xref: /linux/net/sunrpc/auth_gss/gss_krb5_crypto.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  *  linux/net/sunrpc/gss_krb5_crypto.c
3  *
4  *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
5  *  All rights reserved.
6  *
7  *  Andy Adamson   <andros@umich.edu>
8  *  Bruce Fields   <bfields@umich.edu>
9  */
10 
11 /*
12  * Copyright (C) 1998 by the FundsXpress, INC.
13  *
14  * All rights reserved.
15  *
16  * Export of this software from the United States of America may require
17  * a specific license from the United States Government.  It is the
18  * responsibility of any person or organization contemplating export to
19  * obtain such a license before exporting.
20  *
21  * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22  * distribute this software and its documentation for any purpose and
23  * without fee is hereby granted, provided that the above copyright
24  * notice appear in all copies and that both that copyright notice and
25  * this permission notice appear in supporting documentation, and that
26  * the name of FundsXpress. not be used in advertising or publicity pertaining
27  * to distribution of the software without specific, written prior
28  * permission.  FundsXpress makes no representations about the suitability of
29  * this software for any purpose.  It is provided "as is" without express
30  * or implied warranty.
31  *
32  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
35  */
36 
37 #include <linux/err.h>
38 #include <linux/types.h>
39 #include <linux/mm.h>
40 #include <linux/scatterlist.h>
41 #include <linux/crypto.h>
42 #include <linux/highmem.h>
43 #include <linux/pagemap.h>
44 #include <linux/random.h>
45 #include <linux/sunrpc/gss_krb5.h>
46 #include <linux/sunrpc/xdr.h>
47 
48 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
49 # define RPCDBG_FACILITY        RPCDBG_AUTH
50 #endif
51 
52 u32
53 krb5_encrypt(
54 	struct crypto_blkcipher *tfm,
55 	void * iv,
56 	void * in,
57 	void * out,
58 	int length)
59 {
60 	u32 ret = -EINVAL;
61 	struct scatterlist sg[1];
62 	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
63 	struct blkcipher_desc desc = { .tfm = tfm, .info = local_iv };
64 
65 	if (length % crypto_blkcipher_blocksize(tfm) != 0)
66 		goto out;
67 
68 	if (crypto_blkcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
69 		dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
70 			crypto_blkcipher_ivsize(tfm));
71 		goto out;
72 	}
73 
74 	if (iv)
75 		memcpy(local_iv, iv, crypto_blkcipher_ivsize(tfm));
76 
77 	memcpy(out, in, length);
78 	sg_init_one(sg, out, length);
79 
80 	ret = crypto_blkcipher_encrypt_iv(&desc, sg, sg, length);
81 out:
82 	dprintk("RPC:       krb5_encrypt returns %d\n", ret);
83 	return ret;
84 }
85 
86 u32
87 krb5_decrypt(
88      struct crypto_blkcipher *tfm,
89      void * iv,
90      void * in,
91      void * out,
92      int length)
93 {
94 	u32 ret = -EINVAL;
95 	struct scatterlist sg[1];
96 	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
97 	struct blkcipher_desc desc = { .tfm = tfm, .info = local_iv };
98 
99 	if (length % crypto_blkcipher_blocksize(tfm) != 0)
100 		goto out;
101 
102 	if (crypto_blkcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
103 		dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
104 			crypto_blkcipher_ivsize(tfm));
105 		goto out;
106 	}
107 	if (iv)
108 		memcpy(local_iv,iv, crypto_blkcipher_ivsize(tfm));
109 
110 	memcpy(out, in, length);
111 	sg_init_one(sg, out, length);
112 
113 	ret = crypto_blkcipher_decrypt_iv(&desc, sg, sg, length);
114 out:
115 	dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
116 	return ret;
117 }
118 
119 static int
120 checksummer(struct scatterlist *sg, void *data)
121 {
122 	struct hash_desc *desc = data;
123 
124 	return crypto_hash_update(desc, sg, sg->length);
125 }
126 
127 static int
128 arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
129 {
130 	unsigned int ms_usage;
131 
132 	switch (usage) {
133 	case KG_USAGE_SIGN:
134 		ms_usage = 15;
135 		break;
136 	case KG_USAGE_SEAL:
137 		ms_usage = 13;
138 		break;
139 	default:
140 		return -EINVAL;
141 	}
142 	salt[0] = (ms_usage >> 0) & 0xff;
143 	salt[1] = (ms_usage >> 8) & 0xff;
144 	salt[2] = (ms_usage >> 16) & 0xff;
145 	salt[3] = (ms_usage >> 24) & 0xff;
146 
147 	return 0;
148 }
149 
150 static u32
151 make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
152 		       struct xdr_buf *body, int body_offset, u8 *cksumkey,
153 		       unsigned int usage, struct xdr_netobj *cksumout)
154 {
155 	struct hash_desc                desc;
156 	struct scatterlist              sg[1];
157 	int err;
158 	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
159 	u8 rc4salt[4];
160 	struct crypto_hash *md5;
161 	struct crypto_hash *hmac_md5;
162 
163 	if (cksumkey == NULL)
164 		return GSS_S_FAILURE;
165 
166 	if (cksumout->len < kctx->gk5e->cksumlength) {
167 		dprintk("%s: checksum buffer length, %u, too small for %s\n",
168 			__func__, cksumout->len, kctx->gk5e->name);
169 		return GSS_S_FAILURE;
170 	}
171 
172 	if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
173 		dprintk("%s: invalid usage value %u\n", __func__, usage);
174 		return GSS_S_FAILURE;
175 	}
176 
177 	md5 = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
178 	if (IS_ERR(md5))
179 		return GSS_S_FAILURE;
180 
181 	hmac_md5 = crypto_alloc_hash(kctx->gk5e->cksum_name, 0,
182 				     CRYPTO_ALG_ASYNC);
183 	if (IS_ERR(hmac_md5)) {
184 		crypto_free_hash(md5);
185 		return GSS_S_FAILURE;
186 	}
187 
188 	desc.tfm = md5;
189 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
190 
191 	err = crypto_hash_init(&desc);
192 	if (err)
193 		goto out;
194 	sg_init_one(sg, rc4salt, 4);
195 	err = crypto_hash_update(&desc, sg, 4);
196 	if (err)
197 		goto out;
198 
199 	sg_init_one(sg, header, hdrlen);
200 	err = crypto_hash_update(&desc, sg, hdrlen);
201 	if (err)
202 		goto out;
203 	err = xdr_process_buf(body, body_offset, body->len - body_offset,
204 			      checksummer, &desc);
205 	if (err)
206 		goto out;
207 	err = crypto_hash_final(&desc, checksumdata);
208 	if (err)
209 		goto out;
210 
211 	desc.tfm = hmac_md5;
212 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
213 
214 	err = crypto_hash_init(&desc);
215 	if (err)
216 		goto out;
217 	err = crypto_hash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
218 	if (err)
219 		goto out;
220 
221 	sg_init_one(sg, checksumdata, crypto_hash_digestsize(md5));
222 	err = crypto_hash_digest(&desc, sg, crypto_hash_digestsize(md5),
223 				 checksumdata);
224 	if (err)
225 		goto out;
226 
227 	memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
228 	cksumout->len = kctx->gk5e->cksumlength;
229 out:
230 	crypto_free_hash(md5);
231 	crypto_free_hash(hmac_md5);
232 	return err ? GSS_S_FAILURE : 0;
233 }
234 
235 /*
236  * checksum the plaintext data and hdrlen bytes of the token header
237  * The checksum is performed over the first 8 bytes of the
238  * gss token header and then over the data body
239  */
240 u32
241 make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
242 	      struct xdr_buf *body, int body_offset, u8 *cksumkey,
243 	      unsigned int usage, struct xdr_netobj *cksumout)
244 {
245 	struct hash_desc                desc;
246 	struct scatterlist              sg[1];
247 	int err;
248 	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
249 	unsigned int checksumlen;
250 
251 	if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
252 		return make_checksum_hmac_md5(kctx, header, hdrlen,
253 					      body, body_offset,
254 					      cksumkey, usage, cksumout);
255 
256 	if (cksumout->len < kctx->gk5e->cksumlength) {
257 		dprintk("%s: checksum buffer length, %u, too small for %s\n",
258 			__func__, cksumout->len, kctx->gk5e->name);
259 		return GSS_S_FAILURE;
260 	}
261 
262 	desc.tfm = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
263 	if (IS_ERR(desc.tfm))
264 		return GSS_S_FAILURE;
265 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
266 
267 	checksumlen = crypto_hash_digestsize(desc.tfm);
268 
269 	if (cksumkey != NULL) {
270 		err = crypto_hash_setkey(desc.tfm, cksumkey,
271 					 kctx->gk5e->keylength);
272 		if (err)
273 			goto out;
274 	}
275 
276 	err = crypto_hash_init(&desc);
277 	if (err)
278 		goto out;
279 	sg_init_one(sg, header, hdrlen);
280 	err = crypto_hash_update(&desc, sg, hdrlen);
281 	if (err)
282 		goto out;
283 	err = xdr_process_buf(body, body_offset, body->len - body_offset,
284 			      checksummer, &desc);
285 	if (err)
286 		goto out;
287 	err = crypto_hash_final(&desc, checksumdata);
288 	if (err)
289 		goto out;
290 
291 	switch (kctx->gk5e->ctype) {
292 	case CKSUMTYPE_RSA_MD5:
293 		err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
294 					  checksumdata, checksumlen);
295 		if (err)
296 			goto out;
297 		memcpy(cksumout->data,
298 		       checksumdata + checksumlen - kctx->gk5e->cksumlength,
299 		       kctx->gk5e->cksumlength);
300 		break;
301 	case CKSUMTYPE_HMAC_SHA1_DES3:
302 		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
303 		break;
304 	default:
305 		BUG();
306 		break;
307 	}
308 	cksumout->len = kctx->gk5e->cksumlength;
309 out:
310 	crypto_free_hash(desc.tfm);
311 	return err ? GSS_S_FAILURE : 0;
312 }
313 
314 /*
315  * checksum the plaintext data and hdrlen bytes of the token header
316  * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
317  * body then over the first 16 octets of the MIC token
318  * Inclusion of the header data in the calculation of the
319  * checksum is optional.
320  */
321 u32
322 make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
323 		 struct xdr_buf *body, int body_offset, u8 *cksumkey,
324 		 unsigned int usage, struct xdr_netobj *cksumout)
325 {
326 	struct hash_desc desc;
327 	struct scatterlist sg[1];
328 	int err;
329 	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
330 	unsigned int checksumlen;
331 
332 	if (kctx->gk5e->keyed_cksum == 0) {
333 		dprintk("%s: expected keyed hash for %s\n",
334 			__func__, kctx->gk5e->name);
335 		return GSS_S_FAILURE;
336 	}
337 	if (cksumkey == NULL) {
338 		dprintk("%s: no key supplied for %s\n",
339 			__func__, kctx->gk5e->name);
340 		return GSS_S_FAILURE;
341 	}
342 
343 	desc.tfm = crypto_alloc_hash(kctx->gk5e->cksum_name, 0,
344 							CRYPTO_ALG_ASYNC);
345 	if (IS_ERR(desc.tfm))
346 		return GSS_S_FAILURE;
347 	checksumlen = crypto_hash_digestsize(desc.tfm);
348 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
349 
350 	err = crypto_hash_setkey(desc.tfm, cksumkey, kctx->gk5e->keylength);
351 	if (err)
352 		goto out;
353 
354 	err = crypto_hash_init(&desc);
355 	if (err)
356 		goto out;
357 	err = xdr_process_buf(body, body_offset, body->len - body_offset,
358 			      checksummer, &desc);
359 	if (err)
360 		goto out;
361 	if (header != NULL) {
362 		sg_init_one(sg, header, hdrlen);
363 		err = crypto_hash_update(&desc, sg, hdrlen);
364 		if (err)
365 			goto out;
366 	}
367 	err = crypto_hash_final(&desc, checksumdata);
368 	if (err)
369 		goto out;
370 
371 	cksumout->len = kctx->gk5e->cksumlength;
372 
373 	switch (kctx->gk5e->ctype) {
374 	case CKSUMTYPE_HMAC_SHA1_96_AES128:
375 	case CKSUMTYPE_HMAC_SHA1_96_AES256:
376 		/* note that this truncates the hash */
377 		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
378 		break;
379 	default:
380 		BUG();
381 		break;
382 	}
383 out:
384 	crypto_free_hash(desc.tfm);
385 	return err ? GSS_S_FAILURE : 0;
386 }
387 
388 struct encryptor_desc {
389 	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
390 	struct blkcipher_desc desc;
391 	int pos;
392 	struct xdr_buf *outbuf;
393 	struct page **pages;
394 	struct scatterlist infrags[4];
395 	struct scatterlist outfrags[4];
396 	int fragno;
397 	int fraglen;
398 };
399 
400 static int
401 encryptor(struct scatterlist *sg, void *data)
402 {
403 	struct encryptor_desc *desc = data;
404 	struct xdr_buf *outbuf = desc->outbuf;
405 	struct page *in_page;
406 	int thislen = desc->fraglen + sg->length;
407 	int fraglen, ret;
408 	int page_pos;
409 
410 	/* Worst case is 4 fragments: head, end of page 1, start
411 	 * of page 2, tail.  Anything more is a bug. */
412 	BUG_ON(desc->fragno > 3);
413 
414 	page_pos = desc->pos - outbuf->head[0].iov_len;
415 	if (page_pos >= 0 && page_pos < outbuf->page_len) {
416 		/* pages are not in place: */
417 		int i = (page_pos + outbuf->page_base) >> PAGE_CACHE_SHIFT;
418 		in_page = desc->pages[i];
419 	} else {
420 		in_page = sg_page(sg);
421 	}
422 	sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
423 		    sg->offset);
424 	sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
425 		    sg->offset);
426 	desc->fragno++;
427 	desc->fraglen += sg->length;
428 	desc->pos += sg->length;
429 
430 	fraglen = thislen & (crypto_blkcipher_blocksize(desc->desc.tfm) - 1);
431 	thislen -= fraglen;
432 
433 	if (thislen == 0)
434 		return 0;
435 
436 	sg_mark_end(&desc->infrags[desc->fragno - 1]);
437 	sg_mark_end(&desc->outfrags[desc->fragno - 1]);
438 
439 	ret = crypto_blkcipher_encrypt_iv(&desc->desc, desc->outfrags,
440 					  desc->infrags, thislen);
441 	if (ret)
442 		return ret;
443 
444 	sg_init_table(desc->infrags, 4);
445 	sg_init_table(desc->outfrags, 4);
446 
447 	if (fraglen) {
448 		sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
449 				sg->offset + sg->length - fraglen);
450 		desc->infrags[0] = desc->outfrags[0];
451 		sg_assign_page(&desc->infrags[0], in_page);
452 		desc->fragno = 1;
453 		desc->fraglen = fraglen;
454 	} else {
455 		desc->fragno = 0;
456 		desc->fraglen = 0;
457 	}
458 	return 0;
459 }
460 
461 int
462 gss_encrypt_xdr_buf(struct crypto_blkcipher *tfm, struct xdr_buf *buf,
463 		    int offset, struct page **pages)
464 {
465 	int ret;
466 	struct encryptor_desc desc;
467 
468 	BUG_ON((buf->len - offset) % crypto_blkcipher_blocksize(tfm) != 0);
469 
470 	memset(desc.iv, 0, sizeof(desc.iv));
471 	desc.desc.tfm = tfm;
472 	desc.desc.info = desc.iv;
473 	desc.desc.flags = 0;
474 	desc.pos = offset;
475 	desc.outbuf = buf;
476 	desc.pages = pages;
477 	desc.fragno = 0;
478 	desc.fraglen = 0;
479 
480 	sg_init_table(desc.infrags, 4);
481 	sg_init_table(desc.outfrags, 4);
482 
483 	ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
484 	return ret;
485 }
486 
487 struct decryptor_desc {
488 	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
489 	struct blkcipher_desc desc;
490 	struct scatterlist frags[4];
491 	int fragno;
492 	int fraglen;
493 };
494 
495 static int
496 decryptor(struct scatterlist *sg, void *data)
497 {
498 	struct decryptor_desc *desc = data;
499 	int thislen = desc->fraglen + sg->length;
500 	int fraglen, ret;
501 
502 	/* Worst case is 4 fragments: head, end of page 1, start
503 	 * of page 2, tail.  Anything more is a bug. */
504 	BUG_ON(desc->fragno > 3);
505 	sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
506 		    sg->offset);
507 	desc->fragno++;
508 	desc->fraglen += sg->length;
509 
510 	fraglen = thislen & (crypto_blkcipher_blocksize(desc->desc.tfm) - 1);
511 	thislen -= fraglen;
512 
513 	if (thislen == 0)
514 		return 0;
515 
516 	sg_mark_end(&desc->frags[desc->fragno - 1]);
517 
518 	ret = crypto_blkcipher_decrypt_iv(&desc->desc, desc->frags,
519 					  desc->frags, thislen);
520 	if (ret)
521 		return ret;
522 
523 	sg_init_table(desc->frags, 4);
524 
525 	if (fraglen) {
526 		sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
527 				sg->offset + sg->length - fraglen);
528 		desc->fragno = 1;
529 		desc->fraglen = fraglen;
530 	} else {
531 		desc->fragno = 0;
532 		desc->fraglen = 0;
533 	}
534 	return 0;
535 }
536 
537 int
538 gss_decrypt_xdr_buf(struct crypto_blkcipher *tfm, struct xdr_buf *buf,
539 		    int offset)
540 {
541 	struct decryptor_desc desc;
542 
543 	/* XXXJBF: */
544 	BUG_ON((buf->len - offset) % crypto_blkcipher_blocksize(tfm) != 0);
545 
546 	memset(desc.iv, 0, sizeof(desc.iv));
547 	desc.desc.tfm = tfm;
548 	desc.desc.info = desc.iv;
549 	desc.desc.flags = 0;
550 	desc.fragno = 0;
551 	desc.fraglen = 0;
552 
553 	sg_init_table(desc.frags, 4);
554 
555 	return xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
556 }
557 
558 /*
559  * This function makes the assumption that it was ultimately called
560  * from gss_wrap().
561  *
562  * The client auth_gss code moves any existing tail data into a
563  * separate page before calling gss_wrap.
564  * The server svcauth_gss code ensures that both the head and the
565  * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
566  *
567  * Even with that guarantee, this function may be called more than
568  * once in the processing of gss_wrap().  The best we can do is
569  * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
570  * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
571  * At run-time we can verify that a single invocation of this
572  * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
573  */
574 
575 int
576 xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
577 {
578 	u8 *p;
579 
580 	if (shiftlen == 0)
581 		return 0;
582 
583 	BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
584 	BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
585 
586 	p = buf->head[0].iov_base + base;
587 
588 	memmove(p + shiftlen, p, buf->head[0].iov_len - base);
589 
590 	buf->head[0].iov_len += shiftlen;
591 	buf->len += shiftlen;
592 
593 	return 0;
594 }
595 
596 static u32
597 gss_krb5_cts_crypt(struct crypto_blkcipher *cipher, struct xdr_buf *buf,
598 		   u32 offset, u8 *iv, struct page **pages, int encrypt)
599 {
600 	u32 ret;
601 	struct scatterlist sg[1];
602 	struct blkcipher_desc desc = { .tfm = cipher, .info = iv };
603 	u8 data[GSS_KRB5_MAX_BLOCKSIZE * 2];
604 	struct page **save_pages;
605 	u32 len = buf->len - offset;
606 
607 	if (len > ARRAY_SIZE(data)) {
608 		WARN_ON(0);
609 		return -ENOMEM;
610 	}
611 
612 	/*
613 	 * For encryption, we want to read from the cleartext
614 	 * page cache pages, and write the encrypted data to
615 	 * the supplied xdr_buf pages.
616 	 */
617 	save_pages = buf->pages;
618 	if (encrypt)
619 		buf->pages = pages;
620 
621 	ret = read_bytes_from_xdr_buf(buf, offset, data, len);
622 	buf->pages = save_pages;
623 	if (ret)
624 		goto out;
625 
626 	sg_init_one(sg, data, len);
627 
628 	if (encrypt)
629 		ret = crypto_blkcipher_encrypt_iv(&desc, sg, sg, len);
630 	else
631 		ret = crypto_blkcipher_decrypt_iv(&desc, sg, sg, len);
632 
633 	if (ret)
634 		goto out;
635 
636 	ret = write_bytes_to_xdr_buf(buf, offset, data, len);
637 
638 out:
639 	return ret;
640 }
641 
642 u32
643 gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
644 		     struct xdr_buf *buf, struct page **pages)
645 {
646 	u32 err;
647 	struct xdr_netobj hmac;
648 	u8 *cksumkey;
649 	u8 *ecptr;
650 	struct crypto_blkcipher *cipher, *aux_cipher;
651 	int blocksize;
652 	struct page **save_pages;
653 	int nblocks, nbytes;
654 	struct encryptor_desc desc;
655 	u32 cbcbytes;
656 	unsigned int usage;
657 
658 	if (kctx->initiate) {
659 		cipher = kctx->initiator_enc;
660 		aux_cipher = kctx->initiator_enc_aux;
661 		cksumkey = kctx->initiator_integ;
662 		usage = KG_USAGE_INITIATOR_SEAL;
663 	} else {
664 		cipher = kctx->acceptor_enc;
665 		aux_cipher = kctx->acceptor_enc_aux;
666 		cksumkey = kctx->acceptor_integ;
667 		usage = KG_USAGE_ACCEPTOR_SEAL;
668 	}
669 	blocksize = crypto_blkcipher_blocksize(cipher);
670 
671 	/* hide the gss token header and insert the confounder */
672 	offset += GSS_KRB5_TOK_HDR_LEN;
673 	if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
674 		return GSS_S_FAILURE;
675 	gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
676 	offset -= GSS_KRB5_TOK_HDR_LEN;
677 
678 	if (buf->tail[0].iov_base != NULL) {
679 		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
680 	} else {
681 		buf->tail[0].iov_base = buf->head[0].iov_base
682 							+ buf->head[0].iov_len;
683 		buf->tail[0].iov_len = 0;
684 		ecptr = buf->tail[0].iov_base;
685 	}
686 
687 	/* copy plaintext gss token header after filler (if any) */
688 	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
689 	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
690 	buf->len += GSS_KRB5_TOK_HDR_LEN;
691 
692 	/* Do the HMAC */
693 	hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
694 	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
695 
696 	/*
697 	 * When we are called, pages points to the real page cache
698 	 * data -- which we can't go and encrypt!  buf->pages points
699 	 * to scratch pages which we are going to send off to the
700 	 * client/server.  Swap in the plaintext pages to calculate
701 	 * the hmac.
702 	 */
703 	save_pages = buf->pages;
704 	buf->pages = pages;
705 
706 	err = make_checksum_v2(kctx, NULL, 0, buf,
707 			       offset + GSS_KRB5_TOK_HDR_LEN,
708 			       cksumkey, usage, &hmac);
709 	buf->pages = save_pages;
710 	if (err)
711 		return GSS_S_FAILURE;
712 
713 	nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
714 	nblocks = (nbytes + blocksize - 1) / blocksize;
715 	cbcbytes = 0;
716 	if (nblocks > 2)
717 		cbcbytes = (nblocks - 2) * blocksize;
718 
719 	memset(desc.iv, 0, sizeof(desc.iv));
720 
721 	if (cbcbytes) {
722 		desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
723 		desc.fragno = 0;
724 		desc.fraglen = 0;
725 		desc.pages = pages;
726 		desc.outbuf = buf;
727 		desc.desc.info = desc.iv;
728 		desc.desc.flags = 0;
729 		desc.desc.tfm = aux_cipher;
730 
731 		sg_init_table(desc.infrags, 4);
732 		sg_init_table(desc.outfrags, 4);
733 
734 		err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
735 				      cbcbytes, encryptor, &desc);
736 		if (err)
737 			goto out_err;
738 	}
739 
740 	/* Make sure IV carries forward from any CBC results. */
741 	err = gss_krb5_cts_crypt(cipher, buf,
742 				 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
743 				 desc.iv, pages, 1);
744 	if (err) {
745 		err = GSS_S_FAILURE;
746 		goto out_err;
747 	}
748 
749 	/* Now update buf to account for HMAC */
750 	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
751 	buf->len += kctx->gk5e->cksumlength;
752 
753 out_err:
754 	if (err)
755 		err = GSS_S_FAILURE;
756 	return err;
757 }
758 
759 u32
760 gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
761 		     u32 *headskip, u32 *tailskip)
762 {
763 	struct xdr_buf subbuf;
764 	u32 ret = 0;
765 	u8 *cksum_key;
766 	struct crypto_blkcipher *cipher, *aux_cipher;
767 	struct xdr_netobj our_hmac_obj;
768 	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
769 	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
770 	int nblocks, blocksize, cbcbytes;
771 	struct decryptor_desc desc;
772 	unsigned int usage;
773 
774 	if (kctx->initiate) {
775 		cipher = kctx->acceptor_enc;
776 		aux_cipher = kctx->acceptor_enc_aux;
777 		cksum_key = kctx->acceptor_integ;
778 		usage = KG_USAGE_ACCEPTOR_SEAL;
779 	} else {
780 		cipher = kctx->initiator_enc;
781 		aux_cipher = kctx->initiator_enc_aux;
782 		cksum_key = kctx->initiator_integ;
783 		usage = KG_USAGE_INITIATOR_SEAL;
784 	}
785 	blocksize = crypto_blkcipher_blocksize(cipher);
786 
787 
788 	/* create a segment skipping the header and leaving out the checksum */
789 	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
790 				    (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
791 				     kctx->gk5e->cksumlength));
792 
793 	nblocks = (subbuf.len + blocksize - 1) / blocksize;
794 
795 	cbcbytes = 0;
796 	if (nblocks > 2)
797 		cbcbytes = (nblocks - 2) * blocksize;
798 
799 	memset(desc.iv, 0, sizeof(desc.iv));
800 
801 	if (cbcbytes) {
802 		desc.fragno = 0;
803 		desc.fraglen = 0;
804 		desc.desc.info = desc.iv;
805 		desc.desc.flags = 0;
806 		desc.desc.tfm = aux_cipher;
807 
808 		sg_init_table(desc.frags, 4);
809 
810 		ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
811 		if (ret)
812 			goto out_err;
813 	}
814 
815 	/* Make sure IV carries forward from any CBC results. */
816 	ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
817 	if (ret)
818 		goto out_err;
819 
820 
821 	/* Calculate our hmac over the plaintext data */
822 	our_hmac_obj.len = sizeof(our_hmac);
823 	our_hmac_obj.data = our_hmac;
824 
825 	ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
826 			       cksum_key, usage, &our_hmac_obj);
827 	if (ret)
828 		goto out_err;
829 
830 	/* Get the packet's hmac value */
831 	ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
832 				      pkt_hmac, kctx->gk5e->cksumlength);
833 	if (ret)
834 		goto out_err;
835 
836 	if (memcmp(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
837 		ret = GSS_S_BAD_SIG;
838 		goto out_err;
839 	}
840 	*headskip = kctx->gk5e->conflen;
841 	*tailskip = kctx->gk5e->cksumlength;
842 out_err:
843 	if (ret && ret != GSS_S_BAD_SIG)
844 		ret = GSS_S_FAILURE;
845 	return ret;
846 }
847 
848 /*
849  * Compute Kseq given the initial session key and the checksum.
850  * Set the key of the given cipher.
851  */
852 int
853 krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_blkcipher *cipher,
854 		       unsigned char *cksum)
855 {
856 	struct crypto_hash *hmac;
857 	struct hash_desc desc;
858 	struct scatterlist sg[1];
859 	u8 Kseq[GSS_KRB5_MAX_KEYLEN];
860 	u32 zeroconstant = 0;
861 	int err;
862 
863 	dprintk("%s: entered\n", __func__);
864 
865 	hmac = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
866 	if (IS_ERR(hmac)) {
867 		dprintk("%s: error %ld, allocating hash '%s'\n",
868 			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
869 		return PTR_ERR(hmac);
870 	}
871 
872 	desc.tfm = hmac;
873 	desc.flags = 0;
874 
875 	err = crypto_hash_init(&desc);
876 	if (err)
877 		goto out_err;
878 
879 	/* Compute intermediate Kseq from session key */
880 	err = crypto_hash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
881 	if (err)
882 		goto out_err;
883 
884 	sg_init_table(sg, 1);
885 	sg_set_buf(sg, &zeroconstant, 4);
886 
887 	err = crypto_hash_digest(&desc, sg, 4, Kseq);
888 	if (err)
889 		goto out_err;
890 
891 	/* Compute final Kseq from the checksum and intermediate Kseq */
892 	err = crypto_hash_setkey(hmac, Kseq, kctx->gk5e->keylength);
893 	if (err)
894 		goto out_err;
895 
896 	sg_set_buf(sg, cksum, 8);
897 
898 	err = crypto_hash_digest(&desc, sg, 8, Kseq);
899 	if (err)
900 		goto out_err;
901 
902 	err = crypto_blkcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
903 	if (err)
904 		goto out_err;
905 
906 	err = 0;
907 
908 out_err:
909 	crypto_free_hash(hmac);
910 	dprintk("%s: returning %d\n", __func__, err);
911 	return err;
912 }
913 
914 /*
915  * Compute Kcrypt given the initial session key and the plaintext seqnum.
916  * Set the key of cipher kctx->enc.
917  */
918 int
919 krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_blkcipher *cipher,
920 		       s32 seqnum)
921 {
922 	struct crypto_hash *hmac;
923 	struct hash_desc desc;
924 	struct scatterlist sg[1];
925 	u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
926 	u8 zeroconstant[4] = {0};
927 	u8 seqnumarray[4];
928 	int err, i;
929 
930 	dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
931 
932 	hmac = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
933 	if (IS_ERR(hmac)) {
934 		dprintk("%s: error %ld, allocating hash '%s'\n",
935 			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
936 		return PTR_ERR(hmac);
937 	}
938 
939 	desc.tfm = hmac;
940 	desc.flags = 0;
941 
942 	err = crypto_hash_init(&desc);
943 	if (err)
944 		goto out_err;
945 
946 	/* Compute intermediate Kcrypt from session key */
947 	for (i = 0; i < kctx->gk5e->keylength; i++)
948 		Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
949 
950 	err = crypto_hash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
951 	if (err)
952 		goto out_err;
953 
954 	sg_init_table(sg, 1);
955 	sg_set_buf(sg, zeroconstant, 4);
956 
957 	err = crypto_hash_digest(&desc, sg, 4, Kcrypt);
958 	if (err)
959 		goto out_err;
960 
961 	/* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
962 	err = crypto_hash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
963 	if (err)
964 		goto out_err;
965 
966 	seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
967 	seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
968 	seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
969 	seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
970 
971 	sg_set_buf(sg, seqnumarray, 4);
972 
973 	err = crypto_hash_digest(&desc, sg, 4, Kcrypt);
974 	if (err)
975 		goto out_err;
976 
977 	err = crypto_blkcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
978 	if (err)
979 		goto out_err;
980 
981 	err = 0;
982 
983 out_err:
984 	crypto_free_hash(hmac);
985 	dprintk("%s: returning %d\n", __func__, err);
986 	return err;
987 }
988 
989