open(inode, filp, cd);
1608 }
1609 
1610 static int content_release_procfs(struct inode *inode, struct file *filp)
1611 {
1612 	struct cache_detail *cd = pde_data(inode);
1613 
1614 	return content_release(inode, filp, cd);
1615 }
1616 
1617 static const struct proc_ops content_proc_ops = {
1618 	.proc_open	= content_open_procfs,
1619 	.proc_read	= seq_read,
1620 	.proc_lseek	= seq_lseek,
1621 	.proc_release	= content_release_procfs,
1622 };
1623 
1624 static int open_flush_procfs(struct inode *inode, struct file *filp)
1625 {
1626 	struct cache_detail *cd = pde_data(inode);
1627 
1628 	return open_flush(inode, filp, cd);
1629 }
1630 
1631 static int release_flush_procfs(struct inode *inode, struct file *filp)
1632 {
1633 	struct cache_detail *cd = pde_data(inode);
1634 
1635 	return release_flush(inode, filp, cd);
1636 }
1637 
1638 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1639 			    size_t count, loff_t *ppos)
1640 {
1641 	struct cache_detail *cd = pde_data(file_inode(filp));
1642 
1643 	return read_flush(filp, buf, count, ppos, cd);
1644 }
1645 
1646 static ssize_t write_flush_procfs(struct file *filp,
1647 				  const char __user *buf,
1648 				  size_t count, loff_t *ppos)
1649 {
1650 	struct cache_detail *cd = pde_data(file_inode(filp));
1651 
1652 	return write_flush(filp, buf, count, ppos, cd);
1653 }
1654 
1655 static const struct proc_ops cache_flush_proc_ops = {
1656 	.proc_open	= open_flush_procfs,
1657 	.proc_read	= read_flush_procfs,
1658 	.proc_write	= write_flush_procfs,
1659 	.proc_release	= release_flush_procfs,
1660 };
1661 
1662 static void remove_cache_proc_entries(struct cache_detail *cd)
1663 {
1664 	if (cd->procfs) {
1665 		proc_remove(cd->procfs);
1666 		cd->procfs = NULL;
1667 	}
1668 }
1669 
1670 #ifdef CONFIG_PROC_FS
1671 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1672 {
1673 	struct proc_dir_entry *p;
1674 	struct sunrpc_net *sn;
1675 
1676 	sn = net_generic(net, sunrpc_net_id);
1677 	cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1678 	if (cd->procfs == NULL)
1679 		goto out_nomem;
1680 
1681 	p = proc_create_data("flush", S_IFREG | 0600,
1682 			     cd->procfs, &cache_flush_proc_ops, cd);
1683 	if (p == NULL)
1684 		goto out_nomem;
1685 
1686 	if (cd->cache_request || cd->cache_parse) {
1687 		p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1688 				     &cache_channel_proc_ops, cd);
1689 		if (p == NULL)
1690 			goto out_nomem;
1691 	}
1692 	if (cd->cache_show) {
1693 		p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1694 				     &content_proc_ops, cd);
1695 		if (p == NULL)
1696 			goto out_nomem;
1697 	}
1698 	return 0;
1699 out_nomem:
1700 	remove_cache_proc_entries(cd);
1701 	return -ENOMEM;
1702 }
1703 #else /* CONFIG_PROC_FS */
1704 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1705 {
1706 	return 0;
1707 }
1708 #endif
1709 
1710 void __init cache_initialize(void)
1711 {
1712 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1713 }
1714 
1715 int cache_register_net(struct cache_detail *cd, struct net *net)
1716 {
1717 	int ret;
1718 
1719 	sunrpc_init_cache_detail(cd);
1720 	ret = create_cache_proc_entries(cd, net);
1721 	if (ret)
1722 		sunrpc_destroy_cache_detail(cd);
1723 	return ret;
1724 }
1725 EXPORT_SYMBOL_GPL(cache_register_net);
1726 
1727 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1728 {
1729 	remove_cache_proc_entries(cd);
1730 	sunrpc_destroy_cache_detail(cd);
1731 }
1732 EXPORT_SYMBOL_GPL(cache_unregister_net);
1733 
1734 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1735 {
1736 	struct cache_detail *cd;
1737 	int i;
1738 
1739 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1740 	if (cd == NULL)
1741 		return ERR_PTR(-ENOMEM);
1742 
1743 	cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1744 				 GFP_KERNEL);
1745 	if (cd->hash_table == NULL) {
1746 		kfree(cd);
1747 		return ERR_PTR(-ENOMEM);
1748 	}
1749 
1750 	for (i = 0; i < cd->hash_size; i++)
1751 		INIT_HLIST_HEAD(&cd->hash_table[i]);
1752 	cd->net = net;
1753 	return cd;
1754 }
1755 EXPORT_SYMBOL_GPL(cache_create_net);
1756 
1757 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1758 {
1759 	kfree(cd->hash_table);
1760 	kfree(cd);
1761 }
1762 EXPORT_SYMBOL_GPL(cache_destroy_net);
1763 
1764 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1765 				 size_t count, loff_t *ppos)
1766 {
1767 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1768 
1769 	return cache_read(filp, buf, count, ppos, cd);
1770 }
1771 
1772 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1773 				  size_t count, loff_t *ppos)
1774 {
1775 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1776 
1777 	return cache_write(filp, buf, count, ppos, cd);
1778 }
1779 
1780 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1781 {
1782 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1783 
1784 	return cache_poll(filp, wait, cd);
1785 }
1786 
1787 static long cache_ioctl_pipefs(struct file *filp,
1788 			      unsigned int cmd, unsigned long arg)
1789 {
1790 	struct inode *inode = file_inode(filp);
1791 	struct cache_detail *cd = RPC_I(inode)->private;
1792 
1793 	return cache_ioctl(inode, filp, cmd, arg, cd);
1794 }
1795 
1796 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1797 {
1798 	struct cache_detail *cd = RPC_I(inode)->private;
1799 
1800 	return cache_open(inode, filp, cd);
1801 }
1802 
1803 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1804 {
1805 	struct cache_detail *cd = RPC_I(inode)->private;
1806 
1807 	return cache_release(inode, filp, cd);
1808 }
1809 
1810 const struct file_operations cache_file_operations_pipefs = {
1811 	.owner		= THIS_MODULE,
1812 	.read		= cache_read_pipefs,
1813 	.write		= cache_write_pipefs,
1814 	.poll		= cache_poll_pipefs,
1815 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1816 	.open		= cache_open_pipefs,
1817 	.release	= cache_release_pipefs,
1818 };
1819 
1820 static int content_open_pipefs(struct inode *inode, struct file *filp)
1821 {
1822 	struct cache_detail *cd = RPC_I(inode)->private;
1823 
1824 	return content_open(inode, filp, cd);
1825 }
1826 
1827 static int content_release_pipefs(struct inode *inode, struct file *filp)
1828 {
1829 	struct cache_detail *cd = RPC_I(inode)->private;
1830 
1831 	return content_release(inode, filp, cd);
1832 }
1833 
1834 const struct file_operations content_file_operations_pipefs = {
1835 	.open		= content_open_pipefs,
1836 	.read		= seq_read,
1837 	.llseek		= seq_lseek,
1838 	.release	= content_release_pipefs,
1839 };
1840 
1841 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1842 {
1843 	struct cache_detail *cd = RPC_I(inode)->private;
1844 
1845 	return open_flush(inode, filp, cd);
1846 }
1847 
1848 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1849 {
1850 	struct cache_detail *cd = RPC_I(inode)->private;
1851 
1852 	return release_flush(inode, filp, cd);
1853 }
1854 
1855 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1856 			    size_t count, loff_t *ppos)
1857 {
1858 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1859 
1860 	return read_flush(filp, buf, count, ppos, cd);
1861 }
1862 
1863 static ssize_t write_flush_pipefs(struct file *filp,
1864 				  const char __user *buf,
1865 				  size_t count, loff_t *ppos)
1866 {
1867 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1868 
1869 	return write_flush(filp, buf, count, ppos, cd);
1870 }
1871 
1872 const struct file_operations cache_flush_operations_pipefs = {
1873 	.open		= open_flush_pipefs,
1874 	.read		= read_flush_pipefs,
1875 	.write		= write_flush_pipefs,
1876 	.release	= release_flush_pipefs,
1877 };
1878 
1879 int sunrpc_cache_register_pipefs(struct dentry *parent,
1880 				 const char *name, umode_t umode,
1881 				 struct cache_detail *cd)
1882 {
1883 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1884 	if (IS_ERR(dir))
1885 		return PTR_ERR(dir);
1886 	cd->pipefs = dir;
1887 	return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1890 
1891 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1892 {
1893 	if (cd->pipefs) {
1894 		rpc_remove_cache_dir(cd->pipefs);
1895 		cd->pipefs = NULL;
1896 	}
1897 }
1898 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1899 
1900 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1901 {
1902 	spin_lock(&cd->hash_lock);
1903 	if (!hlist_unhashed(&h->cache_list)){
1904 		sunrpc_begin_cache_remove_entry(h, cd);
1905 		spin_unlock(&cd->hash_lock);
1906 		sunrpc_end_cache_remove_entry(h, cd);
1907 	} else
1908 		spin_unlock(&cd->hash_lock);
1909 }
1910 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1911