1 // SPDX-License-Identifier: BSD-3-Clause 2 /* 3 * linux/net/sunrpc/auth_gss/auth_gss.c 4 * 5 * RPCSEC_GSS client authentication. 6 * 7 * Copyright (c) 2000 The Regents of the University of Michigan. 8 * All rights reserved. 9 * 10 * Dug Song <dugsong@monkey.org> 11 * Andy Adamson <andros@umich.edu> 12 */ 13 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/sunrpc/clnt.h> 21 #include <linux/sunrpc/auth.h> 22 #include <linux/sunrpc/auth_gss.h> 23 #include <linux/sunrpc/gss_krb5.h> 24 #include <linux/sunrpc/svcauth_gss.h> 25 #include <linux/sunrpc/gss_err.h> 26 #include <linux/workqueue.h> 27 #include <linux/sunrpc/rpc_pipe_fs.h> 28 #include <linux/sunrpc/gss_api.h> 29 #include <linux/uaccess.h> 30 #include <linux/hashtable.h> 31 32 #include "auth_gss_internal.h" 33 #include "../netns.h" 34 35 #include <trace/events/rpcgss.h> 36 37 static const struct rpc_authops authgss_ops; 38 39 static const struct rpc_credops gss_credops; 40 static const struct rpc_credops gss_nullops; 41 42 #define GSS_RETRY_EXPIRED 5 43 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED; 44 45 #define GSS_KEY_EXPIRE_TIMEO 240 46 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO; 47 48 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 49 # define RPCDBG_FACILITY RPCDBG_AUTH 50 #endif 51 52 /* 53 * This compile-time check verifies that we will not exceed the 54 * slack space allotted by the client and server auth_gss code 55 * before they call gss_wrap(). 56 */ 57 #define GSS_KRB5_MAX_SLACK_NEEDED \ 58 (GSS_KRB5_TOK_HDR_LEN /* gss token header */ \ 59 + GSS_KRB5_MAX_CKSUM_LEN /* gss token checksum */ \ 60 + GSS_KRB5_MAX_BLOCKSIZE /* confounder */ \ 61 + GSS_KRB5_MAX_BLOCKSIZE /* possible padding */ \ 62 + GSS_KRB5_TOK_HDR_LEN /* encrypted hdr in v2 token */ \ 63 + GSS_KRB5_MAX_CKSUM_LEN /* encryption hmac */ \ 64 + XDR_UNIT * 2 /* RPC verifier */ \ 65 + GSS_KRB5_TOK_HDR_LEN \ 66 + GSS_KRB5_MAX_CKSUM_LEN) 67 68 #define GSS_CRED_SLACK (RPC_MAX_AUTH_SIZE * 2) 69 /* length of a krb5 verifier (48), plus data added before arguments when 70 * using integrity (two 4-byte integers): */ 71 #define GSS_VERF_SLACK 100 72 73 static DEFINE_HASHTABLE(gss_auth_hash_table, 4); 74 static DEFINE_SPINLOCK(gss_auth_hash_lock); 75 76 struct gss_pipe { 77 struct rpc_pipe_dir_object pdo; 78 struct rpc_pipe *pipe; 79 struct rpc_clnt *clnt; 80 const char *name; 81 struct kref kref; 82 }; 83 84 struct gss_auth { 85 struct kref kref; 86 struct hlist_node hash; 87 struct rpc_auth rpc_auth; 88 struct gss_api_mech *mech; 89 enum rpc_gss_svc service; 90 struct rpc_clnt *client; 91 struct net *net; 92 netns_tracker ns_tracker; 93 /* 94 * There are two upcall pipes; dentry[1], named "gssd", is used 95 * for the new text-based upcall; dentry[0] is named after the 96 * mechanism (for example, "krb5") and exists for 97 * backwards-compatibility with older gssd's. 98 */ 99 struct gss_pipe *gss_pipe[2]; 100 const char *target_name; 101 }; 102 103 /* pipe_version >= 0 if and only if someone has a pipe open. */ 104 static DEFINE_SPINLOCK(pipe_version_lock); 105 static struct rpc_wait_queue pipe_version_rpc_waitqueue; 106 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue); 107 static void gss_put_auth(struct gss_auth *gss_auth); 108 109 static void gss_free_ctx(struct gss_cl_ctx *); 110 static const struct rpc_pipe_ops gss_upcall_ops_v0; 111 static const struct rpc_pipe_ops gss_upcall_ops_v1; 112 113 static inline struct gss_cl_ctx * 114 gss_get_ctx(struct gss_cl_ctx *ctx) 115 { 116 refcount_inc(&ctx->count); 117 return ctx; 118 } 119 120 static inline void 121 gss_put_ctx(struct gss_cl_ctx *ctx) 122 { 123 if (refcount_dec_and_test(&ctx->count)) 124 gss_free_ctx(ctx); 125 } 126 127 /* gss_cred_set_ctx: 128 * called by gss_upcall_callback and gss_create_upcall in order 129 * to set the gss context. The actual exchange of an old context 130 * and a new one is protected by the pipe->lock. 131 */ 132 static void 133 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx) 134 { 135 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 136 137 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 138 return; 139 gss_get_ctx(ctx); 140 rcu_assign_pointer(gss_cred->gc_ctx, ctx); 141 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 142 smp_mb__before_atomic(); 143 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags); 144 } 145 146 static struct gss_cl_ctx * 147 gss_cred_get_ctx(struct rpc_cred *cred) 148 { 149 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 150 struct gss_cl_ctx *ctx = NULL; 151 152 rcu_read_lock(); 153 ctx = rcu_dereference(gss_cred->gc_ctx); 154 if (ctx) 155 gss_get_ctx(ctx); 156 rcu_read_unlock(); 157 return ctx; 158 } 159 160 static struct gss_cl_ctx * 161 gss_alloc_context(void) 162 { 163 struct gss_cl_ctx *ctx; 164 165 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 166 if (ctx != NULL) { 167 ctx->gc_proc = RPC_GSS_PROC_DATA; 168 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */ 169 spin_lock_init(&ctx->gc_seq_lock); 170 refcount_set(&ctx->count,1); 171 } 172 return ctx; 173 } 174 175 #define GSSD_MIN_TIMEOUT (60 * 60) 176 static const void * 177 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm) 178 { 179 const void *q; 180 unsigned int seclen; 181 unsigned int timeout; 182 unsigned long now = jiffies; 183 u32 window_size; 184 int ret; 185 186 /* First unsigned int gives the remaining lifetime in seconds of the 187 * credential - e.g. the remaining TGT lifetime for Kerberos or 188 * the -t value passed to GSSD. 189 */ 190 p = simple_get_bytes(p, end, &timeout, sizeof(timeout)); 191 if (IS_ERR(p)) 192 goto err; 193 if (timeout == 0) 194 timeout = GSSD_MIN_TIMEOUT; 195 ctx->gc_expiry = now + ((unsigned long)timeout * HZ); 196 /* Sequence number window. Determines the maximum number of 197 * simultaneous requests 198 */ 199 p = simple_get_bytes(p, end, &window_size, sizeof(window_size)); 200 if (IS_ERR(p)) 201 goto err; 202 ctx->gc_win = window_size; 203 /* gssd signals an error by passing ctx->gc_win = 0: */ 204 if (ctx->gc_win == 0) { 205 /* 206 * in which case, p points to an error code. Anything other 207 * than -EKEYEXPIRED gets converted to -EACCES. 208 */ 209 p = simple_get_bytes(p, end, &ret, sizeof(ret)); 210 if (!IS_ERR(p)) 211 p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) : 212 ERR_PTR(-EACCES); 213 goto err; 214 } 215 /* copy the opaque wire context */ 216 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx); 217 if (IS_ERR(p)) 218 goto err; 219 /* import the opaque security context */ 220 p = simple_get_bytes(p, end, &seclen, sizeof(seclen)); 221 if (IS_ERR(p)) 222 goto err; 223 q = (const void *)((const char *)p + seclen); 224 if (unlikely(q > end || q < p)) { 225 p = ERR_PTR(-EFAULT); 226 goto err; 227 } 228 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_KERNEL); 229 if (ret < 0) { 230 trace_rpcgss_import_ctx(ret); 231 p = ERR_PTR(ret); 232 goto err; 233 } 234 235 /* is there any trailing data? */ 236 if (q == end) { 237 p = q; 238 goto done; 239 } 240 241 /* pull in acceptor name (if there is one) */ 242 p = simple_get_netobj(q, end, &ctx->gc_acceptor); 243 if (IS_ERR(p)) 244 goto err; 245 done: 246 trace_rpcgss_context(window_size, ctx->gc_expiry, now, timeout, 247 ctx->gc_acceptor.len, ctx->gc_acceptor.data); 248 err: 249 return p; 250 } 251 252 /* XXX: Need some documentation about why UPCALL_BUF_LEN is so small. 253 * Is user space expecting no more than UPCALL_BUF_LEN bytes? 254 * Note that there are now _two_ NI_MAXHOST sized data items 255 * being passed in this string. 256 */ 257 #define UPCALL_BUF_LEN 256 258 259 struct gss_upcall_msg { 260 refcount_t count; 261 kuid_t uid; 262 const char *service_name; 263 struct rpc_pipe_msg msg; 264 struct list_head list; 265 struct gss_auth *auth; 266 struct rpc_pipe *pipe; 267 struct rpc_wait_queue rpc_waitqueue; 268 wait_queue_head_t waitqueue; 269 struct gss_cl_ctx *ctx; 270 char databuf[UPCALL_BUF_LEN]; 271 }; 272 273 static int get_pipe_version(struct net *net) 274 { 275 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 276 int ret; 277 278 spin_lock(&pipe_version_lock); 279 if (sn->pipe_version >= 0) { 280 atomic_inc(&sn->pipe_users); 281 ret = sn->pipe_version; 282 } else 283 ret = -EAGAIN; 284 spin_unlock(&pipe_version_lock); 285 return ret; 286 } 287 288 static void put_pipe_version(struct net *net) 289 { 290 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 291 292 if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) { 293 sn->pipe_version = -1; 294 spin_unlock(&pipe_version_lock); 295 } 296 } 297 298 static void 299 gss_release_msg(struct gss_upcall_msg *gss_msg) 300 { 301 struct net *net = gss_msg->auth->net; 302 if (!refcount_dec_and_test(&gss_msg->count)) 303 return; 304 put_pipe_version(net); 305 BUG_ON(!list_empty(&gss_msg->list)); 306 if (gss_msg->ctx != NULL) 307 gss_put_ctx(gss_msg->ctx); 308 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue); 309 gss_put_auth(gss_msg->auth); 310 kfree_const(gss_msg->service_name); 311 kfree(gss_msg); 312 } 313 314 static struct gss_upcall_msg * 315 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid, const struct gss_auth *auth) 316 { 317 struct gss_upcall_msg *pos; 318 list_for_each_entry(pos, &pipe->in_downcall, list) { 319 if (!uid_eq(pos->uid, uid)) 320 continue; 321 if (pos->auth->service != auth->service) 322 continue; 323 refcount_inc(&pos->count); 324 return pos; 325 } 326 return NULL; 327 } 328 329 /* Try to add an upcall to the pipefs queue. 330 * If an upcall owned by our uid already exists, then we return a reference 331 * to that upcall instead of adding the new upcall. 332 */ 333 static inline struct gss_upcall_msg * 334 gss_add_msg(struct gss_upcall_msg *gss_msg) 335 { 336 struct rpc_pipe *pipe = gss_msg->pipe; 337 struct gss_upcall_msg *old; 338 339 spin_lock(&pipe->lock); 340 old = __gss_find_upcall(pipe, gss_msg->uid, gss_msg->auth); 341 if (old == NULL) { 342 refcount_inc(&gss_msg->count); 343 list_add(&gss_msg->list, &pipe->in_downcall); 344 } else 345 gss_msg = old; 346 spin_unlock(&pipe->lock); 347 return gss_msg; 348 } 349 350 static void 351 __gss_unhash_msg(struct gss_upcall_msg *gss_msg) 352 { 353 list_del_init(&gss_msg->list); 354 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 355 wake_up_all(&gss_msg->waitqueue); 356 refcount_dec(&gss_msg->count); 357 } 358 359 static void 360 gss_unhash_msg(struct gss_upcall_msg *gss_msg) 361 { 362 struct rpc_pipe *pipe = gss_msg->pipe; 363 364 if (list_empty(&gss_msg->list)) 365 return; 366 spin_lock(&pipe->lock); 367 if (!list_empty(&gss_msg->list)) 368 __gss_unhash_msg(gss_msg); 369 spin_unlock(&pipe->lock); 370 } 371 372 static void 373 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg) 374 { 375 switch (gss_msg->msg.errno) { 376 case 0: 377 if (gss_msg->ctx == NULL) 378 break; 379 clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); 380 gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx); 381 break; 382 case -EKEYEXPIRED: 383 set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags); 384 } 385 gss_cred->gc_upcall_timestamp = jiffies; 386 gss_cred->gc_upcall = NULL; 387 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno); 388 } 389 390 static void 391 gss_upcall_callback(struct rpc_task *task) 392 { 393 struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred, 394 struct gss_cred, gc_base); 395 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall; 396 struct rpc_pipe *pipe = gss_msg->pipe; 397 398 spin_lock(&pipe->lock); 399 gss_handle_downcall_result(gss_cred, gss_msg); 400 spin_unlock(&pipe->lock); 401 task->tk_status = gss_msg->msg.errno; 402 gss_release_msg(gss_msg); 403 } 404 405 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg, 406 const struct cred *cred) 407 { 408 struct user_namespace *userns = cred->user_ns; 409 410 uid_t uid = from_kuid_munged(userns, gss_msg->uid); 411 memcpy(gss_msg->databuf, &uid, sizeof(uid)); 412 gss_msg->msg.data = gss_msg->databuf; 413 gss_msg->msg.len = sizeof(uid); 414 415 BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf)); 416 } 417 418 static ssize_t 419 gss_v0_upcall(struct file *file, struct rpc_pipe_msg *msg, 420 char __user *buf, size_t buflen) 421 { 422 struct gss_upcall_msg *gss_msg = container_of(msg, 423 struct gss_upcall_msg, 424 msg); 425 if (msg->copied == 0) 426 gss_encode_v0_msg(gss_msg, file->f_cred); 427 return rpc_pipe_generic_upcall(file, msg, buf, buflen); 428 } 429 430 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg, 431 const char *service_name, 432 const char *target_name, 433 const struct cred *cred) 434 { 435 struct user_namespace *userns = cred->user_ns; 436 struct gss_api_mech *mech = gss_msg->auth->mech; 437 char *p = gss_msg->databuf; 438 size_t buflen = sizeof(gss_msg->databuf); 439 int len; 440 441 len = scnprintf(p, buflen, "mech=%s uid=%d", mech->gm_name, 442 from_kuid_munged(userns, gss_msg->uid)); 443 buflen -= len; 444 p += len; 445 gss_msg->msg.len = len; 446 447 /* 448 * target= is a full service principal that names the remote 449 * identity that we are authenticating to. 450 */ 451 if (target_name) { 452 len = scnprintf(p, buflen, " target=%s", target_name); 453 buflen -= len; 454 p += len; 455 gss_msg->msg.len += len; 456 } 457 458 /* 459 * gssd uses service= and srchost= to select a matching key from 460 * the system's keytab to use as the source principal. 461 * 462 * service= is the service name part of the source principal, 463 * or "*" (meaning choose any). 464 * 465 * srchost= is the hostname part of the source principal. When 466 * not provided, gssd uses the local hostname. 467 */ 468 if (service_name) { 469 char *c = strchr(service_name, '@'); 470 471 if (!c) 472 len = scnprintf(p, buflen, " service=%s", 473 service_name); 474 else 475 len = scnprintf(p, buflen, 476 " service=%.*s srchost=%s", 477 (int)(c - service_name), 478 service_name, c + 1); 479 buflen -= len; 480 p += len; 481 gss_msg->msg.len += len; 482 } 483 484 if (mech->gm_upcall_enctypes) { 485 len = scnprintf(p, buflen, " enctypes=%s", 486 mech->gm_upcall_enctypes); 487 buflen -= len; 488 p += len; 489 gss_msg->msg.len += len; 490 } 491 trace_rpcgss_upcall_msg(gss_msg->databuf); 492 len = scnprintf(p, buflen, "\n"); 493 if (len == 0) 494 goto out_overflow; 495 gss_msg->msg.len += len; 496 gss_msg->msg.data = gss_msg->databuf; 497 return 0; 498 out_overflow: 499 WARN_ON_ONCE(1); 500 return -ENOMEM; 501 } 502 503 static ssize_t 504 gss_v1_upcall(struct file *file, struct rpc_pipe_msg *msg, 505 char __user *buf, size_t buflen) 506 { 507 struct gss_upcall_msg *gss_msg = container_of(msg, 508 struct gss_upcall_msg, 509 msg); 510 int err; 511 if (msg->copied == 0) { 512 err = gss_encode_v1_msg(gss_msg, 513 gss_msg->service_name, 514 gss_msg->auth->target_name, 515 file->f_cred); 516 if (err) 517 return err; 518 } 519 return rpc_pipe_generic_upcall(file, msg, buf, buflen); 520 } 521 522 static struct gss_upcall_msg * 523 gss_alloc_msg(struct gss_auth *gss_auth, 524 kuid_t uid, const char *service_name) 525 { 526 struct gss_upcall_msg *gss_msg; 527 int vers; 528 int err = -ENOMEM; 529 530 gss_msg = kzalloc(sizeof(*gss_msg), GFP_KERNEL); 531 if (gss_msg == NULL) 532 goto err; 533 vers = get_pipe_version(gss_auth->net); 534 err = vers; 535 if (err < 0) 536 goto err_free_msg; 537 gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe; 538 INIT_LIST_HEAD(&gss_msg->list); 539 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq"); 540 init_waitqueue_head(&gss_msg->waitqueue); 541 refcount_set(&gss_msg->count, 1); 542 gss_msg->uid = uid; 543 gss_msg->auth = gss_auth; 544 kref_get(&gss_auth->kref); 545 if (service_name) { 546 gss_msg->service_name = kstrdup_const(service_name, GFP_KERNEL); 547 if (!gss_msg->service_name) { 548 err = -ENOMEM; 549 goto err_put_pipe_version; 550 } 551 } 552 return gss_msg; 553 err_put_pipe_version: 554 put_pipe_version(gss_auth->net); 555 err_free_msg: 556 kfree(gss_msg); 557 err: 558 return ERR_PTR(err); 559 } 560 561 static struct gss_upcall_msg * 562 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred) 563 { 564 struct gss_cred *gss_cred = container_of(cred, 565 struct gss_cred, gc_base); 566 struct gss_upcall_msg *gss_new, *gss_msg; 567 kuid_t uid = cred->cr_cred->fsuid; 568 569 gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal); 570 if (IS_ERR(gss_new)) 571 return gss_new; 572 gss_msg = gss_add_msg(gss_new); 573 if (gss_msg == gss_new) { 574 int res; 575 refcount_inc(&gss_msg->count); 576 res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg); 577 if (res) { 578 gss_unhash_msg(gss_new); 579 refcount_dec(&gss_msg->count); 580 gss_release_msg(gss_new); 581 gss_msg = ERR_PTR(res); 582 } 583 } else 584 gss_release_msg(gss_new); 585 return gss_msg; 586 } 587 588 static void warn_gssd(void) 589 { 590 dprintk("AUTH_GSS upcall failed. Please check user daemon is running.\n"); 591 } 592 593 static inline int 594 gss_refresh_upcall(struct rpc_task *task) 595 { 596 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 597 struct gss_auth *gss_auth = container_of(cred->cr_auth, 598 struct gss_auth, rpc_auth); 599 struct gss_cred *gss_cred = container_of(cred, 600 struct gss_cred, gc_base); 601 struct gss_upcall_msg *gss_msg; 602 struct rpc_pipe *pipe; 603 int err = 0; 604 605 gss_msg = gss_setup_upcall(gss_auth, cred); 606 if (PTR_ERR(gss_msg) == -EAGAIN) { 607 /* XXX: warning on the first, under the assumption we 608 * shouldn't normally hit this case on a refresh. */ 609 warn_gssd(); 610 rpc_sleep_on_timeout(&pipe_version_rpc_waitqueue, 611 task, NULL, jiffies + (15 * HZ)); 612 err = -EAGAIN; 613 goto out; 614 } 615 if (IS_ERR(gss_msg)) { 616 err = PTR_ERR(gss_msg); 617 goto out; 618 } 619 pipe = gss_msg->pipe; 620 spin_lock(&pipe->lock); 621 if (gss_cred->gc_upcall != NULL) 622 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL); 623 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) { 624 gss_cred->gc_upcall = gss_msg; 625 /* gss_upcall_callback will release the reference to gss_upcall_msg */ 626 refcount_inc(&gss_msg->count); 627 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback); 628 } else { 629 gss_handle_downcall_result(gss_cred, gss_msg); 630 err = gss_msg->msg.errno; 631 } 632 spin_unlock(&pipe->lock); 633 gss_release_msg(gss_msg); 634 out: 635 trace_rpcgss_upcall_result(from_kuid(&init_user_ns, 636 cred->cr_cred->fsuid), err); 637 return err; 638 } 639 640 static inline int 641 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred) 642 { 643 struct net *net = gss_auth->net; 644 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 645 struct rpc_pipe *pipe; 646 struct rpc_cred *cred = &gss_cred->gc_base; 647 struct gss_upcall_msg *gss_msg; 648 DEFINE_WAIT(wait); 649 int err; 650 651 retry: 652 err = 0; 653 /* if gssd is down, just skip upcalling altogether */ 654 if (!gssd_running(net)) { 655 warn_gssd(); 656 err = -EACCES; 657 goto out; 658 } 659 gss_msg = gss_setup_upcall(gss_auth, cred); 660 if (PTR_ERR(gss_msg) == -EAGAIN) { 661 err = wait_event_interruptible_timeout(pipe_version_waitqueue, 662 sn->pipe_version >= 0, 15 * HZ); 663 if (sn->pipe_version < 0) { 664 warn_gssd(); 665 err = -EACCES; 666 } 667 if (err < 0) 668 goto out; 669 goto retry; 670 } 671 if (IS_ERR(gss_msg)) { 672 err = PTR_ERR(gss_msg); 673 goto out; 674 } 675 pipe = gss_msg->pipe; 676 for (;;) { 677 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE); 678 spin_lock(&pipe->lock); 679 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) { 680 break; 681 } 682 spin_unlock(&pipe->lock); 683 if (fatal_signal_pending(current)) { 684 err = -ERESTARTSYS; 685 goto out_intr; 686 } 687 schedule(); 688 } 689 if (gss_msg->ctx) { 690 trace_rpcgss_ctx_init(gss_cred); 691 gss_cred_set_ctx(cred, gss_msg->ctx); 692 } else { 693 err = gss_msg->msg.errno; 694 } 695 spin_unlock(&pipe->lock); 696 out_intr: 697 finish_wait(&gss_msg->waitqueue, &wait); 698 gss_release_msg(gss_msg); 699 out: 700 trace_rpcgss_upcall_result(from_kuid(&init_user_ns, 701 cred->cr_cred->fsuid), err); 702 return err; 703 } 704 705 static struct gss_upcall_msg * 706 gss_find_downcall(struct rpc_pipe *pipe, kuid_t uid) 707 { 708 struct gss_upcall_msg *pos; 709 list_for_each_entry(pos, &pipe->in_downcall, list) { 710 if (!uid_eq(pos->uid, uid)) 711 continue; 712 if (!rpc_msg_is_inflight(&pos->msg)) 713 continue; 714 refcount_inc(&pos->count); 715 return pos; 716 } 717 return NULL; 718 } 719 720 #define MSG_BUF_MAXSIZE 1024 721 722 static ssize_t 723 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen) 724 { 725 const void *p, *end; 726 void *buf; 727 struct gss_upcall_msg *gss_msg; 728 struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe; 729 struct gss_cl_ctx *ctx; 730 uid_t id; 731 kuid_t uid; 732 ssize_t err = -EFBIG; 733 734 if (mlen > MSG_BUF_MAXSIZE) 735 goto out; 736 err = -ENOMEM; 737 buf = kmalloc(mlen, GFP_KERNEL); 738 if (!buf) 739 goto out; 740 741 err = -EFAULT; 742 if (copy_from_user(buf, src, mlen)) 743 goto err; 744 745 end = (const void *)((char *)buf + mlen); 746 p = simple_get_bytes(buf, end, &id, sizeof(id)); 747 if (IS_ERR(p)) { 748 err = PTR_ERR(p); 749 goto err; 750 } 751 752 uid = make_kuid(current_user_ns(), id); 753 if (!uid_valid(uid)) { 754 err = -EINVAL; 755 goto err; 756 } 757 758 err = -ENOMEM; 759 ctx = gss_alloc_context(); 760 if (ctx == NULL) 761 goto err; 762 763 err = -ENOENT; 764 /* Find a matching upcall */ 765 spin_lock(&pipe->lock); 766 gss_msg = gss_find_downcall(pipe, uid); 767 if (gss_msg == NULL) { 768 spin_unlock(&pipe->lock); 769 goto err_put_ctx; 770 } 771 list_del_init(&gss_msg->list); 772 spin_unlock(&pipe->lock); 773 774 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech); 775 if (IS_ERR(p)) { 776 err = PTR_ERR(p); 777 switch (err) { 778 case -EACCES: 779 case -EKEYEXPIRED: 780 gss_msg->msg.errno = err; 781 err = mlen; 782 break; 783 case -EFAULT: 784 case -ENOMEM: 785 case -EINVAL: 786 case -ENOSYS: 787 gss_msg->msg.errno = -EAGAIN; 788 break; 789 default: 790 printk(KERN_CRIT "%s: bad return from " 791 "gss_fill_context: %zd\n", __func__, err); 792 gss_msg->msg.errno = -EIO; 793 } 794 goto err_release_msg; 795 } 796 gss_msg->ctx = gss_get_ctx(ctx); 797 err = mlen; 798 799 err_release_msg: 800 spin_lock(&pipe->lock); 801 __gss_unhash_msg(gss_msg); 802 spin_unlock(&pipe->lock); 803 gss_release_msg(gss_msg); 804 err_put_ctx: 805 gss_put_ctx(ctx); 806 err: 807 kfree(buf); 808 out: 809 return err; 810 } 811 812 static int gss_pipe_open(struct inode *inode, int new_version) 813 { 814 struct net *net = inode->i_sb->s_fs_info; 815 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id); 816 int ret = 0; 817 818 spin_lock(&pipe_version_lock); 819 if (sn->pipe_version < 0) { 820 /* First open of any gss pipe determines the version: */ 821 sn->pipe_version = new_version; 822 rpc_wake_up(&pipe_version_rpc_waitqueue); 823 wake_up(&pipe_version_waitqueue); 824 } else if (sn->pipe_version != new_version) { 825 /* Trying to open a pipe of a different version */ 826 ret = -EBUSY; 827 goto out; 828 } 829 atomic_inc(&sn->pipe_users); 830 out: 831 spin_unlock(&pipe_version_lock); 832 return ret; 833 834 } 835 836 static int gss_pipe_open_v0(struct inode *inode) 837 { 838 return gss_pipe_open(inode, 0); 839 } 840 841 static int gss_pipe_open_v1(struct inode *inode) 842 { 843 return gss_pipe_open(inode, 1); 844 } 845 846 static void 847 gss_pipe_release(struct inode *inode) 848 { 849 struct net *net = inode->i_sb->s_fs_info; 850 struct rpc_pipe *pipe = RPC_I(inode)->pipe; 851 struct gss_upcall_msg *gss_msg; 852 853 restart: 854 spin_lock(&pipe->lock); 855 list_for_each_entry(gss_msg, &pipe->in_downcall, list) { 856 857 if (!list_empty(&gss_msg->msg.list)) 858 continue; 859 gss_msg->msg.errno = -EPIPE; 860 refcount_inc(&gss_msg->count); 861 __gss_unhash_msg(gss_msg); 862 spin_unlock(&pipe->lock); 863 gss_release_msg(gss_msg); 864 goto restart; 865 } 866 spin_unlock(&pipe->lock); 867 868 put_pipe_version(net); 869 } 870 871 static void 872 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg) 873 { 874 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg); 875 876 if (msg->errno < 0) { 877 refcount_inc(&gss_msg->count); 878 gss_unhash_msg(gss_msg); 879 if (msg->errno == -ETIMEDOUT) 880 warn_gssd(); 881 gss_release_msg(gss_msg); 882 } 883 gss_release_msg(gss_msg); 884 } 885 886 static void gss_pipe_dentry_destroy(struct dentry *dir, 887 struct rpc_pipe_dir_object *pdo) 888 { 889 struct gss_pipe *gss_pipe = pdo->pdo_data; 890 891 rpc_unlink(gss_pipe->pipe); 892 } 893 894 static int gss_pipe_dentry_create(struct dentry *dir, 895 struct rpc_pipe_dir_object *pdo) 896 { 897 struct gss_pipe *p = pdo->pdo_data; 898 899 return rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe); 900 } 901 902 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = { 903 .create = gss_pipe_dentry_create, 904 .destroy = gss_pipe_dentry_destroy, 905 }; 906 907 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt, 908 const char *name, 909 const struct rpc_pipe_ops *upcall_ops) 910 { 911 struct gss_pipe *p; 912 int err = -ENOMEM; 913 914 p = kmalloc(sizeof(*p), GFP_KERNEL); 915 if (p == NULL) 916 goto err; 917 p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN); 918 if (IS_ERR(p->pipe)) { 919 err = PTR_ERR(p->pipe); 920 goto err_free_gss_pipe; 921 } 922 p->name = name; 923 p->clnt = clnt; 924 kref_init(&p->kref); 925 rpc_init_pipe_dir_object(&p->pdo, 926 &gss_pipe_dir_object_ops, 927 p); 928 return p; 929 err_free_gss_pipe: 930 kfree(p); 931 err: 932 return ERR_PTR(err); 933 } 934 935 struct gss_alloc_pdo { 936 struct rpc_clnt *clnt; 937 const char *name; 938 const struct rpc_pipe_ops *upcall_ops; 939 }; 940 941 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data) 942 { 943 struct gss_pipe *gss_pipe; 944 struct gss_alloc_pdo *args = data; 945 946 if (pdo->pdo_ops != &gss_pipe_dir_object_ops) 947 return 0; 948 gss_pipe = container_of(pdo, struct gss_pipe, pdo); 949 if (strcmp(gss_pipe->name, args->name) != 0) 950 return 0; 951 if (!kref_get_unless_zero(&gss_pipe->kref)) 952 return 0; 953 return 1; 954 } 955 956 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data) 957 { 958 struct gss_pipe *gss_pipe; 959 struct gss_alloc_pdo *args = data; 960 961 gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops); 962 if (!IS_ERR(gss_pipe)) 963 return &gss_pipe->pdo; 964 return NULL; 965 } 966 967 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt, 968 const char *name, 969 const struct rpc_pipe_ops *upcall_ops) 970 { 971 struct net *net = rpc_net_ns(clnt); 972 struct rpc_pipe_dir_object *pdo; 973 struct gss_alloc_pdo args = { 974 .clnt = clnt, 975 .name = name, 976 .upcall_ops = upcall_ops, 977 }; 978 979 pdo = rpc_find_or_alloc_pipe_dir_object(net, 980 &clnt->cl_pipedir_objects, 981 gss_pipe_match_pdo, 982 gss_pipe_alloc_pdo, 983 &args); 984 if (pdo != NULL) 985 return container_of(pdo, struct gss_pipe, pdo); 986 return ERR_PTR(-ENOMEM); 987 } 988 989 static void __gss_pipe_free(struct gss_pipe *p) 990 { 991 struct rpc_clnt *clnt = p->clnt; 992 struct net *net = rpc_net_ns(clnt); 993 994 rpc_remove_pipe_dir_object(net, 995 &clnt->cl_pipedir_objects, 996 &p->pdo); 997 rpc_destroy_pipe_data(p->pipe); 998 kfree(p); 999 } 1000 1001 static void __gss_pipe_release(struct kref *kref) 1002 { 1003 struct gss_pipe *p = container_of(kref, struct gss_pipe, kref); 1004 1005 __gss_pipe_free(p); 1006 } 1007 1008 static void gss_pipe_free(struct gss_pipe *p) 1009 { 1010 if (p != NULL) 1011 kref_put(&p->kref, __gss_pipe_release); 1012 } 1013 1014 /* 1015 * NOTE: we have the opportunity to use different 1016 * parameters based on the input flavor (which must be a pseudoflavor) 1017 */ 1018 static struct gss_auth * 1019 gss_create_new(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 1020 { 1021 rpc_authflavor_t flavor = args->pseudoflavor; 1022 struct gss_auth *gss_auth; 1023 struct gss_pipe *gss_pipe; 1024 struct rpc_auth * auth; 1025 int err = -ENOMEM; /* XXX? */ 1026 1027 if (!try_module_get(THIS_MODULE)) 1028 return ERR_PTR(err); 1029 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL))) 1030 goto out_dec; 1031 INIT_HLIST_NODE(&gss_auth->hash); 1032 gss_auth->target_name = NULL; 1033 if (args->target_name) { 1034 gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL); 1035 if (gss_auth->target_name == NULL) 1036 goto err_free; 1037 } 1038 gss_auth->client = clnt; 1039 gss_auth->net = get_net_track(rpc_net_ns(clnt), &gss_auth->ns_tracker, 1040 GFP_KERNEL); 1041 err = -EINVAL; 1042 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor); 1043 if (!gss_auth->mech) 1044 goto err_put_net; 1045 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor); 1046 if (gss_auth->service == 0) 1047 goto err_put_mech; 1048 if (!gssd_running(gss_auth->net)) 1049 goto err_put_mech; 1050 auth = &gss_auth->rpc_auth; 1051 auth->au_cslack = GSS_CRED_SLACK >> 2; 1052 BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE); 1053 auth->au_rslack = GSS_KRB5_MAX_SLACK_NEEDED >> 2; 1054 auth->au_verfsize = GSS_VERF_SLACK >> 2; 1055 auth->au_ralign = GSS_VERF_SLACK >> 2; 1056 __set_bit(RPCAUTH_AUTH_UPDATE_SLACK, &auth->au_flags); 1057 auth->au_ops = &authgss_ops; 1058 auth->au_flavor = flavor; 1059 if (gss_pseudoflavor_to_datatouch(gss_auth->mech, flavor)) 1060 __set_bit(RPCAUTH_AUTH_DATATOUCH, &auth->au_flags); 1061 refcount_set(&auth->au_count, 1); 1062 kref_init(&gss_auth->kref); 1063 1064 err = rpcauth_init_credcache(auth); 1065 if (err) 1066 goto err_put_mech; 1067 /* 1068 * Note: if we created the old pipe first, then someone who 1069 * examined the directory at the right moment might conclude 1070 * that we supported only the old pipe. So we instead create 1071 * the new pipe first. 1072 */ 1073 gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1); 1074 if (IS_ERR(gss_pipe)) { 1075 err = PTR_ERR(gss_pipe); 1076 goto err_destroy_credcache; 1077 } 1078 gss_auth->gss_pipe[1] = gss_pipe; 1079 1080 gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name, 1081 &gss_upcall_ops_v0); 1082 if (IS_ERR(gss_pipe)) { 1083 err = PTR_ERR(gss_pipe); 1084 goto err_destroy_pipe_1; 1085 } 1086 gss_auth->gss_pipe[0] = gss_pipe; 1087 1088 return gss_auth; 1089 err_destroy_pipe_1: 1090 gss_pipe_free(gss_auth->gss_pipe[1]); 1091 err_destroy_credcache: 1092 rpcauth_destroy_credcache(auth); 1093 err_put_mech: 1094 gss_mech_put(gss_auth->mech); 1095 err_put_net: 1096 put_net_track(gss_auth->net, &gss_auth->ns_tracker); 1097 err_free: 1098 kfree(gss_auth->target_name); 1099 kfree(gss_auth); 1100 out_dec: 1101 module_put(THIS_MODULE); 1102 trace_rpcgss_createauth(flavor, err); 1103 return ERR_PTR(err); 1104 } 1105 1106 static void 1107 gss_free(struct gss_auth *gss_auth) 1108 { 1109 gss_pipe_free(gss_auth->gss_pipe[0]); 1110 gss_pipe_free(gss_auth->gss_pipe[1]); 1111 gss_mech_put(gss_auth->mech); 1112 put_net_track(gss_auth->net, &gss_auth->ns_tracker); 1113 kfree(gss_auth->target_name); 1114 1115 kfree(gss_auth); 1116 module_put(THIS_MODULE); 1117 } 1118 1119 static void 1120 gss_free_callback(struct kref *kref) 1121 { 1122 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref); 1123 1124 gss_free(gss_auth); 1125 } 1126 1127 static void 1128 gss_put_auth(struct gss_auth *gss_auth) 1129 { 1130 kref_put(&gss_auth->kref, gss_free_callback); 1131 } 1132 1133 static void 1134 gss_destroy(struct rpc_auth *auth) 1135 { 1136 struct gss_auth *gss_auth = container_of(auth, 1137 struct gss_auth, rpc_auth); 1138 1139 if (hash_hashed(&gss_auth->hash)) { 1140 spin_lock(&gss_auth_hash_lock); 1141 hash_del(&gss_auth->hash); 1142 spin_unlock(&gss_auth_hash_lock); 1143 } 1144 1145 gss_pipe_free(gss_auth->gss_pipe[0]); 1146 gss_auth->gss_pipe[0] = NULL; 1147 gss_pipe_free(gss_auth->gss_pipe[1]); 1148 gss_auth->gss_pipe[1] = NULL; 1149 rpcauth_destroy_credcache(auth); 1150 1151 gss_put_auth(gss_auth); 1152 } 1153 1154 /* 1155 * Auths may be shared between rpc clients that were cloned from a 1156 * common client with the same xprt, if they also share the flavor and 1157 * target_name. 1158 * 1159 * The auth is looked up from the oldest parent sharing the same 1160 * cl_xprt, and the auth itself references only that common parent 1161 * (which is guaranteed to last as long as any of its descendants). 1162 */ 1163 static struct gss_auth * 1164 gss_auth_find_or_add_hashed(const struct rpc_auth_create_args *args, 1165 struct rpc_clnt *clnt, 1166 struct gss_auth *new) 1167 { 1168 struct gss_auth *gss_auth; 1169 unsigned long hashval = (unsigned long)clnt; 1170 1171 spin_lock(&gss_auth_hash_lock); 1172 hash_for_each_possible(gss_auth_hash_table, 1173 gss_auth, 1174 hash, 1175 hashval) { 1176 if (gss_auth->client != clnt) 1177 continue; 1178 if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor) 1179 continue; 1180 if (gss_auth->target_name != args->target_name) { 1181 if (gss_auth->target_name == NULL) 1182 continue; 1183 if (args->target_name == NULL) 1184 continue; 1185 if (strcmp(gss_auth->target_name, args->target_name)) 1186 continue; 1187 } 1188 if (!refcount_inc_not_zero(&gss_auth->rpc_auth.au_count)) 1189 continue; 1190 goto out; 1191 } 1192 if (new) 1193 hash_add(gss_auth_hash_table, &new->hash, hashval); 1194 gss_auth = new; 1195 out: 1196 spin_unlock(&gss_auth_hash_lock); 1197 return gss_auth; 1198 } 1199 1200 static struct gss_auth * 1201 gss_create_hashed(const struct rpc_auth_create_args *args, 1202 struct rpc_clnt *clnt) 1203 { 1204 struct gss_auth *gss_auth; 1205 struct gss_auth *new; 1206 1207 gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL); 1208 if (gss_auth != NULL) 1209 goto out; 1210 new = gss_create_new(args, clnt); 1211 if (IS_ERR(new)) 1212 return new; 1213 gss_auth = gss_auth_find_or_add_hashed(args, clnt, new); 1214 if (gss_auth != new) 1215 gss_destroy(&new->rpc_auth); 1216 out: 1217 return gss_auth; 1218 } 1219 1220 static struct rpc_auth * 1221 gss_create(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt) 1222 { 1223 struct gss_auth *gss_auth; 1224 struct rpc_xprt_switch *xps = rcu_access_pointer(clnt->cl_xpi.xpi_xpswitch); 1225 1226 while (clnt != clnt->cl_parent) { 1227 struct rpc_clnt *parent = clnt->cl_parent; 1228 /* Find the original parent for this transport */ 1229 if (rcu_access_pointer(parent->cl_xpi.xpi_xpswitch) != xps) 1230 break; 1231 clnt = parent; 1232 } 1233 1234 gss_auth = gss_create_hashed(args, clnt); 1235 if (IS_ERR(gss_auth)) 1236 return ERR_CAST(gss_auth); 1237 return &gss_auth->rpc_auth; 1238 } 1239 1240 static struct gss_cred * 1241 gss_dup_cred(struct gss_auth *gss_auth, struct gss_cred *gss_cred) 1242 { 1243 struct gss_cred *new; 1244 1245 /* Make a copy of the cred so that we can reference count it */ 1246 new = kzalloc(sizeof(*gss_cred), GFP_KERNEL); 1247 if (new) { 1248 struct auth_cred acred = { 1249 .cred = gss_cred->gc_base.cr_cred, 1250 }; 1251 struct gss_cl_ctx *ctx = 1252 rcu_dereference_protected(gss_cred->gc_ctx, 1); 1253 1254 rpcauth_init_cred(&new->gc_base, &acred, 1255 &gss_auth->rpc_auth, 1256 &gss_nullops); 1257 new->gc_base.cr_flags = 1UL << RPCAUTH_CRED_UPTODATE; 1258 new->gc_service = gss_cred->gc_service; 1259 new->gc_principal = gss_cred->gc_principal; 1260 kref_get(&gss_auth->kref); 1261 rcu_assign_pointer(new->gc_ctx, ctx); 1262 gss_get_ctx(ctx); 1263 } 1264 return new; 1265 } 1266 1267 /* 1268 * gss_send_destroy_context will cause the RPCSEC_GSS to send a NULL RPC call 1269 * to the server with the GSS control procedure field set to 1270 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release 1271 * all RPCSEC_GSS state associated with that context. 1272 */ 1273 static void 1274 gss_send_destroy_context(struct rpc_cred *cred) 1275 { 1276 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1277 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 1278 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1); 1279 struct gss_cred *new; 1280 struct rpc_task *task; 1281 1282 new = gss_dup_cred(gss_auth, gss_cred); 1283 if (new) { 1284 ctx->gc_proc = RPC_GSS_PROC_DESTROY; 1285 1286 trace_rpcgss_ctx_destroy(gss_cred); 1287 task = rpc_call_null(gss_auth->client, &new->gc_base, 1288 RPC_TASK_ASYNC); 1289 if (!IS_ERR(task)) 1290 rpc_put_task(task); 1291 1292 put_rpccred(&new->gc_base); 1293 } 1294 } 1295 1296 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure 1297 * to create a new cred or context, so they check that things have been 1298 * allocated before freeing them. */ 1299 static void 1300 gss_do_free_ctx(struct gss_cl_ctx *ctx) 1301 { 1302 gss_delete_sec_context(&ctx->gc_gss_ctx); 1303 kfree(ctx->gc_wire_ctx.data); 1304 kfree(ctx->gc_acceptor.data); 1305 kfree(ctx); 1306 } 1307 1308 static void 1309 gss_free_ctx_callback(struct rcu_head *head) 1310 { 1311 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu); 1312 gss_do_free_ctx(ctx); 1313 } 1314 1315 static void 1316 gss_free_ctx(struct gss_cl_ctx *ctx) 1317 { 1318 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback); 1319 } 1320 1321 static void 1322 gss_free_cred(struct gss_cred *gss_cred) 1323 { 1324 kfree(gss_cred); 1325 } 1326 1327 static void 1328 gss_free_cred_callback(struct rcu_head *head) 1329 { 1330 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu); 1331 gss_free_cred(gss_cred); 1332 } 1333 1334 static void 1335 gss_destroy_nullcred(struct rpc_cred *cred) 1336 { 1337 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1338 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth); 1339 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1); 1340 1341 RCU_INIT_POINTER(gss_cred->gc_ctx, NULL); 1342 put_cred(cred->cr_cred); 1343 call_rcu(&cred->cr_rcu, gss_free_cred_callback); 1344 if (ctx) 1345 gss_put_ctx(ctx); 1346 gss_put_auth(gss_auth); 1347 } 1348 1349 static void 1350 gss_destroy_cred(struct rpc_cred *cred) 1351 { 1352 if (test_and_clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) != 0) 1353 gss_send_destroy_context(cred); 1354 gss_destroy_nullcred(cred); 1355 } 1356 1357 static int 1358 gss_hash_cred(struct auth_cred *acred, unsigned int hashbits) 1359 { 1360 return hash_64(from_kuid(&init_user_ns, acred->cred->fsuid), hashbits); 1361 } 1362 1363 /* 1364 * Lookup RPCSEC_GSS cred for the current process 1365 */ 1366 static struct rpc_cred *gss_lookup_cred(struct rpc_auth *auth, 1367 struct auth_cred *acred, int flags) 1368 { 1369 return rpcauth_lookup_credcache(auth, acred, flags, 1370 rpc_task_gfp_mask()); 1371 } 1372 1373 static struct rpc_cred * 1374 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags, gfp_t gfp) 1375 { 1376 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 1377 struct gss_cred *cred = NULL; 1378 int err = -ENOMEM; 1379 1380 if (!(cred = kzalloc(sizeof(*cred), gfp))) 1381 goto out_err; 1382 1383 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops); 1384 /* 1385 * Note: in order to force a call to call_refresh(), we deliberately 1386 * fail to flag the credential as RPCAUTH_CRED_UPTODATE. 1387 */ 1388 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW; 1389 cred->gc_service = gss_auth->service; 1390 cred->gc_principal = acred->principal; 1391 kref_get(&gss_auth->kref); 1392 return &cred->gc_base; 1393 1394 out_err: 1395 return ERR_PTR(err); 1396 } 1397 1398 static int 1399 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred) 1400 { 1401 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth); 1402 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base); 1403 int err; 1404 1405 do { 1406 err = gss_create_upcall(gss_auth, gss_cred); 1407 } while (err == -EAGAIN); 1408 return err; 1409 } 1410 1411 static char * 1412 gss_stringify_acceptor(struct rpc_cred *cred) 1413 { 1414 char *string = NULL; 1415 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base); 1416 struct gss_cl_ctx *ctx; 1417 unsigned int len; 1418 struct xdr_netobj *acceptor; 1419 1420 rcu_read_lock(); 1421 ctx = rcu_dereference(gss_cred->gc_ctx); 1422 if (!ctx) 1423 goto out; 1424 1425 len = ctx->gc_acceptor.len; 1426 rcu_read_unlock(); 1427 1428 /* no point if there's no string */ 1429 if (!len) 1430 return NULL; 1431 realloc: 1432 string = kmalloc(len + 1, GFP_KERNEL); 1433 if (!string) 1434 return NULL; 1435 1436 rcu_read_lock(); 1437 ctx = rcu_dereference(gss_cred->gc_ctx); 1438 1439 /* did the ctx disappear or was it replaced by one with no acceptor? */ 1440 if (!ctx || !ctx->gc_acceptor.len) { 1441 kfree(string); 1442 string = NULL; 1443 goto out; 1444 } 1445 1446 acceptor = &ctx->gc_acceptor; 1447 1448 /* 1449 * Did we find a new acceptor that's longer than the original? Allocate 1450 * a longer buffer and try again. 1451 */ 1452 if (len < acceptor->len) { 1453 len = acceptor->len; 1454 rcu_read_unlock(); 1455 kfree(string); 1456 goto realloc; 1457 } 1458 1459 memcpy(string, acceptor->data, acceptor->len); 1460 string[acceptor->len] = '\0'; 1461 out: 1462 rcu_read_unlock(); 1463 return string; 1464 } 1465 1466 /* 1467 * Returns -EACCES if GSS context is NULL or will expire within the 1468 * timeout (miliseconds) 1469 */ 1470 static int 1471 gss_key_timeout(struct rpc_cred *rc) 1472 { 1473 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 1474 struct gss_cl_ctx *ctx; 1475 unsigned long timeout = jiffies + (gss_key_expire_timeo * HZ); 1476 int ret = 0; 1477 1478 rcu_read_lock(); 1479 ctx = rcu_dereference(gss_cred->gc_ctx); 1480 if (!ctx || time_after(timeout, ctx->gc_expiry)) 1481 ret = -EACCES; 1482 rcu_read_unlock(); 1483 1484 return ret; 1485 } 1486 1487 static int 1488 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags) 1489 { 1490 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base); 1491 struct gss_cl_ctx *ctx; 1492 int ret; 1493 1494 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags)) 1495 goto out; 1496 /* Don't match with creds that have expired. */ 1497 rcu_read_lock(); 1498 ctx = rcu_dereference(gss_cred->gc_ctx); 1499 if (!ctx || time_after(jiffies, ctx->gc_expiry)) { 1500 rcu_read_unlock(); 1501 return 0; 1502 } 1503 rcu_read_unlock(); 1504 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags)) 1505 return 0; 1506 out: 1507 if (acred->principal != NULL) { 1508 if (gss_cred->gc_principal == NULL) 1509 return 0; 1510 ret = strcmp(acred->principal, gss_cred->gc_principal) == 0; 1511 } else { 1512 if (gss_cred->gc_principal != NULL) 1513 return 0; 1514 ret = uid_eq(rc->cr_cred->fsuid, acred->cred->fsuid); 1515 } 1516 return ret; 1517 } 1518 1519 /* 1520 * Marshal credentials. 1521 * 1522 * The expensive part is computing the verifier. We can't cache a 1523 * pre-computed version of the verifier because the seqno, which 1524 * is different every time, is included in the MIC. 1525 */ 1526 static int gss_marshal(struct rpc_task *task, struct xdr_stream *xdr) 1527 { 1528 struct rpc_rqst *req = task->tk_rqstp; 1529 struct rpc_cred *cred = req->rq_cred; 1530 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1531 gc_base); 1532 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1533 __be32 *p, *cred_len; 1534 u32 maj_stat = 0; 1535 struct xdr_netobj mic; 1536 struct kvec iov; 1537 struct xdr_buf verf_buf; 1538 int status; 1539 u32 seqno; 1540 1541 /* Credential */ 1542 1543 p = xdr_reserve_space(xdr, 7 * sizeof(*p) + 1544 ctx->gc_wire_ctx.len); 1545 if (!p) 1546 goto marshal_failed; 1547 *p++ = rpc_auth_gss; 1548 cred_len = p++; 1549 1550 spin_lock(&ctx->gc_seq_lock); 1551 seqno = (ctx->gc_seq < MAXSEQ) ? ctx->gc_seq++ : MAXSEQ; 1552 xprt_rqst_add_seqno(req, seqno); 1553 spin_unlock(&ctx->gc_seq_lock); 1554 if (*req->rq_seqnos == MAXSEQ) 1555 goto expired; 1556 trace_rpcgss_seqno(task); 1557 1558 *p++ = cpu_to_be32(RPC_GSS_VERSION); 1559 *p++ = cpu_to_be32(ctx->gc_proc); 1560 *p++ = cpu_to_be32(*req->rq_seqnos); 1561 *p++ = cpu_to_be32(gss_cred->gc_service); 1562 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx); 1563 *cred_len = cpu_to_be32((p - (cred_len + 1)) << 2); 1564 1565 /* Verifier */ 1566 1567 /* We compute the checksum for the verifier over the xdr-encoded bytes 1568 * starting with the xid and ending at the end of the credential: */ 1569 iov.iov_base = req->rq_snd_buf.head[0].iov_base; 1570 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base; 1571 xdr_buf_from_iov(&iov, &verf_buf); 1572 1573 p = xdr_reserve_space(xdr, sizeof(*p)); 1574 if (!p) 1575 goto marshal_failed; 1576 *p++ = rpc_auth_gss; 1577 mic.data = (u8 *)(p + 1); 1578 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 1579 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1580 goto expired; 1581 else if (maj_stat != 0) 1582 goto bad_mic; 1583 if (xdr_stream_encode_opaque_inline(xdr, (void **)&p, mic.len) < 0) 1584 goto marshal_failed; 1585 status = 0; 1586 out: 1587 gss_put_ctx(ctx); 1588 return status; 1589 expired: 1590 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1591 status = -EKEYEXPIRED; 1592 goto out; 1593 marshal_failed: 1594 status = -EMSGSIZE; 1595 goto out; 1596 bad_mic: 1597 trace_rpcgss_get_mic(task, maj_stat); 1598 status = -EIO; 1599 goto out; 1600 } 1601 1602 static int gss_renew_cred(struct rpc_task *task) 1603 { 1604 struct rpc_cred *oldcred = task->tk_rqstp->rq_cred; 1605 struct gss_cred *gss_cred = container_of(oldcred, 1606 struct gss_cred, 1607 gc_base); 1608 struct rpc_auth *auth = oldcred->cr_auth; 1609 struct auth_cred acred = { 1610 .cred = oldcred->cr_cred, 1611 .principal = gss_cred->gc_principal, 1612 }; 1613 struct rpc_cred *new; 1614 1615 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW); 1616 if (IS_ERR(new)) 1617 return PTR_ERR(new); 1618 1619 task->tk_rqstp->rq_cred = new; 1620 put_rpccred(oldcred); 1621 return 0; 1622 } 1623 1624 static int gss_cred_is_negative_entry(struct rpc_cred *cred) 1625 { 1626 if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) { 1627 unsigned long now = jiffies; 1628 unsigned long begin, expire; 1629 struct gss_cred *gss_cred; 1630 1631 gss_cred = container_of(cred, struct gss_cred, gc_base); 1632 begin = gss_cred->gc_upcall_timestamp; 1633 expire = begin + gss_expired_cred_retry_delay * HZ; 1634 1635 if (time_in_range_open(now, begin, expire)) 1636 return 1; 1637 } 1638 return 0; 1639 } 1640 1641 /* 1642 * Refresh credentials. XXX - finish 1643 */ 1644 static int 1645 gss_refresh(struct rpc_task *task) 1646 { 1647 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1648 int ret = 0; 1649 1650 if (gss_cred_is_negative_entry(cred)) 1651 return -EKEYEXPIRED; 1652 1653 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) && 1654 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) { 1655 ret = gss_renew_cred(task); 1656 if (ret < 0) 1657 goto out; 1658 cred = task->tk_rqstp->rq_cred; 1659 } 1660 1661 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags)) 1662 ret = gss_refresh_upcall(task); 1663 out: 1664 return ret; 1665 } 1666 1667 /* Dummy refresh routine: used only when destroying the context */ 1668 static int 1669 gss_refresh_null(struct rpc_task *task) 1670 { 1671 return 0; 1672 } 1673 1674 static u32 1675 gss_validate_seqno_mic(struct gss_cl_ctx *ctx, u32 seqno, __be32 *seq, __be32 *p, u32 len) 1676 { 1677 struct kvec iov; 1678 struct xdr_buf verf_buf; 1679 struct xdr_netobj mic; 1680 1681 *seq = cpu_to_be32(seqno); 1682 iov.iov_base = seq; 1683 iov.iov_len = 4; 1684 xdr_buf_from_iov(&iov, &verf_buf); 1685 mic.data = (u8 *)p; 1686 mic.len = len; 1687 return gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic); 1688 } 1689 1690 static int 1691 gss_validate(struct rpc_task *task, struct xdr_stream *xdr) 1692 { 1693 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1694 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1695 __be32 *p, *seq = NULL; 1696 u32 len, maj_stat; 1697 int status; 1698 int i = 1; /* don't recheck the first item */ 1699 1700 p = xdr_inline_decode(xdr, 2 * sizeof(*p)); 1701 if (!p) 1702 goto validate_failed; 1703 if (*p++ != rpc_auth_gss) 1704 goto validate_failed; 1705 len = be32_to_cpup(p); 1706 if (len > RPC_MAX_AUTH_SIZE) 1707 goto validate_failed; 1708 p = xdr_inline_decode(xdr, len); 1709 if (!p) 1710 goto validate_failed; 1711 1712 seq = kmalloc(4, GFP_KERNEL); 1713 if (!seq) 1714 goto validate_failed; 1715 maj_stat = gss_validate_seqno_mic(ctx, task->tk_rqstp->rq_seqnos[0], seq, p, len); 1716 /* RFC 2203 5.3.3.1 - compute the checksum of each sequence number in the cache */ 1717 while (unlikely(maj_stat == GSS_S_BAD_SIG && i < task->tk_rqstp->rq_seqno_count)) 1718 maj_stat = gss_validate_seqno_mic(ctx, task->tk_rqstp->rq_seqnos[i++], seq, p, len); 1719 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1720 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1721 if (maj_stat) 1722 goto bad_mic; 1723 1724 /* We leave it to unwrap to calculate au_rslack. For now we just 1725 * calculate the length of the verifier: */ 1726 if (test_bit(RPCAUTH_AUTH_UPDATE_SLACK, &cred->cr_auth->au_flags)) 1727 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2; 1728 status = 0; 1729 out: 1730 gss_put_ctx(ctx); 1731 kfree(seq); 1732 return status; 1733 1734 validate_failed: 1735 status = -EIO; 1736 goto out; 1737 bad_mic: 1738 trace_rpcgss_verify_mic(task, maj_stat); 1739 status = -EACCES; 1740 goto out; 1741 } 1742 1743 static noinline_for_stack int 1744 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1745 struct rpc_task *task, struct xdr_stream *xdr) 1746 { 1747 struct rpc_rqst *rqstp = task->tk_rqstp; 1748 struct xdr_buf integ_buf, *snd_buf = &rqstp->rq_snd_buf; 1749 struct xdr_netobj mic; 1750 __be32 *p, *integ_len; 1751 u32 offset, maj_stat; 1752 1753 p = xdr_reserve_space(xdr, 2 * sizeof(*p)); 1754 if (!p) 1755 goto wrap_failed; 1756 integ_len = p++; 1757 *p = cpu_to_be32(*rqstp->rq_seqnos); 1758 1759 if (rpcauth_wrap_req_encode(task, xdr)) 1760 goto wrap_failed; 1761 1762 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1763 if (xdr_buf_subsegment(snd_buf, &integ_buf, 1764 offset, snd_buf->len - offset)) 1765 goto wrap_failed; 1766 *integ_len = cpu_to_be32(integ_buf.len); 1767 1768 p = xdr_reserve_space(xdr, 0); 1769 if (!p) 1770 goto wrap_failed; 1771 mic.data = (u8 *)(p + 1); 1772 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic); 1773 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1774 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1775 else if (maj_stat) 1776 goto bad_mic; 1777 /* Check that the trailing MIC fit in the buffer, after the fact */ 1778 if (xdr_stream_encode_opaque_inline(xdr, (void **)&p, mic.len) < 0) 1779 goto wrap_failed; 1780 return 0; 1781 wrap_failed: 1782 return -EMSGSIZE; 1783 bad_mic: 1784 trace_rpcgss_get_mic(task, maj_stat); 1785 return -EIO; 1786 } 1787 1788 static void 1789 priv_release_snd_buf(struct rpc_rqst *rqstp) 1790 { 1791 int i; 1792 1793 for (i=0; i < rqstp->rq_enc_pages_num; i++) 1794 __free_page(rqstp->rq_enc_pages[i]); 1795 kfree(rqstp->rq_enc_pages); 1796 rqstp->rq_release_snd_buf = NULL; 1797 } 1798 1799 static int 1800 alloc_enc_pages(struct rpc_rqst *rqstp) 1801 { 1802 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1803 int first, last, i; 1804 1805 if (rqstp->rq_release_snd_buf) 1806 rqstp->rq_release_snd_buf(rqstp); 1807 1808 if (snd_buf->page_len == 0) { 1809 rqstp->rq_enc_pages_num = 0; 1810 return 0; 1811 } 1812 1813 first = snd_buf->page_base >> PAGE_SHIFT; 1814 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_SHIFT; 1815 rqstp->rq_enc_pages_num = last - first + 1 + 1; 1816 rqstp->rq_enc_pages 1817 = kmalloc_array(rqstp->rq_enc_pages_num, 1818 sizeof(struct page *), 1819 GFP_KERNEL); 1820 if (!rqstp->rq_enc_pages) 1821 goto out; 1822 for (i=0; i < rqstp->rq_enc_pages_num; i++) { 1823 rqstp->rq_enc_pages[i] = alloc_page(GFP_KERNEL); 1824 if (rqstp->rq_enc_pages[i] == NULL) 1825 goto out_free; 1826 } 1827 rqstp->rq_release_snd_buf = priv_release_snd_buf; 1828 return 0; 1829 out_free: 1830 rqstp->rq_enc_pages_num = i; 1831 priv_release_snd_buf(rqstp); 1832 out: 1833 return -EAGAIN; 1834 } 1835 1836 static noinline_for_stack int 1837 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx, 1838 struct rpc_task *task, struct xdr_stream *xdr) 1839 { 1840 struct rpc_rqst *rqstp = task->tk_rqstp; 1841 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf; 1842 u32 pad, offset, maj_stat; 1843 int status; 1844 __be32 *p, *opaque_len; 1845 struct page **inpages; 1846 int first; 1847 struct kvec *iov; 1848 1849 status = -EIO; 1850 p = xdr_reserve_space(xdr, 2 * sizeof(*p)); 1851 if (!p) 1852 goto wrap_failed; 1853 opaque_len = p++; 1854 *p = cpu_to_be32(*rqstp->rq_seqnos); 1855 1856 if (rpcauth_wrap_req_encode(task, xdr)) 1857 goto wrap_failed; 1858 1859 status = alloc_enc_pages(rqstp); 1860 if (unlikely(status)) 1861 goto wrap_failed; 1862 first = snd_buf->page_base >> PAGE_SHIFT; 1863 inpages = snd_buf->pages + first; 1864 snd_buf->pages = rqstp->rq_enc_pages; 1865 snd_buf->page_base -= first << PAGE_SHIFT; 1866 /* 1867 * Move the tail into its own page, in case gss_wrap needs 1868 * more space in the head when wrapping. 1869 * 1870 * Still... Why can't gss_wrap just slide the tail down? 1871 */ 1872 if (snd_buf->page_len || snd_buf->tail[0].iov_len) { 1873 char *tmp; 1874 1875 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]); 1876 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len); 1877 snd_buf->tail[0].iov_base = tmp; 1878 } 1879 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base; 1880 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages); 1881 /* slack space should prevent this ever happening: */ 1882 if (unlikely(snd_buf->len > snd_buf->buflen)) { 1883 status = -EIO; 1884 goto wrap_failed; 1885 } 1886 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was 1887 * done anyway, so it's safe to put the request on the wire: */ 1888 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 1889 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 1890 else if (maj_stat) 1891 goto bad_wrap; 1892 1893 *opaque_len = cpu_to_be32(snd_buf->len - offset); 1894 /* guess whether the pad goes into the head or the tail: */ 1895 if (snd_buf->page_len || snd_buf->tail[0].iov_len) 1896 iov = snd_buf->tail; 1897 else 1898 iov = snd_buf->head; 1899 p = iov->iov_base + iov->iov_len; 1900 pad = xdr_pad_size(snd_buf->len - offset); 1901 memset(p, 0, pad); 1902 iov->iov_len += pad; 1903 snd_buf->len += pad; 1904 1905 return 0; 1906 wrap_failed: 1907 return status; 1908 bad_wrap: 1909 trace_rpcgss_wrap(task, maj_stat); 1910 return -EIO; 1911 } 1912 1913 static int gss_wrap_req(struct rpc_task *task, struct xdr_stream *xdr) 1914 { 1915 struct rpc_cred *cred = task->tk_rqstp->rq_cred; 1916 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 1917 gc_base); 1918 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 1919 int status; 1920 1921 status = -EIO; 1922 if (ctx->gc_proc != RPC_GSS_PROC_DATA) { 1923 /* The spec seems a little ambiguous here, but I think that not 1924 * wrapping context destruction requests makes the most sense. 1925 */ 1926 status = rpcauth_wrap_req_encode(task, xdr); 1927 goto out; 1928 } 1929 switch (gss_cred->gc_service) { 1930 case RPC_GSS_SVC_NONE: 1931 status = rpcauth_wrap_req_encode(task, xdr); 1932 break; 1933 case RPC_GSS_SVC_INTEGRITY: 1934 status = gss_wrap_req_integ(cred, ctx, task, xdr); 1935 break; 1936 case RPC_GSS_SVC_PRIVACY: 1937 status = gss_wrap_req_priv(cred, ctx, task, xdr); 1938 break; 1939 default: 1940 status = -EIO; 1941 } 1942 out: 1943 gss_put_ctx(ctx); 1944 return status; 1945 } 1946 1947 /** 1948 * gss_update_rslack - Possibly update RPC receive buffer size estimates 1949 * @task: rpc_task for incoming RPC Reply being unwrapped 1950 * @cred: controlling rpc_cred for @task 1951 * @before: XDR words needed before each RPC Reply message 1952 * @after: XDR words needed following each RPC Reply message 1953 * 1954 */ 1955 static void gss_update_rslack(struct rpc_task *task, struct rpc_cred *cred, 1956 unsigned int before, unsigned int after) 1957 { 1958 struct rpc_auth *auth = cred->cr_auth; 1959 1960 if (test_and_clear_bit(RPCAUTH_AUTH_UPDATE_SLACK, &auth->au_flags)) { 1961 auth->au_ralign = auth->au_verfsize + before; 1962 auth->au_rslack = auth->au_verfsize + after; 1963 trace_rpcgss_update_slack(task, auth); 1964 } 1965 } 1966 1967 static int 1968 gss_unwrap_resp_auth(struct rpc_task *task, struct rpc_cred *cred) 1969 { 1970 gss_update_rslack(task, cred, 0, 0); 1971 return 0; 1972 } 1973 1974 /* 1975 * RFC 2203, Section 5.3.2.2 1976 * 1977 * struct rpc_gss_integ_data { 1978 * opaque databody_integ<>; 1979 * opaque checksum<>; 1980 * }; 1981 * 1982 * struct rpc_gss_data_t { 1983 * unsigned int seq_num; 1984 * proc_req_arg_t arg; 1985 * }; 1986 */ 1987 static noinline_for_stack int 1988 gss_unwrap_resp_integ(struct rpc_task *task, struct rpc_cred *cred, 1989 struct gss_cl_ctx *ctx, struct rpc_rqst *rqstp, 1990 struct xdr_stream *xdr) 1991 { 1992 struct xdr_buf gss_data, *rcv_buf = &rqstp->rq_rcv_buf; 1993 u32 len, offset, seqno, maj_stat; 1994 struct xdr_netobj mic; 1995 int ret; 1996 1997 ret = -EIO; 1998 mic.data = NULL; 1999 2000 /* opaque databody_integ<>; */ 2001 if (xdr_stream_decode_u32(xdr, &len)) 2002 goto unwrap_failed; 2003 if (len & 3) 2004 goto unwrap_failed; 2005 offset = rcv_buf->len - xdr_stream_remaining(xdr); 2006 if (xdr_stream_decode_u32(xdr, &seqno)) 2007 goto unwrap_failed; 2008 if (seqno != *rqstp->rq_seqnos) 2009 goto bad_seqno; 2010 if (xdr_buf_subsegment(rcv_buf, &gss_data, offset, len)) 2011 goto unwrap_failed; 2012 2013 /* 2014 * The xdr_stream now points to the beginning of the 2015 * upper layer payload, to be passed below to 2016 * rpcauth_unwrap_resp_decode(). The checksum, which 2017 * follows the upper layer payload in @rcv_buf, is 2018 * located and parsed without updating the xdr_stream. 2019 */ 2020 2021 /* opaque checksum<>; */ 2022 offset += len; 2023 if (xdr_decode_word(rcv_buf, offset, &len)) 2024 goto unwrap_failed; 2025 offset += sizeof(__be32); 2026 if (offset + len > rcv_buf->len) 2027 goto unwrap_failed; 2028 mic.len = len; 2029 mic.data = kmalloc(len, GFP_KERNEL); 2030 if (ZERO_OR_NULL_PTR(mic.data)) 2031 goto unwrap_failed; 2032 if (read_bytes_from_xdr_buf(rcv_buf, offset, mic.data, mic.len)) 2033 goto unwrap_failed; 2034 2035 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &gss_data, &mic); 2036 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 2037 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 2038 if (maj_stat != GSS_S_COMPLETE) 2039 goto bad_mic; 2040 2041 gss_update_rslack(task, cred, 2, 2 + 1 + XDR_QUADLEN(mic.len)); 2042 ret = 0; 2043 2044 out: 2045 kfree(mic.data); 2046 return ret; 2047 2048 unwrap_failed: 2049 trace_rpcgss_unwrap_failed(task); 2050 goto out; 2051 bad_seqno: 2052 trace_rpcgss_bad_seqno(task, *rqstp->rq_seqnos, seqno); 2053 goto out; 2054 bad_mic: 2055 trace_rpcgss_verify_mic(task, maj_stat); 2056 goto out; 2057 } 2058 2059 static noinline_for_stack int 2060 gss_unwrap_resp_priv(struct rpc_task *task, struct rpc_cred *cred, 2061 struct gss_cl_ctx *ctx, struct rpc_rqst *rqstp, 2062 struct xdr_stream *xdr) 2063 { 2064 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf; 2065 struct kvec *head = rqstp->rq_rcv_buf.head; 2066 u32 offset, opaque_len, maj_stat; 2067 __be32 *p; 2068 2069 p = xdr_inline_decode(xdr, 2 * sizeof(*p)); 2070 if (unlikely(!p)) 2071 goto unwrap_failed; 2072 opaque_len = be32_to_cpup(p++); 2073 offset = (u8 *)(p) - (u8 *)head->iov_base; 2074 if (offset + opaque_len > rcv_buf->len) 2075 goto unwrap_failed; 2076 2077 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, 2078 offset + opaque_len, rcv_buf); 2079 if (maj_stat == GSS_S_CONTEXT_EXPIRED) 2080 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags); 2081 if (maj_stat != GSS_S_COMPLETE) 2082 goto bad_unwrap; 2083 /* gss_unwrap decrypted the sequence number */ 2084 if (be32_to_cpup(p++) != *rqstp->rq_seqnos) 2085 goto bad_seqno; 2086 2087 /* gss_unwrap redacts the opaque blob from the head iovec. 2088 * rcv_buf has changed, thus the stream needs to be reset. 2089 */ 2090 xdr_init_decode(xdr, rcv_buf, p, rqstp); 2091 2092 gss_update_rslack(task, cred, 2 + ctx->gc_gss_ctx->align, 2093 2 + ctx->gc_gss_ctx->slack); 2094 2095 return 0; 2096 unwrap_failed: 2097 trace_rpcgss_unwrap_failed(task); 2098 return -EIO; 2099 bad_seqno: 2100 trace_rpcgss_bad_seqno(task, *rqstp->rq_seqnos, be32_to_cpup(--p)); 2101 return -EIO; 2102 bad_unwrap: 2103 trace_rpcgss_unwrap(task, maj_stat); 2104 return -EIO; 2105 } 2106 2107 static bool 2108 gss_seq_is_newer(u32 new, u32 old) 2109 { 2110 return (s32)(new - old) > 0; 2111 } 2112 2113 static bool 2114 gss_xmit_need_reencode(struct rpc_task *task) 2115 { 2116 struct rpc_rqst *req = task->tk_rqstp; 2117 struct rpc_cred *cred = req->rq_cred; 2118 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 2119 u32 win, seq_xmit = 0; 2120 bool ret = true; 2121 2122 if (!ctx) 2123 goto out; 2124 2125 if (gss_seq_is_newer(*req->rq_seqnos, READ_ONCE(ctx->gc_seq))) 2126 goto out_ctx; 2127 2128 seq_xmit = READ_ONCE(ctx->gc_seq_xmit); 2129 while (gss_seq_is_newer(*req->rq_seqnos, seq_xmit)) { 2130 u32 tmp = seq_xmit; 2131 2132 seq_xmit = cmpxchg(&ctx->gc_seq_xmit, tmp, *req->rq_seqnos); 2133 if (seq_xmit == tmp) { 2134 ret = false; 2135 goto out_ctx; 2136 } 2137 } 2138 2139 win = ctx->gc_win; 2140 if (win > 0) 2141 ret = !gss_seq_is_newer(*req->rq_seqnos, seq_xmit - win); 2142 2143 out_ctx: 2144 gss_put_ctx(ctx); 2145 out: 2146 trace_rpcgss_need_reencode(task, seq_xmit, ret); 2147 return ret; 2148 } 2149 2150 static int 2151 gss_unwrap_resp(struct rpc_task *task, struct xdr_stream *xdr) 2152 { 2153 struct rpc_rqst *rqstp = task->tk_rqstp; 2154 struct rpc_cred *cred = rqstp->rq_cred; 2155 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, 2156 gc_base); 2157 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred); 2158 int status = -EIO; 2159 2160 if (ctx->gc_proc != RPC_GSS_PROC_DATA) 2161 goto out_decode; 2162 switch (gss_cred->gc_service) { 2163 case RPC_GSS_SVC_NONE: 2164 status = gss_unwrap_resp_auth(task, cred); 2165 break; 2166 case RPC_GSS_SVC_INTEGRITY: 2167 status = gss_unwrap_resp_integ(task, cred, ctx, rqstp, xdr); 2168 break; 2169 case RPC_GSS_SVC_PRIVACY: 2170 status = gss_unwrap_resp_priv(task, cred, ctx, rqstp, xdr); 2171 break; 2172 } 2173 if (status) 2174 goto out; 2175 2176 out_decode: 2177 status = rpcauth_unwrap_resp_decode(task, xdr); 2178 out: 2179 gss_put_ctx(ctx); 2180 return status; 2181 } 2182 2183 static const struct rpc_authops authgss_ops = { 2184 .owner = THIS_MODULE, 2185 .au_flavor = RPC_AUTH_GSS, 2186 .au_name = "RPCSEC_GSS", 2187 .create = gss_create, 2188 .destroy = gss_destroy, 2189 .hash_cred = gss_hash_cred, 2190 .lookup_cred = gss_lookup_cred, 2191 .crcreate = gss_create_cred, 2192 .info2flavor = gss_mech_info2flavor, 2193 .flavor2info = gss_mech_flavor2info, 2194 }; 2195 2196 static const struct rpc_credops gss_credops = { 2197 .cr_name = "AUTH_GSS", 2198 .crdestroy = gss_destroy_cred, 2199 .cr_init = gss_cred_init, 2200 .crmatch = gss_match, 2201 .crmarshal = gss_marshal, 2202 .crrefresh = gss_refresh, 2203 .crvalidate = gss_validate, 2204 .crwrap_req = gss_wrap_req, 2205 .crunwrap_resp = gss_unwrap_resp, 2206 .crkey_timeout = gss_key_timeout, 2207 .crstringify_acceptor = gss_stringify_acceptor, 2208 .crneed_reencode = gss_xmit_need_reencode, 2209 }; 2210 2211 static const struct rpc_credops gss_nullops = { 2212 .cr_name = "AUTH_GSS", 2213 .crdestroy = gss_destroy_nullcred, 2214 .crmatch = gss_match, 2215 .crmarshal = gss_marshal, 2216 .crrefresh = gss_refresh_null, 2217 .crvalidate = gss_validate, 2218 .crwrap_req = gss_wrap_req, 2219 .crunwrap_resp = gss_unwrap_resp, 2220 .crstringify_acceptor = gss_stringify_acceptor, 2221 }; 2222 2223 static const struct rpc_pipe_ops gss_upcall_ops_v0 = { 2224 .upcall = gss_v0_upcall, 2225 .downcall = gss_pipe_downcall, 2226 .destroy_msg = gss_pipe_destroy_msg, 2227 .open_pipe = gss_pipe_open_v0, 2228 .release_pipe = gss_pipe_release, 2229 }; 2230 2231 static const struct rpc_pipe_ops gss_upcall_ops_v1 = { 2232 .upcall = gss_v1_upcall, 2233 .downcall = gss_pipe_downcall, 2234 .destroy_msg = gss_pipe_destroy_msg, 2235 .open_pipe = gss_pipe_open_v1, 2236 .release_pipe = gss_pipe_release, 2237 }; 2238 2239 static __net_init int rpcsec_gss_init_net(struct net *net) 2240 { 2241 return gss_svc_init_net(net); 2242 } 2243 2244 static __net_exit void rpcsec_gss_exit_net(struct net *net) 2245 { 2246 gss_svc_shutdown_net(net); 2247 } 2248 2249 static struct pernet_operations rpcsec_gss_net_ops = { 2250 .init = rpcsec_gss_init_net, 2251 .exit = rpcsec_gss_exit_net, 2252 }; 2253 2254 /* 2255 * Initialize RPCSEC_GSS module 2256 */ 2257 static int __init init_rpcsec_gss(void) 2258 { 2259 int err = 0; 2260 2261 err = rpcauth_register(&authgss_ops); 2262 if (err) 2263 goto out; 2264 err = gss_svc_init(); 2265 if (err) 2266 goto out_unregister; 2267 err = register_pernet_subsys(&rpcsec_gss_net_ops); 2268 if (err) 2269 goto out_svc_exit; 2270 rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version"); 2271 return 0; 2272 out_svc_exit: 2273 gss_svc_shutdown(); 2274 out_unregister: 2275 rpcauth_unregister(&authgss_ops); 2276 out: 2277 return err; 2278 } 2279 2280 static void __exit exit_rpcsec_gss(void) 2281 { 2282 unregister_pernet_subsys(&rpcsec_gss_net_ops); 2283 gss_svc_shutdown(); 2284 rpcauth_unregister(&authgss_ops); 2285 rcu_barrier(); /* Wait for completion of call_rcu()'s */ 2286 } 2287 2288 MODULE_ALIAS("rpc-auth-6"); 2289 MODULE_DESCRIPTION("Sun RPC Kerberos RPCSEC_GSS client authentication"); 2290 MODULE_LICENSE("GPL"); 2291 module_param_named(expired_cred_retry_delay, 2292 gss_expired_cred_retry_delay, 2293 uint, 0644); 2294 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until " 2295 "the RPC engine retries an expired credential"); 2296 2297 module_param_named(key_expire_timeo, 2298 gss_key_expire_timeo, 2299 uint, 0644); 2300 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a " 2301 "credential keys lifetime where the NFS layer cleans up " 2302 "prior to key expiration"); 2303 2304 module_init(init_rpcsec_gss) 2305 module_exit(exit_rpcsec_gss) 2306