1 /* 2 * linux/net/sunrpc/gss_krb5_crypto.c 3 * 4 * Copyright (c) 2000-2008 The Regents of the University of Michigan. 5 * All rights reserved. 6 * 7 * Andy Adamson <andros@umich.edu> 8 * Bruce Fields <bfields@umich.edu> 9 */ 10 11 /* 12 * Copyright (C) 1998 by the FundsXpress, INC. 13 * 14 * All rights reserved. 15 * 16 * Export of this software from the United States of America may require 17 * a specific license from the United States Government. It is the 18 * responsibility of any person or organization contemplating export to 19 * obtain such a license before exporting. 20 * 21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and 22 * distribute this software and its documentation for any purpose and 23 * without fee is hereby granted, provided that the above copyright 24 * notice appear in all copies and that both that copyright notice and 25 * this permission notice appear in supporting documentation, and that 26 * the name of FundsXpress. not be used in advertising or publicity pertaining 27 * to distribution of the software without specific, written prior 28 * permission. FundsXpress makes no representations about the suitability of 29 * this software for any purpose. It is provided "as is" without express 30 * or implied warranty. 31 * 32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. 35 */ 36 37 #include <crypto/hash.h> 38 #include <crypto/skcipher.h> 39 #include <crypto/utils.h> 40 #include <linux/err.h> 41 #include <linux/types.h> 42 #include <linux/mm.h> 43 #include <linux/scatterlist.h> 44 #include <linux/highmem.h> 45 #include <linux/pagemap.h> 46 #include <linux/random.h> 47 #include <linux/sunrpc/gss_krb5.h> 48 #include <linux/sunrpc/xdr.h> 49 #include <kunit/visibility.h> 50 51 #include "gss_krb5_internal.h" 52 53 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 54 # define RPCDBG_FACILITY RPCDBG_AUTH 55 #endif 56 57 /** 58 * krb5_make_confounder - Generate a confounder string 59 * @p: memory location into which to write the string 60 * @conflen: string length to write, in octets 61 * 62 * RFCs 1964 and 3961 mention only "a random confounder" without going 63 * into detail about its function or cryptographic requirements. The 64 * assumed purpose is to prevent repeated encryption of a plaintext with 65 * the same key from generating the same ciphertext. It is also used to 66 * pad minimum plaintext length to at least a single cipher block. 67 * 68 * However, in situations like the GSS Kerberos 5 mechanism, where the 69 * encryption IV is always all zeroes, the confounder also effectively 70 * functions like an IV. Thus, not only must it be unique from message 71 * to message, but it must also be difficult to predict. Otherwise an 72 * attacker can correlate the confounder to previous or future values, 73 * making the encryption easier to break. 74 * 75 * Given that the primary consumer of this encryption mechanism is a 76 * network storage protocol, a type of traffic that often carries 77 * predictable payloads (eg, all zeroes when reading unallocated blocks 78 * from a file), our confounder generation has to be cryptographically 79 * strong. 80 */ 81 void krb5_make_confounder(u8 *p, int conflen) 82 { 83 get_random_bytes(p, conflen); 84 } 85 86 /** 87 * krb5_encrypt - simple encryption of an RPCSEC GSS payload 88 * @tfm: initialized cipher transform 89 * @iv: pointer to an IV 90 * @in: plaintext to encrypt 91 * @out: OUT: ciphertext 92 * @length: length of input and output buffers, in bytes 93 * 94 * @iv may be NULL to force the use of an all-zero IV. 95 * The buffer containing the IV must be as large as the 96 * cipher's ivsize. 97 * 98 * Return values: 99 * %0: @in successfully encrypted into @out 100 * negative errno: @in not encrypted 101 */ 102 u32 103 krb5_encrypt( 104 struct crypto_sync_skcipher *tfm, 105 void * iv, 106 void * in, 107 void * out, 108 int length) 109 { 110 u32 ret = -EINVAL; 111 struct scatterlist sg[1]; 112 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0}; 113 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); 114 115 if (length % crypto_sync_skcipher_blocksize(tfm) != 0) 116 goto out; 117 118 if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) { 119 dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n", 120 crypto_sync_skcipher_ivsize(tfm)); 121 goto out; 122 } 123 124 if (iv) 125 memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm)); 126 127 memcpy(out, in, length); 128 sg_init_one(sg, out, length); 129 130 skcipher_request_set_sync_tfm(req, tfm); 131 skcipher_request_set_callback(req, 0, NULL, NULL); 132 skcipher_request_set_crypt(req, sg, sg, length, local_iv); 133 134 ret = crypto_skcipher_encrypt(req); 135 skcipher_request_zero(req); 136 out: 137 dprintk("RPC: krb5_encrypt returns %d\n", ret); 138 return ret; 139 } 140 141 /** 142 * krb5_decrypt - simple decryption of an RPCSEC GSS payload 143 * @tfm: initialized cipher transform 144 * @iv: pointer to an IV 145 * @in: ciphertext to decrypt 146 * @out: OUT: plaintext 147 * @length: length of input and output buffers, in bytes 148 * 149 * @iv may be NULL to force the use of an all-zero IV. 150 * The buffer containing the IV must be as large as the 151 * cipher's ivsize. 152 * 153 * Return values: 154 * %0: @in successfully decrypted into @out 155 * negative errno: @in not decrypted 156 */ 157 u32 158 krb5_decrypt( 159 struct crypto_sync_skcipher *tfm, 160 void * iv, 161 void * in, 162 void * out, 163 int length) 164 { 165 u32 ret = -EINVAL; 166 struct scatterlist sg[1]; 167 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0}; 168 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); 169 170 if (length % crypto_sync_skcipher_blocksize(tfm) != 0) 171 goto out; 172 173 if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) { 174 dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n", 175 crypto_sync_skcipher_ivsize(tfm)); 176 goto out; 177 } 178 if (iv) 179 memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm)); 180 181 memcpy(out, in, length); 182 sg_init_one(sg, out, length); 183 184 skcipher_request_set_sync_tfm(req, tfm); 185 skcipher_request_set_callback(req, 0, NULL, NULL); 186 skcipher_request_set_crypt(req, sg, sg, length, local_iv); 187 188 ret = crypto_skcipher_decrypt(req); 189 skcipher_request_zero(req); 190 out: 191 dprintk("RPC: gss_k5decrypt returns %d\n",ret); 192 return ret; 193 } 194 195 static int 196 checksummer(struct scatterlist *sg, void *data) 197 { 198 struct ahash_request *req = data; 199 200 ahash_request_set_crypt(req, sg, NULL, sg->length); 201 202 return crypto_ahash_update(req); 203 } 204 205 /* 206 * checksum the plaintext data and hdrlen bytes of the token header 207 * The checksum is performed over the first 8 bytes of the 208 * gss token header and then over the data body 209 */ 210 u32 211 make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen, 212 struct xdr_buf *body, int body_offset, u8 *cksumkey, 213 unsigned int usage, struct xdr_netobj *cksumout) 214 { 215 struct crypto_ahash *tfm; 216 struct ahash_request *req; 217 struct scatterlist sg[1]; 218 int err = -1; 219 u8 *checksumdata; 220 unsigned int checksumlen; 221 222 if (cksumout->len < kctx->gk5e->cksumlength) { 223 dprintk("%s: checksum buffer length, %u, too small for %s\n", 224 __func__, cksumout->len, kctx->gk5e->name); 225 return GSS_S_FAILURE; 226 } 227 228 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_KERNEL); 229 if (checksumdata == NULL) 230 return GSS_S_FAILURE; 231 232 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC); 233 if (IS_ERR(tfm)) 234 goto out_free_cksum; 235 236 req = ahash_request_alloc(tfm, GFP_KERNEL); 237 if (!req) 238 goto out_free_ahash; 239 240 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); 241 242 checksumlen = crypto_ahash_digestsize(tfm); 243 244 if (cksumkey != NULL) { 245 err = crypto_ahash_setkey(tfm, cksumkey, 246 kctx->gk5e->keylength); 247 if (err) 248 goto out; 249 } 250 251 err = crypto_ahash_init(req); 252 if (err) 253 goto out; 254 sg_init_one(sg, header, hdrlen); 255 ahash_request_set_crypt(req, sg, NULL, hdrlen); 256 err = crypto_ahash_update(req); 257 if (err) 258 goto out; 259 err = xdr_process_buf(body, body_offset, body->len - body_offset, 260 checksummer, req); 261 if (err) 262 goto out; 263 ahash_request_set_crypt(req, NULL, checksumdata, 0); 264 err = crypto_ahash_final(req); 265 if (err) 266 goto out; 267 268 switch (kctx->gk5e->ctype) { 269 case CKSUMTYPE_RSA_MD5: 270 err = krb5_encrypt(kctx->seq, NULL, checksumdata, 271 checksumdata, checksumlen); 272 if (err) 273 goto out; 274 memcpy(cksumout->data, 275 checksumdata + checksumlen - kctx->gk5e->cksumlength, 276 kctx->gk5e->cksumlength); 277 break; 278 case CKSUMTYPE_HMAC_SHA1_DES3: 279 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength); 280 break; 281 default: 282 BUG(); 283 break; 284 } 285 cksumout->len = kctx->gk5e->cksumlength; 286 out: 287 ahash_request_free(req); 288 out_free_ahash: 289 crypto_free_ahash(tfm); 290 out_free_cksum: 291 kfree(checksumdata); 292 return err ? GSS_S_FAILURE : 0; 293 } 294 295 /** 296 * gss_krb5_checksum - Compute the MAC for a GSS Wrap or MIC token 297 * @tfm: an initialized hash transform 298 * @header: pointer to a buffer containing the token header, or NULL 299 * @hdrlen: number of octets in @header 300 * @body: xdr_buf containing an RPC message (body.len is the message length) 301 * @body_offset: byte offset into @body to start checksumming 302 * @cksumout: OUT: a buffer to be filled in with the computed HMAC 303 * 304 * Usually expressed as H = HMAC(K, message)[1..h] . 305 * 306 * Caller provides the truncation length of the output token (h) in 307 * cksumout.len. 308 * 309 * Return values: 310 * %GSS_S_COMPLETE: Digest computed, @cksumout filled in 311 * %GSS_S_FAILURE: Call failed 312 */ 313 u32 314 gss_krb5_checksum(struct crypto_ahash *tfm, char *header, int hdrlen, 315 const struct xdr_buf *body, int body_offset, 316 struct xdr_netobj *cksumout) 317 { 318 struct ahash_request *req; 319 int err = -ENOMEM; 320 u8 *checksumdata; 321 322 checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL); 323 if (!checksumdata) 324 return GSS_S_FAILURE; 325 326 req = ahash_request_alloc(tfm, GFP_KERNEL); 327 if (!req) 328 goto out_free_cksum; 329 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); 330 err = crypto_ahash_init(req); 331 if (err) 332 goto out_free_ahash; 333 334 /* 335 * Per RFC 4121 Section 4.2.4, the checksum is performed over the 336 * data body first, then over the octets in "header". 337 */ 338 err = xdr_process_buf(body, body_offset, body->len - body_offset, 339 checksummer, req); 340 if (err) 341 goto out_free_ahash; 342 if (header) { 343 struct scatterlist sg[1]; 344 345 sg_init_one(sg, header, hdrlen); 346 ahash_request_set_crypt(req, sg, NULL, hdrlen); 347 err = crypto_ahash_update(req); 348 if (err) 349 goto out_free_ahash; 350 } 351 352 ahash_request_set_crypt(req, NULL, checksumdata, 0); 353 err = crypto_ahash_final(req); 354 if (err) 355 goto out_free_ahash; 356 357 memcpy(cksumout->data, checksumdata, 358 min_t(int, cksumout->len, crypto_ahash_digestsize(tfm))); 359 360 out_free_ahash: 361 ahash_request_free(req); 362 out_free_cksum: 363 kfree_sensitive(checksumdata); 364 return err ? GSS_S_FAILURE : GSS_S_COMPLETE; 365 } 366 EXPORT_SYMBOL_IF_KUNIT(gss_krb5_checksum); 367 368 struct encryptor_desc { 369 u8 iv[GSS_KRB5_MAX_BLOCKSIZE]; 370 struct skcipher_request *req; 371 int pos; 372 struct xdr_buf *outbuf; 373 struct page **pages; 374 struct scatterlist infrags[4]; 375 struct scatterlist outfrags[4]; 376 int fragno; 377 int fraglen; 378 }; 379 380 static int 381 encryptor(struct scatterlist *sg, void *data) 382 { 383 struct encryptor_desc *desc = data; 384 struct xdr_buf *outbuf = desc->outbuf; 385 struct crypto_sync_skcipher *tfm = 386 crypto_sync_skcipher_reqtfm(desc->req); 387 struct page *in_page; 388 int thislen = desc->fraglen + sg->length; 389 int fraglen, ret; 390 int page_pos; 391 392 /* Worst case is 4 fragments: head, end of page 1, start 393 * of page 2, tail. Anything more is a bug. */ 394 BUG_ON(desc->fragno > 3); 395 396 page_pos = desc->pos - outbuf->head[0].iov_len; 397 if (page_pos >= 0 && page_pos < outbuf->page_len) { 398 /* pages are not in place: */ 399 int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT; 400 in_page = desc->pages[i]; 401 } else { 402 in_page = sg_page(sg); 403 } 404 sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length, 405 sg->offset); 406 sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length, 407 sg->offset); 408 desc->fragno++; 409 desc->fraglen += sg->length; 410 desc->pos += sg->length; 411 412 fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1); 413 thislen -= fraglen; 414 415 if (thislen == 0) 416 return 0; 417 418 sg_mark_end(&desc->infrags[desc->fragno - 1]); 419 sg_mark_end(&desc->outfrags[desc->fragno - 1]); 420 421 skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags, 422 thislen, desc->iv); 423 424 ret = crypto_skcipher_encrypt(desc->req); 425 if (ret) 426 return ret; 427 428 sg_init_table(desc->infrags, 4); 429 sg_init_table(desc->outfrags, 4); 430 431 if (fraglen) { 432 sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen, 433 sg->offset + sg->length - fraglen); 434 desc->infrags[0] = desc->outfrags[0]; 435 sg_assign_page(&desc->infrags[0], in_page); 436 desc->fragno = 1; 437 desc->fraglen = fraglen; 438 } else { 439 desc->fragno = 0; 440 desc->fraglen = 0; 441 } 442 return 0; 443 } 444 445 int 446 gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf, 447 int offset, struct page **pages) 448 { 449 int ret; 450 struct encryptor_desc desc; 451 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); 452 453 BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0); 454 455 skcipher_request_set_sync_tfm(req, tfm); 456 skcipher_request_set_callback(req, 0, NULL, NULL); 457 458 memset(desc.iv, 0, sizeof(desc.iv)); 459 desc.req = req; 460 desc.pos = offset; 461 desc.outbuf = buf; 462 desc.pages = pages; 463 desc.fragno = 0; 464 desc.fraglen = 0; 465 466 sg_init_table(desc.infrags, 4); 467 sg_init_table(desc.outfrags, 4); 468 469 ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc); 470 skcipher_request_zero(req); 471 return ret; 472 } 473 474 struct decryptor_desc { 475 u8 iv[GSS_KRB5_MAX_BLOCKSIZE]; 476 struct skcipher_request *req; 477 struct scatterlist frags[4]; 478 int fragno; 479 int fraglen; 480 }; 481 482 static int 483 decryptor(struct scatterlist *sg, void *data) 484 { 485 struct decryptor_desc *desc = data; 486 int thislen = desc->fraglen + sg->length; 487 struct crypto_sync_skcipher *tfm = 488 crypto_sync_skcipher_reqtfm(desc->req); 489 int fraglen, ret; 490 491 /* Worst case is 4 fragments: head, end of page 1, start 492 * of page 2, tail. Anything more is a bug. */ 493 BUG_ON(desc->fragno > 3); 494 sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length, 495 sg->offset); 496 desc->fragno++; 497 desc->fraglen += sg->length; 498 499 fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1); 500 thislen -= fraglen; 501 502 if (thislen == 0) 503 return 0; 504 505 sg_mark_end(&desc->frags[desc->fragno - 1]); 506 507 skcipher_request_set_crypt(desc->req, desc->frags, desc->frags, 508 thislen, desc->iv); 509 510 ret = crypto_skcipher_decrypt(desc->req); 511 if (ret) 512 return ret; 513 514 sg_init_table(desc->frags, 4); 515 516 if (fraglen) { 517 sg_set_page(&desc->frags[0], sg_page(sg), fraglen, 518 sg->offset + sg->length - fraglen); 519 desc->fragno = 1; 520 desc->fraglen = fraglen; 521 } else { 522 desc->fragno = 0; 523 desc->fraglen = 0; 524 } 525 return 0; 526 } 527 528 int 529 gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf, 530 int offset) 531 { 532 int ret; 533 struct decryptor_desc desc; 534 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); 535 536 /* XXXJBF: */ 537 BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0); 538 539 skcipher_request_set_sync_tfm(req, tfm); 540 skcipher_request_set_callback(req, 0, NULL, NULL); 541 542 memset(desc.iv, 0, sizeof(desc.iv)); 543 desc.req = req; 544 desc.fragno = 0; 545 desc.fraglen = 0; 546 547 sg_init_table(desc.frags, 4); 548 549 ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc); 550 skcipher_request_zero(req); 551 return ret; 552 } 553 554 /* 555 * This function makes the assumption that it was ultimately called 556 * from gss_wrap(). 557 * 558 * The client auth_gss code moves any existing tail data into a 559 * separate page before calling gss_wrap. 560 * The server svcauth_gss code ensures that both the head and the 561 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap. 562 * 563 * Even with that guarantee, this function may be called more than 564 * once in the processing of gss_wrap(). The best we can do is 565 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the 566 * largest expected shift will fit within RPC_MAX_AUTH_SIZE. 567 * At run-time we can verify that a single invocation of this 568 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE. 569 */ 570 571 int 572 xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen) 573 { 574 u8 *p; 575 576 if (shiftlen == 0) 577 return 0; 578 579 BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE); 580 581 p = buf->head[0].iov_base + base; 582 583 memmove(p + shiftlen, p, buf->head[0].iov_len - base); 584 585 buf->head[0].iov_len += shiftlen; 586 buf->len += shiftlen; 587 588 return 0; 589 } 590 591 static u32 592 gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf, 593 u32 offset, u8 *iv, struct page **pages, int encrypt) 594 { 595 u32 ret; 596 struct scatterlist sg[1]; 597 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher); 598 u8 *data; 599 struct page **save_pages; 600 u32 len = buf->len - offset; 601 602 if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) { 603 WARN_ON(0); 604 return -ENOMEM; 605 } 606 data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_KERNEL); 607 if (!data) 608 return -ENOMEM; 609 610 /* 611 * For encryption, we want to read from the cleartext 612 * page cache pages, and write the encrypted data to 613 * the supplied xdr_buf pages. 614 */ 615 save_pages = buf->pages; 616 if (encrypt) 617 buf->pages = pages; 618 619 ret = read_bytes_from_xdr_buf(buf, offset, data, len); 620 buf->pages = save_pages; 621 if (ret) 622 goto out; 623 624 sg_init_one(sg, data, len); 625 626 skcipher_request_set_sync_tfm(req, cipher); 627 skcipher_request_set_callback(req, 0, NULL, NULL); 628 skcipher_request_set_crypt(req, sg, sg, len, iv); 629 630 if (encrypt) 631 ret = crypto_skcipher_encrypt(req); 632 else 633 ret = crypto_skcipher_decrypt(req); 634 635 skcipher_request_zero(req); 636 637 if (ret) 638 goto out; 639 640 ret = write_bytes_to_xdr_buf(buf, offset, data, len); 641 642 #if IS_ENABLED(CONFIG_KUNIT) 643 /* 644 * CBC-CTS does not define an output IV but RFC 3962 defines it as the 645 * penultimate block of ciphertext, so copy that into the IV buffer 646 * before returning. 647 */ 648 if (encrypt) 649 memcpy(iv, data, crypto_sync_skcipher_ivsize(cipher)); 650 #endif 651 652 out: 653 kfree(data); 654 return ret; 655 } 656 657 /** 658 * krb5_cbc_cts_encrypt - encrypt in CBC mode with CTS 659 * @cts_tfm: CBC cipher with CTS 660 * @cbc_tfm: base CBC cipher 661 * @offset: starting byte offset for plaintext 662 * @buf: OUT: output buffer 663 * @pages: plaintext 664 * @iv: output CBC initialization vector, or NULL 665 * @ivsize: size of @iv, in octets 666 * 667 * To provide confidentiality, encrypt using cipher block chaining 668 * with ciphertext stealing. Message integrity is handled separately. 669 * 670 * Return values: 671 * %0: encryption successful 672 * negative errno: encryption could not be completed 673 */ 674 VISIBLE_IF_KUNIT 675 int krb5_cbc_cts_encrypt(struct crypto_sync_skcipher *cts_tfm, 676 struct crypto_sync_skcipher *cbc_tfm, 677 u32 offset, struct xdr_buf *buf, struct page **pages, 678 u8 *iv, unsigned int ivsize) 679 { 680 u32 blocksize, nbytes, nblocks, cbcbytes; 681 struct encryptor_desc desc; 682 int err; 683 684 blocksize = crypto_sync_skcipher_blocksize(cts_tfm); 685 nbytes = buf->len - offset; 686 nblocks = (nbytes + blocksize - 1) / blocksize; 687 cbcbytes = 0; 688 if (nblocks > 2) 689 cbcbytes = (nblocks - 2) * blocksize; 690 691 memset(desc.iv, 0, sizeof(desc.iv)); 692 693 /* Handle block-sized chunks of plaintext with CBC. */ 694 if (cbcbytes) { 695 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm); 696 697 desc.pos = offset; 698 desc.fragno = 0; 699 desc.fraglen = 0; 700 desc.pages = pages; 701 desc.outbuf = buf; 702 desc.req = req; 703 704 skcipher_request_set_sync_tfm(req, cbc_tfm); 705 skcipher_request_set_callback(req, 0, NULL, NULL); 706 707 sg_init_table(desc.infrags, 4); 708 sg_init_table(desc.outfrags, 4); 709 710 err = xdr_process_buf(buf, offset, cbcbytes, encryptor, &desc); 711 skcipher_request_zero(req); 712 if (err) 713 return err; 714 } 715 716 /* Remaining plaintext is handled with CBC-CTS. */ 717 err = gss_krb5_cts_crypt(cts_tfm, buf, offset + cbcbytes, 718 desc.iv, pages, 1); 719 if (err) 720 return err; 721 722 if (unlikely(iv)) 723 memcpy(iv, desc.iv, ivsize); 724 return 0; 725 } 726 EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_encrypt); 727 728 /** 729 * krb5_cbc_cts_decrypt - decrypt in CBC mode with CTS 730 * @cts_tfm: CBC cipher with CTS 731 * @cbc_tfm: base CBC cipher 732 * @offset: starting byte offset for plaintext 733 * @buf: OUT: output buffer 734 * 735 * Return values: 736 * %0: decryption successful 737 * negative errno: decryption could not be completed 738 */ 739 VISIBLE_IF_KUNIT 740 int krb5_cbc_cts_decrypt(struct crypto_sync_skcipher *cts_tfm, 741 struct crypto_sync_skcipher *cbc_tfm, 742 u32 offset, struct xdr_buf *buf) 743 { 744 u32 blocksize, nblocks, cbcbytes; 745 struct decryptor_desc desc; 746 int err; 747 748 blocksize = crypto_sync_skcipher_blocksize(cts_tfm); 749 nblocks = (buf->len + blocksize - 1) / blocksize; 750 cbcbytes = 0; 751 if (nblocks > 2) 752 cbcbytes = (nblocks - 2) * blocksize; 753 754 memset(desc.iv, 0, sizeof(desc.iv)); 755 756 /* Handle block-sized chunks of plaintext with CBC. */ 757 if (cbcbytes) { 758 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm); 759 760 desc.fragno = 0; 761 desc.fraglen = 0; 762 desc.req = req; 763 764 skcipher_request_set_sync_tfm(req, cbc_tfm); 765 skcipher_request_set_callback(req, 0, NULL, NULL); 766 767 sg_init_table(desc.frags, 4); 768 769 err = xdr_process_buf(buf, 0, cbcbytes, decryptor, &desc); 770 skcipher_request_zero(req); 771 if (err) 772 return err; 773 } 774 775 /* Remaining plaintext is handled with CBC-CTS. */ 776 return gss_krb5_cts_crypt(cts_tfm, buf, cbcbytes, desc.iv, NULL, 0); 777 } 778 EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_decrypt); 779 780 u32 781 gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset, 782 struct xdr_buf *buf, struct page **pages) 783 { 784 u32 err; 785 struct xdr_netobj hmac; 786 u8 *ecptr; 787 struct crypto_sync_skcipher *cipher, *aux_cipher; 788 struct crypto_ahash *ahash; 789 struct page **save_pages; 790 unsigned int conflen; 791 792 if (kctx->initiate) { 793 cipher = kctx->initiator_enc; 794 aux_cipher = kctx->initiator_enc_aux; 795 ahash = kctx->initiator_integ; 796 } else { 797 cipher = kctx->acceptor_enc; 798 aux_cipher = kctx->acceptor_enc_aux; 799 ahash = kctx->acceptor_integ; 800 } 801 conflen = crypto_sync_skcipher_blocksize(cipher); 802 803 /* hide the gss token header and insert the confounder */ 804 offset += GSS_KRB5_TOK_HDR_LEN; 805 if (xdr_extend_head(buf, offset, conflen)) 806 return GSS_S_FAILURE; 807 krb5_make_confounder(buf->head[0].iov_base + offset, conflen); 808 offset -= GSS_KRB5_TOK_HDR_LEN; 809 810 if (buf->tail[0].iov_base != NULL) { 811 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len; 812 } else { 813 buf->tail[0].iov_base = buf->head[0].iov_base 814 + buf->head[0].iov_len; 815 buf->tail[0].iov_len = 0; 816 ecptr = buf->tail[0].iov_base; 817 } 818 819 /* copy plaintext gss token header after filler (if any) */ 820 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN); 821 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN; 822 buf->len += GSS_KRB5_TOK_HDR_LEN; 823 824 hmac.len = kctx->gk5e->cksumlength; 825 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len; 826 827 /* 828 * When we are called, pages points to the real page cache 829 * data -- which we can't go and encrypt! buf->pages points 830 * to scratch pages which we are going to send off to the 831 * client/server. Swap in the plaintext pages to calculate 832 * the hmac. 833 */ 834 save_pages = buf->pages; 835 buf->pages = pages; 836 837 err = gss_krb5_checksum(ahash, NULL, 0, buf, 838 offset + GSS_KRB5_TOK_HDR_LEN, &hmac); 839 buf->pages = save_pages; 840 if (err) 841 return GSS_S_FAILURE; 842 843 err = krb5_cbc_cts_encrypt(cipher, aux_cipher, 844 offset + GSS_KRB5_TOK_HDR_LEN, 845 buf, pages, NULL, 0); 846 if (err) 847 return GSS_S_FAILURE; 848 849 /* Now update buf to account for HMAC */ 850 buf->tail[0].iov_len += kctx->gk5e->cksumlength; 851 buf->len += kctx->gk5e->cksumlength; 852 853 return GSS_S_COMPLETE; 854 } 855 856 u32 857 gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len, 858 struct xdr_buf *buf, u32 *headskip, u32 *tailskip) 859 { 860 struct crypto_sync_skcipher *cipher, *aux_cipher; 861 struct crypto_ahash *ahash; 862 struct xdr_netobj our_hmac_obj; 863 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN]; 864 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN]; 865 struct xdr_buf subbuf; 866 u32 ret = 0; 867 868 if (kctx->initiate) { 869 cipher = kctx->acceptor_enc; 870 aux_cipher = kctx->acceptor_enc_aux; 871 ahash = kctx->acceptor_integ; 872 } else { 873 cipher = kctx->initiator_enc; 874 aux_cipher = kctx->initiator_enc_aux; 875 ahash = kctx->initiator_integ; 876 } 877 878 /* create a segment skipping the header and leaving out the checksum */ 879 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN, 880 (len - offset - GSS_KRB5_TOK_HDR_LEN - 881 kctx->gk5e->cksumlength)); 882 883 ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf); 884 if (ret) 885 goto out_err; 886 887 our_hmac_obj.len = kctx->gk5e->cksumlength; 888 our_hmac_obj.data = our_hmac; 889 ret = gss_krb5_checksum(ahash, NULL, 0, &subbuf, 0, &our_hmac_obj); 890 if (ret) 891 goto out_err; 892 893 /* Get the packet's hmac value */ 894 ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength, 895 pkt_hmac, kctx->gk5e->cksumlength); 896 if (ret) 897 goto out_err; 898 899 if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) { 900 ret = GSS_S_BAD_SIG; 901 goto out_err; 902 } 903 *headskip = crypto_sync_skcipher_blocksize(cipher); 904 *tailskip = kctx->gk5e->cksumlength; 905 out_err: 906 if (ret && ret != GSS_S_BAD_SIG) 907 ret = GSS_S_FAILURE; 908 return ret; 909 } 910 911 /** 912 * krb5_etm_checksum - Compute a MAC for a GSS Wrap token 913 * @cipher: an initialized cipher transform 914 * @tfm: an initialized hash transform 915 * @body: xdr_buf containing an RPC message (body.len is the message length) 916 * @body_offset: byte offset into @body to start checksumming 917 * @cksumout: OUT: a buffer to be filled in with the computed HMAC 918 * 919 * Usually expressed as H = HMAC(K, IV | ciphertext)[1..h] . 920 * 921 * Caller provides the truncation length of the output token (h) in 922 * cksumout.len. 923 * 924 * Note that for RPCSEC, the "initial cipher state" is always all zeroes. 925 * 926 * Return values: 927 * %GSS_S_COMPLETE: Digest computed, @cksumout filled in 928 * %GSS_S_FAILURE: Call failed 929 */ 930 VISIBLE_IF_KUNIT 931 u32 krb5_etm_checksum(struct crypto_sync_skcipher *cipher, 932 struct crypto_ahash *tfm, const struct xdr_buf *body, 933 int body_offset, struct xdr_netobj *cksumout) 934 { 935 unsigned int ivsize = crypto_sync_skcipher_ivsize(cipher); 936 static const u8 iv[GSS_KRB5_MAX_BLOCKSIZE]; 937 struct ahash_request *req; 938 struct scatterlist sg[1]; 939 int err = -ENOMEM; 940 u8 *checksumdata; 941 942 checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL); 943 if (!checksumdata) 944 return GSS_S_FAILURE; 945 946 req = ahash_request_alloc(tfm, GFP_KERNEL); 947 if (!req) 948 goto out_free_cksumdata; 949 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); 950 err = crypto_ahash_init(req); 951 if (err) 952 goto out_free_ahash; 953 954 sg_init_one(sg, iv, ivsize); 955 ahash_request_set_crypt(req, sg, NULL, ivsize); 956 err = crypto_ahash_update(req); 957 if (err) 958 goto out_free_ahash; 959 err = xdr_process_buf(body, body_offset, body->len - body_offset, 960 checksummer, req); 961 if (err) 962 goto out_free_ahash; 963 964 ahash_request_set_crypt(req, NULL, checksumdata, 0); 965 err = crypto_ahash_final(req); 966 if (err) 967 goto out_free_ahash; 968 memcpy(cksumout->data, checksumdata, cksumout->len); 969 970 out_free_ahash: 971 ahash_request_free(req); 972 out_free_cksumdata: 973 kfree_sensitive(checksumdata); 974 return err ? GSS_S_FAILURE : GSS_S_COMPLETE; 975 } 976 EXPORT_SYMBOL_IF_KUNIT(krb5_etm_checksum); 977 978 /** 979 * krb5_etm_encrypt - Encrypt using the RFC 8009 rules 980 * @kctx: Kerberos context 981 * @offset: starting offset of the payload, in bytes 982 * @buf: OUT: send buffer to contain the encrypted payload 983 * @pages: plaintext payload 984 * 985 * The main difference with aes_encrypt is that "The HMAC is 986 * calculated over the cipher state concatenated with the AES 987 * output, instead of being calculated over the confounder and 988 * plaintext. This allows the message receiver to verify the 989 * integrity of the message before decrypting the message." 990 * 991 * RFC 8009 Section 5: 992 * 993 * encryption function: as follows, where E() is AES encryption in 994 * CBC-CS3 mode, and h is the size of truncated HMAC (128 bits or 995 * 192 bits as described above). 996 * 997 * N = random value of length 128 bits (the AES block size) 998 * IV = cipher state 999 * C = E(Ke, N | plaintext, IV) 1000 * H = HMAC(Ki, IV | C) 1001 * ciphertext = C | H[1..h] 1002 * 1003 * This encryption formula provides AEAD EtM with key separation. 1004 * 1005 * Return values: 1006 * %GSS_S_COMPLETE: Encryption successful 1007 * %GSS_S_FAILURE: Encryption failed 1008 */ 1009 u32 1010 krb5_etm_encrypt(struct krb5_ctx *kctx, u32 offset, 1011 struct xdr_buf *buf, struct page **pages) 1012 { 1013 struct crypto_sync_skcipher *cipher, *aux_cipher; 1014 struct crypto_ahash *ahash; 1015 struct xdr_netobj hmac; 1016 unsigned int conflen; 1017 u8 *ecptr; 1018 u32 err; 1019 1020 if (kctx->initiate) { 1021 cipher = kctx->initiator_enc; 1022 aux_cipher = kctx->initiator_enc_aux; 1023 ahash = kctx->initiator_integ; 1024 } else { 1025 cipher = kctx->acceptor_enc; 1026 aux_cipher = kctx->acceptor_enc_aux; 1027 ahash = kctx->acceptor_integ; 1028 } 1029 conflen = crypto_sync_skcipher_blocksize(cipher); 1030 1031 offset += GSS_KRB5_TOK_HDR_LEN; 1032 if (xdr_extend_head(buf, offset, conflen)) 1033 return GSS_S_FAILURE; 1034 krb5_make_confounder(buf->head[0].iov_base + offset, conflen); 1035 offset -= GSS_KRB5_TOK_HDR_LEN; 1036 1037 if (buf->tail[0].iov_base) { 1038 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len; 1039 } else { 1040 buf->tail[0].iov_base = buf->head[0].iov_base 1041 + buf->head[0].iov_len; 1042 buf->tail[0].iov_len = 0; 1043 ecptr = buf->tail[0].iov_base; 1044 } 1045 1046 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN); 1047 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN; 1048 buf->len += GSS_KRB5_TOK_HDR_LEN; 1049 1050 err = krb5_cbc_cts_encrypt(cipher, aux_cipher, 1051 offset + GSS_KRB5_TOK_HDR_LEN, 1052 buf, pages, NULL, 0); 1053 if (err) 1054 return GSS_S_FAILURE; 1055 1056 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len; 1057 hmac.len = kctx->gk5e->cksumlength; 1058 err = krb5_etm_checksum(cipher, ahash, 1059 buf, offset + GSS_KRB5_TOK_HDR_LEN, &hmac); 1060 if (err) 1061 goto out_err; 1062 buf->tail[0].iov_len += kctx->gk5e->cksumlength; 1063 buf->len += kctx->gk5e->cksumlength; 1064 1065 return GSS_S_COMPLETE; 1066 1067 out_err: 1068 return GSS_S_FAILURE; 1069 } 1070 1071 /** 1072 * krb5_etm_decrypt - Decrypt using the RFC 8009 rules 1073 * @kctx: Kerberos context 1074 * @offset: starting offset of the ciphertext, in bytes 1075 * @len: 1076 * @buf: 1077 * @headskip: OUT: the enctype's confounder length, in octets 1078 * @tailskip: OUT: the enctype's HMAC length, in octets 1079 * 1080 * RFC 8009 Section 5: 1081 * 1082 * decryption function: as follows, where D() is AES decryption in 1083 * CBC-CS3 mode, and h is the size of truncated HMAC. 1084 * 1085 * (C, H) = ciphertext 1086 * (Note: H is the last h bits of the ciphertext.) 1087 * IV = cipher state 1088 * if H != HMAC(Ki, IV | C)[1..h] 1089 * stop, report error 1090 * (N, P) = D(Ke, C, IV) 1091 * 1092 * Return values: 1093 * %GSS_S_COMPLETE: Decryption successful 1094 * %GSS_S_BAD_SIG: computed HMAC != received HMAC 1095 * %GSS_S_FAILURE: Decryption failed 1096 */ 1097 u32 1098 krb5_etm_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len, 1099 struct xdr_buf *buf, u32 *headskip, u32 *tailskip) 1100 { 1101 struct crypto_sync_skcipher *cipher, *aux_cipher; 1102 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN]; 1103 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN]; 1104 struct xdr_netobj our_hmac_obj; 1105 struct crypto_ahash *ahash; 1106 struct xdr_buf subbuf; 1107 u32 ret = 0; 1108 1109 if (kctx->initiate) { 1110 cipher = kctx->acceptor_enc; 1111 aux_cipher = kctx->acceptor_enc_aux; 1112 ahash = kctx->acceptor_integ; 1113 } else { 1114 cipher = kctx->initiator_enc; 1115 aux_cipher = kctx->initiator_enc_aux; 1116 ahash = kctx->initiator_integ; 1117 } 1118 1119 /* Extract the ciphertext into @subbuf. */ 1120 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN, 1121 (len - offset - GSS_KRB5_TOK_HDR_LEN - 1122 kctx->gk5e->cksumlength)); 1123 1124 our_hmac_obj.data = our_hmac; 1125 our_hmac_obj.len = kctx->gk5e->cksumlength; 1126 ret = krb5_etm_checksum(cipher, ahash, &subbuf, 0, &our_hmac_obj); 1127 if (ret) 1128 goto out_err; 1129 ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength, 1130 pkt_hmac, kctx->gk5e->cksumlength); 1131 if (ret) 1132 goto out_err; 1133 if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) { 1134 ret = GSS_S_BAD_SIG; 1135 goto out_err; 1136 } 1137 1138 ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf); 1139 if (ret) { 1140 ret = GSS_S_FAILURE; 1141 goto out_err; 1142 } 1143 1144 *headskip = crypto_sync_skcipher_blocksize(cipher); 1145 *tailskip = kctx->gk5e->cksumlength; 1146 return GSS_S_COMPLETE; 1147 1148 out_err: 1149 if (ret != GSS_S_BAD_SIG) 1150 ret = GSS_S_FAILURE; 1151 return ret; 1152 } 1153