xref: /linux/net/sunrpc/auth_gss/auth_gss.c (revision 1c07425e902cd3137961c3d45b4271bf8a9b8eb9)
1 // SPDX-License-Identifier: BSD-3-Clause
2 /*
3  * linux/net/sunrpc/auth_gss/auth_gss.c
4  *
5  * RPCSEC_GSS client authentication.
6  *
7  *  Copyright (c) 2000 The Regents of the University of Michigan.
8  *  All rights reserved.
9  *
10  *  Dug Song       <dugsong@monkey.org>
11  *  Andy Adamson   <andros@umich.edu>
12  */
13 
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/sunrpc/clnt.h>
21 #include <linux/sunrpc/auth.h>
22 #include <linux/sunrpc/auth_gss.h>
23 #include <linux/sunrpc/gss_krb5.h>
24 #include <linux/sunrpc/svcauth_gss.h>
25 #include <linux/sunrpc/gss_err.h>
26 #include <linux/workqueue.h>
27 #include <linux/sunrpc/rpc_pipe_fs.h>
28 #include <linux/sunrpc/gss_api.h>
29 #include <linux/uaccess.h>
30 #include <linux/hashtable.h>
31 
32 #include "auth_gss_internal.h"
33 #include "../netns.h"
34 
35 #include <trace/events/rpcgss.h>
36 
37 static const struct rpc_authops authgss_ops;
38 
39 static const struct rpc_credops gss_credops;
40 static const struct rpc_credops gss_nullops;
41 
42 #define GSS_RETRY_EXPIRED 5
43 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED;
44 
45 #define GSS_KEY_EXPIRE_TIMEO 240
46 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO;
47 
48 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
49 # define RPCDBG_FACILITY	RPCDBG_AUTH
50 #endif
51 
52 #define GSS_CRED_SLACK		(RPC_MAX_AUTH_SIZE * 2)
53 /* length of a krb5 verifier (48), plus data added before arguments when
54  * using integrity (two 4-byte integers): */
55 #define GSS_VERF_SLACK		100
56 
57 static DEFINE_HASHTABLE(gss_auth_hash_table, 4);
58 static DEFINE_SPINLOCK(gss_auth_hash_lock);
59 
60 struct gss_pipe {
61 	struct rpc_pipe_dir_object pdo;
62 	struct rpc_pipe *pipe;
63 	struct rpc_clnt *clnt;
64 	const char *name;
65 	struct kref kref;
66 };
67 
68 struct gss_auth {
69 	struct kref kref;
70 	struct hlist_node hash;
71 	struct rpc_auth rpc_auth;
72 	struct gss_api_mech *mech;
73 	enum rpc_gss_svc service;
74 	struct rpc_clnt *client;
75 	struct net	*net;
76 	netns_tracker	ns_tracker;
77 	/*
78 	 * There are two upcall pipes; dentry[1], named "gssd", is used
79 	 * for the new text-based upcall; dentry[0] is named after the
80 	 * mechanism (for example, "krb5") and exists for
81 	 * backwards-compatibility with older gssd's.
82 	 */
83 	struct gss_pipe *gss_pipe[2];
84 	const char *target_name;
85 };
86 
87 /* pipe_version >= 0 if and only if someone has a pipe open. */
88 static DEFINE_SPINLOCK(pipe_version_lock);
89 static struct rpc_wait_queue pipe_version_rpc_waitqueue;
90 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue);
91 static void gss_put_auth(struct gss_auth *gss_auth);
92 
93 static void gss_free_ctx(struct gss_cl_ctx *);
94 static const struct rpc_pipe_ops gss_upcall_ops_v0;
95 static const struct rpc_pipe_ops gss_upcall_ops_v1;
96 
97 static inline struct gss_cl_ctx *
98 gss_get_ctx(struct gss_cl_ctx *ctx)
99 {
100 	refcount_inc(&ctx->count);
101 	return ctx;
102 }
103 
104 static inline void
105 gss_put_ctx(struct gss_cl_ctx *ctx)
106 {
107 	if (refcount_dec_and_test(&ctx->count))
108 		gss_free_ctx(ctx);
109 }
110 
111 /* gss_cred_set_ctx:
112  * called by gss_upcall_callback and gss_create_upcall in order
113  * to set the gss context. The actual exchange of an old context
114  * and a new one is protected by the pipe->lock.
115  */
116 static void
117 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
118 {
119 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
120 
121 	if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
122 		return;
123 	gss_get_ctx(ctx);
124 	rcu_assign_pointer(gss_cred->gc_ctx, ctx);
125 	set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
126 	smp_mb__before_atomic();
127 	clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
128 }
129 
130 static struct gss_cl_ctx *
131 gss_cred_get_ctx(struct rpc_cred *cred)
132 {
133 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
134 	struct gss_cl_ctx *ctx = NULL;
135 
136 	rcu_read_lock();
137 	ctx = rcu_dereference(gss_cred->gc_ctx);
138 	if (ctx)
139 		gss_get_ctx(ctx);
140 	rcu_read_unlock();
141 	return ctx;
142 }
143 
144 static struct gss_cl_ctx *
145 gss_alloc_context(void)
146 {
147 	struct gss_cl_ctx *ctx;
148 
149 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
150 	if (ctx != NULL) {
151 		ctx->gc_proc = RPC_GSS_PROC_DATA;
152 		ctx->gc_seq = 1;	/* NetApp 6.4R1 doesn't accept seq. no. 0 */
153 		spin_lock_init(&ctx->gc_seq_lock);
154 		refcount_set(&ctx->count,1);
155 	}
156 	return ctx;
157 }
158 
159 #define GSSD_MIN_TIMEOUT (60 * 60)
160 static const void *
161 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
162 {
163 	const void *q;
164 	unsigned int seclen;
165 	unsigned int timeout;
166 	unsigned long now = jiffies;
167 	u32 window_size;
168 	int ret;
169 
170 	/* First unsigned int gives the remaining lifetime in seconds of the
171 	 * credential - e.g. the remaining TGT lifetime for Kerberos or
172 	 * the -t value passed to GSSD.
173 	 */
174 	p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
175 	if (IS_ERR(p))
176 		goto err;
177 	if (timeout == 0)
178 		timeout = GSSD_MIN_TIMEOUT;
179 	ctx->gc_expiry = now + ((unsigned long)timeout * HZ);
180 	/* Sequence number window. Determines the maximum number of
181 	 * simultaneous requests
182 	 */
183 	p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
184 	if (IS_ERR(p))
185 		goto err;
186 	ctx->gc_win = window_size;
187 	/* gssd signals an error by passing ctx->gc_win = 0: */
188 	if (ctx->gc_win == 0) {
189 		/*
190 		 * in which case, p points to an error code. Anything other
191 		 * than -EKEYEXPIRED gets converted to -EACCES.
192 		 */
193 		p = simple_get_bytes(p, end, &ret, sizeof(ret));
194 		if (!IS_ERR(p))
195 			p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) :
196 						    ERR_PTR(-EACCES);
197 		goto err;
198 	}
199 	/* copy the opaque wire context */
200 	p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
201 	if (IS_ERR(p))
202 		goto err;
203 	/* import the opaque security context */
204 	p  = simple_get_bytes(p, end, &seclen, sizeof(seclen));
205 	if (IS_ERR(p))
206 		goto err;
207 	q = (const void *)((const char *)p + seclen);
208 	if (unlikely(q > end || q < p)) {
209 		p = ERR_PTR(-EFAULT);
210 		goto err;
211 	}
212 	ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_KERNEL);
213 	if (ret < 0) {
214 		trace_rpcgss_import_ctx(ret);
215 		p = ERR_PTR(ret);
216 		goto err;
217 	}
218 
219 	/* is there any trailing data? */
220 	if (q == end) {
221 		p = q;
222 		goto done;
223 	}
224 
225 	/* pull in acceptor name (if there is one) */
226 	p = simple_get_netobj(q, end, &ctx->gc_acceptor);
227 	if (IS_ERR(p))
228 		goto err;
229 done:
230 	trace_rpcgss_context(window_size, ctx->gc_expiry, now, timeout,
231 			     ctx->gc_acceptor.len, ctx->gc_acceptor.data);
232 err:
233 	return p;
234 }
235 
236 /* XXX: Need some documentation about why UPCALL_BUF_LEN is so small.
237  *	Is user space expecting no more than UPCALL_BUF_LEN bytes?
238  *	Note that there are now _two_ NI_MAXHOST sized data items
239  *	being passed in this string.
240  */
241 #define UPCALL_BUF_LEN	256
242 
243 struct gss_upcall_msg {
244 	refcount_t count;
245 	kuid_t	uid;
246 	const char *service_name;
247 	struct rpc_pipe_msg msg;
248 	struct list_head list;
249 	struct gss_auth *auth;
250 	struct rpc_pipe *pipe;
251 	struct rpc_wait_queue rpc_waitqueue;
252 	wait_queue_head_t waitqueue;
253 	struct gss_cl_ctx *ctx;
254 	char databuf[UPCALL_BUF_LEN];
255 };
256 
257 static int get_pipe_version(struct net *net)
258 {
259 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
260 	int ret;
261 
262 	spin_lock(&pipe_version_lock);
263 	if (sn->pipe_version >= 0) {
264 		atomic_inc(&sn->pipe_users);
265 		ret = sn->pipe_version;
266 	} else
267 		ret = -EAGAIN;
268 	spin_unlock(&pipe_version_lock);
269 	return ret;
270 }
271 
272 static void put_pipe_version(struct net *net)
273 {
274 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
275 
276 	if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) {
277 		sn->pipe_version = -1;
278 		spin_unlock(&pipe_version_lock);
279 	}
280 }
281 
282 static void
283 gss_release_msg(struct gss_upcall_msg *gss_msg)
284 {
285 	struct net *net = gss_msg->auth->net;
286 	if (!refcount_dec_and_test(&gss_msg->count))
287 		return;
288 	put_pipe_version(net);
289 	BUG_ON(!list_empty(&gss_msg->list));
290 	if (gss_msg->ctx != NULL)
291 		gss_put_ctx(gss_msg->ctx);
292 	rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue);
293 	gss_put_auth(gss_msg->auth);
294 	kfree_const(gss_msg->service_name);
295 	kfree(gss_msg);
296 }
297 
298 static struct gss_upcall_msg *
299 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid, const struct gss_auth *auth)
300 {
301 	struct gss_upcall_msg *pos;
302 	list_for_each_entry(pos, &pipe->in_downcall, list) {
303 		if (!uid_eq(pos->uid, uid))
304 			continue;
305 		if (pos->auth->service != auth->service)
306 			continue;
307 		refcount_inc(&pos->count);
308 		return pos;
309 	}
310 	return NULL;
311 }
312 
313 /* Try to add an upcall to the pipefs queue.
314  * If an upcall owned by our uid already exists, then we return a reference
315  * to that upcall instead of adding the new upcall.
316  */
317 static inline struct gss_upcall_msg *
318 gss_add_msg(struct gss_upcall_msg *gss_msg)
319 {
320 	struct rpc_pipe *pipe = gss_msg->pipe;
321 	struct gss_upcall_msg *old;
322 
323 	spin_lock(&pipe->lock);
324 	old = __gss_find_upcall(pipe, gss_msg->uid, gss_msg->auth);
325 	if (old == NULL) {
326 		refcount_inc(&gss_msg->count);
327 		list_add(&gss_msg->list, &pipe->in_downcall);
328 	} else
329 		gss_msg = old;
330 	spin_unlock(&pipe->lock);
331 	return gss_msg;
332 }
333 
334 static void
335 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
336 {
337 	list_del_init(&gss_msg->list);
338 	rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
339 	wake_up_all(&gss_msg->waitqueue);
340 	refcount_dec(&gss_msg->count);
341 }
342 
343 static void
344 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
345 {
346 	struct rpc_pipe *pipe = gss_msg->pipe;
347 
348 	if (list_empty(&gss_msg->list))
349 		return;
350 	spin_lock(&pipe->lock);
351 	if (!list_empty(&gss_msg->list))
352 		__gss_unhash_msg(gss_msg);
353 	spin_unlock(&pipe->lock);
354 }
355 
356 static void
357 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg)
358 {
359 	switch (gss_msg->msg.errno) {
360 	case 0:
361 		if (gss_msg->ctx == NULL)
362 			break;
363 		clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
364 		gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx);
365 		break;
366 	case -EKEYEXPIRED:
367 		set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
368 	}
369 	gss_cred->gc_upcall_timestamp = jiffies;
370 	gss_cred->gc_upcall = NULL;
371 	rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
372 }
373 
374 static void
375 gss_upcall_callback(struct rpc_task *task)
376 {
377 	struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred,
378 			struct gss_cred, gc_base);
379 	struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
380 	struct rpc_pipe *pipe = gss_msg->pipe;
381 
382 	spin_lock(&pipe->lock);
383 	gss_handle_downcall_result(gss_cred, gss_msg);
384 	spin_unlock(&pipe->lock);
385 	task->tk_status = gss_msg->msg.errno;
386 	gss_release_msg(gss_msg);
387 }
388 
389 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg,
390 			      const struct cred *cred)
391 {
392 	struct user_namespace *userns = cred->user_ns;
393 
394 	uid_t uid = from_kuid_munged(userns, gss_msg->uid);
395 	memcpy(gss_msg->databuf, &uid, sizeof(uid));
396 	gss_msg->msg.data = gss_msg->databuf;
397 	gss_msg->msg.len = sizeof(uid);
398 
399 	BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf));
400 }
401 
402 static ssize_t
403 gss_v0_upcall(struct file *file, struct rpc_pipe_msg *msg,
404 		char __user *buf, size_t buflen)
405 {
406 	struct gss_upcall_msg *gss_msg = container_of(msg,
407 						      struct gss_upcall_msg,
408 						      msg);
409 	if (msg->copied == 0)
410 		gss_encode_v0_msg(gss_msg, file->f_cred);
411 	return rpc_pipe_generic_upcall(file, msg, buf, buflen);
412 }
413 
414 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg,
415 				const char *service_name,
416 				const char *target_name,
417 				const struct cred *cred)
418 {
419 	struct user_namespace *userns = cred->user_ns;
420 	struct gss_api_mech *mech = gss_msg->auth->mech;
421 	char *p = gss_msg->databuf;
422 	size_t buflen = sizeof(gss_msg->databuf);
423 	int len;
424 
425 	len = scnprintf(p, buflen, "mech=%s uid=%d", mech->gm_name,
426 			from_kuid_munged(userns, gss_msg->uid));
427 	buflen -= len;
428 	p += len;
429 	gss_msg->msg.len = len;
430 
431 	/*
432 	 * target= is a full service principal that names the remote
433 	 * identity that we are authenticating to.
434 	 */
435 	if (target_name) {
436 		len = scnprintf(p, buflen, " target=%s", target_name);
437 		buflen -= len;
438 		p += len;
439 		gss_msg->msg.len += len;
440 	}
441 
442 	/*
443 	 * gssd uses service= and srchost= to select a matching key from
444 	 * the system's keytab to use as the source principal.
445 	 *
446 	 * service= is the service name part of the source principal,
447 	 * or "*" (meaning choose any).
448 	 *
449 	 * srchost= is the hostname part of the source principal. When
450 	 * not provided, gssd uses the local hostname.
451 	 */
452 	if (service_name) {
453 		char *c = strchr(service_name, '@');
454 
455 		if (!c)
456 			len = scnprintf(p, buflen, " service=%s",
457 					service_name);
458 		else
459 			len = scnprintf(p, buflen,
460 					" service=%.*s srchost=%s",
461 					(int)(c - service_name),
462 					service_name, c + 1);
463 		buflen -= len;
464 		p += len;
465 		gss_msg->msg.len += len;
466 	}
467 
468 	if (mech->gm_upcall_enctypes) {
469 		len = scnprintf(p, buflen, " enctypes=%s",
470 				mech->gm_upcall_enctypes);
471 		buflen -= len;
472 		p += len;
473 		gss_msg->msg.len += len;
474 	}
475 	trace_rpcgss_upcall_msg(gss_msg->databuf);
476 	len = scnprintf(p, buflen, "\n");
477 	if (len == 0)
478 		goto out_overflow;
479 	gss_msg->msg.len += len;
480 	gss_msg->msg.data = gss_msg->databuf;
481 	return 0;
482 out_overflow:
483 	WARN_ON_ONCE(1);
484 	return -ENOMEM;
485 }
486 
487 static ssize_t
488 gss_v1_upcall(struct file *file, struct rpc_pipe_msg *msg,
489 		char __user *buf, size_t buflen)
490 {
491 	struct gss_upcall_msg *gss_msg = container_of(msg,
492 						      struct gss_upcall_msg,
493 						      msg);
494 	int err;
495 	if (msg->copied == 0) {
496 		err = gss_encode_v1_msg(gss_msg,
497 					gss_msg->service_name,
498 					gss_msg->auth->target_name,
499 					file->f_cred);
500 		if (err)
501 			return err;
502 	}
503 	return rpc_pipe_generic_upcall(file, msg, buf, buflen);
504 }
505 
506 static struct gss_upcall_msg *
507 gss_alloc_msg(struct gss_auth *gss_auth,
508 		kuid_t uid, const char *service_name)
509 {
510 	struct gss_upcall_msg *gss_msg;
511 	int vers;
512 	int err = -ENOMEM;
513 
514 	gss_msg = kzalloc(sizeof(*gss_msg), GFP_KERNEL);
515 	if (gss_msg == NULL)
516 		goto err;
517 	vers = get_pipe_version(gss_auth->net);
518 	err = vers;
519 	if (err < 0)
520 		goto err_free_msg;
521 	gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe;
522 	INIT_LIST_HEAD(&gss_msg->list);
523 	rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
524 	init_waitqueue_head(&gss_msg->waitqueue);
525 	refcount_set(&gss_msg->count, 1);
526 	gss_msg->uid = uid;
527 	gss_msg->auth = gss_auth;
528 	kref_get(&gss_auth->kref);
529 	if (service_name) {
530 		gss_msg->service_name = kstrdup_const(service_name, GFP_KERNEL);
531 		if (!gss_msg->service_name) {
532 			err = -ENOMEM;
533 			goto err_put_pipe_version;
534 		}
535 	}
536 	return gss_msg;
537 err_put_pipe_version:
538 	put_pipe_version(gss_auth->net);
539 err_free_msg:
540 	kfree(gss_msg);
541 err:
542 	return ERR_PTR(err);
543 }
544 
545 static struct gss_upcall_msg *
546 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred)
547 {
548 	struct gss_cred *gss_cred = container_of(cred,
549 			struct gss_cred, gc_base);
550 	struct gss_upcall_msg *gss_new, *gss_msg;
551 	kuid_t uid = cred->cr_cred->fsuid;
552 
553 	gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal);
554 	if (IS_ERR(gss_new))
555 		return gss_new;
556 	gss_msg = gss_add_msg(gss_new);
557 	if (gss_msg == gss_new) {
558 		int res;
559 		refcount_inc(&gss_msg->count);
560 		res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg);
561 		if (res) {
562 			gss_unhash_msg(gss_new);
563 			refcount_dec(&gss_msg->count);
564 			gss_release_msg(gss_new);
565 			gss_msg = ERR_PTR(res);
566 		}
567 	} else
568 		gss_release_msg(gss_new);
569 	return gss_msg;
570 }
571 
572 static void warn_gssd(void)
573 {
574 	dprintk("AUTH_GSS upcall failed. Please check user daemon is running.\n");
575 }
576 
577 static inline int
578 gss_refresh_upcall(struct rpc_task *task)
579 {
580 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
581 	struct gss_auth *gss_auth = container_of(cred->cr_auth,
582 			struct gss_auth, rpc_auth);
583 	struct gss_cred *gss_cred = container_of(cred,
584 			struct gss_cred, gc_base);
585 	struct gss_upcall_msg *gss_msg;
586 	struct rpc_pipe *pipe;
587 	int err = 0;
588 
589 	gss_msg = gss_setup_upcall(gss_auth, cred);
590 	if (PTR_ERR(gss_msg) == -EAGAIN) {
591 		/* XXX: warning on the first, under the assumption we
592 		 * shouldn't normally hit this case on a refresh. */
593 		warn_gssd();
594 		rpc_sleep_on_timeout(&pipe_version_rpc_waitqueue,
595 				task, NULL, jiffies + (15 * HZ));
596 		err = -EAGAIN;
597 		goto out;
598 	}
599 	if (IS_ERR(gss_msg)) {
600 		err = PTR_ERR(gss_msg);
601 		goto out;
602 	}
603 	pipe = gss_msg->pipe;
604 	spin_lock(&pipe->lock);
605 	if (gss_cred->gc_upcall != NULL)
606 		rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL);
607 	else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
608 		gss_cred->gc_upcall = gss_msg;
609 		/* gss_upcall_callback will release the reference to gss_upcall_msg */
610 		refcount_inc(&gss_msg->count);
611 		rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback);
612 	} else {
613 		gss_handle_downcall_result(gss_cred, gss_msg);
614 		err = gss_msg->msg.errno;
615 	}
616 	spin_unlock(&pipe->lock);
617 	gss_release_msg(gss_msg);
618 out:
619 	trace_rpcgss_upcall_result(from_kuid(&init_user_ns,
620 					     cred->cr_cred->fsuid), err);
621 	return err;
622 }
623 
624 static inline int
625 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
626 {
627 	struct net *net = gss_auth->net;
628 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
629 	struct rpc_pipe *pipe;
630 	struct rpc_cred *cred = &gss_cred->gc_base;
631 	struct gss_upcall_msg *gss_msg;
632 	DEFINE_WAIT(wait);
633 	int err;
634 
635 retry:
636 	err = 0;
637 	/* if gssd is down, just skip upcalling altogether */
638 	if (!gssd_running(net)) {
639 		warn_gssd();
640 		err = -EACCES;
641 		goto out;
642 	}
643 	gss_msg = gss_setup_upcall(gss_auth, cred);
644 	if (PTR_ERR(gss_msg) == -EAGAIN) {
645 		err = wait_event_interruptible_timeout(pipe_version_waitqueue,
646 				sn->pipe_version >= 0, 15 * HZ);
647 		if (sn->pipe_version < 0) {
648 			warn_gssd();
649 			err = -EACCES;
650 		}
651 		if (err < 0)
652 			goto out;
653 		goto retry;
654 	}
655 	if (IS_ERR(gss_msg)) {
656 		err = PTR_ERR(gss_msg);
657 		goto out;
658 	}
659 	pipe = gss_msg->pipe;
660 	for (;;) {
661 		prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE);
662 		spin_lock(&pipe->lock);
663 		if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
664 			break;
665 		}
666 		spin_unlock(&pipe->lock);
667 		if (fatal_signal_pending(current)) {
668 			err = -ERESTARTSYS;
669 			goto out_intr;
670 		}
671 		schedule();
672 	}
673 	if (gss_msg->ctx) {
674 		trace_rpcgss_ctx_init(gss_cred);
675 		gss_cred_set_ctx(cred, gss_msg->ctx);
676 	} else {
677 		err = gss_msg->msg.errno;
678 	}
679 	spin_unlock(&pipe->lock);
680 out_intr:
681 	finish_wait(&gss_msg->waitqueue, &wait);
682 	gss_release_msg(gss_msg);
683 out:
684 	trace_rpcgss_upcall_result(from_kuid(&init_user_ns,
685 					     cred->cr_cred->fsuid), err);
686 	return err;
687 }
688 
689 static struct gss_upcall_msg *
690 gss_find_downcall(struct rpc_pipe *pipe, kuid_t uid)
691 {
692 	struct gss_upcall_msg *pos;
693 	list_for_each_entry(pos, &pipe->in_downcall, list) {
694 		if (!uid_eq(pos->uid, uid))
695 			continue;
696 		if (!rpc_msg_is_inflight(&pos->msg))
697 			continue;
698 		refcount_inc(&pos->count);
699 		return pos;
700 	}
701 	return NULL;
702 }
703 
704 #define MSG_BUF_MAXSIZE 1024
705 
706 static ssize_t
707 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
708 {
709 	const void *p, *end;
710 	void *buf;
711 	struct gss_upcall_msg *gss_msg;
712 	struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe;
713 	struct gss_cl_ctx *ctx;
714 	uid_t id;
715 	kuid_t uid;
716 	ssize_t err = -EFBIG;
717 
718 	if (mlen > MSG_BUF_MAXSIZE)
719 		goto out;
720 	err = -ENOMEM;
721 	buf = kmalloc(mlen, GFP_KERNEL);
722 	if (!buf)
723 		goto out;
724 
725 	err = -EFAULT;
726 	if (copy_from_user(buf, src, mlen))
727 		goto err;
728 
729 	end = (const void *)((char *)buf + mlen);
730 	p = simple_get_bytes(buf, end, &id, sizeof(id));
731 	if (IS_ERR(p)) {
732 		err = PTR_ERR(p);
733 		goto err;
734 	}
735 
736 	uid = make_kuid(current_user_ns(), id);
737 	if (!uid_valid(uid)) {
738 		err = -EINVAL;
739 		goto err;
740 	}
741 
742 	err = -ENOMEM;
743 	ctx = gss_alloc_context();
744 	if (ctx == NULL)
745 		goto err;
746 
747 	err = -ENOENT;
748 	/* Find a matching upcall */
749 	spin_lock(&pipe->lock);
750 	gss_msg = gss_find_downcall(pipe, uid);
751 	if (gss_msg == NULL) {
752 		spin_unlock(&pipe->lock);
753 		goto err_put_ctx;
754 	}
755 	list_del_init(&gss_msg->list);
756 	spin_unlock(&pipe->lock);
757 
758 	p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
759 	if (IS_ERR(p)) {
760 		err = PTR_ERR(p);
761 		switch (err) {
762 		case -EACCES:
763 		case -EKEYEXPIRED:
764 			gss_msg->msg.errno = err;
765 			err = mlen;
766 			break;
767 		case -EFAULT:
768 		case -ENOMEM:
769 		case -EINVAL:
770 		case -ENOSYS:
771 			gss_msg->msg.errno = -EAGAIN;
772 			break;
773 		default:
774 			printk(KERN_CRIT "%s: bad return from "
775 				"gss_fill_context: %zd\n", __func__, err);
776 			gss_msg->msg.errno = -EIO;
777 		}
778 		goto err_release_msg;
779 	}
780 	gss_msg->ctx = gss_get_ctx(ctx);
781 	err = mlen;
782 
783 err_release_msg:
784 	spin_lock(&pipe->lock);
785 	__gss_unhash_msg(gss_msg);
786 	spin_unlock(&pipe->lock);
787 	gss_release_msg(gss_msg);
788 err_put_ctx:
789 	gss_put_ctx(ctx);
790 err:
791 	kfree(buf);
792 out:
793 	return err;
794 }
795 
796 static int gss_pipe_open(struct inode *inode, int new_version)
797 {
798 	struct net *net = inode->i_sb->s_fs_info;
799 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
800 	int ret = 0;
801 
802 	spin_lock(&pipe_version_lock);
803 	if (sn->pipe_version < 0) {
804 		/* First open of any gss pipe determines the version: */
805 		sn->pipe_version = new_version;
806 		rpc_wake_up(&pipe_version_rpc_waitqueue);
807 		wake_up(&pipe_version_waitqueue);
808 	} else if (sn->pipe_version != new_version) {
809 		/* Trying to open a pipe of a different version */
810 		ret = -EBUSY;
811 		goto out;
812 	}
813 	atomic_inc(&sn->pipe_users);
814 out:
815 	spin_unlock(&pipe_version_lock);
816 	return ret;
817 
818 }
819 
820 static int gss_pipe_open_v0(struct inode *inode)
821 {
822 	return gss_pipe_open(inode, 0);
823 }
824 
825 static int gss_pipe_open_v1(struct inode *inode)
826 {
827 	return gss_pipe_open(inode, 1);
828 }
829 
830 static void
831 gss_pipe_release(struct inode *inode)
832 {
833 	struct net *net = inode->i_sb->s_fs_info;
834 	struct rpc_pipe *pipe = RPC_I(inode)->pipe;
835 	struct gss_upcall_msg *gss_msg;
836 
837 restart:
838 	spin_lock(&pipe->lock);
839 	list_for_each_entry(gss_msg, &pipe->in_downcall, list) {
840 
841 		if (!list_empty(&gss_msg->msg.list))
842 			continue;
843 		gss_msg->msg.errno = -EPIPE;
844 		refcount_inc(&gss_msg->count);
845 		__gss_unhash_msg(gss_msg);
846 		spin_unlock(&pipe->lock);
847 		gss_release_msg(gss_msg);
848 		goto restart;
849 	}
850 	spin_unlock(&pipe->lock);
851 
852 	put_pipe_version(net);
853 }
854 
855 static void
856 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
857 {
858 	struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
859 
860 	if (msg->errno < 0) {
861 		refcount_inc(&gss_msg->count);
862 		gss_unhash_msg(gss_msg);
863 		if (msg->errno == -ETIMEDOUT)
864 			warn_gssd();
865 		gss_release_msg(gss_msg);
866 	}
867 	gss_release_msg(gss_msg);
868 }
869 
870 static void gss_pipe_dentry_destroy(struct dentry *dir,
871 		struct rpc_pipe_dir_object *pdo)
872 {
873 	struct gss_pipe *gss_pipe = pdo->pdo_data;
874 	struct rpc_pipe *pipe = gss_pipe->pipe;
875 
876 	if (pipe->dentry != NULL) {
877 		rpc_unlink(pipe->dentry);
878 		pipe->dentry = NULL;
879 	}
880 }
881 
882 static int gss_pipe_dentry_create(struct dentry *dir,
883 		struct rpc_pipe_dir_object *pdo)
884 {
885 	struct gss_pipe *p = pdo->pdo_data;
886 	struct dentry *dentry;
887 
888 	dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe);
889 	if (IS_ERR(dentry))
890 		return PTR_ERR(dentry);
891 	p->pipe->dentry = dentry;
892 	return 0;
893 }
894 
895 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = {
896 	.create = gss_pipe_dentry_create,
897 	.destroy = gss_pipe_dentry_destroy,
898 };
899 
900 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt,
901 		const char *name,
902 		const struct rpc_pipe_ops *upcall_ops)
903 {
904 	struct gss_pipe *p;
905 	int err = -ENOMEM;
906 
907 	p = kmalloc(sizeof(*p), GFP_KERNEL);
908 	if (p == NULL)
909 		goto err;
910 	p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN);
911 	if (IS_ERR(p->pipe)) {
912 		err = PTR_ERR(p->pipe);
913 		goto err_free_gss_pipe;
914 	}
915 	p->name = name;
916 	p->clnt = clnt;
917 	kref_init(&p->kref);
918 	rpc_init_pipe_dir_object(&p->pdo,
919 			&gss_pipe_dir_object_ops,
920 			p);
921 	return p;
922 err_free_gss_pipe:
923 	kfree(p);
924 err:
925 	return ERR_PTR(err);
926 }
927 
928 struct gss_alloc_pdo {
929 	struct rpc_clnt *clnt;
930 	const char *name;
931 	const struct rpc_pipe_ops *upcall_ops;
932 };
933 
934 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data)
935 {
936 	struct gss_pipe *gss_pipe;
937 	struct gss_alloc_pdo *args = data;
938 
939 	if (pdo->pdo_ops != &gss_pipe_dir_object_ops)
940 		return 0;
941 	gss_pipe = container_of(pdo, struct gss_pipe, pdo);
942 	if (strcmp(gss_pipe->name, args->name) != 0)
943 		return 0;
944 	if (!kref_get_unless_zero(&gss_pipe->kref))
945 		return 0;
946 	return 1;
947 }
948 
949 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data)
950 {
951 	struct gss_pipe *gss_pipe;
952 	struct gss_alloc_pdo *args = data;
953 
954 	gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops);
955 	if (!IS_ERR(gss_pipe))
956 		return &gss_pipe->pdo;
957 	return NULL;
958 }
959 
960 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt,
961 		const char *name,
962 		const struct rpc_pipe_ops *upcall_ops)
963 {
964 	struct net *net = rpc_net_ns(clnt);
965 	struct rpc_pipe_dir_object *pdo;
966 	struct gss_alloc_pdo args = {
967 		.clnt = clnt,
968 		.name = name,
969 		.upcall_ops = upcall_ops,
970 	};
971 
972 	pdo = rpc_find_or_alloc_pipe_dir_object(net,
973 			&clnt->cl_pipedir_objects,
974 			gss_pipe_match_pdo,
975 			gss_pipe_alloc_pdo,
976 			&args);
977 	if (pdo != NULL)
978 		return container_of(pdo, struct gss_pipe, pdo);
979 	return ERR_PTR(-ENOMEM);
980 }
981 
982 static void __gss_pipe_free(struct gss_pipe *p)
983 {
984 	struct rpc_clnt *clnt = p->clnt;
985 	struct net *net = rpc_net_ns(clnt);
986 
987 	rpc_remove_pipe_dir_object(net,
988 			&clnt->cl_pipedir_objects,
989 			&p->pdo);
990 	rpc_destroy_pipe_data(p->pipe);
991 	kfree(p);
992 }
993 
994 static void __gss_pipe_release(struct kref *kref)
995 {
996 	struct gss_pipe *p = container_of(kref, struct gss_pipe, kref);
997 
998 	__gss_pipe_free(p);
999 }
1000 
1001 static void gss_pipe_free(struct gss_pipe *p)
1002 {
1003 	if (p != NULL)
1004 		kref_put(&p->kref, __gss_pipe_release);
1005 }
1006 
1007 /*
1008  * NOTE: we have the opportunity to use different
1009  * parameters based on the input flavor (which must be a pseudoflavor)
1010  */
1011 static struct gss_auth *
1012 gss_create_new(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1013 {
1014 	rpc_authflavor_t flavor = args->pseudoflavor;
1015 	struct gss_auth *gss_auth;
1016 	struct gss_pipe *gss_pipe;
1017 	struct rpc_auth * auth;
1018 	int err = -ENOMEM; /* XXX? */
1019 
1020 	if (!try_module_get(THIS_MODULE))
1021 		return ERR_PTR(err);
1022 	if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
1023 		goto out_dec;
1024 	INIT_HLIST_NODE(&gss_auth->hash);
1025 	gss_auth->target_name = NULL;
1026 	if (args->target_name) {
1027 		gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL);
1028 		if (gss_auth->target_name == NULL)
1029 			goto err_free;
1030 	}
1031 	gss_auth->client = clnt;
1032 	gss_auth->net = get_net_track(rpc_net_ns(clnt), &gss_auth->ns_tracker,
1033 				      GFP_KERNEL);
1034 	err = -EINVAL;
1035 	gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
1036 	if (!gss_auth->mech)
1037 		goto err_put_net;
1038 	gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
1039 	if (gss_auth->service == 0)
1040 		goto err_put_mech;
1041 	if (!gssd_running(gss_auth->net))
1042 		goto err_put_mech;
1043 	auth = &gss_auth->rpc_auth;
1044 	auth->au_cslack = GSS_CRED_SLACK >> 2;
1045 	auth->au_rslack = GSS_KRB5_MAX_SLACK_NEEDED >> 2;
1046 	auth->au_verfsize = GSS_VERF_SLACK >> 2;
1047 	auth->au_ralign = GSS_VERF_SLACK >> 2;
1048 	__set_bit(RPCAUTH_AUTH_UPDATE_SLACK, &auth->au_flags);
1049 	auth->au_ops = &authgss_ops;
1050 	auth->au_flavor = flavor;
1051 	if (gss_pseudoflavor_to_datatouch(gss_auth->mech, flavor))
1052 		__set_bit(RPCAUTH_AUTH_DATATOUCH, &auth->au_flags);
1053 	refcount_set(&auth->au_count, 1);
1054 	kref_init(&gss_auth->kref);
1055 
1056 	err = rpcauth_init_credcache(auth);
1057 	if (err)
1058 		goto err_put_mech;
1059 	/*
1060 	 * Note: if we created the old pipe first, then someone who
1061 	 * examined the directory at the right moment might conclude
1062 	 * that we supported only the old pipe.  So we instead create
1063 	 * the new pipe first.
1064 	 */
1065 	gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1);
1066 	if (IS_ERR(gss_pipe)) {
1067 		err = PTR_ERR(gss_pipe);
1068 		goto err_destroy_credcache;
1069 	}
1070 	gss_auth->gss_pipe[1] = gss_pipe;
1071 
1072 	gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name,
1073 			&gss_upcall_ops_v0);
1074 	if (IS_ERR(gss_pipe)) {
1075 		err = PTR_ERR(gss_pipe);
1076 		goto err_destroy_pipe_1;
1077 	}
1078 	gss_auth->gss_pipe[0] = gss_pipe;
1079 
1080 	return gss_auth;
1081 err_destroy_pipe_1:
1082 	gss_pipe_free(gss_auth->gss_pipe[1]);
1083 err_destroy_credcache:
1084 	rpcauth_destroy_credcache(auth);
1085 err_put_mech:
1086 	gss_mech_put(gss_auth->mech);
1087 err_put_net:
1088 	put_net_track(gss_auth->net, &gss_auth->ns_tracker);
1089 err_free:
1090 	kfree(gss_auth->target_name);
1091 	kfree(gss_auth);
1092 out_dec:
1093 	module_put(THIS_MODULE);
1094 	trace_rpcgss_createauth(flavor, err);
1095 	return ERR_PTR(err);
1096 }
1097 
1098 static void
1099 gss_free(struct gss_auth *gss_auth)
1100 {
1101 	gss_pipe_free(gss_auth->gss_pipe[0]);
1102 	gss_pipe_free(gss_auth->gss_pipe[1]);
1103 	gss_mech_put(gss_auth->mech);
1104 	put_net_track(gss_auth->net, &gss_auth->ns_tracker);
1105 	kfree(gss_auth->target_name);
1106 
1107 	kfree(gss_auth);
1108 	module_put(THIS_MODULE);
1109 }
1110 
1111 static void
1112 gss_free_callback(struct kref *kref)
1113 {
1114 	struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
1115 
1116 	gss_free(gss_auth);
1117 }
1118 
1119 static void
1120 gss_put_auth(struct gss_auth *gss_auth)
1121 {
1122 	kref_put(&gss_auth->kref, gss_free_callback);
1123 }
1124 
1125 static void
1126 gss_destroy(struct rpc_auth *auth)
1127 {
1128 	struct gss_auth *gss_auth = container_of(auth,
1129 			struct gss_auth, rpc_auth);
1130 
1131 	if (hash_hashed(&gss_auth->hash)) {
1132 		spin_lock(&gss_auth_hash_lock);
1133 		hash_del(&gss_auth->hash);
1134 		spin_unlock(&gss_auth_hash_lock);
1135 	}
1136 
1137 	gss_pipe_free(gss_auth->gss_pipe[0]);
1138 	gss_auth->gss_pipe[0] = NULL;
1139 	gss_pipe_free(gss_auth->gss_pipe[1]);
1140 	gss_auth->gss_pipe[1] = NULL;
1141 	rpcauth_destroy_credcache(auth);
1142 
1143 	gss_put_auth(gss_auth);
1144 }
1145 
1146 /*
1147  * Auths may be shared between rpc clients that were cloned from a
1148  * common client with the same xprt, if they also share the flavor and
1149  * target_name.
1150  *
1151  * The auth is looked up from the oldest parent sharing the same
1152  * cl_xprt, and the auth itself references only that common parent
1153  * (which is guaranteed to last as long as any of its descendants).
1154  */
1155 static struct gss_auth *
1156 gss_auth_find_or_add_hashed(const struct rpc_auth_create_args *args,
1157 		struct rpc_clnt *clnt,
1158 		struct gss_auth *new)
1159 {
1160 	struct gss_auth *gss_auth;
1161 	unsigned long hashval = (unsigned long)clnt;
1162 
1163 	spin_lock(&gss_auth_hash_lock);
1164 	hash_for_each_possible(gss_auth_hash_table,
1165 			gss_auth,
1166 			hash,
1167 			hashval) {
1168 		if (gss_auth->client != clnt)
1169 			continue;
1170 		if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor)
1171 			continue;
1172 		if (gss_auth->target_name != args->target_name) {
1173 			if (gss_auth->target_name == NULL)
1174 				continue;
1175 			if (args->target_name == NULL)
1176 				continue;
1177 			if (strcmp(gss_auth->target_name, args->target_name))
1178 				continue;
1179 		}
1180 		if (!refcount_inc_not_zero(&gss_auth->rpc_auth.au_count))
1181 			continue;
1182 		goto out;
1183 	}
1184 	if (new)
1185 		hash_add(gss_auth_hash_table, &new->hash, hashval);
1186 	gss_auth = new;
1187 out:
1188 	spin_unlock(&gss_auth_hash_lock);
1189 	return gss_auth;
1190 }
1191 
1192 static struct gss_auth *
1193 gss_create_hashed(const struct rpc_auth_create_args *args,
1194 		  struct rpc_clnt *clnt)
1195 {
1196 	struct gss_auth *gss_auth;
1197 	struct gss_auth *new;
1198 
1199 	gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL);
1200 	if (gss_auth != NULL)
1201 		goto out;
1202 	new = gss_create_new(args, clnt);
1203 	if (IS_ERR(new))
1204 		return new;
1205 	gss_auth = gss_auth_find_or_add_hashed(args, clnt, new);
1206 	if (gss_auth != new)
1207 		gss_destroy(&new->rpc_auth);
1208 out:
1209 	return gss_auth;
1210 }
1211 
1212 static struct rpc_auth *
1213 gss_create(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1214 {
1215 	struct gss_auth *gss_auth;
1216 	struct rpc_xprt_switch *xps = rcu_access_pointer(clnt->cl_xpi.xpi_xpswitch);
1217 
1218 	while (clnt != clnt->cl_parent) {
1219 		struct rpc_clnt *parent = clnt->cl_parent;
1220 		/* Find the original parent for this transport */
1221 		if (rcu_access_pointer(parent->cl_xpi.xpi_xpswitch) != xps)
1222 			break;
1223 		clnt = parent;
1224 	}
1225 
1226 	gss_auth = gss_create_hashed(args, clnt);
1227 	if (IS_ERR(gss_auth))
1228 		return ERR_CAST(gss_auth);
1229 	return &gss_auth->rpc_auth;
1230 }
1231 
1232 static struct gss_cred *
1233 gss_dup_cred(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
1234 {
1235 	struct gss_cred *new;
1236 
1237 	/* Make a copy of the cred so that we can reference count it */
1238 	new = kzalloc(sizeof(*gss_cred), GFP_KERNEL);
1239 	if (new) {
1240 		struct auth_cred acred = {
1241 			.cred = gss_cred->gc_base.cr_cred,
1242 		};
1243 		struct gss_cl_ctx *ctx =
1244 			rcu_dereference_protected(gss_cred->gc_ctx, 1);
1245 
1246 		rpcauth_init_cred(&new->gc_base, &acred,
1247 				&gss_auth->rpc_auth,
1248 				&gss_nullops);
1249 		new->gc_base.cr_flags = 1UL << RPCAUTH_CRED_UPTODATE;
1250 		new->gc_service = gss_cred->gc_service;
1251 		new->gc_principal = gss_cred->gc_principal;
1252 		kref_get(&gss_auth->kref);
1253 		rcu_assign_pointer(new->gc_ctx, ctx);
1254 		gss_get_ctx(ctx);
1255 	}
1256 	return new;
1257 }
1258 
1259 /*
1260  * gss_send_destroy_context will cause the RPCSEC_GSS to send a NULL RPC call
1261  * to the server with the GSS control procedure field set to
1262  * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
1263  * all RPCSEC_GSS state associated with that context.
1264  */
1265 static void
1266 gss_send_destroy_context(struct rpc_cred *cred)
1267 {
1268 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1269 	struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1270 	struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1);
1271 	struct gss_cred *new;
1272 	struct rpc_task *task;
1273 
1274 	new = gss_dup_cred(gss_auth, gss_cred);
1275 	if (new) {
1276 		ctx->gc_proc = RPC_GSS_PROC_DESTROY;
1277 
1278 		trace_rpcgss_ctx_destroy(gss_cred);
1279 		task = rpc_call_null(gss_auth->client, &new->gc_base,
1280 				     RPC_TASK_ASYNC);
1281 		if (!IS_ERR(task))
1282 			rpc_put_task(task);
1283 
1284 		put_rpccred(&new->gc_base);
1285 	}
1286 }
1287 
1288 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
1289  * to create a new cred or context, so they check that things have been
1290  * allocated before freeing them. */
1291 static void
1292 gss_do_free_ctx(struct gss_cl_ctx *ctx)
1293 {
1294 	gss_delete_sec_context(&ctx->gc_gss_ctx);
1295 	kfree(ctx->gc_wire_ctx.data);
1296 	kfree(ctx->gc_acceptor.data);
1297 	kfree(ctx);
1298 }
1299 
1300 static void
1301 gss_free_ctx_callback(struct rcu_head *head)
1302 {
1303 	struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
1304 	gss_do_free_ctx(ctx);
1305 }
1306 
1307 static void
1308 gss_free_ctx(struct gss_cl_ctx *ctx)
1309 {
1310 	call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
1311 }
1312 
1313 static void
1314 gss_free_cred(struct gss_cred *gss_cred)
1315 {
1316 	kfree(gss_cred);
1317 }
1318 
1319 static void
1320 gss_free_cred_callback(struct rcu_head *head)
1321 {
1322 	struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
1323 	gss_free_cred(gss_cred);
1324 }
1325 
1326 static void
1327 gss_destroy_nullcred(struct rpc_cred *cred)
1328 {
1329 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1330 	struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1331 	struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1);
1332 
1333 	RCU_INIT_POINTER(gss_cred->gc_ctx, NULL);
1334 	put_cred(cred->cr_cred);
1335 	call_rcu(&cred->cr_rcu, gss_free_cred_callback);
1336 	if (ctx)
1337 		gss_put_ctx(ctx);
1338 	gss_put_auth(gss_auth);
1339 }
1340 
1341 static void
1342 gss_destroy_cred(struct rpc_cred *cred)
1343 {
1344 	if (test_and_clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) != 0)
1345 		gss_send_destroy_context(cred);
1346 	gss_destroy_nullcred(cred);
1347 }
1348 
1349 static int
1350 gss_hash_cred(struct auth_cred *acred, unsigned int hashbits)
1351 {
1352 	return hash_64(from_kuid(&init_user_ns, acred->cred->fsuid), hashbits);
1353 }
1354 
1355 /*
1356  * Lookup RPCSEC_GSS cred for the current process
1357  */
1358 static struct rpc_cred *gss_lookup_cred(struct rpc_auth *auth,
1359 					struct auth_cred *acred, int flags)
1360 {
1361 	return rpcauth_lookup_credcache(auth, acred, flags,
1362 					rpc_task_gfp_mask());
1363 }
1364 
1365 static struct rpc_cred *
1366 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags, gfp_t gfp)
1367 {
1368 	struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1369 	struct gss_cred	*cred = NULL;
1370 	int err = -ENOMEM;
1371 
1372 	if (!(cred = kzalloc(sizeof(*cred), gfp)))
1373 		goto out_err;
1374 
1375 	rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
1376 	/*
1377 	 * Note: in order to force a call to call_refresh(), we deliberately
1378 	 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
1379 	 */
1380 	cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
1381 	cred->gc_service = gss_auth->service;
1382 	cred->gc_principal = acred->principal;
1383 	kref_get(&gss_auth->kref);
1384 	return &cred->gc_base;
1385 
1386 out_err:
1387 	return ERR_PTR(err);
1388 }
1389 
1390 static int
1391 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
1392 {
1393 	struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1394 	struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
1395 	int err;
1396 
1397 	do {
1398 		err = gss_create_upcall(gss_auth, gss_cred);
1399 	} while (err == -EAGAIN);
1400 	return err;
1401 }
1402 
1403 static char *
1404 gss_stringify_acceptor(struct rpc_cred *cred)
1405 {
1406 	char *string = NULL;
1407 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1408 	struct gss_cl_ctx *ctx;
1409 	unsigned int len;
1410 	struct xdr_netobj *acceptor;
1411 
1412 	rcu_read_lock();
1413 	ctx = rcu_dereference(gss_cred->gc_ctx);
1414 	if (!ctx)
1415 		goto out;
1416 
1417 	len = ctx->gc_acceptor.len;
1418 	rcu_read_unlock();
1419 
1420 	/* no point if there's no string */
1421 	if (!len)
1422 		return NULL;
1423 realloc:
1424 	string = kmalloc(len + 1, GFP_KERNEL);
1425 	if (!string)
1426 		return NULL;
1427 
1428 	rcu_read_lock();
1429 	ctx = rcu_dereference(gss_cred->gc_ctx);
1430 
1431 	/* did the ctx disappear or was it replaced by one with no acceptor? */
1432 	if (!ctx || !ctx->gc_acceptor.len) {
1433 		kfree(string);
1434 		string = NULL;
1435 		goto out;
1436 	}
1437 
1438 	acceptor = &ctx->gc_acceptor;
1439 
1440 	/*
1441 	 * Did we find a new acceptor that's longer than the original? Allocate
1442 	 * a longer buffer and try again.
1443 	 */
1444 	if (len < acceptor->len) {
1445 		len = acceptor->len;
1446 		rcu_read_unlock();
1447 		kfree(string);
1448 		goto realloc;
1449 	}
1450 
1451 	memcpy(string, acceptor->data, acceptor->len);
1452 	string[acceptor->len] = '\0';
1453 out:
1454 	rcu_read_unlock();
1455 	return string;
1456 }
1457 
1458 /*
1459  * Returns -EACCES if GSS context is NULL or will expire within the
1460  * timeout (miliseconds)
1461  */
1462 static int
1463 gss_key_timeout(struct rpc_cred *rc)
1464 {
1465 	struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1466 	struct gss_cl_ctx *ctx;
1467 	unsigned long timeout = jiffies + (gss_key_expire_timeo * HZ);
1468 	int ret = 0;
1469 
1470 	rcu_read_lock();
1471 	ctx = rcu_dereference(gss_cred->gc_ctx);
1472 	if (!ctx || time_after(timeout, ctx->gc_expiry))
1473 		ret = -EACCES;
1474 	rcu_read_unlock();
1475 
1476 	return ret;
1477 }
1478 
1479 static int
1480 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
1481 {
1482 	struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1483 	struct gss_cl_ctx *ctx;
1484 	int ret;
1485 
1486 	if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
1487 		goto out;
1488 	/* Don't match with creds that have expired. */
1489 	rcu_read_lock();
1490 	ctx = rcu_dereference(gss_cred->gc_ctx);
1491 	if (!ctx || time_after(jiffies, ctx->gc_expiry)) {
1492 		rcu_read_unlock();
1493 		return 0;
1494 	}
1495 	rcu_read_unlock();
1496 	if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags))
1497 		return 0;
1498 out:
1499 	if (acred->principal != NULL) {
1500 		if (gss_cred->gc_principal == NULL)
1501 			return 0;
1502 		ret = strcmp(acred->principal, gss_cred->gc_principal) == 0;
1503 	} else {
1504 		if (gss_cred->gc_principal != NULL)
1505 			return 0;
1506 		ret = uid_eq(rc->cr_cred->fsuid, acred->cred->fsuid);
1507 	}
1508 	return ret;
1509 }
1510 
1511 /*
1512  * Marshal credentials.
1513  *
1514  * The expensive part is computing the verifier. We can't cache a
1515  * pre-computed version of the verifier because the seqno, which
1516  * is different every time, is included in the MIC.
1517  */
1518 static int gss_marshal(struct rpc_task *task, struct xdr_stream *xdr)
1519 {
1520 	struct rpc_rqst *req = task->tk_rqstp;
1521 	struct rpc_cred *cred = req->rq_cred;
1522 	struct gss_cred	*gss_cred = container_of(cred, struct gss_cred,
1523 						 gc_base);
1524 	struct gss_cl_ctx	*ctx = gss_cred_get_ctx(cred);
1525 	__be32		*p, *cred_len;
1526 	u32             maj_stat = 0;
1527 	struct xdr_netobj mic;
1528 	struct kvec	iov;
1529 	struct xdr_buf	verf_buf;
1530 	int status;
1531 
1532 	/* Credential */
1533 
1534 	p = xdr_reserve_space(xdr, 7 * sizeof(*p) +
1535 			      ctx->gc_wire_ctx.len);
1536 	if (!p)
1537 		goto marshal_failed;
1538 	*p++ = rpc_auth_gss;
1539 	cred_len = p++;
1540 
1541 	spin_lock(&ctx->gc_seq_lock);
1542 	req->rq_seqno = (ctx->gc_seq < MAXSEQ) ? ctx->gc_seq++ : MAXSEQ;
1543 	spin_unlock(&ctx->gc_seq_lock);
1544 	if (req->rq_seqno == MAXSEQ)
1545 		goto expired;
1546 	trace_rpcgss_seqno(task);
1547 
1548 	*p++ = cpu_to_be32(RPC_GSS_VERSION);
1549 	*p++ = cpu_to_be32(ctx->gc_proc);
1550 	*p++ = cpu_to_be32(req->rq_seqno);
1551 	*p++ = cpu_to_be32(gss_cred->gc_service);
1552 	p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
1553 	*cred_len = cpu_to_be32((p - (cred_len + 1)) << 2);
1554 
1555 	/* Verifier */
1556 
1557 	/* We compute the checksum for the verifier over the xdr-encoded bytes
1558 	 * starting with the xid and ending at the end of the credential: */
1559 	iov.iov_base = req->rq_snd_buf.head[0].iov_base;
1560 	iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
1561 	xdr_buf_from_iov(&iov, &verf_buf);
1562 
1563 	p = xdr_reserve_space(xdr, sizeof(*p));
1564 	if (!p)
1565 		goto marshal_failed;
1566 	*p++ = rpc_auth_gss;
1567 	mic.data = (u8 *)(p + 1);
1568 	maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1569 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1570 		goto expired;
1571 	else if (maj_stat != 0)
1572 		goto bad_mic;
1573 	if (xdr_stream_encode_opaque_inline(xdr, (void **)&p, mic.len) < 0)
1574 		goto marshal_failed;
1575 	status = 0;
1576 out:
1577 	gss_put_ctx(ctx);
1578 	return status;
1579 expired:
1580 	clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1581 	status = -EKEYEXPIRED;
1582 	goto out;
1583 marshal_failed:
1584 	status = -EMSGSIZE;
1585 	goto out;
1586 bad_mic:
1587 	trace_rpcgss_get_mic(task, maj_stat);
1588 	status = -EIO;
1589 	goto out;
1590 }
1591 
1592 static int gss_renew_cred(struct rpc_task *task)
1593 {
1594 	struct rpc_cred *oldcred = task->tk_rqstp->rq_cred;
1595 	struct gss_cred *gss_cred = container_of(oldcred,
1596 						 struct gss_cred,
1597 						 gc_base);
1598 	struct rpc_auth *auth = oldcred->cr_auth;
1599 	struct auth_cred acred = {
1600 		.cred = oldcred->cr_cred,
1601 		.principal = gss_cred->gc_principal,
1602 	};
1603 	struct rpc_cred *new;
1604 
1605 	new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW);
1606 	if (IS_ERR(new))
1607 		return PTR_ERR(new);
1608 
1609 	task->tk_rqstp->rq_cred = new;
1610 	put_rpccred(oldcred);
1611 	return 0;
1612 }
1613 
1614 static int gss_cred_is_negative_entry(struct rpc_cred *cred)
1615 {
1616 	if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) {
1617 		unsigned long now = jiffies;
1618 		unsigned long begin, expire;
1619 		struct gss_cred *gss_cred;
1620 
1621 		gss_cred = container_of(cred, struct gss_cred, gc_base);
1622 		begin = gss_cred->gc_upcall_timestamp;
1623 		expire = begin + gss_expired_cred_retry_delay * HZ;
1624 
1625 		if (time_in_range_open(now, begin, expire))
1626 			return 1;
1627 	}
1628 	return 0;
1629 }
1630 
1631 /*
1632 * Refresh credentials. XXX - finish
1633 */
1634 static int
1635 gss_refresh(struct rpc_task *task)
1636 {
1637 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1638 	int ret = 0;
1639 
1640 	if (gss_cred_is_negative_entry(cred))
1641 		return -EKEYEXPIRED;
1642 
1643 	if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) &&
1644 			!test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) {
1645 		ret = gss_renew_cred(task);
1646 		if (ret < 0)
1647 			goto out;
1648 		cred = task->tk_rqstp->rq_cred;
1649 	}
1650 
1651 	if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
1652 		ret = gss_refresh_upcall(task);
1653 out:
1654 	return ret;
1655 }
1656 
1657 /* Dummy refresh routine: used only when destroying the context */
1658 static int
1659 gss_refresh_null(struct rpc_task *task)
1660 {
1661 	return 0;
1662 }
1663 
1664 static int
1665 gss_validate(struct rpc_task *task, struct xdr_stream *xdr)
1666 {
1667 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1668 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1669 	__be32		*p, *seq = NULL;
1670 	struct kvec	iov;
1671 	struct xdr_buf	verf_buf;
1672 	struct xdr_netobj mic;
1673 	u32		len, maj_stat;
1674 	int		status;
1675 
1676 	p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1677 	if (!p)
1678 		goto validate_failed;
1679 	if (*p++ != rpc_auth_gss)
1680 		goto validate_failed;
1681 	len = be32_to_cpup(p);
1682 	if (len > RPC_MAX_AUTH_SIZE)
1683 		goto validate_failed;
1684 	p = xdr_inline_decode(xdr, len);
1685 	if (!p)
1686 		goto validate_failed;
1687 
1688 	seq = kmalloc(4, GFP_KERNEL);
1689 	if (!seq)
1690 		goto validate_failed;
1691 	*seq = cpu_to_be32(task->tk_rqstp->rq_seqno);
1692 	iov.iov_base = seq;
1693 	iov.iov_len = 4;
1694 	xdr_buf_from_iov(&iov, &verf_buf);
1695 	mic.data = (u8 *)p;
1696 	mic.len = len;
1697 	maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1698 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1699 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1700 	if (maj_stat)
1701 		goto bad_mic;
1702 
1703 	/* We leave it to unwrap to calculate au_rslack. For now we just
1704 	 * calculate the length of the verifier: */
1705 	if (test_bit(RPCAUTH_AUTH_UPDATE_SLACK, &cred->cr_auth->au_flags))
1706 		cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
1707 	status = 0;
1708 out:
1709 	gss_put_ctx(ctx);
1710 	kfree(seq);
1711 	return status;
1712 
1713 validate_failed:
1714 	status = -EIO;
1715 	goto out;
1716 bad_mic:
1717 	trace_rpcgss_verify_mic(task, maj_stat);
1718 	status = -EACCES;
1719 	goto out;
1720 }
1721 
1722 static noinline_for_stack int
1723 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1724 		   struct rpc_task *task, struct xdr_stream *xdr)
1725 {
1726 	struct rpc_rqst *rqstp = task->tk_rqstp;
1727 	struct xdr_buf integ_buf, *snd_buf = &rqstp->rq_snd_buf;
1728 	struct xdr_netobj mic;
1729 	__be32 *p, *integ_len;
1730 	u32 offset, maj_stat;
1731 
1732 	p = xdr_reserve_space(xdr, 2 * sizeof(*p));
1733 	if (!p)
1734 		goto wrap_failed;
1735 	integ_len = p++;
1736 	*p = cpu_to_be32(rqstp->rq_seqno);
1737 
1738 	if (rpcauth_wrap_req_encode(task, xdr))
1739 		goto wrap_failed;
1740 
1741 	offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1742 	if (xdr_buf_subsegment(snd_buf, &integ_buf,
1743 				offset, snd_buf->len - offset))
1744 		goto wrap_failed;
1745 	*integ_len = cpu_to_be32(integ_buf.len);
1746 
1747 	p = xdr_reserve_space(xdr, 0);
1748 	if (!p)
1749 		goto wrap_failed;
1750 	mic.data = (u8 *)(p + 1);
1751 	maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1752 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1753 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1754 	else if (maj_stat)
1755 		goto bad_mic;
1756 	/* Check that the trailing MIC fit in the buffer, after the fact */
1757 	if (xdr_stream_encode_opaque_inline(xdr, (void **)&p, mic.len) < 0)
1758 		goto wrap_failed;
1759 	return 0;
1760 wrap_failed:
1761 	return -EMSGSIZE;
1762 bad_mic:
1763 	trace_rpcgss_get_mic(task, maj_stat);
1764 	return -EIO;
1765 }
1766 
1767 static void
1768 priv_release_snd_buf(struct rpc_rqst *rqstp)
1769 {
1770 	int i;
1771 
1772 	for (i=0; i < rqstp->rq_enc_pages_num; i++)
1773 		__free_page(rqstp->rq_enc_pages[i]);
1774 	kfree(rqstp->rq_enc_pages);
1775 	rqstp->rq_release_snd_buf = NULL;
1776 }
1777 
1778 static int
1779 alloc_enc_pages(struct rpc_rqst *rqstp)
1780 {
1781 	struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1782 	int first, last, i;
1783 
1784 	if (rqstp->rq_release_snd_buf)
1785 		rqstp->rq_release_snd_buf(rqstp);
1786 
1787 	if (snd_buf->page_len == 0) {
1788 		rqstp->rq_enc_pages_num = 0;
1789 		return 0;
1790 	}
1791 
1792 	first = snd_buf->page_base >> PAGE_SHIFT;
1793 	last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_SHIFT;
1794 	rqstp->rq_enc_pages_num = last - first + 1 + 1;
1795 	rqstp->rq_enc_pages
1796 		= kmalloc_array(rqstp->rq_enc_pages_num,
1797 				sizeof(struct page *),
1798 				GFP_KERNEL);
1799 	if (!rqstp->rq_enc_pages)
1800 		goto out;
1801 	for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1802 		rqstp->rq_enc_pages[i] = alloc_page(GFP_KERNEL);
1803 		if (rqstp->rq_enc_pages[i] == NULL)
1804 			goto out_free;
1805 	}
1806 	rqstp->rq_release_snd_buf = priv_release_snd_buf;
1807 	return 0;
1808 out_free:
1809 	rqstp->rq_enc_pages_num = i;
1810 	priv_release_snd_buf(rqstp);
1811 out:
1812 	return -EAGAIN;
1813 }
1814 
1815 static noinline_for_stack int
1816 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1817 		  struct rpc_task *task, struct xdr_stream *xdr)
1818 {
1819 	struct rpc_rqst *rqstp = task->tk_rqstp;
1820 	struct xdr_buf	*snd_buf = &rqstp->rq_snd_buf;
1821 	u32		pad, offset, maj_stat;
1822 	int		status;
1823 	__be32		*p, *opaque_len;
1824 	struct page	**inpages;
1825 	int		first;
1826 	struct kvec	*iov;
1827 
1828 	status = -EIO;
1829 	p = xdr_reserve_space(xdr, 2 * sizeof(*p));
1830 	if (!p)
1831 		goto wrap_failed;
1832 	opaque_len = p++;
1833 	*p = cpu_to_be32(rqstp->rq_seqno);
1834 
1835 	if (rpcauth_wrap_req_encode(task, xdr))
1836 		goto wrap_failed;
1837 
1838 	status = alloc_enc_pages(rqstp);
1839 	if (unlikely(status))
1840 		goto wrap_failed;
1841 	first = snd_buf->page_base >> PAGE_SHIFT;
1842 	inpages = snd_buf->pages + first;
1843 	snd_buf->pages = rqstp->rq_enc_pages;
1844 	snd_buf->page_base -= first << PAGE_SHIFT;
1845 	/*
1846 	 * Move the tail into its own page, in case gss_wrap needs
1847 	 * more space in the head when wrapping.
1848 	 *
1849 	 * Still... Why can't gss_wrap just slide the tail down?
1850 	 */
1851 	if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1852 		char *tmp;
1853 
1854 		tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1855 		memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1856 		snd_buf->tail[0].iov_base = tmp;
1857 	}
1858 	offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1859 	maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1860 	/* slack space should prevent this ever happening: */
1861 	if (unlikely(snd_buf->len > snd_buf->buflen))
1862 		goto wrap_failed;
1863 	/* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1864 	 * done anyway, so it's safe to put the request on the wire: */
1865 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1866 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1867 	else if (maj_stat)
1868 		goto bad_wrap;
1869 
1870 	*opaque_len = cpu_to_be32(snd_buf->len - offset);
1871 	/* guess whether the pad goes into the head or the tail: */
1872 	if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1873 		iov = snd_buf->tail;
1874 	else
1875 		iov = snd_buf->head;
1876 	p = iov->iov_base + iov->iov_len;
1877 	pad = xdr_pad_size(snd_buf->len - offset);
1878 	memset(p, 0, pad);
1879 	iov->iov_len += pad;
1880 	snd_buf->len += pad;
1881 
1882 	return 0;
1883 wrap_failed:
1884 	return status;
1885 bad_wrap:
1886 	trace_rpcgss_wrap(task, maj_stat);
1887 	return -EIO;
1888 }
1889 
1890 static int gss_wrap_req(struct rpc_task *task, struct xdr_stream *xdr)
1891 {
1892 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1893 	struct gss_cred	*gss_cred = container_of(cred, struct gss_cred,
1894 			gc_base);
1895 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1896 	int status;
1897 
1898 	status = -EIO;
1899 	if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1900 		/* The spec seems a little ambiguous here, but I think that not
1901 		 * wrapping context destruction requests makes the most sense.
1902 		 */
1903 		status = rpcauth_wrap_req_encode(task, xdr);
1904 		goto out;
1905 	}
1906 	switch (gss_cred->gc_service) {
1907 	case RPC_GSS_SVC_NONE:
1908 		status = rpcauth_wrap_req_encode(task, xdr);
1909 		break;
1910 	case RPC_GSS_SVC_INTEGRITY:
1911 		status = gss_wrap_req_integ(cred, ctx, task, xdr);
1912 		break;
1913 	case RPC_GSS_SVC_PRIVACY:
1914 		status = gss_wrap_req_priv(cred, ctx, task, xdr);
1915 		break;
1916 	default:
1917 		status = -EIO;
1918 	}
1919 out:
1920 	gss_put_ctx(ctx);
1921 	return status;
1922 }
1923 
1924 /**
1925  * gss_update_rslack - Possibly update RPC receive buffer size estimates
1926  * @task: rpc_task for incoming RPC Reply being unwrapped
1927  * @cred: controlling rpc_cred for @task
1928  * @before: XDR words needed before each RPC Reply message
1929  * @after: XDR words needed following each RPC Reply message
1930  *
1931  */
1932 static void gss_update_rslack(struct rpc_task *task, struct rpc_cred *cred,
1933 			      unsigned int before, unsigned int after)
1934 {
1935 	struct rpc_auth *auth = cred->cr_auth;
1936 
1937 	if (test_and_clear_bit(RPCAUTH_AUTH_UPDATE_SLACK, &auth->au_flags)) {
1938 		auth->au_ralign = auth->au_verfsize + before;
1939 		auth->au_rslack = auth->au_verfsize + after;
1940 		trace_rpcgss_update_slack(task, auth);
1941 	}
1942 }
1943 
1944 static int
1945 gss_unwrap_resp_auth(struct rpc_task *task, struct rpc_cred *cred)
1946 {
1947 	gss_update_rslack(task, cred, 0, 0);
1948 	return 0;
1949 }
1950 
1951 /*
1952  * RFC 2203, Section 5.3.2.2
1953  *
1954  *	struct rpc_gss_integ_data {
1955  *		opaque databody_integ<>;
1956  *		opaque checksum<>;
1957  *	};
1958  *
1959  *	struct rpc_gss_data_t {
1960  *		unsigned int seq_num;
1961  *		proc_req_arg_t arg;
1962  *	};
1963  */
1964 static noinline_for_stack int
1965 gss_unwrap_resp_integ(struct rpc_task *task, struct rpc_cred *cred,
1966 		      struct gss_cl_ctx *ctx, struct rpc_rqst *rqstp,
1967 		      struct xdr_stream *xdr)
1968 {
1969 	struct xdr_buf gss_data, *rcv_buf = &rqstp->rq_rcv_buf;
1970 	u32 len, offset, seqno, maj_stat;
1971 	struct xdr_netobj mic;
1972 	int ret;
1973 
1974 	ret = -EIO;
1975 	mic.data = NULL;
1976 
1977 	/* opaque databody_integ<>; */
1978 	if (xdr_stream_decode_u32(xdr, &len))
1979 		goto unwrap_failed;
1980 	if (len & 3)
1981 		goto unwrap_failed;
1982 	offset = rcv_buf->len - xdr_stream_remaining(xdr);
1983 	if (xdr_stream_decode_u32(xdr, &seqno))
1984 		goto unwrap_failed;
1985 	if (seqno != rqstp->rq_seqno)
1986 		goto bad_seqno;
1987 	if (xdr_buf_subsegment(rcv_buf, &gss_data, offset, len))
1988 		goto unwrap_failed;
1989 
1990 	/*
1991 	 * The xdr_stream now points to the beginning of the
1992 	 * upper layer payload, to be passed below to
1993 	 * rpcauth_unwrap_resp_decode(). The checksum, which
1994 	 * follows the upper layer payload in @rcv_buf, is
1995 	 * located and parsed without updating the xdr_stream.
1996 	 */
1997 
1998 	/* opaque checksum<>; */
1999 	offset += len;
2000 	if (xdr_decode_word(rcv_buf, offset, &len))
2001 		goto unwrap_failed;
2002 	offset += sizeof(__be32);
2003 	if (offset + len > rcv_buf->len)
2004 		goto unwrap_failed;
2005 	mic.len = len;
2006 	mic.data = kmalloc(len, GFP_KERNEL);
2007 	if (ZERO_OR_NULL_PTR(mic.data))
2008 		goto unwrap_failed;
2009 	if (read_bytes_from_xdr_buf(rcv_buf, offset, mic.data, mic.len))
2010 		goto unwrap_failed;
2011 
2012 	maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &gss_data, &mic);
2013 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
2014 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
2015 	if (maj_stat != GSS_S_COMPLETE)
2016 		goto bad_mic;
2017 
2018 	gss_update_rslack(task, cred, 2, 2 + 1 + XDR_QUADLEN(mic.len));
2019 	ret = 0;
2020 
2021 out:
2022 	kfree(mic.data);
2023 	return ret;
2024 
2025 unwrap_failed:
2026 	trace_rpcgss_unwrap_failed(task);
2027 	goto out;
2028 bad_seqno:
2029 	trace_rpcgss_bad_seqno(task, rqstp->rq_seqno, seqno);
2030 	goto out;
2031 bad_mic:
2032 	trace_rpcgss_verify_mic(task, maj_stat);
2033 	goto out;
2034 }
2035 
2036 static noinline_for_stack int
2037 gss_unwrap_resp_priv(struct rpc_task *task, struct rpc_cred *cred,
2038 		     struct gss_cl_ctx *ctx, struct rpc_rqst *rqstp,
2039 		     struct xdr_stream *xdr)
2040 {
2041 	struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
2042 	struct kvec *head = rqstp->rq_rcv_buf.head;
2043 	u32 offset, opaque_len, maj_stat;
2044 	__be32 *p;
2045 
2046 	p = xdr_inline_decode(xdr, 2 * sizeof(*p));
2047 	if (unlikely(!p))
2048 		goto unwrap_failed;
2049 	opaque_len = be32_to_cpup(p++);
2050 	offset = (u8 *)(p) - (u8 *)head->iov_base;
2051 	if (offset + opaque_len > rcv_buf->len)
2052 		goto unwrap_failed;
2053 
2054 	maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset,
2055 			      offset + opaque_len, rcv_buf);
2056 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
2057 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
2058 	if (maj_stat != GSS_S_COMPLETE)
2059 		goto bad_unwrap;
2060 	/* gss_unwrap decrypted the sequence number */
2061 	if (be32_to_cpup(p++) != rqstp->rq_seqno)
2062 		goto bad_seqno;
2063 
2064 	/* gss_unwrap redacts the opaque blob from the head iovec.
2065 	 * rcv_buf has changed, thus the stream needs to be reset.
2066 	 */
2067 	xdr_init_decode(xdr, rcv_buf, p, rqstp);
2068 
2069 	gss_update_rslack(task, cred, 2 + ctx->gc_gss_ctx->align,
2070 			  2 + ctx->gc_gss_ctx->slack);
2071 
2072 	return 0;
2073 unwrap_failed:
2074 	trace_rpcgss_unwrap_failed(task);
2075 	return -EIO;
2076 bad_seqno:
2077 	trace_rpcgss_bad_seqno(task, rqstp->rq_seqno, be32_to_cpup(--p));
2078 	return -EIO;
2079 bad_unwrap:
2080 	trace_rpcgss_unwrap(task, maj_stat);
2081 	return -EIO;
2082 }
2083 
2084 static bool
2085 gss_seq_is_newer(u32 new, u32 old)
2086 {
2087 	return (s32)(new - old) > 0;
2088 }
2089 
2090 static bool
2091 gss_xmit_need_reencode(struct rpc_task *task)
2092 {
2093 	struct rpc_rqst *req = task->tk_rqstp;
2094 	struct rpc_cred *cred = req->rq_cred;
2095 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
2096 	u32 win, seq_xmit = 0;
2097 	bool ret = true;
2098 
2099 	if (!ctx)
2100 		goto out;
2101 
2102 	if (gss_seq_is_newer(req->rq_seqno, READ_ONCE(ctx->gc_seq)))
2103 		goto out_ctx;
2104 
2105 	seq_xmit = READ_ONCE(ctx->gc_seq_xmit);
2106 	while (gss_seq_is_newer(req->rq_seqno, seq_xmit)) {
2107 		u32 tmp = seq_xmit;
2108 
2109 		seq_xmit = cmpxchg(&ctx->gc_seq_xmit, tmp, req->rq_seqno);
2110 		if (seq_xmit == tmp) {
2111 			ret = false;
2112 			goto out_ctx;
2113 		}
2114 	}
2115 
2116 	win = ctx->gc_win;
2117 	if (win > 0)
2118 		ret = !gss_seq_is_newer(req->rq_seqno, seq_xmit - win);
2119 
2120 out_ctx:
2121 	gss_put_ctx(ctx);
2122 out:
2123 	trace_rpcgss_need_reencode(task, seq_xmit, ret);
2124 	return ret;
2125 }
2126 
2127 static int
2128 gss_unwrap_resp(struct rpc_task *task, struct xdr_stream *xdr)
2129 {
2130 	struct rpc_rqst *rqstp = task->tk_rqstp;
2131 	struct rpc_cred *cred = rqstp->rq_cred;
2132 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
2133 			gc_base);
2134 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
2135 	int status = -EIO;
2136 
2137 	if (ctx->gc_proc != RPC_GSS_PROC_DATA)
2138 		goto out_decode;
2139 	switch (gss_cred->gc_service) {
2140 	case RPC_GSS_SVC_NONE:
2141 		status = gss_unwrap_resp_auth(task, cred);
2142 		break;
2143 	case RPC_GSS_SVC_INTEGRITY:
2144 		status = gss_unwrap_resp_integ(task, cred, ctx, rqstp, xdr);
2145 		break;
2146 	case RPC_GSS_SVC_PRIVACY:
2147 		status = gss_unwrap_resp_priv(task, cred, ctx, rqstp, xdr);
2148 		break;
2149 	}
2150 	if (status)
2151 		goto out;
2152 
2153 out_decode:
2154 	status = rpcauth_unwrap_resp_decode(task, xdr);
2155 out:
2156 	gss_put_ctx(ctx);
2157 	return status;
2158 }
2159 
2160 static const struct rpc_authops authgss_ops = {
2161 	.owner		= THIS_MODULE,
2162 	.au_flavor	= RPC_AUTH_GSS,
2163 	.au_name	= "RPCSEC_GSS",
2164 	.create		= gss_create,
2165 	.destroy	= gss_destroy,
2166 	.hash_cred	= gss_hash_cred,
2167 	.lookup_cred	= gss_lookup_cred,
2168 	.crcreate	= gss_create_cred,
2169 	.info2flavor	= gss_mech_info2flavor,
2170 	.flavor2info	= gss_mech_flavor2info,
2171 };
2172 
2173 static const struct rpc_credops gss_credops = {
2174 	.cr_name		= "AUTH_GSS",
2175 	.crdestroy		= gss_destroy_cred,
2176 	.cr_init		= gss_cred_init,
2177 	.crmatch		= gss_match,
2178 	.crmarshal		= gss_marshal,
2179 	.crrefresh		= gss_refresh,
2180 	.crvalidate		= gss_validate,
2181 	.crwrap_req		= gss_wrap_req,
2182 	.crunwrap_resp		= gss_unwrap_resp,
2183 	.crkey_timeout		= gss_key_timeout,
2184 	.crstringify_acceptor	= gss_stringify_acceptor,
2185 	.crneed_reencode	= gss_xmit_need_reencode,
2186 };
2187 
2188 static const struct rpc_credops gss_nullops = {
2189 	.cr_name		= "AUTH_GSS",
2190 	.crdestroy		= gss_destroy_nullcred,
2191 	.crmatch		= gss_match,
2192 	.crmarshal		= gss_marshal,
2193 	.crrefresh		= gss_refresh_null,
2194 	.crvalidate		= gss_validate,
2195 	.crwrap_req		= gss_wrap_req,
2196 	.crunwrap_resp		= gss_unwrap_resp,
2197 	.crstringify_acceptor	= gss_stringify_acceptor,
2198 };
2199 
2200 static const struct rpc_pipe_ops gss_upcall_ops_v0 = {
2201 	.upcall		= gss_v0_upcall,
2202 	.downcall	= gss_pipe_downcall,
2203 	.destroy_msg	= gss_pipe_destroy_msg,
2204 	.open_pipe	= gss_pipe_open_v0,
2205 	.release_pipe	= gss_pipe_release,
2206 };
2207 
2208 static const struct rpc_pipe_ops gss_upcall_ops_v1 = {
2209 	.upcall		= gss_v1_upcall,
2210 	.downcall	= gss_pipe_downcall,
2211 	.destroy_msg	= gss_pipe_destroy_msg,
2212 	.open_pipe	= gss_pipe_open_v1,
2213 	.release_pipe	= gss_pipe_release,
2214 };
2215 
2216 static __net_init int rpcsec_gss_init_net(struct net *net)
2217 {
2218 	return gss_svc_init_net(net);
2219 }
2220 
2221 static __net_exit void rpcsec_gss_exit_net(struct net *net)
2222 {
2223 	gss_svc_shutdown_net(net);
2224 }
2225 
2226 static struct pernet_operations rpcsec_gss_net_ops = {
2227 	.init = rpcsec_gss_init_net,
2228 	.exit = rpcsec_gss_exit_net,
2229 };
2230 
2231 /*
2232  * Initialize RPCSEC_GSS module
2233  */
2234 static int __init init_rpcsec_gss(void)
2235 {
2236 	int err = 0;
2237 
2238 	err = rpcauth_register(&authgss_ops);
2239 	if (err)
2240 		goto out;
2241 	err = gss_svc_init();
2242 	if (err)
2243 		goto out_unregister;
2244 	err = register_pernet_subsys(&rpcsec_gss_net_ops);
2245 	if (err)
2246 		goto out_svc_exit;
2247 	rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version");
2248 	return 0;
2249 out_svc_exit:
2250 	gss_svc_shutdown();
2251 out_unregister:
2252 	rpcauth_unregister(&authgss_ops);
2253 out:
2254 	return err;
2255 }
2256 
2257 static void __exit exit_rpcsec_gss(void)
2258 {
2259 	unregister_pernet_subsys(&rpcsec_gss_net_ops);
2260 	gss_svc_shutdown();
2261 	rpcauth_unregister(&authgss_ops);
2262 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
2263 }
2264 
2265 MODULE_ALIAS("rpc-auth-6");
2266 MODULE_LICENSE("GPL");
2267 module_param_named(expired_cred_retry_delay,
2268 		   gss_expired_cred_retry_delay,
2269 		   uint, 0644);
2270 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until "
2271 		"the RPC engine retries an expired credential");
2272 
2273 module_param_named(key_expire_timeo,
2274 		   gss_key_expire_timeo,
2275 		   uint, 0644);
2276 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a "
2277 		"credential keys lifetime where the NFS layer cleans up "
2278 		"prior to key expiration");
2279 
2280 module_init(init_rpcsec_gss)
2281 module_exit(exit_rpcsec_gss)
2282