1 /* 2 * COPYRIGHT (c) 2008 3 * The Regents of the University of Michigan 4 * ALL RIGHTS RESERVED 5 * 6 * Permission is granted to use, copy, create derivative works 7 * and redistribute this software and such derivative works 8 * for any purpose, so long as the name of The University of 9 * Michigan is not used in any advertising or publicity 10 * pertaining to the use of distribution of this software 11 * without specific, written prior authorization. If the 12 * above copyright notice or any other identification of the 13 * University of Michigan is included in any copy of any 14 * portion of this software, then the disclaimer below must 15 * also be included. 16 * 17 * THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION 18 * FROM THE UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY 19 * PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF 20 * MICHIGAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING 21 * WITHOUT LIMITATION THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE 23 * REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE 24 * FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR 25 * CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING 26 * OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN 27 * IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGES. 29 */ 30 31 #include <linux/types.h> 32 #include <linux/jiffies.h> 33 #include <linux/sunrpc/gss_krb5.h> 34 #include <linux/random.h> 35 #include <linux/pagemap.h> 36 #include <linux/crypto.h> 37 38 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 39 # define RPCDBG_FACILITY RPCDBG_AUTH 40 #endif 41 42 static inline int 43 gss_krb5_padding(int blocksize, int length) 44 { 45 return blocksize - (length % blocksize); 46 } 47 48 static inline void 49 gss_krb5_add_padding(struct xdr_buf *buf, int offset, int blocksize) 50 { 51 int padding = gss_krb5_padding(blocksize, buf->len - offset); 52 char *p; 53 struct kvec *iov; 54 55 if (buf->page_len || buf->tail[0].iov_len) 56 iov = &buf->tail[0]; 57 else 58 iov = &buf->head[0]; 59 p = iov->iov_base + iov->iov_len; 60 iov->iov_len += padding; 61 buf->len += padding; 62 memset(p, padding, padding); 63 } 64 65 static inline int 66 gss_krb5_remove_padding(struct xdr_buf *buf, int blocksize) 67 { 68 u8 *ptr; 69 u8 pad; 70 size_t len = buf->len; 71 72 if (len <= buf->head[0].iov_len) { 73 pad = *(u8 *)(buf->head[0].iov_base + len - 1); 74 if (pad > buf->head[0].iov_len) 75 return -EINVAL; 76 buf->head[0].iov_len -= pad; 77 goto out; 78 } else 79 len -= buf->head[0].iov_len; 80 if (len <= buf->page_len) { 81 unsigned int last = (buf->page_base + len - 1) 82 >>PAGE_CACHE_SHIFT; 83 unsigned int offset = (buf->page_base + len - 1) 84 & (PAGE_CACHE_SIZE - 1); 85 ptr = kmap_atomic(buf->pages[last]); 86 pad = *(ptr + offset); 87 kunmap_atomic(ptr); 88 goto out; 89 } else 90 len -= buf->page_len; 91 BUG_ON(len > buf->tail[0].iov_len); 92 pad = *(u8 *)(buf->tail[0].iov_base + len - 1); 93 out: 94 /* XXX: NOTE: we do not adjust the page lengths--they represent 95 * a range of data in the real filesystem page cache, and we need 96 * to know that range so the xdr code can properly place read data. 97 * However adjusting the head length, as we do above, is harmless. 98 * In the case of a request that fits into a single page, the server 99 * also uses length and head length together to determine the original 100 * start of the request to copy the request for deferal; so it's 101 * easier on the server if we adjust head and tail length in tandem. 102 * It's not really a problem that we don't fool with the page and 103 * tail lengths, though--at worst badly formed xdr might lead the 104 * server to attempt to parse the padding. 105 * XXX: Document all these weird requirements for gss mechanism 106 * wrap/unwrap functions. */ 107 if (pad > blocksize) 108 return -EINVAL; 109 if (buf->len > pad) 110 buf->len -= pad; 111 else 112 return -EINVAL; 113 return 0; 114 } 115 116 void 117 gss_krb5_make_confounder(char *p, u32 conflen) 118 { 119 static u64 i = 0; 120 u64 *q = (u64 *)p; 121 122 /* rfc1964 claims this should be "random". But all that's really 123 * necessary is that it be unique. And not even that is necessary in 124 * our case since our "gssapi" implementation exists only to support 125 * rpcsec_gss, so we know that the only buffers we will ever encrypt 126 * already begin with a unique sequence number. Just to hedge my bets 127 * I'll make a half-hearted attempt at something unique, but ensuring 128 * uniqueness would mean worrying about atomicity and rollover, and I 129 * don't care enough. */ 130 131 /* initialize to random value */ 132 if (i == 0) { 133 i = prandom_u32(); 134 i = (i << 32) | prandom_u32(); 135 } 136 137 switch (conflen) { 138 case 16: 139 *q++ = i++; 140 /* fall through */ 141 case 8: 142 *q++ = i++; 143 break; 144 default: 145 BUG(); 146 } 147 } 148 149 /* Assumptions: the head and tail of inbuf are ours to play with. 150 * The pages, however, may be real pages in the page cache and we replace 151 * them with scratch pages from **pages before writing to them. */ 152 /* XXX: obviously the above should be documentation of wrap interface, 153 * and shouldn't be in this kerberos-specific file. */ 154 155 /* XXX factor out common code with seal/unseal. */ 156 157 static u32 158 gss_wrap_kerberos_v1(struct krb5_ctx *kctx, int offset, 159 struct xdr_buf *buf, struct page **pages) 160 { 161 char cksumdata[GSS_KRB5_MAX_CKSUM_LEN]; 162 struct xdr_netobj md5cksum = {.len = sizeof(cksumdata), 163 .data = cksumdata}; 164 int blocksize = 0, plainlen; 165 unsigned char *ptr, *msg_start; 166 s32 now; 167 int headlen; 168 struct page **tmp_pages; 169 u32 seq_send; 170 u8 *cksumkey; 171 u32 conflen = kctx->gk5e->conflen; 172 173 dprintk("RPC: %s\n", __func__); 174 175 now = get_seconds(); 176 177 blocksize = crypto_blkcipher_blocksize(kctx->enc); 178 gss_krb5_add_padding(buf, offset, blocksize); 179 BUG_ON((buf->len - offset) % blocksize); 180 plainlen = conflen + buf->len - offset; 181 182 headlen = g_token_size(&kctx->mech_used, 183 GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength + plainlen) - 184 (buf->len - offset); 185 186 ptr = buf->head[0].iov_base + offset; 187 /* shift data to make room for header. */ 188 xdr_extend_head(buf, offset, headlen); 189 190 /* XXX Would be cleverer to encrypt while copying. */ 191 BUG_ON((buf->len - offset - headlen) % blocksize); 192 193 g_make_token_header(&kctx->mech_used, 194 GSS_KRB5_TOK_HDR_LEN + 195 kctx->gk5e->cksumlength + plainlen, &ptr); 196 197 198 /* ptr now at header described in rfc 1964, section 1.2.1: */ 199 ptr[0] = (unsigned char) ((KG_TOK_WRAP_MSG >> 8) & 0xff); 200 ptr[1] = (unsigned char) (KG_TOK_WRAP_MSG & 0xff); 201 202 msg_start = ptr + GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength; 203 204 /* 205 * signalg and sealalg are stored as if they were converted from LE 206 * to host endian, even though they're opaque pairs of bytes according 207 * to the RFC. 208 */ 209 *(__le16 *)(ptr + 2) = cpu_to_le16(kctx->gk5e->signalg); 210 *(__le16 *)(ptr + 4) = cpu_to_le16(kctx->gk5e->sealalg); 211 ptr[6] = 0xff; 212 ptr[7] = 0xff; 213 214 gss_krb5_make_confounder(msg_start, conflen); 215 216 if (kctx->gk5e->keyed_cksum) 217 cksumkey = kctx->cksum; 218 else 219 cksumkey = NULL; 220 221 /* XXXJBF: UGH!: */ 222 tmp_pages = buf->pages; 223 buf->pages = pages; 224 if (make_checksum(kctx, ptr, 8, buf, offset + headlen - conflen, 225 cksumkey, KG_USAGE_SEAL, &md5cksum)) 226 return GSS_S_FAILURE; 227 buf->pages = tmp_pages; 228 229 memcpy(ptr + GSS_KRB5_TOK_HDR_LEN, md5cksum.data, md5cksum.len); 230 231 spin_lock(&krb5_seq_lock); 232 seq_send = kctx->seq_send++; 233 spin_unlock(&krb5_seq_lock); 234 235 /* XXX would probably be more efficient to compute checksum 236 * and encrypt at the same time: */ 237 if ((krb5_make_seq_num(kctx, kctx->seq, kctx->initiate ? 0 : 0xff, 238 seq_send, ptr + GSS_KRB5_TOK_HDR_LEN, ptr + 8))) 239 return GSS_S_FAILURE; 240 241 if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) { 242 struct crypto_blkcipher *cipher; 243 int err; 244 cipher = crypto_alloc_blkcipher(kctx->gk5e->encrypt_name, 0, 245 CRYPTO_ALG_ASYNC); 246 if (IS_ERR(cipher)) 247 return GSS_S_FAILURE; 248 249 krb5_rc4_setup_enc_key(kctx, cipher, seq_send); 250 251 err = gss_encrypt_xdr_buf(cipher, buf, 252 offset + headlen - conflen, pages); 253 crypto_free_blkcipher(cipher); 254 if (err) 255 return GSS_S_FAILURE; 256 } else { 257 if (gss_encrypt_xdr_buf(kctx->enc, buf, 258 offset + headlen - conflen, pages)) 259 return GSS_S_FAILURE; 260 } 261 262 return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE; 263 } 264 265 static u32 266 gss_unwrap_kerberos_v1(struct krb5_ctx *kctx, int offset, struct xdr_buf *buf) 267 { 268 int signalg; 269 int sealalg; 270 char cksumdata[GSS_KRB5_MAX_CKSUM_LEN]; 271 struct xdr_netobj md5cksum = {.len = sizeof(cksumdata), 272 .data = cksumdata}; 273 s32 now; 274 int direction; 275 s32 seqnum; 276 unsigned char *ptr; 277 int bodysize; 278 void *data_start, *orig_start; 279 int data_len; 280 int blocksize; 281 u32 conflen = kctx->gk5e->conflen; 282 int crypt_offset; 283 u8 *cksumkey; 284 285 dprintk("RPC: gss_unwrap_kerberos\n"); 286 287 ptr = (u8 *)buf->head[0].iov_base + offset; 288 if (g_verify_token_header(&kctx->mech_used, &bodysize, &ptr, 289 buf->len - offset)) 290 return GSS_S_DEFECTIVE_TOKEN; 291 292 if ((ptr[0] != ((KG_TOK_WRAP_MSG >> 8) & 0xff)) || 293 (ptr[1] != (KG_TOK_WRAP_MSG & 0xff))) 294 return GSS_S_DEFECTIVE_TOKEN; 295 296 /* XXX sanity-check bodysize?? */ 297 298 /* get the sign and seal algorithms */ 299 300 signalg = ptr[2] + (ptr[3] << 8); 301 if (signalg != kctx->gk5e->signalg) 302 return GSS_S_DEFECTIVE_TOKEN; 303 304 sealalg = ptr[4] + (ptr[5] << 8); 305 if (sealalg != kctx->gk5e->sealalg) 306 return GSS_S_DEFECTIVE_TOKEN; 307 308 if ((ptr[6] != 0xff) || (ptr[7] != 0xff)) 309 return GSS_S_DEFECTIVE_TOKEN; 310 311 /* 312 * Data starts after token header and checksum. ptr points 313 * to the beginning of the token header 314 */ 315 crypt_offset = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) - 316 (unsigned char *)buf->head[0].iov_base; 317 318 /* 319 * Need plaintext seqnum to derive encryption key for arcfour-hmac 320 */ 321 if (krb5_get_seq_num(kctx, ptr + GSS_KRB5_TOK_HDR_LEN, 322 ptr + 8, &direction, &seqnum)) 323 return GSS_S_BAD_SIG; 324 325 if ((kctx->initiate && direction != 0xff) || 326 (!kctx->initiate && direction != 0)) 327 return GSS_S_BAD_SIG; 328 329 if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) { 330 struct crypto_blkcipher *cipher; 331 int err; 332 333 cipher = crypto_alloc_blkcipher(kctx->gk5e->encrypt_name, 0, 334 CRYPTO_ALG_ASYNC); 335 if (IS_ERR(cipher)) 336 return GSS_S_FAILURE; 337 338 krb5_rc4_setup_enc_key(kctx, cipher, seqnum); 339 340 err = gss_decrypt_xdr_buf(cipher, buf, crypt_offset); 341 crypto_free_blkcipher(cipher); 342 if (err) 343 return GSS_S_DEFECTIVE_TOKEN; 344 } else { 345 if (gss_decrypt_xdr_buf(kctx->enc, buf, crypt_offset)) 346 return GSS_S_DEFECTIVE_TOKEN; 347 } 348 349 if (kctx->gk5e->keyed_cksum) 350 cksumkey = kctx->cksum; 351 else 352 cksumkey = NULL; 353 354 if (make_checksum(kctx, ptr, 8, buf, crypt_offset, 355 cksumkey, KG_USAGE_SEAL, &md5cksum)) 356 return GSS_S_FAILURE; 357 358 if (memcmp(md5cksum.data, ptr + GSS_KRB5_TOK_HDR_LEN, 359 kctx->gk5e->cksumlength)) 360 return GSS_S_BAD_SIG; 361 362 /* it got through unscathed. Make sure the context is unexpired */ 363 364 now = get_seconds(); 365 366 if (now > kctx->endtime) 367 return GSS_S_CONTEXT_EXPIRED; 368 369 /* do sequencing checks */ 370 371 /* Copy the data back to the right position. XXX: Would probably be 372 * better to copy and encrypt at the same time. */ 373 374 blocksize = crypto_blkcipher_blocksize(kctx->enc); 375 data_start = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) + 376 conflen; 377 orig_start = buf->head[0].iov_base + offset; 378 data_len = (buf->head[0].iov_base + buf->head[0].iov_len) - data_start; 379 memmove(orig_start, data_start, data_len); 380 buf->head[0].iov_len -= (data_start - orig_start); 381 buf->len -= (data_start - orig_start); 382 383 if (gss_krb5_remove_padding(buf, blocksize)) 384 return GSS_S_DEFECTIVE_TOKEN; 385 386 return GSS_S_COMPLETE; 387 } 388 389 /* 390 * We can shift data by up to LOCAL_BUF_LEN bytes in a pass. If we need 391 * to do more than that, we shift repeatedly. Kevin Coffman reports 392 * seeing 28 bytes as the value used by Microsoft clients and servers 393 * with AES, so this constant is chosen to allow handling 28 in one pass 394 * without using too much stack space. 395 * 396 * If that proves to a problem perhaps we could use a more clever 397 * algorithm. 398 */ 399 #define LOCAL_BUF_LEN 32u 400 401 static void rotate_buf_a_little(struct xdr_buf *buf, unsigned int shift) 402 { 403 char head[LOCAL_BUF_LEN]; 404 char tmp[LOCAL_BUF_LEN]; 405 unsigned int this_len, i; 406 407 BUG_ON(shift > LOCAL_BUF_LEN); 408 409 read_bytes_from_xdr_buf(buf, 0, head, shift); 410 for (i = 0; i + shift < buf->len; i += LOCAL_BUF_LEN) { 411 this_len = min(LOCAL_BUF_LEN, buf->len - (i + shift)); 412 read_bytes_from_xdr_buf(buf, i+shift, tmp, this_len); 413 write_bytes_to_xdr_buf(buf, i, tmp, this_len); 414 } 415 write_bytes_to_xdr_buf(buf, buf->len - shift, head, shift); 416 } 417 418 static void _rotate_left(struct xdr_buf *buf, unsigned int shift) 419 { 420 int shifted = 0; 421 int this_shift; 422 423 shift %= buf->len; 424 while (shifted < shift) { 425 this_shift = min(shift - shifted, LOCAL_BUF_LEN); 426 rotate_buf_a_little(buf, this_shift); 427 shifted += this_shift; 428 } 429 } 430 431 static void rotate_left(u32 base, struct xdr_buf *buf, unsigned int shift) 432 { 433 struct xdr_buf subbuf; 434 435 xdr_buf_subsegment(buf, &subbuf, base, buf->len - base); 436 _rotate_left(&subbuf, shift); 437 } 438 439 static u32 440 gss_wrap_kerberos_v2(struct krb5_ctx *kctx, u32 offset, 441 struct xdr_buf *buf, struct page **pages) 442 { 443 int blocksize; 444 u8 *ptr, *plainhdr; 445 s32 now; 446 u8 flags = 0x00; 447 __be16 *be16ptr; 448 __be64 *be64ptr; 449 u32 err; 450 451 dprintk("RPC: %s\n", __func__); 452 453 if (kctx->gk5e->encrypt_v2 == NULL) 454 return GSS_S_FAILURE; 455 456 /* make room for gss token header */ 457 if (xdr_extend_head(buf, offset, GSS_KRB5_TOK_HDR_LEN)) 458 return GSS_S_FAILURE; 459 460 /* construct gss token header */ 461 ptr = plainhdr = buf->head[0].iov_base + offset; 462 *ptr++ = (unsigned char) ((KG2_TOK_WRAP>>8) & 0xff); 463 *ptr++ = (unsigned char) (KG2_TOK_WRAP & 0xff); 464 465 if ((kctx->flags & KRB5_CTX_FLAG_INITIATOR) == 0) 466 flags |= KG2_TOKEN_FLAG_SENTBYACCEPTOR; 467 if ((kctx->flags & KRB5_CTX_FLAG_ACCEPTOR_SUBKEY) != 0) 468 flags |= KG2_TOKEN_FLAG_ACCEPTORSUBKEY; 469 /* We always do confidentiality in wrap tokens */ 470 flags |= KG2_TOKEN_FLAG_SEALED; 471 472 *ptr++ = flags; 473 *ptr++ = 0xff; 474 be16ptr = (__be16 *)ptr; 475 476 blocksize = crypto_blkcipher_blocksize(kctx->acceptor_enc); 477 *be16ptr++ = 0; 478 /* "inner" token header always uses 0 for RRC */ 479 *be16ptr++ = 0; 480 481 be64ptr = (__be64 *)be16ptr; 482 spin_lock(&krb5_seq_lock); 483 *be64ptr = cpu_to_be64(kctx->seq_send64++); 484 spin_unlock(&krb5_seq_lock); 485 486 err = (*kctx->gk5e->encrypt_v2)(kctx, offset, buf, pages); 487 if (err) 488 return err; 489 490 now = get_seconds(); 491 return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE; 492 } 493 494 static u32 495 gss_unwrap_kerberos_v2(struct krb5_ctx *kctx, int offset, struct xdr_buf *buf) 496 { 497 s32 now; 498 u8 *ptr; 499 u8 flags = 0x00; 500 u16 ec, rrc; 501 int err; 502 u32 headskip, tailskip; 503 u8 decrypted_hdr[GSS_KRB5_TOK_HDR_LEN]; 504 unsigned int movelen; 505 506 507 dprintk("RPC: %s\n", __func__); 508 509 if (kctx->gk5e->decrypt_v2 == NULL) 510 return GSS_S_FAILURE; 511 512 ptr = buf->head[0].iov_base + offset; 513 514 if (be16_to_cpu(*((__be16 *)ptr)) != KG2_TOK_WRAP) 515 return GSS_S_DEFECTIVE_TOKEN; 516 517 flags = ptr[2]; 518 if ((!kctx->initiate && (flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR)) || 519 (kctx->initiate && !(flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR))) 520 return GSS_S_BAD_SIG; 521 522 if ((flags & KG2_TOKEN_FLAG_SEALED) == 0) { 523 dprintk("%s: token missing expected sealed flag\n", __func__); 524 return GSS_S_DEFECTIVE_TOKEN; 525 } 526 527 if (ptr[3] != 0xff) 528 return GSS_S_DEFECTIVE_TOKEN; 529 530 ec = be16_to_cpup((__be16 *)(ptr + 4)); 531 rrc = be16_to_cpup((__be16 *)(ptr + 6)); 532 533 /* 534 * NOTE: the sequence number at ptr + 8 is skipped, rpcsec_gss 535 * doesn't want it checked; see page 6 of rfc 2203. 536 */ 537 538 if (rrc != 0) 539 rotate_left(offset + 16, buf, rrc); 540 541 err = (*kctx->gk5e->decrypt_v2)(kctx, offset, buf, 542 &headskip, &tailskip); 543 if (err) 544 return GSS_S_FAILURE; 545 546 /* 547 * Retrieve the decrypted gss token header and verify 548 * it against the original 549 */ 550 err = read_bytes_from_xdr_buf(buf, 551 buf->len - GSS_KRB5_TOK_HDR_LEN - tailskip, 552 decrypted_hdr, GSS_KRB5_TOK_HDR_LEN); 553 if (err) { 554 dprintk("%s: error %u getting decrypted_hdr\n", __func__, err); 555 return GSS_S_FAILURE; 556 } 557 if (memcmp(ptr, decrypted_hdr, 6) 558 || memcmp(ptr + 8, decrypted_hdr + 8, 8)) { 559 dprintk("%s: token hdr, plaintext hdr mismatch!\n", __func__); 560 return GSS_S_FAILURE; 561 } 562 563 /* do sequencing checks */ 564 565 /* it got through unscathed. Make sure the context is unexpired */ 566 now = get_seconds(); 567 if (now > kctx->endtime) 568 return GSS_S_CONTEXT_EXPIRED; 569 570 /* 571 * Move the head data back to the right position in xdr_buf. 572 * We ignore any "ec" data since it might be in the head or 573 * the tail, and we really don't need to deal with it. 574 * Note that buf->head[0].iov_len may indicate the available 575 * head buffer space rather than that actually occupied. 576 */ 577 movelen = min_t(unsigned int, buf->head[0].iov_len, buf->len); 578 movelen -= offset + GSS_KRB5_TOK_HDR_LEN + headskip; 579 BUG_ON(offset + GSS_KRB5_TOK_HDR_LEN + headskip + movelen > 580 buf->head[0].iov_len); 581 memmove(ptr, ptr + GSS_KRB5_TOK_HDR_LEN + headskip, movelen); 582 buf->head[0].iov_len -= GSS_KRB5_TOK_HDR_LEN + headskip; 583 buf->len -= GSS_KRB5_TOK_HDR_LEN + headskip; 584 585 /* Trim off the trailing "extra count" and checksum blob */ 586 xdr_buf_trim(buf, ec + GSS_KRB5_TOK_HDR_LEN + tailskip); 587 return GSS_S_COMPLETE; 588 } 589 590 u32 591 gss_wrap_kerberos(struct gss_ctx *gctx, int offset, 592 struct xdr_buf *buf, struct page **pages) 593 { 594 struct krb5_ctx *kctx = gctx->internal_ctx_id; 595 596 switch (kctx->enctype) { 597 default: 598 BUG(); 599 case ENCTYPE_DES_CBC_RAW: 600 case ENCTYPE_DES3_CBC_RAW: 601 case ENCTYPE_ARCFOUR_HMAC: 602 return gss_wrap_kerberos_v1(kctx, offset, buf, pages); 603 case ENCTYPE_AES128_CTS_HMAC_SHA1_96: 604 case ENCTYPE_AES256_CTS_HMAC_SHA1_96: 605 return gss_wrap_kerberos_v2(kctx, offset, buf, pages); 606 } 607 } 608 609 u32 610 gss_unwrap_kerberos(struct gss_ctx *gctx, int offset, struct xdr_buf *buf) 611 { 612 struct krb5_ctx *kctx = gctx->internal_ctx_id; 613 614 switch (kctx->enctype) { 615 default: 616 BUG(); 617 case ENCTYPE_DES_CBC_RAW: 618 case ENCTYPE_DES3_CBC_RAW: 619 case ENCTYPE_ARCFOUR_HMAC: 620 return gss_unwrap_kerberos_v1(kctx, offset, buf); 621 case ENCTYPE_AES128_CTS_HMAC_SHA1_96: 622 case ENCTYPE_AES256_CTS_HMAC_SHA1_96: 623 return gss_unwrap_kerberos_v2(kctx, offset, buf); 624 } 625 } 626 627