xref: /linux/net/sunrpc/cache.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/string_helpers.h>
24 #include <asm/uaccess.h>
25 #include <linux/poll.h>
26 #include <linux/seq_file.h>
27 #include <linux/proc_fs.h>
28 #include <linux/net.h>
29 #include <linux/workqueue.h>
30 #include <linux/mutex.h>
31 #include <linux/pagemap.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include "netns.h"
38 
39 #define	 RPCDBG_FACILITY RPCDBG_CACHE
40 
41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
43 
44 static void cache_init(struct cache_head *h)
45 {
46 	time_t now = seconds_since_boot();
47 	h->next = NULL;
48 	h->flags = 0;
49 	kref_init(&h->ref);
50 	h->expiry_time = now + CACHE_NEW_EXPIRY;
51 	h->last_refresh = now;
52 }
53 
54 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
55 				       struct cache_head *key, int hash)
56 {
57 	struct cache_head **head,  **hp;
58 	struct cache_head *new = NULL, *freeme = NULL;
59 
60 	head = &detail->hash_table[hash];
61 
62 	read_lock(&detail->hash_lock);
63 
64 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
65 		struct cache_head *tmp = *hp;
66 		if (detail->match(tmp, key)) {
67 			if (cache_is_expired(detail, tmp))
68 				/* This entry is expired, we will discard it. */
69 				break;
70 			cache_get(tmp);
71 			read_unlock(&detail->hash_lock);
72 			return tmp;
73 		}
74 	}
75 	read_unlock(&detail->hash_lock);
76 	/* Didn't find anything, insert an empty entry */
77 
78 	new = detail->alloc();
79 	if (!new)
80 		return NULL;
81 	/* must fully initialise 'new', else
82 	 * we might get lose if we need to
83 	 * cache_put it soon.
84 	 */
85 	cache_init(new);
86 	detail->init(new, key);
87 
88 	write_lock(&detail->hash_lock);
89 
90 	/* check if entry appeared while we slept */
91 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
92 		struct cache_head *tmp = *hp;
93 		if (detail->match(tmp, key)) {
94 			if (cache_is_expired(detail, tmp)) {
95 				*hp = tmp->next;
96 				tmp->next = NULL;
97 				detail->entries --;
98 				freeme = tmp;
99 				break;
100 			}
101 			cache_get(tmp);
102 			write_unlock(&detail->hash_lock);
103 			cache_put(new, detail);
104 			return tmp;
105 		}
106 	}
107 	new->next = *head;
108 	*head = new;
109 	detail->entries++;
110 	cache_get(new);
111 	write_unlock(&detail->hash_lock);
112 
113 	if (freeme)
114 		cache_put(freeme, detail);
115 	return new;
116 }
117 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
118 
119 
120 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
121 
122 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
123 {
124 	head->expiry_time = expiry;
125 	head->last_refresh = seconds_since_boot();
126 	smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
127 	set_bit(CACHE_VALID, &head->flags);
128 }
129 
130 static void cache_fresh_unlocked(struct cache_head *head,
131 				 struct cache_detail *detail)
132 {
133 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
134 		cache_revisit_request(head);
135 		cache_dequeue(detail, head);
136 	}
137 }
138 
139 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
140 				       struct cache_head *new, struct cache_head *old, int hash)
141 {
142 	/* The 'old' entry is to be replaced by 'new'.
143 	 * If 'old' is not VALID, we update it directly,
144 	 * otherwise we need to replace it
145 	 */
146 	struct cache_head **head;
147 	struct cache_head *tmp;
148 
149 	if (!test_bit(CACHE_VALID, &old->flags)) {
150 		write_lock(&detail->hash_lock);
151 		if (!test_bit(CACHE_VALID, &old->flags)) {
152 			if (test_bit(CACHE_NEGATIVE, &new->flags))
153 				set_bit(CACHE_NEGATIVE, &old->flags);
154 			else
155 				detail->update(old, new);
156 			cache_fresh_locked(old, new->expiry_time);
157 			write_unlock(&detail->hash_lock);
158 			cache_fresh_unlocked(old, detail);
159 			return old;
160 		}
161 		write_unlock(&detail->hash_lock);
162 	}
163 	/* We need to insert a new entry */
164 	tmp = detail->alloc();
165 	if (!tmp) {
166 		cache_put(old, detail);
167 		return NULL;
168 	}
169 	cache_init(tmp);
170 	detail->init(tmp, old);
171 	head = &detail->hash_table[hash];
172 
173 	write_lock(&detail->hash_lock);
174 	if (test_bit(CACHE_NEGATIVE, &new->flags))
175 		set_bit(CACHE_NEGATIVE, &tmp->flags);
176 	else
177 		detail->update(tmp, new);
178 	tmp->next = *head;
179 	*head = tmp;
180 	detail->entries++;
181 	cache_get(tmp);
182 	cache_fresh_locked(tmp, new->expiry_time);
183 	cache_fresh_locked(old, 0);
184 	write_unlock(&detail->hash_lock);
185 	cache_fresh_unlocked(tmp, detail);
186 	cache_fresh_unlocked(old, detail);
187 	cache_put(old, detail);
188 	return tmp;
189 }
190 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
191 
192 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
193 {
194 	if (cd->cache_upcall)
195 		return cd->cache_upcall(cd, h);
196 	return sunrpc_cache_pipe_upcall(cd, h);
197 }
198 
199 static inline int cache_is_valid(struct cache_head *h)
200 {
201 	if (!test_bit(CACHE_VALID, &h->flags))
202 		return -EAGAIN;
203 	else {
204 		/* entry is valid */
205 		if (test_bit(CACHE_NEGATIVE, &h->flags))
206 			return -ENOENT;
207 		else {
208 			/*
209 			 * In combination with write barrier in
210 			 * sunrpc_cache_update, ensures that anyone
211 			 * using the cache entry after this sees the
212 			 * updated contents:
213 			 */
214 			smp_rmb();
215 			return 0;
216 		}
217 	}
218 }
219 
220 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
221 {
222 	int rv;
223 
224 	write_lock(&detail->hash_lock);
225 	rv = cache_is_valid(h);
226 	if (rv == -EAGAIN) {
227 		set_bit(CACHE_NEGATIVE, &h->flags);
228 		cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
229 		rv = -ENOENT;
230 	}
231 	write_unlock(&detail->hash_lock);
232 	cache_fresh_unlocked(h, detail);
233 	return rv;
234 }
235 
236 /*
237  * This is the generic cache management routine for all
238  * the authentication caches.
239  * It checks the currency of a cache item and will (later)
240  * initiate an upcall to fill it if needed.
241  *
242  *
243  * Returns 0 if the cache_head can be used, or cache_puts it and returns
244  * -EAGAIN if upcall is pending and request has been queued
245  * -ETIMEDOUT if upcall failed or request could not be queue or
246  *           upcall completed but item is still invalid (implying that
247  *           the cache item has been replaced with a newer one).
248  * -ENOENT if cache entry was negative
249  */
250 int cache_check(struct cache_detail *detail,
251 		    struct cache_head *h, struct cache_req *rqstp)
252 {
253 	int rv;
254 	long refresh_age, age;
255 
256 	/* First decide return status as best we can */
257 	rv = cache_is_valid(h);
258 
259 	/* now see if we want to start an upcall */
260 	refresh_age = (h->expiry_time - h->last_refresh);
261 	age = seconds_since_boot() - h->last_refresh;
262 
263 	if (rqstp == NULL) {
264 		if (rv == -EAGAIN)
265 			rv = -ENOENT;
266 	} else if (rv == -EAGAIN ||
267 		   (h->expiry_time != 0 && age > refresh_age/2)) {
268 		dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
269 				refresh_age, age);
270 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
271 			switch (cache_make_upcall(detail, h)) {
272 			case -EINVAL:
273 				rv = try_to_negate_entry(detail, h);
274 				break;
275 			case -EAGAIN:
276 				cache_fresh_unlocked(h, detail);
277 				break;
278 			}
279 		}
280 	}
281 
282 	if (rv == -EAGAIN) {
283 		if (!cache_defer_req(rqstp, h)) {
284 			/*
285 			 * Request was not deferred; handle it as best
286 			 * we can ourselves:
287 			 */
288 			rv = cache_is_valid(h);
289 			if (rv == -EAGAIN)
290 				rv = -ETIMEDOUT;
291 		}
292 	}
293 	if (rv)
294 		cache_put(h, detail);
295 	return rv;
296 }
297 EXPORT_SYMBOL_GPL(cache_check);
298 
299 /*
300  * caches need to be periodically cleaned.
301  * For this we maintain a list of cache_detail and
302  * a current pointer into that list and into the table
303  * for that entry.
304  *
305  * Each time cache_clean is called it finds the next non-empty entry
306  * in the current table and walks the list in that entry
307  * looking for entries that can be removed.
308  *
309  * An entry gets removed if:
310  * - The expiry is before current time
311  * - The last_refresh time is before the flush_time for that cache
312  *
313  * later we might drop old entries with non-NEVER expiry if that table
314  * is getting 'full' for some definition of 'full'
315  *
316  * The question of "how often to scan a table" is an interesting one
317  * and is answered in part by the use of the "nextcheck" field in the
318  * cache_detail.
319  * When a scan of a table begins, the nextcheck field is set to a time
320  * that is well into the future.
321  * While scanning, if an expiry time is found that is earlier than the
322  * current nextcheck time, nextcheck is set to that expiry time.
323  * If the flush_time is ever set to a time earlier than the nextcheck
324  * time, the nextcheck time is then set to that flush_time.
325  *
326  * A table is then only scanned if the current time is at least
327  * the nextcheck time.
328  *
329  */
330 
331 static LIST_HEAD(cache_list);
332 static DEFINE_SPINLOCK(cache_list_lock);
333 static struct cache_detail *current_detail;
334 static int current_index;
335 
336 static void do_cache_clean(struct work_struct *work);
337 static struct delayed_work cache_cleaner;
338 
339 void sunrpc_init_cache_detail(struct cache_detail *cd)
340 {
341 	rwlock_init(&cd->hash_lock);
342 	INIT_LIST_HEAD(&cd->queue);
343 	spin_lock(&cache_list_lock);
344 	cd->nextcheck = 0;
345 	cd->entries = 0;
346 	atomic_set(&cd->readers, 0);
347 	cd->last_close = 0;
348 	cd->last_warn = -1;
349 	list_add(&cd->others, &cache_list);
350 	spin_unlock(&cache_list_lock);
351 
352 	/* start the cleaning process */
353 	schedule_delayed_work(&cache_cleaner, 0);
354 }
355 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
356 
357 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
358 {
359 	cache_purge(cd);
360 	spin_lock(&cache_list_lock);
361 	write_lock(&cd->hash_lock);
362 	if (cd->entries || atomic_read(&cd->inuse)) {
363 		write_unlock(&cd->hash_lock);
364 		spin_unlock(&cache_list_lock);
365 		goto out;
366 	}
367 	if (current_detail == cd)
368 		current_detail = NULL;
369 	list_del_init(&cd->others);
370 	write_unlock(&cd->hash_lock);
371 	spin_unlock(&cache_list_lock);
372 	if (list_empty(&cache_list)) {
373 		/* module must be being unloaded so its safe to kill the worker */
374 		cancel_delayed_work_sync(&cache_cleaner);
375 	}
376 	return;
377 out:
378 	printk(KERN_ERR "RPC: failed to unregister %s cache\n", cd->name);
379 }
380 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
381 
382 /* clean cache tries to find something to clean
383  * and cleans it.
384  * It returns 1 if it cleaned something,
385  *            0 if it didn't find anything this time
386  *           -1 if it fell off the end of the list.
387  */
388 static int cache_clean(void)
389 {
390 	int rv = 0;
391 	struct list_head *next;
392 
393 	spin_lock(&cache_list_lock);
394 
395 	/* find a suitable table if we don't already have one */
396 	while (current_detail == NULL ||
397 	    current_index >= current_detail->hash_size) {
398 		if (current_detail)
399 			next = current_detail->others.next;
400 		else
401 			next = cache_list.next;
402 		if (next == &cache_list) {
403 			current_detail = NULL;
404 			spin_unlock(&cache_list_lock);
405 			return -1;
406 		}
407 		current_detail = list_entry(next, struct cache_detail, others);
408 		if (current_detail->nextcheck > seconds_since_boot())
409 			current_index = current_detail->hash_size;
410 		else {
411 			current_index = 0;
412 			current_detail->nextcheck = seconds_since_boot()+30*60;
413 		}
414 	}
415 
416 	/* find a non-empty bucket in the table */
417 	while (current_detail &&
418 	       current_index < current_detail->hash_size &&
419 	       current_detail->hash_table[current_index] == NULL)
420 		current_index++;
421 
422 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
423 
424 	if (current_detail && current_index < current_detail->hash_size) {
425 		struct cache_head *ch, **cp;
426 		struct cache_detail *d;
427 
428 		write_lock(&current_detail->hash_lock);
429 
430 		/* Ok, now to clean this strand */
431 
432 		cp = & current_detail->hash_table[current_index];
433 		for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
434 			if (current_detail->nextcheck > ch->expiry_time)
435 				current_detail->nextcheck = ch->expiry_time+1;
436 			if (!cache_is_expired(current_detail, ch))
437 				continue;
438 
439 			*cp = ch->next;
440 			ch->next = NULL;
441 			current_detail->entries--;
442 			rv = 1;
443 			break;
444 		}
445 
446 		write_unlock(&current_detail->hash_lock);
447 		d = current_detail;
448 		if (!ch)
449 			current_index ++;
450 		spin_unlock(&cache_list_lock);
451 		if (ch) {
452 			set_bit(CACHE_CLEANED, &ch->flags);
453 			cache_fresh_unlocked(ch, d);
454 			cache_put(ch, d);
455 		}
456 	} else
457 		spin_unlock(&cache_list_lock);
458 
459 	return rv;
460 }
461 
462 /*
463  * We want to regularly clean the cache, so we need to schedule some work ...
464  */
465 static void do_cache_clean(struct work_struct *work)
466 {
467 	int delay = 5;
468 	if (cache_clean() == -1)
469 		delay = round_jiffies_relative(30*HZ);
470 
471 	if (list_empty(&cache_list))
472 		delay = 0;
473 
474 	if (delay)
475 		schedule_delayed_work(&cache_cleaner, delay);
476 }
477 
478 
479 /*
480  * Clean all caches promptly.  This just calls cache_clean
481  * repeatedly until we are sure that every cache has had a chance to
482  * be fully cleaned
483  */
484 void cache_flush(void)
485 {
486 	while (cache_clean() != -1)
487 		cond_resched();
488 	while (cache_clean() != -1)
489 		cond_resched();
490 }
491 EXPORT_SYMBOL_GPL(cache_flush);
492 
493 void cache_purge(struct cache_detail *detail)
494 {
495 	detail->flush_time = LONG_MAX;
496 	detail->nextcheck = seconds_since_boot();
497 	cache_flush();
498 	detail->flush_time = 1;
499 }
500 EXPORT_SYMBOL_GPL(cache_purge);
501 
502 
503 /*
504  * Deferral and Revisiting of Requests.
505  *
506  * If a cache lookup finds a pending entry, we
507  * need to defer the request and revisit it later.
508  * All deferred requests are stored in a hash table,
509  * indexed by "struct cache_head *".
510  * As it may be wasteful to store a whole request
511  * structure, we allow the request to provide a
512  * deferred form, which must contain a
513  * 'struct cache_deferred_req'
514  * This cache_deferred_req contains a method to allow
515  * it to be revisited when cache info is available
516  */
517 
518 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
519 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
520 
521 #define	DFR_MAX	300	/* ??? */
522 
523 static DEFINE_SPINLOCK(cache_defer_lock);
524 static LIST_HEAD(cache_defer_list);
525 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
526 static int cache_defer_cnt;
527 
528 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
529 {
530 	hlist_del_init(&dreq->hash);
531 	if (!list_empty(&dreq->recent)) {
532 		list_del_init(&dreq->recent);
533 		cache_defer_cnt--;
534 	}
535 }
536 
537 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
538 {
539 	int hash = DFR_HASH(item);
540 
541 	INIT_LIST_HEAD(&dreq->recent);
542 	hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
543 }
544 
545 static void setup_deferral(struct cache_deferred_req *dreq,
546 			   struct cache_head *item,
547 			   int count_me)
548 {
549 
550 	dreq->item = item;
551 
552 	spin_lock(&cache_defer_lock);
553 
554 	__hash_deferred_req(dreq, item);
555 
556 	if (count_me) {
557 		cache_defer_cnt++;
558 		list_add(&dreq->recent, &cache_defer_list);
559 	}
560 
561 	spin_unlock(&cache_defer_lock);
562 
563 }
564 
565 struct thread_deferred_req {
566 	struct cache_deferred_req handle;
567 	struct completion completion;
568 };
569 
570 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
571 {
572 	struct thread_deferred_req *dr =
573 		container_of(dreq, struct thread_deferred_req, handle);
574 	complete(&dr->completion);
575 }
576 
577 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
578 {
579 	struct thread_deferred_req sleeper;
580 	struct cache_deferred_req *dreq = &sleeper.handle;
581 
582 	sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
583 	dreq->revisit = cache_restart_thread;
584 
585 	setup_deferral(dreq, item, 0);
586 
587 	if (!test_bit(CACHE_PENDING, &item->flags) ||
588 	    wait_for_completion_interruptible_timeout(
589 		    &sleeper.completion, req->thread_wait) <= 0) {
590 		/* The completion wasn't completed, so we need
591 		 * to clean up
592 		 */
593 		spin_lock(&cache_defer_lock);
594 		if (!hlist_unhashed(&sleeper.handle.hash)) {
595 			__unhash_deferred_req(&sleeper.handle);
596 			spin_unlock(&cache_defer_lock);
597 		} else {
598 			/* cache_revisit_request already removed
599 			 * this from the hash table, but hasn't
600 			 * called ->revisit yet.  It will very soon
601 			 * and we need to wait for it.
602 			 */
603 			spin_unlock(&cache_defer_lock);
604 			wait_for_completion(&sleeper.completion);
605 		}
606 	}
607 }
608 
609 static void cache_limit_defers(void)
610 {
611 	/* Make sure we haven't exceed the limit of allowed deferred
612 	 * requests.
613 	 */
614 	struct cache_deferred_req *discard = NULL;
615 
616 	if (cache_defer_cnt <= DFR_MAX)
617 		return;
618 
619 	spin_lock(&cache_defer_lock);
620 
621 	/* Consider removing either the first or the last */
622 	if (cache_defer_cnt > DFR_MAX) {
623 		if (prandom_u32() & 1)
624 			discard = list_entry(cache_defer_list.next,
625 					     struct cache_deferred_req, recent);
626 		else
627 			discard = list_entry(cache_defer_list.prev,
628 					     struct cache_deferred_req, recent);
629 		__unhash_deferred_req(discard);
630 	}
631 	spin_unlock(&cache_defer_lock);
632 	if (discard)
633 		discard->revisit(discard, 1);
634 }
635 
636 /* Return true if and only if a deferred request is queued. */
637 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
638 {
639 	struct cache_deferred_req *dreq;
640 
641 	if (req->thread_wait) {
642 		cache_wait_req(req, item);
643 		if (!test_bit(CACHE_PENDING, &item->flags))
644 			return false;
645 	}
646 	dreq = req->defer(req);
647 	if (dreq == NULL)
648 		return false;
649 	setup_deferral(dreq, item, 1);
650 	if (!test_bit(CACHE_PENDING, &item->flags))
651 		/* Bit could have been cleared before we managed to
652 		 * set up the deferral, so need to revisit just in case
653 		 */
654 		cache_revisit_request(item);
655 
656 	cache_limit_defers();
657 	return true;
658 }
659 
660 static void cache_revisit_request(struct cache_head *item)
661 {
662 	struct cache_deferred_req *dreq;
663 	struct list_head pending;
664 	struct hlist_node *tmp;
665 	int hash = DFR_HASH(item);
666 
667 	INIT_LIST_HEAD(&pending);
668 	spin_lock(&cache_defer_lock);
669 
670 	hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
671 		if (dreq->item == item) {
672 			__unhash_deferred_req(dreq);
673 			list_add(&dreq->recent, &pending);
674 		}
675 
676 	spin_unlock(&cache_defer_lock);
677 
678 	while (!list_empty(&pending)) {
679 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
680 		list_del_init(&dreq->recent);
681 		dreq->revisit(dreq, 0);
682 	}
683 }
684 
685 void cache_clean_deferred(void *owner)
686 {
687 	struct cache_deferred_req *dreq, *tmp;
688 	struct list_head pending;
689 
690 
691 	INIT_LIST_HEAD(&pending);
692 	spin_lock(&cache_defer_lock);
693 
694 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
695 		if (dreq->owner == owner) {
696 			__unhash_deferred_req(dreq);
697 			list_add(&dreq->recent, &pending);
698 		}
699 	}
700 	spin_unlock(&cache_defer_lock);
701 
702 	while (!list_empty(&pending)) {
703 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
704 		list_del_init(&dreq->recent);
705 		dreq->revisit(dreq, 1);
706 	}
707 }
708 
709 /*
710  * communicate with user-space
711  *
712  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
713  * On read, you get a full request, or block.
714  * On write, an update request is processed.
715  * Poll works if anything to read, and always allows write.
716  *
717  * Implemented by linked list of requests.  Each open file has
718  * a ->private that also exists in this list.  New requests are added
719  * to the end and may wakeup and preceding readers.
720  * New readers are added to the head.  If, on read, an item is found with
721  * CACHE_UPCALLING clear, we free it from the list.
722  *
723  */
724 
725 static DEFINE_SPINLOCK(queue_lock);
726 static DEFINE_MUTEX(queue_io_mutex);
727 
728 struct cache_queue {
729 	struct list_head	list;
730 	int			reader;	/* if 0, then request */
731 };
732 struct cache_request {
733 	struct cache_queue	q;
734 	struct cache_head	*item;
735 	char			* buf;
736 	int			len;
737 	int			readers;
738 };
739 struct cache_reader {
740 	struct cache_queue	q;
741 	int			offset;	/* if non-0, we have a refcnt on next request */
742 };
743 
744 static int cache_request(struct cache_detail *detail,
745 			       struct cache_request *crq)
746 {
747 	char *bp = crq->buf;
748 	int len = PAGE_SIZE;
749 
750 	detail->cache_request(detail, crq->item, &bp, &len);
751 	if (len < 0)
752 		return -EAGAIN;
753 	return PAGE_SIZE - len;
754 }
755 
756 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
757 			  loff_t *ppos, struct cache_detail *cd)
758 {
759 	struct cache_reader *rp = filp->private_data;
760 	struct cache_request *rq;
761 	struct inode *inode = file_inode(filp);
762 	int err;
763 
764 	if (count == 0)
765 		return 0;
766 
767 	mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
768 			      * readers on this file */
769  again:
770 	spin_lock(&queue_lock);
771 	/* need to find next request */
772 	while (rp->q.list.next != &cd->queue &&
773 	       list_entry(rp->q.list.next, struct cache_queue, list)
774 	       ->reader) {
775 		struct list_head *next = rp->q.list.next;
776 		list_move(&rp->q.list, next);
777 	}
778 	if (rp->q.list.next == &cd->queue) {
779 		spin_unlock(&queue_lock);
780 		mutex_unlock(&inode->i_mutex);
781 		WARN_ON_ONCE(rp->offset);
782 		return 0;
783 	}
784 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
785 	WARN_ON_ONCE(rq->q.reader);
786 	if (rp->offset == 0)
787 		rq->readers++;
788 	spin_unlock(&queue_lock);
789 
790 	if (rq->len == 0) {
791 		err = cache_request(cd, rq);
792 		if (err < 0)
793 			goto out;
794 		rq->len = err;
795 	}
796 
797 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
798 		err = -EAGAIN;
799 		spin_lock(&queue_lock);
800 		list_move(&rp->q.list, &rq->q.list);
801 		spin_unlock(&queue_lock);
802 	} else {
803 		if (rp->offset + count > rq->len)
804 			count = rq->len - rp->offset;
805 		err = -EFAULT;
806 		if (copy_to_user(buf, rq->buf + rp->offset, count))
807 			goto out;
808 		rp->offset += count;
809 		if (rp->offset >= rq->len) {
810 			rp->offset = 0;
811 			spin_lock(&queue_lock);
812 			list_move(&rp->q.list, &rq->q.list);
813 			spin_unlock(&queue_lock);
814 		}
815 		err = 0;
816 	}
817  out:
818 	if (rp->offset == 0) {
819 		/* need to release rq */
820 		spin_lock(&queue_lock);
821 		rq->readers--;
822 		if (rq->readers == 0 &&
823 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
824 			list_del(&rq->q.list);
825 			spin_unlock(&queue_lock);
826 			cache_put(rq->item, cd);
827 			kfree(rq->buf);
828 			kfree(rq);
829 		} else
830 			spin_unlock(&queue_lock);
831 	}
832 	if (err == -EAGAIN)
833 		goto again;
834 	mutex_unlock(&inode->i_mutex);
835 	return err ? err :  count;
836 }
837 
838 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
839 				 size_t count, struct cache_detail *cd)
840 {
841 	ssize_t ret;
842 
843 	if (count == 0)
844 		return -EINVAL;
845 	if (copy_from_user(kaddr, buf, count))
846 		return -EFAULT;
847 	kaddr[count] = '\0';
848 	ret = cd->cache_parse(cd, kaddr, count);
849 	if (!ret)
850 		ret = count;
851 	return ret;
852 }
853 
854 static ssize_t cache_slow_downcall(const char __user *buf,
855 				   size_t count, struct cache_detail *cd)
856 {
857 	static char write_buf[8192]; /* protected by queue_io_mutex */
858 	ssize_t ret = -EINVAL;
859 
860 	if (count >= sizeof(write_buf))
861 		goto out;
862 	mutex_lock(&queue_io_mutex);
863 	ret = cache_do_downcall(write_buf, buf, count, cd);
864 	mutex_unlock(&queue_io_mutex);
865 out:
866 	return ret;
867 }
868 
869 static ssize_t cache_downcall(struct address_space *mapping,
870 			      const char __user *buf,
871 			      size_t count, struct cache_detail *cd)
872 {
873 	struct page *page;
874 	char *kaddr;
875 	ssize_t ret = -ENOMEM;
876 
877 	if (count >= PAGE_CACHE_SIZE)
878 		goto out_slow;
879 
880 	page = find_or_create_page(mapping, 0, GFP_KERNEL);
881 	if (!page)
882 		goto out_slow;
883 
884 	kaddr = kmap(page);
885 	ret = cache_do_downcall(kaddr, buf, count, cd);
886 	kunmap(page);
887 	unlock_page(page);
888 	page_cache_release(page);
889 	return ret;
890 out_slow:
891 	return cache_slow_downcall(buf, count, cd);
892 }
893 
894 static ssize_t cache_write(struct file *filp, const char __user *buf,
895 			   size_t count, loff_t *ppos,
896 			   struct cache_detail *cd)
897 {
898 	struct address_space *mapping = filp->f_mapping;
899 	struct inode *inode = file_inode(filp);
900 	ssize_t ret = -EINVAL;
901 
902 	if (!cd->cache_parse)
903 		goto out;
904 
905 	mutex_lock(&inode->i_mutex);
906 	ret = cache_downcall(mapping, buf, count, cd);
907 	mutex_unlock(&inode->i_mutex);
908 out:
909 	return ret;
910 }
911 
912 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
913 
914 static unsigned int cache_poll(struct file *filp, poll_table *wait,
915 			       struct cache_detail *cd)
916 {
917 	unsigned int mask;
918 	struct cache_reader *rp = filp->private_data;
919 	struct cache_queue *cq;
920 
921 	poll_wait(filp, &queue_wait, wait);
922 
923 	/* alway allow write */
924 	mask = POLLOUT | POLLWRNORM;
925 
926 	if (!rp)
927 		return mask;
928 
929 	spin_lock(&queue_lock);
930 
931 	for (cq= &rp->q; &cq->list != &cd->queue;
932 	     cq = list_entry(cq->list.next, struct cache_queue, list))
933 		if (!cq->reader) {
934 			mask |= POLLIN | POLLRDNORM;
935 			break;
936 		}
937 	spin_unlock(&queue_lock);
938 	return mask;
939 }
940 
941 static int cache_ioctl(struct inode *ino, struct file *filp,
942 		       unsigned int cmd, unsigned long arg,
943 		       struct cache_detail *cd)
944 {
945 	int len = 0;
946 	struct cache_reader *rp = filp->private_data;
947 	struct cache_queue *cq;
948 
949 	if (cmd != FIONREAD || !rp)
950 		return -EINVAL;
951 
952 	spin_lock(&queue_lock);
953 
954 	/* only find the length remaining in current request,
955 	 * or the length of the next request
956 	 */
957 	for (cq= &rp->q; &cq->list != &cd->queue;
958 	     cq = list_entry(cq->list.next, struct cache_queue, list))
959 		if (!cq->reader) {
960 			struct cache_request *cr =
961 				container_of(cq, struct cache_request, q);
962 			len = cr->len - rp->offset;
963 			break;
964 		}
965 	spin_unlock(&queue_lock);
966 
967 	return put_user(len, (int __user *)arg);
968 }
969 
970 static int cache_open(struct inode *inode, struct file *filp,
971 		      struct cache_detail *cd)
972 {
973 	struct cache_reader *rp = NULL;
974 
975 	if (!cd || !try_module_get(cd->owner))
976 		return -EACCES;
977 	nonseekable_open(inode, filp);
978 	if (filp->f_mode & FMODE_READ) {
979 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
980 		if (!rp) {
981 			module_put(cd->owner);
982 			return -ENOMEM;
983 		}
984 		rp->offset = 0;
985 		rp->q.reader = 1;
986 		atomic_inc(&cd->readers);
987 		spin_lock(&queue_lock);
988 		list_add(&rp->q.list, &cd->queue);
989 		spin_unlock(&queue_lock);
990 	}
991 	filp->private_data = rp;
992 	return 0;
993 }
994 
995 static int cache_release(struct inode *inode, struct file *filp,
996 			 struct cache_detail *cd)
997 {
998 	struct cache_reader *rp = filp->private_data;
999 
1000 	if (rp) {
1001 		spin_lock(&queue_lock);
1002 		if (rp->offset) {
1003 			struct cache_queue *cq;
1004 			for (cq= &rp->q; &cq->list != &cd->queue;
1005 			     cq = list_entry(cq->list.next, struct cache_queue, list))
1006 				if (!cq->reader) {
1007 					container_of(cq, struct cache_request, q)
1008 						->readers--;
1009 					break;
1010 				}
1011 			rp->offset = 0;
1012 		}
1013 		list_del(&rp->q.list);
1014 		spin_unlock(&queue_lock);
1015 
1016 		filp->private_data = NULL;
1017 		kfree(rp);
1018 
1019 		cd->last_close = seconds_since_boot();
1020 		atomic_dec(&cd->readers);
1021 	}
1022 	module_put(cd->owner);
1023 	return 0;
1024 }
1025 
1026 
1027 
1028 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1029 {
1030 	struct cache_queue *cq, *tmp;
1031 	struct cache_request *cr;
1032 	struct list_head dequeued;
1033 
1034 	INIT_LIST_HEAD(&dequeued);
1035 	spin_lock(&queue_lock);
1036 	list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1037 		if (!cq->reader) {
1038 			cr = container_of(cq, struct cache_request, q);
1039 			if (cr->item != ch)
1040 				continue;
1041 			if (test_bit(CACHE_PENDING, &ch->flags))
1042 				/* Lost a race and it is pending again */
1043 				break;
1044 			if (cr->readers != 0)
1045 				continue;
1046 			list_move(&cr->q.list, &dequeued);
1047 		}
1048 	spin_unlock(&queue_lock);
1049 	while (!list_empty(&dequeued)) {
1050 		cr = list_entry(dequeued.next, struct cache_request, q.list);
1051 		list_del(&cr->q.list);
1052 		cache_put(cr->item, detail);
1053 		kfree(cr->buf);
1054 		kfree(cr);
1055 	}
1056 }
1057 
1058 /*
1059  * Support routines for text-based upcalls.
1060  * Fields are separated by spaces.
1061  * Fields are either mangled to quote space tab newline slosh with slosh
1062  * or a hexified with a leading \x
1063  * Record is terminated with newline.
1064  *
1065  */
1066 
1067 void qword_add(char **bpp, int *lp, char *str)
1068 {
1069 	char *bp = *bpp;
1070 	int len = *lp;
1071 	int ret;
1072 
1073 	if (len < 0) return;
1074 
1075 	ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1076 	if (ret >= len) {
1077 		bp += len;
1078 		len = -1;
1079 	} else {
1080 		bp += ret;
1081 		len -= ret;
1082 		*bp++ = ' ';
1083 		len--;
1084 	}
1085 	*bpp = bp;
1086 	*lp = len;
1087 }
1088 EXPORT_SYMBOL_GPL(qword_add);
1089 
1090 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1091 {
1092 	char *bp = *bpp;
1093 	int len = *lp;
1094 
1095 	if (len < 0) return;
1096 
1097 	if (len > 2) {
1098 		*bp++ = '\\';
1099 		*bp++ = 'x';
1100 		len -= 2;
1101 		while (blen && len >= 2) {
1102 			bp = hex_byte_pack(bp, *buf++);
1103 			len -= 2;
1104 			blen--;
1105 		}
1106 	}
1107 	if (blen || len<1) len = -1;
1108 	else {
1109 		*bp++ = ' ';
1110 		len--;
1111 	}
1112 	*bpp = bp;
1113 	*lp = len;
1114 }
1115 EXPORT_SYMBOL_GPL(qword_addhex);
1116 
1117 static void warn_no_listener(struct cache_detail *detail)
1118 {
1119 	if (detail->last_warn != detail->last_close) {
1120 		detail->last_warn = detail->last_close;
1121 		if (detail->warn_no_listener)
1122 			detail->warn_no_listener(detail, detail->last_close != 0);
1123 	}
1124 }
1125 
1126 static bool cache_listeners_exist(struct cache_detail *detail)
1127 {
1128 	if (atomic_read(&detail->readers))
1129 		return true;
1130 	if (detail->last_close == 0)
1131 		/* This cache was never opened */
1132 		return false;
1133 	if (detail->last_close < seconds_since_boot() - 30)
1134 		/*
1135 		 * We allow for the possibility that someone might
1136 		 * restart a userspace daemon without restarting the
1137 		 * server; but after 30 seconds, we give up.
1138 		 */
1139 		 return false;
1140 	return true;
1141 }
1142 
1143 /*
1144  * register an upcall request to user-space and queue it up for read() by the
1145  * upcall daemon.
1146  *
1147  * Each request is at most one page long.
1148  */
1149 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1150 {
1151 
1152 	char *buf;
1153 	struct cache_request *crq;
1154 	int ret = 0;
1155 
1156 	if (!detail->cache_request)
1157 		return -EINVAL;
1158 
1159 	if (!cache_listeners_exist(detail)) {
1160 		warn_no_listener(detail);
1161 		return -EINVAL;
1162 	}
1163 	if (test_bit(CACHE_CLEANED, &h->flags))
1164 		/* Too late to make an upcall */
1165 		return -EAGAIN;
1166 
1167 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1168 	if (!buf)
1169 		return -EAGAIN;
1170 
1171 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1172 	if (!crq) {
1173 		kfree(buf);
1174 		return -EAGAIN;
1175 	}
1176 
1177 	crq->q.reader = 0;
1178 	crq->item = cache_get(h);
1179 	crq->buf = buf;
1180 	crq->len = 0;
1181 	crq->readers = 0;
1182 	spin_lock(&queue_lock);
1183 	if (test_bit(CACHE_PENDING, &h->flags))
1184 		list_add_tail(&crq->q.list, &detail->queue);
1185 	else
1186 		/* Lost a race, no longer PENDING, so don't enqueue */
1187 		ret = -EAGAIN;
1188 	spin_unlock(&queue_lock);
1189 	wake_up(&queue_wait);
1190 	if (ret == -EAGAIN) {
1191 		kfree(buf);
1192 		kfree(crq);
1193 	}
1194 	return ret;
1195 }
1196 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1197 
1198 /*
1199  * parse a message from user-space and pass it
1200  * to an appropriate cache
1201  * Messages are, like requests, separated into fields by
1202  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1203  *
1204  * Message is
1205  *   reply cachename expiry key ... content....
1206  *
1207  * key and content are both parsed by cache
1208  */
1209 
1210 int qword_get(char **bpp, char *dest, int bufsize)
1211 {
1212 	/* return bytes copied, or -1 on error */
1213 	char *bp = *bpp;
1214 	int len = 0;
1215 
1216 	while (*bp == ' ') bp++;
1217 
1218 	if (bp[0] == '\\' && bp[1] == 'x') {
1219 		/* HEX STRING */
1220 		bp += 2;
1221 		while (len < bufsize) {
1222 			int h, l;
1223 
1224 			h = hex_to_bin(bp[0]);
1225 			if (h < 0)
1226 				break;
1227 
1228 			l = hex_to_bin(bp[1]);
1229 			if (l < 0)
1230 				break;
1231 
1232 			*dest++ = (h << 4) | l;
1233 			bp += 2;
1234 			len++;
1235 		}
1236 	} else {
1237 		/* text with \nnn octal quoting */
1238 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1239 			if (*bp == '\\' &&
1240 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1241 			    isodigit(bp[2]) &&
1242 			    isodigit(bp[3])) {
1243 				int byte = (*++bp -'0');
1244 				bp++;
1245 				byte = (byte << 3) | (*bp++ - '0');
1246 				byte = (byte << 3) | (*bp++ - '0');
1247 				*dest++ = byte;
1248 				len++;
1249 			} else {
1250 				*dest++ = *bp++;
1251 				len++;
1252 			}
1253 		}
1254 	}
1255 
1256 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1257 		return -1;
1258 	while (*bp == ' ') bp++;
1259 	*bpp = bp;
1260 	*dest = '\0';
1261 	return len;
1262 }
1263 EXPORT_SYMBOL_GPL(qword_get);
1264 
1265 
1266 /*
1267  * support /proc/sunrpc/cache/$CACHENAME/content
1268  * as a seqfile.
1269  * We call ->cache_show passing NULL for the item to
1270  * get a header, then pass each real item in the cache
1271  */
1272 
1273 struct handle {
1274 	struct cache_detail *cd;
1275 };
1276 
1277 static void *c_start(struct seq_file *m, loff_t *pos)
1278 	__acquires(cd->hash_lock)
1279 {
1280 	loff_t n = *pos;
1281 	unsigned int hash, entry;
1282 	struct cache_head *ch;
1283 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1284 
1285 
1286 	read_lock(&cd->hash_lock);
1287 	if (!n--)
1288 		return SEQ_START_TOKEN;
1289 	hash = n >> 32;
1290 	entry = n & ((1LL<<32) - 1);
1291 
1292 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1293 		if (!entry--)
1294 			return ch;
1295 	n &= ~((1LL<<32) - 1);
1296 	do {
1297 		hash++;
1298 		n += 1LL<<32;
1299 	} while(hash < cd->hash_size &&
1300 		cd->hash_table[hash]==NULL);
1301 	if (hash >= cd->hash_size)
1302 		return NULL;
1303 	*pos = n+1;
1304 	return cd->hash_table[hash];
1305 }
1306 
1307 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1308 {
1309 	struct cache_head *ch = p;
1310 	int hash = (*pos >> 32);
1311 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1312 
1313 	if (p == SEQ_START_TOKEN)
1314 		hash = 0;
1315 	else if (ch->next == NULL) {
1316 		hash++;
1317 		*pos += 1LL<<32;
1318 	} else {
1319 		++*pos;
1320 		return ch->next;
1321 	}
1322 	*pos &= ~((1LL<<32) - 1);
1323 	while (hash < cd->hash_size &&
1324 	       cd->hash_table[hash] == NULL) {
1325 		hash++;
1326 		*pos += 1LL<<32;
1327 	}
1328 	if (hash >= cd->hash_size)
1329 		return NULL;
1330 	++*pos;
1331 	return cd->hash_table[hash];
1332 }
1333 
1334 static void c_stop(struct seq_file *m, void *p)
1335 	__releases(cd->hash_lock)
1336 {
1337 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1338 	read_unlock(&cd->hash_lock);
1339 }
1340 
1341 static int c_show(struct seq_file *m, void *p)
1342 {
1343 	struct cache_head *cp = p;
1344 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1345 
1346 	if (p == SEQ_START_TOKEN)
1347 		return cd->cache_show(m, cd, NULL);
1348 
1349 	ifdebug(CACHE)
1350 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1351 			   convert_to_wallclock(cp->expiry_time),
1352 			   atomic_read(&cp->ref.refcount), cp->flags);
1353 	cache_get(cp);
1354 	if (cache_check(cd, cp, NULL))
1355 		/* cache_check does a cache_put on failure */
1356 		seq_printf(m, "# ");
1357 	else {
1358 		if (cache_is_expired(cd, cp))
1359 			seq_printf(m, "# ");
1360 		cache_put(cp, cd);
1361 	}
1362 
1363 	return cd->cache_show(m, cd, cp);
1364 }
1365 
1366 static const struct seq_operations cache_content_op = {
1367 	.start	= c_start,
1368 	.next	= c_next,
1369 	.stop	= c_stop,
1370 	.show	= c_show,
1371 };
1372 
1373 static int content_open(struct inode *inode, struct file *file,
1374 			struct cache_detail *cd)
1375 {
1376 	struct handle *han;
1377 
1378 	if (!cd || !try_module_get(cd->owner))
1379 		return -EACCES;
1380 	han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1381 	if (han == NULL) {
1382 		module_put(cd->owner);
1383 		return -ENOMEM;
1384 	}
1385 
1386 	han->cd = cd;
1387 	return 0;
1388 }
1389 
1390 static int content_release(struct inode *inode, struct file *file,
1391 		struct cache_detail *cd)
1392 {
1393 	int ret = seq_release_private(inode, file);
1394 	module_put(cd->owner);
1395 	return ret;
1396 }
1397 
1398 static int open_flush(struct inode *inode, struct file *file,
1399 			struct cache_detail *cd)
1400 {
1401 	if (!cd || !try_module_get(cd->owner))
1402 		return -EACCES;
1403 	return nonseekable_open(inode, file);
1404 }
1405 
1406 static int release_flush(struct inode *inode, struct file *file,
1407 			struct cache_detail *cd)
1408 {
1409 	module_put(cd->owner);
1410 	return 0;
1411 }
1412 
1413 static ssize_t read_flush(struct file *file, char __user *buf,
1414 			  size_t count, loff_t *ppos,
1415 			  struct cache_detail *cd)
1416 {
1417 	char tbuf[22];
1418 	unsigned long p = *ppos;
1419 	size_t len;
1420 
1421 	snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1422 	len = strlen(tbuf);
1423 	if (p >= len)
1424 		return 0;
1425 	len -= p;
1426 	if (len > count)
1427 		len = count;
1428 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1429 		return -EFAULT;
1430 	*ppos += len;
1431 	return len;
1432 }
1433 
1434 static ssize_t write_flush(struct file *file, const char __user *buf,
1435 			   size_t count, loff_t *ppos,
1436 			   struct cache_detail *cd)
1437 {
1438 	char tbuf[20];
1439 	char *bp, *ep;
1440 
1441 	if (*ppos || count > sizeof(tbuf)-1)
1442 		return -EINVAL;
1443 	if (copy_from_user(tbuf, buf, count))
1444 		return -EFAULT;
1445 	tbuf[count] = 0;
1446 	simple_strtoul(tbuf, &ep, 0);
1447 	if (*ep && *ep != '\n')
1448 		return -EINVAL;
1449 
1450 	bp = tbuf;
1451 	cd->flush_time = get_expiry(&bp);
1452 	cd->nextcheck = seconds_since_boot();
1453 	cache_flush();
1454 
1455 	*ppos += count;
1456 	return count;
1457 }
1458 
1459 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1460 				 size_t count, loff_t *ppos)
1461 {
1462 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1463 
1464 	return cache_read(filp, buf, count, ppos, cd);
1465 }
1466 
1467 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1468 				  size_t count, loff_t *ppos)
1469 {
1470 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1471 
1472 	return cache_write(filp, buf, count, ppos, cd);
1473 }
1474 
1475 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1476 {
1477 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1478 
1479 	return cache_poll(filp, wait, cd);
1480 }
1481 
1482 static long cache_ioctl_procfs(struct file *filp,
1483 			       unsigned int cmd, unsigned long arg)
1484 {
1485 	struct inode *inode = file_inode(filp);
1486 	struct cache_detail *cd = PDE_DATA(inode);
1487 
1488 	return cache_ioctl(inode, filp, cmd, arg, cd);
1489 }
1490 
1491 static int cache_open_procfs(struct inode *inode, struct file *filp)
1492 {
1493 	struct cache_detail *cd = PDE_DATA(inode);
1494 
1495 	return cache_open(inode, filp, cd);
1496 }
1497 
1498 static int cache_release_procfs(struct inode *inode, struct file *filp)
1499 {
1500 	struct cache_detail *cd = PDE_DATA(inode);
1501 
1502 	return cache_release(inode, filp, cd);
1503 }
1504 
1505 static const struct file_operations cache_file_operations_procfs = {
1506 	.owner		= THIS_MODULE,
1507 	.llseek		= no_llseek,
1508 	.read		= cache_read_procfs,
1509 	.write		= cache_write_procfs,
1510 	.poll		= cache_poll_procfs,
1511 	.unlocked_ioctl	= cache_ioctl_procfs, /* for FIONREAD */
1512 	.open		= cache_open_procfs,
1513 	.release	= cache_release_procfs,
1514 };
1515 
1516 static int content_open_procfs(struct inode *inode, struct file *filp)
1517 {
1518 	struct cache_detail *cd = PDE_DATA(inode);
1519 
1520 	return content_open(inode, filp, cd);
1521 }
1522 
1523 static int content_release_procfs(struct inode *inode, struct file *filp)
1524 {
1525 	struct cache_detail *cd = PDE_DATA(inode);
1526 
1527 	return content_release(inode, filp, cd);
1528 }
1529 
1530 static const struct file_operations content_file_operations_procfs = {
1531 	.open		= content_open_procfs,
1532 	.read		= seq_read,
1533 	.llseek		= seq_lseek,
1534 	.release	= content_release_procfs,
1535 };
1536 
1537 static int open_flush_procfs(struct inode *inode, struct file *filp)
1538 {
1539 	struct cache_detail *cd = PDE_DATA(inode);
1540 
1541 	return open_flush(inode, filp, cd);
1542 }
1543 
1544 static int release_flush_procfs(struct inode *inode, struct file *filp)
1545 {
1546 	struct cache_detail *cd = PDE_DATA(inode);
1547 
1548 	return release_flush(inode, filp, cd);
1549 }
1550 
1551 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1552 			    size_t count, loff_t *ppos)
1553 {
1554 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1555 
1556 	return read_flush(filp, buf, count, ppos, cd);
1557 }
1558 
1559 static ssize_t write_flush_procfs(struct file *filp,
1560 				  const char __user *buf,
1561 				  size_t count, loff_t *ppos)
1562 {
1563 	struct cache_detail *cd = PDE_DATA(file_inode(filp));
1564 
1565 	return write_flush(filp, buf, count, ppos, cd);
1566 }
1567 
1568 static const struct file_operations cache_flush_operations_procfs = {
1569 	.open		= open_flush_procfs,
1570 	.read		= read_flush_procfs,
1571 	.write		= write_flush_procfs,
1572 	.release	= release_flush_procfs,
1573 	.llseek		= no_llseek,
1574 };
1575 
1576 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1577 {
1578 	struct sunrpc_net *sn;
1579 
1580 	if (cd->u.procfs.proc_ent == NULL)
1581 		return;
1582 	if (cd->u.procfs.flush_ent)
1583 		remove_proc_entry("flush", cd->u.procfs.proc_ent);
1584 	if (cd->u.procfs.channel_ent)
1585 		remove_proc_entry("channel", cd->u.procfs.proc_ent);
1586 	if (cd->u.procfs.content_ent)
1587 		remove_proc_entry("content", cd->u.procfs.proc_ent);
1588 	cd->u.procfs.proc_ent = NULL;
1589 	sn = net_generic(net, sunrpc_net_id);
1590 	remove_proc_entry(cd->name, sn->proc_net_rpc);
1591 }
1592 
1593 #ifdef CONFIG_PROC_FS
1594 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1595 {
1596 	struct proc_dir_entry *p;
1597 	struct sunrpc_net *sn;
1598 
1599 	sn = net_generic(net, sunrpc_net_id);
1600 	cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1601 	if (cd->u.procfs.proc_ent == NULL)
1602 		goto out_nomem;
1603 	cd->u.procfs.channel_ent = NULL;
1604 	cd->u.procfs.content_ent = NULL;
1605 
1606 	p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1607 			     cd->u.procfs.proc_ent,
1608 			     &cache_flush_operations_procfs, cd);
1609 	cd->u.procfs.flush_ent = p;
1610 	if (p == NULL)
1611 		goto out_nomem;
1612 
1613 	if (cd->cache_request || cd->cache_parse) {
1614 		p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1615 				     cd->u.procfs.proc_ent,
1616 				     &cache_file_operations_procfs, cd);
1617 		cd->u.procfs.channel_ent = p;
1618 		if (p == NULL)
1619 			goto out_nomem;
1620 	}
1621 	if (cd->cache_show) {
1622 		p = proc_create_data("content", S_IFREG|S_IRUSR,
1623 				cd->u.procfs.proc_ent,
1624 				&content_file_operations_procfs, cd);
1625 		cd->u.procfs.content_ent = p;
1626 		if (p == NULL)
1627 			goto out_nomem;
1628 	}
1629 	return 0;
1630 out_nomem:
1631 	remove_cache_proc_entries(cd, net);
1632 	return -ENOMEM;
1633 }
1634 #else /* CONFIG_PROC_FS */
1635 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1636 {
1637 	return 0;
1638 }
1639 #endif
1640 
1641 void __init cache_initialize(void)
1642 {
1643 	INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1644 }
1645 
1646 int cache_register_net(struct cache_detail *cd, struct net *net)
1647 {
1648 	int ret;
1649 
1650 	sunrpc_init_cache_detail(cd);
1651 	ret = create_cache_proc_entries(cd, net);
1652 	if (ret)
1653 		sunrpc_destroy_cache_detail(cd);
1654 	return ret;
1655 }
1656 EXPORT_SYMBOL_GPL(cache_register_net);
1657 
1658 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1659 {
1660 	remove_cache_proc_entries(cd, net);
1661 	sunrpc_destroy_cache_detail(cd);
1662 }
1663 EXPORT_SYMBOL_GPL(cache_unregister_net);
1664 
1665 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1666 {
1667 	struct cache_detail *cd;
1668 
1669 	cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1670 	if (cd == NULL)
1671 		return ERR_PTR(-ENOMEM);
1672 
1673 	cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1674 				 GFP_KERNEL);
1675 	if (cd->hash_table == NULL) {
1676 		kfree(cd);
1677 		return ERR_PTR(-ENOMEM);
1678 	}
1679 	cd->net = net;
1680 	return cd;
1681 }
1682 EXPORT_SYMBOL_GPL(cache_create_net);
1683 
1684 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1685 {
1686 	kfree(cd->hash_table);
1687 	kfree(cd);
1688 }
1689 EXPORT_SYMBOL_GPL(cache_destroy_net);
1690 
1691 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1692 				 size_t count, loff_t *ppos)
1693 {
1694 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1695 
1696 	return cache_read(filp, buf, count, ppos, cd);
1697 }
1698 
1699 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1700 				  size_t count, loff_t *ppos)
1701 {
1702 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1703 
1704 	return cache_write(filp, buf, count, ppos, cd);
1705 }
1706 
1707 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1708 {
1709 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1710 
1711 	return cache_poll(filp, wait, cd);
1712 }
1713 
1714 static long cache_ioctl_pipefs(struct file *filp,
1715 			      unsigned int cmd, unsigned long arg)
1716 {
1717 	struct inode *inode = file_inode(filp);
1718 	struct cache_detail *cd = RPC_I(inode)->private;
1719 
1720 	return cache_ioctl(inode, filp, cmd, arg, cd);
1721 }
1722 
1723 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1724 {
1725 	struct cache_detail *cd = RPC_I(inode)->private;
1726 
1727 	return cache_open(inode, filp, cd);
1728 }
1729 
1730 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1731 {
1732 	struct cache_detail *cd = RPC_I(inode)->private;
1733 
1734 	return cache_release(inode, filp, cd);
1735 }
1736 
1737 const struct file_operations cache_file_operations_pipefs = {
1738 	.owner		= THIS_MODULE,
1739 	.llseek		= no_llseek,
1740 	.read		= cache_read_pipefs,
1741 	.write		= cache_write_pipefs,
1742 	.poll		= cache_poll_pipefs,
1743 	.unlocked_ioctl	= cache_ioctl_pipefs, /* for FIONREAD */
1744 	.open		= cache_open_pipefs,
1745 	.release	= cache_release_pipefs,
1746 };
1747 
1748 static int content_open_pipefs(struct inode *inode, struct file *filp)
1749 {
1750 	struct cache_detail *cd = RPC_I(inode)->private;
1751 
1752 	return content_open(inode, filp, cd);
1753 }
1754 
1755 static int content_release_pipefs(struct inode *inode, struct file *filp)
1756 {
1757 	struct cache_detail *cd = RPC_I(inode)->private;
1758 
1759 	return content_release(inode, filp, cd);
1760 }
1761 
1762 const struct file_operations content_file_operations_pipefs = {
1763 	.open		= content_open_pipefs,
1764 	.read		= seq_read,
1765 	.llseek		= seq_lseek,
1766 	.release	= content_release_pipefs,
1767 };
1768 
1769 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1770 {
1771 	struct cache_detail *cd = RPC_I(inode)->private;
1772 
1773 	return open_flush(inode, filp, cd);
1774 }
1775 
1776 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1777 {
1778 	struct cache_detail *cd = RPC_I(inode)->private;
1779 
1780 	return release_flush(inode, filp, cd);
1781 }
1782 
1783 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1784 			    size_t count, loff_t *ppos)
1785 {
1786 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1787 
1788 	return read_flush(filp, buf, count, ppos, cd);
1789 }
1790 
1791 static ssize_t write_flush_pipefs(struct file *filp,
1792 				  const char __user *buf,
1793 				  size_t count, loff_t *ppos)
1794 {
1795 	struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1796 
1797 	return write_flush(filp, buf, count, ppos, cd);
1798 }
1799 
1800 const struct file_operations cache_flush_operations_pipefs = {
1801 	.open		= open_flush_pipefs,
1802 	.read		= read_flush_pipefs,
1803 	.write		= write_flush_pipefs,
1804 	.release	= release_flush_pipefs,
1805 	.llseek		= no_llseek,
1806 };
1807 
1808 int sunrpc_cache_register_pipefs(struct dentry *parent,
1809 				 const char *name, umode_t umode,
1810 				 struct cache_detail *cd)
1811 {
1812 	struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1813 	if (IS_ERR(dir))
1814 		return PTR_ERR(dir);
1815 	cd->u.pipefs.dir = dir;
1816 	return 0;
1817 }
1818 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1819 
1820 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1821 {
1822 	rpc_remove_cache_dir(cd->u.pipefs.dir);
1823 	cd->u.pipefs.dir = NULL;
1824 }
1825 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1826 
1827