xref: /linux/net/sunrpc/auth_gss/auth_gss.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * linux/net/sunrpc/auth_gss/auth_gss.c
3  *
4  * RPCSEC_GSS client authentication.
5  *
6  *  Copyright (c) 2000 The Regents of the University of Michigan.
7  *  All rights reserved.
8  *
9  *  Dug Song       <dugsong@monkey.org>
10  *  Andy Adamson   <andros@umich.edu>
11  *
12  *  Redistribution and use in source and binary forms, with or without
13  *  modification, are permitted provided that the following conditions
14  *  are met:
15  *
16  *  1. Redistributions of source code must retain the above copyright
17  *     notice, this list of conditions and the following disclaimer.
18  *  2. Redistributions in binary form must reproduce the above copyright
19  *     notice, this list of conditions and the following disclaimer in the
20  *     documentation and/or other materials provided with the distribution.
21  *  3. Neither the name of the University nor the names of its
22  *     contributors may be used to endorse or promote products derived
23  *     from this software without specific prior written permission.
24  *
25  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28  *  DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  *  FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32  *  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  *  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  *  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  *  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/sched.h>
44 #include <linux/pagemap.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/auth.h>
47 #include <linux/sunrpc/auth_gss.h>
48 #include <linux/sunrpc/svcauth_gss.h>
49 #include <linux/sunrpc/gss_err.h>
50 #include <linux/workqueue.h>
51 #include <linux/sunrpc/rpc_pipe_fs.h>
52 #include <linux/sunrpc/gss_api.h>
53 #include <asm/uaccess.h>
54 #include <linux/hashtable.h>
55 
56 #include "../netns.h"
57 
58 static const struct rpc_authops authgss_ops;
59 
60 static const struct rpc_credops gss_credops;
61 static const struct rpc_credops gss_nullops;
62 
63 #define GSS_RETRY_EXPIRED 5
64 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED;
65 
66 #define GSS_KEY_EXPIRE_TIMEO 240
67 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO;
68 
69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
70 # define RPCDBG_FACILITY	RPCDBG_AUTH
71 #endif
72 
73 #define GSS_CRED_SLACK		(RPC_MAX_AUTH_SIZE * 2)
74 /* length of a krb5 verifier (48), plus data added before arguments when
75  * using integrity (two 4-byte integers): */
76 #define GSS_VERF_SLACK		100
77 
78 static DEFINE_HASHTABLE(gss_auth_hash_table, 4);
79 static DEFINE_SPINLOCK(gss_auth_hash_lock);
80 
81 struct gss_pipe {
82 	struct rpc_pipe_dir_object pdo;
83 	struct rpc_pipe *pipe;
84 	struct rpc_clnt *clnt;
85 	const char *name;
86 	struct kref kref;
87 };
88 
89 struct gss_auth {
90 	struct kref kref;
91 	struct hlist_node hash;
92 	struct rpc_auth rpc_auth;
93 	struct gss_api_mech *mech;
94 	enum rpc_gss_svc service;
95 	struct rpc_clnt *client;
96 	struct net *net;
97 	/*
98 	 * There are two upcall pipes; dentry[1], named "gssd", is used
99 	 * for the new text-based upcall; dentry[0] is named after the
100 	 * mechanism (for example, "krb5") and exists for
101 	 * backwards-compatibility with older gssd's.
102 	 */
103 	struct gss_pipe *gss_pipe[2];
104 	const char *target_name;
105 };
106 
107 /* pipe_version >= 0 if and only if someone has a pipe open. */
108 static DEFINE_SPINLOCK(pipe_version_lock);
109 static struct rpc_wait_queue pipe_version_rpc_waitqueue;
110 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue);
111 static void gss_put_auth(struct gss_auth *gss_auth);
112 
113 static void gss_free_ctx(struct gss_cl_ctx *);
114 static const struct rpc_pipe_ops gss_upcall_ops_v0;
115 static const struct rpc_pipe_ops gss_upcall_ops_v1;
116 
117 static inline struct gss_cl_ctx *
118 gss_get_ctx(struct gss_cl_ctx *ctx)
119 {
120 	atomic_inc(&ctx->count);
121 	return ctx;
122 }
123 
124 static inline void
125 gss_put_ctx(struct gss_cl_ctx *ctx)
126 {
127 	if (atomic_dec_and_test(&ctx->count))
128 		gss_free_ctx(ctx);
129 }
130 
131 /* gss_cred_set_ctx:
132  * called by gss_upcall_callback and gss_create_upcall in order
133  * to set the gss context. The actual exchange of an old context
134  * and a new one is protected by the pipe->lock.
135  */
136 static void
137 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
138 {
139 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
140 
141 	if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
142 		return;
143 	gss_get_ctx(ctx);
144 	rcu_assign_pointer(gss_cred->gc_ctx, ctx);
145 	set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
146 	smp_mb__before_atomic();
147 	clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
148 }
149 
150 static const void *
151 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
152 {
153 	const void *q = (const void *)((const char *)p + len);
154 	if (unlikely(q > end || q < p))
155 		return ERR_PTR(-EFAULT);
156 	memcpy(res, p, len);
157 	return q;
158 }
159 
160 static inline const void *
161 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
162 {
163 	const void *q;
164 	unsigned int len;
165 
166 	p = simple_get_bytes(p, end, &len, sizeof(len));
167 	if (IS_ERR(p))
168 		return p;
169 	q = (const void *)((const char *)p + len);
170 	if (unlikely(q > end || q < p))
171 		return ERR_PTR(-EFAULT);
172 	dest->data = kmemdup(p, len, GFP_NOFS);
173 	if (unlikely(dest->data == NULL))
174 		return ERR_PTR(-ENOMEM);
175 	dest->len = len;
176 	return q;
177 }
178 
179 static struct gss_cl_ctx *
180 gss_cred_get_ctx(struct rpc_cred *cred)
181 {
182 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
183 	struct gss_cl_ctx *ctx = NULL;
184 
185 	rcu_read_lock();
186 	ctx = rcu_dereference(gss_cred->gc_ctx);
187 	if (ctx)
188 		gss_get_ctx(ctx);
189 	rcu_read_unlock();
190 	return ctx;
191 }
192 
193 static struct gss_cl_ctx *
194 gss_alloc_context(void)
195 {
196 	struct gss_cl_ctx *ctx;
197 
198 	ctx = kzalloc(sizeof(*ctx), GFP_NOFS);
199 	if (ctx != NULL) {
200 		ctx->gc_proc = RPC_GSS_PROC_DATA;
201 		ctx->gc_seq = 1;	/* NetApp 6.4R1 doesn't accept seq. no. 0 */
202 		spin_lock_init(&ctx->gc_seq_lock);
203 		atomic_set(&ctx->count,1);
204 	}
205 	return ctx;
206 }
207 
208 #define GSSD_MIN_TIMEOUT (60 * 60)
209 static const void *
210 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
211 {
212 	const void *q;
213 	unsigned int seclen;
214 	unsigned int timeout;
215 	unsigned long now = jiffies;
216 	u32 window_size;
217 	int ret;
218 
219 	/* First unsigned int gives the remaining lifetime in seconds of the
220 	 * credential - e.g. the remaining TGT lifetime for Kerberos or
221 	 * the -t value passed to GSSD.
222 	 */
223 	p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
224 	if (IS_ERR(p))
225 		goto err;
226 	if (timeout == 0)
227 		timeout = GSSD_MIN_TIMEOUT;
228 	ctx->gc_expiry = now + ((unsigned long)timeout * HZ);
229 	/* Sequence number window. Determines the maximum number of
230 	 * simultaneous requests
231 	 */
232 	p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
233 	if (IS_ERR(p))
234 		goto err;
235 	ctx->gc_win = window_size;
236 	/* gssd signals an error by passing ctx->gc_win = 0: */
237 	if (ctx->gc_win == 0) {
238 		/*
239 		 * in which case, p points to an error code. Anything other
240 		 * than -EKEYEXPIRED gets converted to -EACCES.
241 		 */
242 		p = simple_get_bytes(p, end, &ret, sizeof(ret));
243 		if (!IS_ERR(p))
244 			p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) :
245 						    ERR_PTR(-EACCES);
246 		goto err;
247 	}
248 	/* copy the opaque wire context */
249 	p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
250 	if (IS_ERR(p))
251 		goto err;
252 	/* import the opaque security context */
253 	p  = simple_get_bytes(p, end, &seclen, sizeof(seclen));
254 	if (IS_ERR(p))
255 		goto err;
256 	q = (const void *)((const char *)p + seclen);
257 	if (unlikely(q > end || q < p)) {
258 		p = ERR_PTR(-EFAULT);
259 		goto err;
260 	}
261 	ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_NOFS);
262 	if (ret < 0) {
263 		p = ERR_PTR(ret);
264 		goto err;
265 	}
266 
267 	/* is there any trailing data? */
268 	if (q == end) {
269 		p = q;
270 		goto done;
271 	}
272 
273 	/* pull in acceptor name (if there is one) */
274 	p = simple_get_netobj(q, end, &ctx->gc_acceptor);
275 	if (IS_ERR(p))
276 		goto err;
277 done:
278 	dprintk("RPC:       %s Success. gc_expiry %lu now %lu timeout %u acceptor %.*s\n",
279 		__func__, ctx->gc_expiry, now, timeout, ctx->gc_acceptor.len,
280 		ctx->gc_acceptor.data);
281 	return p;
282 err:
283 	dprintk("RPC:       %s returns error %ld\n", __func__, -PTR_ERR(p));
284 	return p;
285 }
286 
287 #define UPCALL_BUF_LEN 128
288 
289 struct gss_upcall_msg {
290 	atomic_t count;
291 	kuid_t	uid;
292 	struct rpc_pipe_msg msg;
293 	struct list_head list;
294 	struct gss_auth *auth;
295 	struct rpc_pipe *pipe;
296 	struct rpc_wait_queue rpc_waitqueue;
297 	wait_queue_head_t waitqueue;
298 	struct gss_cl_ctx *ctx;
299 	char databuf[UPCALL_BUF_LEN];
300 };
301 
302 static int get_pipe_version(struct net *net)
303 {
304 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
305 	int ret;
306 
307 	spin_lock(&pipe_version_lock);
308 	if (sn->pipe_version >= 0) {
309 		atomic_inc(&sn->pipe_users);
310 		ret = sn->pipe_version;
311 	} else
312 		ret = -EAGAIN;
313 	spin_unlock(&pipe_version_lock);
314 	return ret;
315 }
316 
317 static void put_pipe_version(struct net *net)
318 {
319 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
320 
321 	if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) {
322 		sn->pipe_version = -1;
323 		spin_unlock(&pipe_version_lock);
324 	}
325 }
326 
327 static void
328 gss_release_msg(struct gss_upcall_msg *gss_msg)
329 {
330 	struct net *net = gss_msg->auth->net;
331 	if (!atomic_dec_and_test(&gss_msg->count))
332 		return;
333 	put_pipe_version(net);
334 	BUG_ON(!list_empty(&gss_msg->list));
335 	if (gss_msg->ctx != NULL)
336 		gss_put_ctx(gss_msg->ctx);
337 	rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue);
338 	gss_put_auth(gss_msg->auth);
339 	kfree(gss_msg);
340 }
341 
342 static struct gss_upcall_msg *
343 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid)
344 {
345 	struct gss_upcall_msg *pos;
346 	list_for_each_entry(pos, &pipe->in_downcall, list) {
347 		if (!uid_eq(pos->uid, uid))
348 			continue;
349 		atomic_inc(&pos->count);
350 		dprintk("RPC:       %s found msg %p\n", __func__, pos);
351 		return pos;
352 	}
353 	dprintk("RPC:       %s found nothing\n", __func__);
354 	return NULL;
355 }
356 
357 /* Try to add an upcall to the pipefs queue.
358  * If an upcall owned by our uid already exists, then we return a reference
359  * to that upcall instead of adding the new upcall.
360  */
361 static inline struct gss_upcall_msg *
362 gss_add_msg(struct gss_upcall_msg *gss_msg)
363 {
364 	struct rpc_pipe *pipe = gss_msg->pipe;
365 	struct gss_upcall_msg *old;
366 
367 	spin_lock(&pipe->lock);
368 	old = __gss_find_upcall(pipe, gss_msg->uid);
369 	if (old == NULL) {
370 		atomic_inc(&gss_msg->count);
371 		list_add(&gss_msg->list, &pipe->in_downcall);
372 	} else
373 		gss_msg = old;
374 	spin_unlock(&pipe->lock);
375 	return gss_msg;
376 }
377 
378 static void
379 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
380 {
381 	list_del_init(&gss_msg->list);
382 	rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
383 	wake_up_all(&gss_msg->waitqueue);
384 	atomic_dec(&gss_msg->count);
385 }
386 
387 static void
388 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
389 {
390 	struct rpc_pipe *pipe = gss_msg->pipe;
391 
392 	if (list_empty(&gss_msg->list))
393 		return;
394 	spin_lock(&pipe->lock);
395 	if (!list_empty(&gss_msg->list))
396 		__gss_unhash_msg(gss_msg);
397 	spin_unlock(&pipe->lock);
398 }
399 
400 static void
401 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg)
402 {
403 	switch (gss_msg->msg.errno) {
404 	case 0:
405 		if (gss_msg->ctx == NULL)
406 			break;
407 		clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
408 		gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx);
409 		break;
410 	case -EKEYEXPIRED:
411 		set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
412 	}
413 	gss_cred->gc_upcall_timestamp = jiffies;
414 	gss_cred->gc_upcall = NULL;
415 	rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
416 }
417 
418 static void
419 gss_upcall_callback(struct rpc_task *task)
420 {
421 	struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred,
422 			struct gss_cred, gc_base);
423 	struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
424 	struct rpc_pipe *pipe = gss_msg->pipe;
425 
426 	spin_lock(&pipe->lock);
427 	gss_handle_downcall_result(gss_cred, gss_msg);
428 	spin_unlock(&pipe->lock);
429 	task->tk_status = gss_msg->msg.errno;
430 	gss_release_msg(gss_msg);
431 }
432 
433 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg)
434 {
435 	uid_t uid = from_kuid(&init_user_ns, gss_msg->uid);
436 	memcpy(gss_msg->databuf, &uid, sizeof(uid));
437 	gss_msg->msg.data = gss_msg->databuf;
438 	gss_msg->msg.len = sizeof(uid);
439 
440 	BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf));
441 }
442 
443 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg,
444 				const char *service_name,
445 				const char *target_name)
446 {
447 	struct gss_api_mech *mech = gss_msg->auth->mech;
448 	char *p = gss_msg->databuf;
449 	size_t buflen = sizeof(gss_msg->databuf);
450 	int len;
451 
452 	len = scnprintf(p, buflen, "mech=%s uid=%d ", mech->gm_name,
453 			from_kuid(&init_user_ns, gss_msg->uid));
454 	buflen -= len;
455 	p += len;
456 	gss_msg->msg.len = len;
457 	if (target_name) {
458 		len = scnprintf(p, buflen, "target=%s ", target_name);
459 		buflen -= len;
460 		p += len;
461 		gss_msg->msg.len += len;
462 	}
463 	if (service_name != NULL) {
464 		len = scnprintf(p, buflen, "service=%s ", service_name);
465 		buflen -= len;
466 		p += len;
467 		gss_msg->msg.len += len;
468 	}
469 	if (mech->gm_upcall_enctypes) {
470 		len = scnprintf(p, buflen, "enctypes=%s ",
471 				mech->gm_upcall_enctypes);
472 		buflen -= len;
473 		p += len;
474 		gss_msg->msg.len += len;
475 	}
476 	len = scnprintf(p, buflen, "\n");
477 	if (len == 0)
478 		goto out_overflow;
479 	gss_msg->msg.len += len;
480 
481 	gss_msg->msg.data = gss_msg->databuf;
482 	return 0;
483 out_overflow:
484 	WARN_ON_ONCE(1);
485 	return -ENOMEM;
486 }
487 
488 static struct gss_upcall_msg *
489 gss_alloc_msg(struct gss_auth *gss_auth,
490 		kuid_t uid, const char *service_name)
491 {
492 	struct gss_upcall_msg *gss_msg;
493 	int vers;
494 	int err = -ENOMEM;
495 
496 	gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS);
497 	if (gss_msg == NULL)
498 		goto err;
499 	vers = get_pipe_version(gss_auth->net);
500 	err = vers;
501 	if (err < 0)
502 		goto err_free_msg;
503 	gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe;
504 	INIT_LIST_HEAD(&gss_msg->list);
505 	rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
506 	init_waitqueue_head(&gss_msg->waitqueue);
507 	atomic_set(&gss_msg->count, 1);
508 	gss_msg->uid = uid;
509 	gss_msg->auth = gss_auth;
510 	switch (vers) {
511 	case 0:
512 		gss_encode_v0_msg(gss_msg);
513 		break;
514 	default:
515 		err = gss_encode_v1_msg(gss_msg, service_name, gss_auth->target_name);
516 		if (err)
517 			goto err_put_pipe_version;
518 	};
519 	kref_get(&gss_auth->kref);
520 	return gss_msg;
521 err_put_pipe_version:
522 	put_pipe_version(gss_auth->net);
523 err_free_msg:
524 	kfree(gss_msg);
525 err:
526 	return ERR_PTR(err);
527 }
528 
529 static struct gss_upcall_msg *
530 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred)
531 {
532 	struct gss_cred *gss_cred = container_of(cred,
533 			struct gss_cred, gc_base);
534 	struct gss_upcall_msg *gss_new, *gss_msg;
535 	kuid_t uid = cred->cr_uid;
536 
537 	gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal);
538 	if (IS_ERR(gss_new))
539 		return gss_new;
540 	gss_msg = gss_add_msg(gss_new);
541 	if (gss_msg == gss_new) {
542 		int res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg);
543 		if (res) {
544 			gss_unhash_msg(gss_new);
545 			gss_msg = ERR_PTR(res);
546 		}
547 	} else
548 		gss_release_msg(gss_new);
549 	return gss_msg;
550 }
551 
552 static void warn_gssd(void)
553 {
554 	dprintk("AUTH_GSS upcall failed. Please check user daemon is running.\n");
555 }
556 
557 static inline int
558 gss_refresh_upcall(struct rpc_task *task)
559 {
560 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
561 	struct gss_auth *gss_auth = container_of(cred->cr_auth,
562 			struct gss_auth, rpc_auth);
563 	struct gss_cred *gss_cred = container_of(cred,
564 			struct gss_cred, gc_base);
565 	struct gss_upcall_msg *gss_msg;
566 	struct rpc_pipe *pipe;
567 	int err = 0;
568 
569 	dprintk("RPC: %5u %s for uid %u\n",
570 		task->tk_pid, __func__, from_kuid(&init_user_ns, cred->cr_uid));
571 	gss_msg = gss_setup_upcall(gss_auth, cred);
572 	if (PTR_ERR(gss_msg) == -EAGAIN) {
573 		/* XXX: warning on the first, under the assumption we
574 		 * shouldn't normally hit this case on a refresh. */
575 		warn_gssd();
576 		task->tk_timeout = 15*HZ;
577 		rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL);
578 		return -EAGAIN;
579 	}
580 	if (IS_ERR(gss_msg)) {
581 		err = PTR_ERR(gss_msg);
582 		goto out;
583 	}
584 	pipe = gss_msg->pipe;
585 	spin_lock(&pipe->lock);
586 	if (gss_cred->gc_upcall != NULL)
587 		rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL);
588 	else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
589 		task->tk_timeout = 0;
590 		gss_cred->gc_upcall = gss_msg;
591 		/* gss_upcall_callback will release the reference to gss_upcall_msg */
592 		atomic_inc(&gss_msg->count);
593 		rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback);
594 	} else {
595 		gss_handle_downcall_result(gss_cred, gss_msg);
596 		err = gss_msg->msg.errno;
597 	}
598 	spin_unlock(&pipe->lock);
599 	gss_release_msg(gss_msg);
600 out:
601 	dprintk("RPC: %5u %s for uid %u result %d\n",
602 		task->tk_pid, __func__,
603 		from_kuid(&init_user_ns, cred->cr_uid),	err);
604 	return err;
605 }
606 
607 static inline int
608 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
609 {
610 	struct net *net = gss_auth->net;
611 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
612 	struct rpc_pipe *pipe;
613 	struct rpc_cred *cred = &gss_cred->gc_base;
614 	struct gss_upcall_msg *gss_msg;
615 	DEFINE_WAIT(wait);
616 	int err;
617 
618 	dprintk("RPC:       %s for uid %u\n",
619 		__func__, from_kuid(&init_user_ns, cred->cr_uid));
620 retry:
621 	err = 0;
622 	/* if gssd is down, just skip upcalling altogether */
623 	if (!gssd_running(net)) {
624 		warn_gssd();
625 		return -EACCES;
626 	}
627 	gss_msg = gss_setup_upcall(gss_auth, cred);
628 	if (PTR_ERR(gss_msg) == -EAGAIN) {
629 		err = wait_event_interruptible_timeout(pipe_version_waitqueue,
630 				sn->pipe_version >= 0, 15 * HZ);
631 		if (sn->pipe_version < 0) {
632 			warn_gssd();
633 			err = -EACCES;
634 		}
635 		if (err < 0)
636 			goto out;
637 		goto retry;
638 	}
639 	if (IS_ERR(gss_msg)) {
640 		err = PTR_ERR(gss_msg);
641 		goto out;
642 	}
643 	pipe = gss_msg->pipe;
644 	for (;;) {
645 		prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE);
646 		spin_lock(&pipe->lock);
647 		if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
648 			break;
649 		}
650 		spin_unlock(&pipe->lock);
651 		if (fatal_signal_pending(current)) {
652 			err = -ERESTARTSYS;
653 			goto out_intr;
654 		}
655 		schedule();
656 	}
657 	if (gss_msg->ctx)
658 		gss_cred_set_ctx(cred, gss_msg->ctx);
659 	else
660 		err = gss_msg->msg.errno;
661 	spin_unlock(&pipe->lock);
662 out_intr:
663 	finish_wait(&gss_msg->waitqueue, &wait);
664 	gss_release_msg(gss_msg);
665 out:
666 	dprintk("RPC:       %s for uid %u result %d\n",
667 		__func__, from_kuid(&init_user_ns, cred->cr_uid), err);
668 	return err;
669 }
670 
671 #define MSG_BUF_MAXSIZE 1024
672 
673 static ssize_t
674 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
675 {
676 	const void *p, *end;
677 	void *buf;
678 	struct gss_upcall_msg *gss_msg;
679 	struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe;
680 	struct gss_cl_ctx *ctx;
681 	uid_t id;
682 	kuid_t uid;
683 	ssize_t err = -EFBIG;
684 
685 	if (mlen > MSG_BUF_MAXSIZE)
686 		goto out;
687 	err = -ENOMEM;
688 	buf = kmalloc(mlen, GFP_NOFS);
689 	if (!buf)
690 		goto out;
691 
692 	err = -EFAULT;
693 	if (copy_from_user(buf, src, mlen))
694 		goto err;
695 
696 	end = (const void *)((char *)buf + mlen);
697 	p = simple_get_bytes(buf, end, &id, sizeof(id));
698 	if (IS_ERR(p)) {
699 		err = PTR_ERR(p);
700 		goto err;
701 	}
702 
703 	uid = make_kuid(&init_user_ns, id);
704 	if (!uid_valid(uid)) {
705 		err = -EINVAL;
706 		goto err;
707 	}
708 
709 	err = -ENOMEM;
710 	ctx = gss_alloc_context();
711 	if (ctx == NULL)
712 		goto err;
713 
714 	err = -ENOENT;
715 	/* Find a matching upcall */
716 	spin_lock(&pipe->lock);
717 	gss_msg = __gss_find_upcall(pipe, uid);
718 	if (gss_msg == NULL) {
719 		spin_unlock(&pipe->lock);
720 		goto err_put_ctx;
721 	}
722 	list_del_init(&gss_msg->list);
723 	spin_unlock(&pipe->lock);
724 
725 	p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
726 	if (IS_ERR(p)) {
727 		err = PTR_ERR(p);
728 		switch (err) {
729 		case -EACCES:
730 		case -EKEYEXPIRED:
731 			gss_msg->msg.errno = err;
732 			err = mlen;
733 			break;
734 		case -EFAULT:
735 		case -ENOMEM:
736 		case -EINVAL:
737 		case -ENOSYS:
738 			gss_msg->msg.errno = -EAGAIN;
739 			break;
740 		default:
741 			printk(KERN_CRIT "%s: bad return from "
742 				"gss_fill_context: %zd\n", __func__, err);
743 			gss_msg->msg.errno = -EIO;
744 		}
745 		goto err_release_msg;
746 	}
747 	gss_msg->ctx = gss_get_ctx(ctx);
748 	err = mlen;
749 
750 err_release_msg:
751 	spin_lock(&pipe->lock);
752 	__gss_unhash_msg(gss_msg);
753 	spin_unlock(&pipe->lock);
754 	gss_release_msg(gss_msg);
755 err_put_ctx:
756 	gss_put_ctx(ctx);
757 err:
758 	kfree(buf);
759 out:
760 	dprintk("RPC:       %s returning %Zd\n", __func__, err);
761 	return err;
762 }
763 
764 static int gss_pipe_open(struct inode *inode, int new_version)
765 {
766 	struct net *net = inode->i_sb->s_fs_info;
767 	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
768 	int ret = 0;
769 
770 	spin_lock(&pipe_version_lock);
771 	if (sn->pipe_version < 0) {
772 		/* First open of any gss pipe determines the version: */
773 		sn->pipe_version = new_version;
774 		rpc_wake_up(&pipe_version_rpc_waitqueue);
775 		wake_up(&pipe_version_waitqueue);
776 	} else if (sn->pipe_version != new_version) {
777 		/* Trying to open a pipe of a different version */
778 		ret = -EBUSY;
779 		goto out;
780 	}
781 	atomic_inc(&sn->pipe_users);
782 out:
783 	spin_unlock(&pipe_version_lock);
784 	return ret;
785 
786 }
787 
788 static int gss_pipe_open_v0(struct inode *inode)
789 {
790 	return gss_pipe_open(inode, 0);
791 }
792 
793 static int gss_pipe_open_v1(struct inode *inode)
794 {
795 	return gss_pipe_open(inode, 1);
796 }
797 
798 static void
799 gss_pipe_release(struct inode *inode)
800 {
801 	struct net *net = inode->i_sb->s_fs_info;
802 	struct rpc_pipe *pipe = RPC_I(inode)->pipe;
803 	struct gss_upcall_msg *gss_msg;
804 
805 restart:
806 	spin_lock(&pipe->lock);
807 	list_for_each_entry(gss_msg, &pipe->in_downcall, list) {
808 
809 		if (!list_empty(&gss_msg->msg.list))
810 			continue;
811 		gss_msg->msg.errno = -EPIPE;
812 		atomic_inc(&gss_msg->count);
813 		__gss_unhash_msg(gss_msg);
814 		spin_unlock(&pipe->lock);
815 		gss_release_msg(gss_msg);
816 		goto restart;
817 	}
818 	spin_unlock(&pipe->lock);
819 
820 	put_pipe_version(net);
821 }
822 
823 static void
824 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
825 {
826 	struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
827 
828 	if (msg->errno < 0) {
829 		dprintk("RPC:       %s releasing msg %p\n",
830 			__func__, gss_msg);
831 		atomic_inc(&gss_msg->count);
832 		gss_unhash_msg(gss_msg);
833 		if (msg->errno == -ETIMEDOUT)
834 			warn_gssd();
835 		gss_release_msg(gss_msg);
836 	}
837 }
838 
839 static void gss_pipe_dentry_destroy(struct dentry *dir,
840 		struct rpc_pipe_dir_object *pdo)
841 {
842 	struct gss_pipe *gss_pipe = pdo->pdo_data;
843 	struct rpc_pipe *pipe = gss_pipe->pipe;
844 
845 	if (pipe->dentry != NULL) {
846 		rpc_unlink(pipe->dentry);
847 		pipe->dentry = NULL;
848 	}
849 }
850 
851 static int gss_pipe_dentry_create(struct dentry *dir,
852 		struct rpc_pipe_dir_object *pdo)
853 {
854 	struct gss_pipe *p = pdo->pdo_data;
855 	struct dentry *dentry;
856 
857 	dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe);
858 	if (IS_ERR(dentry))
859 		return PTR_ERR(dentry);
860 	p->pipe->dentry = dentry;
861 	return 0;
862 }
863 
864 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = {
865 	.create = gss_pipe_dentry_create,
866 	.destroy = gss_pipe_dentry_destroy,
867 };
868 
869 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt,
870 		const char *name,
871 		const struct rpc_pipe_ops *upcall_ops)
872 {
873 	struct gss_pipe *p;
874 	int err = -ENOMEM;
875 
876 	p = kmalloc(sizeof(*p), GFP_KERNEL);
877 	if (p == NULL)
878 		goto err;
879 	p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN);
880 	if (IS_ERR(p->pipe)) {
881 		err = PTR_ERR(p->pipe);
882 		goto err_free_gss_pipe;
883 	}
884 	p->name = name;
885 	p->clnt = clnt;
886 	kref_init(&p->kref);
887 	rpc_init_pipe_dir_object(&p->pdo,
888 			&gss_pipe_dir_object_ops,
889 			p);
890 	return p;
891 err_free_gss_pipe:
892 	kfree(p);
893 err:
894 	return ERR_PTR(err);
895 }
896 
897 struct gss_alloc_pdo {
898 	struct rpc_clnt *clnt;
899 	const char *name;
900 	const struct rpc_pipe_ops *upcall_ops;
901 };
902 
903 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data)
904 {
905 	struct gss_pipe *gss_pipe;
906 	struct gss_alloc_pdo *args = data;
907 
908 	if (pdo->pdo_ops != &gss_pipe_dir_object_ops)
909 		return 0;
910 	gss_pipe = container_of(pdo, struct gss_pipe, pdo);
911 	if (strcmp(gss_pipe->name, args->name) != 0)
912 		return 0;
913 	if (!kref_get_unless_zero(&gss_pipe->kref))
914 		return 0;
915 	return 1;
916 }
917 
918 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data)
919 {
920 	struct gss_pipe *gss_pipe;
921 	struct gss_alloc_pdo *args = data;
922 
923 	gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops);
924 	if (!IS_ERR(gss_pipe))
925 		return &gss_pipe->pdo;
926 	return NULL;
927 }
928 
929 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt,
930 		const char *name,
931 		const struct rpc_pipe_ops *upcall_ops)
932 {
933 	struct net *net = rpc_net_ns(clnt);
934 	struct rpc_pipe_dir_object *pdo;
935 	struct gss_alloc_pdo args = {
936 		.clnt = clnt,
937 		.name = name,
938 		.upcall_ops = upcall_ops,
939 	};
940 
941 	pdo = rpc_find_or_alloc_pipe_dir_object(net,
942 			&clnt->cl_pipedir_objects,
943 			gss_pipe_match_pdo,
944 			gss_pipe_alloc_pdo,
945 			&args);
946 	if (pdo != NULL)
947 		return container_of(pdo, struct gss_pipe, pdo);
948 	return ERR_PTR(-ENOMEM);
949 }
950 
951 static void __gss_pipe_free(struct gss_pipe *p)
952 {
953 	struct rpc_clnt *clnt = p->clnt;
954 	struct net *net = rpc_net_ns(clnt);
955 
956 	rpc_remove_pipe_dir_object(net,
957 			&clnt->cl_pipedir_objects,
958 			&p->pdo);
959 	rpc_destroy_pipe_data(p->pipe);
960 	kfree(p);
961 }
962 
963 static void __gss_pipe_release(struct kref *kref)
964 {
965 	struct gss_pipe *p = container_of(kref, struct gss_pipe, kref);
966 
967 	__gss_pipe_free(p);
968 }
969 
970 static void gss_pipe_free(struct gss_pipe *p)
971 {
972 	if (p != NULL)
973 		kref_put(&p->kref, __gss_pipe_release);
974 }
975 
976 /*
977  * NOTE: we have the opportunity to use different
978  * parameters based on the input flavor (which must be a pseudoflavor)
979  */
980 static struct gss_auth *
981 gss_create_new(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
982 {
983 	rpc_authflavor_t flavor = args->pseudoflavor;
984 	struct gss_auth *gss_auth;
985 	struct gss_pipe *gss_pipe;
986 	struct rpc_auth * auth;
987 	int err = -ENOMEM; /* XXX? */
988 
989 	dprintk("RPC:       creating GSS authenticator for client %p\n", clnt);
990 
991 	if (!try_module_get(THIS_MODULE))
992 		return ERR_PTR(err);
993 	if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
994 		goto out_dec;
995 	INIT_HLIST_NODE(&gss_auth->hash);
996 	gss_auth->target_name = NULL;
997 	if (args->target_name) {
998 		gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL);
999 		if (gss_auth->target_name == NULL)
1000 			goto err_free;
1001 	}
1002 	gss_auth->client = clnt;
1003 	gss_auth->net = get_net(rpc_net_ns(clnt));
1004 	err = -EINVAL;
1005 	gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
1006 	if (!gss_auth->mech) {
1007 		dprintk("RPC:       Pseudoflavor %d not found!\n", flavor);
1008 		goto err_put_net;
1009 	}
1010 	gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
1011 	if (gss_auth->service == 0)
1012 		goto err_put_mech;
1013 	if (!gssd_running(gss_auth->net))
1014 		goto err_put_mech;
1015 	auth = &gss_auth->rpc_auth;
1016 	auth->au_cslack = GSS_CRED_SLACK >> 2;
1017 	auth->au_rslack = GSS_VERF_SLACK >> 2;
1018 	auth->au_flags = 0;
1019 	auth->au_ops = &authgss_ops;
1020 	auth->au_flavor = flavor;
1021 	if (gss_pseudoflavor_to_datatouch(gss_auth->mech, flavor))
1022 		auth->au_flags |= RPCAUTH_AUTH_DATATOUCH;
1023 	atomic_set(&auth->au_count, 1);
1024 	kref_init(&gss_auth->kref);
1025 
1026 	err = rpcauth_init_credcache(auth);
1027 	if (err)
1028 		goto err_put_mech;
1029 	/*
1030 	 * Note: if we created the old pipe first, then someone who
1031 	 * examined the directory at the right moment might conclude
1032 	 * that we supported only the old pipe.  So we instead create
1033 	 * the new pipe first.
1034 	 */
1035 	gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1);
1036 	if (IS_ERR(gss_pipe)) {
1037 		err = PTR_ERR(gss_pipe);
1038 		goto err_destroy_credcache;
1039 	}
1040 	gss_auth->gss_pipe[1] = gss_pipe;
1041 
1042 	gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name,
1043 			&gss_upcall_ops_v0);
1044 	if (IS_ERR(gss_pipe)) {
1045 		err = PTR_ERR(gss_pipe);
1046 		goto err_destroy_pipe_1;
1047 	}
1048 	gss_auth->gss_pipe[0] = gss_pipe;
1049 
1050 	return gss_auth;
1051 err_destroy_pipe_1:
1052 	gss_pipe_free(gss_auth->gss_pipe[1]);
1053 err_destroy_credcache:
1054 	rpcauth_destroy_credcache(auth);
1055 err_put_mech:
1056 	gss_mech_put(gss_auth->mech);
1057 err_put_net:
1058 	put_net(gss_auth->net);
1059 err_free:
1060 	kfree(gss_auth->target_name);
1061 	kfree(gss_auth);
1062 out_dec:
1063 	module_put(THIS_MODULE);
1064 	return ERR_PTR(err);
1065 }
1066 
1067 static void
1068 gss_free(struct gss_auth *gss_auth)
1069 {
1070 	gss_pipe_free(gss_auth->gss_pipe[0]);
1071 	gss_pipe_free(gss_auth->gss_pipe[1]);
1072 	gss_mech_put(gss_auth->mech);
1073 	put_net(gss_auth->net);
1074 	kfree(gss_auth->target_name);
1075 
1076 	kfree(gss_auth);
1077 	module_put(THIS_MODULE);
1078 }
1079 
1080 static void
1081 gss_free_callback(struct kref *kref)
1082 {
1083 	struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
1084 
1085 	gss_free(gss_auth);
1086 }
1087 
1088 static void
1089 gss_put_auth(struct gss_auth *gss_auth)
1090 {
1091 	kref_put(&gss_auth->kref, gss_free_callback);
1092 }
1093 
1094 static void
1095 gss_destroy(struct rpc_auth *auth)
1096 {
1097 	struct gss_auth *gss_auth = container_of(auth,
1098 			struct gss_auth, rpc_auth);
1099 
1100 	dprintk("RPC:       destroying GSS authenticator %p flavor %d\n",
1101 			auth, auth->au_flavor);
1102 
1103 	if (hash_hashed(&gss_auth->hash)) {
1104 		spin_lock(&gss_auth_hash_lock);
1105 		hash_del(&gss_auth->hash);
1106 		spin_unlock(&gss_auth_hash_lock);
1107 	}
1108 
1109 	gss_pipe_free(gss_auth->gss_pipe[0]);
1110 	gss_auth->gss_pipe[0] = NULL;
1111 	gss_pipe_free(gss_auth->gss_pipe[1]);
1112 	gss_auth->gss_pipe[1] = NULL;
1113 	rpcauth_destroy_credcache(auth);
1114 
1115 	gss_put_auth(gss_auth);
1116 }
1117 
1118 /*
1119  * Auths may be shared between rpc clients that were cloned from a
1120  * common client with the same xprt, if they also share the flavor and
1121  * target_name.
1122  *
1123  * The auth is looked up from the oldest parent sharing the same
1124  * cl_xprt, and the auth itself references only that common parent
1125  * (which is guaranteed to last as long as any of its descendants).
1126  */
1127 static struct gss_auth *
1128 gss_auth_find_or_add_hashed(struct rpc_auth_create_args *args,
1129 		struct rpc_clnt *clnt,
1130 		struct gss_auth *new)
1131 {
1132 	struct gss_auth *gss_auth;
1133 	unsigned long hashval = (unsigned long)clnt;
1134 
1135 	spin_lock(&gss_auth_hash_lock);
1136 	hash_for_each_possible(gss_auth_hash_table,
1137 			gss_auth,
1138 			hash,
1139 			hashval) {
1140 		if (gss_auth->client != clnt)
1141 			continue;
1142 		if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor)
1143 			continue;
1144 		if (gss_auth->target_name != args->target_name) {
1145 			if (gss_auth->target_name == NULL)
1146 				continue;
1147 			if (args->target_name == NULL)
1148 				continue;
1149 			if (strcmp(gss_auth->target_name, args->target_name))
1150 				continue;
1151 		}
1152 		if (!atomic_inc_not_zero(&gss_auth->rpc_auth.au_count))
1153 			continue;
1154 		goto out;
1155 	}
1156 	if (new)
1157 		hash_add(gss_auth_hash_table, &new->hash, hashval);
1158 	gss_auth = new;
1159 out:
1160 	spin_unlock(&gss_auth_hash_lock);
1161 	return gss_auth;
1162 }
1163 
1164 static struct gss_auth *
1165 gss_create_hashed(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1166 {
1167 	struct gss_auth *gss_auth;
1168 	struct gss_auth *new;
1169 
1170 	gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL);
1171 	if (gss_auth != NULL)
1172 		goto out;
1173 	new = gss_create_new(args, clnt);
1174 	if (IS_ERR(new))
1175 		return new;
1176 	gss_auth = gss_auth_find_or_add_hashed(args, clnt, new);
1177 	if (gss_auth != new)
1178 		gss_destroy(&new->rpc_auth);
1179 out:
1180 	return gss_auth;
1181 }
1182 
1183 static struct rpc_auth *
1184 gss_create(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1185 {
1186 	struct gss_auth *gss_auth;
1187 	struct rpc_xprt_switch *xps = rcu_access_pointer(clnt->cl_xpi.xpi_xpswitch);
1188 
1189 	while (clnt != clnt->cl_parent) {
1190 		struct rpc_clnt *parent = clnt->cl_parent;
1191 		/* Find the original parent for this transport */
1192 		if (rcu_access_pointer(parent->cl_xpi.xpi_xpswitch) != xps)
1193 			break;
1194 		clnt = parent;
1195 	}
1196 
1197 	gss_auth = gss_create_hashed(args, clnt);
1198 	if (IS_ERR(gss_auth))
1199 		return ERR_CAST(gss_auth);
1200 	return &gss_auth->rpc_auth;
1201 }
1202 
1203 /*
1204  * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
1205  * to the server with the GSS control procedure field set to
1206  * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
1207  * all RPCSEC_GSS state associated with that context.
1208  */
1209 static int
1210 gss_destroying_context(struct rpc_cred *cred)
1211 {
1212 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1213 	struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1214 	struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1);
1215 	struct rpc_task *task;
1216 
1217 	if (test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0)
1218 		return 0;
1219 
1220 	ctx->gc_proc = RPC_GSS_PROC_DESTROY;
1221 	cred->cr_ops = &gss_nullops;
1222 
1223 	/* Take a reference to ensure the cred will be destroyed either
1224 	 * by the RPC call or by the put_rpccred() below */
1225 	get_rpccred(cred);
1226 
1227 	task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT);
1228 	if (!IS_ERR(task))
1229 		rpc_put_task(task);
1230 
1231 	put_rpccred(cred);
1232 	return 1;
1233 }
1234 
1235 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
1236  * to create a new cred or context, so they check that things have been
1237  * allocated before freeing them. */
1238 static void
1239 gss_do_free_ctx(struct gss_cl_ctx *ctx)
1240 {
1241 	dprintk("RPC:       %s\n", __func__);
1242 
1243 	gss_delete_sec_context(&ctx->gc_gss_ctx);
1244 	kfree(ctx->gc_wire_ctx.data);
1245 	kfree(ctx->gc_acceptor.data);
1246 	kfree(ctx);
1247 }
1248 
1249 static void
1250 gss_free_ctx_callback(struct rcu_head *head)
1251 {
1252 	struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
1253 	gss_do_free_ctx(ctx);
1254 }
1255 
1256 static void
1257 gss_free_ctx(struct gss_cl_ctx *ctx)
1258 {
1259 	call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
1260 }
1261 
1262 static void
1263 gss_free_cred(struct gss_cred *gss_cred)
1264 {
1265 	dprintk("RPC:       %s cred=%p\n", __func__, gss_cred);
1266 	kfree(gss_cred);
1267 }
1268 
1269 static void
1270 gss_free_cred_callback(struct rcu_head *head)
1271 {
1272 	struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
1273 	gss_free_cred(gss_cred);
1274 }
1275 
1276 static void
1277 gss_destroy_nullcred(struct rpc_cred *cred)
1278 {
1279 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1280 	struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1281 	struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1);
1282 
1283 	RCU_INIT_POINTER(gss_cred->gc_ctx, NULL);
1284 	call_rcu(&cred->cr_rcu, gss_free_cred_callback);
1285 	if (ctx)
1286 		gss_put_ctx(ctx);
1287 	gss_put_auth(gss_auth);
1288 }
1289 
1290 static void
1291 gss_destroy_cred(struct rpc_cred *cred)
1292 {
1293 
1294 	if (gss_destroying_context(cred))
1295 		return;
1296 	gss_destroy_nullcred(cred);
1297 }
1298 
1299 /*
1300  * Lookup RPCSEC_GSS cred for the current process
1301  */
1302 static struct rpc_cred *
1303 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
1304 {
1305 	return rpcauth_lookup_credcache(auth, acred, flags, GFP_NOFS);
1306 }
1307 
1308 static struct rpc_cred *
1309 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags, gfp_t gfp)
1310 {
1311 	struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1312 	struct gss_cred	*cred = NULL;
1313 	int err = -ENOMEM;
1314 
1315 	dprintk("RPC:       %s for uid %d, flavor %d\n",
1316 		__func__, from_kuid(&init_user_ns, acred->uid),
1317 		auth->au_flavor);
1318 
1319 	if (!(cred = kzalloc(sizeof(*cred), gfp)))
1320 		goto out_err;
1321 
1322 	rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
1323 	/*
1324 	 * Note: in order to force a call to call_refresh(), we deliberately
1325 	 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
1326 	 */
1327 	cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
1328 	cred->gc_service = gss_auth->service;
1329 	cred->gc_principal = NULL;
1330 	if (acred->machine_cred)
1331 		cred->gc_principal = acred->principal;
1332 	kref_get(&gss_auth->kref);
1333 	return &cred->gc_base;
1334 
1335 out_err:
1336 	dprintk("RPC:       %s failed with error %d\n", __func__, err);
1337 	return ERR_PTR(err);
1338 }
1339 
1340 static int
1341 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
1342 {
1343 	struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1344 	struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
1345 	int err;
1346 
1347 	do {
1348 		err = gss_create_upcall(gss_auth, gss_cred);
1349 	} while (err == -EAGAIN);
1350 	return err;
1351 }
1352 
1353 static char *
1354 gss_stringify_acceptor(struct rpc_cred *cred)
1355 {
1356 	char *string = NULL;
1357 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1358 	struct gss_cl_ctx *ctx;
1359 	unsigned int len;
1360 	struct xdr_netobj *acceptor;
1361 
1362 	rcu_read_lock();
1363 	ctx = rcu_dereference(gss_cred->gc_ctx);
1364 	if (!ctx)
1365 		goto out;
1366 
1367 	len = ctx->gc_acceptor.len;
1368 	rcu_read_unlock();
1369 
1370 	/* no point if there's no string */
1371 	if (!len)
1372 		return NULL;
1373 realloc:
1374 	string = kmalloc(len + 1, GFP_KERNEL);
1375 	if (!string)
1376 		return NULL;
1377 
1378 	rcu_read_lock();
1379 	ctx = rcu_dereference(gss_cred->gc_ctx);
1380 
1381 	/* did the ctx disappear or was it replaced by one with no acceptor? */
1382 	if (!ctx || !ctx->gc_acceptor.len) {
1383 		kfree(string);
1384 		string = NULL;
1385 		goto out;
1386 	}
1387 
1388 	acceptor = &ctx->gc_acceptor;
1389 
1390 	/*
1391 	 * Did we find a new acceptor that's longer than the original? Allocate
1392 	 * a longer buffer and try again.
1393 	 */
1394 	if (len < acceptor->len) {
1395 		len = acceptor->len;
1396 		rcu_read_unlock();
1397 		kfree(string);
1398 		goto realloc;
1399 	}
1400 
1401 	memcpy(string, acceptor->data, acceptor->len);
1402 	string[acceptor->len] = '\0';
1403 out:
1404 	rcu_read_unlock();
1405 	return string;
1406 }
1407 
1408 /*
1409  * Returns -EACCES if GSS context is NULL or will expire within the
1410  * timeout (miliseconds)
1411  */
1412 static int
1413 gss_key_timeout(struct rpc_cred *rc)
1414 {
1415 	struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1416 	struct gss_cl_ctx *ctx;
1417 	unsigned long timeout = jiffies + (gss_key_expire_timeo * HZ);
1418 	int ret = 0;
1419 
1420 	rcu_read_lock();
1421 	ctx = rcu_dereference(gss_cred->gc_ctx);
1422 	if (!ctx || time_after(timeout, ctx->gc_expiry))
1423 		ret = -EACCES;
1424 	rcu_read_unlock();
1425 
1426 	return ret;
1427 }
1428 
1429 static int
1430 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
1431 {
1432 	struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1433 	struct gss_cl_ctx *ctx;
1434 	int ret;
1435 
1436 	if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
1437 		goto out;
1438 	/* Don't match with creds that have expired. */
1439 	rcu_read_lock();
1440 	ctx = rcu_dereference(gss_cred->gc_ctx);
1441 	if (!ctx || time_after(jiffies, ctx->gc_expiry)) {
1442 		rcu_read_unlock();
1443 		return 0;
1444 	}
1445 	rcu_read_unlock();
1446 	if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags))
1447 		return 0;
1448 out:
1449 	if (acred->principal != NULL) {
1450 		if (gss_cred->gc_principal == NULL)
1451 			return 0;
1452 		ret = strcmp(acred->principal, gss_cred->gc_principal) == 0;
1453 		goto check_expire;
1454 	}
1455 	if (gss_cred->gc_principal != NULL)
1456 		return 0;
1457 	ret = uid_eq(rc->cr_uid, acred->uid);
1458 
1459 check_expire:
1460 	if (ret == 0)
1461 		return ret;
1462 
1463 	/* Notify acred users of GSS context expiration timeout */
1464 	if (test_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags) &&
1465 	    (gss_key_timeout(rc) != 0)) {
1466 		/* test will now be done from generic cred */
1467 		test_and_clear_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags);
1468 		/* tell NFS layer that key will expire soon */
1469 		set_bit(RPC_CRED_KEY_EXPIRE_SOON, &acred->ac_flags);
1470 	}
1471 	return ret;
1472 }
1473 
1474 /*
1475 * Marshal credentials.
1476 * Maybe we should keep a cached credential for performance reasons.
1477 */
1478 static __be32 *
1479 gss_marshal(struct rpc_task *task, __be32 *p)
1480 {
1481 	struct rpc_rqst *req = task->tk_rqstp;
1482 	struct rpc_cred *cred = req->rq_cred;
1483 	struct gss_cred	*gss_cred = container_of(cred, struct gss_cred,
1484 						 gc_base);
1485 	struct gss_cl_ctx	*ctx = gss_cred_get_ctx(cred);
1486 	__be32		*cred_len;
1487 	u32             maj_stat = 0;
1488 	struct xdr_netobj mic;
1489 	struct kvec	iov;
1490 	struct xdr_buf	verf_buf;
1491 
1492 	dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1493 
1494 	*p++ = htonl(RPC_AUTH_GSS);
1495 	cred_len = p++;
1496 
1497 	spin_lock(&ctx->gc_seq_lock);
1498 	req->rq_seqno = ctx->gc_seq++;
1499 	spin_unlock(&ctx->gc_seq_lock);
1500 
1501 	*p++ = htonl((u32) RPC_GSS_VERSION);
1502 	*p++ = htonl((u32) ctx->gc_proc);
1503 	*p++ = htonl((u32) req->rq_seqno);
1504 	*p++ = htonl((u32) gss_cred->gc_service);
1505 	p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
1506 	*cred_len = htonl((p - (cred_len + 1)) << 2);
1507 
1508 	/* We compute the checksum for the verifier over the xdr-encoded bytes
1509 	 * starting with the xid and ending at the end of the credential: */
1510 	iov.iov_base = xprt_skip_transport_header(req->rq_xprt,
1511 					req->rq_snd_buf.head[0].iov_base);
1512 	iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
1513 	xdr_buf_from_iov(&iov, &verf_buf);
1514 
1515 	/* set verifier flavor*/
1516 	*p++ = htonl(RPC_AUTH_GSS);
1517 
1518 	mic.data = (u8 *)(p + 1);
1519 	maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1520 	if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
1521 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1522 	} else if (maj_stat != 0) {
1523 		printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
1524 		goto out_put_ctx;
1525 	}
1526 	p = xdr_encode_opaque(p, NULL, mic.len);
1527 	gss_put_ctx(ctx);
1528 	return p;
1529 out_put_ctx:
1530 	gss_put_ctx(ctx);
1531 	return NULL;
1532 }
1533 
1534 static int gss_renew_cred(struct rpc_task *task)
1535 {
1536 	struct rpc_cred *oldcred = task->tk_rqstp->rq_cred;
1537 	struct gss_cred *gss_cred = container_of(oldcred,
1538 						 struct gss_cred,
1539 						 gc_base);
1540 	struct rpc_auth *auth = oldcred->cr_auth;
1541 	struct auth_cred acred = {
1542 		.uid = oldcred->cr_uid,
1543 		.principal = gss_cred->gc_principal,
1544 		.machine_cred = (gss_cred->gc_principal != NULL ? 1 : 0),
1545 	};
1546 	struct rpc_cred *new;
1547 
1548 	new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW);
1549 	if (IS_ERR(new))
1550 		return PTR_ERR(new);
1551 	task->tk_rqstp->rq_cred = new;
1552 	put_rpccred(oldcred);
1553 	return 0;
1554 }
1555 
1556 static int gss_cred_is_negative_entry(struct rpc_cred *cred)
1557 {
1558 	if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) {
1559 		unsigned long now = jiffies;
1560 		unsigned long begin, expire;
1561 		struct gss_cred *gss_cred;
1562 
1563 		gss_cred = container_of(cred, struct gss_cred, gc_base);
1564 		begin = gss_cred->gc_upcall_timestamp;
1565 		expire = begin + gss_expired_cred_retry_delay * HZ;
1566 
1567 		if (time_in_range_open(now, begin, expire))
1568 			return 1;
1569 	}
1570 	return 0;
1571 }
1572 
1573 /*
1574 * Refresh credentials. XXX - finish
1575 */
1576 static int
1577 gss_refresh(struct rpc_task *task)
1578 {
1579 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1580 	int ret = 0;
1581 
1582 	if (gss_cred_is_negative_entry(cred))
1583 		return -EKEYEXPIRED;
1584 
1585 	if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) &&
1586 			!test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) {
1587 		ret = gss_renew_cred(task);
1588 		if (ret < 0)
1589 			goto out;
1590 		cred = task->tk_rqstp->rq_cred;
1591 	}
1592 
1593 	if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
1594 		ret = gss_refresh_upcall(task);
1595 out:
1596 	return ret;
1597 }
1598 
1599 /* Dummy refresh routine: used only when destroying the context */
1600 static int
1601 gss_refresh_null(struct rpc_task *task)
1602 {
1603 	return 0;
1604 }
1605 
1606 static __be32 *
1607 gss_validate(struct rpc_task *task, __be32 *p)
1608 {
1609 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1610 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1611 	__be32		seq;
1612 	struct kvec	iov;
1613 	struct xdr_buf	verf_buf;
1614 	struct xdr_netobj mic;
1615 	u32		flav,len;
1616 	u32		maj_stat;
1617 	__be32		*ret = ERR_PTR(-EIO);
1618 
1619 	dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1620 
1621 	flav = ntohl(*p++);
1622 	if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
1623 		goto out_bad;
1624 	if (flav != RPC_AUTH_GSS)
1625 		goto out_bad;
1626 	seq = htonl(task->tk_rqstp->rq_seqno);
1627 	iov.iov_base = &seq;
1628 	iov.iov_len = sizeof(seq);
1629 	xdr_buf_from_iov(&iov, &verf_buf);
1630 	mic.data = (u8 *)p;
1631 	mic.len = len;
1632 
1633 	ret = ERR_PTR(-EACCES);
1634 	maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1635 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1636 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1637 	if (maj_stat) {
1638 		dprintk("RPC: %5u %s: gss_verify_mic returned error 0x%08x\n",
1639 			task->tk_pid, __func__, maj_stat);
1640 		goto out_bad;
1641 	}
1642 	/* We leave it to unwrap to calculate au_rslack. For now we just
1643 	 * calculate the length of the verifier: */
1644 	cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
1645 	gss_put_ctx(ctx);
1646 	dprintk("RPC: %5u %s: gss_verify_mic succeeded.\n",
1647 			task->tk_pid, __func__);
1648 	return p + XDR_QUADLEN(len);
1649 out_bad:
1650 	gss_put_ctx(ctx);
1651 	dprintk("RPC: %5u %s failed ret %ld.\n", task->tk_pid, __func__,
1652 		PTR_ERR(ret));
1653 	return ret;
1654 }
1655 
1656 static void gss_wrap_req_encode(kxdreproc_t encode, struct rpc_rqst *rqstp,
1657 				__be32 *p, void *obj)
1658 {
1659 	struct xdr_stream xdr;
1660 
1661 	xdr_init_encode(&xdr, &rqstp->rq_snd_buf, p);
1662 	encode(rqstp, &xdr, obj);
1663 }
1664 
1665 static inline int
1666 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1667 		   kxdreproc_t encode, struct rpc_rqst *rqstp,
1668 		   __be32 *p, void *obj)
1669 {
1670 	struct xdr_buf	*snd_buf = &rqstp->rq_snd_buf;
1671 	struct xdr_buf	integ_buf;
1672 	__be32          *integ_len = NULL;
1673 	struct xdr_netobj mic;
1674 	u32		offset;
1675 	__be32		*q;
1676 	struct kvec	*iov;
1677 	u32             maj_stat = 0;
1678 	int		status = -EIO;
1679 
1680 	integ_len = p++;
1681 	offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1682 	*p++ = htonl(rqstp->rq_seqno);
1683 
1684 	gss_wrap_req_encode(encode, rqstp, p, obj);
1685 
1686 	if (xdr_buf_subsegment(snd_buf, &integ_buf,
1687 				offset, snd_buf->len - offset))
1688 		return status;
1689 	*integ_len = htonl(integ_buf.len);
1690 
1691 	/* guess whether we're in the head or the tail: */
1692 	if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1693 		iov = snd_buf->tail;
1694 	else
1695 		iov = snd_buf->head;
1696 	p = iov->iov_base + iov->iov_len;
1697 	mic.data = (u8 *)(p + 1);
1698 
1699 	maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1700 	status = -EIO; /* XXX? */
1701 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1702 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1703 	else if (maj_stat)
1704 		return status;
1705 	q = xdr_encode_opaque(p, NULL, mic.len);
1706 
1707 	offset = (u8 *)q - (u8 *)p;
1708 	iov->iov_len += offset;
1709 	snd_buf->len += offset;
1710 	return 0;
1711 }
1712 
1713 static void
1714 priv_release_snd_buf(struct rpc_rqst *rqstp)
1715 {
1716 	int i;
1717 
1718 	for (i=0; i < rqstp->rq_enc_pages_num; i++)
1719 		__free_page(rqstp->rq_enc_pages[i]);
1720 	kfree(rqstp->rq_enc_pages);
1721 }
1722 
1723 static int
1724 alloc_enc_pages(struct rpc_rqst *rqstp)
1725 {
1726 	struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1727 	int first, last, i;
1728 
1729 	if (snd_buf->page_len == 0) {
1730 		rqstp->rq_enc_pages_num = 0;
1731 		return 0;
1732 	}
1733 
1734 	first = snd_buf->page_base >> PAGE_SHIFT;
1735 	last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_SHIFT;
1736 	rqstp->rq_enc_pages_num = last - first + 1 + 1;
1737 	rqstp->rq_enc_pages
1738 		= kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1739 				GFP_NOFS);
1740 	if (!rqstp->rq_enc_pages)
1741 		goto out;
1742 	for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1743 		rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1744 		if (rqstp->rq_enc_pages[i] == NULL)
1745 			goto out_free;
1746 	}
1747 	rqstp->rq_release_snd_buf = priv_release_snd_buf;
1748 	return 0;
1749 out_free:
1750 	rqstp->rq_enc_pages_num = i;
1751 	priv_release_snd_buf(rqstp);
1752 out:
1753 	return -EAGAIN;
1754 }
1755 
1756 static inline int
1757 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1758 		  kxdreproc_t encode, struct rpc_rqst *rqstp,
1759 		  __be32 *p, void *obj)
1760 {
1761 	struct xdr_buf	*snd_buf = &rqstp->rq_snd_buf;
1762 	u32		offset;
1763 	u32             maj_stat;
1764 	int		status;
1765 	__be32		*opaque_len;
1766 	struct page	**inpages;
1767 	int		first;
1768 	int		pad;
1769 	struct kvec	*iov;
1770 	char		*tmp;
1771 
1772 	opaque_len = p++;
1773 	offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1774 	*p++ = htonl(rqstp->rq_seqno);
1775 
1776 	gss_wrap_req_encode(encode, rqstp, p, obj);
1777 
1778 	status = alloc_enc_pages(rqstp);
1779 	if (status)
1780 		return status;
1781 	first = snd_buf->page_base >> PAGE_SHIFT;
1782 	inpages = snd_buf->pages + first;
1783 	snd_buf->pages = rqstp->rq_enc_pages;
1784 	snd_buf->page_base -= first << PAGE_SHIFT;
1785 	/*
1786 	 * Give the tail its own page, in case we need extra space in the
1787 	 * head when wrapping:
1788 	 *
1789 	 * call_allocate() allocates twice the slack space required
1790 	 * by the authentication flavor to rq_callsize.
1791 	 * For GSS, slack is GSS_CRED_SLACK.
1792 	 */
1793 	if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1794 		tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1795 		memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1796 		snd_buf->tail[0].iov_base = tmp;
1797 	}
1798 	maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1799 	/* slack space should prevent this ever happening: */
1800 	BUG_ON(snd_buf->len > snd_buf->buflen);
1801 	status = -EIO;
1802 	/* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1803 	 * done anyway, so it's safe to put the request on the wire: */
1804 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1805 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1806 	else if (maj_stat)
1807 		return status;
1808 
1809 	*opaque_len = htonl(snd_buf->len - offset);
1810 	/* guess whether we're in the head or the tail: */
1811 	if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1812 		iov = snd_buf->tail;
1813 	else
1814 		iov = snd_buf->head;
1815 	p = iov->iov_base + iov->iov_len;
1816 	pad = 3 - ((snd_buf->len - offset - 1) & 3);
1817 	memset(p, 0, pad);
1818 	iov->iov_len += pad;
1819 	snd_buf->len += pad;
1820 
1821 	return 0;
1822 }
1823 
1824 static int
1825 gss_wrap_req(struct rpc_task *task,
1826 	     kxdreproc_t encode, void *rqstp, __be32 *p, void *obj)
1827 {
1828 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1829 	struct gss_cred	*gss_cred = container_of(cred, struct gss_cred,
1830 			gc_base);
1831 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1832 	int             status = -EIO;
1833 
1834 	dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1835 	if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1836 		/* The spec seems a little ambiguous here, but I think that not
1837 		 * wrapping context destruction requests makes the most sense.
1838 		 */
1839 		gss_wrap_req_encode(encode, rqstp, p, obj);
1840 		status = 0;
1841 		goto out;
1842 	}
1843 	switch (gss_cred->gc_service) {
1844 	case RPC_GSS_SVC_NONE:
1845 		gss_wrap_req_encode(encode, rqstp, p, obj);
1846 		status = 0;
1847 		break;
1848 	case RPC_GSS_SVC_INTEGRITY:
1849 		status = gss_wrap_req_integ(cred, ctx, encode, rqstp, p, obj);
1850 		break;
1851 	case RPC_GSS_SVC_PRIVACY:
1852 		status = gss_wrap_req_priv(cred, ctx, encode, rqstp, p, obj);
1853 		break;
1854 	}
1855 out:
1856 	gss_put_ctx(ctx);
1857 	dprintk("RPC: %5u %s returning %d\n", task->tk_pid, __func__, status);
1858 	return status;
1859 }
1860 
1861 static inline int
1862 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1863 		struct rpc_rqst *rqstp, __be32 **p)
1864 {
1865 	struct xdr_buf	*rcv_buf = &rqstp->rq_rcv_buf;
1866 	struct xdr_buf integ_buf;
1867 	struct xdr_netobj mic;
1868 	u32 data_offset, mic_offset;
1869 	u32 integ_len;
1870 	u32 maj_stat;
1871 	int status = -EIO;
1872 
1873 	integ_len = ntohl(*(*p)++);
1874 	if (integ_len & 3)
1875 		return status;
1876 	data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1877 	mic_offset = integ_len + data_offset;
1878 	if (mic_offset > rcv_buf->len)
1879 		return status;
1880 	if (ntohl(*(*p)++) != rqstp->rq_seqno)
1881 		return status;
1882 
1883 	if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1884 				mic_offset - data_offset))
1885 		return status;
1886 
1887 	if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1888 		return status;
1889 
1890 	maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1891 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1892 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1893 	if (maj_stat != GSS_S_COMPLETE)
1894 		return status;
1895 	return 0;
1896 }
1897 
1898 static inline int
1899 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1900 		struct rpc_rqst *rqstp, __be32 **p)
1901 {
1902 	struct xdr_buf  *rcv_buf = &rqstp->rq_rcv_buf;
1903 	u32 offset;
1904 	u32 opaque_len;
1905 	u32 maj_stat;
1906 	int status = -EIO;
1907 
1908 	opaque_len = ntohl(*(*p)++);
1909 	offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1910 	if (offset + opaque_len > rcv_buf->len)
1911 		return status;
1912 	/* remove padding: */
1913 	rcv_buf->len = offset + opaque_len;
1914 
1915 	maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1916 	if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1917 		clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1918 	if (maj_stat != GSS_S_COMPLETE)
1919 		return status;
1920 	if (ntohl(*(*p)++) != rqstp->rq_seqno)
1921 		return status;
1922 
1923 	return 0;
1924 }
1925 
1926 static int
1927 gss_unwrap_req_decode(kxdrdproc_t decode, struct rpc_rqst *rqstp,
1928 		      __be32 *p, void *obj)
1929 {
1930 	struct xdr_stream xdr;
1931 
1932 	xdr_init_decode(&xdr, &rqstp->rq_rcv_buf, p);
1933 	return decode(rqstp, &xdr, obj);
1934 }
1935 
1936 static int
1937 gss_unwrap_resp(struct rpc_task *task,
1938 		kxdrdproc_t decode, void *rqstp, __be32 *p, void *obj)
1939 {
1940 	struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1941 	struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1942 			gc_base);
1943 	struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1944 	__be32		*savedp = p;
1945 	struct kvec	*head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1946 	int		savedlen = head->iov_len;
1947 	int             status = -EIO;
1948 
1949 	if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1950 		goto out_decode;
1951 	switch (gss_cred->gc_service) {
1952 	case RPC_GSS_SVC_NONE:
1953 		break;
1954 	case RPC_GSS_SVC_INTEGRITY:
1955 		status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1956 		if (status)
1957 			goto out;
1958 		break;
1959 	case RPC_GSS_SVC_PRIVACY:
1960 		status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1961 		if (status)
1962 			goto out;
1963 		break;
1964 	}
1965 	/* take into account extra slack for integrity and privacy cases: */
1966 	cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1967 						+ (savedlen - head->iov_len);
1968 out_decode:
1969 	status = gss_unwrap_req_decode(decode, rqstp, p, obj);
1970 out:
1971 	gss_put_ctx(ctx);
1972 	dprintk("RPC: %5u %s returning %d\n",
1973 		task->tk_pid, __func__, status);
1974 	return status;
1975 }
1976 
1977 static const struct rpc_authops authgss_ops = {
1978 	.owner		= THIS_MODULE,
1979 	.au_flavor	= RPC_AUTH_GSS,
1980 	.au_name	= "RPCSEC_GSS",
1981 	.create		= gss_create,
1982 	.destroy	= gss_destroy,
1983 	.lookup_cred	= gss_lookup_cred,
1984 	.crcreate	= gss_create_cred,
1985 	.list_pseudoflavors = gss_mech_list_pseudoflavors,
1986 	.info2flavor	= gss_mech_info2flavor,
1987 	.flavor2info	= gss_mech_flavor2info,
1988 };
1989 
1990 static const struct rpc_credops gss_credops = {
1991 	.cr_name		= "AUTH_GSS",
1992 	.crdestroy		= gss_destroy_cred,
1993 	.cr_init		= gss_cred_init,
1994 	.crbind			= rpcauth_generic_bind_cred,
1995 	.crmatch		= gss_match,
1996 	.crmarshal		= gss_marshal,
1997 	.crrefresh		= gss_refresh,
1998 	.crvalidate		= gss_validate,
1999 	.crwrap_req		= gss_wrap_req,
2000 	.crunwrap_resp		= gss_unwrap_resp,
2001 	.crkey_timeout		= gss_key_timeout,
2002 	.crstringify_acceptor	= gss_stringify_acceptor,
2003 };
2004 
2005 static const struct rpc_credops gss_nullops = {
2006 	.cr_name		= "AUTH_GSS",
2007 	.crdestroy		= gss_destroy_nullcred,
2008 	.crbind			= rpcauth_generic_bind_cred,
2009 	.crmatch		= gss_match,
2010 	.crmarshal		= gss_marshal,
2011 	.crrefresh		= gss_refresh_null,
2012 	.crvalidate		= gss_validate,
2013 	.crwrap_req		= gss_wrap_req,
2014 	.crunwrap_resp		= gss_unwrap_resp,
2015 	.crstringify_acceptor	= gss_stringify_acceptor,
2016 };
2017 
2018 static const struct rpc_pipe_ops gss_upcall_ops_v0 = {
2019 	.upcall		= rpc_pipe_generic_upcall,
2020 	.downcall	= gss_pipe_downcall,
2021 	.destroy_msg	= gss_pipe_destroy_msg,
2022 	.open_pipe	= gss_pipe_open_v0,
2023 	.release_pipe	= gss_pipe_release,
2024 };
2025 
2026 static const struct rpc_pipe_ops gss_upcall_ops_v1 = {
2027 	.upcall		= rpc_pipe_generic_upcall,
2028 	.downcall	= gss_pipe_downcall,
2029 	.destroy_msg	= gss_pipe_destroy_msg,
2030 	.open_pipe	= gss_pipe_open_v1,
2031 	.release_pipe	= gss_pipe_release,
2032 };
2033 
2034 static __net_init int rpcsec_gss_init_net(struct net *net)
2035 {
2036 	return gss_svc_init_net(net);
2037 }
2038 
2039 static __net_exit void rpcsec_gss_exit_net(struct net *net)
2040 {
2041 	gss_svc_shutdown_net(net);
2042 }
2043 
2044 static struct pernet_operations rpcsec_gss_net_ops = {
2045 	.init = rpcsec_gss_init_net,
2046 	.exit = rpcsec_gss_exit_net,
2047 };
2048 
2049 /*
2050  * Initialize RPCSEC_GSS module
2051  */
2052 static int __init init_rpcsec_gss(void)
2053 {
2054 	int err = 0;
2055 
2056 	err = rpcauth_register(&authgss_ops);
2057 	if (err)
2058 		goto out;
2059 	err = gss_svc_init();
2060 	if (err)
2061 		goto out_unregister;
2062 	err = register_pernet_subsys(&rpcsec_gss_net_ops);
2063 	if (err)
2064 		goto out_svc_exit;
2065 	rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version");
2066 	return 0;
2067 out_svc_exit:
2068 	gss_svc_shutdown();
2069 out_unregister:
2070 	rpcauth_unregister(&authgss_ops);
2071 out:
2072 	return err;
2073 }
2074 
2075 static void __exit exit_rpcsec_gss(void)
2076 {
2077 	unregister_pernet_subsys(&rpcsec_gss_net_ops);
2078 	gss_svc_shutdown();
2079 	rpcauth_unregister(&authgss_ops);
2080 	rcu_barrier(); /* Wait for completion of call_rcu()'s */
2081 }
2082 
2083 MODULE_ALIAS("rpc-auth-6");
2084 MODULE_LICENSE("GPL");
2085 module_param_named(expired_cred_retry_delay,
2086 		   gss_expired_cred_retry_delay,
2087 		   uint, 0644);
2088 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until "
2089 		"the RPC engine retries an expired credential");
2090 
2091 module_param_named(key_expire_timeo,
2092 		   gss_key_expire_timeo,
2093 		   uint, 0644);
2094 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a "
2095 		"credential keys lifetime where the NFS layer cleans up "
2096 		"prior to key expiration");
2097 
2098 module_init(init_rpcsec_gss)
2099 module_exit(exit_rpcsec_gss)
2100