1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #ifdef CONFIG_NET_RX_BUSY_POLL 114 unsigned int sysctl_net_busy_read __read_mostly; 115 unsigned int sysctl_net_busy_poll __read_mostly; 116 #endif 117 118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 120 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 121 122 static int sock_close(struct inode *inode, struct file *file); 123 static __poll_t sock_poll(struct file *file, 124 struct poll_table_struct *wait); 125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 126 #ifdef CONFIG_COMPAT 127 static long compat_sock_ioctl(struct file *file, 128 unsigned int cmd, unsigned long arg); 129 #endif 130 static int sock_fasync(int fd, struct file *filp, int on); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 static void sock_splice_eof(struct file *file); 135 136 #ifdef CONFIG_PROC_FS 137 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 138 { 139 struct socket *sock = f->private_data; 140 const struct proto_ops *ops = READ_ONCE(sock->ops); 141 142 if (ops->show_fdinfo) 143 ops->show_fdinfo(m, sock); 144 } 145 #else 146 #define sock_show_fdinfo NULL 147 #endif 148 149 /* 150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 151 * in the operation structures but are done directly via the socketcall() multiplexor. 152 */ 153 154 static const struct file_operations socket_file_ops = { 155 .owner = THIS_MODULE, 156 .llseek = no_llseek, 157 .read_iter = sock_read_iter, 158 .write_iter = sock_write_iter, 159 .poll = sock_poll, 160 .unlocked_ioctl = sock_ioctl, 161 #ifdef CONFIG_COMPAT 162 .compat_ioctl = compat_sock_ioctl, 163 #endif 164 .uring_cmd = io_uring_cmd_sock, 165 .mmap = sock_mmap, 166 .release = sock_close, 167 .fasync = sock_fasync, 168 .splice_write = splice_to_socket, 169 .splice_read = sock_splice_read, 170 .splice_eof = sock_splice_eof, 171 .show_fdinfo = sock_show_fdinfo, 172 }; 173 174 static const char * const pf_family_names[] = { 175 [PF_UNSPEC] = "PF_UNSPEC", 176 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 177 [PF_INET] = "PF_INET", 178 [PF_AX25] = "PF_AX25", 179 [PF_IPX] = "PF_IPX", 180 [PF_APPLETALK] = "PF_APPLETALK", 181 [PF_NETROM] = "PF_NETROM", 182 [PF_BRIDGE] = "PF_BRIDGE", 183 [PF_ATMPVC] = "PF_ATMPVC", 184 [PF_X25] = "PF_X25", 185 [PF_INET6] = "PF_INET6", 186 [PF_ROSE] = "PF_ROSE", 187 [PF_DECnet] = "PF_DECnet", 188 [PF_NETBEUI] = "PF_NETBEUI", 189 [PF_SECURITY] = "PF_SECURITY", 190 [PF_KEY] = "PF_KEY", 191 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 192 [PF_PACKET] = "PF_PACKET", 193 [PF_ASH] = "PF_ASH", 194 [PF_ECONET] = "PF_ECONET", 195 [PF_ATMSVC] = "PF_ATMSVC", 196 [PF_RDS] = "PF_RDS", 197 [PF_SNA] = "PF_SNA", 198 [PF_IRDA] = "PF_IRDA", 199 [PF_PPPOX] = "PF_PPPOX", 200 [PF_WANPIPE] = "PF_WANPIPE", 201 [PF_LLC] = "PF_LLC", 202 [PF_IB] = "PF_IB", 203 [PF_MPLS] = "PF_MPLS", 204 [PF_CAN] = "PF_CAN", 205 [PF_TIPC] = "PF_TIPC", 206 [PF_BLUETOOTH] = "PF_BLUETOOTH", 207 [PF_IUCV] = "PF_IUCV", 208 [PF_RXRPC] = "PF_RXRPC", 209 [PF_ISDN] = "PF_ISDN", 210 [PF_PHONET] = "PF_PHONET", 211 [PF_IEEE802154] = "PF_IEEE802154", 212 [PF_CAIF] = "PF_CAIF", 213 [PF_ALG] = "PF_ALG", 214 [PF_NFC] = "PF_NFC", 215 [PF_VSOCK] = "PF_VSOCK", 216 [PF_KCM] = "PF_KCM", 217 [PF_QIPCRTR] = "PF_QIPCRTR", 218 [PF_SMC] = "PF_SMC", 219 [PF_XDP] = "PF_XDP", 220 [PF_MCTP] = "PF_MCTP", 221 }; 222 223 /* 224 * The protocol list. Each protocol is registered in here. 225 */ 226 227 static DEFINE_SPINLOCK(net_family_lock); 228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 229 230 /* 231 * Support routines. 232 * Move socket addresses back and forth across the kernel/user 233 * divide and look after the messy bits. 234 */ 235 236 /** 237 * move_addr_to_kernel - copy a socket address into kernel space 238 * @uaddr: Address in user space 239 * @kaddr: Address in kernel space 240 * @ulen: Length in user space 241 * 242 * The address is copied into kernel space. If the provided address is 243 * too long an error code of -EINVAL is returned. If the copy gives 244 * invalid addresses -EFAULT is returned. On a success 0 is returned. 245 */ 246 247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 248 { 249 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 250 return -EINVAL; 251 if (ulen == 0) 252 return 0; 253 if (copy_from_user(kaddr, uaddr, ulen)) 254 return -EFAULT; 255 return audit_sockaddr(ulen, kaddr); 256 } 257 258 /** 259 * move_addr_to_user - copy an address to user space 260 * @kaddr: kernel space address 261 * @klen: length of address in kernel 262 * @uaddr: user space address 263 * @ulen: pointer to user length field 264 * 265 * The value pointed to by ulen on entry is the buffer length available. 266 * This is overwritten with the buffer space used. -EINVAL is returned 267 * if an overlong buffer is specified or a negative buffer size. -EFAULT 268 * is returned if either the buffer or the length field are not 269 * accessible. 270 * After copying the data up to the limit the user specifies, the true 271 * length of the data is written over the length limit the user 272 * specified. Zero is returned for a success. 273 */ 274 275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 276 void __user *uaddr, int __user *ulen) 277 { 278 int err; 279 int len; 280 281 BUG_ON(klen > sizeof(struct sockaddr_storage)); 282 err = get_user(len, ulen); 283 if (err) 284 return err; 285 if (len > klen) 286 len = klen; 287 if (len < 0) 288 return -EINVAL; 289 if (len) { 290 if (audit_sockaddr(klen, kaddr)) 291 return -ENOMEM; 292 if (copy_to_user(uaddr, kaddr, len)) 293 return -EFAULT; 294 } 295 /* 296 * "fromlen shall refer to the value before truncation.." 297 * 1003.1g 298 */ 299 return __put_user(klen, ulen); 300 } 301 302 static struct kmem_cache *sock_inode_cachep __ro_after_init; 303 304 static struct inode *sock_alloc_inode(struct super_block *sb) 305 { 306 struct socket_alloc *ei; 307 308 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 309 if (!ei) 310 return NULL; 311 init_waitqueue_head(&ei->socket.wq.wait); 312 ei->socket.wq.fasync_list = NULL; 313 ei->socket.wq.flags = 0; 314 315 ei->socket.state = SS_UNCONNECTED; 316 ei->socket.flags = 0; 317 ei->socket.ops = NULL; 318 ei->socket.sk = NULL; 319 ei->socket.file = NULL; 320 321 return &ei->vfs_inode; 322 } 323 324 static void sock_free_inode(struct inode *inode) 325 { 326 struct socket_alloc *ei; 327 328 ei = container_of(inode, struct socket_alloc, vfs_inode); 329 kmem_cache_free(sock_inode_cachep, ei); 330 } 331 332 static void init_once(void *foo) 333 { 334 struct socket_alloc *ei = (struct socket_alloc *)foo; 335 336 inode_init_once(&ei->vfs_inode); 337 } 338 339 static void init_inodecache(void) 340 { 341 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 342 sizeof(struct socket_alloc), 343 0, 344 (SLAB_HWCACHE_ALIGN | 345 SLAB_RECLAIM_ACCOUNT | 346 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 347 init_once); 348 BUG_ON(sock_inode_cachep == NULL); 349 } 350 351 static const struct super_operations sockfs_ops = { 352 .alloc_inode = sock_alloc_inode, 353 .free_inode = sock_free_inode, 354 .statfs = simple_statfs, 355 }; 356 357 /* 358 * sockfs_dname() is called from d_path(). 359 */ 360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 361 { 362 return dynamic_dname(buffer, buflen, "socket:[%lu]", 363 d_inode(dentry)->i_ino); 364 } 365 366 static const struct dentry_operations sockfs_dentry_operations = { 367 .d_dname = sockfs_dname, 368 }; 369 370 static int sockfs_xattr_get(const struct xattr_handler *handler, 371 struct dentry *dentry, struct inode *inode, 372 const char *suffix, void *value, size_t size) 373 { 374 if (value) { 375 if (dentry->d_name.len + 1 > size) 376 return -ERANGE; 377 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 378 } 379 return dentry->d_name.len + 1; 380 } 381 382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 385 386 static const struct xattr_handler sockfs_xattr_handler = { 387 .name = XATTR_NAME_SOCKPROTONAME, 388 .get = sockfs_xattr_get, 389 }; 390 391 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 392 struct mnt_idmap *idmap, 393 struct dentry *dentry, struct inode *inode, 394 const char *suffix, const void *value, 395 size_t size, int flags) 396 { 397 /* Handled by LSM. */ 398 return -EAGAIN; 399 } 400 401 static const struct xattr_handler sockfs_security_xattr_handler = { 402 .prefix = XATTR_SECURITY_PREFIX, 403 .set = sockfs_security_xattr_set, 404 }; 405 406 static const struct xattr_handler *sockfs_xattr_handlers[] = { 407 &sockfs_xattr_handler, 408 &sockfs_security_xattr_handler, 409 NULL 410 }; 411 412 static int sockfs_init_fs_context(struct fs_context *fc) 413 { 414 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 415 if (!ctx) 416 return -ENOMEM; 417 ctx->ops = &sockfs_ops; 418 ctx->dops = &sockfs_dentry_operations; 419 ctx->xattr = sockfs_xattr_handlers; 420 return 0; 421 } 422 423 static struct vfsmount *sock_mnt __read_mostly; 424 425 static struct file_system_type sock_fs_type = { 426 .name = "sockfs", 427 .init_fs_context = sockfs_init_fs_context, 428 .kill_sb = kill_anon_super, 429 }; 430 431 /* 432 * Obtains the first available file descriptor and sets it up for use. 433 * 434 * These functions create file structures and maps them to fd space 435 * of the current process. On success it returns file descriptor 436 * and file struct implicitly stored in sock->file. 437 * Note that another thread may close file descriptor before we return 438 * from this function. We use the fact that now we do not refer 439 * to socket after mapping. If one day we will need it, this 440 * function will increment ref. count on file by 1. 441 * 442 * In any case returned fd MAY BE not valid! 443 * This race condition is unavoidable 444 * with shared fd spaces, we cannot solve it inside kernel, 445 * but we take care of internal coherence yet. 446 */ 447 448 /** 449 * sock_alloc_file - Bind a &socket to a &file 450 * @sock: socket 451 * @flags: file status flags 452 * @dname: protocol name 453 * 454 * Returns the &file bound with @sock, implicitly storing it 455 * in sock->file. If dname is %NULL, sets to "". 456 * 457 * On failure @sock is released, and an ERR pointer is returned. 458 * 459 * This function uses GFP_KERNEL internally. 460 */ 461 462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 463 { 464 struct file *file; 465 466 if (!dname) 467 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 468 469 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 470 O_RDWR | (flags & O_NONBLOCK), 471 &socket_file_ops); 472 if (IS_ERR(file)) { 473 sock_release(sock); 474 return file; 475 } 476 477 file->f_mode |= FMODE_NOWAIT; 478 sock->file = file; 479 file->private_data = sock; 480 stream_open(SOCK_INODE(sock), file); 481 return file; 482 } 483 EXPORT_SYMBOL(sock_alloc_file); 484 485 static int sock_map_fd(struct socket *sock, int flags) 486 { 487 struct file *newfile; 488 int fd = get_unused_fd_flags(flags); 489 if (unlikely(fd < 0)) { 490 sock_release(sock); 491 return fd; 492 } 493 494 newfile = sock_alloc_file(sock, flags, NULL); 495 if (!IS_ERR(newfile)) { 496 fd_install(fd, newfile); 497 return fd; 498 } 499 500 put_unused_fd(fd); 501 return PTR_ERR(newfile); 502 } 503 504 /** 505 * sock_from_file - Return the &socket bounded to @file. 506 * @file: file 507 * 508 * On failure returns %NULL. 509 */ 510 511 struct socket *sock_from_file(struct file *file) 512 { 513 if (file->f_op == &socket_file_ops) 514 return file->private_data; /* set in sock_alloc_file */ 515 516 return NULL; 517 } 518 EXPORT_SYMBOL(sock_from_file); 519 520 /** 521 * sockfd_lookup - Go from a file number to its socket slot 522 * @fd: file handle 523 * @err: pointer to an error code return 524 * 525 * The file handle passed in is locked and the socket it is bound 526 * to is returned. If an error occurs the err pointer is overwritten 527 * with a negative errno code and NULL is returned. The function checks 528 * for both invalid handles and passing a handle which is not a socket. 529 * 530 * On a success the socket object pointer is returned. 531 */ 532 533 struct socket *sockfd_lookup(int fd, int *err) 534 { 535 struct file *file; 536 struct socket *sock; 537 538 file = fget(fd); 539 if (!file) { 540 *err = -EBADF; 541 return NULL; 542 } 543 544 sock = sock_from_file(file); 545 if (!sock) { 546 *err = -ENOTSOCK; 547 fput(file); 548 } 549 return sock; 550 } 551 EXPORT_SYMBOL(sockfd_lookup); 552 553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 554 { 555 struct fd f = fdget(fd); 556 struct socket *sock; 557 558 *err = -EBADF; 559 if (f.file) { 560 sock = sock_from_file(f.file); 561 if (likely(sock)) { 562 *fput_needed = f.flags & FDPUT_FPUT; 563 return sock; 564 } 565 *err = -ENOTSOCK; 566 fdput(f); 567 } 568 return NULL; 569 } 570 571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 572 size_t size) 573 { 574 ssize_t len; 575 ssize_t used = 0; 576 577 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 578 if (len < 0) 579 return len; 580 used += len; 581 if (buffer) { 582 if (size < used) 583 return -ERANGE; 584 buffer += len; 585 } 586 587 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 588 used += len; 589 if (buffer) { 590 if (size < used) 591 return -ERANGE; 592 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 593 buffer += len; 594 } 595 596 return used; 597 } 598 599 static int sockfs_setattr(struct mnt_idmap *idmap, 600 struct dentry *dentry, struct iattr *iattr) 601 { 602 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 603 604 if (!err && (iattr->ia_valid & ATTR_UID)) { 605 struct socket *sock = SOCKET_I(d_inode(dentry)); 606 607 if (sock->sk) 608 sock->sk->sk_uid = iattr->ia_uid; 609 else 610 err = -ENOENT; 611 } 612 613 return err; 614 } 615 616 static const struct inode_operations sockfs_inode_ops = { 617 .listxattr = sockfs_listxattr, 618 .setattr = sockfs_setattr, 619 }; 620 621 /** 622 * sock_alloc - allocate a socket 623 * 624 * Allocate a new inode and socket object. The two are bound together 625 * and initialised. The socket is then returned. If we are out of inodes 626 * NULL is returned. This functions uses GFP_KERNEL internally. 627 */ 628 629 struct socket *sock_alloc(void) 630 { 631 struct inode *inode; 632 struct socket *sock; 633 634 inode = new_inode_pseudo(sock_mnt->mnt_sb); 635 if (!inode) 636 return NULL; 637 638 sock = SOCKET_I(inode); 639 640 inode->i_ino = get_next_ino(); 641 inode->i_mode = S_IFSOCK | S_IRWXUGO; 642 inode->i_uid = current_fsuid(); 643 inode->i_gid = current_fsgid(); 644 inode->i_op = &sockfs_inode_ops; 645 646 return sock; 647 } 648 EXPORT_SYMBOL(sock_alloc); 649 650 static void __sock_release(struct socket *sock, struct inode *inode) 651 { 652 const struct proto_ops *ops = READ_ONCE(sock->ops); 653 654 if (ops) { 655 struct module *owner = ops->owner; 656 657 if (inode) 658 inode_lock(inode); 659 ops->release(sock); 660 sock->sk = NULL; 661 if (inode) 662 inode_unlock(inode); 663 sock->ops = NULL; 664 module_put(owner); 665 } 666 667 if (sock->wq.fasync_list) 668 pr_err("%s: fasync list not empty!\n", __func__); 669 670 if (!sock->file) { 671 iput(SOCK_INODE(sock)); 672 return; 673 } 674 sock->file = NULL; 675 } 676 677 /** 678 * sock_release - close a socket 679 * @sock: socket to close 680 * 681 * The socket is released from the protocol stack if it has a release 682 * callback, and the inode is then released if the socket is bound to 683 * an inode not a file. 684 */ 685 void sock_release(struct socket *sock) 686 { 687 __sock_release(sock, NULL); 688 } 689 EXPORT_SYMBOL(sock_release); 690 691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 692 { 693 u8 flags = *tx_flags; 694 695 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 696 flags |= SKBTX_HW_TSTAMP; 697 698 /* PTP hardware clocks can provide a free running cycle counter 699 * as a time base for virtual clocks. Tell driver to use the 700 * free running cycle counter for timestamp if socket is bound 701 * to virtual clock. 702 */ 703 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 704 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 705 } 706 707 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 708 flags |= SKBTX_SW_TSTAMP; 709 710 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 711 flags |= SKBTX_SCHED_TSTAMP; 712 713 *tx_flags = flags; 714 } 715 EXPORT_SYMBOL(__sock_tx_timestamp); 716 717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 718 size_t)); 719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 720 size_t)); 721 722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 723 int flags) 724 { 725 trace_sock_send_length(sk, ret, 0); 726 } 727 728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 729 { 730 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 731 inet_sendmsg, sock, msg, 732 msg_data_left(msg)); 733 BUG_ON(ret == -EIOCBQUEUED); 734 735 if (trace_sock_send_length_enabled()) 736 call_trace_sock_send_length(sock->sk, ret, 0); 737 return ret; 738 } 739 740 /** 741 * sock_sendmsg - send a message through @sock 742 * @sock: socket 743 * @msg: message to send 744 * 745 * Sends @msg through @sock, passing through LSM. 746 * Returns the number of bytes sent, or an error code. 747 */ 748 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 749 { 750 int err = security_socket_sendmsg(sock, msg, 751 msg_data_left(msg)); 752 753 return err ?: sock_sendmsg_nosec(sock, msg); 754 } 755 EXPORT_SYMBOL(sock_sendmsg); 756 757 /** 758 * kernel_sendmsg - send a message through @sock (kernel-space) 759 * @sock: socket 760 * @msg: message header 761 * @vec: kernel vec 762 * @num: vec array length 763 * @size: total message data size 764 * 765 * Builds the message data with @vec and sends it through @sock. 766 * Returns the number of bytes sent, or an error code. 767 */ 768 769 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 770 struct kvec *vec, size_t num, size_t size) 771 { 772 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 773 return sock_sendmsg(sock, msg); 774 } 775 EXPORT_SYMBOL(kernel_sendmsg); 776 777 /** 778 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 779 * @sk: sock 780 * @msg: message header 781 * @vec: output s/g array 782 * @num: output s/g array length 783 * @size: total message data size 784 * 785 * Builds the message data with @vec and sends it through @sock. 786 * Returns the number of bytes sent, or an error code. 787 * Caller must hold @sk. 788 */ 789 790 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 791 struct kvec *vec, size_t num, size_t size) 792 { 793 struct socket *sock = sk->sk_socket; 794 const struct proto_ops *ops = READ_ONCE(sock->ops); 795 796 if (!ops->sendmsg_locked) 797 return sock_no_sendmsg_locked(sk, msg, size); 798 799 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 800 801 return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 802 } 803 EXPORT_SYMBOL(kernel_sendmsg_locked); 804 805 static bool skb_is_err_queue(const struct sk_buff *skb) 806 { 807 /* pkt_type of skbs enqueued on the error queue are set to 808 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 809 * in recvmsg, since skbs received on a local socket will never 810 * have a pkt_type of PACKET_OUTGOING. 811 */ 812 return skb->pkt_type == PACKET_OUTGOING; 813 } 814 815 /* On transmit, software and hardware timestamps are returned independently. 816 * As the two skb clones share the hardware timestamp, which may be updated 817 * before the software timestamp is received, a hardware TX timestamp may be 818 * returned only if there is no software TX timestamp. Ignore false software 819 * timestamps, which may be made in the __sock_recv_timestamp() call when the 820 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 821 * hardware timestamp. 822 */ 823 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 824 { 825 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 826 } 827 828 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 829 { 830 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 831 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 832 struct net_device *orig_dev; 833 ktime_t hwtstamp; 834 835 rcu_read_lock(); 836 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 837 if (orig_dev) { 838 *if_index = orig_dev->ifindex; 839 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 840 } else { 841 hwtstamp = shhwtstamps->hwtstamp; 842 } 843 rcu_read_unlock(); 844 845 return hwtstamp; 846 } 847 848 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 849 int if_index) 850 { 851 struct scm_ts_pktinfo ts_pktinfo; 852 struct net_device *orig_dev; 853 854 if (!skb_mac_header_was_set(skb)) 855 return; 856 857 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 858 859 if (!if_index) { 860 rcu_read_lock(); 861 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 862 if (orig_dev) 863 if_index = orig_dev->ifindex; 864 rcu_read_unlock(); 865 } 866 ts_pktinfo.if_index = if_index; 867 868 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 869 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 870 sizeof(ts_pktinfo), &ts_pktinfo); 871 } 872 873 /* 874 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 875 */ 876 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 877 struct sk_buff *skb) 878 { 879 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 880 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 881 struct scm_timestamping_internal tss; 882 int empty = 1, false_tstamp = 0; 883 struct skb_shared_hwtstamps *shhwtstamps = 884 skb_hwtstamps(skb); 885 int if_index; 886 ktime_t hwtstamp; 887 u32 tsflags; 888 889 /* Race occurred between timestamp enabling and packet 890 receiving. Fill in the current time for now. */ 891 if (need_software_tstamp && skb->tstamp == 0) { 892 __net_timestamp(skb); 893 false_tstamp = 1; 894 } 895 896 if (need_software_tstamp) { 897 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 898 if (new_tstamp) { 899 struct __kernel_sock_timeval tv; 900 901 skb_get_new_timestamp(skb, &tv); 902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 903 sizeof(tv), &tv); 904 } else { 905 struct __kernel_old_timeval tv; 906 907 skb_get_timestamp(skb, &tv); 908 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 909 sizeof(tv), &tv); 910 } 911 } else { 912 if (new_tstamp) { 913 struct __kernel_timespec ts; 914 915 skb_get_new_timestampns(skb, &ts); 916 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 917 sizeof(ts), &ts); 918 } else { 919 struct __kernel_old_timespec ts; 920 921 skb_get_timestampns(skb, &ts); 922 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 923 sizeof(ts), &ts); 924 } 925 } 926 } 927 928 memset(&tss, 0, sizeof(tss)); 929 tsflags = READ_ONCE(sk->sk_tsflags); 930 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && 931 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 932 empty = 0; 933 if (shhwtstamps && 934 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 935 !skb_is_swtx_tstamp(skb, false_tstamp)) { 936 if_index = 0; 937 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 938 hwtstamp = get_timestamp(sk, skb, &if_index); 939 else 940 hwtstamp = shhwtstamps->hwtstamp; 941 942 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 943 hwtstamp = ptp_convert_timestamp(&hwtstamp, 944 READ_ONCE(sk->sk_bind_phc)); 945 946 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 947 empty = 0; 948 949 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 950 !skb_is_err_queue(skb)) 951 put_ts_pktinfo(msg, skb, if_index); 952 } 953 } 954 if (!empty) { 955 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 956 put_cmsg_scm_timestamping64(msg, &tss); 957 else 958 put_cmsg_scm_timestamping(msg, &tss); 959 960 if (skb_is_err_queue(skb) && skb->len && 961 SKB_EXT_ERR(skb)->opt_stats) 962 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 963 skb->len, skb->data); 964 } 965 } 966 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 967 968 #ifdef CONFIG_WIRELESS 969 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 970 struct sk_buff *skb) 971 { 972 int ack; 973 974 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 975 return; 976 if (!skb->wifi_acked_valid) 977 return; 978 979 ack = skb->wifi_acked; 980 981 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 982 } 983 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 984 #endif 985 986 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 987 struct sk_buff *skb) 988 { 989 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 990 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 991 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 992 } 993 994 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 995 struct sk_buff *skb) 996 { 997 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 998 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 999 __u32 mark = skb->mark; 1000 1001 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1002 } 1003 } 1004 1005 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1006 struct sk_buff *skb) 1007 { 1008 sock_recv_timestamp(msg, sk, skb); 1009 sock_recv_drops(msg, sk, skb); 1010 sock_recv_mark(msg, sk, skb); 1011 } 1012 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1013 1014 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1015 size_t, int)); 1016 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1017 size_t, int)); 1018 1019 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1020 { 1021 trace_sock_recv_length(sk, ret, flags); 1022 } 1023 1024 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1025 int flags) 1026 { 1027 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1028 inet6_recvmsg, 1029 inet_recvmsg, sock, msg, 1030 msg_data_left(msg), flags); 1031 if (trace_sock_recv_length_enabled()) 1032 call_trace_sock_recv_length(sock->sk, ret, flags); 1033 return ret; 1034 } 1035 1036 /** 1037 * sock_recvmsg - receive a message from @sock 1038 * @sock: socket 1039 * @msg: message to receive 1040 * @flags: message flags 1041 * 1042 * Receives @msg from @sock, passing through LSM. Returns the total number 1043 * of bytes received, or an error. 1044 */ 1045 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1046 { 1047 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1048 1049 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1050 } 1051 EXPORT_SYMBOL(sock_recvmsg); 1052 1053 /** 1054 * kernel_recvmsg - Receive a message from a socket (kernel space) 1055 * @sock: The socket to receive the message from 1056 * @msg: Received message 1057 * @vec: Input s/g array for message data 1058 * @num: Size of input s/g array 1059 * @size: Number of bytes to read 1060 * @flags: Message flags (MSG_DONTWAIT, etc...) 1061 * 1062 * On return the msg structure contains the scatter/gather array passed in the 1063 * vec argument. The array is modified so that it consists of the unfilled 1064 * portion of the original array. 1065 * 1066 * The returned value is the total number of bytes received, or an error. 1067 */ 1068 1069 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1070 struct kvec *vec, size_t num, size_t size, int flags) 1071 { 1072 msg->msg_control_is_user = false; 1073 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1074 return sock_recvmsg(sock, msg, flags); 1075 } 1076 EXPORT_SYMBOL(kernel_recvmsg); 1077 1078 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1079 struct pipe_inode_info *pipe, size_t len, 1080 unsigned int flags) 1081 { 1082 struct socket *sock = file->private_data; 1083 const struct proto_ops *ops; 1084 1085 ops = READ_ONCE(sock->ops); 1086 if (unlikely(!ops->splice_read)) 1087 return copy_splice_read(file, ppos, pipe, len, flags); 1088 1089 return ops->splice_read(sock, ppos, pipe, len, flags); 1090 } 1091 1092 static void sock_splice_eof(struct file *file) 1093 { 1094 struct socket *sock = file->private_data; 1095 const struct proto_ops *ops; 1096 1097 ops = READ_ONCE(sock->ops); 1098 if (ops->splice_eof) 1099 ops->splice_eof(sock); 1100 } 1101 1102 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1103 { 1104 struct file *file = iocb->ki_filp; 1105 struct socket *sock = file->private_data; 1106 struct msghdr msg = {.msg_iter = *to, 1107 .msg_iocb = iocb}; 1108 ssize_t res; 1109 1110 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1111 msg.msg_flags = MSG_DONTWAIT; 1112 1113 if (iocb->ki_pos != 0) 1114 return -ESPIPE; 1115 1116 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1117 return 0; 1118 1119 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1120 *to = msg.msg_iter; 1121 return res; 1122 } 1123 1124 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1125 { 1126 struct file *file = iocb->ki_filp; 1127 struct socket *sock = file->private_data; 1128 struct msghdr msg = {.msg_iter = *from, 1129 .msg_iocb = iocb}; 1130 ssize_t res; 1131 1132 if (iocb->ki_pos != 0) 1133 return -ESPIPE; 1134 1135 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1136 msg.msg_flags = MSG_DONTWAIT; 1137 1138 if (sock->type == SOCK_SEQPACKET) 1139 msg.msg_flags |= MSG_EOR; 1140 1141 res = sock_sendmsg(sock, &msg); 1142 *from = msg.msg_iter; 1143 return res; 1144 } 1145 1146 /* 1147 * Atomic setting of ioctl hooks to avoid race 1148 * with module unload. 1149 */ 1150 1151 static DEFINE_MUTEX(br_ioctl_mutex); 1152 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1153 unsigned int cmd, struct ifreq *ifr, 1154 void __user *uarg); 1155 1156 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1157 unsigned int cmd, struct ifreq *ifr, 1158 void __user *uarg)) 1159 { 1160 mutex_lock(&br_ioctl_mutex); 1161 br_ioctl_hook = hook; 1162 mutex_unlock(&br_ioctl_mutex); 1163 } 1164 EXPORT_SYMBOL(brioctl_set); 1165 1166 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1167 struct ifreq *ifr, void __user *uarg) 1168 { 1169 int err = -ENOPKG; 1170 1171 if (!br_ioctl_hook) 1172 request_module("bridge"); 1173 1174 mutex_lock(&br_ioctl_mutex); 1175 if (br_ioctl_hook) 1176 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1177 mutex_unlock(&br_ioctl_mutex); 1178 1179 return err; 1180 } 1181 1182 static DEFINE_MUTEX(vlan_ioctl_mutex); 1183 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1184 1185 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1186 { 1187 mutex_lock(&vlan_ioctl_mutex); 1188 vlan_ioctl_hook = hook; 1189 mutex_unlock(&vlan_ioctl_mutex); 1190 } 1191 EXPORT_SYMBOL(vlan_ioctl_set); 1192 1193 static long sock_do_ioctl(struct net *net, struct socket *sock, 1194 unsigned int cmd, unsigned long arg) 1195 { 1196 const struct proto_ops *ops = READ_ONCE(sock->ops); 1197 struct ifreq ifr; 1198 bool need_copyout; 1199 int err; 1200 void __user *argp = (void __user *)arg; 1201 void __user *data; 1202 1203 err = ops->ioctl(sock, cmd, arg); 1204 1205 /* 1206 * If this ioctl is unknown try to hand it down 1207 * to the NIC driver. 1208 */ 1209 if (err != -ENOIOCTLCMD) 1210 return err; 1211 1212 if (!is_socket_ioctl_cmd(cmd)) 1213 return -ENOTTY; 1214 1215 if (get_user_ifreq(&ifr, &data, argp)) 1216 return -EFAULT; 1217 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1218 if (!err && need_copyout) 1219 if (put_user_ifreq(&ifr, argp)) 1220 return -EFAULT; 1221 1222 return err; 1223 } 1224 1225 /* 1226 * With an ioctl, arg may well be a user mode pointer, but we don't know 1227 * what to do with it - that's up to the protocol still. 1228 */ 1229 1230 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1231 { 1232 const struct proto_ops *ops; 1233 struct socket *sock; 1234 struct sock *sk; 1235 void __user *argp = (void __user *)arg; 1236 int pid, err; 1237 struct net *net; 1238 1239 sock = file->private_data; 1240 ops = READ_ONCE(sock->ops); 1241 sk = sock->sk; 1242 net = sock_net(sk); 1243 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1244 struct ifreq ifr; 1245 void __user *data; 1246 bool need_copyout; 1247 if (get_user_ifreq(&ifr, &data, argp)) 1248 return -EFAULT; 1249 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1250 if (!err && need_copyout) 1251 if (put_user_ifreq(&ifr, argp)) 1252 return -EFAULT; 1253 } else 1254 #ifdef CONFIG_WEXT_CORE 1255 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1256 err = wext_handle_ioctl(net, cmd, argp); 1257 } else 1258 #endif 1259 switch (cmd) { 1260 case FIOSETOWN: 1261 case SIOCSPGRP: 1262 err = -EFAULT; 1263 if (get_user(pid, (int __user *)argp)) 1264 break; 1265 err = f_setown(sock->file, pid, 1); 1266 break; 1267 case FIOGETOWN: 1268 case SIOCGPGRP: 1269 err = put_user(f_getown(sock->file), 1270 (int __user *)argp); 1271 break; 1272 case SIOCGIFBR: 1273 case SIOCSIFBR: 1274 case SIOCBRADDBR: 1275 case SIOCBRDELBR: 1276 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1277 break; 1278 case SIOCGIFVLAN: 1279 case SIOCSIFVLAN: 1280 err = -ENOPKG; 1281 if (!vlan_ioctl_hook) 1282 request_module("8021q"); 1283 1284 mutex_lock(&vlan_ioctl_mutex); 1285 if (vlan_ioctl_hook) 1286 err = vlan_ioctl_hook(net, argp); 1287 mutex_unlock(&vlan_ioctl_mutex); 1288 break; 1289 case SIOCGSKNS: 1290 err = -EPERM; 1291 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1292 break; 1293 1294 err = open_related_ns(&net->ns, get_net_ns); 1295 break; 1296 case SIOCGSTAMP_OLD: 1297 case SIOCGSTAMPNS_OLD: 1298 if (!ops->gettstamp) { 1299 err = -ENOIOCTLCMD; 1300 break; 1301 } 1302 err = ops->gettstamp(sock, argp, 1303 cmd == SIOCGSTAMP_OLD, 1304 !IS_ENABLED(CONFIG_64BIT)); 1305 break; 1306 case SIOCGSTAMP_NEW: 1307 case SIOCGSTAMPNS_NEW: 1308 if (!ops->gettstamp) { 1309 err = -ENOIOCTLCMD; 1310 break; 1311 } 1312 err = ops->gettstamp(sock, argp, 1313 cmd == SIOCGSTAMP_NEW, 1314 false); 1315 break; 1316 1317 case SIOCGIFCONF: 1318 err = dev_ifconf(net, argp); 1319 break; 1320 1321 default: 1322 err = sock_do_ioctl(net, sock, cmd, arg); 1323 break; 1324 } 1325 return err; 1326 } 1327 1328 /** 1329 * sock_create_lite - creates a socket 1330 * @family: protocol family (AF_INET, ...) 1331 * @type: communication type (SOCK_STREAM, ...) 1332 * @protocol: protocol (0, ...) 1333 * @res: new socket 1334 * 1335 * Creates a new socket and assigns it to @res, passing through LSM. 1336 * The new socket initialization is not complete, see kernel_accept(). 1337 * Returns 0 or an error. On failure @res is set to %NULL. 1338 * This function internally uses GFP_KERNEL. 1339 */ 1340 1341 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1342 { 1343 int err; 1344 struct socket *sock = NULL; 1345 1346 err = security_socket_create(family, type, protocol, 1); 1347 if (err) 1348 goto out; 1349 1350 sock = sock_alloc(); 1351 if (!sock) { 1352 err = -ENOMEM; 1353 goto out; 1354 } 1355 1356 sock->type = type; 1357 err = security_socket_post_create(sock, family, type, protocol, 1); 1358 if (err) 1359 goto out_release; 1360 1361 out: 1362 *res = sock; 1363 return err; 1364 out_release: 1365 sock_release(sock); 1366 sock = NULL; 1367 goto out; 1368 } 1369 EXPORT_SYMBOL(sock_create_lite); 1370 1371 /* No kernel lock held - perfect */ 1372 static __poll_t sock_poll(struct file *file, poll_table *wait) 1373 { 1374 struct socket *sock = file->private_data; 1375 const struct proto_ops *ops = READ_ONCE(sock->ops); 1376 __poll_t events = poll_requested_events(wait), flag = 0; 1377 1378 if (!ops->poll) 1379 return 0; 1380 1381 if (sk_can_busy_loop(sock->sk)) { 1382 /* poll once if requested by the syscall */ 1383 if (events & POLL_BUSY_LOOP) 1384 sk_busy_loop(sock->sk, 1); 1385 1386 /* if this socket can poll_ll, tell the system call */ 1387 flag = POLL_BUSY_LOOP; 1388 } 1389 1390 return ops->poll(file, sock, wait) | flag; 1391 } 1392 1393 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1394 { 1395 struct socket *sock = file->private_data; 1396 1397 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1398 } 1399 1400 static int sock_close(struct inode *inode, struct file *filp) 1401 { 1402 __sock_release(SOCKET_I(inode), inode); 1403 return 0; 1404 } 1405 1406 /* 1407 * Update the socket async list 1408 * 1409 * Fasync_list locking strategy. 1410 * 1411 * 1. fasync_list is modified only under process context socket lock 1412 * i.e. under semaphore. 1413 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1414 * or under socket lock 1415 */ 1416 1417 static int sock_fasync(int fd, struct file *filp, int on) 1418 { 1419 struct socket *sock = filp->private_data; 1420 struct sock *sk = sock->sk; 1421 struct socket_wq *wq = &sock->wq; 1422 1423 if (sk == NULL) 1424 return -EINVAL; 1425 1426 lock_sock(sk); 1427 fasync_helper(fd, filp, on, &wq->fasync_list); 1428 1429 if (!wq->fasync_list) 1430 sock_reset_flag(sk, SOCK_FASYNC); 1431 else 1432 sock_set_flag(sk, SOCK_FASYNC); 1433 1434 release_sock(sk); 1435 return 0; 1436 } 1437 1438 /* This function may be called only under rcu_lock */ 1439 1440 int sock_wake_async(struct socket_wq *wq, int how, int band) 1441 { 1442 if (!wq || !wq->fasync_list) 1443 return -1; 1444 1445 switch (how) { 1446 case SOCK_WAKE_WAITD: 1447 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1448 break; 1449 goto call_kill; 1450 case SOCK_WAKE_SPACE: 1451 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1452 break; 1453 fallthrough; 1454 case SOCK_WAKE_IO: 1455 call_kill: 1456 kill_fasync(&wq->fasync_list, SIGIO, band); 1457 break; 1458 case SOCK_WAKE_URG: 1459 kill_fasync(&wq->fasync_list, SIGURG, band); 1460 } 1461 1462 return 0; 1463 } 1464 EXPORT_SYMBOL(sock_wake_async); 1465 1466 /** 1467 * __sock_create - creates a socket 1468 * @net: net namespace 1469 * @family: protocol family (AF_INET, ...) 1470 * @type: communication type (SOCK_STREAM, ...) 1471 * @protocol: protocol (0, ...) 1472 * @res: new socket 1473 * @kern: boolean for kernel space sockets 1474 * 1475 * Creates a new socket and assigns it to @res, passing through LSM. 1476 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1477 * be set to true if the socket resides in kernel space. 1478 * This function internally uses GFP_KERNEL. 1479 */ 1480 1481 int __sock_create(struct net *net, int family, int type, int protocol, 1482 struct socket **res, int kern) 1483 { 1484 int err; 1485 struct socket *sock; 1486 const struct net_proto_family *pf; 1487 1488 /* 1489 * Check protocol is in range 1490 */ 1491 if (family < 0 || family >= NPROTO) 1492 return -EAFNOSUPPORT; 1493 if (type < 0 || type >= SOCK_MAX) 1494 return -EINVAL; 1495 1496 /* Compatibility. 1497 1498 This uglymoron is moved from INET layer to here to avoid 1499 deadlock in module load. 1500 */ 1501 if (family == PF_INET && type == SOCK_PACKET) { 1502 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1503 current->comm); 1504 family = PF_PACKET; 1505 } 1506 1507 err = security_socket_create(family, type, protocol, kern); 1508 if (err) 1509 return err; 1510 1511 /* 1512 * Allocate the socket and allow the family to set things up. if 1513 * the protocol is 0, the family is instructed to select an appropriate 1514 * default. 1515 */ 1516 sock = sock_alloc(); 1517 if (!sock) { 1518 net_warn_ratelimited("socket: no more sockets\n"); 1519 return -ENFILE; /* Not exactly a match, but its the 1520 closest posix thing */ 1521 } 1522 1523 sock->type = type; 1524 1525 #ifdef CONFIG_MODULES 1526 /* Attempt to load a protocol module if the find failed. 1527 * 1528 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1529 * requested real, full-featured networking support upon configuration. 1530 * Otherwise module support will break! 1531 */ 1532 if (rcu_access_pointer(net_families[family]) == NULL) 1533 request_module("net-pf-%d", family); 1534 #endif 1535 1536 rcu_read_lock(); 1537 pf = rcu_dereference(net_families[family]); 1538 err = -EAFNOSUPPORT; 1539 if (!pf) 1540 goto out_release; 1541 1542 /* 1543 * We will call the ->create function, that possibly is in a loadable 1544 * module, so we have to bump that loadable module refcnt first. 1545 */ 1546 if (!try_module_get(pf->owner)) 1547 goto out_release; 1548 1549 /* Now protected by module ref count */ 1550 rcu_read_unlock(); 1551 1552 err = pf->create(net, sock, protocol, kern); 1553 if (err < 0) 1554 goto out_module_put; 1555 1556 /* 1557 * Now to bump the refcnt of the [loadable] module that owns this 1558 * socket at sock_release time we decrement its refcnt. 1559 */ 1560 if (!try_module_get(sock->ops->owner)) 1561 goto out_module_busy; 1562 1563 /* 1564 * Now that we're done with the ->create function, the [loadable] 1565 * module can have its refcnt decremented 1566 */ 1567 module_put(pf->owner); 1568 err = security_socket_post_create(sock, family, type, protocol, kern); 1569 if (err) 1570 goto out_sock_release; 1571 *res = sock; 1572 1573 return 0; 1574 1575 out_module_busy: 1576 err = -EAFNOSUPPORT; 1577 out_module_put: 1578 sock->ops = NULL; 1579 module_put(pf->owner); 1580 out_sock_release: 1581 sock_release(sock); 1582 return err; 1583 1584 out_release: 1585 rcu_read_unlock(); 1586 goto out_sock_release; 1587 } 1588 EXPORT_SYMBOL(__sock_create); 1589 1590 /** 1591 * sock_create - creates a socket 1592 * @family: protocol family (AF_INET, ...) 1593 * @type: communication type (SOCK_STREAM, ...) 1594 * @protocol: protocol (0, ...) 1595 * @res: new socket 1596 * 1597 * A wrapper around __sock_create(). 1598 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1599 */ 1600 1601 int sock_create(int family, int type, int protocol, struct socket **res) 1602 { 1603 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1604 } 1605 EXPORT_SYMBOL(sock_create); 1606 1607 /** 1608 * sock_create_kern - creates a socket (kernel space) 1609 * @net: net namespace 1610 * @family: protocol family (AF_INET, ...) 1611 * @type: communication type (SOCK_STREAM, ...) 1612 * @protocol: protocol (0, ...) 1613 * @res: new socket 1614 * 1615 * A wrapper around __sock_create(). 1616 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1617 */ 1618 1619 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1620 { 1621 return __sock_create(net, family, type, protocol, res, 1); 1622 } 1623 EXPORT_SYMBOL(sock_create_kern); 1624 1625 static struct socket *__sys_socket_create(int family, int type, int protocol) 1626 { 1627 struct socket *sock; 1628 int retval; 1629 1630 /* Check the SOCK_* constants for consistency. */ 1631 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1632 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1633 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1634 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1635 1636 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1637 return ERR_PTR(-EINVAL); 1638 type &= SOCK_TYPE_MASK; 1639 1640 retval = sock_create(family, type, protocol, &sock); 1641 if (retval < 0) 1642 return ERR_PTR(retval); 1643 1644 return sock; 1645 } 1646 1647 struct file *__sys_socket_file(int family, int type, int protocol) 1648 { 1649 struct socket *sock; 1650 int flags; 1651 1652 sock = __sys_socket_create(family, type, protocol); 1653 if (IS_ERR(sock)) 1654 return ERR_CAST(sock); 1655 1656 flags = type & ~SOCK_TYPE_MASK; 1657 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1658 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1659 1660 return sock_alloc_file(sock, flags, NULL); 1661 } 1662 1663 /* A hook for bpf progs to attach to and update socket protocol. 1664 * 1665 * A static noinline declaration here could cause the compiler to 1666 * optimize away the function. A global noinline declaration will 1667 * keep the definition, but may optimize away the callsite. 1668 * Therefore, __weak is needed to ensure that the call is still 1669 * emitted, by telling the compiler that we don't know what the 1670 * function might eventually be. 1671 * 1672 * __diag_* below are needed to dismiss the missing prototype warning. 1673 */ 1674 1675 __diag_push(); 1676 __diag_ignore_all("-Wmissing-prototypes", 1677 "A fmod_ret entry point for BPF programs"); 1678 1679 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1680 { 1681 return protocol; 1682 } 1683 1684 __diag_pop(); 1685 1686 int __sys_socket(int family, int type, int protocol) 1687 { 1688 struct socket *sock; 1689 int flags; 1690 1691 sock = __sys_socket_create(family, type, 1692 update_socket_protocol(family, type, protocol)); 1693 if (IS_ERR(sock)) 1694 return PTR_ERR(sock); 1695 1696 flags = type & ~SOCK_TYPE_MASK; 1697 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1698 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1699 1700 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1701 } 1702 1703 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1704 { 1705 return __sys_socket(family, type, protocol); 1706 } 1707 1708 /* 1709 * Create a pair of connected sockets. 1710 */ 1711 1712 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1713 { 1714 struct socket *sock1, *sock2; 1715 int fd1, fd2, err; 1716 struct file *newfile1, *newfile2; 1717 int flags; 1718 1719 flags = type & ~SOCK_TYPE_MASK; 1720 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1721 return -EINVAL; 1722 type &= SOCK_TYPE_MASK; 1723 1724 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1725 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1726 1727 /* 1728 * reserve descriptors and make sure we won't fail 1729 * to return them to userland. 1730 */ 1731 fd1 = get_unused_fd_flags(flags); 1732 if (unlikely(fd1 < 0)) 1733 return fd1; 1734 1735 fd2 = get_unused_fd_flags(flags); 1736 if (unlikely(fd2 < 0)) { 1737 put_unused_fd(fd1); 1738 return fd2; 1739 } 1740 1741 err = put_user(fd1, &usockvec[0]); 1742 if (err) 1743 goto out; 1744 1745 err = put_user(fd2, &usockvec[1]); 1746 if (err) 1747 goto out; 1748 1749 /* 1750 * Obtain the first socket and check if the underlying protocol 1751 * supports the socketpair call. 1752 */ 1753 1754 err = sock_create(family, type, protocol, &sock1); 1755 if (unlikely(err < 0)) 1756 goto out; 1757 1758 err = sock_create(family, type, protocol, &sock2); 1759 if (unlikely(err < 0)) { 1760 sock_release(sock1); 1761 goto out; 1762 } 1763 1764 err = security_socket_socketpair(sock1, sock2); 1765 if (unlikely(err)) { 1766 sock_release(sock2); 1767 sock_release(sock1); 1768 goto out; 1769 } 1770 1771 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1772 if (unlikely(err < 0)) { 1773 sock_release(sock2); 1774 sock_release(sock1); 1775 goto out; 1776 } 1777 1778 newfile1 = sock_alloc_file(sock1, flags, NULL); 1779 if (IS_ERR(newfile1)) { 1780 err = PTR_ERR(newfile1); 1781 sock_release(sock2); 1782 goto out; 1783 } 1784 1785 newfile2 = sock_alloc_file(sock2, flags, NULL); 1786 if (IS_ERR(newfile2)) { 1787 err = PTR_ERR(newfile2); 1788 fput(newfile1); 1789 goto out; 1790 } 1791 1792 audit_fd_pair(fd1, fd2); 1793 1794 fd_install(fd1, newfile1); 1795 fd_install(fd2, newfile2); 1796 return 0; 1797 1798 out: 1799 put_unused_fd(fd2); 1800 put_unused_fd(fd1); 1801 return err; 1802 } 1803 1804 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1805 int __user *, usockvec) 1806 { 1807 return __sys_socketpair(family, type, protocol, usockvec); 1808 } 1809 1810 /* 1811 * Bind a name to a socket. Nothing much to do here since it's 1812 * the protocol's responsibility to handle the local address. 1813 * 1814 * We move the socket address to kernel space before we call 1815 * the protocol layer (having also checked the address is ok). 1816 */ 1817 1818 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1819 { 1820 struct socket *sock; 1821 struct sockaddr_storage address; 1822 int err, fput_needed; 1823 1824 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1825 if (sock) { 1826 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1827 if (!err) { 1828 err = security_socket_bind(sock, 1829 (struct sockaddr *)&address, 1830 addrlen); 1831 if (!err) 1832 err = READ_ONCE(sock->ops)->bind(sock, 1833 (struct sockaddr *) 1834 &address, addrlen); 1835 } 1836 fput_light(sock->file, fput_needed); 1837 } 1838 return err; 1839 } 1840 1841 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1842 { 1843 return __sys_bind(fd, umyaddr, addrlen); 1844 } 1845 1846 /* 1847 * Perform a listen. Basically, we allow the protocol to do anything 1848 * necessary for a listen, and if that works, we mark the socket as 1849 * ready for listening. 1850 */ 1851 1852 int __sys_listen(int fd, int backlog) 1853 { 1854 struct socket *sock; 1855 int err, fput_needed; 1856 int somaxconn; 1857 1858 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1859 if (sock) { 1860 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1861 if ((unsigned int)backlog > somaxconn) 1862 backlog = somaxconn; 1863 1864 err = security_socket_listen(sock, backlog); 1865 if (!err) 1866 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1867 1868 fput_light(sock->file, fput_needed); 1869 } 1870 return err; 1871 } 1872 1873 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1874 { 1875 return __sys_listen(fd, backlog); 1876 } 1877 1878 struct file *do_accept(struct file *file, unsigned file_flags, 1879 struct sockaddr __user *upeer_sockaddr, 1880 int __user *upeer_addrlen, int flags) 1881 { 1882 struct socket *sock, *newsock; 1883 struct file *newfile; 1884 int err, len; 1885 struct sockaddr_storage address; 1886 const struct proto_ops *ops; 1887 1888 sock = sock_from_file(file); 1889 if (!sock) 1890 return ERR_PTR(-ENOTSOCK); 1891 1892 newsock = sock_alloc(); 1893 if (!newsock) 1894 return ERR_PTR(-ENFILE); 1895 ops = READ_ONCE(sock->ops); 1896 1897 newsock->type = sock->type; 1898 newsock->ops = ops; 1899 1900 /* 1901 * We don't need try_module_get here, as the listening socket (sock) 1902 * has the protocol module (sock->ops->owner) held. 1903 */ 1904 __module_get(ops->owner); 1905 1906 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1907 if (IS_ERR(newfile)) 1908 return newfile; 1909 1910 err = security_socket_accept(sock, newsock); 1911 if (err) 1912 goto out_fd; 1913 1914 err = ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1915 false); 1916 if (err < 0) 1917 goto out_fd; 1918 1919 if (upeer_sockaddr) { 1920 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1921 if (len < 0) { 1922 err = -ECONNABORTED; 1923 goto out_fd; 1924 } 1925 err = move_addr_to_user(&address, 1926 len, upeer_sockaddr, upeer_addrlen); 1927 if (err < 0) 1928 goto out_fd; 1929 } 1930 1931 /* File flags are not inherited via accept() unlike another OSes. */ 1932 return newfile; 1933 out_fd: 1934 fput(newfile); 1935 return ERR_PTR(err); 1936 } 1937 1938 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1939 int __user *upeer_addrlen, int flags) 1940 { 1941 struct file *newfile; 1942 int newfd; 1943 1944 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1945 return -EINVAL; 1946 1947 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1948 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1949 1950 newfd = get_unused_fd_flags(flags); 1951 if (unlikely(newfd < 0)) 1952 return newfd; 1953 1954 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen, 1955 flags); 1956 if (IS_ERR(newfile)) { 1957 put_unused_fd(newfd); 1958 return PTR_ERR(newfile); 1959 } 1960 fd_install(newfd, newfile); 1961 return newfd; 1962 } 1963 1964 /* 1965 * For accept, we attempt to create a new socket, set up the link 1966 * with the client, wake up the client, then return the new 1967 * connected fd. We collect the address of the connector in kernel 1968 * space and move it to user at the very end. This is unclean because 1969 * we open the socket then return an error. 1970 * 1971 * 1003.1g adds the ability to recvmsg() to query connection pending 1972 * status to recvmsg. We need to add that support in a way thats 1973 * clean when we restructure accept also. 1974 */ 1975 1976 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1977 int __user *upeer_addrlen, int flags) 1978 { 1979 int ret = -EBADF; 1980 struct fd f; 1981 1982 f = fdget(fd); 1983 if (f.file) { 1984 ret = __sys_accept4_file(f.file, upeer_sockaddr, 1985 upeer_addrlen, flags); 1986 fdput(f); 1987 } 1988 1989 return ret; 1990 } 1991 1992 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1993 int __user *, upeer_addrlen, int, flags) 1994 { 1995 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1996 } 1997 1998 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1999 int __user *, upeer_addrlen) 2000 { 2001 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2002 } 2003 2004 /* 2005 * Attempt to connect to a socket with the server address. The address 2006 * is in user space so we verify it is OK and move it to kernel space. 2007 * 2008 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2009 * break bindings 2010 * 2011 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2012 * other SEQPACKET protocols that take time to connect() as it doesn't 2013 * include the -EINPROGRESS status for such sockets. 2014 */ 2015 2016 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2017 int addrlen, int file_flags) 2018 { 2019 struct socket *sock; 2020 int err; 2021 2022 sock = sock_from_file(file); 2023 if (!sock) { 2024 err = -ENOTSOCK; 2025 goto out; 2026 } 2027 2028 err = 2029 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2030 if (err) 2031 goto out; 2032 2033 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2034 addrlen, sock->file->f_flags | file_flags); 2035 out: 2036 return err; 2037 } 2038 2039 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2040 { 2041 int ret = -EBADF; 2042 struct fd f; 2043 2044 f = fdget(fd); 2045 if (f.file) { 2046 struct sockaddr_storage address; 2047 2048 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2049 if (!ret) 2050 ret = __sys_connect_file(f.file, &address, addrlen, 0); 2051 fdput(f); 2052 } 2053 2054 return ret; 2055 } 2056 2057 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2058 int, addrlen) 2059 { 2060 return __sys_connect(fd, uservaddr, addrlen); 2061 } 2062 2063 /* 2064 * Get the local address ('name') of a socket object. Move the obtained 2065 * name to user space. 2066 */ 2067 2068 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2069 int __user *usockaddr_len) 2070 { 2071 struct socket *sock; 2072 struct sockaddr_storage address; 2073 int err, fput_needed; 2074 2075 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2076 if (!sock) 2077 goto out; 2078 2079 err = security_socket_getsockname(sock); 2080 if (err) 2081 goto out_put; 2082 2083 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2084 if (err < 0) 2085 goto out_put; 2086 /* "err" is actually length in this case */ 2087 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2088 2089 out_put: 2090 fput_light(sock->file, fput_needed); 2091 out: 2092 return err; 2093 } 2094 2095 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2096 int __user *, usockaddr_len) 2097 { 2098 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2099 } 2100 2101 /* 2102 * Get the remote address ('name') of a socket object. Move the obtained 2103 * name to user space. 2104 */ 2105 2106 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2107 int __user *usockaddr_len) 2108 { 2109 struct socket *sock; 2110 struct sockaddr_storage address; 2111 int err, fput_needed; 2112 2113 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2114 if (sock != NULL) { 2115 const struct proto_ops *ops = READ_ONCE(sock->ops); 2116 2117 err = security_socket_getpeername(sock); 2118 if (err) { 2119 fput_light(sock->file, fput_needed); 2120 return err; 2121 } 2122 2123 err = ops->getname(sock, (struct sockaddr *)&address, 1); 2124 if (err >= 0) 2125 /* "err" is actually length in this case */ 2126 err = move_addr_to_user(&address, err, usockaddr, 2127 usockaddr_len); 2128 fput_light(sock->file, fput_needed); 2129 } 2130 return err; 2131 } 2132 2133 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2134 int __user *, usockaddr_len) 2135 { 2136 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2137 } 2138 2139 /* 2140 * Send a datagram to a given address. We move the address into kernel 2141 * space and check the user space data area is readable before invoking 2142 * the protocol. 2143 */ 2144 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2145 struct sockaddr __user *addr, int addr_len) 2146 { 2147 struct socket *sock; 2148 struct sockaddr_storage address; 2149 int err; 2150 struct msghdr msg; 2151 struct iovec iov; 2152 int fput_needed; 2153 2154 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter); 2155 if (unlikely(err)) 2156 return err; 2157 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2158 if (!sock) 2159 goto out; 2160 2161 msg.msg_name = NULL; 2162 msg.msg_control = NULL; 2163 msg.msg_controllen = 0; 2164 msg.msg_namelen = 0; 2165 msg.msg_ubuf = NULL; 2166 if (addr) { 2167 err = move_addr_to_kernel(addr, addr_len, &address); 2168 if (err < 0) 2169 goto out_put; 2170 msg.msg_name = (struct sockaddr *)&address; 2171 msg.msg_namelen = addr_len; 2172 } 2173 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2174 if (sock->file->f_flags & O_NONBLOCK) 2175 flags |= MSG_DONTWAIT; 2176 msg.msg_flags = flags; 2177 err = sock_sendmsg(sock, &msg); 2178 2179 out_put: 2180 fput_light(sock->file, fput_needed); 2181 out: 2182 return err; 2183 } 2184 2185 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2186 unsigned int, flags, struct sockaddr __user *, addr, 2187 int, addr_len) 2188 { 2189 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2190 } 2191 2192 /* 2193 * Send a datagram down a socket. 2194 */ 2195 2196 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2197 unsigned int, flags) 2198 { 2199 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2200 } 2201 2202 /* 2203 * Receive a frame from the socket and optionally record the address of the 2204 * sender. We verify the buffers are writable and if needed move the 2205 * sender address from kernel to user space. 2206 */ 2207 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2208 struct sockaddr __user *addr, int __user *addr_len) 2209 { 2210 struct sockaddr_storage address; 2211 struct msghdr msg = { 2212 /* Save some cycles and don't copy the address if not needed */ 2213 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2214 }; 2215 struct socket *sock; 2216 struct iovec iov; 2217 int err, err2; 2218 int fput_needed; 2219 2220 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter); 2221 if (unlikely(err)) 2222 return err; 2223 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2224 if (!sock) 2225 goto out; 2226 2227 if (sock->file->f_flags & O_NONBLOCK) 2228 flags |= MSG_DONTWAIT; 2229 err = sock_recvmsg(sock, &msg, flags); 2230 2231 if (err >= 0 && addr != NULL) { 2232 err2 = move_addr_to_user(&address, 2233 msg.msg_namelen, addr, addr_len); 2234 if (err2 < 0) 2235 err = err2; 2236 } 2237 2238 fput_light(sock->file, fput_needed); 2239 out: 2240 return err; 2241 } 2242 2243 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2244 unsigned int, flags, struct sockaddr __user *, addr, 2245 int __user *, addr_len) 2246 { 2247 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2248 } 2249 2250 /* 2251 * Receive a datagram from a socket. 2252 */ 2253 2254 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2255 unsigned int, flags) 2256 { 2257 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2258 } 2259 2260 static bool sock_use_custom_sol_socket(const struct socket *sock) 2261 { 2262 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2263 } 2264 2265 /* 2266 * Set a socket option. Because we don't know the option lengths we have 2267 * to pass the user mode parameter for the protocols to sort out. 2268 */ 2269 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2270 int optlen) 2271 { 2272 sockptr_t optval = USER_SOCKPTR(user_optval); 2273 const struct proto_ops *ops; 2274 char *kernel_optval = NULL; 2275 int err, fput_needed; 2276 struct socket *sock; 2277 2278 if (optlen < 0) 2279 return -EINVAL; 2280 2281 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2282 if (!sock) 2283 return err; 2284 2285 err = security_socket_setsockopt(sock, level, optname); 2286 if (err) 2287 goto out_put; 2288 2289 if (!in_compat_syscall()) 2290 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2291 user_optval, &optlen, 2292 &kernel_optval); 2293 if (err < 0) 2294 goto out_put; 2295 if (err > 0) { 2296 err = 0; 2297 goto out_put; 2298 } 2299 2300 if (kernel_optval) 2301 optval = KERNEL_SOCKPTR(kernel_optval); 2302 ops = READ_ONCE(sock->ops); 2303 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2304 err = sock_setsockopt(sock, level, optname, optval, optlen); 2305 else if (unlikely(!ops->setsockopt)) 2306 err = -EOPNOTSUPP; 2307 else 2308 err = ops->setsockopt(sock, level, optname, optval, 2309 optlen); 2310 kfree(kernel_optval); 2311 out_put: 2312 fput_light(sock->file, fput_needed); 2313 return err; 2314 } 2315 2316 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2317 char __user *, optval, int, optlen) 2318 { 2319 return __sys_setsockopt(fd, level, optname, optval, optlen); 2320 } 2321 2322 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2323 int optname)); 2324 2325 /* 2326 * Get a socket option. Because we don't know the option lengths we have 2327 * to pass a user mode parameter for the protocols to sort out. 2328 */ 2329 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2330 int __user *optlen) 2331 { 2332 int max_optlen __maybe_unused; 2333 const struct proto_ops *ops; 2334 int err, fput_needed; 2335 struct socket *sock; 2336 2337 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2338 if (!sock) 2339 return err; 2340 2341 err = security_socket_getsockopt(sock, level, optname); 2342 if (err) 2343 goto out_put; 2344 2345 if (!in_compat_syscall()) 2346 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2347 2348 ops = READ_ONCE(sock->ops); 2349 if (level == SOL_SOCKET) 2350 err = sock_getsockopt(sock, level, optname, optval, optlen); 2351 else if (unlikely(!ops->getsockopt)) 2352 err = -EOPNOTSUPP; 2353 else 2354 err = ops->getsockopt(sock, level, optname, optval, 2355 optlen); 2356 2357 if (!in_compat_syscall()) 2358 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2359 optval, optlen, max_optlen, 2360 err); 2361 out_put: 2362 fput_light(sock->file, fput_needed); 2363 return err; 2364 } 2365 2366 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2367 char __user *, optval, int __user *, optlen) 2368 { 2369 return __sys_getsockopt(fd, level, optname, optval, optlen); 2370 } 2371 2372 /* 2373 * Shutdown a socket. 2374 */ 2375 2376 int __sys_shutdown_sock(struct socket *sock, int how) 2377 { 2378 int err; 2379 2380 err = security_socket_shutdown(sock, how); 2381 if (!err) 2382 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2383 2384 return err; 2385 } 2386 2387 int __sys_shutdown(int fd, int how) 2388 { 2389 int err, fput_needed; 2390 struct socket *sock; 2391 2392 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2393 if (sock != NULL) { 2394 err = __sys_shutdown_sock(sock, how); 2395 fput_light(sock->file, fput_needed); 2396 } 2397 return err; 2398 } 2399 2400 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2401 { 2402 return __sys_shutdown(fd, how); 2403 } 2404 2405 /* A couple of helpful macros for getting the address of the 32/64 bit 2406 * fields which are the same type (int / unsigned) on our platforms. 2407 */ 2408 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2409 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2410 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2411 2412 struct used_address { 2413 struct sockaddr_storage name; 2414 unsigned int name_len; 2415 }; 2416 2417 int __copy_msghdr(struct msghdr *kmsg, 2418 struct user_msghdr *msg, 2419 struct sockaddr __user **save_addr) 2420 { 2421 ssize_t err; 2422 2423 kmsg->msg_control_is_user = true; 2424 kmsg->msg_get_inq = 0; 2425 kmsg->msg_control_user = msg->msg_control; 2426 kmsg->msg_controllen = msg->msg_controllen; 2427 kmsg->msg_flags = msg->msg_flags; 2428 2429 kmsg->msg_namelen = msg->msg_namelen; 2430 if (!msg->msg_name) 2431 kmsg->msg_namelen = 0; 2432 2433 if (kmsg->msg_namelen < 0) 2434 return -EINVAL; 2435 2436 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2437 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2438 2439 if (save_addr) 2440 *save_addr = msg->msg_name; 2441 2442 if (msg->msg_name && kmsg->msg_namelen) { 2443 if (!save_addr) { 2444 err = move_addr_to_kernel(msg->msg_name, 2445 kmsg->msg_namelen, 2446 kmsg->msg_name); 2447 if (err < 0) 2448 return err; 2449 } 2450 } else { 2451 kmsg->msg_name = NULL; 2452 kmsg->msg_namelen = 0; 2453 } 2454 2455 if (msg->msg_iovlen > UIO_MAXIOV) 2456 return -EMSGSIZE; 2457 2458 kmsg->msg_iocb = NULL; 2459 kmsg->msg_ubuf = NULL; 2460 return 0; 2461 } 2462 2463 static int copy_msghdr_from_user(struct msghdr *kmsg, 2464 struct user_msghdr __user *umsg, 2465 struct sockaddr __user **save_addr, 2466 struct iovec **iov) 2467 { 2468 struct user_msghdr msg; 2469 ssize_t err; 2470 2471 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2472 return -EFAULT; 2473 2474 err = __copy_msghdr(kmsg, &msg, save_addr); 2475 if (err) 2476 return err; 2477 2478 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2479 msg.msg_iov, msg.msg_iovlen, 2480 UIO_FASTIOV, iov, &kmsg->msg_iter); 2481 return err < 0 ? err : 0; 2482 } 2483 2484 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2485 unsigned int flags, struct used_address *used_address, 2486 unsigned int allowed_msghdr_flags) 2487 { 2488 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2489 __aligned(sizeof(__kernel_size_t)); 2490 /* 20 is size of ipv6_pktinfo */ 2491 unsigned char *ctl_buf = ctl; 2492 int ctl_len; 2493 ssize_t err; 2494 2495 err = -ENOBUFS; 2496 2497 if (msg_sys->msg_controllen > INT_MAX) 2498 goto out; 2499 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2500 ctl_len = msg_sys->msg_controllen; 2501 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2502 err = 2503 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2504 sizeof(ctl)); 2505 if (err) 2506 goto out; 2507 ctl_buf = msg_sys->msg_control; 2508 ctl_len = msg_sys->msg_controllen; 2509 } else if (ctl_len) { 2510 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2511 CMSG_ALIGN(sizeof(struct cmsghdr))); 2512 if (ctl_len > sizeof(ctl)) { 2513 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2514 if (ctl_buf == NULL) 2515 goto out; 2516 } 2517 err = -EFAULT; 2518 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2519 goto out_freectl; 2520 msg_sys->msg_control = ctl_buf; 2521 msg_sys->msg_control_is_user = false; 2522 } 2523 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2524 msg_sys->msg_flags = flags; 2525 2526 if (sock->file->f_flags & O_NONBLOCK) 2527 msg_sys->msg_flags |= MSG_DONTWAIT; 2528 /* 2529 * If this is sendmmsg() and current destination address is same as 2530 * previously succeeded address, omit asking LSM's decision. 2531 * used_address->name_len is initialized to UINT_MAX so that the first 2532 * destination address never matches. 2533 */ 2534 if (used_address && msg_sys->msg_name && 2535 used_address->name_len == msg_sys->msg_namelen && 2536 !memcmp(&used_address->name, msg_sys->msg_name, 2537 used_address->name_len)) { 2538 err = sock_sendmsg_nosec(sock, msg_sys); 2539 goto out_freectl; 2540 } 2541 err = sock_sendmsg(sock, msg_sys); 2542 /* 2543 * If this is sendmmsg() and sending to current destination address was 2544 * successful, remember it. 2545 */ 2546 if (used_address && err >= 0) { 2547 used_address->name_len = msg_sys->msg_namelen; 2548 if (msg_sys->msg_name) 2549 memcpy(&used_address->name, msg_sys->msg_name, 2550 used_address->name_len); 2551 } 2552 2553 out_freectl: 2554 if (ctl_buf != ctl) 2555 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2556 out: 2557 return err; 2558 } 2559 2560 int sendmsg_copy_msghdr(struct msghdr *msg, 2561 struct user_msghdr __user *umsg, unsigned flags, 2562 struct iovec **iov) 2563 { 2564 int err; 2565 2566 if (flags & MSG_CMSG_COMPAT) { 2567 struct compat_msghdr __user *msg_compat; 2568 2569 msg_compat = (struct compat_msghdr __user *) umsg; 2570 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2571 } else { 2572 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2573 } 2574 if (err < 0) 2575 return err; 2576 2577 return 0; 2578 } 2579 2580 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2581 struct msghdr *msg_sys, unsigned int flags, 2582 struct used_address *used_address, 2583 unsigned int allowed_msghdr_flags) 2584 { 2585 struct sockaddr_storage address; 2586 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2587 ssize_t err; 2588 2589 msg_sys->msg_name = &address; 2590 2591 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2592 if (err < 0) 2593 return err; 2594 2595 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2596 allowed_msghdr_flags); 2597 kfree(iov); 2598 return err; 2599 } 2600 2601 /* 2602 * BSD sendmsg interface 2603 */ 2604 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2605 unsigned int flags) 2606 { 2607 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2608 } 2609 2610 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2611 bool forbid_cmsg_compat) 2612 { 2613 int fput_needed, err; 2614 struct msghdr msg_sys; 2615 struct socket *sock; 2616 2617 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2618 return -EINVAL; 2619 2620 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2621 if (!sock) 2622 goto out; 2623 2624 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2625 2626 fput_light(sock->file, fput_needed); 2627 out: 2628 return err; 2629 } 2630 2631 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2632 { 2633 return __sys_sendmsg(fd, msg, flags, true); 2634 } 2635 2636 /* 2637 * Linux sendmmsg interface 2638 */ 2639 2640 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2641 unsigned int flags, bool forbid_cmsg_compat) 2642 { 2643 int fput_needed, err, datagrams; 2644 struct socket *sock; 2645 struct mmsghdr __user *entry; 2646 struct compat_mmsghdr __user *compat_entry; 2647 struct msghdr msg_sys; 2648 struct used_address used_address; 2649 unsigned int oflags = flags; 2650 2651 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2652 return -EINVAL; 2653 2654 if (vlen > UIO_MAXIOV) 2655 vlen = UIO_MAXIOV; 2656 2657 datagrams = 0; 2658 2659 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2660 if (!sock) 2661 return err; 2662 2663 used_address.name_len = UINT_MAX; 2664 entry = mmsg; 2665 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2666 err = 0; 2667 flags |= MSG_BATCH; 2668 2669 while (datagrams < vlen) { 2670 if (datagrams == vlen - 1) 2671 flags = oflags; 2672 2673 if (MSG_CMSG_COMPAT & flags) { 2674 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2675 &msg_sys, flags, &used_address, MSG_EOR); 2676 if (err < 0) 2677 break; 2678 err = __put_user(err, &compat_entry->msg_len); 2679 ++compat_entry; 2680 } else { 2681 err = ___sys_sendmsg(sock, 2682 (struct user_msghdr __user *)entry, 2683 &msg_sys, flags, &used_address, MSG_EOR); 2684 if (err < 0) 2685 break; 2686 err = put_user(err, &entry->msg_len); 2687 ++entry; 2688 } 2689 2690 if (err) 2691 break; 2692 ++datagrams; 2693 if (msg_data_left(&msg_sys)) 2694 break; 2695 cond_resched(); 2696 } 2697 2698 fput_light(sock->file, fput_needed); 2699 2700 /* We only return an error if no datagrams were able to be sent */ 2701 if (datagrams != 0) 2702 return datagrams; 2703 2704 return err; 2705 } 2706 2707 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2708 unsigned int, vlen, unsigned int, flags) 2709 { 2710 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2711 } 2712 2713 int recvmsg_copy_msghdr(struct msghdr *msg, 2714 struct user_msghdr __user *umsg, unsigned flags, 2715 struct sockaddr __user **uaddr, 2716 struct iovec **iov) 2717 { 2718 ssize_t err; 2719 2720 if (MSG_CMSG_COMPAT & flags) { 2721 struct compat_msghdr __user *msg_compat; 2722 2723 msg_compat = (struct compat_msghdr __user *) umsg; 2724 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2725 } else { 2726 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2727 } 2728 if (err < 0) 2729 return err; 2730 2731 return 0; 2732 } 2733 2734 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2735 struct user_msghdr __user *msg, 2736 struct sockaddr __user *uaddr, 2737 unsigned int flags, int nosec) 2738 { 2739 struct compat_msghdr __user *msg_compat = 2740 (struct compat_msghdr __user *) msg; 2741 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2742 struct sockaddr_storage addr; 2743 unsigned long cmsg_ptr; 2744 int len; 2745 ssize_t err; 2746 2747 msg_sys->msg_name = &addr; 2748 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2749 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2750 2751 /* We assume all kernel code knows the size of sockaddr_storage */ 2752 msg_sys->msg_namelen = 0; 2753 2754 if (sock->file->f_flags & O_NONBLOCK) 2755 flags |= MSG_DONTWAIT; 2756 2757 if (unlikely(nosec)) 2758 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2759 else 2760 err = sock_recvmsg(sock, msg_sys, flags); 2761 2762 if (err < 0) 2763 goto out; 2764 len = err; 2765 2766 if (uaddr != NULL) { 2767 err = move_addr_to_user(&addr, 2768 msg_sys->msg_namelen, uaddr, 2769 uaddr_len); 2770 if (err < 0) 2771 goto out; 2772 } 2773 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2774 COMPAT_FLAGS(msg)); 2775 if (err) 2776 goto out; 2777 if (MSG_CMSG_COMPAT & flags) 2778 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2779 &msg_compat->msg_controllen); 2780 else 2781 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2782 &msg->msg_controllen); 2783 if (err) 2784 goto out; 2785 err = len; 2786 out: 2787 return err; 2788 } 2789 2790 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2791 struct msghdr *msg_sys, unsigned int flags, int nosec) 2792 { 2793 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2794 /* user mode address pointers */ 2795 struct sockaddr __user *uaddr; 2796 ssize_t err; 2797 2798 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2799 if (err < 0) 2800 return err; 2801 2802 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2803 kfree(iov); 2804 return err; 2805 } 2806 2807 /* 2808 * BSD recvmsg interface 2809 */ 2810 2811 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2812 struct user_msghdr __user *umsg, 2813 struct sockaddr __user *uaddr, unsigned int flags) 2814 { 2815 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2816 } 2817 2818 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2819 bool forbid_cmsg_compat) 2820 { 2821 int fput_needed, err; 2822 struct msghdr msg_sys; 2823 struct socket *sock; 2824 2825 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2826 return -EINVAL; 2827 2828 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2829 if (!sock) 2830 goto out; 2831 2832 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2833 2834 fput_light(sock->file, fput_needed); 2835 out: 2836 return err; 2837 } 2838 2839 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2840 unsigned int, flags) 2841 { 2842 return __sys_recvmsg(fd, msg, flags, true); 2843 } 2844 2845 /* 2846 * Linux recvmmsg interface 2847 */ 2848 2849 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2850 unsigned int vlen, unsigned int flags, 2851 struct timespec64 *timeout) 2852 { 2853 int fput_needed, err, datagrams; 2854 struct socket *sock; 2855 struct mmsghdr __user *entry; 2856 struct compat_mmsghdr __user *compat_entry; 2857 struct msghdr msg_sys; 2858 struct timespec64 end_time; 2859 struct timespec64 timeout64; 2860 2861 if (timeout && 2862 poll_select_set_timeout(&end_time, timeout->tv_sec, 2863 timeout->tv_nsec)) 2864 return -EINVAL; 2865 2866 datagrams = 0; 2867 2868 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2869 if (!sock) 2870 return err; 2871 2872 if (likely(!(flags & MSG_ERRQUEUE))) { 2873 err = sock_error(sock->sk); 2874 if (err) { 2875 datagrams = err; 2876 goto out_put; 2877 } 2878 } 2879 2880 entry = mmsg; 2881 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2882 2883 while (datagrams < vlen) { 2884 /* 2885 * No need to ask LSM for more than the first datagram. 2886 */ 2887 if (MSG_CMSG_COMPAT & flags) { 2888 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2889 &msg_sys, flags & ~MSG_WAITFORONE, 2890 datagrams); 2891 if (err < 0) 2892 break; 2893 err = __put_user(err, &compat_entry->msg_len); 2894 ++compat_entry; 2895 } else { 2896 err = ___sys_recvmsg(sock, 2897 (struct user_msghdr __user *)entry, 2898 &msg_sys, flags & ~MSG_WAITFORONE, 2899 datagrams); 2900 if (err < 0) 2901 break; 2902 err = put_user(err, &entry->msg_len); 2903 ++entry; 2904 } 2905 2906 if (err) 2907 break; 2908 ++datagrams; 2909 2910 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2911 if (flags & MSG_WAITFORONE) 2912 flags |= MSG_DONTWAIT; 2913 2914 if (timeout) { 2915 ktime_get_ts64(&timeout64); 2916 *timeout = timespec64_sub(end_time, timeout64); 2917 if (timeout->tv_sec < 0) { 2918 timeout->tv_sec = timeout->tv_nsec = 0; 2919 break; 2920 } 2921 2922 /* Timeout, return less than vlen datagrams */ 2923 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2924 break; 2925 } 2926 2927 /* Out of band data, return right away */ 2928 if (msg_sys.msg_flags & MSG_OOB) 2929 break; 2930 cond_resched(); 2931 } 2932 2933 if (err == 0) 2934 goto out_put; 2935 2936 if (datagrams == 0) { 2937 datagrams = err; 2938 goto out_put; 2939 } 2940 2941 /* 2942 * We may return less entries than requested (vlen) if the 2943 * sock is non block and there aren't enough datagrams... 2944 */ 2945 if (err != -EAGAIN) { 2946 /* 2947 * ... or if recvmsg returns an error after we 2948 * received some datagrams, where we record the 2949 * error to return on the next call or if the 2950 * app asks about it using getsockopt(SO_ERROR). 2951 */ 2952 WRITE_ONCE(sock->sk->sk_err, -err); 2953 } 2954 out_put: 2955 fput_light(sock->file, fput_needed); 2956 2957 return datagrams; 2958 } 2959 2960 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2961 unsigned int vlen, unsigned int flags, 2962 struct __kernel_timespec __user *timeout, 2963 struct old_timespec32 __user *timeout32) 2964 { 2965 int datagrams; 2966 struct timespec64 timeout_sys; 2967 2968 if (timeout && get_timespec64(&timeout_sys, timeout)) 2969 return -EFAULT; 2970 2971 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2972 return -EFAULT; 2973 2974 if (!timeout && !timeout32) 2975 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2976 2977 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2978 2979 if (datagrams <= 0) 2980 return datagrams; 2981 2982 if (timeout && put_timespec64(&timeout_sys, timeout)) 2983 datagrams = -EFAULT; 2984 2985 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2986 datagrams = -EFAULT; 2987 2988 return datagrams; 2989 } 2990 2991 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2992 unsigned int, vlen, unsigned int, flags, 2993 struct __kernel_timespec __user *, timeout) 2994 { 2995 if (flags & MSG_CMSG_COMPAT) 2996 return -EINVAL; 2997 2998 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2999 } 3000 3001 #ifdef CONFIG_COMPAT_32BIT_TIME 3002 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3003 unsigned int, vlen, unsigned int, flags, 3004 struct old_timespec32 __user *, timeout) 3005 { 3006 if (flags & MSG_CMSG_COMPAT) 3007 return -EINVAL; 3008 3009 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3010 } 3011 #endif 3012 3013 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3014 /* Argument list sizes for sys_socketcall */ 3015 #define AL(x) ((x) * sizeof(unsigned long)) 3016 static const unsigned char nargs[21] = { 3017 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3018 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3019 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3020 AL(4), AL(5), AL(4) 3021 }; 3022 3023 #undef AL 3024 3025 /* 3026 * System call vectors. 3027 * 3028 * Argument checking cleaned up. Saved 20% in size. 3029 * This function doesn't need to set the kernel lock because 3030 * it is set by the callees. 3031 */ 3032 3033 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3034 { 3035 unsigned long a[AUDITSC_ARGS]; 3036 unsigned long a0, a1; 3037 int err; 3038 unsigned int len; 3039 3040 if (call < 1 || call > SYS_SENDMMSG) 3041 return -EINVAL; 3042 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3043 3044 len = nargs[call]; 3045 if (len > sizeof(a)) 3046 return -EINVAL; 3047 3048 /* copy_from_user should be SMP safe. */ 3049 if (copy_from_user(a, args, len)) 3050 return -EFAULT; 3051 3052 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3053 if (err) 3054 return err; 3055 3056 a0 = a[0]; 3057 a1 = a[1]; 3058 3059 switch (call) { 3060 case SYS_SOCKET: 3061 err = __sys_socket(a0, a1, a[2]); 3062 break; 3063 case SYS_BIND: 3064 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3065 break; 3066 case SYS_CONNECT: 3067 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3068 break; 3069 case SYS_LISTEN: 3070 err = __sys_listen(a0, a1); 3071 break; 3072 case SYS_ACCEPT: 3073 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3074 (int __user *)a[2], 0); 3075 break; 3076 case SYS_GETSOCKNAME: 3077 err = 3078 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3079 (int __user *)a[2]); 3080 break; 3081 case SYS_GETPEERNAME: 3082 err = 3083 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3084 (int __user *)a[2]); 3085 break; 3086 case SYS_SOCKETPAIR: 3087 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3088 break; 3089 case SYS_SEND: 3090 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3091 NULL, 0); 3092 break; 3093 case SYS_SENDTO: 3094 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3095 (struct sockaddr __user *)a[4], a[5]); 3096 break; 3097 case SYS_RECV: 3098 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3099 NULL, NULL); 3100 break; 3101 case SYS_RECVFROM: 3102 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3103 (struct sockaddr __user *)a[4], 3104 (int __user *)a[5]); 3105 break; 3106 case SYS_SHUTDOWN: 3107 err = __sys_shutdown(a0, a1); 3108 break; 3109 case SYS_SETSOCKOPT: 3110 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3111 a[4]); 3112 break; 3113 case SYS_GETSOCKOPT: 3114 err = 3115 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3116 (int __user *)a[4]); 3117 break; 3118 case SYS_SENDMSG: 3119 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3120 a[2], true); 3121 break; 3122 case SYS_SENDMMSG: 3123 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3124 a[3], true); 3125 break; 3126 case SYS_RECVMSG: 3127 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3128 a[2], true); 3129 break; 3130 case SYS_RECVMMSG: 3131 if (IS_ENABLED(CONFIG_64BIT)) 3132 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3133 a[2], a[3], 3134 (struct __kernel_timespec __user *)a[4], 3135 NULL); 3136 else 3137 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3138 a[2], a[3], NULL, 3139 (struct old_timespec32 __user *)a[4]); 3140 break; 3141 case SYS_ACCEPT4: 3142 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3143 (int __user *)a[2], a[3]); 3144 break; 3145 default: 3146 err = -EINVAL; 3147 break; 3148 } 3149 return err; 3150 } 3151 3152 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3153 3154 /** 3155 * sock_register - add a socket protocol handler 3156 * @ops: description of protocol 3157 * 3158 * This function is called by a protocol handler that wants to 3159 * advertise its address family, and have it linked into the 3160 * socket interface. The value ops->family corresponds to the 3161 * socket system call protocol family. 3162 */ 3163 int sock_register(const struct net_proto_family *ops) 3164 { 3165 int err; 3166 3167 if (ops->family >= NPROTO) { 3168 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3169 return -ENOBUFS; 3170 } 3171 3172 spin_lock(&net_family_lock); 3173 if (rcu_dereference_protected(net_families[ops->family], 3174 lockdep_is_held(&net_family_lock))) 3175 err = -EEXIST; 3176 else { 3177 rcu_assign_pointer(net_families[ops->family], ops); 3178 err = 0; 3179 } 3180 spin_unlock(&net_family_lock); 3181 3182 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3183 return err; 3184 } 3185 EXPORT_SYMBOL(sock_register); 3186 3187 /** 3188 * sock_unregister - remove a protocol handler 3189 * @family: protocol family to remove 3190 * 3191 * This function is called by a protocol handler that wants to 3192 * remove its address family, and have it unlinked from the 3193 * new socket creation. 3194 * 3195 * If protocol handler is a module, then it can use module reference 3196 * counts to protect against new references. If protocol handler is not 3197 * a module then it needs to provide its own protection in 3198 * the ops->create routine. 3199 */ 3200 void sock_unregister(int family) 3201 { 3202 BUG_ON(family < 0 || family >= NPROTO); 3203 3204 spin_lock(&net_family_lock); 3205 RCU_INIT_POINTER(net_families[family], NULL); 3206 spin_unlock(&net_family_lock); 3207 3208 synchronize_rcu(); 3209 3210 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3211 } 3212 EXPORT_SYMBOL(sock_unregister); 3213 3214 bool sock_is_registered(int family) 3215 { 3216 return family < NPROTO && rcu_access_pointer(net_families[family]); 3217 } 3218 3219 static int __init sock_init(void) 3220 { 3221 int err; 3222 /* 3223 * Initialize the network sysctl infrastructure. 3224 */ 3225 err = net_sysctl_init(); 3226 if (err) 3227 goto out; 3228 3229 /* 3230 * Initialize skbuff SLAB cache 3231 */ 3232 skb_init(); 3233 3234 /* 3235 * Initialize the protocols module. 3236 */ 3237 3238 init_inodecache(); 3239 3240 err = register_filesystem(&sock_fs_type); 3241 if (err) 3242 goto out; 3243 sock_mnt = kern_mount(&sock_fs_type); 3244 if (IS_ERR(sock_mnt)) { 3245 err = PTR_ERR(sock_mnt); 3246 goto out_mount; 3247 } 3248 3249 /* The real protocol initialization is performed in later initcalls. 3250 */ 3251 3252 #ifdef CONFIG_NETFILTER 3253 err = netfilter_init(); 3254 if (err) 3255 goto out; 3256 #endif 3257 3258 ptp_classifier_init(); 3259 3260 out: 3261 return err; 3262 3263 out_mount: 3264 unregister_filesystem(&sock_fs_type); 3265 goto out; 3266 } 3267 3268 core_initcall(sock_init); /* early initcall */ 3269 3270 #ifdef CONFIG_PROC_FS 3271 void socket_seq_show(struct seq_file *seq) 3272 { 3273 seq_printf(seq, "sockets: used %d\n", 3274 sock_inuse_get(seq->private)); 3275 } 3276 #endif /* CONFIG_PROC_FS */ 3277 3278 /* Handle the fact that while struct ifreq has the same *layout* on 3279 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3280 * which are handled elsewhere, it still has different *size* due to 3281 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3282 * resulting in struct ifreq being 32 and 40 bytes respectively). 3283 * As a result, if the struct happens to be at the end of a page and 3284 * the next page isn't readable/writable, we get a fault. To prevent 3285 * that, copy back and forth to the full size. 3286 */ 3287 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3288 { 3289 if (in_compat_syscall()) { 3290 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3291 3292 memset(ifr, 0, sizeof(*ifr)); 3293 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3294 return -EFAULT; 3295 3296 if (ifrdata) 3297 *ifrdata = compat_ptr(ifr32->ifr_data); 3298 3299 return 0; 3300 } 3301 3302 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3303 return -EFAULT; 3304 3305 if (ifrdata) 3306 *ifrdata = ifr->ifr_data; 3307 3308 return 0; 3309 } 3310 EXPORT_SYMBOL(get_user_ifreq); 3311 3312 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3313 { 3314 size_t size = sizeof(*ifr); 3315 3316 if (in_compat_syscall()) 3317 size = sizeof(struct compat_ifreq); 3318 3319 if (copy_to_user(arg, ifr, size)) 3320 return -EFAULT; 3321 3322 return 0; 3323 } 3324 EXPORT_SYMBOL(put_user_ifreq); 3325 3326 #ifdef CONFIG_COMPAT 3327 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3328 { 3329 compat_uptr_t uptr32; 3330 struct ifreq ifr; 3331 void __user *saved; 3332 int err; 3333 3334 if (get_user_ifreq(&ifr, NULL, uifr32)) 3335 return -EFAULT; 3336 3337 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3338 return -EFAULT; 3339 3340 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3341 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3342 3343 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3344 if (!err) { 3345 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3346 if (put_user_ifreq(&ifr, uifr32)) 3347 err = -EFAULT; 3348 } 3349 return err; 3350 } 3351 3352 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3353 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3354 struct compat_ifreq __user *u_ifreq32) 3355 { 3356 struct ifreq ifreq; 3357 void __user *data; 3358 3359 if (!is_socket_ioctl_cmd(cmd)) 3360 return -ENOTTY; 3361 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3362 return -EFAULT; 3363 ifreq.ifr_data = data; 3364 3365 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3366 } 3367 3368 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3369 unsigned int cmd, unsigned long arg) 3370 { 3371 void __user *argp = compat_ptr(arg); 3372 struct sock *sk = sock->sk; 3373 struct net *net = sock_net(sk); 3374 const struct proto_ops *ops; 3375 3376 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3377 return sock_ioctl(file, cmd, (unsigned long)argp); 3378 3379 switch (cmd) { 3380 case SIOCWANDEV: 3381 return compat_siocwandev(net, argp); 3382 case SIOCGSTAMP_OLD: 3383 case SIOCGSTAMPNS_OLD: 3384 ops = READ_ONCE(sock->ops); 3385 if (!ops->gettstamp) 3386 return -ENOIOCTLCMD; 3387 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3388 !COMPAT_USE_64BIT_TIME); 3389 3390 case SIOCETHTOOL: 3391 case SIOCBONDSLAVEINFOQUERY: 3392 case SIOCBONDINFOQUERY: 3393 case SIOCSHWTSTAMP: 3394 case SIOCGHWTSTAMP: 3395 return compat_ifr_data_ioctl(net, cmd, argp); 3396 3397 case FIOSETOWN: 3398 case SIOCSPGRP: 3399 case FIOGETOWN: 3400 case SIOCGPGRP: 3401 case SIOCBRADDBR: 3402 case SIOCBRDELBR: 3403 case SIOCGIFVLAN: 3404 case SIOCSIFVLAN: 3405 case SIOCGSKNS: 3406 case SIOCGSTAMP_NEW: 3407 case SIOCGSTAMPNS_NEW: 3408 case SIOCGIFCONF: 3409 case SIOCSIFBR: 3410 case SIOCGIFBR: 3411 return sock_ioctl(file, cmd, arg); 3412 3413 case SIOCGIFFLAGS: 3414 case SIOCSIFFLAGS: 3415 case SIOCGIFMAP: 3416 case SIOCSIFMAP: 3417 case SIOCGIFMETRIC: 3418 case SIOCSIFMETRIC: 3419 case SIOCGIFMTU: 3420 case SIOCSIFMTU: 3421 case SIOCGIFMEM: 3422 case SIOCSIFMEM: 3423 case SIOCGIFHWADDR: 3424 case SIOCSIFHWADDR: 3425 case SIOCADDMULTI: 3426 case SIOCDELMULTI: 3427 case SIOCGIFINDEX: 3428 case SIOCGIFADDR: 3429 case SIOCSIFADDR: 3430 case SIOCSIFHWBROADCAST: 3431 case SIOCDIFADDR: 3432 case SIOCGIFBRDADDR: 3433 case SIOCSIFBRDADDR: 3434 case SIOCGIFDSTADDR: 3435 case SIOCSIFDSTADDR: 3436 case SIOCGIFNETMASK: 3437 case SIOCSIFNETMASK: 3438 case SIOCSIFPFLAGS: 3439 case SIOCGIFPFLAGS: 3440 case SIOCGIFTXQLEN: 3441 case SIOCSIFTXQLEN: 3442 case SIOCBRADDIF: 3443 case SIOCBRDELIF: 3444 case SIOCGIFNAME: 3445 case SIOCSIFNAME: 3446 case SIOCGMIIPHY: 3447 case SIOCGMIIREG: 3448 case SIOCSMIIREG: 3449 case SIOCBONDENSLAVE: 3450 case SIOCBONDRELEASE: 3451 case SIOCBONDSETHWADDR: 3452 case SIOCBONDCHANGEACTIVE: 3453 case SIOCSARP: 3454 case SIOCGARP: 3455 case SIOCDARP: 3456 case SIOCOUTQ: 3457 case SIOCOUTQNSD: 3458 case SIOCATMARK: 3459 return sock_do_ioctl(net, sock, cmd, arg); 3460 } 3461 3462 return -ENOIOCTLCMD; 3463 } 3464 3465 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3466 unsigned long arg) 3467 { 3468 struct socket *sock = file->private_data; 3469 const struct proto_ops *ops = READ_ONCE(sock->ops); 3470 int ret = -ENOIOCTLCMD; 3471 struct sock *sk; 3472 struct net *net; 3473 3474 sk = sock->sk; 3475 net = sock_net(sk); 3476 3477 if (ops->compat_ioctl) 3478 ret = ops->compat_ioctl(sock, cmd, arg); 3479 3480 if (ret == -ENOIOCTLCMD && 3481 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3482 ret = compat_wext_handle_ioctl(net, cmd, arg); 3483 3484 if (ret == -ENOIOCTLCMD) 3485 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3486 3487 return ret; 3488 } 3489 #endif 3490 3491 /** 3492 * kernel_bind - bind an address to a socket (kernel space) 3493 * @sock: socket 3494 * @addr: address 3495 * @addrlen: length of address 3496 * 3497 * Returns 0 or an error. 3498 */ 3499 3500 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3501 { 3502 return READ_ONCE(sock->ops)->bind(sock, addr, addrlen); 3503 } 3504 EXPORT_SYMBOL(kernel_bind); 3505 3506 /** 3507 * kernel_listen - move socket to listening state (kernel space) 3508 * @sock: socket 3509 * @backlog: pending connections queue size 3510 * 3511 * Returns 0 or an error. 3512 */ 3513 3514 int kernel_listen(struct socket *sock, int backlog) 3515 { 3516 return READ_ONCE(sock->ops)->listen(sock, backlog); 3517 } 3518 EXPORT_SYMBOL(kernel_listen); 3519 3520 /** 3521 * kernel_accept - accept a connection (kernel space) 3522 * @sock: listening socket 3523 * @newsock: new connected socket 3524 * @flags: flags 3525 * 3526 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3527 * If it fails, @newsock is guaranteed to be %NULL. 3528 * Returns 0 or an error. 3529 */ 3530 3531 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3532 { 3533 struct sock *sk = sock->sk; 3534 const struct proto_ops *ops = READ_ONCE(sock->ops); 3535 int err; 3536 3537 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3538 newsock); 3539 if (err < 0) 3540 goto done; 3541 3542 err = ops->accept(sock, *newsock, flags, true); 3543 if (err < 0) { 3544 sock_release(*newsock); 3545 *newsock = NULL; 3546 goto done; 3547 } 3548 3549 (*newsock)->ops = ops; 3550 __module_get(ops->owner); 3551 3552 done: 3553 return err; 3554 } 3555 EXPORT_SYMBOL(kernel_accept); 3556 3557 /** 3558 * kernel_connect - connect a socket (kernel space) 3559 * @sock: socket 3560 * @addr: address 3561 * @addrlen: address length 3562 * @flags: flags (O_NONBLOCK, ...) 3563 * 3564 * For datagram sockets, @addr is the address to which datagrams are sent 3565 * by default, and the only address from which datagrams are received. 3566 * For stream sockets, attempts to connect to @addr. 3567 * Returns 0 or an error code. 3568 */ 3569 3570 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3571 int flags) 3572 { 3573 struct sockaddr_storage address; 3574 3575 memcpy(&address, addr, addrlen); 3576 3577 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3578 addrlen, flags); 3579 } 3580 EXPORT_SYMBOL(kernel_connect); 3581 3582 /** 3583 * kernel_getsockname - get the address which the socket is bound (kernel space) 3584 * @sock: socket 3585 * @addr: address holder 3586 * 3587 * Fills the @addr pointer with the address which the socket is bound. 3588 * Returns the length of the address in bytes or an error code. 3589 */ 3590 3591 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3592 { 3593 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3594 } 3595 EXPORT_SYMBOL(kernel_getsockname); 3596 3597 /** 3598 * kernel_getpeername - get the address which the socket is connected (kernel space) 3599 * @sock: socket 3600 * @addr: address holder 3601 * 3602 * Fills the @addr pointer with the address which the socket is connected. 3603 * Returns the length of the address in bytes or an error code. 3604 */ 3605 3606 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3607 { 3608 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3609 } 3610 EXPORT_SYMBOL(kernel_getpeername); 3611 3612 /** 3613 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3614 * @sock: socket 3615 * @how: connection part 3616 * 3617 * Returns 0 or an error. 3618 */ 3619 3620 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3621 { 3622 return READ_ONCE(sock->ops)->shutdown(sock, how); 3623 } 3624 EXPORT_SYMBOL(kernel_sock_shutdown); 3625 3626 /** 3627 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3628 * @sk: socket 3629 * 3630 * This routine returns the IP overhead imposed by a socket i.e. 3631 * the length of the underlying IP header, depending on whether 3632 * this is an IPv4 or IPv6 socket and the length from IP options turned 3633 * on at the socket. Assumes that the caller has a lock on the socket. 3634 */ 3635 3636 u32 kernel_sock_ip_overhead(struct sock *sk) 3637 { 3638 struct inet_sock *inet; 3639 struct ip_options_rcu *opt; 3640 u32 overhead = 0; 3641 #if IS_ENABLED(CONFIG_IPV6) 3642 struct ipv6_pinfo *np; 3643 struct ipv6_txoptions *optv6 = NULL; 3644 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3645 3646 if (!sk) 3647 return overhead; 3648 3649 switch (sk->sk_family) { 3650 case AF_INET: 3651 inet = inet_sk(sk); 3652 overhead += sizeof(struct iphdr); 3653 opt = rcu_dereference_protected(inet->inet_opt, 3654 sock_owned_by_user(sk)); 3655 if (opt) 3656 overhead += opt->opt.optlen; 3657 return overhead; 3658 #if IS_ENABLED(CONFIG_IPV6) 3659 case AF_INET6: 3660 np = inet6_sk(sk); 3661 overhead += sizeof(struct ipv6hdr); 3662 if (np) 3663 optv6 = rcu_dereference_protected(np->opt, 3664 sock_owned_by_user(sk)); 3665 if (optv6) 3666 overhead += (optv6->opt_flen + optv6->opt_nflen); 3667 return overhead; 3668 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3669 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3670 return overhead; 3671 } 3672 } 3673 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3674