1 /* 2 * net/sunrpc/cache.c 3 * 4 * Generic code for various authentication-related caches 5 * used by sunrpc clients and servers. 6 * 7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 8 * 9 * Released under terms in GPL version 2. See COPYING. 10 * 11 */ 12 13 #include <linux/types.h> 14 #include <linux/fs.h> 15 #include <linux/file.h> 16 #include <linux/slab.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kmod.h> 20 #include <linux/list.h> 21 #include <linux/module.h> 22 #include <linux/ctype.h> 23 #include <asm/uaccess.h> 24 #include <linux/poll.h> 25 #include <linux/seq_file.h> 26 #include <linux/proc_fs.h> 27 #include <linux/net.h> 28 #include <linux/workqueue.h> 29 #include <linux/mutex.h> 30 #include <linux/pagemap.h> 31 #include <asm/ioctls.h> 32 #include <linux/sunrpc/types.h> 33 #include <linux/sunrpc/cache.h> 34 #include <linux/sunrpc/stats.h> 35 #include <linux/sunrpc/rpc_pipe_fs.h> 36 37 #define RPCDBG_FACILITY RPCDBG_CACHE 38 39 static int cache_defer_req(struct cache_req *req, struct cache_head *item); 40 static void cache_revisit_request(struct cache_head *item); 41 42 static void cache_init(struct cache_head *h) 43 { 44 time_t now = get_seconds(); 45 h->next = NULL; 46 h->flags = 0; 47 kref_init(&h->ref); 48 h->expiry_time = now + CACHE_NEW_EXPIRY; 49 h->last_refresh = now; 50 } 51 52 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h) 53 { 54 return (h->expiry_time < get_seconds()) || 55 (detail->flush_time > h->last_refresh); 56 } 57 58 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail, 59 struct cache_head *key, int hash) 60 { 61 struct cache_head **head, **hp; 62 struct cache_head *new = NULL, *freeme = NULL; 63 64 head = &detail->hash_table[hash]; 65 66 read_lock(&detail->hash_lock); 67 68 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 69 struct cache_head *tmp = *hp; 70 if (detail->match(tmp, key)) { 71 if (cache_is_expired(detail, tmp)) 72 /* This entry is expired, we will discard it. */ 73 break; 74 cache_get(tmp); 75 read_unlock(&detail->hash_lock); 76 return tmp; 77 } 78 } 79 read_unlock(&detail->hash_lock); 80 /* Didn't find anything, insert an empty entry */ 81 82 new = detail->alloc(); 83 if (!new) 84 return NULL; 85 /* must fully initialise 'new', else 86 * we might get lose if we need to 87 * cache_put it soon. 88 */ 89 cache_init(new); 90 detail->init(new, key); 91 92 write_lock(&detail->hash_lock); 93 94 /* check if entry appeared while we slept */ 95 for (hp=head; *hp != NULL ; hp = &(*hp)->next) { 96 struct cache_head *tmp = *hp; 97 if (detail->match(tmp, key)) { 98 if (cache_is_expired(detail, tmp)) { 99 *hp = tmp->next; 100 tmp->next = NULL; 101 detail->entries --; 102 freeme = tmp; 103 break; 104 } 105 cache_get(tmp); 106 write_unlock(&detail->hash_lock); 107 cache_put(new, detail); 108 return tmp; 109 } 110 } 111 new->next = *head; 112 *head = new; 113 detail->entries++; 114 cache_get(new); 115 write_unlock(&detail->hash_lock); 116 117 if (freeme) 118 cache_put(freeme, detail); 119 return new; 120 } 121 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup); 122 123 124 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 125 126 static void cache_fresh_locked(struct cache_head *head, time_t expiry) 127 { 128 head->expiry_time = expiry; 129 head->last_refresh = get_seconds(); 130 set_bit(CACHE_VALID, &head->flags); 131 } 132 133 static void cache_fresh_unlocked(struct cache_head *head, 134 struct cache_detail *detail) 135 { 136 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 137 cache_revisit_request(head); 138 cache_dequeue(detail, head); 139 } 140 } 141 142 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 143 struct cache_head *new, struct cache_head *old, int hash) 144 { 145 /* The 'old' entry is to be replaced by 'new'. 146 * If 'old' is not VALID, we update it directly, 147 * otherwise we need to replace it 148 */ 149 struct cache_head **head; 150 struct cache_head *tmp; 151 152 if (!test_bit(CACHE_VALID, &old->flags)) { 153 write_lock(&detail->hash_lock); 154 if (!test_bit(CACHE_VALID, &old->flags)) { 155 if (test_bit(CACHE_NEGATIVE, &new->flags)) 156 set_bit(CACHE_NEGATIVE, &old->flags); 157 else 158 detail->update(old, new); 159 cache_fresh_locked(old, new->expiry_time); 160 write_unlock(&detail->hash_lock); 161 cache_fresh_unlocked(old, detail); 162 return old; 163 } 164 write_unlock(&detail->hash_lock); 165 } 166 /* We need to insert a new entry */ 167 tmp = detail->alloc(); 168 if (!tmp) { 169 cache_put(old, detail); 170 return NULL; 171 } 172 cache_init(tmp); 173 detail->init(tmp, old); 174 head = &detail->hash_table[hash]; 175 176 write_lock(&detail->hash_lock); 177 if (test_bit(CACHE_NEGATIVE, &new->flags)) 178 set_bit(CACHE_NEGATIVE, &tmp->flags); 179 else 180 detail->update(tmp, new); 181 tmp->next = *head; 182 *head = tmp; 183 detail->entries++; 184 cache_get(tmp); 185 cache_fresh_locked(tmp, new->expiry_time); 186 cache_fresh_locked(old, 0); 187 write_unlock(&detail->hash_lock); 188 cache_fresh_unlocked(tmp, detail); 189 cache_fresh_unlocked(old, detail); 190 cache_put(old, detail); 191 return tmp; 192 } 193 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 194 195 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h) 196 { 197 if (!cd->cache_upcall) 198 return -EINVAL; 199 return cd->cache_upcall(cd, h); 200 } 201 202 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h) 203 { 204 if (!test_bit(CACHE_VALID, &h->flags)) 205 return -EAGAIN; 206 else { 207 /* entry is valid */ 208 if (test_bit(CACHE_NEGATIVE, &h->flags)) 209 return -ENOENT; 210 else 211 return 0; 212 } 213 } 214 215 /* 216 * This is the generic cache management routine for all 217 * the authentication caches. 218 * It checks the currency of a cache item and will (later) 219 * initiate an upcall to fill it if needed. 220 * 221 * 222 * Returns 0 if the cache_head can be used, or cache_puts it and returns 223 * -EAGAIN if upcall is pending and request has been queued 224 * -ETIMEDOUT if upcall failed or request could not be queue or 225 * upcall completed but item is still invalid (implying that 226 * the cache item has been replaced with a newer one). 227 * -ENOENT if cache entry was negative 228 */ 229 int cache_check(struct cache_detail *detail, 230 struct cache_head *h, struct cache_req *rqstp) 231 { 232 int rv; 233 long refresh_age, age; 234 235 /* First decide return status as best we can */ 236 rv = cache_is_valid(detail, h); 237 238 /* now see if we want to start an upcall */ 239 refresh_age = (h->expiry_time - h->last_refresh); 240 age = get_seconds() - h->last_refresh; 241 242 if (rqstp == NULL) { 243 if (rv == -EAGAIN) 244 rv = -ENOENT; 245 } else if (rv == -EAGAIN || age > refresh_age/2) { 246 dprintk("RPC: Want update, refage=%ld, age=%ld\n", 247 refresh_age, age); 248 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) { 249 switch (cache_make_upcall(detail, h)) { 250 case -EINVAL: 251 clear_bit(CACHE_PENDING, &h->flags); 252 cache_revisit_request(h); 253 if (rv == -EAGAIN) { 254 set_bit(CACHE_NEGATIVE, &h->flags); 255 cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY); 256 cache_fresh_unlocked(h, detail); 257 rv = -ENOENT; 258 } 259 break; 260 261 case -EAGAIN: 262 clear_bit(CACHE_PENDING, &h->flags); 263 cache_revisit_request(h); 264 break; 265 } 266 } 267 } 268 269 if (rv == -EAGAIN) { 270 if (cache_defer_req(rqstp, h) < 0) { 271 /* Request is not deferred */ 272 rv = cache_is_valid(detail, h); 273 if (rv == -EAGAIN) 274 rv = -ETIMEDOUT; 275 } 276 } 277 if (rv) 278 cache_put(h, detail); 279 return rv; 280 } 281 EXPORT_SYMBOL_GPL(cache_check); 282 283 /* 284 * caches need to be periodically cleaned. 285 * For this we maintain a list of cache_detail and 286 * a current pointer into that list and into the table 287 * for that entry. 288 * 289 * Each time clean_cache is called it finds the next non-empty entry 290 * in the current table and walks the list in that entry 291 * looking for entries that can be removed. 292 * 293 * An entry gets removed if: 294 * - The expiry is before current time 295 * - The last_refresh time is before the flush_time for that cache 296 * 297 * later we might drop old entries with non-NEVER expiry if that table 298 * is getting 'full' for some definition of 'full' 299 * 300 * The question of "how often to scan a table" is an interesting one 301 * and is answered in part by the use of the "nextcheck" field in the 302 * cache_detail. 303 * When a scan of a table begins, the nextcheck field is set to a time 304 * that is well into the future. 305 * While scanning, if an expiry time is found that is earlier than the 306 * current nextcheck time, nextcheck is set to that expiry time. 307 * If the flush_time is ever set to a time earlier than the nextcheck 308 * time, the nextcheck time is then set to that flush_time. 309 * 310 * A table is then only scanned if the current time is at least 311 * the nextcheck time. 312 * 313 */ 314 315 static LIST_HEAD(cache_list); 316 static DEFINE_SPINLOCK(cache_list_lock); 317 static struct cache_detail *current_detail; 318 static int current_index; 319 320 static void do_cache_clean(struct work_struct *work); 321 static struct delayed_work cache_cleaner; 322 323 static void sunrpc_init_cache_detail(struct cache_detail *cd) 324 { 325 rwlock_init(&cd->hash_lock); 326 INIT_LIST_HEAD(&cd->queue); 327 spin_lock(&cache_list_lock); 328 cd->nextcheck = 0; 329 cd->entries = 0; 330 atomic_set(&cd->readers, 0); 331 cd->last_close = 0; 332 cd->last_warn = -1; 333 list_add(&cd->others, &cache_list); 334 spin_unlock(&cache_list_lock); 335 336 /* start the cleaning process */ 337 schedule_delayed_work(&cache_cleaner, 0); 338 } 339 340 static void sunrpc_destroy_cache_detail(struct cache_detail *cd) 341 { 342 cache_purge(cd); 343 spin_lock(&cache_list_lock); 344 write_lock(&cd->hash_lock); 345 if (cd->entries || atomic_read(&cd->inuse)) { 346 write_unlock(&cd->hash_lock); 347 spin_unlock(&cache_list_lock); 348 goto out; 349 } 350 if (current_detail == cd) 351 current_detail = NULL; 352 list_del_init(&cd->others); 353 write_unlock(&cd->hash_lock); 354 spin_unlock(&cache_list_lock); 355 if (list_empty(&cache_list)) { 356 /* module must be being unloaded so its safe to kill the worker */ 357 cancel_delayed_work_sync(&cache_cleaner); 358 } 359 return; 360 out: 361 printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name); 362 } 363 364 /* clean cache tries to find something to clean 365 * and cleans it. 366 * It returns 1 if it cleaned something, 367 * 0 if it didn't find anything this time 368 * -1 if it fell off the end of the list. 369 */ 370 static int cache_clean(void) 371 { 372 int rv = 0; 373 struct list_head *next; 374 375 spin_lock(&cache_list_lock); 376 377 /* find a suitable table if we don't already have one */ 378 while (current_detail == NULL || 379 current_index >= current_detail->hash_size) { 380 if (current_detail) 381 next = current_detail->others.next; 382 else 383 next = cache_list.next; 384 if (next == &cache_list) { 385 current_detail = NULL; 386 spin_unlock(&cache_list_lock); 387 return -1; 388 } 389 current_detail = list_entry(next, struct cache_detail, others); 390 if (current_detail->nextcheck > get_seconds()) 391 current_index = current_detail->hash_size; 392 else { 393 current_index = 0; 394 current_detail->nextcheck = get_seconds()+30*60; 395 } 396 } 397 398 /* find a non-empty bucket in the table */ 399 while (current_detail && 400 current_index < current_detail->hash_size && 401 current_detail->hash_table[current_index] == NULL) 402 current_index++; 403 404 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 405 406 if (current_detail && current_index < current_detail->hash_size) { 407 struct cache_head *ch, **cp; 408 struct cache_detail *d; 409 410 write_lock(¤t_detail->hash_lock); 411 412 /* Ok, now to clean this strand */ 413 414 cp = & current_detail->hash_table[current_index]; 415 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) { 416 if (current_detail->nextcheck > ch->expiry_time) 417 current_detail->nextcheck = ch->expiry_time+1; 418 if (!cache_is_expired(current_detail, ch)) 419 continue; 420 421 *cp = ch->next; 422 ch->next = NULL; 423 current_detail->entries--; 424 rv = 1; 425 break; 426 } 427 428 write_unlock(¤t_detail->hash_lock); 429 d = current_detail; 430 if (!ch) 431 current_index ++; 432 spin_unlock(&cache_list_lock); 433 if (ch) { 434 if (test_and_clear_bit(CACHE_PENDING, &ch->flags)) 435 cache_dequeue(current_detail, ch); 436 cache_revisit_request(ch); 437 cache_put(ch, d); 438 } 439 } else 440 spin_unlock(&cache_list_lock); 441 442 return rv; 443 } 444 445 /* 446 * We want to regularly clean the cache, so we need to schedule some work ... 447 */ 448 static void do_cache_clean(struct work_struct *work) 449 { 450 int delay = 5; 451 if (cache_clean() == -1) 452 delay = round_jiffies_relative(30*HZ); 453 454 if (list_empty(&cache_list)) 455 delay = 0; 456 457 if (delay) 458 schedule_delayed_work(&cache_cleaner, delay); 459 } 460 461 462 /* 463 * Clean all caches promptly. This just calls cache_clean 464 * repeatedly until we are sure that every cache has had a chance to 465 * be fully cleaned 466 */ 467 void cache_flush(void) 468 { 469 while (cache_clean() != -1) 470 cond_resched(); 471 while (cache_clean() != -1) 472 cond_resched(); 473 } 474 EXPORT_SYMBOL_GPL(cache_flush); 475 476 void cache_purge(struct cache_detail *detail) 477 { 478 detail->flush_time = LONG_MAX; 479 detail->nextcheck = get_seconds(); 480 cache_flush(); 481 detail->flush_time = 1; 482 } 483 EXPORT_SYMBOL_GPL(cache_purge); 484 485 486 /* 487 * Deferral and Revisiting of Requests. 488 * 489 * If a cache lookup finds a pending entry, we 490 * need to defer the request and revisit it later. 491 * All deferred requests are stored in a hash table, 492 * indexed by "struct cache_head *". 493 * As it may be wasteful to store a whole request 494 * structure, we allow the request to provide a 495 * deferred form, which must contain a 496 * 'struct cache_deferred_req' 497 * This cache_deferred_req contains a method to allow 498 * it to be revisited when cache info is available 499 */ 500 501 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 502 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 503 504 #define DFR_MAX 300 /* ??? */ 505 506 static DEFINE_SPINLOCK(cache_defer_lock); 507 static LIST_HEAD(cache_defer_list); 508 static struct list_head cache_defer_hash[DFR_HASHSIZE]; 509 static int cache_defer_cnt; 510 511 static int cache_defer_req(struct cache_req *req, struct cache_head *item) 512 { 513 struct cache_deferred_req *dreq, *discard; 514 int hash = DFR_HASH(item); 515 516 if (cache_defer_cnt >= DFR_MAX) { 517 /* too much in the cache, randomly drop this one, 518 * or continue and drop the oldest below 519 */ 520 if (net_random()&1) 521 return -ENOMEM; 522 } 523 dreq = req->defer(req); 524 if (dreq == NULL) 525 return -ENOMEM; 526 527 dreq->item = item; 528 529 spin_lock(&cache_defer_lock); 530 531 list_add(&dreq->recent, &cache_defer_list); 532 533 if (cache_defer_hash[hash].next == NULL) 534 INIT_LIST_HEAD(&cache_defer_hash[hash]); 535 list_add(&dreq->hash, &cache_defer_hash[hash]); 536 537 /* it is in, now maybe clean up */ 538 discard = NULL; 539 if (++cache_defer_cnt > DFR_MAX) { 540 discard = list_entry(cache_defer_list.prev, 541 struct cache_deferred_req, recent); 542 list_del_init(&discard->recent); 543 list_del_init(&discard->hash); 544 cache_defer_cnt--; 545 } 546 spin_unlock(&cache_defer_lock); 547 548 if (discard) 549 /* there was one too many */ 550 discard->revisit(discard, 1); 551 552 if (!test_bit(CACHE_PENDING, &item->flags)) { 553 /* must have just been validated... */ 554 cache_revisit_request(item); 555 return -EAGAIN; 556 } 557 return 0; 558 } 559 560 static void cache_revisit_request(struct cache_head *item) 561 { 562 struct cache_deferred_req *dreq; 563 struct list_head pending; 564 565 struct list_head *lp; 566 int hash = DFR_HASH(item); 567 568 INIT_LIST_HEAD(&pending); 569 spin_lock(&cache_defer_lock); 570 571 lp = cache_defer_hash[hash].next; 572 if (lp) { 573 while (lp != &cache_defer_hash[hash]) { 574 dreq = list_entry(lp, struct cache_deferred_req, hash); 575 lp = lp->next; 576 if (dreq->item == item) { 577 list_del_init(&dreq->hash); 578 list_move(&dreq->recent, &pending); 579 cache_defer_cnt--; 580 } 581 } 582 } 583 spin_unlock(&cache_defer_lock); 584 585 while (!list_empty(&pending)) { 586 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 587 list_del_init(&dreq->recent); 588 dreq->revisit(dreq, 0); 589 } 590 } 591 592 void cache_clean_deferred(void *owner) 593 { 594 struct cache_deferred_req *dreq, *tmp; 595 struct list_head pending; 596 597 598 INIT_LIST_HEAD(&pending); 599 spin_lock(&cache_defer_lock); 600 601 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 602 if (dreq->owner == owner) { 603 list_del_init(&dreq->hash); 604 list_move(&dreq->recent, &pending); 605 cache_defer_cnt--; 606 } 607 } 608 spin_unlock(&cache_defer_lock); 609 610 while (!list_empty(&pending)) { 611 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 612 list_del_init(&dreq->recent); 613 dreq->revisit(dreq, 1); 614 } 615 } 616 617 /* 618 * communicate with user-space 619 * 620 * We have a magic /proc file - /proc/sunrpc/<cachename>/channel. 621 * On read, you get a full request, or block. 622 * On write, an update request is processed. 623 * Poll works if anything to read, and always allows write. 624 * 625 * Implemented by linked list of requests. Each open file has 626 * a ->private that also exists in this list. New requests are added 627 * to the end and may wakeup and preceding readers. 628 * New readers are added to the head. If, on read, an item is found with 629 * CACHE_UPCALLING clear, we free it from the list. 630 * 631 */ 632 633 static DEFINE_SPINLOCK(queue_lock); 634 static DEFINE_MUTEX(queue_io_mutex); 635 636 struct cache_queue { 637 struct list_head list; 638 int reader; /* if 0, then request */ 639 }; 640 struct cache_request { 641 struct cache_queue q; 642 struct cache_head *item; 643 char * buf; 644 int len; 645 int readers; 646 }; 647 struct cache_reader { 648 struct cache_queue q; 649 int offset; /* if non-0, we have a refcnt on next request */ 650 }; 651 652 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 653 loff_t *ppos, struct cache_detail *cd) 654 { 655 struct cache_reader *rp = filp->private_data; 656 struct cache_request *rq; 657 struct inode *inode = filp->f_path.dentry->d_inode; 658 int err; 659 660 if (count == 0) 661 return 0; 662 663 mutex_lock(&inode->i_mutex); /* protect against multiple concurrent 664 * readers on this file */ 665 again: 666 spin_lock(&queue_lock); 667 /* need to find next request */ 668 while (rp->q.list.next != &cd->queue && 669 list_entry(rp->q.list.next, struct cache_queue, list) 670 ->reader) { 671 struct list_head *next = rp->q.list.next; 672 list_move(&rp->q.list, next); 673 } 674 if (rp->q.list.next == &cd->queue) { 675 spin_unlock(&queue_lock); 676 mutex_unlock(&inode->i_mutex); 677 BUG_ON(rp->offset); 678 return 0; 679 } 680 rq = container_of(rp->q.list.next, struct cache_request, q.list); 681 BUG_ON(rq->q.reader); 682 if (rp->offset == 0) 683 rq->readers++; 684 spin_unlock(&queue_lock); 685 686 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 687 err = -EAGAIN; 688 spin_lock(&queue_lock); 689 list_move(&rp->q.list, &rq->q.list); 690 spin_unlock(&queue_lock); 691 } else { 692 if (rp->offset + count > rq->len) 693 count = rq->len - rp->offset; 694 err = -EFAULT; 695 if (copy_to_user(buf, rq->buf + rp->offset, count)) 696 goto out; 697 rp->offset += count; 698 if (rp->offset >= rq->len) { 699 rp->offset = 0; 700 spin_lock(&queue_lock); 701 list_move(&rp->q.list, &rq->q.list); 702 spin_unlock(&queue_lock); 703 } 704 err = 0; 705 } 706 out: 707 if (rp->offset == 0) { 708 /* need to release rq */ 709 spin_lock(&queue_lock); 710 rq->readers--; 711 if (rq->readers == 0 && 712 !test_bit(CACHE_PENDING, &rq->item->flags)) { 713 list_del(&rq->q.list); 714 spin_unlock(&queue_lock); 715 cache_put(rq->item, cd); 716 kfree(rq->buf); 717 kfree(rq); 718 } else 719 spin_unlock(&queue_lock); 720 } 721 if (err == -EAGAIN) 722 goto again; 723 mutex_unlock(&inode->i_mutex); 724 return err ? err : count; 725 } 726 727 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 728 size_t count, struct cache_detail *cd) 729 { 730 ssize_t ret; 731 732 if (copy_from_user(kaddr, buf, count)) 733 return -EFAULT; 734 kaddr[count] = '\0'; 735 ret = cd->cache_parse(cd, kaddr, count); 736 if (!ret) 737 ret = count; 738 return ret; 739 } 740 741 static ssize_t cache_slow_downcall(const char __user *buf, 742 size_t count, struct cache_detail *cd) 743 { 744 static char write_buf[8192]; /* protected by queue_io_mutex */ 745 ssize_t ret = -EINVAL; 746 747 if (count >= sizeof(write_buf)) 748 goto out; 749 mutex_lock(&queue_io_mutex); 750 ret = cache_do_downcall(write_buf, buf, count, cd); 751 mutex_unlock(&queue_io_mutex); 752 out: 753 return ret; 754 } 755 756 static ssize_t cache_downcall(struct address_space *mapping, 757 const char __user *buf, 758 size_t count, struct cache_detail *cd) 759 { 760 struct page *page; 761 char *kaddr; 762 ssize_t ret = -ENOMEM; 763 764 if (count >= PAGE_CACHE_SIZE) 765 goto out_slow; 766 767 page = find_or_create_page(mapping, 0, GFP_KERNEL); 768 if (!page) 769 goto out_slow; 770 771 kaddr = kmap(page); 772 ret = cache_do_downcall(kaddr, buf, count, cd); 773 kunmap(page); 774 unlock_page(page); 775 page_cache_release(page); 776 return ret; 777 out_slow: 778 return cache_slow_downcall(buf, count, cd); 779 } 780 781 static ssize_t cache_write(struct file *filp, const char __user *buf, 782 size_t count, loff_t *ppos, 783 struct cache_detail *cd) 784 { 785 struct address_space *mapping = filp->f_mapping; 786 struct inode *inode = filp->f_path.dentry->d_inode; 787 ssize_t ret = -EINVAL; 788 789 if (!cd->cache_parse) 790 goto out; 791 792 mutex_lock(&inode->i_mutex); 793 ret = cache_downcall(mapping, buf, count, cd); 794 mutex_unlock(&inode->i_mutex); 795 out: 796 return ret; 797 } 798 799 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 800 801 static unsigned int cache_poll(struct file *filp, poll_table *wait, 802 struct cache_detail *cd) 803 { 804 unsigned int mask; 805 struct cache_reader *rp = filp->private_data; 806 struct cache_queue *cq; 807 808 poll_wait(filp, &queue_wait, wait); 809 810 /* alway allow write */ 811 mask = POLL_OUT | POLLWRNORM; 812 813 if (!rp) 814 return mask; 815 816 spin_lock(&queue_lock); 817 818 for (cq= &rp->q; &cq->list != &cd->queue; 819 cq = list_entry(cq->list.next, struct cache_queue, list)) 820 if (!cq->reader) { 821 mask |= POLLIN | POLLRDNORM; 822 break; 823 } 824 spin_unlock(&queue_lock); 825 return mask; 826 } 827 828 static int cache_ioctl(struct inode *ino, struct file *filp, 829 unsigned int cmd, unsigned long arg, 830 struct cache_detail *cd) 831 { 832 int len = 0; 833 struct cache_reader *rp = filp->private_data; 834 struct cache_queue *cq; 835 836 if (cmd != FIONREAD || !rp) 837 return -EINVAL; 838 839 spin_lock(&queue_lock); 840 841 /* only find the length remaining in current request, 842 * or the length of the next request 843 */ 844 for (cq= &rp->q; &cq->list != &cd->queue; 845 cq = list_entry(cq->list.next, struct cache_queue, list)) 846 if (!cq->reader) { 847 struct cache_request *cr = 848 container_of(cq, struct cache_request, q); 849 len = cr->len - rp->offset; 850 break; 851 } 852 spin_unlock(&queue_lock); 853 854 return put_user(len, (int __user *)arg); 855 } 856 857 static int cache_open(struct inode *inode, struct file *filp, 858 struct cache_detail *cd) 859 { 860 struct cache_reader *rp = NULL; 861 862 if (!cd || !try_module_get(cd->owner)) 863 return -EACCES; 864 nonseekable_open(inode, filp); 865 if (filp->f_mode & FMODE_READ) { 866 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 867 if (!rp) 868 return -ENOMEM; 869 rp->offset = 0; 870 rp->q.reader = 1; 871 atomic_inc(&cd->readers); 872 spin_lock(&queue_lock); 873 list_add(&rp->q.list, &cd->queue); 874 spin_unlock(&queue_lock); 875 } 876 filp->private_data = rp; 877 return 0; 878 } 879 880 static int cache_release(struct inode *inode, struct file *filp, 881 struct cache_detail *cd) 882 { 883 struct cache_reader *rp = filp->private_data; 884 885 if (rp) { 886 spin_lock(&queue_lock); 887 if (rp->offset) { 888 struct cache_queue *cq; 889 for (cq= &rp->q; &cq->list != &cd->queue; 890 cq = list_entry(cq->list.next, struct cache_queue, list)) 891 if (!cq->reader) { 892 container_of(cq, struct cache_request, q) 893 ->readers--; 894 break; 895 } 896 rp->offset = 0; 897 } 898 list_del(&rp->q.list); 899 spin_unlock(&queue_lock); 900 901 filp->private_data = NULL; 902 kfree(rp); 903 904 cd->last_close = get_seconds(); 905 atomic_dec(&cd->readers); 906 } 907 module_put(cd->owner); 908 return 0; 909 } 910 911 912 913 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 914 { 915 struct cache_queue *cq; 916 spin_lock(&queue_lock); 917 list_for_each_entry(cq, &detail->queue, list) 918 if (!cq->reader) { 919 struct cache_request *cr = container_of(cq, struct cache_request, q); 920 if (cr->item != ch) 921 continue; 922 if (cr->readers != 0) 923 continue; 924 list_del(&cr->q.list); 925 spin_unlock(&queue_lock); 926 cache_put(cr->item, detail); 927 kfree(cr->buf); 928 kfree(cr); 929 return; 930 } 931 spin_unlock(&queue_lock); 932 } 933 934 /* 935 * Support routines for text-based upcalls. 936 * Fields are separated by spaces. 937 * Fields are either mangled to quote space tab newline slosh with slosh 938 * or a hexified with a leading \x 939 * Record is terminated with newline. 940 * 941 */ 942 943 void qword_add(char **bpp, int *lp, char *str) 944 { 945 char *bp = *bpp; 946 int len = *lp; 947 char c; 948 949 if (len < 0) return; 950 951 while ((c=*str++) && len) 952 switch(c) { 953 case ' ': 954 case '\t': 955 case '\n': 956 case '\\': 957 if (len >= 4) { 958 *bp++ = '\\'; 959 *bp++ = '0' + ((c & 0300)>>6); 960 *bp++ = '0' + ((c & 0070)>>3); 961 *bp++ = '0' + ((c & 0007)>>0); 962 } 963 len -= 4; 964 break; 965 default: 966 *bp++ = c; 967 len--; 968 } 969 if (c || len <1) len = -1; 970 else { 971 *bp++ = ' '; 972 len--; 973 } 974 *bpp = bp; 975 *lp = len; 976 } 977 EXPORT_SYMBOL_GPL(qword_add); 978 979 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 980 { 981 char *bp = *bpp; 982 int len = *lp; 983 984 if (len < 0) return; 985 986 if (len > 2) { 987 *bp++ = '\\'; 988 *bp++ = 'x'; 989 len -= 2; 990 while (blen && len >= 2) { 991 unsigned char c = *buf++; 992 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1); 993 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1); 994 len -= 2; 995 blen--; 996 } 997 } 998 if (blen || len<1) len = -1; 999 else { 1000 *bp++ = ' '; 1001 len--; 1002 } 1003 *bpp = bp; 1004 *lp = len; 1005 } 1006 EXPORT_SYMBOL_GPL(qword_addhex); 1007 1008 static void warn_no_listener(struct cache_detail *detail) 1009 { 1010 if (detail->last_warn != detail->last_close) { 1011 detail->last_warn = detail->last_close; 1012 if (detail->warn_no_listener) 1013 detail->warn_no_listener(detail, detail->last_close != 0); 1014 } 1015 } 1016 1017 /* 1018 * register an upcall request to user-space and queue it up for read() by the 1019 * upcall daemon. 1020 * 1021 * Each request is at most one page long. 1022 */ 1023 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h, 1024 void (*cache_request)(struct cache_detail *, 1025 struct cache_head *, 1026 char **, 1027 int *)) 1028 { 1029 1030 char *buf; 1031 struct cache_request *crq; 1032 char *bp; 1033 int len; 1034 1035 if (atomic_read(&detail->readers) == 0 && 1036 detail->last_close < get_seconds() - 30) { 1037 warn_no_listener(detail); 1038 return -EINVAL; 1039 } 1040 1041 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1042 if (!buf) 1043 return -EAGAIN; 1044 1045 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1046 if (!crq) { 1047 kfree(buf); 1048 return -EAGAIN; 1049 } 1050 1051 bp = buf; len = PAGE_SIZE; 1052 1053 cache_request(detail, h, &bp, &len); 1054 1055 if (len < 0) { 1056 kfree(buf); 1057 kfree(crq); 1058 return -EAGAIN; 1059 } 1060 crq->q.reader = 0; 1061 crq->item = cache_get(h); 1062 crq->buf = buf; 1063 crq->len = PAGE_SIZE - len; 1064 crq->readers = 0; 1065 spin_lock(&queue_lock); 1066 list_add_tail(&crq->q.list, &detail->queue); 1067 spin_unlock(&queue_lock); 1068 wake_up(&queue_wait); 1069 return 0; 1070 } 1071 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1072 1073 /* 1074 * parse a message from user-space and pass it 1075 * to an appropriate cache 1076 * Messages are, like requests, separated into fields by 1077 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1078 * 1079 * Message is 1080 * reply cachename expiry key ... content.... 1081 * 1082 * key and content are both parsed by cache 1083 */ 1084 1085 #define isodigit(c) (isdigit(c) && c <= '7') 1086 int qword_get(char **bpp, char *dest, int bufsize) 1087 { 1088 /* return bytes copied, or -1 on error */ 1089 char *bp = *bpp; 1090 int len = 0; 1091 1092 while (*bp == ' ') bp++; 1093 1094 if (bp[0] == '\\' && bp[1] == 'x') { 1095 /* HEX STRING */ 1096 bp += 2; 1097 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) { 1098 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1099 bp++; 1100 byte <<= 4; 1101 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10; 1102 *dest++ = byte; 1103 bp++; 1104 len++; 1105 } 1106 } else { 1107 /* text with \nnn octal quoting */ 1108 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1109 if (*bp == '\\' && 1110 isodigit(bp[1]) && (bp[1] <= '3') && 1111 isodigit(bp[2]) && 1112 isodigit(bp[3])) { 1113 int byte = (*++bp -'0'); 1114 bp++; 1115 byte = (byte << 3) | (*bp++ - '0'); 1116 byte = (byte << 3) | (*bp++ - '0'); 1117 *dest++ = byte; 1118 len++; 1119 } else { 1120 *dest++ = *bp++; 1121 len++; 1122 } 1123 } 1124 } 1125 1126 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1127 return -1; 1128 while (*bp == ' ') bp++; 1129 *bpp = bp; 1130 *dest = '\0'; 1131 return len; 1132 } 1133 EXPORT_SYMBOL_GPL(qword_get); 1134 1135 1136 /* 1137 * support /proc/sunrpc/cache/$CACHENAME/content 1138 * as a seqfile. 1139 * We call ->cache_show passing NULL for the item to 1140 * get a header, then pass each real item in the cache 1141 */ 1142 1143 struct handle { 1144 struct cache_detail *cd; 1145 }; 1146 1147 static void *c_start(struct seq_file *m, loff_t *pos) 1148 __acquires(cd->hash_lock) 1149 { 1150 loff_t n = *pos; 1151 unsigned hash, entry; 1152 struct cache_head *ch; 1153 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1154 1155 1156 read_lock(&cd->hash_lock); 1157 if (!n--) 1158 return SEQ_START_TOKEN; 1159 hash = n >> 32; 1160 entry = n & ((1LL<<32) - 1); 1161 1162 for (ch=cd->hash_table[hash]; ch; ch=ch->next) 1163 if (!entry--) 1164 return ch; 1165 n &= ~((1LL<<32) - 1); 1166 do { 1167 hash++; 1168 n += 1LL<<32; 1169 } while(hash < cd->hash_size && 1170 cd->hash_table[hash]==NULL); 1171 if (hash >= cd->hash_size) 1172 return NULL; 1173 *pos = n+1; 1174 return cd->hash_table[hash]; 1175 } 1176 1177 static void *c_next(struct seq_file *m, void *p, loff_t *pos) 1178 { 1179 struct cache_head *ch = p; 1180 int hash = (*pos >> 32); 1181 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1182 1183 if (p == SEQ_START_TOKEN) 1184 hash = 0; 1185 else if (ch->next == NULL) { 1186 hash++; 1187 *pos += 1LL<<32; 1188 } else { 1189 ++*pos; 1190 return ch->next; 1191 } 1192 *pos &= ~((1LL<<32) - 1); 1193 while (hash < cd->hash_size && 1194 cd->hash_table[hash] == NULL) { 1195 hash++; 1196 *pos += 1LL<<32; 1197 } 1198 if (hash >= cd->hash_size) 1199 return NULL; 1200 ++*pos; 1201 return cd->hash_table[hash]; 1202 } 1203 1204 static void c_stop(struct seq_file *m, void *p) 1205 __releases(cd->hash_lock) 1206 { 1207 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1208 read_unlock(&cd->hash_lock); 1209 } 1210 1211 static int c_show(struct seq_file *m, void *p) 1212 { 1213 struct cache_head *cp = p; 1214 struct cache_detail *cd = ((struct handle*)m->private)->cd; 1215 1216 if (p == SEQ_START_TOKEN) 1217 return cd->cache_show(m, cd, NULL); 1218 1219 ifdebug(CACHE) 1220 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", 1221 cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags); 1222 cache_get(cp); 1223 if (cache_check(cd, cp, NULL)) 1224 /* cache_check does a cache_put on failure */ 1225 seq_printf(m, "# "); 1226 else 1227 cache_put(cp, cd); 1228 1229 return cd->cache_show(m, cd, cp); 1230 } 1231 1232 static const struct seq_operations cache_content_op = { 1233 .start = c_start, 1234 .next = c_next, 1235 .stop = c_stop, 1236 .show = c_show, 1237 }; 1238 1239 static int content_open(struct inode *inode, struct file *file, 1240 struct cache_detail *cd) 1241 { 1242 struct handle *han; 1243 1244 if (!cd || !try_module_get(cd->owner)) 1245 return -EACCES; 1246 han = __seq_open_private(file, &cache_content_op, sizeof(*han)); 1247 if (han == NULL) { 1248 module_put(cd->owner); 1249 return -ENOMEM; 1250 } 1251 1252 han->cd = cd; 1253 return 0; 1254 } 1255 1256 static int content_release(struct inode *inode, struct file *file, 1257 struct cache_detail *cd) 1258 { 1259 int ret = seq_release_private(inode, file); 1260 module_put(cd->owner); 1261 return ret; 1262 } 1263 1264 static int open_flush(struct inode *inode, struct file *file, 1265 struct cache_detail *cd) 1266 { 1267 if (!cd || !try_module_get(cd->owner)) 1268 return -EACCES; 1269 return nonseekable_open(inode, file); 1270 } 1271 1272 static int release_flush(struct inode *inode, struct file *file, 1273 struct cache_detail *cd) 1274 { 1275 module_put(cd->owner); 1276 return 0; 1277 } 1278 1279 static ssize_t read_flush(struct file *file, char __user *buf, 1280 size_t count, loff_t *ppos, 1281 struct cache_detail *cd) 1282 { 1283 char tbuf[20]; 1284 unsigned long p = *ppos; 1285 size_t len; 1286 1287 sprintf(tbuf, "%lu\n", cd->flush_time); 1288 len = strlen(tbuf); 1289 if (p >= len) 1290 return 0; 1291 len -= p; 1292 if (len > count) 1293 len = count; 1294 if (copy_to_user(buf, (void*)(tbuf+p), len)) 1295 return -EFAULT; 1296 *ppos += len; 1297 return len; 1298 } 1299 1300 static ssize_t write_flush(struct file *file, const char __user *buf, 1301 size_t count, loff_t *ppos, 1302 struct cache_detail *cd) 1303 { 1304 char tbuf[20]; 1305 char *ep; 1306 long flushtime; 1307 if (*ppos || count > sizeof(tbuf)-1) 1308 return -EINVAL; 1309 if (copy_from_user(tbuf, buf, count)) 1310 return -EFAULT; 1311 tbuf[count] = 0; 1312 flushtime = simple_strtoul(tbuf, &ep, 0); 1313 if (*ep && *ep != '\n') 1314 return -EINVAL; 1315 1316 cd->flush_time = flushtime; 1317 cd->nextcheck = get_seconds(); 1318 cache_flush(); 1319 1320 *ppos += count; 1321 return count; 1322 } 1323 1324 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1325 size_t count, loff_t *ppos) 1326 { 1327 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1328 1329 return cache_read(filp, buf, count, ppos, cd); 1330 } 1331 1332 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1333 size_t count, loff_t *ppos) 1334 { 1335 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1336 1337 return cache_write(filp, buf, count, ppos, cd); 1338 } 1339 1340 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait) 1341 { 1342 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1343 1344 return cache_poll(filp, wait, cd); 1345 } 1346 1347 static long cache_ioctl_procfs(struct file *filp, 1348 unsigned int cmd, unsigned long arg) 1349 { 1350 struct inode *inode = filp->f_path.dentry->d_inode; 1351 struct cache_detail *cd = PDE(inode)->data; 1352 1353 return cache_ioctl(inode, filp, cmd, arg, cd); 1354 } 1355 1356 static int cache_open_procfs(struct inode *inode, struct file *filp) 1357 { 1358 struct cache_detail *cd = PDE(inode)->data; 1359 1360 return cache_open(inode, filp, cd); 1361 } 1362 1363 static int cache_release_procfs(struct inode *inode, struct file *filp) 1364 { 1365 struct cache_detail *cd = PDE(inode)->data; 1366 1367 return cache_release(inode, filp, cd); 1368 } 1369 1370 static const struct file_operations cache_file_operations_procfs = { 1371 .owner = THIS_MODULE, 1372 .llseek = no_llseek, 1373 .read = cache_read_procfs, 1374 .write = cache_write_procfs, 1375 .poll = cache_poll_procfs, 1376 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1377 .open = cache_open_procfs, 1378 .release = cache_release_procfs, 1379 }; 1380 1381 static int content_open_procfs(struct inode *inode, struct file *filp) 1382 { 1383 struct cache_detail *cd = PDE(inode)->data; 1384 1385 return content_open(inode, filp, cd); 1386 } 1387 1388 static int content_release_procfs(struct inode *inode, struct file *filp) 1389 { 1390 struct cache_detail *cd = PDE(inode)->data; 1391 1392 return content_release(inode, filp, cd); 1393 } 1394 1395 static const struct file_operations content_file_operations_procfs = { 1396 .open = content_open_procfs, 1397 .read = seq_read, 1398 .llseek = seq_lseek, 1399 .release = content_release_procfs, 1400 }; 1401 1402 static int open_flush_procfs(struct inode *inode, struct file *filp) 1403 { 1404 struct cache_detail *cd = PDE(inode)->data; 1405 1406 return open_flush(inode, filp, cd); 1407 } 1408 1409 static int release_flush_procfs(struct inode *inode, struct file *filp) 1410 { 1411 struct cache_detail *cd = PDE(inode)->data; 1412 1413 return release_flush(inode, filp, cd); 1414 } 1415 1416 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1417 size_t count, loff_t *ppos) 1418 { 1419 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1420 1421 return read_flush(filp, buf, count, ppos, cd); 1422 } 1423 1424 static ssize_t write_flush_procfs(struct file *filp, 1425 const char __user *buf, 1426 size_t count, loff_t *ppos) 1427 { 1428 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data; 1429 1430 return write_flush(filp, buf, count, ppos, cd); 1431 } 1432 1433 static const struct file_operations cache_flush_operations_procfs = { 1434 .open = open_flush_procfs, 1435 .read = read_flush_procfs, 1436 .write = write_flush_procfs, 1437 .release = release_flush_procfs, 1438 .llseek = no_llseek, 1439 }; 1440 1441 static void remove_cache_proc_entries(struct cache_detail *cd) 1442 { 1443 if (cd->u.procfs.proc_ent == NULL) 1444 return; 1445 if (cd->u.procfs.flush_ent) 1446 remove_proc_entry("flush", cd->u.procfs.proc_ent); 1447 if (cd->u.procfs.channel_ent) 1448 remove_proc_entry("channel", cd->u.procfs.proc_ent); 1449 if (cd->u.procfs.content_ent) 1450 remove_proc_entry("content", cd->u.procfs.proc_ent); 1451 cd->u.procfs.proc_ent = NULL; 1452 remove_proc_entry(cd->name, proc_net_rpc); 1453 } 1454 1455 #ifdef CONFIG_PROC_FS 1456 static int create_cache_proc_entries(struct cache_detail *cd) 1457 { 1458 struct proc_dir_entry *p; 1459 1460 cd->u.procfs.proc_ent = proc_mkdir(cd->name, proc_net_rpc); 1461 if (cd->u.procfs.proc_ent == NULL) 1462 goto out_nomem; 1463 cd->u.procfs.channel_ent = NULL; 1464 cd->u.procfs.content_ent = NULL; 1465 1466 p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR, 1467 cd->u.procfs.proc_ent, 1468 &cache_flush_operations_procfs, cd); 1469 cd->u.procfs.flush_ent = p; 1470 if (p == NULL) 1471 goto out_nomem; 1472 1473 if (cd->cache_upcall || cd->cache_parse) { 1474 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR, 1475 cd->u.procfs.proc_ent, 1476 &cache_file_operations_procfs, cd); 1477 cd->u.procfs.channel_ent = p; 1478 if (p == NULL) 1479 goto out_nomem; 1480 } 1481 if (cd->cache_show) { 1482 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR, 1483 cd->u.procfs.proc_ent, 1484 &content_file_operations_procfs, cd); 1485 cd->u.procfs.content_ent = p; 1486 if (p == NULL) 1487 goto out_nomem; 1488 } 1489 return 0; 1490 out_nomem: 1491 remove_cache_proc_entries(cd); 1492 return -ENOMEM; 1493 } 1494 #else /* CONFIG_PROC_FS */ 1495 static int create_cache_proc_entries(struct cache_detail *cd) 1496 { 1497 return 0; 1498 } 1499 #endif 1500 1501 void __init cache_initialize(void) 1502 { 1503 INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean); 1504 } 1505 1506 int cache_register(struct cache_detail *cd) 1507 { 1508 int ret; 1509 1510 sunrpc_init_cache_detail(cd); 1511 ret = create_cache_proc_entries(cd); 1512 if (ret) 1513 sunrpc_destroy_cache_detail(cd); 1514 return ret; 1515 } 1516 EXPORT_SYMBOL_GPL(cache_register); 1517 1518 void cache_unregister(struct cache_detail *cd) 1519 { 1520 remove_cache_proc_entries(cd); 1521 sunrpc_destroy_cache_detail(cd); 1522 } 1523 EXPORT_SYMBOL_GPL(cache_unregister); 1524 1525 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1526 size_t count, loff_t *ppos) 1527 { 1528 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1529 1530 return cache_read(filp, buf, count, ppos, cd); 1531 } 1532 1533 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1534 size_t count, loff_t *ppos) 1535 { 1536 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1537 1538 return cache_write(filp, buf, count, ppos, cd); 1539 } 1540 1541 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait) 1542 { 1543 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1544 1545 return cache_poll(filp, wait, cd); 1546 } 1547 1548 static long cache_ioctl_pipefs(struct file *filp, 1549 unsigned int cmd, unsigned long arg) 1550 { 1551 struct inode *inode = filp->f_dentry->d_inode; 1552 struct cache_detail *cd = RPC_I(inode)->private; 1553 1554 return cache_ioctl(inode, filp, cmd, arg, cd); 1555 } 1556 1557 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1558 { 1559 struct cache_detail *cd = RPC_I(inode)->private; 1560 1561 return cache_open(inode, filp, cd); 1562 } 1563 1564 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1565 { 1566 struct cache_detail *cd = RPC_I(inode)->private; 1567 1568 return cache_release(inode, filp, cd); 1569 } 1570 1571 const struct file_operations cache_file_operations_pipefs = { 1572 .owner = THIS_MODULE, 1573 .llseek = no_llseek, 1574 .read = cache_read_pipefs, 1575 .write = cache_write_pipefs, 1576 .poll = cache_poll_pipefs, 1577 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1578 .open = cache_open_pipefs, 1579 .release = cache_release_pipefs, 1580 }; 1581 1582 static int content_open_pipefs(struct inode *inode, struct file *filp) 1583 { 1584 struct cache_detail *cd = RPC_I(inode)->private; 1585 1586 return content_open(inode, filp, cd); 1587 } 1588 1589 static int content_release_pipefs(struct inode *inode, struct file *filp) 1590 { 1591 struct cache_detail *cd = RPC_I(inode)->private; 1592 1593 return content_release(inode, filp, cd); 1594 } 1595 1596 const struct file_operations content_file_operations_pipefs = { 1597 .open = content_open_pipefs, 1598 .read = seq_read, 1599 .llseek = seq_lseek, 1600 .release = content_release_pipefs, 1601 }; 1602 1603 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1604 { 1605 struct cache_detail *cd = RPC_I(inode)->private; 1606 1607 return open_flush(inode, filp, cd); 1608 } 1609 1610 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1611 { 1612 struct cache_detail *cd = RPC_I(inode)->private; 1613 1614 return release_flush(inode, filp, cd); 1615 } 1616 1617 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1618 size_t count, loff_t *ppos) 1619 { 1620 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1621 1622 return read_flush(filp, buf, count, ppos, cd); 1623 } 1624 1625 static ssize_t write_flush_pipefs(struct file *filp, 1626 const char __user *buf, 1627 size_t count, loff_t *ppos) 1628 { 1629 struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private; 1630 1631 return write_flush(filp, buf, count, ppos, cd); 1632 } 1633 1634 const struct file_operations cache_flush_operations_pipefs = { 1635 .open = open_flush_pipefs, 1636 .read = read_flush_pipefs, 1637 .write = write_flush_pipefs, 1638 .release = release_flush_pipefs, 1639 .llseek = no_llseek, 1640 }; 1641 1642 int sunrpc_cache_register_pipefs(struct dentry *parent, 1643 const char *name, mode_t umode, 1644 struct cache_detail *cd) 1645 { 1646 struct qstr q; 1647 struct dentry *dir; 1648 int ret = 0; 1649 1650 sunrpc_init_cache_detail(cd); 1651 q.name = name; 1652 q.len = strlen(name); 1653 q.hash = full_name_hash(q.name, q.len); 1654 dir = rpc_create_cache_dir(parent, &q, umode, cd); 1655 if (!IS_ERR(dir)) 1656 cd->u.pipefs.dir = dir; 1657 else { 1658 sunrpc_destroy_cache_detail(cd); 1659 ret = PTR_ERR(dir); 1660 } 1661 return ret; 1662 } 1663 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1664 1665 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1666 { 1667 rpc_remove_cache_dir(cd->u.pipefs.dir); 1668 cd->u.pipefs.dir = NULL; 1669 sunrpc_destroy_cache_detail(cd); 1670 } 1671 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1672 1673