1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sunrpc/cache.c 4 * 5 * Generic code for various authentication-related caches 6 * used by sunrpc clients and servers. 7 * 8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 9 */ 10 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/signal.h> 16 #include <linux/sched.h> 17 #include <linux/kmod.h> 18 #include <linux/list.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/string_helpers.h> 22 #include <linux/uaccess.h> 23 #include <linux/poll.h> 24 #include <linux/seq_file.h> 25 #include <linux/proc_fs.h> 26 #include <linux/net.h> 27 #include <linux/workqueue.h> 28 #include <linux/mutex.h> 29 #include <linux/pagemap.h> 30 #include <asm/ioctls.h> 31 #include <linux/sunrpc/types.h> 32 #include <linux/sunrpc/cache.h> 33 #include <linux/sunrpc/stats.h> 34 #include <linux/sunrpc/rpc_pipe_fs.h> 35 #include <trace/events/sunrpc.h> 36 37 #include "netns.h" 38 #include "fail.h" 39 40 #define RPCDBG_FACILITY RPCDBG_CACHE 41 42 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 43 static void cache_revisit_request(struct cache_head *item); 44 45 static void cache_init(struct cache_head *h, struct cache_detail *detail) 46 { 47 time64_t now = seconds_since_boot(); 48 INIT_HLIST_NODE(&h->cache_list); 49 h->flags = 0; 50 kref_init(&h->ref); 51 h->expiry_time = now + CACHE_NEW_EXPIRY; 52 if (now <= detail->flush_time) 53 /* ensure it isn't already expired */ 54 now = detail->flush_time + 1; 55 h->last_refresh = now; 56 } 57 58 static void cache_fresh_unlocked(struct cache_head *head, 59 struct cache_detail *detail); 60 61 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail, 62 struct cache_head *key, 63 int hash) 64 { 65 struct hlist_head *head = &detail->hash_table[hash]; 66 struct cache_head *tmp; 67 68 rcu_read_lock(); 69 hlist_for_each_entry_rcu(tmp, head, cache_list) { 70 if (!detail->match(tmp, key)) 71 continue; 72 if (test_bit(CACHE_VALID, &tmp->flags) && 73 cache_is_expired(detail, tmp)) 74 continue; 75 tmp = cache_get_rcu(tmp); 76 rcu_read_unlock(); 77 return tmp; 78 } 79 rcu_read_unlock(); 80 return NULL; 81 } 82 83 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch, 84 struct cache_detail *cd) 85 { 86 /* Must be called under cd->hash_lock */ 87 hlist_del_init_rcu(&ch->cache_list); 88 set_bit(CACHE_CLEANED, &ch->flags); 89 cd->entries --; 90 } 91 92 static void sunrpc_end_cache_remove_entry(struct cache_head *ch, 93 struct cache_detail *cd) 94 { 95 cache_fresh_unlocked(ch, cd); 96 cache_put(ch, cd); 97 } 98 99 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail, 100 struct cache_head *key, 101 int hash) 102 { 103 struct cache_head *new, *tmp, *freeme = NULL; 104 struct hlist_head *head = &detail->hash_table[hash]; 105 106 new = detail->alloc(); 107 if (!new) 108 return NULL; 109 /* must fully initialise 'new', else 110 * we might get lose if we need to 111 * cache_put it soon. 112 */ 113 cache_init(new, detail); 114 detail->init(new, key); 115 116 spin_lock(&detail->hash_lock); 117 118 /* check if entry appeared while we slept */ 119 hlist_for_each_entry_rcu(tmp, head, cache_list, 120 lockdep_is_held(&detail->hash_lock)) { 121 if (!detail->match(tmp, key)) 122 continue; 123 if (test_bit(CACHE_VALID, &tmp->flags) && 124 cache_is_expired(detail, tmp)) { 125 sunrpc_begin_cache_remove_entry(tmp, detail); 126 trace_cache_entry_expired(detail, tmp); 127 freeme = tmp; 128 break; 129 } 130 cache_get(tmp); 131 spin_unlock(&detail->hash_lock); 132 cache_put(new, detail); 133 return tmp; 134 } 135 136 hlist_add_head_rcu(&new->cache_list, head); 137 detail->entries++; 138 if (detail->nextcheck > new->expiry_time) 139 detail->nextcheck = new->expiry_time + 1; 140 cache_get(new); 141 spin_unlock(&detail->hash_lock); 142 143 if (freeme) 144 sunrpc_end_cache_remove_entry(freeme, detail); 145 return new; 146 } 147 148 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail, 149 struct cache_head *key, int hash) 150 { 151 struct cache_head *ret; 152 153 ret = sunrpc_cache_find_rcu(detail, key, hash); 154 if (ret) 155 return ret; 156 /* Didn't find anything, insert an empty entry */ 157 return sunrpc_cache_add_entry(detail, key, hash); 158 } 159 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu); 160 161 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 162 163 static void cache_fresh_locked(struct cache_head *head, time64_t expiry, 164 struct cache_detail *detail) 165 { 166 time64_t now = seconds_since_boot(); 167 if (now <= detail->flush_time) 168 /* ensure it isn't immediately treated as expired */ 169 now = detail->flush_time + 1; 170 head->expiry_time = expiry; 171 head->last_refresh = now; 172 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 173 set_bit(CACHE_VALID, &head->flags); 174 } 175 176 static void cache_fresh_unlocked(struct cache_head *head, 177 struct cache_detail *detail) 178 { 179 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 180 cache_revisit_request(head); 181 cache_dequeue(detail, head); 182 } 183 } 184 185 static void cache_make_negative(struct cache_detail *detail, 186 struct cache_head *h) 187 { 188 set_bit(CACHE_NEGATIVE, &h->flags); 189 trace_cache_entry_make_negative(detail, h); 190 } 191 192 static void cache_entry_update(struct cache_detail *detail, 193 struct cache_head *h, 194 struct cache_head *new) 195 { 196 if (!test_bit(CACHE_NEGATIVE, &new->flags)) { 197 detail->update(h, new); 198 trace_cache_entry_update(detail, h); 199 } else { 200 cache_make_negative(detail, h); 201 } 202 } 203 204 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 205 struct cache_head *new, struct cache_head *old, int hash) 206 { 207 /* The 'old' entry is to be replaced by 'new'. 208 * If 'old' is not VALID, we update it directly, 209 * otherwise we need to replace it 210 */ 211 struct cache_head *tmp; 212 213 if (!test_bit(CACHE_VALID, &old->flags)) { 214 spin_lock(&detail->hash_lock); 215 if (!test_bit(CACHE_VALID, &old->flags)) { 216 cache_entry_update(detail, old, new); 217 cache_fresh_locked(old, new->expiry_time, detail); 218 spin_unlock(&detail->hash_lock); 219 cache_fresh_unlocked(old, detail); 220 return old; 221 } 222 spin_unlock(&detail->hash_lock); 223 } 224 /* We need to insert a new entry */ 225 tmp = detail->alloc(); 226 if (!tmp) { 227 cache_put(old, detail); 228 return NULL; 229 } 230 cache_init(tmp, detail); 231 detail->init(tmp, old); 232 233 spin_lock(&detail->hash_lock); 234 cache_entry_update(detail, tmp, new); 235 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 236 detail->entries++; 237 cache_get(tmp); 238 cache_fresh_locked(tmp, new->expiry_time, detail); 239 cache_fresh_locked(old, 0, detail); 240 spin_unlock(&detail->hash_lock); 241 cache_fresh_unlocked(tmp, detail); 242 cache_fresh_unlocked(old, detail); 243 cache_put(old, detail); 244 return tmp; 245 } 246 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 247 248 static inline int cache_is_valid(struct cache_head *h) 249 { 250 if (!test_bit(CACHE_VALID, &h->flags)) 251 return -EAGAIN; 252 else { 253 /* entry is valid */ 254 if (test_bit(CACHE_NEGATIVE, &h->flags)) 255 return -ENOENT; 256 else { 257 /* 258 * In combination with write barrier in 259 * sunrpc_cache_update, ensures that anyone 260 * using the cache entry after this sees the 261 * updated contents: 262 */ 263 smp_rmb(); 264 return 0; 265 } 266 } 267 } 268 269 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 270 { 271 int rv; 272 273 spin_lock(&detail->hash_lock); 274 rv = cache_is_valid(h); 275 if (rv == -EAGAIN) { 276 cache_make_negative(detail, h); 277 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 278 detail); 279 rv = -ENOENT; 280 } 281 spin_unlock(&detail->hash_lock); 282 cache_fresh_unlocked(h, detail); 283 return rv; 284 } 285 286 int cache_check_rcu(struct cache_detail *detail, 287 struct cache_head *h, struct cache_req *rqstp) 288 { 289 int rv; 290 time64_t refresh_age, age; 291 292 /* First decide return status as best we can */ 293 rv = cache_is_valid(h); 294 295 /* now see if we want to start an upcall */ 296 refresh_age = (h->expiry_time - h->last_refresh); 297 age = seconds_since_boot() - h->last_refresh; 298 299 if (rqstp == NULL) { 300 if (rv == -EAGAIN) 301 rv = -ENOENT; 302 } else if (rv == -EAGAIN || 303 (h->expiry_time != 0 && age > refresh_age/2)) { 304 dprintk("RPC: Want update, refage=%lld, age=%lld\n", 305 refresh_age, age); 306 switch (detail->cache_upcall(detail, h)) { 307 case -EINVAL: 308 rv = try_to_negate_entry(detail, h); 309 break; 310 case -EAGAIN: 311 cache_fresh_unlocked(h, detail); 312 break; 313 } 314 } 315 316 if (rv == -EAGAIN) { 317 if (!cache_defer_req(rqstp, h)) { 318 /* 319 * Request was not deferred; handle it as best 320 * we can ourselves: 321 */ 322 rv = cache_is_valid(h); 323 if (rv == -EAGAIN) 324 rv = -ETIMEDOUT; 325 } 326 } 327 328 return rv; 329 } 330 EXPORT_SYMBOL_GPL(cache_check_rcu); 331 332 /* 333 * This is the generic cache management routine for all 334 * the authentication caches. 335 * It checks the currency of a cache item and will (later) 336 * initiate an upcall to fill it if needed. 337 * 338 * 339 * Returns 0 if the cache_head can be used, or cache_puts it and returns 340 * -EAGAIN if upcall is pending and request has been queued 341 * -ETIMEDOUT if upcall failed or request could not be queue or 342 * upcall completed but item is still invalid (implying that 343 * the cache item has been replaced with a newer one). 344 * -ENOENT if cache entry was negative 345 */ 346 int cache_check(struct cache_detail *detail, 347 struct cache_head *h, struct cache_req *rqstp) 348 { 349 int rv; 350 351 rv = cache_check_rcu(detail, h, rqstp); 352 if (rv) 353 cache_put(h, detail); 354 return rv; 355 } 356 EXPORT_SYMBOL_GPL(cache_check); 357 358 /* 359 * caches need to be periodically cleaned. 360 * For this we maintain a list of cache_detail and 361 * a current pointer into that list and into the table 362 * for that entry. 363 * 364 * Each time cache_clean is called it finds the next non-empty entry 365 * in the current table and walks the list in that entry 366 * looking for entries that can be removed. 367 * 368 * An entry gets removed if: 369 * - The expiry is before current time 370 * - The last_refresh time is before the flush_time for that cache 371 * 372 * later we might drop old entries with non-NEVER expiry if that table 373 * is getting 'full' for some definition of 'full' 374 * 375 * The question of "how often to scan a table" is an interesting one 376 * and is answered in part by the use of the "nextcheck" field in the 377 * cache_detail. 378 * When a scan of a table begins, the nextcheck field is set to a time 379 * that is well into the future. 380 * While scanning, if an expiry time is found that is earlier than the 381 * current nextcheck time, nextcheck is set to that expiry time. 382 * If the flush_time is ever set to a time earlier than the nextcheck 383 * time, the nextcheck time is then set to that flush_time. 384 * 385 * A table is then only scanned if the current time is at least 386 * the nextcheck time. 387 * 388 */ 389 390 static LIST_HEAD(cache_list); 391 static DEFINE_SPINLOCK(cache_list_lock); 392 static struct cache_detail *current_detail; 393 static int current_index; 394 395 static void do_cache_clean(struct work_struct *work); 396 static struct delayed_work cache_cleaner; 397 398 void sunrpc_init_cache_detail(struct cache_detail *cd) 399 { 400 spin_lock_init(&cd->hash_lock); 401 INIT_LIST_HEAD(&cd->queue); 402 spin_lock(&cache_list_lock); 403 cd->nextcheck = 0; 404 cd->entries = 0; 405 atomic_set(&cd->writers, 0); 406 cd->last_close = 0; 407 cd->last_warn = -1; 408 list_add(&cd->others, &cache_list); 409 spin_unlock(&cache_list_lock); 410 411 /* start the cleaning process */ 412 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); 413 } 414 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 415 416 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 417 { 418 cache_purge(cd); 419 spin_lock(&cache_list_lock); 420 spin_lock(&cd->hash_lock); 421 if (current_detail == cd) 422 current_detail = NULL; 423 list_del_init(&cd->others); 424 spin_unlock(&cd->hash_lock); 425 spin_unlock(&cache_list_lock); 426 if (list_empty(&cache_list)) { 427 /* module must be being unloaded so its safe to kill the worker */ 428 cancel_delayed_work_sync(&cache_cleaner); 429 } 430 } 431 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 432 433 /* clean cache tries to find something to clean 434 * and cleans it. 435 * It returns 1 if it cleaned something, 436 * 0 if it didn't find anything this time 437 * -1 if it fell off the end of the list. 438 */ 439 static int cache_clean(void) 440 { 441 int rv = 0; 442 struct list_head *next; 443 444 spin_lock(&cache_list_lock); 445 446 /* find a suitable table if we don't already have one */ 447 while (current_detail == NULL || 448 current_index >= current_detail->hash_size) { 449 if (current_detail) 450 next = current_detail->others.next; 451 else 452 next = cache_list.next; 453 if (next == &cache_list) { 454 current_detail = NULL; 455 spin_unlock(&cache_list_lock); 456 return -1; 457 } 458 current_detail = list_entry(next, struct cache_detail, others); 459 if (current_detail->nextcheck > seconds_since_boot()) 460 current_index = current_detail->hash_size; 461 else { 462 current_index = 0; 463 current_detail->nextcheck = seconds_since_boot()+30*60; 464 } 465 } 466 467 spin_lock(¤t_detail->hash_lock); 468 469 /* find a non-empty bucket in the table */ 470 while (current_index < current_detail->hash_size && 471 hlist_empty(¤t_detail->hash_table[current_index])) 472 current_index++; 473 474 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 475 if (current_index < current_detail->hash_size) { 476 struct cache_head *ch = NULL; 477 struct cache_detail *d; 478 struct hlist_head *head; 479 struct hlist_node *tmp; 480 481 /* Ok, now to clean this strand */ 482 head = ¤t_detail->hash_table[current_index]; 483 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 484 if (current_detail->nextcheck > ch->expiry_time) 485 current_detail->nextcheck = ch->expiry_time+1; 486 if (!cache_is_expired(current_detail, ch)) 487 continue; 488 489 sunrpc_begin_cache_remove_entry(ch, current_detail); 490 trace_cache_entry_expired(current_detail, ch); 491 rv = 1; 492 break; 493 } 494 495 spin_unlock(¤t_detail->hash_lock); 496 d = current_detail; 497 if (!ch) 498 current_index ++; 499 spin_unlock(&cache_list_lock); 500 if (ch) 501 sunrpc_end_cache_remove_entry(ch, d); 502 } else { 503 spin_unlock(¤t_detail->hash_lock); 504 spin_unlock(&cache_list_lock); 505 } 506 507 return rv; 508 } 509 510 /* 511 * We want to regularly clean the cache, so we need to schedule some work ... 512 */ 513 static void do_cache_clean(struct work_struct *work) 514 { 515 int delay; 516 517 if (list_empty(&cache_list)) 518 return; 519 520 if (cache_clean() == -1) 521 delay = round_jiffies_relative(30*HZ); 522 else 523 delay = 5; 524 525 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay); 526 } 527 528 529 /* 530 * Clean all caches promptly. This just calls cache_clean 531 * repeatedly until we are sure that every cache has had a chance to 532 * be fully cleaned 533 */ 534 void cache_flush(void) 535 { 536 while (cache_clean() != -1) 537 cond_resched(); 538 while (cache_clean() != -1) 539 cond_resched(); 540 } 541 EXPORT_SYMBOL_GPL(cache_flush); 542 543 void cache_purge(struct cache_detail *detail) 544 { 545 struct cache_head *ch = NULL; 546 struct hlist_head *head = NULL; 547 int i = 0; 548 549 spin_lock(&detail->hash_lock); 550 if (!detail->entries) { 551 spin_unlock(&detail->hash_lock); 552 return; 553 } 554 555 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name); 556 for (i = 0; i < detail->hash_size; i++) { 557 head = &detail->hash_table[i]; 558 while (!hlist_empty(head)) { 559 ch = hlist_entry(head->first, struct cache_head, 560 cache_list); 561 sunrpc_begin_cache_remove_entry(ch, detail); 562 spin_unlock(&detail->hash_lock); 563 sunrpc_end_cache_remove_entry(ch, detail); 564 spin_lock(&detail->hash_lock); 565 } 566 } 567 spin_unlock(&detail->hash_lock); 568 } 569 EXPORT_SYMBOL_GPL(cache_purge); 570 571 572 /* 573 * Deferral and Revisiting of Requests. 574 * 575 * If a cache lookup finds a pending entry, we 576 * need to defer the request and revisit it later. 577 * All deferred requests are stored in a hash table, 578 * indexed by "struct cache_head *". 579 * As it may be wasteful to store a whole request 580 * structure, we allow the request to provide a 581 * deferred form, which must contain a 582 * 'struct cache_deferred_req' 583 * This cache_deferred_req contains a method to allow 584 * it to be revisited when cache info is available 585 */ 586 587 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 588 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 589 590 #define DFR_MAX 300 /* ??? */ 591 592 static DEFINE_SPINLOCK(cache_defer_lock); 593 static LIST_HEAD(cache_defer_list); 594 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 595 static int cache_defer_cnt; 596 597 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 598 { 599 hlist_del_init(&dreq->hash); 600 if (!list_empty(&dreq->recent)) { 601 list_del_init(&dreq->recent); 602 cache_defer_cnt--; 603 } 604 } 605 606 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 607 { 608 int hash = DFR_HASH(item); 609 610 INIT_LIST_HEAD(&dreq->recent); 611 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 612 } 613 614 static void setup_deferral(struct cache_deferred_req *dreq, 615 struct cache_head *item, 616 int count_me) 617 { 618 619 dreq->item = item; 620 621 spin_lock(&cache_defer_lock); 622 623 __hash_deferred_req(dreq, item); 624 625 if (count_me) { 626 cache_defer_cnt++; 627 list_add(&dreq->recent, &cache_defer_list); 628 } 629 630 spin_unlock(&cache_defer_lock); 631 632 } 633 634 struct thread_deferred_req { 635 struct cache_deferred_req handle; 636 struct completion completion; 637 }; 638 639 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 640 { 641 struct thread_deferred_req *dr = 642 container_of(dreq, struct thread_deferred_req, handle); 643 complete(&dr->completion); 644 } 645 646 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 647 { 648 struct thread_deferred_req sleeper; 649 struct cache_deferred_req *dreq = &sleeper.handle; 650 651 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 652 dreq->revisit = cache_restart_thread; 653 654 setup_deferral(dreq, item, 0); 655 656 if (!test_bit(CACHE_PENDING, &item->flags) || 657 wait_for_completion_interruptible_timeout( 658 &sleeper.completion, req->thread_wait) <= 0) { 659 /* The completion wasn't completed, so we need 660 * to clean up 661 */ 662 spin_lock(&cache_defer_lock); 663 if (!hlist_unhashed(&sleeper.handle.hash)) { 664 __unhash_deferred_req(&sleeper.handle); 665 spin_unlock(&cache_defer_lock); 666 } else { 667 /* cache_revisit_request already removed 668 * this from the hash table, but hasn't 669 * called ->revisit yet. It will very soon 670 * and we need to wait for it. 671 */ 672 spin_unlock(&cache_defer_lock); 673 wait_for_completion(&sleeper.completion); 674 } 675 } 676 } 677 678 static void cache_limit_defers(void) 679 { 680 /* Make sure we haven't exceed the limit of allowed deferred 681 * requests. 682 */ 683 struct cache_deferred_req *discard = NULL; 684 685 if (cache_defer_cnt <= DFR_MAX) 686 return; 687 688 spin_lock(&cache_defer_lock); 689 690 /* Consider removing either the first or the last */ 691 if (cache_defer_cnt > DFR_MAX) { 692 if (get_random_u32_below(2)) 693 discard = list_entry(cache_defer_list.next, 694 struct cache_deferred_req, recent); 695 else 696 discard = list_entry(cache_defer_list.prev, 697 struct cache_deferred_req, recent); 698 __unhash_deferred_req(discard); 699 } 700 spin_unlock(&cache_defer_lock); 701 if (discard) 702 discard->revisit(discard, 1); 703 } 704 705 #if IS_ENABLED(CONFIG_FAIL_SUNRPC) 706 static inline bool cache_defer_immediately(void) 707 { 708 return !fail_sunrpc.ignore_cache_wait && 709 should_fail(&fail_sunrpc.attr, 1); 710 } 711 #else 712 static inline bool cache_defer_immediately(void) 713 { 714 return false; 715 } 716 #endif 717 718 /* Return true if and only if a deferred request is queued. */ 719 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 720 { 721 struct cache_deferred_req *dreq; 722 723 if (!cache_defer_immediately()) { 724 cache_wait_req(req, item); 725 if (!test_bit(CACHE_PENDING, &item->flags)) 726 return false; 727 } 728 729 dreq = req->defer(req); 730 if (dreq == NULL) 731 return false; 732 setup_deferral(dreq, item, 1); 733 if (!test_bit(CACHE_PENDING, &item->flags)) 734 /* Bit could have been cleared before we managed to 735 * set up the deferral, so need to revisit just in case 736 */ 737 cache_revisit_request(item); 738 739 cache_limit_defers(); 740 return true; 741 } 742 743 static void cache_revisit_request(struct cache_head *item) 744 { 745 struct cache_deferred_req *dreq; 746 struct hlist_node *tmp; 747 int hash = DFR_HASH(item); 748 LIST_HEAD(pending); 749 750 spin_lock(&cache_defer_lock); 751 752 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 753 if (dreq->item == item) { 754 __unhash_deferred_req(dreq); 755 list_add(&dreq->recent, &pending); 756 } 757 758 spin_unlock(&cache_defer_lock); 759 760 while (!list_empty(&pending)) { 761 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 762 list_del_init(&dreq->recent); 763 dreq->revisit(dreq, 0); 764 } 765 } 766 767 void cache_clean_deferred(void *owner) 768 { 769 struct cache_deferred_req *dreq, *tmp; 770 LIST_HEAD(pending); 771 772 spin_lock(&cache_defer_lock); 773 774 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 775 if (dreq->owner == owner) { 776 __unhash_deferred_req(dreq); 777 list_add(&dreq->recent, &pending); 778 } 779 } 780 spin_unlock(&cache_defer_lock); 781 782 while (!list_empty(&pending)) { 783 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 784 list_del_init(&dreq->recent); 785 dreq->revisit(dreq, 1); 786 } 787 } 788 789 /* 790 * communicate with user-space 791 * 792 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel. 793 * On read, you get a full request, or block. 794 * On write, an update request is processed. 795 * Poll works if anything to read, and always allows write. 796 * 797 * Implemented by linked list of requests. Each open file has 798 * a ->private that also exists in this list. New requests are added 799 * to the end and may wakeup and preceding readers. 800 * New readers are added to the head. If, on read, an item is found with 801 * CACHE_UPCALLING clear, we free it from the list. 802 * 803 */ 804 805 static DEFINE_SPINLOCK(queue_lock); 806 807 struct cache_queue { 808 struct list_head list; 809 int reader; /* if 0, then request */ 810 }; 811 struct cache_request { 812 struct cache_queue q; 813 struct cache_head *item; 814 char * buf; 815 int len; 816 int readers; 817 }; 818 struct cache_reader { 819 struct cache_queue q; 820 int offset; /* if non-0, we have a refcnt on next request */ 821 }; 822 823 static int cache_request(struct cache_detail *detail, 824 struct cache_request *crq) 825 { 826 char *bp = crq->buf; 827 int len = PAGE_SIZE; 828 829 detail->cache_request(detail, crq->item, &bp, &len); 830 if (len < 0) 831 return -E2BIG; 832 return PAGE_SIZE - len; 833 } 834 835 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 836 loff_t *ppos, struct cache_detail *cd) 837 { 838 struct cache_reader *rp = filp->private_data; 839 struct cache_request *rq; 840 struct inode *inode = file_inode(filp); 841 int err; 842 843 if (count == 0) 844 return 0; 845 846 inode_lock(inode); /* protect against multiple concurrent 847 * readers on this file */ 848 again: 849 spin_lock(&queue_lock); 850 /* need to find next request */ 851 while (rp->q.list.next != &cd->queue && 852 list_entry(rp->q.list.next, struct cache_queue, list) 853 ->reader) { 854 struct list_head *next = rp->q.list.next; 855 list_move(&rp->q.list, next); 856 } 857 if (rp->q.list.next == &cd->queue) { 858 spin_unlock(&queue_lock); 859 inode_unlock(inode); 860 WARN_ON_ONCE(rp->offset); 861 return 0; 862 } 863 rq = container_of(rp->q.list.next, struct cache_request, q.list); 864 WARN_ON_ONCE(rq->q.reader); 865 if (rp->offset == 0) 866 rq->readers++; 867 spin_unlock(&queue_lock); 868 869 if (rq->len == 0) { 870 err = cache_request(cd, rq); 871 if (err < 0) 872 goto out; 873 rq->len = err; 874 } 875 876 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 877 err = -EAGAIN; 878 spin_lock(&queue_lock); 879 list_move(&rp->q.list, &rq->q.list); 880 spin_unlock(&queue_lock); 881 } else { 882 if (rp->offset + count > rq->len) 883 count = rq->len - rp->offset; 884 err = -EFAULT; 885 if (copy_to_user(buf, rq->buf + rp->offset, count)) 886 goto out; 887 rp->offset += count; 888 if (rp->offset >= rq->len) { 889 rp->offset = 0; 890 spin_lock(&queue_lock); 891 list_move(&rp->q.list, &rq->q.list); 892 spin_unlock(&queue_lock); 893 } 894 err = 0; 895 } 896 out: 897 if (rp->offset == 0) { 898 /* need to release rq */ 899 spin_lock(&queue_lock); 900 rq->readers--; 901 if (rq->readers == 0 && 902 !test_bit(CACHE_PENDING, &rq->item->flags)) { 903 list_del(&rq->q.list); 904 spin_unlock(&queue_lock); 905 cache_put(rq->item, cd); 906 kfree(rq->buf); 907 kfree(rq); 908 } else 909 spin_unlock(&queue_lock); 910 } 911 if (err == -EAGAIN) 912 goto again; 913 inode_unlock(inode); 914 return err ? err : count; 915 } 916 917 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 918 size_t count, struct cache_detail *cd) 919 { 920 ssize_t ret; 921 922 if (count == 0) 923 return -EINVAL; 924 if (copy_from_user(kaddr, buf, count)) 925 return -EFAULT; 926 kaddr[count] = '\0'; 927 ret = cd->cache_parse(cd, kaddr, count); 928 if (!ret) 929 ret = count; 930 return ret; 931 } 932 933 static ssize_t cache_downcall(struct address_space *mapping, 934 const char __user *buf, 935 size_t count, struct cache_detail *cd) 936 { 937 char *write_buf; 938 ssize_t ret = -ENOMEM; 939 940 if (count >= 32768) { /* 32k is max userland buffer, lets check anyway */ 941 ret = -EINVAL; 942 goto out; 943 } 944 945 write_buf = kvmalloc(count + 1, GFP_KERNEL); 946 if (!write_buf) 947 goto out; 948 949 ret = cache_do_downcall(write_buf, buf, count, cd); 950 kvfree(write_buf); 951 out: 952 return ret; 953 } 954 955 static ssize_t cache_write(struct file *filp, const char __user *buf, 956 size_t count, loff_t *ppos, 957 struct cache_detail *cd) 958 { 959 struct address_space *mapping = filp->f_mapping; 960 struct inode *inode = file_inode(filp); 961 ssize_t ret = -EINVAL; 962 963 if (!cd->cache_parse) 964 goto out; 965 966 inode_lock(inode); 967 ret = cache_downcall(mapping, buf, count, cd); 968 inode_unlock(inode); 969 out: 970 return ret; 971 } 972 973 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 974 975 static __poll_t cache_poll(struct file *filp, poll_table *wait, 976 struct cache_detail *cd) 977 { 978 __poll_t mask; 979 struct cache_reader *rp = filp->private_data; 980 struct cache_queue *cq; 981 982 poll_wait(filp, &queue_wait, wait); 983 984 /* alway allow write */ 985 mask = EPOLLOUT | EPOLLWRNORM; 986 987 if (!rp) 988 return mask; 989 990 spin_lock(&queue_lock); 991 992 for (cq= &rp->q; &cq->list != &cd->queue; 993 cq = list_entry(cq->list.next, struct cache_queue, list)) 994 if (!cq->reader) { 995 mask |= EPOLLIN | EPOLLRDNORM; 996 break; 997 } 998 spin_unlock(&queue_lock); 999 return mask; 1000 } 1001 1002 static int cache_ioctl(struct inode *ino, struct file *filp, 1003 unsigned int cmd, unsigned long arg, 1004 struct cache_detail *cd) 1005 { 1006 int len = 0; 1007 struct cache_reader *rp = filp->private_data; 1008 struct cache_queue *cq; 1009 1010 if (cmd != FIONREAD || !rp) 1011 return -EINVAL; 1012 1013 spin_lock(&queue_lock); 1014 1015 /* only find the length remaining in current request, 1016 * or the length of the next request 1017 */ 1018 for (cq= &rp->q; &cq->list != &cd->queue; 1019 cq = list_entry(cq->list.next, struct cache_queue, list)) 1020 if (!cq->reader) { 1021 struct cache_request *cr = 1022 container_of(cq, struct cache_request, q); 1023 len = cr->len - rp->offset; 1024 break; 1025 } 1026 spin_unlock(&queue_lock); 1027 1028 return put_user(len, (int __user *)arg); 1029 } 1030 1031 static int cache_open(struct inode *inode, struct file *filp, 1032 struct cache_detail *cd) 1033 { 1034 struct cache_reader *rp = NULL; 1035 1036 if (!cd || !try_module_get(cd->owner)) 1037 return -EACCES; 1038 nonseekable_open(inode, filp); 1039 if (filp->f_mode & FMODE_READ) { 1040 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 1041 if (!rp) { 1042 module_put(cd->owner); 1043 return -ENOMEM; 1044 } 1045 rp->offset = 0; 1046 rp->q.reader = 1; 1047 1048 spin_lock(&queue_lock); 1049 list_add(&rp->q.list, &cd->queue); 1050 spin_unlock(&queue_lock); 1051 } 1052 if (filp->f_mode & FMODE_WRITE) 1053 atomic_inc(&cd->writers); 1054 filp->private_data = rp; 1055 return 0; 1056 } 1057 1058 static int cache_release(struct inode *inode, struct file *filp, 1059 struct cache_detail *cd) 1060 { 1061 struct cache_reader *rp = filp->private_data; 1062 1063 if (rp) { 1064 spin_lock(&queue_lock); 1065 if (rp->offset) { 1066 struct cache_queue *cq; 1067 for (cq= &rp->q; &cq->list != &cd->queue; 1068 cq = list_entry(cq->list.next, struct cache_queue, list)) 1069 if (!cq->reader) { 1070 container_of(cq, struct cache_request, q) 1071 ->readers--; 1072 break; 1073 } 1074 rp->offset = 0; 1075 } 1076 list_del(&rp->q.list); 1077 spin_unlock(&queue_lock); 1078 1079 filp->private_data = NULL; 1080 kfree(rp); 1081 1082 } 1083 if (filp->f_mode & FMODE_WRITE) { 1084 atomic_dec(&cd->writers); 1085 cd->last_close = seconds_since_boot(); 1086 } 1087 module_put(cd->owner); 1088 return 0; 1089 } 1090 1091 1092 1093 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1094 { 1095 struct cache_queue *cq, *tmp; 1096 struct cache_request *cr; 1097 LIST_HEAD(dequeued); 1098 1099 spin_lock(&queue_lock); 1100 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1101 if (!cq->reader) { 1102 cr = container_of(cq, struct cache_request, q); 1103 if (cr->item != ch) 1104 continue; 1105 if (test_bit(CACHE_PENDING, &ch->flags)) 1106 /* Lost a race and it is pending again */ 1107 break; 1108 if (cr->readers != 0) 1109 continue; 1110 list_move(&cr->q.list, &dequeued); 1111 } 1112 spin_unlock(&queue_lock); 1113 while (!list_empty(&dequeued)) { 1114 cr = list_entry(dequeued.next, struct cache_request, q.list); 1115 list_del(&cr->q.list); 1116 cache_put(cr->item, detail); 1117 kfree(cr->buf); 1118 kfree(cr); 1119 } 1120 } 1121 1122 /* 1123 * Support routines for text-based upcalls. 1124 * Fields are separated by spaces. 1125 * Fields are either mangled to quote space tab newline slosh with slosh 1126 * or a hexified with a leading \x 1127 * Record is terminated with newline. 1128 * 1129 */ 1130 1131 void qword_add(char **bpp, int *lp, char *str) 1132 { 1133 char *bp = *bpp; 1134 int len = *lp; 1135 int ret; 1136 1137 if (len < 0) return; 1138 1139 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1140 if (ret >= len) { 1141 bp += len; 1142 len = -1; 1143 } else { 1144 bp += ret; 1145 len -= ret; 1146 *bp++ = ' '; 1147 len--; 1148 } 1149 *bpp = bp; 1150 *lp = len; 1151 } 1152 EXPORT_SYMBOL_GPL(qword_add); 1153 1154 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1155 { 1156 char *bp = *bpp; 1157 int len = *lp; 1158 1159 if (len < 0) return; 1160 1161 if (len > 2) { 1162 *bp++ = '\\'; 1163 *bp++ = 'x'; 1164 len -= 2; 1165 while (blen && len >= 2) { 1166 bp = hex_byte_pack(bp, *buf++); 1167 len -= 2; 1168 blen--; 1169 } 1170 } 1171 if (blen || len<1) len = -1; 1172 else { 1173 *bp++ = ' '; 1174 len--; 1175 } 1176 *bpp = bp; 1177 *lp = len; 1178 } 1179 EXPORT_SYMBOL_GPL(qword_addhex); 1180 1181 static void warn_no_listener(struct cache_detail *detail) 1182 { 1183 if (detail->last_warn != detail->last_close) { 1184 detail->last_warn = detail->last_close; 1185 if (detail->warn_no_listener) 1186 detail->warn_no_listener(detail, detail->last_close != 0); 1187 } 1188 } 1189 1190 static bool cache_listeners_exist(struct cache_detail *detail) 1191 { 1192 if (atomic_read(&detail->writers)) 1193 return true; 1194 if (detail->last_close == 0) 1195 /* This cache was never opened */ 1196 return false; 1197 if (detail->last_close < seconds_since_boot() - 30) 1198 /* 1199 * We allow for the possibility that someone might 1200 * restart a userspace daemon without restarting the 1201 * server; but after 30 seconds, we give up. 1202 */ 1203 return false; 1204 return true; 1205 } 1206 1207 /* 1208 * register an upcall request to user-space and queue it up for read() by the 1209 * upcall daemon. 1210 * 1211 * Each request is at most one page long. 1212 */ 1213 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1214 { 1215 char *buf; 1216 struct cache_request *crq; 1217 int ret = 0; 1218 1219 if (test_bit(CACHE_CLEANED, &h->flags)) 1220 /* Too late to make an upcall */ 1221 return -EAGAIN; 1222 1223 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1224 if (!buf) 1225 return -EAGAIN; 1226 1227 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1228 if (!crq) { 1229 kfree(buf); 1230 return -EAGAIN; 1231 } 1232 1233 crq->q.reader = 0; 1234 crq->buf = buf; 1235 crq->len = 0; 1236 crq->readers = 0; 1237 spin_lock(&queue_lock); 1238 if (test_bit(CACHE_PENDING, &h->flags)) { 1239 crq->item = cache_get(h); 1240 list_add_tail(&crq->q.list, &detail->queue); 1241 trace_cache_entry_upcall(detail, h); 1242 } else 1243 /* Lost a race, no longer PENDING, so don't enqueue */ 1244 ret = -EAGAIN; 1245 spin_unlock(&queue_lock); 1246 wake_up(&queue_wait); 1247 if (ret == -EAGAIN) { 1248 kfree(buf); 1249 kfree(crq); 1250 } 1251 return ret; 1252 } 1253 1254 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1255 { 1256 if (test_and_set_bit(CACHE_PENDING, &h->flags)) 1257 return 0; 1258 return cache_pipe_upcall(detail, h); 1259 } 1260 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1261 1262 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail, 1263 struct cache_head *h) 1264 { 1265 if (!cache_listeners_exist(detail)) { 1266 warn_no_listener(detail); 1267 trace_cache_entry_no_listener(detail, h); 1268 return -EINVAL; 1269 } 1270 return sunrpc_cache_pipe_upcall(detail, h); 1271 } 1272 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout); 1273 1274 /* 1275 * parse a message from user-space and pass it 1276 * to an appropriate cache 1277 * Messages are, like requests, separated into fields by 1278 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1279 * 1280 * Message is 1281 * reply cachename expiry key ... content.... 1282 * 1283 * key and content are both parsed by cache 1284 */ 1285 1286 int qword_get(char **bpp, char *dest, int bufsize) 1287 { 1288 /* return bytes copied, or -1 on error */ 1289 char *bp = *bpp; 1290 int len = 0; 1291 1292 while (*bp == ' ') bp++; 1293 1294 if (bp[0] == '\\' && bp[1] == 'x') { 1295 /* HEX STRING */ 1296 bp += 2; 1297 while (len < bufsize - 1) { 1298 int h, l; 1299 1300 h = hex_to_bin(bp[0]); 1301 if (h < 0) 1302 break; 1303 1304 l = hex_to_bin(bp[1]); 1305 if (l < 0) 1306 break; 1307 1308 *dest++ = (h << 4) | l; 1309 bp += 2; 1310 len++; 1311 } 1312 } else { 1313 /* text with \nnn octal quoting */ 1314 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1315 if (*bp == '\\' && 1316 isodigit(bp[1]) && (bp[1] <= '3') && 1317 isodigit(bp[2]) && 1318 isodigit(bp[3])) { 1319 int byte = (*++bp -'0'); 1320 bp++; 1321 byte = (byte << 3) | (*bp++ - '0'); 1322 byte = (byte << 3) | (*bp++ - '0'); 1323 *dest++ = byte; 1324 len++; 1325 } else { 1326 *dest++ = *bp++; 1327 len++; 1328 } 1329 } 1330 } 1331 1332 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1333 return -1; 1334 while (*bp == ' ') bp++; 1335 *bpp = bp; 1336 *dest = '\0'; 1337 return len; 1338 } 1339 EXPORT_SYMBOL_GPL(qword_get); 1340 1341 1342 /* 1343 * support /proc/net/rpc/$CACHENAME/content 1344 * as a seqfile. 1345 * We call ->cache_show passing NULL for the item to 1346 * get a header, then pass each real item in the cache 1347 */ 1348 1349 static void *__cache_seq_start(struct seq_file *m, loff_t *pos) 1350 { 1351 loff_t n = *pos; 1352 unsigned int hash, entry; 1353 struct cache_head *ch; 1354 struct cache_detail *cd = m->private; 1355 1356 if (!n--) 1357 return SEQ_START_TOKEN; 1358 hash = n >> 32; 1359 entry = n & ((1LL<<32) - 1); 1360 1361 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list) 1362 if (!entry--) 1363 return ch; 1364 n &= ~((1LL<<32) - 1); 1365 do { 1366 hash++; 1367 n += 1LL<<32; 1368 } while(hash < cd->hash_size && 1369 hlist_empty(&cd->hash_table[hash])); 1370 if (hash >= cd->hash_size) 1371 return NULL; 1372 *pos = n+1; 1373 return hlist_entry_safe(rcu_dereference_raw( 1374 hlist_first_rcu(&cd->hash_table[hash])), 1375 struct cache_head, cache_list); 1376 } 1377 1378 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1379 { 1380 struct cache_head *ch = p; 1381 int hash = (*pos >> 32); 1382 struct cache_detail *cd = m->private; 1383 1384 if (p == SEQ_START_TOKEN) 1385 hash = 0; 1386 else if (ch->cache_list.next == NULL) { 1387 hash++; 1388 *pos += 1LL<<32; 1389 } else { 1390 ++*pos; 1391 return hlist_entry_safe(rcu_dereference_raw( 1392 hlist_next_rcu(&ch->cache_list)), 1393 struct cache_head, cache_list); 1394 } 1395 *pos &= ~((1LL<<32) - 1); 1396 while (hash < cd->hash_size && 1397 hlist_empty(&cd->hash_table[hash])) { 1398 hash++; 1399 *pos += 1LL<<32; 1400 } 1401 if (hash >= cd->hash_size) 1402 return NULL; 1403 ++*pos; 1404 return hlist_entry_safe(rcu_dereference_raw( 1405 hlist_first_rcu(&cd->hash_table[hash])), 1406 struct cache_head, cache_list); 1407 } 1408 1409 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos) 1410 __acquires(RCU) 1411 { 1412 rcu_read_lock(); 1413 return __cache_seq_start(m, pos); 1414 } 1415 EXPORT_SYMBOL_GPL(cache_seq_start_rcu); 1416 1417 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos) 1418 { 1419 return cache_seq_next(file, p, pos); 1420 } 1421 EXPORT_SYMBOL_GPL(cache_seq_next_rcu); 1422 1423 void cache_seq_stop_rcu(struct seq_file *m, void *p) 1424 __releases(RCU) 1425 { 1426 rcu_read_unlock(); 1427 } 1428 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu); 1429 1430 static int c_show(struct seq_file *m, void *p) 1431 { 1432 struct cache_head *cp = p; 1433 struct cache_detail *cd = m->private; 1434 1435 if (p == SEQ_START_TOKEN) 1436 return cd->cache_show(m, cd, NULL); 1437 1438 ifdebug(CACHE) 1439 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n", 1440 convert_to_wallclock(cp->expiry_time), 1441 kref_read(&cp->ref), cp->flags); 1442 1443 if (cache_check_rcu(cd, cp, NULL)) 1444 seq_puts(m, "# "); 1445 else if (cache_is_expired(cd, cp)) 1446 seq_puts(m, "# "); 1447 1448 return cd->cache_show(m, cd, cp); 1449 } 1450 1451 static const struct seq_operations cache_content_op = { 1452 .start = cache_seq_start_rcu, 1453 .next = cache_seq_next_rcu, 1454 .stop = cache_seq_stop_rcu, 1455 .show = c_show, 1456 }; 1457 1458 static int content_open(struct inode *inode, struct file *file, 1459 struct cache_detail *cd) 1460 { 1461 struct seq_file *seq; 1462 int err; 1463 1464 if (!cd || !try_module_get(cd->owner)) 1465 return -EACCES; 1466 1467 err = seq_open(file, &cache_content_op); 1468 if (err) { 1469 module_put(cd->owner); 1470 return err; 1471 } 1472 1473 seq = file->private_data; 1474 seq->private = cd; 1475 return 0; 1476 } 1477 1478 static int content_release(struct inode *inode, struct file *file, 1479 struct cache_detail *cd) 1480 { 1481 int ret = seq_release(inode, file); 1482 module_put(cd->owner); 1483 return ret; 1484 } 1485 1486 static int open_flush(struct inode *inode, struct file *file, 1487 struct cache_detail *cd) 1488 { 1489 if (!cd || !try_module_get(cd->owner)) 1490 return -EACCES; 1491 return nonseekable_open(inode, file); 1492 } 1493 1494 static int release_flush(struct inode *inode, struct file *file, 1495 struct cache_detail *cd) 1496 { 1497 module_put(cd->owner); 1498 return 0; 1499 } 1500 1501 static ssize_t read_flush(struct file *file, char __user *buf, 1502 size_t count, loff_t *ppos, 1503 struct cache_detail *cd) 1504 { 1505 char tbuf[22]; 1506 size_t len; 1507 1508 len = snprintf(tbuf, sizeof(tbuf), "%llu\n", 1509 convert_to_wallclock(cd->flush_time)); 1510 return simple_read_from_buffer(buf, count, ppos, tbuf, len); 1511 } 1512 1513 static ssize_t write_flush(struct file *file, const char __user *buf, 1514 size_t count, loff_t *ppos, 1515 struct cache_detail *cd) 1516 { 1517 char tbuf[20]; 1518 char *ep; 1519 time64_t now; 1520 1521 if (*ppos || count > sizeof(tbuf)-1) 1522 return -EINVAL; 1523 if (copy_from_user(tbuf, buf, count)) 1524 return -EFAULT; 1525 tbuf[count] = 0; 1526 simple_strtoul(tbuf, &ep, 0); 1527 if (*ep && *ep != '\n') 1528 return -EINVAL; 1529 /* Note that while we check that 'buf' holds a valid number, 1530 * we always ignore the value and just flush everything. 1531 * Making use of the number leads to races. 1532 */ 1533 1534 now = seconds_since_boot(); 1535 /* Always flush everything, so behave like cache_purge() 1536 * Do this by advancing flush_time to the current time, 1537 * or by one second if it has already reached the current time. 1538 * Newly added cache entries will always have ->last_refresh greater 1539 * that ->flush_time, so they don't get flushed prematurely. 1540 */ 1541 1542 if (cd->flush_time >= now) 1543 now = cd->flush_time + 1; 1544 1545 cd->flush_time = now; 1546 cd->nextcheck = now; 1547 cache_flush(); 1548 1549 if (cd->flush) 1550 cd->flush(); 1551 1552 *ppos += count; 1553 return count; 1554 } 1555 1556 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1557 size_t count, loff_t *ppos) 1558 { 1559 struct cache_detail *cd = pde_data(file_inode(filp)); 1560 1561 return cache_read(filp, buf, count, ppos, cd); 1562 } 1563 1564 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1565 size_t count, loff_t *ppos) 1566 { 1567 struct cache_detail *cd = pde_data(file_inode(filp)); 1568 1569 return cache_write(filp, buf, count, ppos, cd); 1570 } 1571 1572 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait) 1573 { 1574 struct cache_detail *cd = pde_data(file_inode(filp)); 1575 1576 return cache_poll(filp, wait, cd); 1577 } 1578 1579 static long cache_ioctl_procfs(struct file *filp, 1580 unsigned int cmd, unsigned long arg) 1581 { 1582 struct inode *inode = file_inode(filp); 1583 struct cache_detail *cd = pde_data(inode); 1584 1585 return cache_ioctl(inode, filp, cmd, arg, cd); 1586 } 1587 1588 static int cache_open_procfs(struct inode *inode, struct file *filp) 1589 { 1590 struct cache_detail *cd = pde_data(inode); 1591 1592 return cache_open(inode, filp, cd); 1593 } 1594 1595 static int cache_release_procfs(struct inode *inode, struct file *filp) 1596 { 1597 struct cache_detail *cd = pde_data(inode); 1598 1599 return cache_release(inode, filp, cd); 1600 } 1601 1602 static const struct proc_ops cache_channel_proc_ops = { 1603 .proc_read = cache_read_procfs, 1604 .proc_write = cache_write_procfs, 1605 .proc_poll = cache_poll_procfs, 1606 .proc_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1607 .proc_open = cache_open_procfs, 1608 .proc_release = cache_release_procfs, 1609 }; 1610 1611 static int content_open_procfs(struct inode *inode, struct file *filp) 1612 { 1613 struct cache_detail *cd = pde_data(inode); 1614 1615 return content_open(inode, filp, cd); 1616 } 1617 1618 static int content_release_procfs(struct inode *inode, struct file *filp) 1619 { 1620 struct cache_detail *cd = pde_data(inode); 1621 1622 return content_release(inode, filp, cd); 1623 } 1624 1625 static const struct proc_ops content_proc_ops = { 1626 .proc_open = content_open_procfs, 1627 .proc_read = seq_read, 1628 .proc_lseek = seq_lseek, 1629 .proc_release = content_release_procfs, 1630 }; 1631 1632 static int open_flush_procfs(struct inode *inode, struct file *filp) 1633 { 1634 struct cache_detail *cd = pde_data(inode); 1635 1636 return open_flush(inode, filp, cd); 1637 } 1638 1639 static int release_flush_procfs(struct inode *inode, struct file *filp) 1640 { 1641 struct cache_detail *cd = pde_data(inode); 1642 1643 return release_flush(inode, filp, cd); 1644 } 1645 1646 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1647 size_t count, loff_t *ppos) 1648 { 1649 struct cache_detail *cd = pde_data(file_inode(filp)); 1650 1651 return read_flush(filp, buf, count, ppos, cd); 1652 } 1653 1654 static ssize_t write_flush_procfs(struct file *filp, 1655 const char __user *buf, 1656 size_t count, loff_t *ppos) 1657 { 1658 struct cache_detail *cd = pde_data(file_inode(filp)); 1659 1660 return write_flush(filp, buf, count, ppos, cd); 1661 } 1662 1663 static const struct proc_ops cache_flush_proc_ops = { 1664 .proc_open = open_flush_procfs, 1665 .proc_read = read_flush_procfs, 1666 .proc_write = write_flush_procfs, 1667 .proc_release = release_flush_procfs, 1668 }; 1669 1670 static void remove_cache_proc_entries(struct cache_detail *cd) 1671 { 1672 if (cd->procfs) { 1673 proc_remove(cd->procfs); 1674 cd->procfs = NULL; 1675 } 1676 } 1677 1678 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1679 { 1680 struct proc_dir_entry *p; 1681 struct sunrpc_net *sn; 1682 1683 if (!IS_ENABLED(CONFIG_PROC_FS)) 1684 return 0; 1685 1686 sn = net_generic(net, sunrpc_net_id); 1687 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc); 1688 if (cd->procfs == NULL) 1689 goto out_nomem; 1690 1691 p = proc_create_data("flush", S_IFREG | 0600, 1692 cd->procfs, &cache_flush_proc_ops, cd); 1693 if (p == NULL) 1694 goto out_nomem; 1695 1696 if (cd->cache_request || cd->cache_parse) { 1697 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs, 1698 &cache_channel_proc_ops, cd); 1699 if (p == NULL) 1700 goto out_nomem; 1701 } 1702 if (cd->cache_show) { 1703 p = proc_create_data("content", S_IFREG | 0400, cd->procfs, 1704 &content_proc_ops, cd); 1705 if (p == NULL) 1706 goto out_nomem; 1707 } 1708 return 0; 1709 out_nomem: 1710 remove_cache_proc_entries(cd); 1711 return -ENOMEM; 1712 } 1713 1714 void __init cache_initialize(void) 1715 { 1716 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1717 } 1718 1719 int cache_register_net(struct cache_detail *cd, struct net *net) 1720 { 1721 int ret; 1722 1723 sunrpc_init_cache_detail(cd); 1724 ret = create_cache_proc_entries(cd, net); 1725 if (ret) 1726 sunrpc_destroy_cache_detail(cd); 1727 return ret; 1728 } 1729 EXPORT_SYMBOL_GPL(cache_register_net); 1730 1731 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1732 { 1733 remove_cache_proc_entries(cd); 1734 sunrpc_destroy_cache_detail(cd); 1735 } 1736 EXPORT_SYMBOL_GPL(cache_unregister_net); 1737 1738 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net) 1739 { 1740 struct cache_detail *cd; 1741 int i; 1742 1743 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1744 if (cd == NULL) 1745 return ERR_PTR(-ENOMEM); 1746 1747 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head), 1748 GFP_KERNEL); 1749 if (cd->hash_table == NULL) { 1750 kfree(cd); 1751 return ERR_PTR(-ENOMEM); 1752 } 1753 1754 for (i = 0; i < cd->hash_size; i++) 1755 INIT_HLIST_HEAD(&cd->hash_table[i]); 1756 cd->net = net; 1757 return cd; 1758 } 1759 EXPORT_SYMBOL_GPL(cache_create_net); 1760 1761 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1762 { 1763 kfree(cd->hash_table); 1764 kfree(cd); 1765 } 1766 EXPORT_SYMBOL_GPL(cache_destroy_net); 1767 1768 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1769 size_t count, loff_t *ppos) 1770 { 1771 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1772 1773 return cache_read(filp, buf, count, ppos, cd); 1774 } 1775 1776 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1777 size_t count, loff_t *ppos) 1778 { 1779 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1780 1781 return cache_write(filp, buf, count, ppos, cd); 1782 } 1783 1784 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait) 1785 { 1786 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1787 1788 return cache_poll(filp, wait, cd); 1789 } 1790 1791 static long cache_ioctl_pipefs(struct file *filp, 1792 unsigned int cmd, unsigned long arg) 1793 { 1794 struct inode *inode = file_inode(filp); 1795 struct cache_detail *cd = RPC_I(inode)->private; 1796 1797 return cache_ioctl(inode, filp, cmd, arg, cd); 1798 } 1799 1800 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1801 { 1802 struct cache_detail *cd = RPC_I(inode)->private; 1803 1804 return cache_open(inode, filp, cd); 1805 } 1806 1807 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1808 { 1809 struct cache_detail *cd = RPC_I(inode)->private; 1810 1811 return cache_release(inode, filp, cd); 1812 } 1813 1814 const struct file_operations cache_file_operations_pipefs = { 1815 .owner = THIS_MODULE, 1816 .read = cache_read_pipefs, 1817 .write = cache_write_pipefs, 1818 .poll = cache_poll_pipefs, 1819 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1820 .open = cache_open_pipefs, 1821 .release = cache_release_pipefs, 1822 }; 1823 1824 static int content_open_pipefs(struct inode *inode, struct file *filp) 1825 { 1826 struct cache_detail *cd = RPC_I(inode)->private; 1827 1828 return content_open(inode, filp, cd); 1829 } 1830 1831 static int content_release_pipefs(struct inode *inode, struct file *filp) 1832 { 1833 struct cache_detail *cd = RPC_I(inode)->private; 1834 1835 return content_release(inode, filp, cd); 1836 } 1837 1838 const struct file_operations content_file_operations_pipefs = { 1839 .open = content_open_pipefs, 1840 .read = seq_read, 1841 .llseek = seq_lseek, 1842 .release = content_release_pipefs, 1843 }; 1844 1845 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1846 { 1847 struct cache_detail *cd = RPC_I(inode)->private; 1848 1849 return open_flush(inode, filp, cd); 1850 } 1851 1852 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1853 { 1854 struct cache_detail *cd = RPC_I(inode)->private; 1855 1856 return release_flush(inode, filp, cd); 1857 } 1858 1859 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1860 size_t count, loff_t *ppos) 1861 { 1862 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1863 1864 return read_flush(filp, buf, count, ppos, cd); 1865 } 1866 1867 static ssize_t write_flush_pipefs(struct file *filp, 1868 const char __user *buf, 1869 size_t count, loff_t *ppos) 1870 { 1871 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1872 1873 return write_flush(filp, buf, count, ppos, cd); 1874 } 1875 1876 const struct file_operations cache_flush_operations_pipefs = { 1877 .open = open_flush_pipefs, 1878 .read = read_flush_pipefs, 1879 .write = write_flush_pipefs, 1880 .release = release_flush_pipefs, 1881 }; 1882 1883 int sunrpc_cache_register_pipefs(struct dentry *parent, 1884 const char *name, umode_t umode, 1885 struct cache_detail *cd) 1886 { 1887 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1888 if (IS_ERR(dir)) 1889 return PTR_ERR(dir); 1890 cd->pipefs = dir; 1891 return 0; 1892 } 1893 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1894 1895 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1896 { 1897 if (cd->pipefs) { 1898 rpc_remove_cache_dir(cd->pipefs); 1899 cd->pipefs = NULL; 1900 } 1901 } 1902 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1903 1904 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h) 1905 { 1906 spin_lock(&cd->hash_lock); 1907 if (!hlist_unhashed(&h->cache_list)){ 1908 sunrpc_begin_cache_remove_entry(h, cd); 1909 spin_unlock(&cd->hash_lock); 1910 sunrpc_end_cache_remove_entry(h, cd); 1911 } else 1912 spin_unlock(&cd->hash_lock); 1913 } 1914 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash); 1915