xref: /linux/net/sunrpc/cache.c (revision 0dd9ac63ce26ec87b080ca9c3e6efed33c23ace6)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <linux/smp_lock.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include <linux/smp_lock.h>
38 
39 #define	 RPCDBG_FACILITY RPCDBG_CACHE
40 
41 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
43 
44 static void cache_init(struct cache_head *h)
45 {
46 	time_t now = get_seconds();
47 	h->next = NULL;
48 	h->flags = 0;
49 	kref_init(&h->ref);
50 	h->expiry_time = now + CACHE_NEW_EXPIRY;
51 	h->last_refresh = now;
52 }
53 
54 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
55 {
56 	return  (h->expiry_time < get_seconds()) ||
57 		(detail->flush_time > h->last_refresh);
58 }
59 
60 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
61 				       struct cache_head *key, int hash)
62 {
63 	struct cache_head **head,  **hp;
64 	struct cache_head *new = NULL, *freeme = NULL;
65 
66 	head = &detail->hash_table[hash];
67 
68 	read_lock(&detail->hash_lock);
69 
70 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
71 		struct cache_head *tmp = *hp;
72 		if (detail->match(tmp, key)) {
73 			if (cache_is_expired(detail, tmp))
74 				/* This entry is expired, we will discard it. */
75 				break;
76 			cache_get(tmp);
77 			read_unlock(&detail->hash_lock);
78 			return tmp;
79 		}
80 	}
81 	read_unlock(&detail->hash_lock);
82 	/* Didn't find anything, insert an empty entry */
83 
84 	new = detail->alloc();
85 	if (!new)
86 		return NULL;
87 	/* must fully initialise 'new', else
88 	 * we might get lose if we need to
89 	 * cache_put it soon.
90 	 */
91 	cache_init(new);
92 	detail->init(new, key);
93 
94 	write_lock(&detail->hash_lock);
95 
96 	/* check if entry appeared while we slept */
97 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
98 		struct cache_head *tmp = *hp;
99 		if (detail->match(tmp, key)) {
100 			if (cache_is_expired(detail, tmp)) {
101 				*hp = tmp->next;
102 				tmp->next = NULL;
103 				detail->entries --;
104 				freeme = tmp;
105 				break;
106 			}
107 			cache_get(tmp);
108 			write_unlock(&detail->hash_lock);
109 			cache_put(new, detail);
110 			return tmp;
111 		}
112 	}
113 	new->next = *head;
114 	*head = new;
115 	detail->entries++;
116 	cache_get(new);
117 	write_unlock(&detail->hash_lock);
118 
119 	if (freeme)
120 		cache_put(freeme, detail);
121 	return new;
122 }
123 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
124 
125 
126 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
127 
128 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
129 {
130 	head->expiry_time = expiry;
131 	head->last_refresh = get_seconds();
132 	set_bit(CACHE_VALID, &head->flags);
133 }
134 
135 static void cache_fresh_unlocked(struct cache_head *head,
136 				 struct cache_detail *detail)
137 {
138 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139 		cache_revisit_request(head);
140 		cache_dequeue(detail, head);
141 	}
142 }
143 
144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145 				       struct cache_head *new, struct cache_head *old, int hash)
146 {
147 	/* The 'old' entry is to be replaced by 'new'.
148 	 * If 'old' is not VALID, we update it directly,
149 	 * otherwise we need to replace it
150 	 */
151 	struct cache_head **head;
152 	struct cache_head *tmp;
153 
154 	if (!test_bit(CACHE_VALID, &old->flags)) {
155 		write_lock(&detail->hash_lock);
156 		if (!test_bit(CACHE_VALID, &old->flags)) {
157 			if (test_bit(CACHE_NEGATIVE, &new->flags))
158 				set_bit(CACHE_NEGATIVE, &old->flags);
159 			else
160 				detail->update(old, new);
161 			cache_fresh_locked(old, new->expiry_time);
162 			write_unlock(&detail->hash_lock);
163 			cache_fresh_unlocked(old, detail);
164 			return old;
165 		}
166 		write_unlock(&detail->hash_lock);
167 	}
168 	/* We need to insert a new entry */
169 	tmp = detail->alloc();
170 	if (!tmp) {
171 		cache_put(old, detail);
172 		return NULL;
173 	}
174 	cache_init(tmp);
175 	detail->init(tmp, old);
176 	head = &detail->hash_table[hash];
177 
178 	write_lock(&detail->hash_lock);
179 	if (test_bit(CACHE_NEGATIVE, &new->flags))
180 		set_bit(CACHE_NEGATIVE, &tmp->flags);
181 	else
182 		detail->update(tmp, new);
183 	tmp->next = *head;
184 	*head = tmp;
185 	detail->entries++;
186 	cache_get(tmp);
187 	cache_fresh_locked(tmp, new->expiry_time);
188 	cache_fresh_locked(old, 0);
189 	write_unlock(&detail->hash_lock);
190 	cache_fresh_unlocked(tmp, detail);
191 	cache_fresh_unlocked(old, detail);
192 	cache_put(old, detail);
193 	return tmp;
194 }
195 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
196 
197 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198 {
199 	if (!cd->cache_upcall)
200 		return -EINVAL;
201 	return cd->cache_upcall(cd, h);
202 }
203 
204 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
205 {
206 	if (!test_bit(CACHE_VALID, &h->flags))
207 		return -EAGAIN;
208 	else {
209 		/* entry is valid */
210 		if (test_bit(CACHE_NEGATIVE, &h->flags))
211 			return -ENOENT;
212 		else
213 			return 0;
214 	}
215 }
216 
217 /*
218  * This is the generic cache management routine for all
219  * the authentication caches.
220  * It checks the currency of a cache item and will (later)
221  * initiate an upcall to fill it if needed.
222  *
223  *
224  * Returns 0 if the cache_head can be used, or cache_puts it and returns
225  * -EAGAIN if upcall is pending and request has been queued
226  * -ETIMEDOUT if upcall failed or request could not be queue or
227  *           upcall completed but item is still invalid (implying that
228  *           the cache item has been replaced with a newer one).
229  * -ENOENT if cache entry was negative
230  */
231 int cache_check(struct cache_detail *detail,
232 		    struct cache_head *h, struct cache_req *rqstp)
233 {
234 	int rv;
235 	long refresh_age, age;
236 
237 	/* First decide return status as best we can */
238 	rv = cache_is_valid(detail, h);
239 
240 	/* now see if we want to start an upcall */
241 	refresh_age = (h->expiry_time - h->last_refresh);
242 	age = get_seconds() - h->last_refresh;
243 
244 	if (rqstp == NULL) {
245 		if (rv == -EAGAIN)
246 			rv = -ENOENT;
247 	} else if (rv == -EAGAIN || age > refresh_age/2) {
248 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
249 				refresh_age, age);
250 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
251 			switch (cache_make_upcall(detail, h)) {
252 			case -EINVAL:
253 				clear_bit(CACHE_PENDING, &h->flags);
254 				cache_revisit_request(h);
255 				if (rv == -EAGAIN) {
256 					set_bit(CACHE_NEGATIVE, &h->flags);
257 					cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY);
258 					cache_fresh_unlocked(h, detail);
259 					rv = -ENOENT;
260 				}
261 				break;
262 
263 			case -EAGAIN:
264 				clear_bit(CACHE_PENDING, &h->flags);
265 				cache_revisit_request(h);
266 				break;
267 			}
268 		}
269 	}
270 
271 	if (rv == -EAGAIN) {
272 		if (cache_defer_req(rqstp, h) < 0) {
273 			/* Request is not deferred */
274 			rv = cache_is_valid(detail, h);
275 			if (rv == -EAGAIN)
276 				rv = -ETIMEDOUT;
277 		}
278 	}
279 	if (rv)
280 		cache_put(h, detail);
281 	return rv;
282 }
283 EXPORT_SYMBOL_GPL(cache_check);
284 
285 /*
286  * caches need to be periodically cleaned.
287  * For this we maintain a list of cache_detail and
288  * a current pointer into that list and into the table
289  * for that entry.
290  *
291  * Each time clean_cache is called it finds the next non-empty entry
292  * in the current table and walks the list in that entry
293  * looking for entries that can be removed.
294  *
295  * An entry gets removed if:
296  * - The expiry is before current time
297  * - The last_refresh time is before the flush_time for that cache
298  *
299  * later we might drop old entries with non-NEVER expiry if that table
300  * is getting 'full' for some definition of 'full'
301  *
302  * The question of "how often to scan a table" is an interesting one
303  * and is answered in part by the use of the "nextcheck" field in the
304  * cache_detail.
305  * When a scan of a table begins, the nextcheck field is set to a time
306  * that is well into the future.
307  * While scanning, if an expiry time is found that is earlier than the
308  * current nextcheck time, nextcheck is set to that expiry time.
309  * If the flush_time is ever set to a time earlier than the nextcheck
310  * time, the nextcheck time is then set to that flush_time.
311  *
312  * A table is then only scanned if the current time is at least
313  * the nextcheck time.
314  *
315  */
316 
317 static LIST_HEAD(cache_list);
318 static DEFINE_SPINLOCK(cache_list_lock);
319 static struct cache_detail *current_detail;
320 static int current_index;
321 
322 static void do_cache_clean(struct work_struct *work);
323 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
324 
325 static void sunrpc_init_cache_detail(struct cache_detail *cd)
326 {
327 	rwlock_init(&cd->hash_lock);
328 	INIT_LIST_HEAD(&cd->queue);
329 	spin_lock(&cache_list_lock);
330 	cd->nextcheck = 0;
331 	cd->entries = 0;
332 	atomic_set(&cd->readers, 0);
333 	cd->last_close = 0;
334 	cd->last_warn = -1;
335 	list_add(&cd->others, &cache_list);
336 	spin_unlock(&cache_list_lock);
337 
338 	/* start the cleaning process */
339 	schedule_delayed_work(&cache_cleaner, 0);
340 }
341 
342 static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
343 {
344 	cache_purge(cd);
345 	spin_lock(&cache_list_lock);
346 	write_lock(&cd->hash_lock);
347 	if (cd->entries || atomic_read(&cd->inuse)) {
348 		write_unlock(&cd->hash_lock);
349 		spin_unlock(&cache_list_lock);
350 		goto out;
351 	}
352 	if (current_detail == cd)
353 		current_detail = NULL;
354 	list_del_init(&cd->others);
355 	write_unlock(&cd->hash_lock);
356 	spin_unlock(&cache_list_lock);
357 	if (list_empty(&cache_list)) {
358 		/* module must be being unloaded so its safe to kill the worker */
359 		cancel_delayed_work_sync(&cache_cleaner);
360 	}
361 	return;
362 out:
363 	printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
364 }
365 
366 /* clean cache tries to find something to clean
367  * and cleans it.
368  * It returns 1 if it cleaned something,
369  *            0 if it didn't find anything this time
370  *           -1 if it fell off the end of the list.
371  */
372 static int cache_clean(void)
373 {
374 	int rv = 0;
375 	struct list_head *next;
376 
377 	spin_lock(&cache_list_lock);
378 
379 	/* find a suitable table if we don't already have one */
380 	while (current_detail == NULL ||
381 	    current_index >= current_detail->hash_size) {
382 		if (current_detail)
383 			next = current_detail->others.next;
384 		else
385 			next = cache_list.next;
386 		if (next == &cache_list) {
387 			current_detail = NULL;
388 			spin_unlock(&cache_list_lock);
389 			return -1;
390 		}
391 		current_detail = list_entry(next, struct cache_detail, others);
392 		if (current_detail->nextcheck > get_seconds())
393 			current_index = current_detail->hash_size;
394 		else {
395 			current_index = 0;
396 			current_detail->nextcheck = get_seconds()+30*60;
397 		}
398 	}
399 
400 	/* find a non-empty bucket in the table */
401 	while (current_detail &&
402 	       current_index < current_detail->hash_size &&
403 	       current_detail->hash_table[current_index] == NULL)
404 		current_index++;
405 
406 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
407 
408 	if (current_detail && current_index < current_detail->hash_size) {
409 		struct cache_head *ch, **cp;
410 		struct cache_detail *d;
411 
412 		write_lock(&current_detail->hash_lock);
413 
414 		/* Ok, now to clean this strand */
415 
416 		cp = & current_detail->hash_table[current_index];
417 		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
418 			if (current_detail->nextcheck > ch->expiry_time)
419 				current_detail->nextcheck = ch->expiry_time+1;
420 			if (!cache_is_expired(current_detail, ch))
421 				continue;
422 
423 			*cp = ch->next;
424 			ch->next = NULL;
425 			current_detail->entries--;
426 			rv = 1;
427 			break;
428 		}
429 
430 		write_unlock(&current_detail->hash_lock);
431 		d = current_detail;
432 		if (!ch)
433 			current_index ++;
434 		spin_unlock(&cache_list_lock);
435 		if (ch) {
436 			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
437 				cache_dequeue(current_detail, ch);
438 			cache_revisit_request(ch);
439 			cache_put(ch, d);
440 		}
441 	} else
442 		spin_unlock(&cache_list_lock);
443 
444 	return rv;
445 }
446 
447 /*
448  * We want to regularly clean the cache, so we need to schedule some work ...
449  */
450 static void do_cache_clean(struct work_struct *work)
451 {
452 	int delay = 5;
453 	if (cache_clean() == -1)
454 		delay = round_jiffies_relative(30*HZ);
455 
456 	if (list_empty(&cache_list))
457 		delay = 0;
458 
459 	if (delay)
460 		schedule_delayed_work(&cache_cleaner, delay);
461 }
462 
463 
464 /*
465  * Clean all caches promptly.  This just calls cache_clean
466  * repeatedly until we are sure that every cache has had a chance to
467  * be fully cleaned
468  */
469 void cache_flush(void)
470 {
471 	while (cache_clean() != -1)
472 		cond_resched();
473 	while (cache_clean() != -1)
474 		cond_resched();
475 }
476 EXPORT_SYMBOL_GPL(cache_flush);
477 
478 void cache_purge(struct cache_detail *detail)
479 {
480 	detail->flush_time = LONG_MAX;
481 	detail->nextcheck = get_seconds();
482 	cache_flush();
483 	detail->flush_time = 1;
484 }
485 EXPORT_SYMBOL_GPL(cache_purge);
486 
487 
488 /*
489  * Deferral and Revisiting of Requests.
490  *
491  * If a cache lookup finds a pending entry, we
492  * need to defer the request and revisit it later.
493  * All deferred requests are stored in a hash table,
494  * indexed by "struct cache_head *".
495  * As it may be wasteful to store a whole request
496  * structure, we allow the request to provide a
497  * deferred form, which must contain a
498  * 'struct cache_deferred_req'
499  * This cache_deferred_req contains a method to allow
500  * it to be revisited when cache info is available
501  */
502 
503 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
504 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
505 
506 #define	DFR_MAX	300	/* ??? */
507 
508 static DEFINE_SPINLOCK(cache_defer_lock);
509 static LIST_HEAD(cache_defer_list);
510 static struct list_head cache_defer_hash[DFR_HASHSIZE];
511 static int cache_defer_cnt;
512 
513 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
514 {
515 	struct cache_deferred_req *dreq, *discard;
516 	int hash = DFR_HASH(item);
517 
518 	if (cache_defer_cnt >= DFR_MAX) {
519 		/* too much in the cache, randomly drop this one,
520 		 * or continue and drop the oldest below
521 		 */
522 		if (net_random()&1)
523 			return -ENOMEM;
524 	}
525 	dreq = req->defer(req);
526 	if (dreq == NULL)
527 		return -ENOMEM;
528 
529 	dreq->item = item;
530 
531 	spin_lock(&cache_defer_lock);
532 
533 	list_add(&dreq->recent, &cache_defer_list);
534 
535 	if (cache_defer_hash[hash].next == NULL)
536 		INIT_LIST_HEAD(&cache_defer_hash[hash]);
537 	list_add(&dreq->hash, &cache_defer_hash[hash]);
538 
539 	/* it is in, now maybe clean up */
540 	discard = NULL;
541 	if (++cache_defer_cnt > DFR_MAX) {
542 		discard = list_entry(cache_defer_list.prev,
543 				     struct cache_deferred_req, recent);
544 		list_del_init(&discard->recent);
545 		list_del_init(&discard->hash);
546 		cache_defer_cnt--;
547 	}
548 	spin_unlock(&cache_defer_lock);
549 
550 	if (discard)
551 		/* there was one too many */
552 		discard->revisit(discard, 1);
553 
554 	if (!test_bit(CACHE_PENDING, &item->flags)) {
555 		/* must have just been validated... */
556 		cache_revisit_request(item);
557 		return -EAGAIN;
558 	}
559 	return 0;
560 }
561 
562 static void cache_revisit_request(struct cache_head *item)
563 {
564 	struct cache_deferred_req *dreq;
565 	struct list_head pending;
566 
567 	struct list_head *lp;
568 	int hash = DFR_HASH(item);
569 
570 	INIT_LIST_HEAD(&pending);
571 	spin_lock(&cache_defer_lock);
572 
573 	lp = cache_defer_hash[hash].next;
574 	if (lp) {
575 		while (lp != &cache_defer_hash[hash]) {
576 			dreq = list_entry(lp, struct cache_deferred_req, hash);
577 			lp = lp->next;
578 			if (dreq->item == item) {
579 				list_del_init(&dreq->hash);
580 				list_move(&dreq->recent, &pending);
581 				cache_defer_cnt--;
582 			}
583 		}
584 	}
585 	spin_unlock(&cache_defer_lock);
586 
587 	while (!list_empty(&pending)) {
588 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
589 		list_del_init(&dreq->recent);
590 		dreq->revisit(dreq, 0);
591 	}
592 }
593 
594 void cache_clean_deferred(void *owner)
595 {
596 	struct cache_deferred_req *dreq, *tmp;
597 	struct list_head pending;
598 
599 
600 	INIT_LIST_HEAD(&pending);
601 	spin_lock(&cache_defer_lock);
602 
603 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
604 		if (dreq->owner == owner) {
605 			list_del_init(&dreq->hash);
606 			list_move(&dreq->recent, &pending);
607 			cache_defer_cnt--;
608 		}
609 	}
610 	spin_unlock(&cache_defer_lock);
611 
612 	while (!list_empty(&pending)) {
613 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
614 		list_del_init(&dreq->recent);
615 		dreq->revisit(dreq, 1);
616 	}
617 }
618 
619 /*
620  * communicate with user-space
621  *
622  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
623  * On read, you get a full request, or block.
624  * On write, an update request is processed.
625  * Poll works if anything to read, and always allows write.
626  *
627  * Implemented by linked list of requests.  Each open file has
628  * a ->private that also exists in this list.  New requests are added
629  * to the end and may wakeup and preceding readers.
630  * New readers are added to the head.  If, on read, an item is found with
631  * CACHE_UPCALLING clear, we free it from the list.
632  *
633  */
634 
635 static DEFINE_SPINLOCK(queue_lock);
636 static DEFINE_MUTEX(queue_io_mutex);
637 
638 struct cache_queue {
639 	struct list_head	list;
640 	int			reader;	/* if 0, then request */
641 };
642 struct cache_request {
643 	struct cache_queue	q;
644 	struct cache_head	*item;
645 	char			* buf;
646 	int			len;
647 	int			readers;
648 };
649 struct cache_reader {
650 	struct cache_queue	q;
651 	int			offset;	/* if non-0, we have a refcnt on next request */
652 };
653 
654 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
655 			  loff_t *ppos, struct cache_detail *cd)
656 {
657 	struct cache_reader *rp = filp->private_data;
658 	struct cache_request *rq;
659 	struct inode *inode = filp->f_path.dentry->d_inode;
660 	int err;
661 
662 	if (count == 0)
663 		return 0;
664 
665 	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
666 			      * readers on this file */
667  again:
668 	spin_lock(&queue_lock);
669 	/* need to find next request */
670 	while (rp->q.list.next != &cd->queue &&
671 	       list_entry(rp->q.list.next, struct cache_queue, list)
672 	       ->reader) {
673 		struct list_head *next = rp->q.list.next;
674 		list_move(&rp->q.list, next);
675 	}
676 	if (rp->q.list.next == &cd->queue) {
677 		spin_unlock(&queue_lock);
678 		mutex_unlock(&inode->i_mutex);
679 		BUG_ON(rp->offset);
680 		return 0;
681 	}
682 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
683 	BUG_ON(rq->q.reader);
684 	if (rp->offset == 0)
685 		rq->readers++;
686 	spin_unlock(&queue_lock);
687 
688 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
689 		err = -EAGAIN;
690 		spin_lock(&queue_lock);
691 		list_move(&rp->q.list, &rq->q.list);
692 		spin_unlock(&queue_lock);
693 	} else {
694 		if (rp->offset + count > rq->len)
695 			count = rq->len - rp->offset;
696 		err = -EFAULT;
697 		if (copy_to_user(buf, rq->buf + rp->offset, count))
698 			goto out;
699 		rp->offset += count;
700 		if (rp->offset >= rq->len) {
701 			rp->offset = 0;
702 			spin_lock(&queue_lock);
703 			list_move(&rp->q.list, &rq->q.list);
704 			spin_unlock(&queue_lock);
705 		}
706 		err = 0;
707 	}
708  out:
709 	if (rp->offset == 0) {
710 		/* need to release rq */
711 		spin_lock(&queue_lock);
712 		rq->readers--;
713 		if (rq->readers == 0 &&
714 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
715 			list_del(&rq->q.list);
716 			spin_unlock(&queue_lock);
717 			cache_put(rq->item, cd);
718 			kfree(rq->buf);
719 			kfree(rq);
720 		} else
721 			spin_unlock(&queue_lock);
722 	}
723 	if (err == -EAGAIN)
724 		goto again;
725 	mutex_unlock(&inode->i_mutex);
726 	return err ? err :  count;
727 }
728 
729 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
730 				 size_t count, struct cache_detail *cd)
731 {
732 	ssize_t ret;
733 
734 	if (copy_from_user(kaddr, buf, count))
735 		return -EFAULT;
736 	kaddr[count] = '\0';
737 	ret = cd->cache_parse(cd, kaddr, count);
738 	if (!ret)
739 		ret = count;
740 	return ret;
741 }
742 
743 static ssize_t cache_slow_downcall(const char __user *buf,
744 				   size_t count, struct cache_detail *cd)
745 {
746 	static char write_buf[8192]; /* protected by queue_io_mutex */
747 	ssize_t ret = -EINVAL;
748 
749 	if (count >= sizeof(write_buf))
750 		goto out;
751 	mutex_lock(&queue_io_mutex);
752 	ret = cache_do_downcall(write_buf, buf, count, cd);
753 	mutex_unlock(&queue_io_mutex);
754 out:
755 	return ret;
756 }
757 
758 static ssize_t cache_downcall(struct address_space *mapping,
759 			      const char __user *buf,
760 			      size_t count, struct cache_detail *cd)
761 {
762 	struct page *page;
763 	char *kaddr;
764 	ssize_t ret = -ENOMEM;
765 
766 	if (count >= PAGE_CACHE_SIZE)
767 		goto out_slow;
768 
769 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
770 	if (!page)
771 		goto out_slow;
772 
773 	kaddr = kmap(page);
774 	ret = cache_do_downcall(kaddr, buf, count, cd);
775 	kunmap(page);
776 	unlock_page(page);
777 	page_cache_release(page);
778 	return ret;
779 out_slow:
780 	return cache_slow_downcall(buf, count, cd);
781 }
782 
783 static ssize_t cache_write(struct file *filp, const char __user *buf,
784 			   size_t count, loff_t *ppos,
785 			   struct cache_detail *cd)
786 {
787 	struct address_space *mapping = filp->f_mapping;
788 	struct inode *inode = filp->f_path.dentry->d_inode;
789 	ssize_t ret = -EINVAL;
790 
791 	if (!cd->cache_parse)
792 		goto out;
793 
794 	mutex_lock(&inode->i_mutex);
795 	ret = cache_downcall(mapping, buf, count, cd);
796 	mutex_unlock(&inode->i_mutex);
797 out:
798 	return ret;
799 }
800 
801 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
802 
803 static unsigned int cache_poll(struct file *filp, poll_table *wait,
804 			       struct cache_detail *cd)
805 {
806 	unsigned int mask;
807 	struct cache_reader *rp = filp->private_data;
808 	struct cache_queue *cq;
809 
810 	poll_wait(filp, &queue_wait, wait);
811 
812 	/* alway allow write */
813 	mask = POLL_OUT | POLLWRNORM;
814 
815 	if (!rp)
816 		return mask;
817 
818 	spin_lock(&queue_lock);
819 
820 	for (cq= &rp->q; &cq->list != &cd->queue;
821 	     cq = list_entry(cq->list.next, struct cache_queue, list))
822 		if (!cq->reader) {
823 			mask |= POLLIN | POLLRDNORM;
824 			break;
825 		}
826 	spin_unlock(&queue_lock);
827 	return mask;
828 }
829 
830 static int cache_ioctl(struct inode *ino, struct file *filp,
831 		       unsigned int cmd, unsigned long arg,
832 		       struct cache_detail *cd)
833 {
834 	int len = 0;
835 	struct cache_reader *rp = filp->private_data;
836 	struct cache_queue *cq;
837 
838 	if (cmd != FIONREAD || !rp)
839 		return -EINVAL;
840 
841 	spin_lock(&queue_lock);
842 
843 	/* only find the length remaining in current request,
844 	 * or the length of the next request
845 	 */
846 	for (cq= &rp->q; &cq->list != &cd->queue;
847 	     cq = list_entry(cq->list.next, struct cache_queue, list))
848 		if (!cq->reader) {
849 			struct cache_request *cr =
850 				container_of(cq, struct cache_request, q);
851 			len = cr->len - rp->offset;
852 			break;
853 		}
854 	spin_unlock(&queue_lock);
855 
856 	return put_user(len, (int __user *)arg);
857 }
858 
859 static int cache_open(struct inode *inode, struct file *filp,
860 		      struct cache_detail *cd)
861 {
862 	struct cache_reader *rp = NULL;
863 
864 	if (!cd || !try_module_get(cd->owner))
865 		return -EACCES;
866 	nonseekable_open(inode, filp);
867 	if (filp->f_mode & FMODE_READ) {
868 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
869 		if (!rp)
870 			return -ENOMEM;
871 		rp->offset = 0;
872 		rp->q.reader = 1;
873 		atomic_inc(&cd->readers);
874 		spin_lock(&queue_lock);
875 		list_add(&rp->q.list, &cd->queue);
876 		spin_unlock(&queue_lock);
877 	}
878 	filp->private_data = rp;
879 	return 0;
880 }
881 
882 static int cache_release(struct inode *inode, struct file *filp,
883 			 struct cache_detail *cd)
884 {
885 	struct cache_reader *rp = filp->private_data;
886 
887 	if (rp) {
888 		spin_lock(&queue_lock);
889 		if (rp->offset) {
890 			struct cache_queue *cq;
891 			for (cq= &rp->q; &cq->list != &cd->queue;
892 			     cq = list_entry(cq->list.next, struct cache_queue, list))
893 				if (!cq->reader) {
894 					container_of(cq, struct cache_request, q)
895 						->readers--;
896 					break;
897 				}
898 			rp->offset = 0;
899 		}
900 		list_del(&rp->q.list);
901 		spin_unlock(&queue_lock);
902 
903 		filp->private_data = NULL;
904 		kfree(rp);
905 
906 		cd->last_close = get_seconds();
907 		atomic_dec(&cd->readers);
908 	}
909 	module_put(cd->owner);
910 	return 0;
911 }
912 
913 
914 
915 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
916 {
917 	struct cache_queue *cq;
918 	spin_lock(&queue_lock);
919 	list_for_each_entry(cq, &detail->queue, list)
920 		if (!cq->reader) {
921 			struct cache_request *cr = container_of(cq, struct cache_request, q);
922 			if (cr->item != ch)
923 				continue;
924 			if (cr->readers != 0)
925 				continue;
926 			list_del(&cr->q.list);
927 			spin_unlock(&queue_lock);
928 			cache_put(cr->item, detail);
929 			kfree(cr->buf);
930 			kfree(cr);
931 			return;
932 		}
933 	spin_unlock(&queue_lock);
934 }
935 
936 /*
937  * Support routines for text-based upcalls.
938  * Fields are separated by spaces.
939  * Fields are either mangled to quote space tab newline slosh with slosh
940  * or a hexified with a leading \x
941  * Record is terminated with newline.
942  *
943  */
944 
945 void qword_add(char **bpp, int *lp, char *str)
946 {
947 	char *bp = *bpp;
948 	int len = *lp;
949 	char c;
950 
951 	if (len < 0) return;
952 
953 	while ((c=*str++) && len)
954 		switch(c) {
955 		case ' ':
956 		case '\t':
957 		case '\n':
958 		case '\\':
959 			if (len >= 4) {
960 				*bp++ = '\\';
961 				*bp++ = '0' + ((c & 0300)>>6);
962 				*bp++ = '0' + ((c & 0070)>>3);
963 				*bp++ = '0' + ((c & 0007)>>0);
964 			}
965 			len -= 4;
966 			break;
967 		default:
968 			*bp++ = c;
969 			len--;
970 		}
971 	if (c || len <1) len = -1;
972 	else {
973 		*bp++ = ' ';
974 		len--;
975 	}
976 	*bpp = bp;
977 	*lp = len;
978 }
979 EXPORT_SYMBOL_GPL(qword_add);
980 
981 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
982 {
983 	char *bp = *bpp;
984 	int len = *lp;
985 
986 	if (len < 0) return;
987 
988 	if (len > 2) {
989 		*bp++ = '\\';
990 		*bp++ = 'x';
991 		len -= 2;
992 		while (blen && len >= 2) {
993 			unsigned char c = *buf++;
994 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
995 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
996 			len -= 2;
997 			blen--;
998 		}
999 	}
1000 	if (blen || len<1) len = -1;
1001 	else {
1002 		*bp++ = ' ';
1003 		len--;
1004 	}
1005 	*bpp = bp;
1006 	*lp = len;
1007 }
1008 EXPORT_SYMBOL_GPL(qword_addhex);
1009 
1010 static void warn_no_listener(struct cache_detail *detail)
1011 {
1012 	if (detail->last_warn != detail->last_close) {
1013 		detail->last_warn = detail->last_close;
1014 		if (detail->warn_no_listener)
1015 			detail->warn_no_listener(detail, detail->last_close != 0);
1016 	}
1017 }
1018 
1019 /*
1020  * register an upcall request to user-space and queue it up for read() by the
1021  * upcall daemon.
1022  *
1023  * Each request is at most one page long.
1024  */
1025 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1026 		void (*cache_request)(struct cache_detail *,
1027 				      struct cache_head *,
1028 				      char **,
1029 				      int *))
1030 {
1031 
1032 	char *buf;
1033 	struct cache_request *crq;
1034 	char *bp;
1035 	int len;
1036 
1037 	if (atomic_read(&detail->readers) == 0 &&
1038 	    detail->last_close < get_seconds() - 30) {
1039 			warn_no_listener(detail);
1040 			return -EINVAL;
1041 	}
1042 
1043 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1044 	if (!buf)
1045 		return -EAGAIN;
1046 
1047 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1048 	if (!crq) {
1049 		kfree(buf);
1050 		return -EAGAIN;
1051 	}
1052 
1053 	bp = buf; len = PAGE_SIZE;
1054 
1055 	cache_request(detail, h, &bp, &len);
1056 
1057 	if (len < 0) {
1058 		kfree(buf);
1059 		kfree(crq);
1060 		return -EAGAIN;
1061 	}
1062 	crq->q.reader = 0;
1063 	crq->item = cache_get(h);
1064 	crq->buf = buf;
1065 	crq->len = PAGE_SIZE - len;
1066 	crq->readers = 0;
1067 	spin_lock(&queue_lock);
1068 	list_add_tail(&crq->q.list, &detail->queue);
1069 	spin_unlock(&queue_lock);
1070 	wake_up(&queue_wait);
1071 	return 0;
1072 }
1073 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1074 
1075 /*
1076  * parse a message from user-space and pass it
1077  * to an appropriate cache
1078  * Messages are, like requests, separated into fields by
1079  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1080  *
1081  * Message is
1082  *   reply cachename expiry key ... content....
1083  *
1084  * key and content are both parsed by cache
1085  */
1086 
1087 #define isodigit(c) (isdigit(c) && c <= '7')
1088 int qword_get(char **bpp, char *dest, int bufsize)
1089 {
1090 	/* return bytes copied, or -1 on error */
1091 	char *bp = *bpp;
1092 	int len = 0;
1093 
1094 	while (*bp == ' ') bp++;
1095 
1096 	if (bp[0] == '\\' && bp[1] == 'x') {
1097 		/* HEX STRING */
1098 		bp += 2;
1099 		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1100 			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1101 			bp++;
1102 			byte <<= 4;
1103 			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1104 			*dest++ = byte;
1105 			bp++;
1106 			len++;
1107 		}
1108 	} else {
1109 		/* text with \nnn octal quoting */
1110 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1111 			if (*bp == '\\' &&
1112 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1113 			    isodigit(bp[2]) &&
1114 			    isodigit(bp[3])) {
1115 				int byte = (*++bp -'0');
1116 				bp++;
1117 				byte = (byte << 3) | (*bp++ - '0');
1118 				byte = (byte << 3) | (*bp++ - '0');
1119 				*dest++ = byte;
1120 				len++;
1121 			} else {
1122 				*dest++ = *bp++;
1123 				len++;
1124 			}
1125 		}
1126 	}
1127 
1128 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1129 		return -1;
1130 	while (*bp == ' ') bp++;
1131 	*bpp = bp;
1132 	*dest = '\0';
1133 	return len;
1134 }
1135 EXPORT_SYMBOL_GPL(qword_get);
1136 
1137 
1138 /*
1139  * support /proc/sunrpc/cache/$CACHENAME/content
1140  * as a seqfile.
1141  * We call ->cache_show passing NULL for the item to
1142  * get a header, then pass each real item in the cache
1143  */
1144 
1145 struct handle {
1146 	struct cache_detail *cd;
1147 };
1148 
1149 static void *c_start(struct seq_file *m, loff_t *pos)
1150 	__acquires(cd->hash_lock)
1151 {
1152 	loff_t n = *pos;
1153 	unsigned hash, entry;
1154 	struct cache_head *ch;
1155 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1156 
1157 
1158 	read_lock(&cd->hash_lock);
1159 	if (!n--)
1160 		return SEQ_START_TOKEN;
1161 	hash = n >> 32;
1162 	entry = n & ((1LL<<32) - 1);
1163 
1164 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1165 		if (!entry--)
1166 			return ch;
1167 	n &= ~((1LL<<32) - 1);
1168 	do {
1169 		hash++;
1170 		n += 1LL<<32;
1171 	} while(hash < cd->hash_size &&
1172 		cd->hash_table[hash]==NULL);
1173 	if (hash >= cd->hash_size)
1174 		return NULL;
1175 	*pos = n+1;
1176 	return cd->hash_table[hash];
1177 }
1178 
1179 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1180 {
1181 	struct cache_head *ch = p;
1182 	int hash = (*pos >> 32);
1183 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1184 
1185 	if (p == SEQ_START_TOKEN)
1186 		hash = 0;
1187 	else if (ch->next == NULL) {
1188 		hash++;
1189 		*pos += 1LL<<32;
1190 	} else {
1191 		++*pos;
1192 		return ch->next;
1193 	}
1194 	*pos &= ~((1LL<<32) - 1);
1195 	while (hash < cd->hash_size &&
1196 	       cd->hash_table[hash] == NULL) {
1197 		hash++;
1198 		*pos += 1LL<<32;
1199 	}
1200 	if (hash >= cd->hash_size)
1201 		return NULL;
1202 	++*pos;
1203 	return cd->hash_table[hash];
1204 }
1205 
1206 static void c_stop(struct seq_file *m, void *p)
1207 	__releases(cd->hash_lock)
1208 {
1209 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1210 	read_unlock(&cd->hash_lock);
1211 }
1212 
1213 static int c_show(struct seq_file *m, void *p)
1214 {
1215 	struct cache_head *cp = p;
1216 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1217 
1218 	if (p == SEQ_START_TOKEN)
1219 		return cd->cache_show(m, cd, NULL);
1220 
1221 	ifdebug(CACHE)
1222 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1223 			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1224 	cache_get(cp);
1225 	if (cache_check(cd, cp, NULL))
1226 		/* cache_check does a cache_put on failure */
1227 		seq_printf(m, "# ");
1228 	else
1229 		cache_put(cp, cd);
1230 
1231 	return cd->cache_show(m, cd, cp);
1232 }
1233 
1234 static const struct seq_operations cache_content_op = {
1235 	.start	= c_start,
1236 	.next	= c_next,
1237 	.stop	= c_stop,
1238 	.show	= c_show,
1239 };
1240 
1241 static int content_open(struct inode *inode, struct file *file,
1242 			struct cache_detail *cd)
1243 {
1244 	struct handle *han;
1245 
1246 	if (!cd || !try_module_get(cd->owner))
1247 		return -EACCES;
1248 	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1249 	if (han == NULL) {
1250 		module_put(cd->owner);
1251 		return -ENOMEM;
1252 	}
1253 
1254 	han->cd = cd;
1255 	return 0;
1256 }
1257 
1258 static int content_release(struct inode *inode, struct file *file,
1259 		struct cache_detail *cd)
1260 {
1261 	int ret = seq_release_private(inode, file);
1262 	module_put(cd->owner);
1263 	return ret;
1264 }
1265 
1266 static int open_flush(struct inode *inode, struct file *file,
1267 			struct cache_detail *cd)
1268 {
1269 	if (!cd || !try_module_get(cd->owner))
1270 		return -EACCES;
1271 	return nonseekable_open(inode, file);
1272 }
1273 
1274 static int release_flush(struct inode *inode, struct file *file,
1275 			struct cache_detail *cd)
1276 {
1277 	module_put(cd->owner);
1278 	return 0;
1279 }
1280 
1281 static ssize_t read_flush(struct file *file, char __user *buf,
1282 			  size_t count, loff_t *ppos,
1283 			  struct cache_detail *cd)
1284 {
1285 	char tbuf[20];
1286 	unsigned long p = *ppos;
1287 	size_t len;
1288 
1289 	sprintf(tbuf, "%lu\n", cd->flush_time);
1290 	len = strlen(tbuf);
1291 	if (p >= len)
1292 		return 0;
1293 	len -= p;
1294 	if (len > count)
1295 		len = count;
1296 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1297 		return -EFAULT;
1298 	*ppos += len;
1299 	return len;
1300 }
1301 
1302 static ssize_t write_flush(struct file *file, const char __user *buf,
1303 			   size_t count, loff_t *ppos,
1304 			   struct cache_detail *cd)
1305 {
1306 	char tbuf[20];
1307 	char *ep;
1308 	long flushtime;
1309 	if (*ppos || count > sizeof(tbuf)-1)
1310 		return -EINVAL;
1311 	if (copy_from_user(tbuf, buf, count))
1312 		return -EFAULT;
1313 	tbuf[count] = 0;
1314 	flushtime = simple_strtoul(tbuf, &ep, 0);
1315 	if (*ep && *ep != '\n')
1316 		return -EINVAL;
1317 
1318 	cd->flush_time = flushtime;
1319 	cd->nextcheck = get_seconds();
1320 	cache_flush();
1321 
1322 	*ppos += count;
1323 	return count;
1324 }
1325 
1326 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1327 				 size_t count, loff_t *ppos)
1328 {
1329 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1330 
1331 	return cache_read(filp, buf, count, ppos, cd);
1332 }
1333 
1334 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1335 				  size_t count, loff_t *ppos)
1336 {
1337 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1338 
1339 	return cache_write(filp, buf, count, ppos, cd);
1340 }
1341 
1342 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1343 {
1344 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1345 
1346 	return cache_poll(filp, wait, cd);
1347 }
1348 
1349 static long cache_ioctl_procfs(struct file *filp,
1350 			       unsigned int cmd, unsigned long arg)
1351 {
1352 	long ret;
1353 	struct inode *inode = filp->f_path.dentry->d_inode;
1354 	struct cache_detail *cd = PDE(inode)->data;
1355 
1356 	lock_kernel();
1357 	ret = cache_ioctl(inode, filp, cmd, arg, cd);
1358 	unlock_kernel();
1359 
1360 	return ret;
1361 }
1362 
1363 static int cache_open_procfs(struct inode *inode, struct file *filp)
1364 {
1365 	struct cache_detail *cd = PDE(inode)->data;
1366 
1367 	return cache_open(inode, filp, cd);
1368 }
1369 
1370 static int cache_release_procfs(struct inode *inode, struct file *filp)
1371 {
1372 	struct cache_detail *cd = PDE(inode)->data;
1373 
1374 	return cache_release(inode, filp, cd);
1375 }
1376 
1377 static const struct file_operations cache_file_operations_procfs = {
1378 	.owner		= THIS_MODULE,
1379 	.llseek		= no_llseek,
1380 	.read		= cache_read_procfs,
1381 	.write		= cache_write_procfs,
1382 	.poll		= cache_poll_procfs,
1383 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1384 	.open		= cache_open_procfs,
1385 	.release	= cache_release_procfs,
1386 };
1387 
1388 static int content_open_procfs(struct inode *inode, struct file *filp)
1389 {
1390 	struct cache_detail *cd = PDE(inode)->data;
1391 
1392 	return content_open(inode, filp, cd);
1393 }
1394 
1395 static int content_release_procfs(struct inode *inode, struct file *filp)
1396 {
1397 	struct cache_detail *cd = PDE(inode)->data;
1398 
1399 	return content_release(inode, filp, cd);
1400 }
1401 
1402 static const struct file_operations content_file_operations_procfs = {
1403 	.open		= content_open_procfs,
1404 	.read		= seq_read,
1405 	.llseek		= seq_lseek,
1406 	.release	= content_release_procfs,
1407 };
1408 
1409 static int open_flush_procfs(struct inode *inode, struct file *filp)
1410 {
1411 	struct cache_detail *cd = PDE(inode)->data;
1412 
1413 	return open_flush(inode, filp, cd);
1414 }
1415 
1416 static int release_flush_procfs(struct inode *inode, struct file *filp)
1417 {
1418 	struct cache_detail *cd = PDE(inode)->data;
1419 
1420 	return release_flush(inode, filp, cd);
1421 }
1422 
1423 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1424 			    size_t count, loff_t *ppos)
1425 {
1426 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1427 
1428 	return read_flush(filp, buf, count, ppos, cd);
1429 }
1430 
1431 static ssize_t write_flush_procfs(struct file *filp,
1432 				  const char __user *buf,
1433 				  size_t count, loff_t *ppos)
1434 {
1435 	struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1436 
1437 	return write_flush(filp, buf, count, ppos, cd);
1438 }
1439 
1440 static const struct file_operations cache_flush_operations_procfs = {
1441 	.open		= open_flush_procfs,
1442 	.read		= read_flush_procfs,
1443 	.write		= write_flush_procfs,
1444 	.release	= release_flush_procfs,
1445 };
1446 
1447 static void remove_cache_proc_entries(struct cache_detail *cd)
1448 {
1449 	if (cd->u.procfs.proc_ent == NULL)
1450 		return;
1451 	if (cd->u.procfs.flush_ent)
1452 		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1453 	if (cd->u.procfs.channel_ent)
1454 		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1455 	if (cd->u.procfs.content_ent)
1456 		remove_proc_entry("content", cd->u.procfs.proc_ent);
1457 	cd->u.procfs.proc_ent = NULL;
1458 	remove_proc_entry(cd->name, proc_net_rpc);
1459 }
1460 
1461 #ifdef CONFIG_PROC_FS
1462 static int create_cache_proc_entries(struct cache_detail *cd)
1463 {
1464 	struct proc_dir_entry *p;
1465 
1466 	cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc);
1467 	if (cd->u.procfs.proc_ent == NULL)
1468 		goto out_nomem;
1469 	cd->u.procfs.channel_ent = NULL;
1470 	cd->u.procfs.content_ent = NULL;
1471 
1472 	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1473 			     cd->u.procfs.proc_ent,
1474 			     &cache_flush_operations_procfs, cd);
1475 	cd->u.procfs.flush_ent = p;
1476 	if (p == NULL)
1477 		goto out_nomem;
1478 
1479 	if (cd->cache_upcall || cd->cache_parse) {
1480 		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1481 				     cd->u.procfs.proc_ent,
1482 				     &cache_file_operations_procfs, cd);
1483 		cd->u.procfs.channel_ent = p;
1484 		if (p == NULL)
1485 			goto out_nomem;
1486 	}
1487 	if (cd->cache_show) {
1488 		p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1489 				cd->u.procfs.proc_ent,
1490 				&content_file_operations_procfs, cd);
1491 		cd->u.procfs.content_ent = p;
1492 		if (p == NULL)
1493 			goto out_nomem;
1494 	}
1495 	return 0;
1496 out_nomem:
1497 	remove_cache_proc_entries(cd);
1498 	return -ENOMEM;
1499 }
1500 #else /* CONFIG_PROC_FS */
1501 static int create_cache_proc_entries(struct cache_detail *cd)
1502 {
1503 	return 0;
1504 }
1505 #endif
1506 
1507 int cache_register(struct cache_detail *cd)
1508 {
1509 	int ret;
1510 
1511 	sunrpc_init_cache_detail(cd);
1512 	ret = create_cache_proc_entries(cd);
1513 	if (ret)
1514 		sunrpc_destroy_cache_detail(cd);
1515 	return ret;
1516 }
1517 EXPORT_SYMBOL_GPL(cache_register);
1518 
1519 void cache_unregister(struct cache_detail *cd)
1520 {
1521 	remove_cache_proc_entries(cd);
1522 	sunrpc_destroy_cache_detail(cd);
1523 }
1524 EXPORT_SYMBOL_GPL(cache_unregister);
1525 
1526 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1527 				 size_t count, loff_t *ppos)
1528 {
1529 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1530 
1531 	return cache_read(filp, buf, count, ppos, cd);
1532 }
1533 
1534 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1535 				  size_t count, loff_t *ppos)
1536 {
1537 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1538 
1539 	return cache_write(filp, buf, count, ppos, cd);
1540 }
1541 
1542 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1543 {
1544 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1545 
1546 	return cache_poll(filp, wait, cd);
1547 }
1548 
1549 static long cache_ioctl_pipefs(struct file *filp,
1550 			      unsigned int cmd, unsigned long arg)
1551 {
1552 	struct inode *inode = filp->f_dentry->d_inode;
1553 	struct cache_detail *cd = RPC_I(inode)->private;
1554 	long ret;
1555 
1556 	lock_kernel();
1557 	ret = cache_ioctl(inode, filp, cmd, arg, cd);
1558 	unlock_kernel();
1559 
1560 	return ret;
1561 }
1562 
1563 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1564 {
1565 	struct cache_detail *cd = RPC_I(inode)->private;
1566 
1567 	return cache_open(inode, filp, cd);
1568 }
1569 
1570 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1571 {
1572 	struct cache_detail *cd = RPC_I(inode)->private;
1573 
1574 	return cache_release(inode, filp, cd);
1575 }
1576 
1577 const struct file_operations cache_file_operations_pipefs = {
1578 	.owner		= THIS_MODULE,
1579 	.llseek		= no_llseek,
1580 	.read		= cache_read_pipefs,
1581 	.write		= cache_write_pipefs,
1582 	.poll		= cache_poll_pipefs,
1583 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1584 	.open		= cache_open_pipefs,
1585 	.release	= cache_release_pipefs,
1586 };
1587 
1588 static int content_open_pipefs(struct inode *inode, struct file *filp)
1589 {
1590 	struct cache_detail *cd = RPC_I(inode)->private;
1591 
1592 	return content_open(inode, filp, cd);
1593 }
1594 
1595 static int content_release_pipefs(struct inode *inode, struct file *filp)
1596 {
1597 	struct cache_detail *cd = RPC_I(inode)->private;
1598 
1599 	return content_release(inode, filp, cd);
1600 }
1601 
1602 const struct file_operations content_file_operations_pipefs = {
1603 	.open		= content_open_pipefs,
1604 	.read		= seq_read,
1605 	.llseek		= seq_lseek,
1606 	.release	= content_release_pipefs,
1607 };
1608 
1609 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1610 {
1611 	struct cache_detail *cd = RPC_I(inode)->private;
1612 
1613 	return open_flush(inode, filp, cd);
1614 }
1615 
1616 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1617 {
1618 	struct cache_detail *cd = RPC_I(inode)->private;
1619 
1620 	return release_flush(inode, filp, cd);
1621 }
1622 
1623 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1624 			    size_t count, loff_t *ppos)
1625 {
1626 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1627 
1628 	return read_flush(filp, buf, count, ppos, cd);
1629 }
1630 
1631 static ssize_t write_flush_pipefs(struct file *filp,
1632 				  const char __user *buf,
1633 				  size_t count, loff_t *ppos)
1634 {
1635 	struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1636 
1637 	return write_flush(filp, buf, count, ppos, cd);
1638 }
1639 
1640 const struct file_operations cache_flush_operations_pipefs = {
1641 	.open		= open_flush_pipefs,
1642 	.read		= read_flush_pipefs,
1643 	.write		= write_flush_pipefs,
1644 	.release	= release_flush_pipefs,
1645 };
1646 
1647 int sunrpc_cache_register_pipefs(struct dentry *parent,
1648 				 const char *name, mode_t umode,
1649 				 struct cache_detail *cd)
1650 {
1651 	struct qstr q;
1652 	struct dentry *dir;
1653 	int ret = 0;
1654 
1655 	sunrpc_init_cache_detail(cd);
1656 	q.name = name;
1657 	q.len = strlen(name);
1658 	q.hash = full_name_hash(q.name, q.len);
1659 	dir = rpc_create_cache_dir(parent, &q, umode, cd);
1660 	if (!IS_ERR(dir))
1661 		cd->u.pipefs.dir = dir;
1662 	else {
1663 		sunrpc_destroy_cache_detail(cd);
1664 		ret = PTR_ERR(dir);
1665 	}
1666 	return ret;
1667 }
1668 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1669 
1670 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1671 {
1672 	rpc_remove_cache_dir(cd->u.pipefs.dir);
1673 	cd->u.pipefs.dir = NULL;
1674 	sunrpc_destroy_cache_detail(cd);
1675 }
1676 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1677 
1678