xref: /linux/net/sunrpc/auth_gss/auth_gss.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  * linux/net/sunrpc/auth_gss/auth_gss.c
3  *
4  * RPCSEC_GSS client authentication.
5  *
6  *  Copyright (c) 2000 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Dug Song       <dugsong@monkey.org>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/sched.h>
44 #include <linux/pagemap.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/auth.h>
47 #include <linux/sunrpc/auth_gss.h>
48 #include <linux/sunrpc/svcauth_gss.h>
49 #include <linux/sunrpc/gss_err.h>
50 #include <linux/workqueue.h>
51 #include <linux/sunrpc/rpc_pipe_fs.h>
52 #include <linux/sunrpc/gss_api.h>
53 #include <asm/uaccess.h>
54 
55 static const struct rpc_authops authgss_ops;
56 
57 static const struct rpc_credops gss_credops;
58 static const struct rpc_credops gss_nullops;
59 
60 #define GSS_RETRY_EXPIRED 5
61 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED;
62 
63 #ifdef RPC_DEBUG
64 # define RPCDBG_FACILITY	RPCDBG_AUTH
65 #endif
66 
67 #define GSS_CRED_SLACK		(RPC_MAX_AUTH_SIZE * 2)
68 /* length of a krb5 verifier (48), plus data added before arguments when
69  * using integrity (two 4-byte integers): */
70 #define GSS_VERF_SLACK		100
71 
72 struct gss_auth {
73 	struct kref kref;
74 	struct rpc_auth rpc_auth;
75 	struct gss_api_mech *mech;
76 	enum rpc_gss_svc service;
77 	struct rpc_clnt *client;
78 	/*
79 	 * There are two upcall pipes; dentry[1], named "gssd", is used
80 	 * for the new text-based upcall; dentry[0] is named after the
81 	 * mechanism (for example, "krb5") and exists for
82 	 * backwards-compatibility with older gssd's.
83 	 */
84 	struct dentry *dentry[2];
85 };
86 
87 /* pipe_version >= 0 if and only if someone has a pipe open. */
88 static int pipe_version = -1;
89 static atomic_t pipe_users = ATOMIC_INIT(0);
90 static DEFINE_SPINLOCK(pipe_version_lock);
91 static struct rpc_wait_queue pipe_version_rpc_waitqueue;
92 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue);
93 
94 static void gss_free_ctx(struct gss_cl_ctx *);
95 static const struct rpc_pipe_ops gss_upcall_ops_v0;
96 static const struct rpc_pipe_ops gss_upcall_ops_v1;
97 
98 static inline struct gss_cl_ctx *
99 gss_get_ctx(struct gss_cl_ctx *ctx)
100 {
101 	atomic_inc(&ctx->count);
102 	return ctx;
103 }
104 
105 static inline void
106 gss_put_ctx(struct gss_cl_ctx *ctx)
107 {
108 	if (atomic_dec_and_test(&ctx->count))
109 		gss_free_ctx(ctx);
110 }
111 
112 /* gss_cred_set_ctx:
113  * called by gss_upcall_callback and gss_create_upcall in order
114  * to set the gss context. The actual exchange of an old context
115  * and a new one is protected by the inode->i_lock.
116  */
117 static void
118 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
119 {
120 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
121 
122 	if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
123 		return;
124 	gss_get_ctx(ctx);
125 	rcu_assign_pointer(gss_cred->gc_ctx, ctx);
126 	set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
127 	smp_mb__before_clear_bit();
128 	clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
129 }
130 
131 static const void *
132 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
133 {
134 	const void *q = (const void *)((const char *)p + len);
135 	if (unlikely(q > end || q < p))
136 		return ERR_PTR(-EFAULT);
137 	memcpy(res, p, len);
138 	return q;
139 }
140 
141 static inline const void *
142 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
143 {
144 	const void *q;
145 	unsigned int len;
146 
147 	p = simple_get_bytes(p, end, &len, sizeof(len));
148 	if (IS_ERR(p))
149 		return p;
150 	q = (const void *)((const char *)p + len);
151 	if (unlikely(q > end || q < p))
152 		return ERR_PTR(-EFAULT);
153 	dest->data = kmemdup(p, len, GFP_NOFS);
154 	if (unlikely(dest->data == NULL))
155 		return ERR_PTR(-ENOMEM);
156 	dest->len = len;
157 	return q;
158 }
159 
160 static struct gss_cl_ctx *
161 gss_cred_get_ctx(struct rpc_cred *cred)
162 {
163 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
164 	struct gss_cl_ctx *ctx = NULL;
165 
166 	rcu_read_lock();
167 	if (gss_cred->gc_ctx)
168 		ctx = gss_get_ctx(gss_cred->gc_ctx);
169 	rcu_read_unlock();
170 	return ctx;
171 }
172 
173 static struct gss_cl_ctx *
174 gss_alloc_context(void)
175 {
176 	struct gss_cl_ctx *ctx;
177 
178 	ctx = kzalloc(sizeof(*ctx), GFP_NOFS);
179 	if (ctx != NULL) {
180 		ctx->gc_proc = RPC_GSS_PROC_DATA;
181 		ctx->gc_seq = 1;	/* NetApp 6.4R1 doesn't accept seq. no. 0 */
182 		spin_lock_init(&ctx->gc_seq_lock);
183 		atomic_set(&ctx->count,1);
184 	}
185 	return ctx;
186 }
187 
188 #define GSSD_MIN_TIMEOUT (60 * 60)
189 static const void *
190 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
191 {
192 	const void *q;
193 	unsigned int seclen;
194 	unsigned int timeout;
195 	u32 window_size;
196 	int ret;
197 
198 	/* First unsigned int gives the lifetime (in seconds) of the cred */
199 	p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
200 	if (IS_ERR(p))
201 		goto err;
202 	if (timeout == 0)
203 		timeout = GSSD_MIN_TIMEOUT;
204 	ctx->gc_expiry = jiffies + (unsigned long)timeout * HZ * 3 / 4;
205 	/* Sequence number window. Determines the maximum number of simultaneous requests */
206 	p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
207 	if (IS_ERR(p))
208 		goto err;
209 	ctx->gc_win = window_size;
210 	/* gssd signals an error by passing ctx->gc_win = 0: */
211 	if (ctx->gc_win == 0) {
212 		/*
213 		 * in which case, p points to an error code. Anything other
214 		 * than -EKEYEXPIRED gets converted to -EACCES.
215 		 */
216 		p = simple_get_bytes(p, end, &ret, sizeof(ret));
217 		if (!IS_ERR(p))
218 			p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) :
219 						    ERR_PTR(-EACCES);
220 		goto err;
221 	}
222 	/* copy the opaque wire context */
223 	p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
224 	if (IS_ERR(p))
225 		goto err;
226 	/* import the opaque security context */
227 	p  = simple_get_bytes(p, end, &seclen, sizeof(seclen));
228 	if (IS_ERR(p))
229 		goto err;
230 	q = (const void *)((const char *)p + seclen);
231 	if (unlikely(q > end || q < p)) {
232 		p = ERR_PTR(-EFAULT);
233 		goto err;
234 	}
235 	ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, GFP_NOFS);
236 	if (ret < 0) {
237 		p = ERR_PTR(ret);
238 		goto err;
239 	}
240 	return q;
241 err:
242 	dprintk("RPC:       gss_fill_context returning %ld\n", -PTR_ERR(p));
243 	return p;
244 }
245 
246 #define UPCALL_BUF_LEN 128
247 
248 struct gss_upcall_msg {
249 	atomic_t count;
250 	uid_t	uid;
251 	struct rpc_pipe_msg msg;
252 	struct list_head list;
253 	struct gss_auth *auth;
254 	struct rpc_inode *inode;
255 	struct rpc_wait_queue rpc_waitqueue;
256 	wait_queue_head_t waitqueue;
257 	struct gss_cl_ctx *ctx;
258 	char databuf[UPCALL_BUF_LEN];
259 };
260 
261 static int get_pipe_version(void)
262 {
263 	int ret;
264 
265 	spin_lock(&pipe_version_lock);
266 	if (pipe_version >= 0) {
267 		atomic_inc(&pipe_users);
268 		ret = pipe_version;
269 	} else
270 		ret = -EAGAIN;
271 	spin_unlock(&pipe_version_lock);
272 	return ret;
273 }
274 
275 static void put_pipe_version(void)
276 {
277 	if (atomic_dec_and_lock(&pipe_users, &pipe_version_lock)) {
278 		pipe_version = -1;
279 		spin_unlock(&pipe_version_lock);
280 	}
281 }
282 
283 static void
284 gss_release_msg(struct gss_upcall_msg *gss_msg)
285 {
286 	if (!atomic_dec_and_test(&gss_msg->count))
287 		return;
288 	put_pipe_version();
289 	BUG_ON(!list_empty(&gss_msg->list));
290 	if (gss_msg->ctx != NULL)
291 		gss_put_ctx(gss_msg->ctx);
292 	rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue);
293 	kfree(gss_msg);
294 }
295 
296 static struct gss_upcall_msg *
297 __gss_find_upcall(struct rpc_inode *rpci, uid_t uid)
298 {
299 	struct gss_upcall_msg *pos;
300 	list_for_each_entry(pos, &rpci->in_downcall, list) {
301 		if (pos->uid != uid)
302 			continue;
303 		atomic_inc(&pos->count);
304 		dprintk("RPC:       gss_find_upcall found msg %p\n", pos);
305 		return pos;
306 	}
307 	dprintk("RPC:       gss_find_upcall found nothing\n");
308 	return NULL;
309 }
310 
311 /* Try to add an upcall to the pipefs queue.
312  * If an upcall owned by our uid already exists, then we return a reference
313  * to that upcall instead of adding the new upcall.
314  */
315 static inline struct gss_upcall_msg *
316 gss_add_msg(struct gss_upcall_msg *gss_msg)
317 {
318 	struct rpc_inode *rpci = gss_msg->inode;
319 	struct inode *inode = &rpci->vfs_inode;
320 	struct gss_upcall_msg *old;
321 
322 	spin_lock(&inode->i_lock);
323 	old = __gss_find_upcall(rpci, gss_msg->uid);
324 	if (old == NULL) {
325 		atomic_inc(&gss_msg->count);
326 		list_add(&gss_msg->list, &rpci->in_downcall);
327 	} else
328 		gss_msg = old;
329 	spin_unlock(&inode->i_lock);
330 	return gss_msg;
331 }
332 
333 static void
334 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
335 {
336 	list_del_init(&gss_msg->list);
337 	rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
338 	wake_up_all(&gss_msg->waitqueue);
339 	atomic_dec(&gss_msg->count);
340 }
341 
342 static void
343 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
344 {
345 	struct inode *inode = &gss_msg->inode->vfs_inode;
346 
347 	if (list_empty(&gss_msg->list))
348 		return;
349 	spin_lock(&inode->i_lock);
350 	if (!list_empty(&gss_msg->list))
351 		__gss_unhash_msg(gss_msg);
352 	spin_unlock(&inode->i_lock);
353 }
354 
355 static void
356 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg)
357 {
358 	switch (gss_msg->msg.errno) {
359 	case 0:
360 		if (gss_msg->ctx == NULL)
361 			break;
362 		clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
363 		gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx);
364 		break;
365 	case -EKEYEXPIRED:
366 		set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
367 	}
368 	gss_cred->gc_upcall_timestamp = jiffies;
369 	gss_cred->gc_upcall = NULL;
370 	rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
371 }
372 
373 static void
374 gss_upcall_callback(struct rpc_task *task)
375 {
376 	struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred,
377 			struct gss_cred, gc_base);
378 	struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
379 	struct inode *inode = &gss_msg->inode->vfs_inode;
380 
381 	spin_lock(&inode->i_lock);
382 	gss_handle_downcall_result(gss_cred, gss_msg);
383 	spin_unlock(&inode->i_lock);
384 	task->tk_status = gss_msg->msg.errno;
385 	gss_release_msg(gss_msg);
386 }
387 
388 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg)
389 {
390 	gss_msg->msg.data = &gss_msg->uid;
391 	gss_msg->msg.len = sizeof(gss_msg->uid);
392 }
393 
394 static void gss_encode_v1_msg(struct gss_upcall_msg *gss_msg,
395 				struct rpc_clnt *clnt, int machine_cred)
396 {
397 	struct gss_api_mech *mech = gss_msg->auth->mech;
398 	char *p = gss_msg->databuf;
399 	int len = 0;
400 
401 	gss_msg->msg.len = sprintf(gss_msg->databuf, "mech=%s uid=%d ",
402 				   mech->gm_name,
403 				   gss_msg->uid);
404 	p += gss_msg->msg.len;
405 	if (clnt->cl_principal) {
406 		len = sprintf(p, "target=%s ", clnt->cl_principal);
407 		p += len;
408 		gss_msg->msg.len += len;
409 	}
410 	if (machine_cred) {
411 		len = sprintf(p, "service=* ");
412 		p += len;
413 		gss_msg->msg.len += len;
414 	} else if (!strcmp(clnt->cl_program->name, "nfs4_cb")) {
415 		len = sprintf(p, "service=nfs ");
416 		p += len;
417 		gss_msg->msg.len += len;
418 	}
419 	if (mech->gm_upcall_enctypes) {
420 		len = sprintf(p, mech->gm_upcall_enctypes);
421 		p += len;
422 		gss_msg->msg.len += len;
423 	}
424 	len = sprintf(p, "\n");
425 	gss_msg->msg.len += len;
426 
427 	gss_msg->msg.data = gss_msg->databuf;
428 	BUG_ON(gss_msg->msg.len > UPCALL_BUF_LEN);
429 }
430 
431 static void gss_encode_msg(struct gss_upcall_msg *gss_msg,
432 				struct rpc_clnt *clnt, int machine_cred)
433 {
434 	if (pipe_version == 0)
435 		gss_encode_v0_msg(gss_msg);
436 	else /* pipe_version == 1 */
437 		gss_encode_v1_msg(gss_msg, clnt, machine_cred);
438 }
439 
440 static inline struct gss_upcall_msg *
441 gss_alloc_msg(struct gss_auth *gss_auth, uid_t uid, struct rpc_clnt *clnt,
442 		int machine_cred)
443 {
444 	struct gss_upcall_msg *gss_msg;
445 	int vers;
446 
447 	gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS);
448 	if (gss_msg == NULL)
449 		return ERR_PTR(-ENOMEM);
450 	vers = get_pipe_version();
451 	if (vers < 0) {
452 		kfree(gss_msg);
453 		return ERR_PTR(vers);
454 	}
455 	gss_msg->inode = RPC_I(gss_auth->dentry[vers]->d_inode);
456 	INIT_LIST_HEAD(&gss_msg->list);
457 	rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
458 	init_waitqueue_head(&gss_msg->waitqueue);
459 	atomic_set(&gss_msg->count, 1);
460 	gss_msg->uid = uid;
461 	gss_msg->auth = gss_auth;
462 	gss_encode_msg(gss_msg, clnt, machine_cred);
463 	return gss_msg;
464 }
465 
466 static struct gss_upcall_msg *
467 gss_setup_upcall(struct rpc_clnt *clnt, struct gss_auth *gss_auth, struct rpc_cred *cred)
468 {
469 	struct gss_cred *gss_cred = container_of(cred,
470 			struct gss_cred, gc_base);
471 	struct gss_upcall_msg *gss_new, *gss_msg;
472 	uid_t uid = cred->cr_uid;
473 
474 	gss_new = gss_alloc_msg(gss_auth, uid, clnt, gss_cred->gc_machine_cred);
475 	if (IS_ERR(gss_new))
476 		return gss_new;
477 	gss_msg = gss_add_msg(gss_new);
478 	if (gss_msg == gss_new) {
479 		struct inode *inode = &gss_new->inode->vfs_inode;
480 		int res = rpc_queue_upcall(inode, &gss_new->msg);
481 		if (res) {
482 			gss_unhash_msg(gss_new);
483 			gss_msg = ERR_PTR(res);
484 		}
485 	} else
486 		gss_release_msg(gss_new);
487 	return gss_msg;
488 }
489 
490 static void warn_gssd(void)
491 {
492 	static unsigned long ratelimit;
493 	unsigned long now = jiffies;
494 
495 	if (time_after(now, ratelimit)) {
496 		printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n"
497 				"Please check user daemon is running.\n");
498 		ratelimit = now + 15*HZ;
499 	}
500 }
501 
502 static inline int
503 gss_refresh_upcall(struct rpc_task *task)
504 {
505 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
506 	struct gss_auth *gss_auth = container_of(cred->cr_auth,
507 			struct gss_auth, rpc_auth);
508 	struct gss_cred *gss_cred = container_of(cred,
509 			struct gss_cred, gc_base);
510 	struct gss_upcall_msg *gss_msg;
511 	struct inode *inode;
512 	int err = 0;
513 
514 	dprintk("RPC: %5u gss_refresh_upcall for uid %u\n", task->tk_pid,
515 								cred->cr_uid);
516 	gss_msg = gss_setup_upcall(task->tk_client, gss_auth, cred);
517 	if (PTR_ERR(gss_msg) == -EAGAIN) {
518 		/* XXX: warning on the first, under the assumption we
519 		 * shouldn't normally hit this case on a refresh. */
520 		warn_gssd();
521 		task->tk_timeout = 15*HZ;
522 		rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL);
523 		return 0;
524 	}
525 	if (IS_ERR(gss_msg)) {
526 		err = PTR_ERR(gss_msg);
527 		goto out;
528 	}
529 	inode = &gss_msg->inode->vfs_inode;
530 	spin_lock(&inode->i_lock);
531 	if (gss_cred->gc_upcall != NULL)
532 		rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL);
533 	else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
534 		task->tk_timeout = 0;
535 		gss_cred->gc_upcall = gss_msg;
536 		/* gss_upcall_callback will release the reference to gss_upcall_msg */
537 		atomic_inc(&gss_msg->count);
538 		rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback);
539 	} else {
540 		gss_handle_downcall_result(gss_cred, gss_msg);
541 		err = gss_msg->msg.errno;
542 	}
543 	spin_unlock(&inode->i_lock);
544 	gss_release_msg(gss_msg);
545 out:
546 	dprintk("RPC: %5u gss_refresh_upcall for uid %u result %d\n",
547 			task->tk_pid, cred->cr_uid, err);
548 	return err;
549 }
550 
551 static inline int
552 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
553 {
554 	struct inode *inode;
555 	struct rpc_cred *cred = &gss_cred->gc_base;
556 	struct gss_upcall_msg *gss_msg;
557 	DEFINE_WAIT(wait);
558 	int err = 0;
559 
560 	dprintk("RPC:       gss_upcall for uid %u\n", cred->cr_uid);
561 retry:
562 	gss_msg = gss_setup_upcall(gss_auth->client, gss_auth, cred);
563 	if (PTR_ERR(gss_msg) == -EAGAIN) {
564 		err = wait_event_interruptible_timeout(pipe_version_waitqueue,
565 				pipe_version >= 0, 15*HZ);
566 		if (err)
567 			goto out;
568 		if (pipe_version < 0)
569 			warn_gssd();
570 		goto retry;
571 	}
572 	if (IS_ERR(gss_msg)) {
573 		err = PTR_ERR(gss_msg);
574 		goto out;
575 	}
576 	inode = &gss_msg->inode->vfs_inode;
577 	for (;;) {
578 		prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_INTERRUPTIBLE);
579 		spin_lock(&inode->i_lock);
580 		if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
581 			break;
582 		}
583 		spin_unlock(&inode->i_lock);
584 		if (signalled()) {
585 			err = -ERESTARTSYS;
586 			goto out_intr;
587 		}
588 		schedule();
589 	}
590 	if (gss_msg->ctx)
591 		gss_cred_set_ctx(cred, gss_msg->ctx);
592 	else
593 		err = gss_msg->msg.errno;
594 	spin_unlock(&inode->i_lock);
595 out_intr:
596 	finish_wait(&gss_msg->waitqueue, &wait);
597 	gss_release_msg(gss_msg);
598 out:
599 	dprintk("RPC:       gss_create_upcall for uid %u result %d\n",
600 			cred->cr_uid, err);
601 	return err;
602 }
603 
604 static ssize_t
605 gss_pipe_upcall(struct file *filp, struct rpc_pipe_msg *msg,
606 		char __user *dst, size_t buflen)
607 {
608 	char *data = (char *)msg->data + msg->copied;
609 	size_t mlen = min(msg->len, buflen);
610 	unsigned long left;
611 
612 	left = copy_to_user(dst, data, mlen);
613 	if (left == mlen) {
614 		msg->errno = -EFAULT;
615 		return -EFAULT;
616 	}
617 
618 	mlen -= left;
619 	msg->copied += mlen;
620 	msg->errno = 0;
621 	return mlen;
622 }
623 
624 #define MSG_BUF_MAXSIZE 1024
625 
626 static ssize_t
627 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
628 {
629 	const void *p, *end;
630 	void *buf;
631 	struct gss_upcall_msg *gss_msg;
632 	struct inode *inode = filp->f_path.dentry->d_inode;
633 	struct gss_cl_ctx *ctx;
634 	uid_t uid;
635 	ssize_t err = -EFBIG;
636 
637 	if (mlen > MSG_BUF_MAXSIZE)
638 		goto out;
639 	err = -ENOMEM;
640 	buf = kmalloc(mlen, GFP_NOFS);
641 	if (!buf)
642 		goto out;
643 
644 	err = -EFAULT;
645 	if (copy_from_user(buf, src, mlen))
646 		goto err;
647 
648 	end = (const void *)((char *)buf + mlen);
649 	p = simple_get_bytes(buf, end, &uid, sizeof(uid));
650 	if (IS_ERR(p)) {
651 		err = PTR_ERR(p);
652 		goto err;
653 	}
654 
655 	err = -ENOMEM;
656 	ctx = gss_alloc_context();
657 	if (ctx == NULL)
658 		goto err;
659 
660 	err = -ENOENT;
661 	/* Find a matching upcall */
662 	spin_lock(&inode->i_lock);
663 	gss_msg = __gss_find_upcall(RPC_I(inode), uid);
664 	if (gss_msg == NULL) {
665 		spin_unlock(&inode->i_lock);
666 		goto err_put_ctx;
667 	}
668 	list_del_init(&gss_msg->list);
669 	spin_unlock(&inode->i_lock);
670 
671 	p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
672 	if (IS_ERR(p)) {
673 		err = PTR_ERR(p);
674 		switch (err) {
675 		case -EACCES:
676 		case -EKEYEXPIRED:
677 			gss_msg->msg.errno = err;
678 			err = mlen;
679 			break;
680 		case -EFAULT:
681 		case -ENOMEM:
682 		case -EINVAL:
683 		case -ENOSYS:
684 			gss_msg->msg.errno = -EAGAIN;
685 			break;
686 		default:
687 			printk(KERN_CRIT "%s: bad return from "
688 				"gss_fill_context: %zd\n", __func__, err);
689 			BUG();
690 		}
691 		goto err_release_msg;
692 	}
693 	gss_msg->ctx = gss_get_ctx(ctx);
694 	err = mlen;
695 
696 err_release_msg:
697 	spin_lock(&inode->i_lock);
698 	__gss_unhash_msg(gss_msg);
699 	spin_unlock(&inode->i_lock);
700 	gss_release_msg(gss_msg);
701 err_put_ctx:
702 	gss_put_ctx(ctx);
703 err:
704 	kfree(buf);
705 out:
706 	dprintk("RPC:       gss_pipe_downcall returning %Zd\n", err);
707 	return err;
708 }
709 
710 static int gss_pipe_open(struct inode *inode, int new_version)
711 {
712 	int ret = 0;
713 
714 	spin_lock(&pipe_version_lock);
715 	if (pipe_version < 0) {
716 		/* First open of any gss pipe determines the version: */
717 		pipe_version = new_version;
718 		rpc_wake_up(&pipe_version_rpc_waitqueue);
719 		wake_up(&pipe_version_waitqueue);
720 	} else if (pipe_version != new_version) {
721 		/* Trying to open a pipe of a different version */
722 		ret = -EBUSY;
723 		goto out;
724 	}
725 	atomic_inc(&pipe_users);
726 out:
727 	spin_unlock(&pipe_version_lock);
728 	return ret;
729 
730 }
731 
732 static int gss_pipe_open_v0(struct inode *inode)
733 {
734 	return gss_pipe_open(inode, 0);
735 }
736 
737 static int gss_pipe_open_v1(struct inode *inode)
738 {
739 	return gss_pipe_open(inode, 1);
740 }
741 
742 static void
743 gss_pipe_release(struct inode *inode)
744 {
745 	struct rpc_inode *rpci = RPC_I(inode);
746 	struct gss_upcall_msg *gss_msg;
747 
748 	spin_lock(&inode->i_lock);
749 	while (!list_empty(&rpci->in_downcall)) {
750 
751 		gss_msg = list_entry(rpci->in_downcall.next,
752 				struct gss_upcall_msg, list);
753 		gss_msg->msg.errno = -EPIPE;
754 		atomic_inc(&gss_msg->count);
755 		__gss_unhash_msg(gss_msg);
756 		spin_unlock(&inode->i_lock);
757 		gss_release_msg(gss_msg);
758 		spin_lock(&inode->i_lock);
759 	}
760 	spin_unlock(&inode->i_lock);
761 
762 	put_pipe_version();
763 }
764 
765 static void
766 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
767 {
768 	struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
769 
770 	if (msg->errno < 0) {
771 		dprintk("RPC:       gss_pipe_destroy_msg releasing msg %p\n",
772 				gss_msg);
773 		atomic_inc(&gss_msg->count);
774 		gss_unhash_msg(gss_msg);
775 		if (msg->errno == -ETIMEDOUT)
776 			warn_gssd();
777 		gss_release_msg(gss_msg);
778 	}
779 }
780 
781 /*
782  * NOTE: we have the opportunity to use different
783  * parameters based on the input flavor (which must be a pseudoflavor)
784  */
785 static struct rpc_auth *
786 gss_create(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
787 {
788 	struct gss_auth *gss_auth;
789 	struct rpc_auth * auth;
790 	int err = -ENOMEM; /* XXX? */
791 
792 	dprintk("RPC:       creating GSS authenticator for client %p\n", clnt);
793 
794 	if (!try_module_get(THIS_MODULE))
795 		return ERR_PTR(err);
796 	if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
797 		goto out_dec;
798 	gss_auth->client = clnt;
799 	err = -EINVAL;
800 	gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
801 	if (!gss_auth->mech) {
802 		printk(KERN_WARNING "%s: Pseudoflavor %d not found!\n",
803 				__func__, flavor);
804 		goto err_free;
805 	}
806 	gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
807 	if (gss_auth->service == 0)
808 		goto err_put_mech;
809 	auth = &gss_auth->rpc_auth;
810 	auth->au_cslack = GSS_CRED_SLACK >> 2;
811 	auth->au_rslack = GSS_VERF_SLACK >> 2;
812 	auth->au_ops = &authgss_ops;
813 	auth->au_flavor = flavor;
814 	atomic_set(&auth->au_count, 1);
815 	kref_init(&gss_auth->kref);
816 
817 	/*
818 	 * Note: if we created the old pipe first, then someone who
819 	 * examined the directory at the right moment might conclude
820 	 * that we supported only the old pipe.  So we instead create
821 	 * the new pipe first.
822 	 */
823 	gss_auth->dentry[1] = rpc_mkpipe(clnt->cl_path.dentry,
824 					 "gssd",
825 					 clnt, &gss_upcall_ops_v1,
826 					 RPC_PIPE_WAIT_FOR_OPEN);
827 	if (IS_ERR(gss_auth->dentry[1])) {
828 		err = PTR_ERR(gss_auth->dentry[1]);
829 		goto err_put_mech;
830 	}
831 
832 	gss_auth->dentry[0] = rpc_mkpipe(clnt->cl_path.dentry,
833 					 gss_auth->mech->gm_name,
834 					 clnt, &gss_upcall_ops_v0,
835 					 RPC_PIPE_WAIT_FOR_OPEN);
836 	if (IS_ERR(gss_auth->dentry[0])) {
837 		err = PTR_ERR(gss_auth->dentry[0]);
838 		goto err_unlink_pipe_1;
839 	}
840 	err = rpcauth_init_credcache(auth);
841 	if (err)
842 		goto err_unlink_pipe_0;
843 
844 	return auth;
845 err_unlink_pipe_0:
846 	rpc_unlink(gss_auth->dentry[0]);
847 err_unlink_pipe_1:
848 	rpc_unlink(gss_auth->dentry[1]);
849 err_put_mech:
850 	gss_mech_put(gss_auth->mech);
851 err_free:
852 	kfree(gss_auth);
853 out_dec:
854 	module_put(THIS_MODULE);
855 	return ERR_PTR(err);
856 }
857 
858 static void
859 gss_free(struct gss_auth *gss_auth)
860 {
861 	rpc_unlink(gss_auth->dentry[1]);
862 	rpc_unlink(gss_auth->dentry[0]);
863 	gss_mech_put(gss_auth->mech);
864 
865 	kfree(gss_auth);
866 	module_put(THIS_MODULE);
867 }
868 
869 static void
870 gss_free_callback(struct kref *kref)
871 {
872 	struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
873 
874 	gss_free(gss_auth);
875 }
876 
877 static void
878 gss_destroy(struct rpc_auth *auth)
879 {
880 	struct gss_auth *gss_auth;
881 
882 	dprintk("RPC:       destroying GSS authenticator %p flavor %d\n",
883 			auth, auth->au_flavor);
884 
885 	rpcauth_destroy_credcache(auth);
886 
887 	gss_auth = container_of(auth, struct gss_auth, rpc_auth);
888 	kref_put(&gss_auth->kref, gss_free_callback);
889 }
890 
891 /*
892  * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
893  * to the server with the GSS control procedure field set to
894  * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
895  * all RPCSEC_GSS state associated with that context.
896  */
897 static int
898 gss_destroying_context(struct rpc_cred *cred)
899 {
900 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
901 	struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
902 	struct rpc_task *task;
903 
904 	if (gss_cred->gc_ctx == NULL ||
905 	    test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0)
906 		return 0;
907 
908 	gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY;
909 	cred->cr_ops = &gss_nullops;
910 
911 	/* Take a reference to ensure the cred will be destroyed either
912 	 * by the RPC call or by the put_rpccred() below */
913 	get_rpccred(cred);
914 
915 	task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT);
916 	if (!IS_ERR(task))
917 		rpc_put_task(task);
918 
919 	put_rpccred(cred);
920 	return 1;
921 }
922 
923 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
924  * to create a new cred or context, so they check that things have been
925  * allocated before freeing them. */
926 static void
927 gss_do_free_ctx(struct gss_cl_ctx *ctx)
928 {
929 	dprintk("RPC:       gss_free_ctx\n");
930 
931 	gss_delete_sec_context(&ctx->gc_gss_ctx);
932 	kfree(ctx->gc_wire_ctx.data);
933 	kfree(ctx);
934 }
935 
936 static void
937 gss_free_ctx_callback(struct rcu_head *head)
938 {
939 	struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
940 	gss_do_free_ctx(ctx);
941 }
942 
943 static void
944 gss_free_ctx(struct gss_cl_ctx *ctx)
945 {
946 	call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
947 }
948 
949 static void
950 gss_free_cred(struct gss_cred *gss_cred)
951 {
952 	dprintk("RPC:       gss_free_cred %p\n", gss_cred);
953 	kfree(gss_cred);
954 }
955 
956 static void
957 gss_free_cred_callback(struct rcu_head *head)
958 {
959 	struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
960 	gss_free_cred(gss_cred);
961 }
962 
963 static void
964 gss_destroy_nullcred(struct rpc_cred *cred)
965 {
966 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
967 	struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
968 	struct gss_cl_ctx *ctx = gss_cred->gc_ctx;
969 
970 	rcu_assign_pointer(gss_cred->gc_ctx, NULL);
971 	call_rcu(&cred->cr_rcu, gss_free_cred_callback);
972 	if (ctx)
973 		gss_put_ctx(ctx);
974 	kref_put(&gss_auth->kref, gss_free_callback);
975 }
976 
977 static void
978 gss_destroy_cred(struct rpc_cred *cred)
979 {
980 
981 	if (gss_destroying_context(cred))
982 		return;
983 	gss_destroy_nullcred(cred);
984 }
985 
986 /*
987  * Lookup RPCSEC_GSS cred for the current process
988  */
989 static struct rpc_cred *
990 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
991 {
992 	return rpcauth_lookup_credcache(auth, acred, flags);
993 }
994 
995 static struct rpc_cred *
996 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
997 {
998 	struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
999 	struct gss_cred	*cred = NULL;
1000 	int err = -ENOMEM;
1001 
1002 	dprintk("RPC:       gss_create_cred for uid %d, flavor %d\n",
1003 		acred->uid, auth->au_flavor);
1004 
1005 	if (!(cred = kzalloc(sizeof(*cred), GFP_NOFS)))
1006 		goto out_err;
1007 
1008 	rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
1009 	/*
1010 	 * Note: in order to force a call to call_refresh(), we deliberately
1011 	 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
1012 	 */
1013 	cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
1014 	cred->gc_service = gss_auth->service;
1015 	cred->gc_machine_cred = acred->machine_cred;
1016 	kref_get(&gss_auth->kref);
1017 	return &cred->gc_base;
1018 
1019 out_err:
1020 	dprintk("RPC:       gss_create_cred failed with error %d\n", err);
1021 	return ERR_PTR(err);
1022 }
1023 
1024 static int
1025 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
1026 {
1027 	struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1028 	struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
1029 	int err;
1030 
1031 	do {
1032 		err = gss_create_upcall(gss_auth, gss_cred);
1033 	} while (err == -EAGAIN);
1034 	return err;
1035 }
1036 
1037 static int
1038 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
1039 {
1040 	struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1041 
1042 	if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
1043 		goto out;
1044 	/* Don't match with creds that have expired. */
1045 	if (time_after(jiffies, gss_cred->gc_ctx->gc_expiry))
1046 		return 0;
1047 	if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags))
1048 		return 0;
1049 out:
1050 	if (acred->machine_cred != gss_cred->gc_machine_cred)
1051 		return 0;
1052 	return (rc->cr_uid == acred->uid);
1053 }
1054 
1055 /*
1056 * Marshal credentials.
1057 * Maybe we should keep a cached credential for performance reasons.
1058 */
1059 static __be32 *
1060 gss_marshal(struct rpc_task *task, __be32 *p)
1061 {
1062 	struct rpc_rqst *req = task->tk_rqstp;
1063 	struct rpc_cred *cred = req->rq_cred;
1064 	struct gss_cred	*gss_cred = container_of(cred, struct gss_cred,
1065 						 gc_base);
1066 	struct gss_cl_ctx	*ctx = gss_cred_get_ctx(cred);
1067 	__be32		*cred_len;
1068 	u32             maj_stat = 0;
1069 	struct xdr_netobj mic;
1070 	struct kvec	iov;
1071 	struct xdr_buf	verf_buf;
1072 
1073 	dprintk("RPC: %5u gss_marshal\n", task->tk_pid);
1074 
1075 	*p++ = htonl(RPC_AUTH_GSS);
1076 	cred_len = p++;
1077 
1078 	spin_lock(&ctx->gc_seq_lock);
1079 	req->rq_seqno = ctx->gc_seq++;
1080 	spin_unlock(&ctx->gc_seq_lock);
1081 
1082 	*p++ = htonl((u32) RPC_GSS_VERSION);
1083 	*p++ = htonl((u32) ctx->gc_proc);
1084 	*p++ = htonl((u32) req->rq_seqno);
1085 	*p++ = htonl((u32) gss_cred->gc_service);
1086 	p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
1087 	*cred_len = htonl((p - (cred_len + 1)) << 2);
1088 
1089 	/* We compute the checksum for the verifier over the xdr-encoded bytes
1090 	 * starting with the xid and ending at the end of the credential: */
1091 	iov.iov_base = xprt_skip_transport_header(task->tk_xprt,
1092 					req->rq_snd_buf.head[0].iov_base);
1093 	iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
1094 	xdr_buf_from_iov(&iov, &verf_buf);
1095 
1096 	/* set verifier flavor*/
1097 	*p++ = htonl(RPC_AUTH_GSS);
1098 
1099 	mic.data = (u8 *)(p + 1);
1100 	maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1101 	if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
1102 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1103 	} else if (maj_stat != 0) {
1104 		printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
1105 		goto out_put_ctx;
1106 	}
1107 	p = xdr_encode_opaque(p, NULL, mic.len);
1108 	gss_put_ctx(ctx);
1109 	return p;
1110 out_put_ctx:
1111 	gss_put_ctx(ctx);
1112 	return NULL;
1113 }
1114 
1115 static int gss_renew_cred(struct rpc_task *task)
1116 {
1117 	struct rpc_cred *oldcred = task->tk_rqstp->rq_cred;
1118 	struct gss_cred *gss_cred = container_of(oldcred,
1119 						 struct gss_cred,
1120 						 gc_base);
1121 	struct rpc_auth *auth = oldcred->cr_auth;
1122 	struct auth_cred acred = {
1123 		.uid = oldcred->cr_uid,
1124 		.machine_cred = gss_cred->gc_machine_cred,
1125 	};
1126 	struct rpc_cred *new;
1127 
1128 	new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW);
1129 	if (IS_ERR(new))
1130 		return PTR_ERR(new);
1131 	task->tk_rqstp->rq_cred = new;
1132 	put_rpccred(oldcred);
1133 	return 0;
1134 }
1135 
1136 static int gss_cred_is_negative_entry(struct rpc_cred *cred)
1137 {
1138 	if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) {
1139 		unsigned long now = jiffies;
1140 		unsigned long begin, expire;
1141 		struct gss_cred *gss_cred;
1142 
1143 		gss_cred = container_of(cred, struct gss_cred, gc_base);
1144 		begin = gss_cred->gc_upcall_timestamp;
1145 		expire = begin + gss_expired_cred_retry_delay * HZ;
1146 
1147 		if (time_in_range_open(now, begin, expire))
1148 			return 1;
1149 	}
1150 	return 0;
1151 }
1152 
1153 /*
1154 * Refresh credentials. XXX - finish
1155 */
1156 static int
1157 gss_refresh(struct rpc_task *task)
1158 {
1159 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1160 	int ret = 0;
1161 
1162 	if (gss_cred_is_negative_entry(cred))
1163 		return -EKEYEXPIRED;
1164 
1165 	if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) &&
1166 			!test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) {
1167 		ret = gss_renew_cred(task);
1168 		if (ret < 0)
1169 			goto out;
1170 		cred = task->tk_rqstp->rq_cred;
1171 	}
1172 
1173 	if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
1174 		ret = gss_refresh_upcall(task);
1175 out:
1176 	return ret;
1177 }
1178 
1179 /* Dummy refresh routine: used only when destroying the context */
1180 static int
1181 gss_refresh_null(struct rpc_task *task)
1182 {
1183 	return -EACCES;
1184 }
1185 
1186 static __be32 *
1187 gss_validate(struct rpc_task *task, __be32 *p)
1188 {
1189 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1190 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1191 	__be32		seq;
1192 	struct kvec	iov;
1193 	struct xdr_buf	verf_buf;
1194 	struct xdr_netobj mic;
1195 	u32		flav,len;
1196 	u32		maj_stat;
1197 
1198 	dprintk("RPC: %5u gss_validate\n", task->tk_pid);
1199 
1200 	flav = ntohl(*p++);
1201 	if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
1202 		goto out_bad;
1203 	if (flav != RPC_AUTH_GSS)
1204 		goto out_bad;
1205 	seq = htonl(task->tk_rqstp->rq_seqno);
1206 	iov.iov_base = &seq;
1207 	iov.iov_len = sizeof(seq);
1208 	xdr_buf_from_iov(&iov, &verf_buf);
1209 	mic.data = (u8 *)p;
1210 	mic.len = len;
1211 
1212 	maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1213 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1214 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1215 	if (maj_stat) {
1216 		dprintk("RPC: %5u gss_validate: gss_verify_mic returned "
1217 				"error 0x%08x\n", task->tk_pid, maj_stat);
1218 		goto out_bad;
1219 	}
1220 	/* We leave it to unwrap to calculate au_rslack. For now we just
1221 	 * calculate the length of the verifier: */
1222 	cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
1223 	gss_put_ctx(ctx);
1224 	dprintk("RPC: %5u gss_validate: gss_verify_mic succeeded.\n",
1225 			task->tk_pid);
1226 	return p + XDR_QUADLEN(len);
1227 out_bad:
1228 	gss_put_ctx(ctx);
1229 	dprintk("RPC: %5u gss_validate failed.\n", task->tk_pid);
1230 	return NULL;
1231 }
1232 
1233 static inline int
1234 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1235 		kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
1236 {
1237 	struct xdr_buf	*snd_buf = &rqstp->rq_snd_buf;
1238 	struct xdr_buf	integ_buf;
1239 	__be32          *integ_len = NULL;
1240 	struct xdr_netobj mic;
1241 	u32		offset;
1242 	__be32		*q;
1243 	struct kvec	*iov;
1244 	u32             maj_stat = 0;
1245 	int		status = -EIO;
1246 
1247 	integ_len = p++;
1248 	offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1249 	*p++ = htonl(rqstp->rq_seqno);
1250 
1251 	status = encode(rqstp, p, obj);
1252 	if (status)
1253 		return status;
1254 
1255 	if (xdr_buf_subsegment(snd_buf, &integ_buf,
1256 				offset, snd_buf->len - offset))
1257 		return status;
1258 	*integ_len = htonl(integ_buf.len);
1259 
1260 	/* guess whether we're in the head or the tail: */
1261 	if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1262 		iov = snd_buf->tail;
1263 	else
1264 		iov = snd_buf->head;
1265 	p = iov->iov_base + iov->iov_len;
1266 	mic.data = (u8 *)(p + 1);
1267 
1268 	maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1269 	status = -EIO; /* XXX? */
1270 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1271 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1272 	else if (maj_stat)
1273 		return status;
1274 	q = xdr_encode_opaque(p, NULL, mic.len);
1275 
1276 	offset = (u8 *)q - (u8 *)p;
1277 	iov->iov_len += offset;
1278 	snd_buf->len += offset;
1279 	return 0;
1280 }
1281 
1282 static void
1283 priv_release_snd_buf(struct rpc_rqst *rqstp)
1284 {
1285 	int i;
1286 
1287 	for (i=0; i < rqstp->rq_enc_pages_num; i++)
1288 		__free_page(rqstp->rq_enc_pages[i]);
1289 	kfree(rqstp->rq_enc_pages);
1290 }
1291 
1292 static int
1293 alloc_enc_pages(struct rpc_rqst *rqstp)
1294 {
1295 	struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1296 	int first, last, i;
1297 
1298 	if (snd_buf->page_len == 0) {
1299 		rqstp->rq_enc_pages_num = 0;
1300 		return 0;
1301 	}
1302 
1303 	first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1304 	last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT;
1305 	rqstp->rq_enc_pages_num = last - first + 1 + 1;
1306 	rqstp->rq_enc_pages
1307 		= kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1308 				GFP_NOFS);
1309 	if (!rqstp->rq_enc_pages)
1310 		goto out;
1311 	for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1312 		rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1313 		if (rqstp->rq_enc_pages[i] == NULL)
1314 			goto out_free;
1315 	}
1316 	rqstp->rq_release_snd_buf = priv_release_snd_buf;
1317 	return 0;
1318 out_free:
1319 	rqstp->rq_enc_pages_num = i;
1320 	priv_release_snd_buf(rqstp);
1321 out:
1322 	return -EAGAIN;
1323 }
1324 
1325 static inline int
1326 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1327 		kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
1328 {
1329 	struct xdr_buf	*snd_buf = &rqstp->rq_snd_buf;
1330 	u32		offset;
1331 	u32             maj_stat;
1332 	int		status;
1333 	__be32		*opaque_len;
1334 	struct page	**inpages;
1335 	int		first;
1336 	int		pad;
1337 	struct kvec	*iov;
1338 	char		*tmp;
1339 
1340 	opaque_len = p++;
1341 	offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1342 	*p++ = htonl(rqstp->rq_seqno);
1343 
1344 	status = encode(rqstp, p, obj);
1345 	if (status)
1346 		return status;
1347 
1348 	status = alloc_enc_pages(rqstp);
1349 	if (status)
1350 		return status;
1351 	first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1352 	inpages = snd_buf->pages + first;
1353 	snd_buf->pages = rqstp->rq_enc_pages;
1354 	snd_buf->page_base -= first << PAGE_CACHE_SHIFT;
1355 	/*
1356 	 * Give the tail its own page, in case we need extra space in the
1357 	 * head when wrapping:
1358 	 *
1359 	 * call_allocate() allocates twice the slack space required
1360 	 * by the authentication flavor to rq_callsize.
1361 	 * For GSS, slack is GSS_CRED_SLACK.
1362 	 */
1363 	if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1364 		tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1365 		memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1366 		snd_buf->tail[0].iov_base = tmp;
1367 	}
1368 	maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1369 	/* slack space should prevent this ever happening: */
1370 	BUG_ON(snd_buf->len > snd_buf->buflen);
1371 	status = -EIO;
1372 	/* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1373 	 * done anyway, so it's safe to put the request on the wire: */
1374 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1375 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1376 	else if (maj_stat)
1377 		return status;
1378 
1379 	*opaque_len = htonl(snd_buf->len - offset);
1380 	/* guess whether we're in the head or the tail: */
1381 	if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1382 		iov = snd_buf->tail;
1383 	else
1384 		iov = snd_buf->head;
1385 	p = iov->iov_base + iov->iov_len;
1386 	pad = 3 - ((snd_buf->len - offset - 1) & 3);
1387 	memset(p, 0, pad);
1388 	iov->iov_len += pad;
1389 	snd_buf->len += pad;
1390 
1391 	return 0;
1392 }
1393 
1394 static int
1395 gss_wrap_req(struct rpc_task *task,
1396 	     kxdrproc_t encode, void *rqstp, __be32 *p, void *obj)
1397 {
1398 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1399 	struct gss_cred	*gss_cred = container_of(cred, struct gss_cred,
1400 			gc_base);
1401 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1402 	int             status = -EIO;
1403 
1404 	dprintk("RPC: %5u gss_wrap_req\n", task->tk_pid);
1405 	if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1406 		/* The spec seems a little ambiguous here, but I think that not
1407 		 * wrapping context destruction requests makes the most sense.
1408 		 */
1409 		status = encode(rqstp, p, obj);
1410 		goto out;
1411 	}
1412 	switch (gss_cred->gc_service) {
1413 		case RPC_GSS_SVC_NONE:
1414 			status = encode(rqstp, p, obj);
1415 			break;
1416 		case RPC_GSS_SVC_INTEGRITY:
1417 			status = gss_wrap_req_integ(cred, ctx, encode,
1418 								rqstp, p, obj);
1419 			break;
1420 		case RPC_GSS_SVC_PRIVACY:
1421 			status = gss_wrap_req_priv(cred, ctx, encode,
1422 					rqstp, p, obj);
1423 			break;
1424 	}
1425 out:
1426 	gss_put_ctx(ctx);
1427 	dprintk("RPC: %5u gss_wrap_req returning %d\n", task->tk_pid, status);
1428 	return status;
1429 }
1430 
1431 static inline int
1432 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1433 		struct rpc_rqst *rqstp, __be32 **p)
1434 {
1435 	struct xdr_buf	*rcv_buf = &rqstp->rq_rcv_buf;
1436 	struct xdr_buf integ_buf;
1437 	struct xdr_netobj mic;
1438 	u32 data_offset, mic_offset;
1439 	u32 integ_len;
1440 	u32 maj_stat;
1441 	int status = -EIO;
1442 
1443 	integ_len = ntohl(*(*p)++);
1444 	if (integ_len & 3)
1445 		return status;
1446 	data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1447 	mic_offset = integ_len + data_offset;
1448 	if (mic_offset > rcv_buf->len)
1449 		return status;
1450 	if (ntohl(*(*p)++) != rqstp->rq_seqno)
1451 		return status;
1452 
1453 	if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1454 				mic_offset - data_offset))
1455 		return status;
1456 
1457 	if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1458 		return status;
1459 
1460 	maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1461 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1462 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1463 	if (maj_stat != GSS_S_COMPLETE)
1464 		return status;
1465 	return 0;
1466 }
1467 
1468 static inline int
1469 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1470 		struct rpc_rqst *rqstp, __be32 **p)
1471 {
1472 	struct xdr_buf  *rcv_buf = &rqstp->rq_rcv_buf;
1473 	u32 offset;
1474 	u32 opaque_len;
1475 	u32 maj_stat;
1476 	int status = -EIO;
1477 
1478 	opaque_len = ntohl(*(*p)++);
1479 	offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1480 	if (offset + opaque_len > rcv_buf->len)
1481 		return status;
1482 	/* remove padding: */
1483 	rcv_buf->len = offset + opaque_len;
1484 
1485 	maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1486 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1487 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1488 	if (maj_stat != GSS_S_COMPLETE)
1489 		return status;
1490 	if (ntohl(*(*p)++) != rqstp->rq_seqno)
1491 		return status;
1492 
1493 	return 0;
1494 }
1495 
1496 
1497 static int
1498 gss_unwrap_resp(struct rpc_task *task,
1499 		kxdrproc_t decode, void *rqstp, __be32 *p, void *obj)
1500 {
1501 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1502 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1503 			gc_base);
1504 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1505 	__be32		*savedp = p;
1506 	struct kvec	*head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1507 	int		savedlen = head->iov_len;
1508 	int             status = -EIO;
1509 
1510 	if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1511 		goto out_decode;
1512 	switch (gss_cred->gc_service) {
1513 		case RPC_GSS_SVC_NONE:
1514 			break;
1515 		case RPC_GSS_SVC_INTEGRITY:
1516 			status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1517 			if (status)
1518 				goto out;
1519 			break;
1520 		case RPC_GSS_SVC_PRIVACY:
1521 			status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1522 			if (status)
1523 				goto out;
1524 			break;
1525 	}
1526 	/* take into account extra slack for integrity and privacy cases: */
1527 	cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1528 						+ (savedlen - head->iov_len);
1529 out_decode:
1530 	status = decode(rqstp, p, obj);
1531 out:
1532 	gss_put_ctx(ctx);
1533 	dprintk("RPC: %5u gss_unwrap_resp returning %d\n", task->tk_pid,
1534 			status);
1535 	return status;
1536 }
1537 
1538 static const struct rpc_authops authgss_ops = {
1539 	.owner		= THIS_MODULE,
1540 	.au_flavor	= RPC_AUTH_GSS,
1541 	.au_name	= "RPCSEC_GSS",
1542 	.create		= gss_create,
1543 	.destroy	= gss_destroy,
1544 	.lookup_cred	= gss_lookup_cred,
1545 	.crcreate	= gss_create_cred
1546 };
1547 
1548 static const struct rpc_credops gss_credops = {
1549 	.cr_name	= "AUTH_GSS",
1550 	.crdestroy	= gss_destroy_cred,
1551 	.cr_init	= gss_cred_init,
1552 	.crbind		= rpcauth_generic_bind_cred,
1553 	.crmatch	= gss_match,
1554 	.crmarshal	= gss_marshal,
1555 	.crrefresh	= gss_refresh,
1556 	.crvalidate	= gss_validate,
1557 	.crwrap_req	= gss_wrap_req,
1558 	.crunwrap_resp	= gss_unwrap_resp,
1559 };
1560 
1561 static const struct rpc_credops gss_nullops = {
1562 	.cr_name	= "AUTH_GSS",
1563 	.crdestroy	= gss_destroy_nullcred,
1564 	.crbind		= rpcauth_generic_bind_cred,
1565 	.crmatch	= gss_match,
1566 	.crmarshal	= gss_marshal,
1567 	.crrefresh	= gss_refresh_null,
1568 	.crvalidate	= gss_validate,
1569 	.crwrap_req	= gss_wrap_req,
1570 	.crunwrap_resp	= gss_unwrap_resp,
1571 };
1572 
1573 static const struct rpc_pipe_ops gss_upcall_ops_v0 = {
1574 	.upcall		= gss_pipe_upcall,
1575 	.downcall	= gss_pipe_downcall,
1576 	.destroy_msg	= gss_pipe_destroy_msg,
1577 	.open_pipe	= gss_pipe_open_v0,
1578 	.release_pipe	= gss_pipe_release,
1579 };
1580 
1581 static const struct rpc_pipe_ops gss_upcall_ops_v1 = {
1582 	.upcall		= gss_pipe_upcall,
1583 	.downcall	= gss_pipe_downcall,
1584 	.destroy_msg	= gss_pipe_destroy_msg,
1585 	.open_pipe	= gss_pipe_open_v1,
1586 	.release_pipe	= gss_pipe_release,
1587 };
1588 
1589 /*
1590  * Initialize RPCSEC_GSS module
1591  */
1592 static int __init init_rpcsec_gss(void)
1593 {
1594 	int err = 0;
1595 
1596 	err = rpcauth_register(&authgss_ops);
1597 	if (err)
1598 		goto out;
1599 	err = gss_svc_init();
1600 	if (err)
1601 		goto out_unregister;
1602 	rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version");
1603 	return 0;
1604 out_unregister:
1605 	rpcauth_unregister(&authgss_ops);
1606 out:
1607 	return err;
1608 }
1609 
1610 static void __exit exit_rpcsec_gss(void)
1611 {
1612 	gss_svc_shutdown();
1613 	rpcauth_unregister(&authgss_ops);
1614 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
1615 }
1616 
1617 MODULE_LICENSE("GPL");
1618 module_param_named(expired_cred_retry_delay,
1619 		   gss_expired_cred_retry_delay,
1620 		   uint, 0644);
1621 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until "
1622 		"the RPC engine retries an expired credential");
1623 
1624 module_init(init_rpcsec_gss)
1625 module_exit(exit_rpcsec_gss)
1626