1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <asm/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <linux/pagemap.h> 31 #include <linux/smp_lock.h> 32 #include <asm/ioctls.h> 33 #include <linux/sunrpc/types.h> 34 #include <linux/sunrpc/cache.h> 35 #include <linux/sunrpc/stats.h> 36 #include <linux/sunrpc/rpc_pipe_fs.h> 37 #include <linux/smp_lock.h> 38 39 #define RPCDBG_FACILITY RPCDBG_CACHE 40 41 static int cache_defer_req(struct cache_req *req, struct cache_head *item); 42 static void cache_revisit_request(struct cache_head *item); 43 44 static void cache_init(struct cache_head *h) 45 { 46 time_t now = get_seconds(); 47 h->next = NULL; 48 h->flags = 0; 49 kref_init(&h->ref); 50 h->expiry_time = now + CACHE_NEW_EXPIRY; 51 h->last_refresh = now; 52 } 53 54 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h) 55 { 56 return (h->expiry_time < get_seconds()) || 57 (detail->flush_time > h->last_refresh); 58 } 59 60 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 61 struct cache_head *key, int hash) 62 { 63 struct cache_head **head, **hp; 64 struct cache_head *new = NULL, *freeme = NULL; 65 66 head = &detail->hash_table[hash]; 67 68 read_lock(&detail->hash_lock); 69 70 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 71 struct cache_head *tmp = *hp; 72 if (detail->match(tmp, key)) { 73 if (cache_is_expired(detail, tmp)) 74 /* This entry is expired, we will discard it. */ 75 break; 76 cache_get(tmp); 77 read_unlock(&detail->hash_lock); 78 return tmp; 79 } 80 } 81 read_unlock(&detail->hash_lock); 82 /* Didn't find anything, insert an empty entry */ 83 84 new = detail->alloc(); 85 if (!new) 86 return NULL; 87 /* must fully initialise 'new', else 88 * we might get lose if we need to 89 * cache_put it soon. 90 */ 91 cache_init(new); 92 detail->init(new, key); 93 94 write_lock(&detail->hash_lock); 95 96 /* check if entry appeared while we slept */ 97 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 98 struct cache_head *tmp = *hp; 99 if (detail->match(tmp, key)) { 100 if (cache_is_expired(detail, tmp)) { 101 *hp = tmp->next; 102 tmp->next = NULL; 103 detail->entries --; 104 freeme = tmp; 105 break; 106 } 107 cache_get(tmp); 108 write_unlock(&detail->hash_lock); 109 cache_put(new, detail); 110 return tmp; 111 } 112 } 113 new->next = *head; 114 *head = new; 115 detail->entries++; 116 cache_get(new); 117 write_unlock(&detail->hash_lock); 118 119 if (freeme) 120 cache_put(freeme, detail); 121 return new; 122 } 123 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); 124 125 126 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 127 128 static void cache_fresh_locked(struct cache_head *head, time_t expiry) 129 { 130 head->expiry_time = expiry; 131 head->last_refresh = get_seconds(); 132 set_bit(CACHE_VALID, &head->flags); 133 } 134 135 static void cache_fresh_unlocked(struct cache_head *head, 136 struct cache_detail *detail) 137 { 138 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 139 cache_revisit_request(head); 140 cache_dequeue(detail, head); 141 } 142 } 143 144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 145 struct cache_head *new, struct cache_head *old, int hash) 146 { 147 /* The 'old' entry is to be replaced by 'new'. 148 * If 'old' is not VALID, we update it directly, 149 * otherwise we need to replace it 150 */ 151 struct cache_head **head; 152 struct cache_head *tmp; 153 154 if (!test_bit(CACHE_VALID, &old->flags)) { 155 write_lock(&detail->hash_lock); 156 if (!test_bit(CACHE_VALID, &old->flags)) { 157 if (test_bit(CACHE_NEGATIVE, &new->flags)) 158 set_bit(CACHE_NEGATIVE, &old->flags); 159 else 160 detail->update(old, new); 161 cache_fresh_locked(old, new->expiry_time); 162 write_unlock(&detail->hash_lock); 163 cache_fresh_unlocked(old, detail); 164 return old; 165 } 166 write_unlock(&detail->hash_lock); 167 } 168 /* We need to insert a new entry */ 169 tmp = detail->alloc(); 170 if (!tmp) { 171 cache_put(old, detail); 172 return NULL; 173 } 174 cache_init(tmp); 175 detail->init(tmp, old); 176 head = &detail->hash_table[hash]; 177 178 write_lock(&detail->hash_lock); 179 if (test_bit(CACHE_NEGATIVE, &new->flags)) 180 set_bit(CACHE_NEGATIVE, &tmp->flags); 181 else 182 detail->update(tmp, new); 183 tmp->next = *head; 184 *head = tmp; 185 detail->entries++; 186 cache_get(tmp); 187 cache_fresh_locked(tmp, new->expiry_time); 188 cache_fresh_locked(old, 0); 189 write_unlock(&detail->hash_lock); 190 cache_fresh_unlocked(tmp, detail); 191 cache_fresh_unlocked(old, detail); 192 cache_put(old, detail); 193 return tmp; 194 } 195 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 196 197 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 198 { 199 if (!cd->cache_upcall) 200 return -EINVAL; 201 return cd->cache_upcall(cd, h); 202 } 203 204 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h) 205 { 206 if (!test_bit(CACHE_VALID, &h->flags)) 207 return -EAGAIN; 208 else { 209 /* entry is valid */ 210 if (test_bit(CACHE_NEGATIVE, &h->flags)) 211 return -ENOENT; 212 else 213 return 0; 214 } 215 } 216 217 /* 218 * This is the generic cache management routine for all 219 * the authentication caches. 220 * It checks the currency of a cache item and will (later) 221 * initiate an upcall to fill it if needed. 222 * 223 * 224 * Returns 0 if the cache_head can be used, or cache_puts it and returns 225 * -EAGAIN if upcall is pending and request has been queued 226 * -ETIMEDOUT if upcall failed or request could not be queue or 227 * upcall completed but item is still invalid (implying that 228 * the cache item has been replaced with a newer one). 229 * -ENOENT if cache entry was negative 230 */ 231 int cache_check(struct cache_detail *detail, 232 struct cache_head *h, struct cache_req *rqstp) 233 { 234 int rv; 235 long refresh_age, age; 236 237 /* First decide return status as best we can */ 238 rv = cache_is_valid(detail, h); 239 240 /* now see if we want to start an upcall */ 241 refresh_age = (h->expiry_time - h->last_refresh); 242 age = get_seconds() - h->last_refresh; 243 244 if (rqstp == NULL) { 245 if (rv == -EAGAIN) 246 rv = -ENOENT; 247 } else if (rv == -EAGAIN || age > refresh_age/2) { 248 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 249 refresh_age, age); 250 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 251 switch (cache_make_upcall(detail, h)) { 252 case -EINVAL: 253 clear_bit(CACHE_PENDING, &h->flags); 254 cache_revisit_request(h); 255 if (rv == -EAGAIN) { 256 set_bit(CACHE_NEGATIVE, &h->flags); 257 cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY); 258 cache_fresh_unlocked(h, detail); 259 rv = -ENOENT; 260 } 261 break; 262 263 case -EAGAIN: 264 clear_bit(CACHE_PENDING, &h->flags); 265 cache_revisit_request(h); 266 break; 267 } 268 } 269 } 270 271 if (rv == -EAGAIN) { 272 if (cache_defer_req(rqstp, h) < 0) { 273 /* Request is not deferred */ 274 rv = cache_is_valid(detail, h); 275 if (rv == -EAGAIN) 276 rv = -ETIMEDOUT; 277 } 278 } 279 if (rv) 280 cache_put(h, detail); 281 return rv; 282 } 283 EXPORT_SYMBOL_GPL(cache_check); 284 285 /* 286 * caches need to be periodically cleaned. 287 * For this we maintain a list of cache_detail and 288 * a current pointer into that list and into the table 289 * for that entry. 290 * 291 * Each time clean_cache is called it finds the next non-empty entry 292 * in the current table and walks the list in that entry 293 * looking for entries that can be removed. 294 * 295 * An entry gets removed if: 296 * - The expiry is before current time 297 * - The last_refresh time is before the flush_time for that cache 298 * 299 * later we might drop old entries with non-NEVER expiry if that table 300 * is getting 'full' for some definition of 'full' 301 * 302 * The question of "how often to scan a table" is an interesting one 303 * and is answered in part by the use of the "nextcheck" field in the 304 * cache_detail. 305 * When a scan of a table begins, the nextcheck field is set to a time 306 * that is well into the future. 307 * While scanning, if an expiry time is found that is earlier than the 308 * current nextcheck time, nextcheck is set to that expiry time. 309 * If the flush_time is ever set to a time earlier than the nextcheck 310 * time, the nextcheck time is then set to that flush_time. 311 * 312 * A table is then only scanned if the current time is at least 313 * the nextcheck time. 314 * 315 */ 316 317 static LIST_HEAD(cache_list); 318 static DEFINE_SPINLOCK(cache_list_lock); 319 static struct cache_detail *current_detail; 320 static int current_index; 321 322 static void do_cache_clean(struct work_struct *work); 323 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean); 324 325 static void sunrpc_init_cache_detail(struct cache_detail *cd) 326 { 327 rwlock_init(&cd->hash_lock); 328 INIT_LIST_HEAD(&cd->queue); 329 spin_lock(&cache_list_lock); 330 cd->nextcheck = 0; 331 cd->entries = 0; 332 atomic_set(&cd->readers, 0); 333 cd->last_close = 0; 334 cd->last_warn = -1; 335 list_add(&cd->others, &cache_list); 336 spin_unlock(&cache_list_lock); 337 338 /* start the cleaning process */ 339 schedule_delayed_work(&cache_cleaner, 0); 340 } 341 342 static void sunrpc_destroy_cache_detail(struct cache_detail *cd) 343 { 344 cache_purge(cd); 345 spin_lock(&cache_list_lock); 346 write_lock(&cd->hash_lock); 347 if (cd->entries || atomic_read(&cd->inuse)) { 348 write_unlock(&cd->hash_lock); 349 spin_unlock(&cache_list_lock); 350 goto out; 351 } 352 if (current_detail == cd) 353 current_detail = NULL; 354 list_del_init(&cd->others); 355 write_unlock(&cd->hash_lock); 356 spin_unlock(&cache_list_lock); 357 if (list_empty(&cache_list)) { 358 /* module must be being unloaded so its safe to kill the worker */ 359 cancel_delayed_work_sync(&cache_cleaner); 360 } 361 return; 362 out: 363 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name); 364 } 365 366 /* clean cache tries to find something to clean 367 * and cleans it. 368 * It returns 1 if it cleaned something, 369 * 0 if it didn't find anything this time 370 * -1 if it fell off the end of the list. 371 */ 372 static int cache_clean(void) 373 { 374 int rv = 0; 375 struct list_head *next; 376 377 spin_lock(&cache_list_lock); 378 379 /* find a suitable table if we don't already have one */ 380 while (current_detail == NULL || 381 current_index >= current_detail->hash_size) { 382 if (current_detail) 383 next = current_detail->others.next; 384 else 385 next = cache_list.next; 386 if (next == &cache_list) { 387 current_detail = NULL; 388 spin_unlock(&cache_list_lock); 389 return -1; 390 } 391 current_detail = list_entry(next, struct cache_detail, others); 392 if (current_detail->nextcheck > get_seconds()) 393 current_index = current_detail->hash_size; 394 else { 395 current_index = 0; 396 current_detail->nextcheck = get_seconds()+30*60; 397 } 398 } 399 400 /* find a non-empty bucket in the table */ 401 while (current_detail && 402 current_index < current_detail->hash_size && 403 current_detail->hash_table[current_index] == NULL) 404 current_index++; 405 406 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 407 408 if (current_detail && current_index < current_detail->hash_size) { 409 struct cache_head *ch, **cp; 410 struct cache_detail *d; 411 412 write_lock(¤t_detail->hash_lock); 413 414 /* Ok, now to clean this strand */ 415 416 cp = & current_detail->hash_table[current_index]; 417 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) { 418 if (current_detail->nextcheck > ch->expiry_time) 419 current_detail->nextcheck = ch->expiry_time+1; 420 if (!cache_is_expired(current_detail, ch)) 421 continue; 422 423 *cp = ch->next; 424 ch->next = NULL; 425 current_detail->entries--; 426 rv = 1; 427 break; 428 } 429 430 write_unlock(¤t_detail->hash_lock); 431 d = current_detail; 432 if (!ch) 433 current_index ++; 434 spin_unlock(&cache_list_lock); 435 if (ch) { 436 if (test_and_clear_bit(CACHE_PENDING, &ch->flags)) 437 cache_dequeue(current_detail, ch); 438 cache_revisit_request(ch); 439 cache_put(ch, d); 440 } 441 } else 442 spin_unlock(&cache_list_lock); 443 444 return rv; 445 } 446 447 /* 448 * We want to regularly clean the cache, so we need to schedule some work ... 449 */ 450 static void do_cache_clean(struct work_struct *work) 451 { 452 int delay = 5; 453 if (cache_clean() == -1) 454 delay = round_jiffies_relative(30*HZ); 455 456 if (list_empty(&cache_list)) 457 delay = 0; 458 459 if (delay) 460 schedule_delayed_work(&cache_cleaner, delay); 461 } 462 463 464 /* 465 * Clean all caches promptly. This just calls cache_clean 466 * repeatedly until we are sure that every cache has had a chance to 467 * be fully cleaned 468 */ 469 void cache_flush(void) 470 { 471 while (cache_clean() != -1) 472 cond_resched(); 473 while (cache_clean() != -1) 474 cond_resched(); 475 } 476 EXPORT_SYMBOL_GPL(cache_flush); 477 478 void cache_purge(struct cache_detail *detail) 479 { 480 detail->flush_time = LONG_MAX; 481 detail->nextcheck = get_seconds(); 482 cache_flush(); 483 detail->flush_time = 1; 484 } 485 EXPORT_SYMBOL_GPL(cache_purge); 486 487 488 /* 489 * Deferral and Revisiting of Requests. 490 * 491 * If a cache lookup finds a pending entry, we 492 * need to defer the request and revisit it later. 493 * All deferred requests are stored in a hash table, 494 * indexed by "struct cache_head *". 495 * As it may be wasteful to store a whole request 496 * structure, we allow the request to provide a 497 * deferred form, which must contain a 498 * 'struct cache_deferred_req' 499 * This cache_deferred_req contains a method to allow 500 * it to be revisited when cache info is available 501 */ 502 503 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 504 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 505 506 #define DFR_MAX 300 /* ??? */ 507 508 static DEFINE_SPINLOCK(cache_defer_lock); 509 static LIST_HEAD(cache_defer_list); 510 static struct list_head cache_defer_hash[DFR_HASHSIZE]; 511 static int cache_defer_cnt; 512 513 static int cache_defer_req(struct cache_req *req, struct cache_head *item) 514 { 515 struct cache_deferred_req *dreq, *discard; 516 int hash = DFR_HASH(item); 517 518 if (cache_defer_cnt >= DFR_MAX) { 519 /* too much in the cache, randomly drop this one, 520 * or continue and drop the oldest below 521 */ 522 if (net_random()&1) 523 return -ENOMEM; 524 } 525 dreq = req->defer(req); 526 if (dreq == NULL) 527 return -ENOMEM; 528 529 dreq->item = item; 530 531 spin_lock(&cache_defer_lock); 532 533 list_add(&dreq->recent, &cache_defer_list); 534 535 if (cache_defer_hash[hash].next == NULL) 536 INIT_LIST_HEAD(&cache_defer_hash[hash]); 537 list_add(&dreq->hash, &cache_defer_hash[hash]); 538 539 /* it is in, now maybe clean up */ 540 discard = NULL; 541 if (++cache_defer_cnt > DFR_MAX) { 542 discard = list_entry(cache_defer_list.prev, 543 struct cache_deferred_req, recent); 544 list_del_init(&discard->recent); 545 list_del_init(&discard->hash); 546 cache_defer_cnt--; 547 } 548 spin_unlock(&cache_defer_lock); 549 550 if (discard) 551 /* there was one too many */ 552 discard->revisit(discard, 1); 553 554 if (!test_bit(CACHE_PENDING, &item->flags)) { 555 /* must have just been validated... */ 556 cache_revisit_request(item); 557 return -EAGAIN; 558 } 559 return 0; 560 } 561 562 static void cache_revisit_request(struct cache_head *item) 563 { 564 struct cache_deferred_req *dreq; 565 struct list_head pending; 566 567 struct list_head *lp; 568 int hash = DFR_HASH(item); 569 570 INIT_LIST_HEAD(&pending); 571 spin_lock(&cache_defer_lock); 572 573 lp = cache_defer_hash[hash].next; 574 if (lp) { 575 while (lp != &cache_defer_hash[hash]) { 576 dreq = list_entry(lp, struct cache_deferred_req, hash); 577 lp = lp->next; 578 if (dreq->item == item) { 579 list_del_init(&dreq->hash); 580 list_move(&dreq->recent, &pending); 581 cache_defer_cnt--; 582 } 583 } 584 } 585 spin_unlock(&cache_defer_lock); 586 587 while (!list_empty(&pending)) { 588 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 589 list_del_init(&dreq->recent); 590 dreq->revisit(dreq, 0); 591 } 592 } 593 594 void cache_clean_deferred(void *owner) 595 { 596 struct cache_deferred_req *dreq, *tmp; 597 struct list_head pending; 598 599 600 INIT_LIST_HEAD(&pending); 601 spin_lock(&cache_defer_lock); 602 603 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 604 if (dreq->owner == owner) { 605 list_del_init(&dreq->hash); 606 list_move(&dreq->recent, &pending); 607 cache_defer_cnt--; 608 } 609 } 610 spin_unlock(&cache_defer_lock); 611 612 while (!list_empty(&pending)) { 613 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 614 list_del_init(&dreq->recent); 615 dreq->revisit(dreq, 1); 616 } 617 } 618 619 /* 620 * communicate with user-space 621 * 622 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 623 * On read, you get a full request, or block. 624 * On write, an update request is processed. 625 * Poll works if anything to read, and always allows write. 626 * 627 * Implemented by linked list of requests. Each open file has 628 * a ->private that also exists in this list. New requests are added 629 * to the end and may wakeup and preceding readers. 630 * New readers are added to the head. If, on read, an item is found with 631 * CACHE_UPCALLING clear, we free it from the list. 632 * 633 */ 634 635 static DEFINE_SPINLOCK(queue_lock); 636 static DEFINE_MUTEX(queue_io_mutex); 637 638 struct cache_queue { 639 struct list_head list; 640 int reader; /* if 0, then request */ 641 }; 642 struct cache_request { 643 struct cache_queue q; 644 struct cache_head *item; 645 char * buf; 646 int len; 647 int readers; 648 }; 649 struct cache_reader { 650 struct cache_queue q; 651 int offset; /* if non-0, we have a refcnt on next request */ 652 }; 653 654 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 655 loff_t *ppos, struct cache_detail *cd) 656 { 657 struct cache_reader *rp = filp->private_data; 658 struct cache_request *rq; 659 struct inode *inode = filp->f_path.dentry->d_inode; 660 int err; 661 662 if (count == 0) 663 return 0; 664 665 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent 666 * readers on this file */ 667 again: 668 spin_lock(&queue_lock); 669 /* need to find next request */ 670 while (rp->q.list.next != &cd->queue && 671 list_entry(rp->q.list.next, struct cache_queue, list) 672 ->reader) { 673 struct list_head *next = rp->q.list.next; 674 list_move(&rp->q.list, next); 675 } 676 if (rp->q.list.next == &cd->queue) { 677 spin_unlock(&queue_lock); 678 mutex_unlock(&inode->i_mutex); 679 BUG_ON(rp->offset); 680 return 0; 681 } 682 rq = container_of(rp->q.list.next, struct cache_request, q.list); 683 BUG_ON(rq->q.reader); 684 if (rp->offset == 0) 685 rq->readers++; 686 spin_unlock(&queue_lock); 687 688 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 689 err = -EAGAIN; 690 spin_lock(&queue_lock); 691 list_move(&rp->q.list, &rq->q.list); 692 spin_unlock(&queue_lock); 693 } else { 694 if (rp->offset + count > rq->len) 695 count = rq->len - rp->offset; 696 err = -EFAULT; 697 if (copy_to_user(buf, rq->buf + rp->offset, count)) 698 goto out; 699 rp->offset += count; 700 if (rp->offset >= rq->len) { 701 rp->offset = 0; 702 spin_lock(&queue_lock); 703 list_move(&rp->q.list, &rq->q.list); 704 spin_unlock(&queue_lock); 705 } 706 err = 0; 707 } 708 out: 709 if (rp->offset == 0) { 710 /* need to release rq */ 711 spin_lock(&queue_lock); 712 rq->readers--; 713 if (rq->readers == 0 && 714 !test_bit(CACHE_PENDING, &rq->item->flags)) { 715 list_del(&rq->q.list); 716 spin_unlock(&queue_lock); 717 cache_put(rq->item, cd); 718 kfree(rq->buf); 719 kfree(rq); 720 } else 721 spin_unlock(&queue_lock); 722 } 723 if (err == -EAGAIN) 724 goto again; 725 mutex_unlock(&inode->i_mutex); 726 return err ? err : count; 727 } 728 729 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 730 size_t count, struct cache_detail *cd) 731 { 732 ssize_t ret; 733 734 if (copy_from_user(kaddr, buf, count)) 735 return -EFAULT; 736 kaddr[count] = '\0'; 737 ret = cd->cache_parse(cd, kaddr, count); 738 if (!ret) 739 ret = count; 740 return ret; 741 } 742 743 static ssize_t cache_slow_downcall(const char __user *buf, 744 size_t count, struct cache_detail *cd) 745 { 746 static char write_buf[8192]; /* protected by queue_io_mutex */ 747 ssize_t ret = -EINVAL; 748 749 if (count >= sizeof(write_buf)) 750 goto out; 751 mutex_lock(&queue_io_mutex); 752 ret = cache_do_downcall(write_buf, buf, count, cd); 753 mutex_unlock(&queue_io_mutex); 754 out: 755 return ret; 756 } 757 758 static ssize_t cache_downcall(struct address_space *mapping, 759 const char __user *buf, 760 size_t count, struct cache_detail *cd) 761 { 762 struct page *page; 763 char *kaddr; 764 ssize_t ret = -ENOMEM; 765 766 if (count >= PAGE_CACHE_SIZE) 767 goto out_slow; 768 769 page = find_or_create_page(mapping, 0, GFP_KERNEL); 770 if (!page) 771 goto out_slow; 772 773 kaddr = kmap(page); 774 ret = cache_do_downcall(kaddr, buf, count, cd); 775 kunmap(page); 776 unlock_page(page); 777 page_cache_release(page); 778 return ret; 779 out_slow: 780 return cache_slow_downcall(buf, count, cd); 781 } 782 783 static ssize_t cache_write(struct file *filp, const char __user *buf, 784 size_t count, loff_t *ppos, 785 struct cache_detail *cd) 786 { 787 struct address_space *mapping = filp->f_mapping; 788 struct inode *inode = filp->f_path.dentry->d_inode; 789 ssize_t ret = -EINVAL; 790 791 if (!cd->cache_parse) 792 goto out; 793 794 mutex_lock(&inode->i_mutex); 795 ret = cache_downcall(mapping, buf, count, cd); 796 mutex_unlock(&inode->i_mutex); 797 out: 798 return ret; 799 } 800 801 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 802 803 static unsigned int cache_poll(struct file *filp, poll_table *wait, 804 struct cache_detail *cd) 805 { 806 unsigned int mask; 807 struct cache_reader *rp = filp->private_data; 808 struct cache_queue *cq; 809 810 poll_wait(filp, &queue_wait, wait); 811 812 /* alway allow write */ 813 mask = POLL_OUT | POLLWRNORM; 814 815 if (!rp) 816 return mask; 817 818 spin_lock(&queue_lock); 819 820 for (cq= &rp->q; &cq->list != &cd->queue; 821 cq = list_entry(cq->list.next, struct cache_queue, list)) 822 if (!cq->reader) { 823 mask |= POLLIN | POLLRDNORM; 824 break; 825 } 826 spin_unlock(&queue_lock); 827 return mask; 828 } 829 830 static int cache_ioctl(struct inode *ino, struct file *filp, 831 unsigned int cmd, unsigned long arg, 832 struct cache_detail *cd) 833 { 834 int len = 0; 835 struct cache_reader *rp = filp->private_data; 836 struct cache_queue *cq; 837 838 if (cmd != FIONREAD || !rp) 839 return -EINVAL; 840 841 spin_lock(&queue_lock); 842 843 /* only find the length remaining in current request, 844 * or the length of the next request 845 */ 846 for (cq= &rp->q; &cq->list != &cd->queue; 847 cq = list_entry(cq->list.next, struct cache_queue, list)) 848 if (!cq->reader) { 849 struct cache_request *cr = 850 container_of(cq, struct cache_request, q); 851 len = cr->len - rp->offset; 852 break; 853 } 854 spin_unlock(&queue_lock); 855 856 return put_user(len, (int __user *)arg); 857 } 858 859 static int cache_open(struct inode *inode, struct file *filp, 860 struct cache_detail *cd) 861 { 862 struct cache_reader *rp = NULL; 863 864 if (!cd || !try_module_get(cd->owner)) 865 return -EACCES; 866 nonseekable_open(inode, filp); 867 if (filp->f_mode & FMODE_READ) { 868 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 869 if (!rp) 870 return -ENOMEM; 871 rp->offset = 0; 872 rp->q.reader = 1; 873 atomic_inc(&cd->readers); 874 spin_lock(&queue_lock); 875 list_add(&rp->q.list, &cd->queue); 876 spin_unlock(&queue_lock); 877 } 878 filp->private_data = rp; 879 return 0; 880 } 881 882 static int cache_release(struct inode *inode, struct file *filp, 883 struct cache_detail *cd) 884 { 885 struct cache_reader *rp = filp->private_data; 886 887 if (rp) { 888 spin_lock(&queue_lock); 889 if (rp->offset) { 890 struct cache_queue *cq; 891 for (cq= &rp->q; &cq->list != &cd->queue; 892 cq = list_entry(cq->list.next, struct cache_queue, list)) 893 if (!cq->reader) { 894 container_of(cq, struct cache_request, q) 895 ->readers--; 896 break; 897 } 898 rp->offset = 0; 899 } 900 list_del(&rp->q.list); 901 spin_unlock(&queue_lock); 902 903 filp->private_data = NULL; 904 kfree(rp); 905 906 cd->last_close = get_seconds(); 907 atomic_dec(&cd->readers); 908 } 909 module_put(cd->owner); 910 return 0; 911 } 912 913 914 915 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 916 { 917 struct cache_queue *cq; 918 spin_lock(&queue_lock); 919 list_for_each_entry(cq, &detail->queue, list) 920 if (!cq->reader) { 921 struct cache_request *cr = container_of(cq, struct cache_request, q); 922 if (cr->item != ch) 923 continue; 924 if (cr->readers != 0) 925 continue; 926 list_del(&cr->q.list); 927 spin_unlock(&queue_lock); 928 cache_put(cr->item, detail); 929 kfree(cr->buf); 930 kfree(cr); 931 return; 932 } 933 spin_unlock(&queue_lock); 934 } 935 936 /* 937 * Support routines for text-based upcalls. 938 * Fields are separated by spaces. 939 * Fields are either mangled to quote space tab newline slosh with slosh 940 * or a hexified with a leading \x 941 * Record is terminated with newline. 942 * 943 */ 944 945 void qword_add(char **bpp, int *lp, char *str) 946 { 947 char *bp = *bpp; 948 int len = *lp; 949 char c; 950 951 if (len < 0) return; 952 953 while ((c=*str++) && len) 954 switch(c) { 955 case ' ': 956 case '\t': 957 case '\n': 958 case '\\': 959 if (len >= 4) { 960 *bp++ = '\\'; 961 *bp++ = '0' + ((c & 0300)>>6); 962 *bp++ = '0' + ((c & 0070)>>3); 963 *bp++ = '0' + ((c & 0007)>>0); 964 } 965 len -= 4; 966 break; 967 default: 968 *bp++ = c; 969 len--; 970 } 971 if (c || len <1) len = -1; 972 else { 973 *bp++ = ' '; 974 len--; 975 } 976 *bpp = bp; 977 *lp = len; 978 } 979 EXPORT_SYMBOL_GPL(qword_add); 980 981 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 982 { 983 char *bp = *bpp; 984 int len = *lp; 985 986 if (len < 0) return; 987 988 if (len > 2) { 989 *bp++ = '\\'; 990 *bp++ = 'x'; 991 len -= 2; 992 while (blen && len >= 2) { 993 unsigned char c = *buf++; 994 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1); 995 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1); 996 len -= 2; 997 blen--; 998 } 999 } 1000 if (blen || len<1) len = -1; 1001 else { 1002 *bp++ = ' '; 1003 len--; 1004 } 1005 *bpp = bp; 1006 *lp = len; 1007 } 1008 EXPORT_SYMBOL_GPL(qword_addhex); 1009 1010 static void warn_no_listener(struct cache_detail *detail) 1011 { 1012 if (detail->last_warn != detail->last_close) { 1013 detail->last_warn = detail->last_close; 1014 if (detail->warn_no_listener) 1015 detail->warn_no_listener(detail, detail->last_close != 0); 1016 } 1017 } 1018 1019 /* 1020 * register an upcall request to user-space and queue it up for read() by the 1021 * upcall daemon. 1022 * 1023 * Each request is at most one page long. 1024 */ 1025 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h, 1026 void (*cache_request)(struct cache_detail *, 1027 struct cache_head *, 1028 char **, 1029 int *)) 1030 { 1031 1032 char *buf; 1033 struct cache_request *crq; 1034 char *bp; 1035 int len; 1036 1037 if (atomic_read(&detail->readers) == 0 && 1038 detail->last_close < get_seconds() - 30) { 1039 warn_no_listener(detail); 1040 return -EINVAL; 1041 } 1042 1043 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1044 if (!buf) 1045 return -EAGAIN; 1046 1047 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1048 if (!crq) { 1049 kfree(buf); 1050 return -EAGAIN; 1051 } 1052 1053 bp = buf; len = PAGE_SIZE; 1054 1055 cache_request(detail, h, &bp, &len); 1056 1057 if (len < 0) { 1058 kfree(buf); 1059 kfree(crq); 1060 return -EAGAIN; 1061 } 1062 crq->q.reader = 0; 1063 crq->item = cache_get(h); 1064 crq->buf = buf; 1065 crq->len = PAGE_SIZE - len; 1066 crq->readers = 0; 1067 spin_lock(&queue_lock); 1068 list_add_tail(&crq->q.list, &detail->queue); 1069 spin_unlock(&queue_lock); 1070 wake_up(&queue_wait); 1071 return 0; 1072 } 1073 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1074 1075 /* 1076 * parse a message from user-space and pass it 1077 * to an appropriate cache 1078 * Messages are, like requests, separated into fields by 1079 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1080 * 1081 * Message is 1082 * reply cachename expiry key ... content.... 1083 * 1084 * key and content are both parsed by cache 1085 */ 1086 1087 #define isodigit(c) (isdigit(c) && c <= '7') 1088 int qword_get(char **bpp, char *dest, int bufsize) 1089 { 1090 /* return bytes copied, or -1 on error */ 1091 char *bp = *bpp; 1092 int len = 0; 1093 1094 while (*bp == ' ') bp++; 1095 1096 if (bp[0] == '\\' && bp[1] == 'x') { 1097 /* HEX STRING */ 1098 bp += 2; 1099 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) { 1100 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1101 bp++; 1102 byte <<= 4; 1103 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1104 *dest++ = byte; 1105 bp++; 1106 len++; 1107 } 1108 } else { 1109 /* text with \nnn octal quoting */ 1110 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1111 if (*bp == '\\' && 1112 isodigit(bp[1]) && (bp[1] <= '3') && 1113 isodigit(bp[2]) && 1114 isodigit(bp[3])) { 1115 int byte = (*++bp -'0'); 1116 bp++; 1117 byte = (byte << 3) | (*bp++ - '0'); 1118 byte = (byte << 3) | (*bp++ - '0'); 1119 *dest++ = byte; 1120 len++; 1121 } else { 1122 *dest++ = *bp++; 1123 len++; 1124 } 1125 } 1126 } 1127 1128 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1129 return -1; 1130 while (*bp == ' ') bp++; 1131 *bpp = bp; 1132 *dest = '\0'; 1133 return len; 1134 } 1135 EXPORT_SYMBOL_GPL(qword_get); 1136 1137 1138 /* 1139 * support /proc/sunrpc/cache/$CACHENAME/content 1140 * as a seqfile. 1141 * We call ->cache_show passing NULL for the item to 1142 * get a header, then pass each real item in the cache 1143 */ 1144 1145 struct handle { 1146 struct cache_detail *cd; 1147 }; 1148 1149 static void *c_start(struct seq_file *m, loff_t *pos) 1150 __acquires(cd->hash_lock) 1151 { 1152 loff_t n = *pos; 1153 unsigned hash, entry; 1154 struct cache_head *ch; 1155 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1156 1157 1158 read_lock(&cd->hash_lock); 1159 if (!n--) 1160 return SEQ_START_TOKEN; 1161 hash = n >> 32; 1162 entry = n & ((1LL<<32) - 1); 1163 1164 for (ch=cd->hash_table[hash]; ch; ch=ch->next) 1165 if (!entry--) 1166 return ch; 1167 n &= ~((1LL<<32) - 1); 1168 do { 1169 hash++; 1170 n += 1LL<<32; 1171 } while(hash < cd->hash_size && 1172 cd->hash_table[hash]==NULL); 1173 if (hash >= cd->hash_size) 1174 return NULL; 1175 *pos = n+1; 1176 return cd->hash_table[hash]; 1177 } 1178 1179 static void *c_next(struct seq_file *m, void *p, loff_t *pos) 1180 { 1181 struct cache_head *ch = p; 1182 int hash = (*pos >> 32); 1183 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1184 1185 if (p == SEQ_START_TOKEN) 1186 hash = 0; 1187 else if (ch->next == NULL) { 1188 hash++; 1189 *pos += 1LL<<32; 1190 } else { 1191 ++*pos; 1192 return ch->next; 1193 } 1194 *pos &= ~((1LL<<32) - 1); 1195 while (hash < cd->hash_size && 1196 cd->hash_table[hash] == NULL) { 1197 hash++; 1198 *pos += 1LL<<32; 1199 } 1200 if (hash >= cd->hash_size) 1201 return NULL; 1202 ++*pos; 1203 return cd->hash_table[hash]; 1204 } 1205 1206 static void c_stop(struct seq_file *m, void *p) 1207 __releases(cd->hash_lock) 1208 { 1209 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1210 read_unlock(&cd->hash_lock); 1211 } 1212 1213 static int c_show(struct seq_file *m, void *p) 1214 { 1215 struct cache_head *cp = p; 1216 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1217 1218 if (p == SEQ_START_TOKEN) 1219 return cd->cache_show(m, cd, NULL); 1220 1221 ifdebug(CACHE) 1222 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1223 cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags); 1224 cache_get(cp); 1225 if (cache_check(cd, cp, NULL)) 1226 /* cache_check does a cache_put on failure */ 1227 seq_printf(m, "# "); 1228 else 1229 cache_put(cp, cd); 1230 1231 return cd->cache_show(m, cd, cp); 1232 } 1233 1234 static const struct seq_operations cache_content_op = { 1235 .start = c_start, 1236 .next = c_next, 1237 .stop = c_stop, 1238 .show = c_show, 1239 }; 1240 1241 static int content_open(struct inode *inode, struct file *file, 1242 struct cache_detail *cd) 1243 { 1244 struct handle *han; 1245 1246 if (!cd || !try_module_get(cd->owner)) 1247 return -EACCES; 1248 han = __seq_open_private(file, &cache_content_op, sizeof(*han)); 1249 if (han == NULL) { 1250 module_put(cd->owner); 1251 return -ENOMEM; 1252 } 1253 1254 han->cd = cd; 1255 return 0; 1256 } 1257 1258 static int content_release(struct inode *inode, struct file *file, 1259 struct cache_detail *cd) 1260 { 1261 int ret = seq_release_private(inode, file); 1262 module_put(cd->owner); 1263 return ret; 1264 } 1265 1266 static int open_flush(struct inode *inode, struct file *file, 1267 struct cache_detail *cd) 1268 { 1269 if (!cd || !try_module_get(cd->owner)) 1270 return -EACCES; 1271 return nonseekable_open(inode, file); 1272 } 1273 1274 static int release_flush(struct inode *inode, struct file *file, 1275 struct cache_detail *cd) 1276 { 1277 module_put(cd->owner); 1278 return 0; 1279 } 1280 1281 static ssize_t read_flush(struct file *file, char __user *buf, 1282 size_t count, loff_t *ppos, 1283 struct cache_detail *cd) 1284 { 1285 char tbuf[20]; 1286 unsigned long p = *ppos; 1287 size_t len; 1288 1289 sprintf(tbuf, "%lu\n", cd->flush_time); 1290 len = strlen(tbuf); 1291 if (p >= len) 1292 return 0; 1293 len -= p; 1294 if (len > count) 1295 len = count; 1296 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1297 return -EFAULT; 1298 *ppos += len; 1299 return len; 1300 } 1301 1302 static ssize_t write_flush(struct file *file, const char __user *buf, 1303 size_t count, loff_t *ppos, 1304 struct cache_detail *cd) 1305 { 1306 char tbuf[20]; 1307 char *ep; 1308 long flushtime; 1309 if (*ppos || count > sizeof(tbuf)-1) 1310 return -EINVAL; 1311 if (copy_from_user(tbuf, buf, count)) 1312 return -EFAULT; 1313 tbuf[count] = 0; 1314 flushtime = simple_strtoul(tbuf, &ep, 0); 1315 if (*ep && *ep != '\n') 1316 return -EINVAL; 1317 1318 cd->flush_time = flushtime; 1319 cd->nextcheck = get_seconds(); 1320 cache_flush(); 1321 1322 *ppos += count; 1323 return count; 1324 } 1325 1326 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1327 size_t count, loff_t *ppos) 1328 { 1329 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1330 1331 return cache_read(filp, buf, count, ppos, cd); 1332 } 1333 1334 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1335 size_t count, loff_t *ppos) 1336 { 1337 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1338 1339 return cache_write(filp, buf, count, ppos, cd); 1340 } 1341 1342 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait) 1343 { 1344 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1345 1346 return cache_poll(filp, wait, cd); 1347 } 1348 1349 static long cache_ioctl_procfs(struct file *filp, 1350 unsigned int cmd, unsigned long arg) 1351 { 1352 long ret; 1353 struct inode *inode = filp->f_path.dentry->d_inode; 1354 struct cache_detail *cd = PDE(inode)->data; 1355 1356 lock_kernel(); 1357 ret = cache_ioctl(inode, filp, cmd, arg, cd); 1358 unlock_kernel(); 1359 1360 return ret; 1361 } 1362 1363 static int cache_open_procfs(struct inode *inode, struct file *filp) 1364 { 1365 struct cache_detail *cd = PDE(inode)->data; 1366 1367 return cache_open(inode, filp, cd); 1368 } 1369 1370 static int cache_release_procfs(struct inode *inode, struct file *filp) 1371 { 1372 struct cache_detail *cd = PDE(inode)->data; 1373 1374 return cache_release(inode, filp, cd); 1375 } 1376 1377 static const struct file_operations cache_file_operations_procfs = { 1378 .owner = THIS_MODULE, 1379 .llseek = no_llseek, 1380 .read = cache_read_procfs, 1381 .write = cache_write_procfs, 1382 .poll = cache_poll_procfs, 1383 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1384 .open = cache_open_procfs, 1385 .release = cache_release_procfs, 1386 }; 1387 1388 static int content_open_procfs(struct inode *inode, struct file *filp) 1389 { 1390 struct cache_detail *cd = PDE(inode)->data; 1391 1392 return content_open(inode, filp, cd); 1393 } 1394 1395 static int content_release_procfs(struct inode *inode, struct file *filp) 1396 { 1397 struct cache_detail *cd = PDE(inode)->data; 1398 1399 return content_release(inode, filp, cd); 1400 } 1401 1402 static const struct file_operations content_file_operations_procfs = { 1403 .open = content_open_procfs, 1404 .read = seq_read, 1405 .llseek = seq_lseek, 1406 .release = content_release_procfs, 1407 }; 1408 1409 static int open_flush_procfs(struct inode *inode, struct file *filp) 1410 { 1411 struct cache_detail *cd = PDE(inode)->data; 1412 1413 return open_flush(inode, filp, cd); 1414 } 1415 1416 static int release_flush_procfs(struct inode *inode, struct file *filp) 1417 { 1418 struct cache_detail *cd = PDE(inode)->data; 1419 1420 return release_flush(inode, filp, cd); 1421 } 1422 1423 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1424 size_t count, loff_t *ppos) 1425 { 1426 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1427 1428 return read_flush(filp, buf, count, ppos, cd); 1429 } 1430 1431 static ssize_t write_flush_procfs(struct file *filp, 1432 const char __user *buf, 1433 size_t count, loff_t *ppos) 1434 { 1435 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1436 1437 return write_flush(filp, buf, count, ppos, cd); 1438 } 1439 1440 static const struct file_operations cache_flush_operations_procfs = { 1441 .open = open_flush_procfs, 1442 .read = read_flush_procfs, 1443 .write = write_flush_procfs, 1444 .release = release_flush_procfs, 1445 }; 1446 1447 static void remove_cache_proc_entries(struct cache_detail *cd) 1448 { 1449 if (cd->u.procfs.proc_ent == NULL) 1450 return; 1451 if (cd->u.procfs.flush_ent) 1452 remove_proc_entry("flush", cd->u.procfs.proc_ent); 1453 if (cd->u.procfs.channel_ent) 1454 remove_proc_entry("channel", cd->u.procfs.proc_ent); 1455 if (cd->u.procfs.content_ent) 1456 remove_proc_entry("content", cd->u.procfs.proc_ent); 1457 cd->u.procfs.proc_ent = NULL; 1458 remove_proc_entry(cd->name, proc_net_rpc); 1459 } 1460 1461 #ifdef CONFIG_PROC_FS 1462 static int create_cache_proc_entries(struct cache_detail *cd) 1463 { 1464 struct proc_dir_entry *p; 1465 1466 cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc); 1467 if (cd->u.procfs.proc_ent == NULL) 1468 goto out_nomem; 1469 cd->u.procfs.channel_ent = NULL; 1470 cd->u.procfs.content_ent = NULL; 1471 1472 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 1473 cd->u.procfs.proc_ent, 1474 &cache_flush_operations_procfs, cd); 1475 cd->u.procfs.flush_ent = p; 1476 if (p == NULL) 1477 goto out_nomem; 1478 1479 if (cd->cache_upcall || cd->cache_parse) { 1480 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 1481 cd->u.procfs.proc_ent, 1482 &cache_file_operations_procfs, cd); 1483 cd->u.procfs.channel_ent = p; 1484 if (p == NULL) 1485 goto out_nomem; 1486 } 1487 if (cd->cache_show) { 1488 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR, 1489 cd->u.procfs.proc_ent, 1490 &content_file_operations_procfs, cd); 1491 cd->u.procfs.content_ent = p; 1492 if (p == NULL) 1493 goto out_nomem; 1494 } 1495 return 0; 1496 out_nomem: 1497 remove_cache_proc_entries(cd); 1498 return -ENOMEM; 1499 } 1500 #else /* CONFIG_PROC_FS */ 1501 static int create_cache_proc_entries(struct cache_detail *cd) 1502 { 1503 return 0; 1504 } 1505 #endif 1506 1507 int cache_register(struct cache_detail *cd) 1508 { 1509 int ret; 1510 1511 sunrpc_init_cache_detail(cd); 1512 ret = create_cache_proc_entries(cd); 1513 if (ret) 1514 sunrpc_destroy_cache_detail(cd); 1515 return ret; 1516 } 1517 EXPORT_SYMBOL_GPL(cache_register); 1518 1519 void cache_unregister(struct cache_detail *cd) 1520 { 1521 remove_cache_proc_entries(cd); 1522 sunrpc_destroy_cache_detail(cd); 1523 } 1524 EXPORT_SYMBOL_GPL(cache_unregister); 1525 1526 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1527 size_t count, loff_t *ppos) 1528 { 1529 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1530 1531 return cache_read(filp, buf, count, ppos, cd); 1532 } 1533 1534 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1535 size_t count, loff_t *ppos) 1536 { 1537 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1538 1539 return cache_write(filp, buf, count, ppos, cd); 1540 } 1541 1542 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait) 1543 { 1544 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1545 1546 return cache_poll(filp, wait, cd); 1547 } 1548 1549 static long cache_ioctl_pipefs(struct file *filp, 1550 unsigned int cmd, unsigned long arg) 1551 { 1552 struct inode *inode = filp->f_dentry->d_inode; 1553 struct cache_detail *cd = RPC_I(inode)->private; 1554 long ret; 1555 1556 lock_kernel(); 1557 ret = cache_ioctl(inode, filp, cmd, arg, cd); 1558 unlock_kernel(); 1559 1560 return ret; 1561 } 1562 1563 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1564 { 1565 struct cache_detail *cd = RPC_I(inode)->private; 1566 1567 return cache_open(inode, filp, cd); 1568 } 1569 1570 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1571 { 1572 struct cache_detail *cd = RPC_I(inode)->private; 1573 1574 return cache_release(inode, filp, cd); 1575 } 1576 1577 const struct file_operations cache_file_operations_pipefs = { 1578 .owner = THIS_MODULE, 1579 .llseek = no_llseek, 1580 .read = cache_read_pipefs, 1581 .write = cache_write_pipefs, 1582 .poll = cache_poll_pipefs, 1583 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1584 .open = cache_open_pipefs, 1585 .release = cache_release_pipefs, 1586 }; 1587 1588 static int content_open_pipefs(struct inode *inode, struct file *filp) 1589 { 1590 struct cache_detail *cd = RPC_I(inode)->private; 1591 1592 return content_open(inode, filp, cd); 1593 } 1594 1595 static int content_release_pipefs(struct inode *inode, struct file *filp) 1596 { 1597 struct cache_detail *cd = RPC_I(inode)->private; 1598 1599 return content_release(inode, filp, cd); 1600 } 1601 1602 const struct file_operations content_file_operations_pipefs = { 1603 .open = content_open_pipefs, 1604 .read = seq_read, 1605 .llseek = seq_lseek, 1606 .release = content_release_pipefs, 1607 }; 1608 1609 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1610 { 1611 struct cache_detail *cd = RPC_I(inode)->private; 1612 1613 return open_flush(inode, filp, cd); 1614 } 1615 1616 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1617 { 1618 struct cache_detail *cd = RPC_I(inode)->private; 1619 1620 return release_flush(inode, filp, cd); 1621 } 1622 1623 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1624 size_t count, loff_t *ppos) 1625 { 1626 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1627 1628 return read_flush(filp, buf, count, ppos, cd); 1629 } 1630 1631 static ssize_t write_flush_pipefs(struct file *filp, 1632 const char __user *buf, 1633 size_t count, loff_t *ppos) 1634 { 1635 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1636 1637 return write_flush(filp, buf, count, ppos, cd); 1638 } 1639 1640 const struct file_operations cache_flush_operations_pipefs = { 1641 .open = open_flush_pipefs, 1642 .read = read_flush_pipefs, 1643 .write = write_flush_pipefs, 1644 .release = release_flush_pipefs, 1645 }; 1646 1647 int sunrpc_cache_register_pipefs(struct dentry *parent, 1648 const char *name, mode_t umode, 1649 struct cache_detail *cd) 1650 { 1651 struct qstr q; 1652 struct dentry *dir; 1653 int ret = 0; 1654 1655 sunrpc_init_cache_detail(cd); 1656 q.name = name; 1657 q.len = strlen(name); 1658 q.hash = full_name_hash(q.name, q.len); 1659 dir = rpc_create_cache_dir(parent, &q, umode, cd); 1660 if (!IS_ERR(dir)) 1661 cd->u.pipefs.dir = dir; 1662 else { 1663 sunrpc_destroy_cache_detail(cd); 1664 ret = PTR_ERR(dir); 1665 } 1666 return ret; 1667 } 1668 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1669 1670 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1671 { 1672 rpc_remove_cache_dir(cd->u.pipefs.dir); 1673 cd->u.pipefs.dir = NULL; 1674 sunrpc_destroy_cache_detail(cd); 1675 } 1676 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1677 1678