1 /* 2 * COPYRIGHT (c) 2008 3 * The Regents of the University of Michigan 4 * ALL RIGHTS RESERVED 5 * 6 * Permission is granted to use, copy, create derivative works 7 * and redistribute this software and such derivative works 8 * for any purpose, so long as the name of The University of 9 * Michigan is not used in any advertising or publicity 10 * pertaining to the use of distribution of this software 11 * without specific, written prior authorization. If the 12 * above copyright notice or any other identification of the 13 * University of Michigan is included in any copy of any 14 * portion of this software, then the disclaimer below must 15 * also be included. 16 * 17 * THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION 18 * FROM THE UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY 19 * PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF 20 * MICHIGAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING 21 * WITHOUT LIMITATION THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE 23 * REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE 24 * FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR 25 * CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING 26 * OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN 27 * IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGES. 29 */ 30 31 #include <crypto/skcipher.h> 32 #include <linux/types.h> 33 #include <linux/jiffies.h> 34 #include <linux/sunrpc/gss_krb5.h> 35 #include <linux/random.h> 36 #include <linux/pagemap.h> 37 38 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 39 # define RPCDBG_FACILITY RPCDBG_AUTH 40 #endif 41 42 static inline int 43 gss_krb5_padding(int blocksize, int length) 44 { 45 return blocksize - (length % blocksize); 46 } 47 48 static inline void 49 gss_krb5_add_padding(struct xdr_buf *buf, int offset, int blocksize) 50 { 51 int padding = gss_krb5_padding(blocksize, buf->len - offset); 52 char *p; 53 struct kvec *iov; 54 55 if (buf->page_len || buf->tail[0].iov_len) 56 iov = &buf->tail[0]; 57 else 58 iov = &buf->head[0]; 59 p = iov->iov_base + iov->iov_len; 60 iov->iov_len += padding; 61 buf->len += padding; 62 memset(p, padding, padding); 63 } 64 65 static inline int 66 gss_krb5_remove_padding(struct xdr_buf *buf, int blocksize) 67 { 68 u8 *ptr; 69 u8 pad; 70 size_t len = buf->len; 71 72 if (len <= buf->head[0].iov_len) { 73 pad = *(u8 *)(buf->head[0].iov_base + len - 1); 74 if (pad > buf->head[0].iov_len) 75 return -EINVAL; 76 buf->head[0].iov_len -= pad; 77 goto out; 78 } else 79 len -= buf->head[0].iov_len; 80 if (len <= buf->page_len) { 81 unsigned int last = (buf->page_base + len - 1) 82 >>PAGE_SHIFT; 83 unsigned int offset = (buf->page_base + len - 1) 84 & (PAGE_SIZE - 1); 85 ptr = kmap_atomic(buf->pages[last]); 86 pad = *(ptr + offset); 87 kunmap_atomic(ptr); 88 goto out; 89 } else 90 len -= buf->page_len; 91 BUG_ON(len > buf->tail[0].iov_len); 92 pad = *(u8 *)(buf->tail[0].iov_base + len - 1); 93 out: 94 /* XXX: NOTE: we do not adjust the page lengths--they represent 95 * a range of data in the real filesystem page cache, and we need 96 * to know that range so the xdr code can properly place read data. 97 * However adjusting the head length, as we do above, is harmless. 98 * In the case of a request that fits into a single page, the server 99 * also uses length and head length together to determine the original 100 * start of the request to copy the request for deferal; so it's 101 * easier on the server if we adjust head and tail length in tandem. 102 * It's not really a problem that we don't fool with the page and 103 * tail lengths, though--at worst badly formed xdr might lead the 104 * server to attempt to parse the padding. 105 * XXX: Document all these weird requirements for gss mechanism 106 * wrap/unwrap functions. */ 107 if (pad > blocksize) 108 return -EINVAL; 109 if (buf->len > pad) 110 buf->len -= pad; 111 else 112 return -EINVAL; 113 return 0; 114 } 115 116 void 117 gss_krb5_make_confounder(char *p, u32 conflen) 118 { 119 static u64 i = 0; 120 u64 *q = (u64 *)p; 121 122 /* rfc1964 claims this should be "random". But all that's really 123 * necessary is that it be unique. And not even that is necessary in 124 * our case since our "gssapi" implementation exists only to support 125 * rpcsec_gss, so we know that the only buffers we will ever encrypt 126 * already begin with a unique sequence number. Just to hedge my bets 127 * I'll make a half-hearted attempt at something unique, but ensuring 128 * uniqueness would mean worrying about atomicity and rollover, and I 129 * don't care enough. */ 130 131 /* initialize to random value */ 132 if (i == 0) { 133 i = prandom_u32(); 134 i = (i << 32) | prandom_u32(); 135 } 136 137 switch (conflen) { 138 case 16: 139 *q++ = i++; 140 /* fall through */ 141 case 8: 142 *q++ = i++; 143 break; 144 default: 145 BUG(); 146 } 147 } 148 149 /* Assumptions: the head and tail of inbuf are ours to play with. 150 * The pages, however, may be real pages in the page cache and we replace 151 * them with scratch pages from **pages before writing to them. */ 152 /* XXX: obviously the above should be documentation of wrap interface, 153 * and shouldn't be in this kerberos-specific file. */ 154 155 /* XXX factor out common code with seal/unseal. */ 156 157 static u32 158 gss_wrap_kerberos_v1(struct krb5_ctx *kctx, int offset, 159 struct xdr_buf *buf, struct page **pages) 160 { 161 char cksumdata[GSS_KRB5_MAX_CKSUM_LEN]; 162 struct xdr_netobj md5cksum = {.len = sizeof(cksumdata), 163 .data = cksumdata}; 164 int blocksize = 0, plainlen; 165 unsigned char *ptr, *msg_start; 166 s32 now; 167 int headlen; 168 struct page **tmp_pages; 169 u32 seq_send; 170 u8 *cksumkey; 171 u32 conflen = kctx->gk5e->conflen; 172 173 dprintk("RPC: %s\n", __func__); 174 175 now = get_seconds(); 176 177 blocksize = crypto_sync_skcipher_blocksize(kctx->enc); 178 gss_krb5_add_padding(buf, offset, blocksize); 179 BUG_ON((buf->len - offset) % blocksize); 180 plainlen = conflen + buf->len - offset; 181 182 headlen = g_token_size(&kctx->mech_used, 183 GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength + plainlen) - 184 (buf->len - offset); 185 186 ptr = buf->head[0].iov_base + offset; 187 /* shift data to make room for header. */ 188 xdr_extend_head(buf, offset, headlen); 189 190 /* XXX Would be cleverer to encrypt while copying. */ 191 BUG_ON((buf->len - offset - headlen) % blocksize); 192 193 g_make_token_header(&kctx->mech_used, 194 GSS_KRB5_TOK_HDR_LEN + 195 kctx->gk5e->cksumlength + plainlen, &ptr); 196 197 198 /* ptr now at header described in rfc 1964, section 1.2.1: */ 199 ptr[0] = (unsigned char) ((KG_TOK_WRAP_MSG >> 8) & 0xff); 200 ptr[1] = (unsigned char) (KG_TOK_WRAP_MSG & 0xff); 201 202 msg_start = ptr + GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength; 203 204 /* 205 * signalg and sealalg are stored as if they were converted from LE 206 * to host endian, even though they're opaque pairs of bytes according 207 * to the RFC. 208 */ 209 *(__le16 *)(ptr + 2) = cpu_to_le16(kctx->gk5e->signalg); 210 *(__le16 *)(ptr + 4) = cpu_to_le16(kctx->gk5e->sealalg); 211 ptr[6] = 0xff; 212 ptr[7] = 0xff; 213 214 gss_krb5_make_confounder(msg_start, conflen); 215 216 if (kctx->gk5e->keyed_cksum) 217 cksumkey = kctx->cksum; 218 else 219 cksumkey = NULL; 220 221 /* XXXJBF: UGH!: */ 222 tmp_pages = buf->pages; 223 buf->pages = pages; 224 if (make_checksum(kctx, ptr, 8, buf, offset + headlen - conflen, 225 cksumkey, KG_USAGE_SEAL, &md5cksum)) 226 return GSS_S_FAILURE; 227 buf->pages = tmp_pages; 228 229 memcpy(ptr + GSS_KRB5_TOK_HDR_LEN, md5cksum.data, md5cksum.len); 230 231 seq_send = atomic_fetch_inc(&kctx->seq_send); 232 233 /* XXX would probably be more efficient to compute checksum 234 * and encrypt at the same time: */ 235 if ((krb5_make_seq_num(kctx, kctx->seq, kctx->initiate ? 0 : 0xff, 236 seq_send, ptr + GSS_KRB5_TOK_HDR_LEN, ptr + 8))) 237 return GSS_S_FAILURE; 238 239 if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) { 240 struct crypto_sync_skcipher *cipher; 241 int err; 242 cipher = crypto_alloc_sync_skcipher(kctx->gk5e->encrypt_name, 243 0, 0); 244 if (IS_ERR(cipher)) 245 return GSS_S_FAILURE; 246 247 krb5_rc4_setup_enc_key(kctx, cipher, seq_send); 248 249 err = gss_encrypt_xdr_buf(cipher, buf, 250 offset + headlen - conflen, pages); 251 crypto_free_sync_skcipher(cipher); 252 if (err) 253 return GSS_S_FAILURE; 254 } else { 255 if (gss_encrypt_xdr_buf(kctx->enc, buf, 256 offset + headlen - conflen, pages)) 257 return GSS_S_FAILURE; 258 } 259 260 return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE; 261 } 262 263 static u32 264 gss_unwrap_kerberos_v1(struct krb5_ctx *kctx, int offset, struct xdr_buf *buf) 265 { 266 int signalg; 267 int sealalg; 268 char cksumdata[GSS_KRB5_MAX_CKSUM_LEN]; 269 struct xdr_netobj md5cksum = {.len = sizeof(cksumdata), 270 .data = cksumdata}; 271 s32 now; 272 int direction; 273 s32 seqnum; 274 unsigned char *ptr; 275 int bodysize; 276 void *data_start, *orig_start; 277 int data_len; 278 int blocksize; 279 u32 conflen = kctx->gk5e->conflen; 280 int crypt_offset; 281 u8 *cksumkey; 282 283 dprintk("RPC: gss_unwrap_kerberos\n"); 284 285 ptr = (u8 *)buf->head[0].iov_base + offset; 286 if (g_verify_token_header(&kctx->mech_used, &bodysize, &ptr, 287 buf->len - offset)) 288 return GSS_S_DEFECTIVE_TOKEN; 289 290 if ((ptr[0] != ((KG_TOK_WRAP_MSG >> 8) & 0xff)) || 291 (ptr[1] != (KG_TOK_WRAP_MSG & 0xff))) 292 return GSS_S_DEFECTIVE_TOKEN; 293 294 /* XXX sanity-check bodysize?? */ 295 296 /* get the sign and seal algorithms */ 297 298 signalg = ptr[2] + (ptr[3] << 8); 299 if (signalg != kctx->gk5e->signalg) 300 return GSS_S_DEFECTIVE_TOKEN; 301 302 sealalg = ptr[4] + (ptr[5] << 8); 303 if (sealalg != kctx->gk5e->sealalg) 304 return GSS_S_DEFECTIVE_TOKEN; 305 306 if ((ptr[6] != 0xff) || (ptr[7] != 0xff)) 307 return GSS_S_DEFECTIVE_TOKEN; 308 309 /* 310 * Data starts after token header and checksum. ptr points 311 * to the beginning of the token header 312 */ 313 crypt_offset = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) - 314 (unsigned char *)buf->head[0].iov_base; 315 316 /* 317 * Need plaintext seqnum to derive encryption key for arcfour-hmac 318 */ 319 if (krb5_get_seq_num(kctx, ptr + GSS_KRB5_TOK_HDR_LEN, 320 ptr + 8, &direction, &seqnum)) 321 return GSS_S_BAD_SIG; 322 323 if ((kctx->initiate && direction != 0xff) || 324 (!kctx->initiate && direction != 0)) 325 return GSS_S_BAD_SIG; 326 327 if (kctx->enctype == ENCTYPE_ARCFOUR_HMAC) { 328 struct crypto_sync_skcipher *cipher; 329 int err; 330 331 cipher = crypto_alloc_sync_skcipher(kctx->gk5e->encrypt_name, 332 0, 0); 333 if (IS_ERR(cipher)) 334 return GSS_S_FAILURE; 335 336 krb5_rc4_setup_enc_key(kctx, cipher, seqnum); 337 338 err = gss_decrypt_xdr_buf(cipher, buf, crypt_offset); 339 crypto_free_sync_skcipher(cipher); 340 if (err) 341 return GSS_S_DEFECTIVE_TOKEN; 342 } else { 343 if (gss_decrypt_xdr_buf(kctx->enc, buf, crypt_offset)) 344 return GSS_S_DEFECTIVE_TOKEN; 345 } 346 347 if (kctx->gk5e->keyed_cksum) 348 cksumkey = kctx->cksum; 349 else 350 cksumkey = NULL; 351 352 if (make_checksum(kctx, ptr, 8, buf, crypt_offset, 353 cksumkey, KG_USAGE_SEAL, &md5cksum)) 354 return GSS_S_FAILURE; 355 356 if (memcmp(md5cksum.data, ptr + GSS_KRB5_TOK_HDR_LEN, 357 kctx->gk5e->cksumlength)) 358 return GSS_S_BAD_SIG; 359 360 /* it got through unscathed. Make sure the context is unexpired */ 361 362 now = get_seconds(); 363 364 if (now > kctx->endtime) 365 return GSS_S_CONTEXT_EXPIRED; 366 367 /* do sequencing checks */ 368 369 /* Copy the data back to the right position. XXX: Would probably be 370 * better to copy and encrypt at the same time. */ 371 372 blocksize = crypto_sync_skcipher_blocksize(kctx->enc); 373 data_start = ptr + (GSS_KRB5_TOK_HDR_LEN + kctx->gk5e->cksumlength) + 374 conflen; 375 orig_start = buf->head[0].iov_base + offset; 376 data_len = (buf->head[0].iov_base + buf->head[0].iov_len) - data_start; 377 memmove(orig_start, data_start, data_len); 378 buf->head[0].iov_len -= (data_start - orig_start); 379 buf->len -= (data_start - orig_start); 380 381 if (gss_krb5_remove_padding(buf, blocksize)) 382 return GSS_S_DEFECTIVE_TOKEN; 383 384 return GSS_S_COMPLETE; 385 } 386 387 /* 388 * We can shift data by up to LOCAL_BUF_LEN bytes in a pass. If we need 389 * to do more than that, we shift repeatedly. Kevin Coffman reports 390 * seeing 28 bytes as the value used by Microsoft clients and servers 391 * with AES, so this constant is chosen to allow handling 28 in one pass 392 * without using too much stack space. 393 * 394 * If that proves to a problem perhaps we could use a more clever 395 * algorithm. 396 */ 397 #define LOCAL_BUF_LEN 32u 398 399 static void rotate_buf_a_little(struct xdr_buf *buf, unsigned int shift) 400 { 401 char head[LOCAL_BUF_LEN]; 402 char tmp[LOCAL_BUF_LEN]; 403 unsigned int this_len, i; 404 405 BUG_ON(shift > LOCAL_BUF_LEN); 406 407 read_bytes_from_xdr_buf(buf, 0, head, shift); 408 for (i = 0; i + shift < buf->len; i += LOCAL_BUF_LEN) { 409 this_len = min(LOCAL_BUF_LEN, buf->len - (i + shift)); 410 read_bytes_from_xdr_buf(buf, i+shift, tmp, this_len); 411 write_bytes_to_xdr_buf(buf, i, tmp, this_len); 412 } 413 write_bytes_to_xdr_buf(buf, buf->len - shift, head, shift); 414 } 415 416 static void _rotate_left(struct xdr_buf *buf, unsigned int shift) 417 { 418 int shifted = 0; 419 int this_shift; 420 421 shift %= buf->len; 422 while (shifted < shift) { 423 this_shift = min(shift - shifted, LOCAL_BUF_LEN); 424 rotate_buf_a_little(buf, this_shift); 425 shifted += this_shift; 426 } 427 } 428 429 static void rotate_left(u32 base, struct xdr_buf *buf, unsigned int shift) 430 { 431 struct xdr_buf subbuf; 432 433 xdr_buf_subsegment(buf, &subbuf, base, buf->len - base); 434 _rotate_left(&subbuf, shift); 435 } 436 437 static u32 438 gss_wrap_kerberos_v2(struct krb5_ctx *kctx, u32 offset, 439 struct xdr_buf *buf, struct page **pages) 440 { 441 u8 *ptr, *plainhdr; 442 s32 now; 443 u8 flags = 0x00; 444 __be16 *be16ptr; 445 __be64 *be64ptr; 446 u32 err; 447 448 dprintk("RPC: %s\n", __func__); 449 450 if (kctx->gk5e->encrypt_v2 == NULL) 451 return GSS_S_FAILURE; 452 453 /* make room for gss token header */ 454 if (xdr_extend_head(buf, offset, GSS_KRB5_TOK_HDR_LEN)) 455 return GSS_S_FAILURE; 456 457 /* construct gss token header */ 458 ptr = plainhdr = buf->head[0].iov_base + offset; 459 *ptr++ = (unsigned char) ((KG2_TOK_WRAP>>8) & 0xff); 460 *ptr++ = (unsigned char) (KG2_TOK_WRAP & 0xff); 461 462 if ((kctx->flags & KRB5_CTX_FLAG_INITIATOR) == 0) 463 flags |= KG2_TOKEN_FLAG_SENTBYACCEPTOR; 464 if ((kctx->flags & KRB5_CTX_FLAG_ACCEPTOR_SUBKEY) != 0) 465 flags |= KG2_TOKEN_FLAG_ACCEPTORSUBKEY; 466 /* We always do confidentiality in wrap tokens */ 467 flags |= KG2_TOKEN_FLAG_SEALED; 468 469 *ptr++ = flags; 470 *ptr++ = 0xff; 471 be16ptr = (__be16 *)ptr; 472 473 *be16ptr++ = 0; 474 /* "inner" token header always uses 0 for RRC */ 475 *be16ptr++ = 0; 476 477 be64ptr = (__be64 *)be16ptr; 478 *be64ptr = cpu_to_be64(atomic64_fetch_inc(&kctx->seq_send64)); 479 480 err = (*kctx->gk5e->encrypt_v2)(kctx, offset, buf, pages); 481 if (err) 482 return err; 483 484 now = get_seconds(); 485 return (kctx->endtime < now) ? GSS_S_CONTEXT_EXPIRED : GSS_S_COMPLETE; 486 } 487 488 static u32 489 gss_unwrap_kerberos_v2(struct krb5_ctx *kctx, int offset, struct xdr_buf *buf) 490 { 491 s32 now; 492 u8 *ptr; 493 u8 flags = 0x00; 494 u16 ec, rrc; 495 int err; 496 u32 headskip, tailskip; 497 u8 decrypted_hdr[GSS_KRB5_TOK_HDR_LEN]; 498 unsigned int movelen; 499 500 501 dprintk("RPC: %s\n", __func__); 502 503 if (kctx->gk5e->decrypt_v2 == NULL) 504 return GSS_S_FAILURE; 505 506 ptr = buf->head[0].iov_base + offset; 507 508 if (be16_to_cpu(*((__be16 *)ptr)) != KG2_TOK_WRAP) 509 return GSS_S_DEFECTIVE_TOKEN; 510 511 flags = ptr[2]; 512 if ((!kctx->initiate && (flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR)) || 513 (kctx->initiate && !(flags & KG2_TOKEN_FLAG_SENTBYACCEPTOR))) 514 return GSS_S_BAD_SIG; 515 516 if ((flags & KG2_TOKEN_FLAG_SEALED) == 0) { 517 dprintk("%s: token missing expected sealed flag\n", __func__); 518 return GSS_S_DEFECTIVE_TOKEN; 519 } 520 521 if (ptr[3] != 0xff) 522 return GSS_S_DEFECTIVE_TOKEN; 523 524 ec = be16_to_cpup((__be16 *)(ptr + 4)); 525 rrc = be16_to_cpup((__be16 *)(ptr + 6)); 526 527 /* 528 * NOTE: the sequence number at ptr + 8 is skipped, rpcsec_gss 529 * doesn't want it checked; see page 6 of rfc 2203. 530 */ 531 532 if (rrc != 0) 533 rotate_left(offset + 16, buf, rrc); 534 535 err = (*kctx->gk5e->decrypt_v2)(kctx, offset, buf, 536 &headskip, &tailskip); 537 if (err) 538 return GSS_S_FAILURE; 539 540 /* 541 * Retrieve the decrypted gss token header and verify 542 * it against the original 543 */ 544 err = read_bytes_from_xdr_buf(buf, 545 buf->len - GSS_KRB5_TOK_HDR_LEN - tailskip, 546 decrypted_hdr, GSS_KRB5_TOK_HDR_LEN); 547 if (err) { 548 dprintk("%s: error %u getting decrypted_hdr\n", __func__, err); 549 return GSS_S_FAILURE; 550 } 551 if (memcmp(ptr, decrypted_hdr, 6) 552 || memcmp(ptr + 8, decrypted_hdr + 8, 8)) { 553 dprintk("%s: token hdr, plaintext hdr mismatch!\n", __func__); 554 return GSS_S_FAILURE; 555 } 556 557 /* do sequencing checks */ 558 559 /* it got through unscathed. Make sure the context is unexpired */ 560 now = get_seconds(); 561 if (now > kctx->endtime) 562 return GSS_S_CONTEXT_EXPIRED; 563 564 /* 565 * Move the head data back to the right position in xdr_buf. 566 * We ignore any "ec" data since it might be in the head or 567 * the tail, and we really don't need to deal with it. 568 * Note that buf->head[0].iov_len may indicate the available 569 * head buffer space rather than that actually occupied. 570 */ 571 movelen = min_t(unsigned int, buf->head[0].iov_len, buf->len); 572 movelen -= offset + GSS_KRB5_TOK_HDR_LEN + headskip; 573 if (offset + GSS_KRB5_TOK_HDR_LEN + headskip + movelen > 574 buf->head[0].iov_len) 575 return GSS_S_FAILURE; 576 memmove(ptr, ptr + GSS_KRB5_TOK_HDR_LEN + headskip, movelen); 577 buf->head[0].iov_len -= GSS_KRB5_TOK_HDR_LEN + headskip; 578 buf->len -= GSS_KRB5_TOK_HDR_LEN + headskip; 579 580 /* Trim off the trailing "extra count" and checksum blob */ 581 buf->len -= ec + GSS_KRB5_TOK_HDR_LEN + tailskip; 582 583 return GSS_S_COMPLETE; 584 } 585 586 u32 587 gss_wrap_kerberos(struct gss_ctx *gctx, int offset, 588 struct xdr_buf *buf, struct page **pages) 589 { 590 struct krb5_ctx *kctx = gctx->internal_ctx_id; 591 592 switch (kctx->enctype) { 593 default: 594 BUG(); 595 case ENCTYPE_DES_CBC_RAW: 596 case ENCTYPE_DES3_CBC_RAW: 597 case ENCTYPE_ARCFOUR_HMAC: 598 return gss_wrap_kerberos_v1(kctx, offset, buf, pages); 599 case ENCTYPE_AES128_CTS_HMAC_SHA1_96: 600 case ENCTYPE_AES256_CTS_HMAC_SHA1_96: 601 return gss_wrap_kerberos_v2(kctx, offset, buf, pages); 602 } 603 } 604 605 u32 606 gss_unwrap_kerberos(struct gss_ctx *gctx, int offset, struct xdr_buf *buf) 607 { 608 struct krb5_ctx *kctx = gctx->internal_ctx_id; 609 610 switch (kctx->enctype) { 611 default: 612 BUG(); 613 case ENCTYPE_DES_CBC_RAW: 614 case ENCTYPE_DES3_CBC_RAW: 615 case ENCTYPE_ARCFOUR_HMAC: 616 return gss_unwrap_kerberos_v1(kctx, offset, buf); 617 case ENCTYPE_AES128_CTS_HMAC_SHA1_96: 618 case ENCTYPE_AES256_CTS_HMAC_SHA1_96: 619 return gss_unwrap_kerberos_v2(kctx, offset, buf); 620 } 621 } 622