xref: /linux/net/sunrpc/auth_gss/auth_gss.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * linux/net/sunrpc/auth_gss/auth_gss.c
3  *
4  * RPCSEC_GSS client authentication.
5  *
6  *  Copyright (c) 2000 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Dug Song       <dugsong@monkey.org>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/sched.h>
44 #include <linux/pagemap.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/auth.h>
47 #include <linux/sunrpc/auth_gss.h>
48 #include <linux/sunrpc/svcauth_gss.h>
49 #include <linux/sunrpc/gss_err.h>
50 #include <linux/workqueue.h>
51 #include <linux/sunrpc/rpc_pipe_fs.h>
52 #include <linux/sunrpc/gss_api.h>
53 #include <asm/uaccess.h>
54 #include <linux/hashtable.h>
55 
56 #include "../netns.h"
57 
58 static const struct rpc_authops authgss_ops;
59 
60 static const struct rpc_credops gss_credops;
61 static const struct rpc_credops gss_nullops;
62 
63 #define GSS_RETRY_EXPIRED 5
64 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED;
65 
66 #define GSS_KEY_EXPIRE_TIMEO 240
67 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO;
68 
69 #ifdef RPC_DEBUG
70 # define RPCDBG_FACILITY	RPCDBG_AUTH
71 #endif
72 
73 #define GSS_CRED_SLACK		(RPC_MAX_AUTH_SIZE * 2)
74 /* length of a krb5 verifier (48), plus data added before arguments when
75  * using integrity (two 4-byte integers): */
76 #define GSS_VERF_SLACK		100
77 
78 static DEFINE_HASHTABLE(gss_auth_hash_table, 4);
79 static DEFINE_SPINLOCK(gss_auth_hash_lock);
80 
81 struct gss_pipe {
82 	struct rpc_pipe_dir_object pdo;
83 	struct rpc_pipe *pipe;
84 	struct rpc_clnt *clnt;
85 	const char *name;
86 	struct kref kref;
87 };
88 
89 struct gss_auth {
90 	struct kref kref;
91 	struct hlist_node hash;
92 	struct rpc_auth rpc_auth;
93 	struct gss_api_mech *mech;
94 	enum rpc_gss_svc service;
95 	struct rpc_clnt *client;
96 	struct net *net;
97 	/*
98 	 * There are two upcall pipes; dentry[1], named "gssd", is used
99 	 * for the new text-based upcall; dentry[0] is named after the
100 	 * mechanism (for example, "krb5") and exists for
101 	 * backwards-compatibility with older gssd's.
102 	 */
103 	struct gss_pipe *gss_pipe[2];
104 	const char *target_name;
105 };
106 
107 /* pipe_version >= 0 if and only if someone has a pipe open. */
108 static DEFINE_SPINLOCK(pipe_version_lock);
109 static struct rpc_wait_queue pipe_version_rpc_waitqueue;
110 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue);
111 
112 static void gss_free_ctx(struct gss_cl_ctx *);
113 static const struct rpc_pipe_ops gss_upcall_ops_v0;
114 static const struct rpc_pipe_ops gss_upcall_ops_v1;
115 
116 static inline struct gss_cl_ctx *
117 gss_get_ctx(struct gss_cl_ctx *ctx)
118 {
119 	atomic_inc(&ctx->count);
120 	return ctx;
121 }
122 
123 static inline void
124 gss_put_ctx(struct gss_cl_ctx *ctx)
125 {
126 	if (atomic_dec_and_test(&ctx->count))
127 		gss_free_ctx(ctx);
128 }
129 
130 /* gss_cred_set_ctx:
131  * called by gss_upcall_callback and gss_create_upcall in order
132  * to set the gss context. The actual exchange of an old context
133  * and a new one is protected by the pipe->lock.
134  */
135 static void
136 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
137 {
138 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
139 
140 	if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
141 		return;
142 	gss_get_ctx(ctx);
143 	rcu_assign_pointer(gss_cred->gc_ctx, ctx);
144 	set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
145 	smp_mb__before_clear_bit();
146 	clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
147 }
148 
149 static const void *
150 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
151 {
152 	const void *q = (const void *)((const char *)p + len);
153 	if (unlikely(q > end || q < p))
154 		return ERR_PTR(-EFAULT);
155 	memcpy(res, p, len);
156 	return q;
157 }
158 
159 static inline const void *
160 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
161 {
162 	const void *q;
163 	unsigned int len;
164 
165 	p = simple_get_bytes(p, end, &len, sizeof(len));
166 	if (IS_ERR(p))
167 		return p;
168 	q = (const void *)((const char *)p + len);
169 	if (unlikely(q > end || q < p))
170 		return ERR_PTR(-EFAULT);
171 	dest->data = kmemdup(p, len, GFP_NOFS);
172 	if (unlikely(dest->data == NULL))
173 		return ERR_PTR(-ENOMEM);
174 	dest->len = len;
175 	return q;
176 }
177 
178 static struct gss_cl_ctx *
179 gss_cred_get_ctx(struct rpc_cred *cred)
180 {
181 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
182 	struct gss_cl_ctx *ctx = NULL;
183 
184 	rcu_read_lock();
185 	if (gss_cred->gc_ctx)
186 		ctx = gss_get_ctx(gss_cred->gc_ctx);
187 	rcu_read_unlock();
188 	return ctx;
189 }
190 
191 static struct gss_cl_ctx *
192 gss_alloc_context(void)
193 {
194 	struct gss_cl_ctx *ctx;
195 
196 	ctx = kzalloc(sizeof(*ctx), GFP_NOFS);
197 	if (ctx != NULL) {
198 		ctx->gc_proc = RPC_GSS_PROC_DATA;
199 		ctx->gc_seq = 1;	/* NetApp 6.4R1 doesn't accept seq. no. 0 */
200 		spin_lock_init(&ctx->gc_seq_lock);
201 		atomic_set(&ctx->count,1);
202 	}
203 	return ctx;
204 }
205 
206 #define GSSD_MIN_TIMEOUT (60 * 60)
207 static const void *
208 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
209 {
210 	const void *q;
211 	unsigned int seclen;
212 	unsigned int timeout;
213 	unsigned long now = jiffies;
214 	u32 window_size;
215 	int ret;
216 
217 	/* First unsigned int gives the remaining lifetime in seconds of the
218 	 * credential - e.g. the remaining TGT lifetime for Kerberos or
219 	 * the -t value passed to GSSD.
220 	 */
221 	p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
222 	if (IS_ERR(p))
223 		goto err;
224 	if (timeout == 0)
225 		timeout = GSSD_MIN_TIMEOUT;
226 	ctx->gc_expiry = now + ((unsigned long)timeout * HZ);
227 	/* Sequence number window. Determines the maximum number of
228 	 * simultaneous requests
229 	 */
230 	p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
231 	if (IS_ERR(p))
232 		goto err;
233 	ctx->gc_win = window_size;
234 	/* gssd signals an error by passing ctx->gc_win = 0: */
235 	if (ctx->gc_win == 0) {
236 		/*
237 		 * in which case, p points to an error code. Anything other
238 		 * than -EKEYEXPIRED gets converted to -EACCES.
239 		 */
240 		p = simple_get_bytes(p, end, &ret, sizeof(ret));
241 		if (!IS_ERR(p))
242 			p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) :
243 						    ERR_PTR(-EACCES);
244 		goto err;
245 	}
246 	/* copy the opaque wire context */
247 	p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
248 	if (IS_ERR(p))
249 		goto err;
250 	/* import the opaque security context */
251 	p  = simple_get_bytes(p, end, &seclen, sizeof(seclen));
252 	if (IS_ERR(p))
253 		goto err;
254 	q = (const void *)((const char *)p + seclen);
255 	if (unlikely(q > end || q < p)) {
256 		p = ERR_PTR(-EFAULT);
257 		goto err;
258 	}
259 	ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_NOFS);
260 	if (ret < 0) {
261 		p = ERR_PTR(ret);
262 		goto err;
263 	}
264 	dprintk("RPC:       %s Success. gc_expiry %lu now %lu timeout %u\n",
265 		__func__, ctx->gc_expiry, now, timeout);
266 	return q;
267 err:
268 	dprintk("RPC:       %s returns error %ld\n", __func__, -PTR_ERR(p));
269 	return p;
270 }
271 
272 #define UPCALL_BUF_LEN 128
273 
274 struct gss_upcall_msg {
275 	atomic_t count;
276 	kuid_t	uid;
277 	struct rpc_pipe_msg msg;
278 	struct list_head list;
279 	struct gss_auth *auth;
280 	struct rpc_pipe *pipe;
281 	struct rpc_wait_queue rpc_waitqueue;
282 	wait_queue_head_t waitqueue;
283 	struct gss_cl_ctx *ctx;
284 	char databuf[UPCALL_BUF_LEN];
285 };
286 
287 static int get_pipe_version(struct net *net)
288 {
289 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
290 	int ret;
291 
292 	spin_lock(&pipe_version_lock);
293 	if (sn->pipe_version >= 0) {
294 		atomic_inc(&sn->pipe_users);
295 		ret = sn->pipe_version;
296 	} else
297 		ret = -EAGAIN;
298 	spin_unlock(&pipe_version_lock);
299 	return ret;
300 }
301 
302 static void put_pipe_version(struct net *net)
303 {
304 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
305 
306 	if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) {
307 		sn->pipe_version = -1;
308 		spin_unlock(&pipe_version_lock);
309 	}
310 }
311 
312 static void
313 gss_release_msg(struct gss_upcall_msg *gss_msg)
314 {
315 	struct net *net = gss_msg->auth->net;
316 	if (!atomic_dec_and_test(&gss_msg->count))
317 		return;
318 	put_pipe_version(net);
319 	BUG_ON(!list_empty(&gss_msg->list));
320 	if (gss_msg->ctx != NULL)
321 		gss_put_ctx(gss_msg->ctx);
322 	rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue);
323 	kfree(gss_msg);
324 }
325 
326 static struct gss_upcall_msg *
327 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid)
328 {
329 	struct gss_upcall_msg *pos;
330 	list_for_each_entry(pos, &pipe->in_downcall, list) {
331 		if (!uid_eq(pos->uid, uid))
332 			continue;
333 		atomic_inc(&pos->count);
334 		dprintk("RPC:       %s found msg %p\n", __func__, pos);
335 		return pos;
336 	}
337 	dprintk("RPC:       %s found nothing\n", __func__);
338 	return NULL;
339 }
340 
341 /* Try to add an upcall to the pipefs queue.
342  * If an upcall owned by our uid already exists, then we return a reference
343  * to that upcall instead of adding the new upcall.
344  */
345 static inline struct gss_upcall_msg *
346 gss_add_msg(struct gss_upcall_msg *gss_msg)
347 {
348 	struct rpc_pipe *pipe = gss_msg->pipe;
349 	struct gss_upcall_msg *old;
350 
351 	spin_lock(&pipe->lock);
352 	old = __gss_find_upcall(pipe, gss_msg->uid);
353 	if (old == NULL) {
354 		atomic_inc(&gss_msg->count);
355 		list_add(&gss_msg->list, &pipe->in_downcall);
356 	} else
357 		gss_msg = old;
358 	spin_unlock(&pipe->lock);
359 	return gss_msg;
360 }
361 
362 static void
363 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
364 {
365 	list_del_init(&gss_msg->list);
366 	rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
367 	wake_up_all(&gss_msg->waitqueue);
368 	atomic_dec(&gss_msg->count);
369 }
370 
371 static void
372 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
373 {
374 	struct rpc_pipe *pipe = gss_msg->pipe;
375 
376 	if (list_empty(&gss_msg->list))
377 		return;
378 	spin_lock(&pipe->lock);
379 	if (!list_empty(&gss_msg->list))
380 		__gss_unhash_msg(gss_msg);
381 	spin_unlock(&pipe->lock);
382 }
383 
384 static void
385 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg)
386 {
387 	switch (gss_msg->msg.errno) {
388 	case 0:
389 		if (gss_msg->ctx == NULL)
390 			break;
391 		clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
392 		gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx);
393 		break;
394 	case -EKEYEXPIRED:
395 		set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
396 	}
397 	gss_cred->gc_upcall_timestamp = jiffies;
398 	gss_cred->gc_upcall = NULL;
399 	rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
400 }
401 
402 static void
403 gss_upcall_callback(struct rpc_task *task)
404 {
405 	struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred,
406 			struct gss_cred, gc_base);
407 	struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
408 	struct rpc_pipe *pipe = gss_msg->pipe;
409 
410 	spin_lock(&pipe->lock);
411 	gss_handle_downcall_result(gss_cred, gss_msg);
412 	spin_unlock(&pipe->lock);
413 	task->tk_status = gss_msg->msg.errno;
414 	gss_release_msg(gss_msg);
415 }
416 
417 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg)
418 {
419 	uid_t uid = from_kuid(&init_user_ns, gss_msg->uid);
420 	memcpy(gss_msg->databuf, &uid, sizeof(uid));
421 	gss_msg->msg.data = gss_msg->databuf;
422 	gss_msg->msg.len = sizeof(uid);
423 
424 	BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf));
425 }
426 
427 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg,
428 				const char *service_name,
429 				const char *target_name)
430 {
431 	struct gss_api_mech *mech = gss_msg->auth->mech;
432 	char *p = gss_msg->databuf;
433 	size_t buflen = sizeof(gss_msg->databuf);
434 	int len;
435 
436 	len = scnprintf(p, buflen, "mech=%s uid=%d ", mech->gm_name,
437 			from_kuid(&init_user_ns, gss_msg->uid));
438 	buflen -= len;
439 	p += len;
440 	gss_msg->msg.len = len;
441 	if (target_name) {
442 		len = scnprintf(p, buflen, "target=%s ", target_name);
443 		buflen -= len;
444 		p += len;
445 		gss_msg->msg.len += len;
446 	}
447 	if (service_name != NULL) {
448 		len = scnprintf(p, buflen, "service=%s ", service_name);
449 		buflen -= len;
450 		p += len;
451 		gss_msg->msg.len += len;
452 	}
453 	if (mech->gm_upcall_enctypes) {
454 		len = scnprintf(p, buflen, "enctypes=%s ",
455 				mech->gm_upcall_enctypes);
456 		buflen -= len;
457 		p += len;
458 		gss_msg->msg.len += len;
459 	}
460 	len = scnprintf(p, buflen, "\n");
461 	if (len == 0)
462 		goto out_overflow;
463 	gss_msg->msg.len += len;
464 
465 	gss_msg->msg.data = gss_msg->databuf;
466 	return 0;
467 out_overflow:
468 	WARN_ON_ONCE(1);
469 	return -ENOMEM;
470 }
471 
472 static struct gss_upcall_msg *
473 gss_alloc_msg(struct gss_auth *gss_auth,
474 		kuid_t uid, const char *service_name)
475 {
476 	struct gss_upcall_msg *gss_msg;
477 	int vers;
478 	int err = -ENOMEM;
479 
480 	gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS);
481 	if (gss_msg == NULL)
482 		goto err;
483 	vers = get_pipe_version(gss_auth->net);
484 	err = vers;
485 	if (err < 0)
486 		goto err_free_msg;
487 	gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe;
488 	INIT_LIST_HEAD(&gss_msg->list);
489 	rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
490 	init_waitqueue_head(&gss_msg->waitqueue);
491 	atomic_set(&gss_msg->count, 1);
492 	gss_msg->uid = uid;
493 	gss_msg->auth = gss_auth;
494 	switch (vers) {
495 	case 0:
496 		gss_encode_v0_msg(gss_msg);
497 		break;
498 	default:
499 		err = gss_encode_v1_msg(gss_msg, service_name, gss_auth->target_name);
500 		if (err)
501 			goto err_free_msg;
502 	};
503 	return gss_msg;
504 err_free_msg:
505 	kfree(gss_msg);
506 err:
507 	return ERR_PTR(err);
508 }
509 
510 static struct gss_upcall_msg *
511 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred)
512 {
513 	struct gss_cred *gss_cred = container_of(cred,
514 			struct gss_cred, gc_base);
515 	struct gss_upcall_msg *gss_new, *gss_msg;
516 	kuid_t uid = cred->cr_uid;
517 
518 	gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal);
519 	if (IS_ERR(gss_new))
520 		return gss_new;
521 	gss_msg = gss_add_msg(gss_new);
522 	if (gss_msg == gss_new) {
523 		int res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg);
524 		if (res) {
525 			gss_unhash_msg(gss_new);
526 			gss_msg = ERR_PTR(res);
527 		}
528 	} else
529 		gss_release_msg(gss_new);
530 	return gss_msg;
531 }
532 
533 static void warn_gssd(void)
534 {
535 	static unsigned long ratelimit;
536 	unsigned long now = jiffies;
537 
538 	if (time_after(now, ratelimit)) {
539 		printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n"
540 				"Please check user daemon is running.\n");
541 		ratelimit = now + 15*HZ;
542 	}
543 }
544 
545 static inline int
546 gss_refresh_upcall(struct rpc_task *task)
547 {
548 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
549 	struct gss_auth *gss_auth = container_of(cred->cr_auth,
550 			struct gss_auth, rpc_auth);
551 	struct gss_cred *gss_cred = container_of(cred,
552 			struct gss_cred, gc_base);
553 	struct gss_upcall_msg *gss_msg;
554 	struct rpc_pipe *pipe;
555 	int err = 0;
556 
557 	dprintk("RPC: %5u %s for uid %u\n",
558 		task->tk_pid, __func__, from_kuid(&init_user_ns, cred->cr_uid));
559 	gss_msg = gss_setup_upcall(gss_auth, cred);
560 	if (PTR_ERR(gss_msg) == -EAGAIN) {
561 		/* XXX: warning on the first, under the assumption we
562 		 * shouldn't normally hit this case on a refresh. */
563 		warn_gssd();
564 		task->tk_timeout = 15*HZ;
565 		rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL);
566 		return -EAGAIN;
567 	}
568 	if (IS_ERR(gss_msg)) {
569 		err = PTR_ERR(gss_msg);
570 		goto out;
571 	}
572 	pipe = gss_msg->pipe;
573 	spin_lock(&pipe->lock);
574 	if (gss_cred->gc_upcall != NULL)
575 		rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL);
576 	else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
577 		task->tk_timeout = 0;
578 		gss_cred->gc_upcall = gss_msg;
579 		/* gss_upcall_callback will release the reference to gss_upcall_msg */
580 		atomic_inc(&gss_msg->count);
581 		rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback);
582 	} else {
583 		gss_handle_downcall_result(gss_cred, gss_msg);
584 		err = gss_msg->msg.errno;
585 	}
586 	spin_unlock(&pipe->lock);
587 	gss_release_msg(gss_msg);
588 out:
589 	dprintk("RPC: %5u %s for uid %u result %d\n",
590 		task->tk_pid, __func__,
591 		from_kuid(&init_user_ns, cred->cr_uid),	err);
592 	return err;
593 }
594 
595 static inline int
596 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
597 {
598 	struct net *net = gss_auth->net;
599 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
600 	struct rpc_pipe *pipe;
601 	struct rpc_cred *cred = &gss_cred->gc_base;
602 	struct gss_upcall_msg *gss_msg;
603 	unsigned long timeout;
604 	DEFINE_WAIT(wait);
605 	int err;
606 
607 	dprintk("RPC:       %s for uid %u\n",
608 		__func__, from_kuid(&init_user_ns, cred->cr_uid));
609 retry:
610 	err = 0;
611 	/* Default timeout is 15s unless we know that gssd is not running */
612 	timeout = 15 * HZ;
613 	if (!sn->gssd_running)
614 		timeout = HZ >> 2;
615 	gss_msg = gss_setup_upcall(gss_auth, cred);
616 	if (PTR_ERR(gss_msg) == -EAGAIN) {
617 		err = wait_event_interruptible_timeout(pipe_version_waitqueue,
618 				sn->pipe_version >= 0, timeout);
619 		if (sn->pipe_version < 0) {
620 			if (err == 0)
621 				sn->gssd_running = 0;
622 			warn_gssd();
623 			err = -EACCES;
624 		}
625 		if (err < 0)
626 			goto out;
627 		goto retry;
628 	}
629 	if (IS_ERR(gss_msg)) {
630 		err = PTR_ERR(gss_msg);
631 		goto out;
632 	}
633 	pipe = gss_msg->pipe;
634 	for (;;) {
635 		prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE);
636 		spin_lock(&pipe->lock);
637 		if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
638 			break;
639 		}
640 		spin_unlock(&pipe->lock);
641 		if (fatal_signal_pending(current)) {
642 			err = -ERESTARTSYS;
643 			goto out_intr;
644 		}
645 		schedule();
646 	}
647 	if (gss_msg->ctx)
648 		gss_cred_set_ctx(cred, gss_msg->ctx);
649 	else
650 		err = gss_msg->msg.errno;
651 	spin_unlock(&pipe->lock);
652 out_intr:
653 	finish_wait(&gss_msg->waitqueue, &wait);
654 	gss_release_msg(gss_msg);
655 out:
656 	dprintk("RPC:       %s for uid %u result %d\n",
657 		__func__, from_kuid(&init_user_ns, cred->cr_uid), err);
658 	return err;
659 }
660 
661 #define MSG_BUF_MAXSIZE 1024
662 
663 static ssize_t
664 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
665 {
666 	const void *p, *end;
667 	void *buf;
668 	struct gss_upcall_msg *gss_msg;
669 	struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe;
670 	struct gss_cl_ctx *ctx;
671 	uid_t id;
672 	kuid_t uid;
673 	ssize_t err = -EFBIG;
674 
675 	if (mlen > MSG_BUF_MAXSIZE)
676 		goto out;
677 	err = -ENOMEM;
678 	buf = kmalloc(mlen, GFP_NOFS);
679 	if (!buf)
680 		goto out;
681 
682 	err = -EFAULT;
683 	if (copy_from_user(buf, src, mlen))
684 		goto err;
685 
686 	end = (const void *)((char *)buf + mlen);
687 	p = simple_get_bytes(buf, end, &id, sizeof(id));
688 	if (IS_ERR(p)) {
689 		err = PTR_ERR(p);
690 		goto err;
691 	}
692 
693 	uid = make_kuid(&init_user_ns, id);
694 	if (!uid_valid(uid)) {
695 		err = -EINVAL;
696 		goto err;
697 	}
698 
699 	err = -ENOMEM;
700 	ctx = gss_alloc_context();
701 	if (ctx == NULL)
702 		goto err;
703 
704 	err = -ENOENT;
705 	/* Find a matching upcall */
706 	spin_lock(&pipe->lock);
707 	gss_msg = __gss_find_upcall(pipe, uid);
708 	if (gss_msg == NULL) {
709 		spin_unlock(&pipe->lock);
710 		goto err_put_ctx;
711 	}
712 	list_del_init(&gss_msg->list);
713 	spin_unlock(&pipe->lock);
714 
715 	p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
716 	if (IS_ERR(p)) {
717 		err = PTR_ERR(p);
718 		switch (err) {
719 		case -EACCES:
720 		case -EKEYEXPIRED:
721 			gss_msg->msg.errno = err;
722 			err = mlen;
723 			break;
724 		case -EFAULT:
725 		case -ENOMEM:
726 		case -EINVAL:
727 		case -ENOSYS:
728 			gss_msg->msg.errno = -EAGAIN;
729 			break;
730 		default:
731 			printk(KERN_CRIT "%s: bad return from "
732 				"gss_fill_context: %zd\n", __func__, err);
733 			BUG();
734 		}
735 		goto err_release_msg;
736 	}
737 	gss_msg->ctx = gss_get_ctx(ctx);
738 	err = mlen;
739 
740 err_release_msg:
741 	spin_lock(&pipe->lock);
742 	__gss_unhash_msg(gss_msg);
743 	spin_unlock(&pipe->lock);
744 	gss_release_msg(gss_msg);
745 err_put_ctx:
746 	gss_put_ctx(ctx);
747 err:
748 	kfree(buf);
749 out:
750 	dprintk("RPC:       %s returning %Zd\n", __func__, err);
751 	return err;
752 }
753 
754 static int gss_pipe_open(struct inode *inode, int new_version)
755 {
756 	struct net *net = inode->i_sb->s_fs_info;
757 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
758 	int ret = 0;
759 
760 	spin_lock(&pipe_version_lock);
761 	if (sn->pipe_version < 0) {
762 		/* First open of any gss pipe determines the version: */
763 		sn->pipe_version = new_version;
764 		rpc_wake_up(&pipe_version_rpc_waitqueue);
765 		wake_up(&pipe_version_waitqueue);
766 	} else if (sn->pipe_version != new_version) {
767 		/* Trying to open a pipe of a different version */
768 		ret = -EBUSY;
769 		goto out;
770 	}
771 	atomic_inc(&sn->pipe_users);
772 out:
773 	spin_unlock(&pipe_version_lock);
774 	return ret;
775 
776 }
777 
778 static int gss_pipe_open_v0(struct inode *inode)
779 {
780 	return gss_pipe_open(inode, 0);
781 }
782 
783 static int gss_pipe_open_v1(struct inode *inode)
784 {
785 	return gss_pipe_open(inode, 1);
786 }
787 
788 static void
789 gss_pipe_release(struct inode *inode)
790 {
791 	struct net *net = inode->i_sb->s_fs_info;
792 	struct rpc_pipe *pipe = RPC_I(inode)->pipe;
793 	struct gss_upcall_msg *gss_msg;
794 
795 restart:
796 	spin_lock(&pipe->lock);
797 	list_for_each_entry(gss_msg, &pipe->in_downcall, list) {
798 
799 		if (!list_empty(&gss_msg->msg.list))
800 			continue;
801 		gss_msg->msg.errno = -EPIPE;
802 		atomic_inc(&gss_msg->count);
803 		__gss_unhash_msg(gss_msg);
804 		spin_unlock(&pipe->lock);
805 		gss_release_msg(gss_msg);
806 		goto restart;
807 	}
808 	spin_unlock(&pipe->lock);
809 
810 	put_pipe_version(net);
811 }
812 
813 static void
814 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
815 {
816 	struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
817 
818 	if (msg->errno < 0) {
819 		dprintk("RPC:       %s releasing msg %p\n",
820 			__func__, gss_msg);
821 		atomic_inc(&gss_msg->count);
822 		gss_unhash_msg(gss_msg);
823 		if (msg->errno == -ETIMEDOUT)
824 			warn_gssd();
825 		gss_release_msg(gss_msg);
826 	}
827 }
828 
829 static void gss_pipe_dentry_destroy(struct dentry *dir,
830 		struct rpc_pipe_dir_object *pdo)
831 {
832 	struct gss_pipe *gss_pipe = pdo->pdo_data;
833 	struct rpc_pipe *pipe = gss_pipe->pipe;
834 
835 	if (pipe->dentry != NULL) {
836 		rpc_unlink(pipe->dentry);
837 		pipe->dentry = NULL;
838 	}
839 }
840 
841 static int gss_pipe_dentry_create(struct dentry *dir,
842 		struct rpc_pipe_dir_object *pdo)
843 {
844 	struct gss_pipe *p = pdo->pdo_data;
845 	struct dentry *dentry;
846 
847 	dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe);
848 	if (IS_ERR(dentry))
849 		return PTR_ERR(dentry);
850 	p->pipe->dentry = dentry;
851 	return 0;
852 }
853 
854 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = {
855 	.create = gss_pipe_dentry_create,
856 	.destroy = gss_pipe_dentry_destroy,
857 };
858 
859 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt,
860 		const char *name,
861 		const struct rpc_pipe_ops *upcall_ops)
862 {
863 	struct gss_pipe *p;
864 	int err = -ENOMEM;
865 
866 	p = kmalloc(sizeof(*p), GFP_KERNEL);
867 	if (p == NULL)
868 		goto err;
869 	p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN);
870 	if (IS_ERR(p->pipe)) {
871 		err = PTR_ERR(p->pipe);
872 		goto err_free_gss_pipe;
873 	}
874 	p->name = name;
875 	p->clnt = clnt;
876 	kref_init(&p->kref);
877 	rpc_init_pipe_dir_object(&p->pdo,
878 			&gss_pipe_dir_object_ops,
879 			p);
880 	return p;
881 err_free_gss_pipe:
882 	kfree(p);
883 err:
884 	return ERR_PTR(err);
885 }
886 
887 struct gss_alloc_pdo {
888 	struct rpc_clnt *clnt;
889 	const char *name;
890 	const struct rpc_pipe_ops *upcall_ops;
891 };
892 
893 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data)
894 {
895 	struct gss_pipe *gss_pipe;
896 	struct gss_alloc_pdo *args = data;
897 
898 	if (pdo->pdo_ops != &gss_pipe_dir_object_ops)
899 		return 0;
900 	gss_pipe = container_of(pdo, struct gss_pipe, pdo);
901 	if (strcmp(gss_pipe->name, args->name) != 0)
902 		return 0;
903 	if (!kref_get_unless_zero(&gss_pipe->kref))
904 		return 0;
905 	return 1;
906 }
907 
908 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data)
909 {
910 	struct gss_pipe *gss_pipe;
911 	struct gss_alloc_pdo *args = data;
912 
913 	gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops);
914 	if (!IS_ERR(gss_pipe))
915 		return &gss_pipe->pdo;
916 	return NULL;
917 }
918 
919 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt,
920 		const char *name,
921 		const struct rpc_pipe_ops *upcall_ops)
922 {
923 	struct net *net = rpc_net_ns(clnt);
924 	struct rpc_pipe_dir_object *pdo;
925 	struct gss_alloc_pdo args = {
926 		.clnt = clnt,
927 		.name = name,
928 		.upcall_ops = upcall_ops,
929 	};
930 
931 	pdo = rpc_find_or_alloc_pipe_dir_object(net,
932 			&clnt->cl_pipedir_objects,
933 			gss_pipe_match_pdo,
934 			gss_pipe_alloc_pdo,
935 			&args);
936 	if (pdo != NULL)
937 		return container_of(pdo, struct gss_pipe, pdo);
938 	return ERR_PTR(-ENOMEM);
939 }
940 
941 static void __gss_pipe_free(struct gss_pipe *p)
942 {
943 	struct rpc_clnt *clnt = p->clnt;
944 	struct net *net = rpc_net_ns(clnt);
945 
946 	rpc_remove_pipe_dir_object(net,
947 			&clnt->cl_pipedir_objects,
948 			&p->pdo);
949 	rpc_destroy_pipe_data(p->pipe);
950 	kfree(p);
951 }
952 
953 static void __gss_pipe_release(struct kref *kref)
954 {
955 	struct gss_pipe *p = container_of(kref, struct gss_pipe, kref);
956 
957 	__gss_pipe_free(p);
958 }
959 
960 static void gss_pipe_free(struct gss_pipe *p)
961 {
962 	if (p != NULL)
963 		kref_put(&p->kref, __gss_pipe_release);
964 }
965 
966 /*
967  * NOTE: we have the opportunity to use different
968  * parameters based on the input flavor (which must be a pseudoflavor)
969  */
970 static struct gss_auth *
971 gss_create_new(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
972 {
973 	rpc_authflavor_t flavor = args->pseudoflavor;
974 	struct gss_auth *gss_auth;
975 	struct gss_pipe *gss_pipe;
976 	struct rpc_auth * auth;
977 	int err = -ENOMEM; /* XXX? */
978 
979 	dprintk("RPC:       creating GSS authenticator for client %p\n", clnt);
980 
981 	if (!try_module_get(THIS_MODULE))
982 		return ERR_PTR(err);
983 	if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
984 		goto out_dec;
985 	INIT_HLIST_NODE(&gss_auth->hash);
986 	gss_auth->target_name = NULL;
987 	if (args->target_name) {
988 		gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL);
989 		if (gss_auth->target_name == NULL)
990 			goto err_free;
991 	}
992 	gss_auth->client = clnt;
993 	gss_auth->net = get_net(rpc_net_ns(clnt));
994 	err = -EINVAL;
995 	gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
996 	if (!gss_auth->mech) {
997 		dprintk("RPC:       Pseudoflavor %d not found!\n", flavor);
998 		goto err_put_net;
999 	}
1000 	gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
1001 	if (gss_auth->service == 0)
1002 		goto err_put_mech;
1003 	auth = &gss_auth->rpc_auth;
1004 	auth->au_cslack = GSS_CRED_SLACK >> 2;
1005 	auth->au_rslack = GSS_VERF_SLACK >> 2;
1006 	auth->au_ops = &authgss_ops;
1007 	auth->au_flavor = flavor;
1008 	atomic_set(&auth->au_count, 1);
1009 	kref_init(&gss_auth->kref);
1010 
1011 	err = rpcauth_init_credcache(auth);
1012 	if (err)
1013 		goto err_put_mech;
1014 	/*
1015 	 * Note: if we created the old pipe first, then someone who
1016 	 * examined the directory at the right moment might conclude
1017 	 * that we supported only the old pipe.  So we instead create
1018 	 * the new pipe first.
1019 	 */
1020 	gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1);
1021 	if (IS_ERR(gss_pipe)) {
1022 		err = PTR_ERR(gss_pipe);
1023 		goto err_destroy_credcache;
1024 	}
1025 	gss_auth->gss_pipe[1] = gss_pipe;
1026 
1027 	gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name,
1028 			&gss_upcall_ops_v0);
1029 	if (IS_ERR(gss_pipe)) {
1030 		err = PTR_ERR(gss_pipe);
1031 		goto err_destroy_pipe_1;
1032 	}
1033 	gss_auth->gss_pipe[0] = gss_pipe;
1034 
1035 	return gss_auth;
1036 err_destroy_pipe_1:
1037 	gss_pipe_free(gss_auth->gss_pipe[1]);
1038 err_destroy_credcache:
1039 	rpcauth_destroy_credcache(auth);
1040 err_put_mech:
1041 	gss_mech_put(gss_auth->mech);
1042 err_put_net:
1043 	put_net(gss_auth->net);
1044 err_free:
1045 	kfree(gss_auth->target_name);
1046 	kfree(gss_auth);
1047 out_dec:
1048 	module_put(THIS_MODULE);
1049 	return ERR_PTR(err);
1050 }
1051 
1052 static void
1053 gss_free(struct gss_auth *gss_auth)
1054 {
1055 	gss_pipe_free(gss_auth->gss_pipe[0]);
1056 	gss_pipe_free(gss_auth->gss_pipe[1]);
1057 	gss_mech_put(gss_auth->mech);
1058 	put_net(gss_auth->net);
1059 	kfree(gss_auth->target_name);
1060 
1061 	kfree(gss_auth);
1062 	module_put(THIS_MODULE);
1063 }
1064 
1065 static void
1066 gss_free_callback(struct kref *kref)
1067 {
1068 	struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
1069 
1070 	gss_free(gss_auth);
1071 }
1072 
1073 static void
1074 gss_destroy(struct rpc_auth *auth)
1075 {
1076 	struct gss_auth *gss_auth = container_of(auth,
1077 			struct gss_auth, rpc_auth);
1078 
1079 	dprintk("RPC:       destroying GSS authenticator %p flavor %d\n",
1080 			auth, auth->au_flavor);
1081 
1082 	if (hash_hashed(&gss_auth->hash)) {
1083 		spin_lock(&gss_auth_hash_lock);
1084 		hash_del(&gss_auth->hash);
1085 		spin_unlock(&gss_auth_hash_lock);
1086 	}
1087 
1088 	gss_pipe_free(gss_auth->gss_pipe[0]);
1089 	gss_auth->gss_pipe[0] = NULL;
1090 	gss_pipe_free(gss_auth->gss_pipe[1]);
1091 	gss_auth->gss_pipe[1] = NULL;
1092 	rpcauth_destroy_credcache(auth);
1093 
1094 	kref_put(&gss_auth->kref, gss_free_callback);
1095 }
1096 
1097 /*
1098  * Auths may be shared between rpc clients that were cloned from a
1099  * common client with the same xprt, if they also share the flavor and
1100  * target_name.
1101  *
1102  * The auth is looked up from the oldest parent sharing the same
1103  * cl_xprt, and the auth itself references only that common parent
1104  * (which is guaranteed to last as long as any of its descendants).
1105  */
1106 static struct gss_auth *
1107 gss_auth_find_or_add_hashed(struct rpc_auth_create_args *args,
1108 		struct rpc_clnt *clnt,
1109 		struct gss_auth *new)
1110 {
1111 	struct gss_auth *gss_auth;
1112 	unsigned long hashval = (unsigned long)clnt;
1113 
1114 	spin_lock(&gss_auth_hash_lock);
1115 	hash_for_each_possible(gss_auth_hash_table,
1116 			gss_auth,
1117 			hash,
1118 			hashval) {
1119 		if (gss_auth->client != clnt)
1120 			continue;
1121 		if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor)
1122 			continue;
1123 		if (gss_auth->target_name != args->target_name) {
1124 			if (gss_auth->target_name == NULL)
1125 				continue;
1126 			if (args->target_name == NULL)
1127 				continue;
1128 			if (strcmp(gss_auth->target_name, args->target_name))
1129 				continue;
1130 		}
1131 		if (!atomic_inc_not_zero(&gss_auth->rpc_auth.au_count))
1132 			continue;
1133 		goto out;
1134 	}
1135 	if (new)
1136 		hash_add(gss_auth_hash_table, &new->hash, hashval);
1137 	gss_auth = new;
1138 out:
1139 	spin_unlock(&gss_auth_hash_lock);
1140 	return gss_auth;
1141 }
1142 
1143 static struct gss_auth *
1144 gss_create_hashed(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1145 {
1146 	struct gss_auth *gss_auth;
1147 	struct gss_auth *new;
1148 
1149 	gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL);
1150 	if (gss_auth != NULL)
1151 		goto out;
1152 	new = gss_create_new(args, clnt);
1153 	if (IS_ERR(new))
1154 		return new;
1155 	gss_auth = gss_auth_find_or_add_hashed(args, clnt, new);
1156 	if (gss_auth != new)
1157 		gss_destroy(&new->rpc_auth);
1158 out:
1159 	return gss_auth;
1160 }
1161 
1162 static struct rpc_auth *
1163 gss_create(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1164 {
1165 	struct gss_auth *gss_auth;
1166 	struct rpc_xprt *xprt = rcu_access_pointer(clnt->cl_xprt);
1167 
1168 	while (clnt != clnt->cl_parent) {
1169 		struct rpc_clnt *parent = clnt->cl_parent;
1170 		/* Find the original parent for this transport */
1171 		if (rcu_access_pointer(parent->cl_xprt) != xprt)
1172 			break;
1173 		clnt = parent;
1174 	}
1175 
1176 	gss_auth = gss_create_hashed(args, clnt);
1177 	if (IS_ERR(gss_auth))
1178 		return ERR_CAST(gss_auth);
1179 	return &gss_auth->rpc_auth;
1180 }
1181 
1182 /*
1183  * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
1184  * to the server with the GSS control procedure field set to
1185  * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
1186  * all RPCSEC_GSS state associated with that context.
1187  */
1188 static int
1189 gss_destroying_context(struct rpc_cred *cred)
1190 {
1191 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1192 	struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1193 	struct rpc_task *task;
1194 
1195 	if (gss_cred->gc_ctx == NULL ||
1196 	    test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0)
1197 		return 0;
1198 
1199 	gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY;
1200 	cred->cr_ops = &gss_nullops;
1201 
1202 	/* Take a reference to ensure the cred will be destroyed either
1203 	 * by the RPC call or by the put_rpccred() below */
1204 	get_rpccred(cred);
1205 
1206 	task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT);
1207 	if (!IS_ERR(task))
1208 		rpc_put_task(task);
1209 
1210 	put_rpccred(cred);
1211 	return 1;
1212 }
1213 
1214 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
1215  * to create a new cred or context, so they check that things have been
1216  * allocated before freeing them. */
1217 static void
1218 gss_do_free_ctx(struct gss_cl_ctx *ctx)
1219 {
1220 	dprintk("RPC:       %s\n", __func__);
1221 
1222 	gss_delete_sec_context(&ctx->gc_gss_ctx);
1223 	kfree(ctx->gc_wire_ctx.data);
1224 	kfree(ctx);
1225 }
1226 
1227 static void
1228 gss_free_ctx_callback(struct rcu_head *head)
1229 {
1230 	struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
1231 	gss_do_free_ctx(ctx);
1232 }
1233 
1234 static void
1235 gss_free_ctx(struct gss_cl_ctx *ctx)
1236 {
1237 	call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
1238 }
1239 
1240 static void
1241 gss_free_cred(struct gss_cred *gss_cred)
1242 {
1243 	dprintk("RPC:       %s cred=%p\n", __func__, gss_cred);
1244 	kfree(gss_cred);
1245 }
1246 
1247 static void
1248 gss_free_cred_callback(struct rcu_head *head)
1249 {
1250 	struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
1251 	gss_free_cred(gss_cred);
1252 }
1253 
1254 static void
1255 gss_destroy_nullcred(struct rpc_cred *cred)
1256 {
1257 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1258 	struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1259 	struct gss_cl_ctx *ctx = gss_cred->gc_ctx;
1260 
1261 	RCU_INIT_POINTER(gss_cred->gc_ctx, NULL);
1262 	call_rcu(&cred->cr_rcu, gss_free_cred_callback);
1263 	if (ctx)
1264 		gss_put_ctx(ctx);
1265 	kref_put(&gss_auth->kref, gss_free_callback);
1266 }
1267 
1268 static void
1269 gss_destroy_cred(struct rpc_cred *cred)
1270 {
1271 
1272 	if (gss_destroying_context(cred))
1273 		return;
1274 	gss_destroy_nullcred(cred);
1275 }
1276 
1277 /*
1278  * Lookup RPCSEC_GSS cred for the current process
1279  */
1280 static struct rpc_cred *
1281 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
1282 {
1283 	return rpcauth_lookup_credcache(auth, acred, flags);
1284 }
1285 
1286 static struct rpc_cred *
1287 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
1288 {
1289 	struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1290 	struct gss_cred	*cred = NULL;
1291 	int err = -ENOMEM;
1292 
1293 	dprintk("RPC:       %s for uid %d, flavor %d\n",
1294 		__func__, from_kuid(&init_user_ns, acred->uid),
1295 		auth->au_flavor);
1296 
1297 	if (!(cred = kzalloc(sizeof(*cred), GFP_NOFS)))
1298 		goto out_err;
1299 
1300 	rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
1301 	/*
1302 	 * Note: in order to force a call to call_refresh(), we deliberately
1303 	 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
1304 	 */
1305 	cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
1306 	cred->gc_service = gss_auth->service;
1307 	cred->gc_principal = NULL;
1308 	if (acred->machine_cred)
1309 		cred->gc_principal = acred->principal;
1310 	kref_get(&gss_auth->kref);
1311 	return &cred->gc_base;
1312 
1313 out_err:
1314 	dprintk("RPC:       %s failed with error %d\n", __func__, err);
1315 	return ERR_PTR(err);
1316 }
1317 
1318 static int
1319 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
1320 {
1321 	struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1322 	struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
1323 	int err;
1324 
1325 	do {
1326 		err = gss_create_upcall(gss_auth, gss_cred);
1327 	} while (err == -EAGAIN);
1328 	return err;
1329 }
1330 
1331 /*
1332  * Returns -EACCES if GSS context is NULL or will expire within the
1333  * timeout (miliseconds)
1334  */
1335 static int
1336 gss_key_timeout(struct rpc_cred *rc)
1337 {
1338 	struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1339 	unsigned long now = jiffies;
1340 	unsigned long expire;
1341 
1342 	if (gss_cred->gc_ctx == NULL)
1343 		return -EACCES;
1344 
1345 	expire = gss_cred->gc_ctx->gc_expiry - (gss_key_expire_timeo * HZ);
1346 
1347 	if (time_after(now, expire))
1348 		return -EACCES;
1349 	return 0;
1350 }
1351 
1352 static int
1353 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
1354 {
1355 	struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1356 	int ret;
1357 
1358 	if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
1359 		goto out;
1360 	/* Don't match with creds that have expired. */
1361 	if (time_after(jiffies, gss_cred->gc_ctx->gc_expiry))
1362 		return 0;
1363 	if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags))
1364 		return 0;
1365 out:
1366 	if (acred->principal != NULL) {
1367 		if (gss_cred->gc_principal == NULL)
1368 			return 0;
1369 		ret = strcmp(acred->principal, gss_cred->gc_principal) == 0;
1370 		goto check_expire;
1371 	}
1372 	if (gss_cred->gc_principal != NULL)
1373 		return 0;
1374 	ret = uid_eq(rc->cr_uid, acred->uid);
1375 
1376 check_expire:
1377 	if (ret == 0)
1378 		return ret;
1379 
1380 	/* Notify acred users of GSS context expiration timeout */
1381 	if (test_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags) &&
1382 	    (gss_key_timeout(rc) != 0)) {
1383 		/* test will now be done from generic cred */
1384 		test_and_clear_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags);
1385 		/* tell NFS layer that key will expire soon */
1386 		set_bit(RPC_CRED_KEY_EXPIRE_SOON, &acred->ac_flags);
1387 	}
1388 	return ret;
1389 }
1390 
1391 /*
1392 * Marshal credentials.
1393 * Maybe we should keep a cached credential for performance reasons.
1394 */
1395 static __be32 *
1396 gss_marshal(struct rpc_task *task, __be32 *p)
1397 {
1398 	struct rpc_rqst *req = task->tk_rqstp;
1399 	struct rpc_cred *cred = req->rq_cred;
1400 	struct gss_cred	*gss_cred = container_of(cred, struct gss_cred,
1401 						 gc_base);
1402 	struct gss_cl_ctx	*ctx = gss_cred_get_ctx(cred);
1403 	__be32		*cred_len;
1404 	u32             maj_stat = 0;
1405 	struct xdr_netobj mic;
1406 	struct kvec	iov;
1407 	struct xdr_buf	verf_buf;
1408 
1409 	dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1410 
1411 	*p++ = htonl(RPC_AUTH_GSS);
1412 	cred_len = p++;
1413 
1414 	spin_lock(&ctx->gc_seq_lock);
1415 	req->rq_seqno = ctx->gc_seq++;
1416 	spin_unlock(&ctx->gc_seq_lock);
1417 
1418 	*p++ = htonl((u32) RPC_GSS_VERSION);
1419 	*p++ = htonl((u32) ctx->gc_proc);
1420 	*p++ = htonl((u32) req->rq_seqno);
1421 	*p++ = htonl((u32) gss_cred->gc_service);
1422 	p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
1423 	*cred_len = htonl((p - (cred_len + 1)) << 2);
1424 
1425 	/* We compute the checksum for the verifier over the xdr-encoded bytes
1426 	 * starting with the xid and ending at the end of the credential: */
1427 	iov.iov_base = xprt_skip_transport_header(req->rq_xprt,
1428 					req->rq_snd_buf.head[0].iov_base);
1429 	iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
1430 	xdr_buf_from_iov(&iov, &verf_buf);
1431 
1432 	/* set verifier flavor*/
1433 	*p++ = htonl(RPC_AUTH_GSS);
1434 
1435 	mic.data = (u8 *)(p + 1);
1436 	maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1437 	if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
1438 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1439 	} else if (maj_stat != 0) {
1440 		printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
1441 		goto out_put_ctx;
1442 	}
1443 	p = xdr_encode_opaque(p, NULL, mic.len);
1444 	gss_put_ctx(ctx);
1445 	return p;
1446 out_put_ctx:
1447 	gss_put_ctx(ctx);
1448 	return NULL;
1449 }
1450 
1451 static int gss_renew_cred(struct rpc_task *task)
1452 {
1453 	struct rpc_cred *oldcred = task->tk_rqstp->rq_cred;
1454 	struct gss_cred *gss_cred = container_of(oldcred,
1455 						 struct gss_cred,
1456 						 gc_base);
1457 	struct rpc_auth *auth = oldcred->cr_auth;
1458 	struct auth_cred acred = {
1459 		.uid = oldcred->cr_uid,
1460 		.principal = gss_cred->gc_principal,
1461 		.machine_cred = (gss_cred->gc_principal != NULL ? 1 : 0),
1462 	};
1463 	struct rpc_cred *new;
1464 
1465 	new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW);
1466 	if (IS_ERR(new))
1467 		return PTR_ERR(new);
1468 	task->tk_rqstp->rq_cred = new;
1469 	put_rpccred(oldcred);
1470 	return 0;
1471 }
1472 
1473 static int gss_cred_is_negative_entry(struct rpc_cred *cred)
1474 {
1475 	if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) {
1476 		unsigned long now = jiffies;
1477 		unsigned long begin, expire;
1478 		struct gss_cred *gss_cred;
1479 
1480 		gss_cred = container_of(cred, struct gss_cred, gc_base);
1481 		begin = gss_cred->gc_upcall_timestamp;
1482 		expire = begin + gss_expired_cred_retry_delay * HZ;
1483 
1484 		if (time_in_range_open(now, begin, expire))
1485 			return 1;
1486 	}
1487 	return 0;
1488 }
1489 
1490 /*
1491 * Refresh credentials. XXX - finish
1492 */
1493 static int
1494 gss_refresh(struct rpc_task *task)
1495 {
1496 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1497 	int ret = 0;
1498 
1499 	if (gss_cred_is_negative_entry(cred))
1500 		return -EKEYEXPIRED;
1501 
1502 	if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) &&
1503 			!test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) {
1504 		ret = gss_renew_cred(task);
1505 		if (ret < 0)
1506 			goto out;
1507 		cred = task->tk_rqstp->rq_cred;
1508 	}
1509 
1510 	if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
1511 		ret = gss_refresh_upcall(task);
1512 out:
1513 	return ret;
1514 }
1515 
1516 /* Dummy refresh routine: used only when destroying the context */
1517 static int
1518 gss_refresh_null(struct rpc_task *task)
1519 {
1520 	return 0;
1521 }
1522 
1523 static __be32 *
1524 gss_validate(struct rpc_task *task, __be32 *p)
1525 {
1526 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1527 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1528 	__be32		seq;
1529 	struct kvec	iov;
1530 	struct xdr_buf	verf_buf;
1531 	struct xdr_netobj mic;
1532 	u32		flav,len;
1533 	u32		maj_stat;
1534 	__be32		*ret = ERR_PTR(-EIO);
1535 
1536 	dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1537 
1538 	flav = ntohl(*p++);
1539 	if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
1540 		goto out_bad;
1541 	if (flav != RPC_AUTH_GSS)
1542 		goto out_bad;
1543 	seq = htonl(task->tk_rqstp->rq_seqno);
1544 	iov.iov_base = &seq;
1545 	iov.iov_len = sizeof(seq);
1546 	xdr_buf_from_iov(&iov, &verf_buf);
1547 	mic.data = (u8 *)p;
1548 	mic.len = len;
1549 
1550 	ret = ERR_PTR(-EACCES);
1551 	maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1552 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1553 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1554 	if (maj_stat) {
1555 		dprintk("RPC: %5u %s: gss_verify_mic returned error 0x%08x\n",
1556 			task->tk_pid, __func__, maj_stat);
1557 		goto out_bad;
1558 	}
1559 	/* We leave it to unwrap to calculate au_rslack. For now we just
1560 	 * calculate the length of the verifier: */
1561 	cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
1562 	gss_put_ctx(ctx);
1563 	dprintk("RPC: %5u %s: gss_verify_mic succeeded.\n",
1564 			task->tk_pid, __func__);
1565 	return p + XDR_QUADLEN(len);
1566 out_bad:
1567 	gss_put_ctx(ctx);
1568 	dprintk("RPC: %5u %s failed ret %ld.\n", task->tk_pid, __func__,
1569 		PTR_ERR(ret));
1570 	return ret;
1571 }
1572 
1573 static void gss_wrap_req_encode(kxdreproc_t encode, struct rpc_rqst *rqstp,
1574 				__be32 *p, void *obj)
1575 {
1576 	struct xdr_stream xdr;
1577 
1578 	xdr_init_encode(&xdr, &rqstp->rq_snd_buf, p);
1579 	encode(rqstp, &xdr, obj);
1580 }
1581 
1582 static inline int
1583 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1584 		   kxdreproc_t encode, struct rpc_rqst *rqstp,
1585 		   __be32 *p, void *obj)
1586 {
1587 	struct xdr_buf	*snd_buf = &rqstp->rq_snd_buf;
1588 	struct xdr_buf	integ_buf;
1589 	__be32          *integ_len = NULL;
1590 	struct xdr_netobj mic;
1591 	u32		offset;
1592 	__be32		*q;
1593 	struct kvec	*iov;
1594 	u32             maj_stat = 0;
1595 	int		status = -EIO;
1596 
1597 	integ_len = p++;
1598 	offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1599 	*p++ = htonl(rqstp->rq_seqno);
1600 
1601 	gss_wrap_req_encode(encode, rqstp, p, obj);
1602 
1603 	if (xdr_buf_subsegment(snd_buf, &integ_buf,
1604 				offset, snd_buf->len - offset))
1605 		return status;
1606 	*integ_len = htonl(integ_buf.len);
1607 
1608 	/* guess whether we're in the head or the tail: */
1609 	if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1610 		iov = snd_buf->tail;
1611 	else
1612 		iov = snd_buf->head;
1613 	p = iov->iov_base + iov->iov_len;
1614 	mic.data = (u8 *)(p + 1);
1615 
1616 	maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1617 	status = -EIO; /* XXX? */
1618 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1619 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1620 	else if (maj_stat)
1621 		return status;
1622 	q = xdr_encode_opaque(p, NULL, mic.len);
1623 
1624 	offset = (u8 *)q - (u8 *)p;
1625 	iov->iov_len += offset;
1626 	snd_buf->len += offset;
1627 	return 0;
1628 }
1629 
1630 static void
1631 priv_release_snd_buf(struct rpc_rqst *rqstp)
1632 {
1633 	int i;
1634 
1635 	for (i=0; i < rqstp->rq_enc_pages_num; i++)
1636 		__free_page(rqstp->rq_enc_pages[i]);
1637 	kfree(rqstp->rq_enc_pages);
1638 }
1639 
1640 static int
1641 alloc_enc_pages(struct rpc_rqst *rqstp)
1642 {
1643 	struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1644 	int first, last, i;
1645 
1646 	if (snd_buf->page_len == 0) {
1647 		rqstp->rq_enc_pages_num = 0;
1648 		return 0;
1649 	}
1650 
1651 	first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1652 	last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT;
1653 	rqstp->rq_enc_pages_num = last - first + 1 + 1;
1654 	rqstp->rq_enc_pages
1655 		= kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1656 				GFP_NOFS);
1657 	if (!rqstp->rq_enc_pages)
1658 		goto out;
1659 	for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1660 		rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1661 		if (rqstp->rq_enc_pages[i] == NULL)
1662 			goto out_free;
1663 	}
1664 	rqstp->rq_release_snd_buf = priv_release_snd_buf;
1665 	return 0;
1666 out_free:
1667 	rqstp->rq_enc_pages_num = i;
1668 	priv_release_snd_buf(rqstp);
1669 out:
1670 	return -EAGAIN;
1671 }
1672 
1673 static inline int
1674 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1675 		  kxdreproc_t encode, struct rpc_rqst *rqstp,
1676 		  __be32 *p, void *obj)
1677 {
1678 	struct xdr_buf	*snd_buf = &rqstp->rq_snd_buf;
1679 	u32		offset;
1680 	u32             maj_stat;
1681 	int		status;
1682 	__be32		*opaque_len;
1683 	struct page	**inpages;
1684 	int		first;
1685 	int		pad;
1686 	struct kvec	*iov;
1687 	char		*tmp;
1688 
1689 	opaque_len = p++;
1690 	offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1691 	*p++ = htonl(rqstp->rq_seqno);
1692 
1693 	gss_wrap_req_encode(encode, rqstp, p, obj);
1694 
1695 	status = alloc_enc_pages(rqstp);
1696 	if (status)
1697 		return status;
1698 	first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1699 	inpages = snd_buf->pages + first;
1700 	snd_buf->pages = rqstp->rq_enc_pages;
1701 	snd_buf->page_base -= first << PAGE_CACHE_SHIFT;
1702 	/*
1703 	 * Give the tail its own page, in case we need extra space in the
1704 	 * head when wrapping:
1705 	 *
1706 	 * call_allocate() allocates twice the slack space required
1707 	 * by the authentication flavor to rq_callsize.
1708 	 * For GSS, slack is GSS_CRED_SLACK.
1709 	 */
1710 	if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1711 		tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1712 		memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1713 		snd_buf->tail[0].iov_base = tmp;
1714 	}
1715 	maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1716 	/* slack space should prevent this ever happening: */
1717 	BUG_ON(snd_buf->len > snd_buf->buflen);
1718 	status = -EIO;
1719 	/* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1720 	 * done anyway, so it's safe to put the request on the wire: */
1721 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1722 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1723 	else if (maj_stat)
1724 		return status;
1725 
1726 	*opaque_len = htonl(snd_buf->len - offset);
1727 	/* guess whether we're in the head or the tail: */
1728 	if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1729 		iov = snd_buf->tail;
1730 	else
1731 		iov = snd_buf->head;
1732 	p = iov->iov_base + iov->iov_len;
1733 	pad = 3 - ((snd_buf->len - offset - 1) & 3);
1734 	memset(p, 0, pad);
1735 	iov->iov_len += pad;
1736 	snd_buf->len += pad;
1737 
1738 	return 0;
1739 }
1740 
1741 static int
1742 gss_wrap_req(struct rpc_task *task,
1743 	     kxdreproc_t encode, void *rqstp, __be32 *p, void *obj)
1744 {
1745 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1746 	struct gss_cred	*gss_cred = container_of(cred, struct gss_cred,
1747 			gc_base);
1748 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1749 	int             status = -EIO;
1750 
1751 	dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1752 	if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1753 		/* The spec seems a little ambiguous here, but I think that not
1754 		 * wrapping context destruction requests makes the most sense.
1755 		 */
1756 		gss_wrap_req_encode(encode, rqstp, p, obj);
1757 		status = 0;
1758 		goto out;
1759 	}
1760 	switch (gss_cred->gc_service) {
1761 	case RPC_GSS_SVC_NONE:
1762 		gss_wrap_req_encode(encode, rqstp, p, obj);
1763 		status = 0;
1764 		break;
1765 	case RPC_GSS_SVC_INTEGRITY:
1766 		status = gss_wrap_req_integ(cred, ctx, encode, rqstp, p, obj);
1767 		break;
1768 	case RPC_GSS_SVC_PRIVACY:
1769 		status = gss_wrap_req_priv(cred, ctx, encode, rqstp, p, obj);
1770 		break;
1771 	}
1772 out:
1773 	gss_put_ctx(ctx);
1774 	dprintk("RPC: %5u %s returning %d\n", task->tk_pid, __func__, status);
1775 	return status;
1776 }
1777 
1778 static inline int
1779 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1780 		struct rpc_rqst *rqstp, __be32 **p)
1781 {
1782 	struct xdr_buf	*rcv_buf = &rqstp->rq_rcv_buf;
1783 	struct xdr_buf integ_buf;
1784 	struct xdr_netobj mic;
1785 	u32 data_offset, mic_offset;
1786 	u32 integ_len;
1787 	u32 maj_stat;
1788 	int status = -EIO;
1789 
1790 	integ_len = ntohl(*(*p)++);
1791 	if (integ_len & 3)
1792 		return status;
1793 	data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1794 	mic_offset = integ_len + data_offset;
1795 	if (mic_offset > rcv_buf->len)
1796 		return status;
1797 	if (ntohl(*(*p)++) != rqstp->rq_seqno)
1798 		return status;
1799 
1800 	if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1801 				mic_offset - data_offset))
1802 		return status;
1803 
1804 	if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1805 		return status;
1806 
1807 	maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1808 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1809 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1810 	if (maj_stat != GSS_S_COMPLETE)
1811 		return status;
1812 	return 0;
1813 }
1814 
1815 static inline int
1816 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1817 		struct rpc_rqst *rqstp, __be32 **p)
1818 {
1819 	struct xdr_buf  *rcv_buf = &rqstp->rq_rcv_buf;
1820 	u32 offset;
1821 	u32 opaque_len;
1822 	u32 maj_stat;
1823 	int status = -EIO;
1824 
1825 	opaque_len = ntohl(*(*p)++);
1826 	offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1827 	if (offset + opaque_len > rcv_buf->len)
1828 		return status;
1829 	/* remove padding: */
1830 	rcv_buf->len = offset + opaque_len;
1831 
1832 	maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1833 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1834 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1835 	if (maj_stat != GSS_S_COMPLETE)
1836 		return status;
1837 	if (ntohl(*(*p)++) != rqstp->rq_seqno)
1838 		return status;
1839 
1840 	return 0;
1841 }
1842 
1843 static int
1844 gss_unwrap_req_decode(kxdrdproc_t decode, struct rpc_rqst *rqstp,
1845 		      __be32 *p, void *obj)
1846 {
1847 	struct xdr_stream xdr;
1848 
1849 	xdr_init_decode(&xdr, &rqstp->rq_rcv_buf, p);
1850 	return decode(rqstp, &xdr, obj);
1851 }
1852 
1853 static int
1854 gss_unwrap_resp(struct rpc_task *task,
1855 		kxdrdproc_t decode, void *rqstp, __be32 *p, void *obj)
1856 {
1857 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1858 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1859 			gc_base);
1860 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1861 	__be32		*savedp = p;
1862 	struct kvec	*head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1863 	int		savedlen = head->iov_len;
1864 	int             status = -EIO;
1865 
1866 	if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1867 		goto out_decode;
1868 	switch (gss_cred->gc_service) {
1869 	case RPC_GSS_SVC_NONE:
1870 		break;
1871 	case RPC_GSS_SVC_INTEGRITY:
1872 		status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1873 		if (status)
1874 			goto out;
1875 		break;
1876 	case RPC_GSS_SVC_PRIVACY:
1877 		status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1878 		if (status)
1879 			goto out;
1880 		break;
1881 	}
1882 	/* take into account extra slack for integrity and privacy cases: */
1883 	cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1884 						+ (savedlen - head->iov_len);
1885 out_decode:
1886 	status = gss_unwrap_req_decode(decode, rqstp, p, obj);
1887 out:
1888 	gss_put_ctx(ctx);
1889 	dprintk("RPC: %5u %s returning %d\n",
1890 		task->tk_pid, __func__, status);
1891 	return status;
1892 }
1893 
1894 static const struct rpc_authops authgss_ops = {
1895 	.owner		= THIS_MODULE,
1896 	.au_flavor	= RPC_AUTH_GSS,
1897 	.au_name	= "RPCSEC_GSS",
1898 	.create		= gss_create,
1899 	.destroy	= gss_destroy,
1900 	.lookup_cred	= gss_lookup_cred,
1901 	.crcreate	= gss_create_cred,
1902 	.list_pseudoflavors = gss_mech_list_pseudoflavors,
1903 	.info2flavor	= gss_mech_info2flavor,
1904 	.flavor2info	= gss_mech_flavor2info,
1905 };
1906 
1907 static const struct rpc_credops gss_credops = {
1908 	.cr_name	= "AUTH_GSS",
1909 	.crdestroy	= gss_destroy_cred,
1910 	.cr_init	= gss_cred_init,
1911 	.crbind		= rpcauth_generic_bind_cred,
1912 	.crmatch	= gss_match,
1913 	.crmarshal	= gss_marshal,
1914 	.crrefresh	= gss_refresh,
1915 	.crvalidate	= gss_validate,
1916 	.crwrap_req	= gss_wrap_req,
1917 	.crunwrap_resp	= gss_unwrap_resp,
1918 	.crkey_timeout	= gss_key_timeout,
1919 };
1920 
1921 static const struct rpc_credops gss_nullops = {
1922 	.cr_name	= "AUTH_GSS",
1923 	.crdestroy	= gss_destroy_nullcred,
1924 	.crbind		= rpcauth_generic_bind_cred,
1925 	.crmatch	= gss_match,
1926 	.crmarshal	= gss_marshal,
1927 	.crrefresh	= gss_refresh_null,
1928 	.crvalidate	= gss_validate,
1929 	.crwrap_req	= gss_wrap_req,
1930 	.crunwrap_resp	= gss_unwrap_resp,
1931 };
1932 
1933 static const struct rpc_pipe_ops gss_upcall_ops_v0 = {
1934 	.upcall		= rpc_pipe_generic_upcall,
1935 	.downcall	= gss_pipe_downcall,
1936 	.destroy_msg	= gss_pipe_destroy_msg,
1937 	.open_pipe	= gss_pipe_open_v0,
1938 	.release_pipe	= gss_pipe_release,
1939 };
1940 
1941 static const struct rpc_pipe_ops gss_upcall_ops_v1 = {
1942 	.upcall		= rpc_pipe_generic_upcall,
1943 	.downcall	= gss_pipe_downcall,
1944 	.destroy_msg	= gss_pipe_destroy_msg,
1945 	.open_pipe	= gss_pipe_open_v1,
1946 	.release_pipe	= gss_pipe_release,
1947 };
1948 
1949 static __net_init int rpcsec_gss_init_net(struct net *net)
1950 {
1951 	return gss_svc_init_net(net);
1952 }
1953 
1954 static __net_exit void rpcsec_gss_exit_net(struct net *net)
1955 {
1956 	gss_svc_shutdown_net(net);
1957 }
1958 
1959 static struct pernet_operations rpcsec_gss_net_ops = {
1960 	.init = rpcsec_gss_init_net,
1961 	.exit = rpcsec_gss_exit_net,
1962 };
1963 
1964 /*
1965  * Initialize RPCSEC_GSS module
1966  */
1967 static int __init init_rpcsec_gss(void)
1968 {
1969 	int err = 0;
1970 
1971 	err = rpcauth_register(&authgss_ops);
1972 	if (err)
1973 		goto out;
1974 	err = gss_svc_init();
1975 	if (err)
1976 		goto out_unregister;
1977 	err = register_pernet_subsys(&rpcsec_gss_net_ops);
1978 	if (err)
1979 		goto out_svc_exit;
1980 	rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version");
1981 	return 0;
1982 out_svc_exit:
1983 	gss_svc_shutdown();
1984 out_unregister:
1985 	rpcauth_unregister(&authgss_ops);
1986 out:
1987 	return err;
1988 }
1989 
1990 static void __exit exit_rpcsec_gss(void)
1991 {
1992 	unregister_pernet_subsys(&rpcsec_gss_net_ops);
1993 	gss_svc_shutdown();
1994 	rpcauth_unregister(&authgss_ops);
1995 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
1996 }
1997 
1998 MODULE_ALIAS("rpc-auth-6");
1999 MODULE_LICENSE("GPL");
2000 module_param_named(expired_cred_retry_delay,
2001 		   gss_expired_cred_retry_delay,
2002 		   uint, 0644);
2003 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until "
2004 		"the RPC engine retries an expired credential");
2005 
2006 module_param_named(key_expire_timeo,
2007 		   gss_key_expire_timeo,
2008 		   uint, 0644);
2009 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a "
2010 		"credential keys lifetime where the NFS layer cleans up "
2011 		"prior to key expiration");
2012 
2013 module_init(init_rpcsec_gss)
2014 module_exit(exit_rpcsec_gss)
2015