1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring/net.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #ifdef CONFIG_NET_RX_BUSY_POLL 114 unsigned int sysctl_net_busy_read __read_mostly; 115 unsigned int sysctl_net_busy_poll __read_mostly; 116 #endif 117 118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 120 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 121 122 static int sock_close(struct inode *inode, struct file *file); 123 static __poll_t sock_poll(struct file *file, 124 struct poll_table_struct *wait); 125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 126 #ifdef CONFIG_COMPAT 127 static long compat_sock_ioctl(struct file *file, 128 unsigned int cmd, unsigned long arg); 129 #endif 130 static int sock_fasync(int fd, struct file *filp, int on); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 static void sock_splice_eof(struct file *file); 135 136 #ifdef CONFIG_PROC_FS 137 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 138 { 139 struct socket *sock = f->private_data; 140 const struct proto_ops *ops = READ_ONCE(sock->ops); 141 142 if (ops->show_fdinfo) 143 ops->show_fdinfo(m, sock); 144 } 145 #else 146 #define sock_show_fdinfo NULL 147 #endif 148 149 /* 150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 151 * in the operation structures but are done directly via the socketcall() multiplexor. 152 */ 153 154 static const struct file_operations socket_file_ops = { 155 .owner = THIS_MODULE, 156 .llseek = no_llseek, 157 .read_iter = sock_read_iter, 158 .write_iter = sock_write_iter, 159 .poll = sock_poll, 160 .unlocked_ioctl = sock_ioctl, 161 #ifdef CONFIG_COMPAT 162 .compat_ioctl = compat_sock_ioctl, 163 #endif 164 .uring_cmd = io_uring_cmd_sock, 165 .mmap = sock_mmap, 166 .release = sock_close, 167 .fasync = sock_fasync, 168 .splice_write = splice_to_socket, 169 .splice_read = sock_splice_read, 170 .splice_eof = sock_splice_eof, 171 .show_fdinfo = sock_show_fdinfo, 172 }; 173 174 static const char * const pf_family_names[] = { 175 [PF_UNSPEC] = "PF_UNSPEC", 176 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 177 [PF_INET] = "PF_INET", 178 [PF_AX25] = "PF_AX25", 179 [PF_IPX] = "PF_IPX", 180 [PF_APPLETALK] = "PF_APPLETALK", 181 [PF_NETROM] = "PF_NETROM", 182 [PF_BRIDGE] = "PF_BRIDGE", 183 [PF_ATMPVC] = "PF_ATMPVC", 184 [PF_X25] = "PF_X25", 185 [PF_INET6] = "PF_INET6", 186 [PF_ROSE] = "PF_ROSE", 187 [PF_DECnet] = "PF_DECnet", 188 [PF_NETBEUI] = "PF_NETBEUI", 189 [PF_SECURITY] = "PF_SECURITY", 190 [PF_KEY] = "PF_KEY", 191 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 192 [PF_PACKET] = "PF_PACKET", 193 [PF_ASH] = "PF_ASH", 194 [PF_ECONET] = "PF_ECONET", 195 [PF_ATMSVC] = "PF_ATMSVC", 196 [PF_RDS] = "PF_RDS", 197 [PF_SNA] = "PF_SNA", 198 [PF_IRDA] = "PF_IRDA", 199 [PF_PPPOX] = "PF_PPPOX", 200 [PF_WANPIPE] = "PF_WANPIPE", 201 [PF_LLC] = "PF_LLC", 202 [PF_IB] = "PF_IB", 203 [PF_MPLS] = "PF_MPLS", 204 [PF_CAN] = "PF_CAN", 205 [PF_TIPC] = "PF_TIPC", 206 [PF_BLUETOOTH] = "PF_BLUETOOTH", 207 [PF_IUCV] = "PF_IUCV", 208 [PF_RXRPC] = "PF_RXRPC", 209 [PF_ISDN] = "PF_ISDN", 210 [PF_PHONET] = "PF_PHONET", 211 [PF_IEEE802154] = "PF_IEEE802154", 212 [PF_CAIF] = "PF_CAIF", 213 [PF_ALG] = "PF_ALG", 214 [PF_NFC] = "PF_NFC", 215 [PF_VSOCK] = "PF_VSOCK", 216 [PF_KCM] = "PF_KCM", 217 [PF_QIPCRTR] = "PF_QIPCRTR", 218 [PF_SMC] = "PF_SMC", 219 [PF_XDP] = "PF_XDP", 220 [PF_MCTP] = "PF_MCTP", 221 }; 222 223 /* 224 * The protocol list. Each protocol is registered in here. 225 */ 226 227 static DEFINE_SPINLOCK(net_family_lock); 228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 229 230 /* 231 * Support routines. 232 * Move socket addresses back and forth across the kernel/user 233 * divide and look after the messy bits. 234 */ 235 236 /** 237 * move_addr_to_kernel - copy a socket address into kernel space 238 * @uaddr: Address in user space 239 * @kaddr: Address in kernel space 240 * @ulen: Length in user space 241 * 242 * The address is copied into kernel space. If the provided address is 243 * too long an error code of -EINVAL is returned. If the copy gives 244 * invalid addresses -EFAULT is returned. On a success 0 is returned. 245 */ 246 247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 248 { 249 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 250 return -EINVAL; 251 if (ulen == 0) 252 return 0; 253 if (copy_from_user(kaddr, uaddr, ulen)) 254 return -EFAULT; 255 return audit_sockaddr(ulen, kaddr); 256 } 257 258 /** 259 * move_addr_to_user - copy an address to user space 260 * @kaddr: kernel space address 261 * @klen: length of address in kernel 262 * @uaddr: user space address 263 * @ulen: pointer to user length field 264 * 265 * The value pointed to by ulen on entry is the buffer length available. 266 * This is overwritten with the buffer space used. -EINVAL is returned 267 * if an overlong buffer is specified or a negative buffer size. -EFAULT 268 * is returned if either the buffer or the length field are not 269 * accessible. 270 * After copying the data up to the limit the user specifies, the true 271 * length of the data is written over the length limit the user 272 * specified. Zero is returned for a success. 273 */ 274 275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 276 void __user *uaddr, int __user *ulen) 277 { 278 int err; 279 int len; 280 281 BUG_ON(klen > sizeof(struct sockaddr_storage)); 282 err = get_user(len, ulen); 283 if (err) 284 return err; 285 if (len > klen) 286 len = klen; 287 if (len < 0) 288 return -EINVAL; 289 if (len) { 290 if (audit_sockaddr(klen, kaddr)) 291 return -ENOMEM; 292 if (copy_to_user(uaddr, kaddr, len)) 293 return -EFAULT; 294 } 295 /* 296 * "fromlen shall refer to the value before truncation.." 297 * 1003.1g 298 */ 299 return __put_user(klen, ulen); 300 } 301 302 static struct kmem_cache *sock_inode_cachep __ro_after_init; 303 304 static struct inode *sock_alloc_inode(struct super_block *sb) 305 { 306 struct socket_alloc *ei; 307 308 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 309 if (!ei) 310 return NULL; 311 init_waitqueue_head(&ei->socket.wq.wait); 312 ei->socket.wq.fasync_list = NULL; 313 ei->socket.wq.flags = 0; 314 315 ei->socket.state = SS_UNCONNECTED; 316 ei->socket.flags = 0; 317 ei->socket.ops = NULL; 318 ei->socket.sk = NULL; 319 ei->socket.file = NULL; 320 321 return &ei->vfs_inode; 322 } 323 324 static void sock_free_inode(struct inode *inode) 325 { 326 struct socket_alloc *ei; 327 328 ei = container_of(inode, struct socket_alloc, vfs_inode); 329 kmem_cache_free(sock_inode_cachep, ei); 330 } 331 332 static void init_once(void *foo) 333 { 334 struct socket_alloc *ei = (struct socket_alloc *)foo; 335 336 inode_init_once(&ei->vfs_inode); 337 } 338 339 static void init_inodecache(void) 340 { 341 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 342 sizeof(struct socket_alloc), 343 0, 344 (SLAB_HWCACHE_ALIGN | 345 SLAB_RECLAIM_ACCOUNT | 346 SLAB_ACCOUNT), 347 init_once); 348 BUG_ON(sock_inode_cachep == NULL); 349 } 350 351 static const struct super_operations sockfs_ops = { 352 .alloc_inode = sock_alloc_inode, 353 .free_inode = sock_free_inode, 354 .statfs = simple_statfs, 355 }; 356 357 /* 358 * sockfs_dname() is called from d_path(). 359 */ 360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 361 { 362 return dynamic_dname(buffer, buflen, "socket:[%lu]", 363 d_inode(dentry)->i_ino); 364 } 365 366 static const struct dentry_operations sockfs_dentry_operations = { 367 .d_dname = sockfs_dname, 368 }; 369 370 static int sockfs_xattr_get(const struct xattr_handler *handler, 371 struct dentry *dentry, struct inode *inode, 372 const char *suffix, void *value, size_t size) 373 { 374 if (value) { 375 if (dentry->d_name.len + 1 > size) 376 return -ERANGE; 377 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 378 } 379 return dentry->d_name.len + 1; 380 } 381 382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 385 386 static const struct xattr_handler sockfs_xattr_handler = { 387 .name = XATTR_NAME_SOCKPROTONAME, 388 .get = sockfs_xattr_get, 389 }; 390 391 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 392 struct mnt_idmap *idmap, 393 struct dentry *dentry, struct inode *inode, 394 const char *suffix, const void *value, 395 size_t size, int flags) 396 { 397 /* Handled by LSM. */ 398 return -EAGAIN; 399 } 400 401 static const struct xattr_handler sockfs_security_xattr_handler = { 402 .prefix = XATTR_SECURITY_PREFIX, 403 .set = sockfs_security_xattr_set, 404 }; 405 406 static const struct xattr_handler * const sockfs_xattr_handlers[] = { 407 &sockfs_xattr_handler, 408 &sockfs_security_xattr_handler, 409 NULL 410 }; 411 412 static int sockfs_init_fs_context(struct fs_context *fc) 413 { 414 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 415 if (!ctx) 416 return -ENOMEM; 417 ctx->ops = &sockfs_ops; 418 ctx->dops = &sockfs_dentry_operations; 419 ctx->xattr = sockfs_xattr_handlers; 420 return 0; 421 } 422 423 static struct vfsmount *sock_mnt __read_mostly; 424 425 static struct file_system_type sock_fs_type = { 426 .name = "sockfs", 427 .init_fs_context = sockfs_init_fs_context, 428 .kill_sb = kill_anon_super, 429 }; 430 431 /* 432 * Obtains the first available file descriptor and sets it up for use. 433 * 434 * These functions create file structures and maps them to fd space 435 * of the current process. On success it returns file descriptor 436 * and file struct implicitly stored in sock->file. 437 * Note that another thread may close file descriptor before we return 438 * from this function. We use the fact that now we do not refer 439 * to socket after mapping. If one day we will need it, this 440 * function will increment ref. count on file by 1. 441 * 442 * In any case returned fd MAY BE not valid! 443 * This race condition is unavoidable 444 * with shared fd spaces, we cannot solve it inside kernel, 445 * but we take care of internal coherence yet. 446 */ 447 448 /** 449 * sock_alloc_file - Bind a &socket to a &file 450 * @sock: socket 451 * @flags: file status flags 452 * @dname: protocol name 453 * 454 * Returns the &file bound with @sock, implicitly storing it 455 * in sock->file. If dname is %NULL, sets to "". 456 * 457 * On failure @sock is released, and an ERR pointer is returned. 458 * 459 * This function uses GFP_KERNEL internally. 460 */ 461 462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 463 { 464 struct file *file; 465 466 if (!dname) 467 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 468 469 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 470 O_RDWR | (flags & O_NONBLOCK), 471 &socket_file_ops); 472 if (IS_ERR(file)) { 473 sock_release(sock); 474 return file; 475 } 476 477 file->f_mode |= FMODE_NOWAIT; 478 sock->file = file; 479 file->private_data = sock; 480 stream_open(SOCK_INODE(sock), file); 481 return file; 482 } 483 EXPORT_SYMBOL(sock_alloc_file); 484 485 static int sock_map_fd(struct socket *sock, int flags) 486 { 487 struct file *newfile; 488 int fd = get_unused_fd_flags(flags); 489 if (unlikely(fd < 0)) { 490 sock_release(sock); 491 return fd; 492 } 493 494 newfile = sock_alloc_file(sock, flags, NULL); 495 if (!IS_ERR(newfile)) { 496 fd_install(fd, newfile); 497 return fd; 498 } 499 500 put_unused_fd(fd); 501 return PTR_ERR(newfile); 502 } 503 504 /** 505 * sock_from_file - Return the &socket bounded to @file. 506 * @file: file 507 * 508 * On failure returns %NULL. 509 */ 510 511 struct socket *sock_from_file(struct file *file) 512 { 513 if (file->f_op == &socket_file_ops) 514 return file->private_data; /* set in sock_alloc_file */ 515 516 return NULL; 517 } 518 EXPORT_SYMBOL(sock_from_file); 519 520 /** 521 * sockfd_lookup - Go from a file number to its socket slot 522 * @fd: file handle 523 * @err: pointer to an error code return 524 * 525 * The file handle passed in is locked and the socket it is bound 526 * to is returned. If an error occurs the err pointer is overwritten 527 * with a negative errno code and NULL is returned. The function checks 528 * for both invalid handles and passing a handle which is not a socket. 529 * 530 * On a success the socket object pointer is returned. 531 */ 532 533 struct socket *sockfd_lookup(int fd, int *err) 534 { 535 struct file *file; 536 struct socket *sock; 537 538 file = fget(fd); 539 if (!file) { 540 *err = -EBADF; 541 return NULL; 542 } 543 544 sock = sock_from_file(file); 545 if (!sock) { 546 *err = -ENOTSOCK; 547 fput(file); 548 } 549 return sock; 550 } 551 EXPORT_SYMBOL(sockfd_lookup); 552 553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 554 { 555 struct fd f = fdget(fd); 556 struct socket *sock; 557 558 *err = -EBADF; 559 if (f.file) { 560 sock = sock_from_file(f.file); 561 if (likely(sock)) { 562 *fput_needed = f.flags & FDPUT_FPUT; 563 return sock; 564 } 565 *err = -ENOTSOCK; 566 fdput(f); 567 } 568 return NULL; 569 } 570 571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 572 size_t size) 573 { 574 ssize_t len; 575 ssize_t used = 0; 576 577 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 578 if (len < 0) 579 return len; 580 used += len; 581 if (buffer) { 582 if (size < used) 583 return -ERANGE; 584 buffer += len; 585 } 586 587 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 588 used += len; 589 if (buffer) { 590 if (size < used) 591 return -ERANGE; 592 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 593 buffer += len; 594 } 595 596 return used; 597 } 598 599 static int sockfs_setattr(struct mnt_idmap *idmap, 600 struct dentry *dentry, struct iattr *iattr) 601 { 602 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 603 604 if (!err && (iattr->ia_valid & ATTR_UID)) { 605 struct socket *sock = SOCKET_I(d_inode(dentry)); 606 607 if (sock->sk) 608 sock->sk->sk_uid = iattr->ia_uid; 609 else 610 err = -ENOENT; 611 } 612 613 return err; 614 } 615 616 static const struct inode_operations sockfs_inode_ops = { 617 .listxattr = sockfs_listxattr, 618 .setattr = sockfs_setattr, 619 }; 620 621 /** 622 * sock_alloc - allocate a socket 623 * 624 * Allocate a new inode and socket object. The two are bound together 625 * and initialised. The socket is then returned. If we are out of inodes 626 * NULL is returned. This functions uses GFP_KERNEL internally. 627 */ 628 629 struct socket *sock_alloc(void) 630 { 631 struct inode *inode; 632 struct socket *sock; 633 634 inode = new_inode_pseudo(sock_mnt->mnt_sb); 635 if (!inode) 636 return NULL; 637 638 sock = SOCKET_I(inode); 639 640 inode->i_ino = get_next_ino(); 641 inode->i_mode = S_IFSOCK | S_IRWXUGO; 642 inode->i_uid = current_fsuid(); 643 inode->i_gid = current_fsgid(); 644 inode->i_op = &sockfs_inode_ops; 645 646 return sock; 647 } 648 EXPORT_SYMBOL(sock_alloc); 649 650 static void __sock_release(struct socket *sock, struct inode *inode) 651 { 652 const struct proto_ops *ops = READ_ONCE(sock->ops); 653 654 if (ops) { 655 struct module *owner = ops->owner; 656 657 if (inode) 658 inode_lock(inode); 659 ops->release(sock); 660 sock->sk = NULL; 661 if (inode) 662 inode_unlock(inode); 663 sock->ops = NULL; 664 module_put(owner); 665 } 666 667 if (sock->wq.fasync_list) 668 pr_err("%s: fasync list not empty!\n", __func__); 669 670 if (!sock->file) { 671 iput(SOCK_INODE(sock)); 672 return; 673 } 674 sock->file = NULL; 675 } 676 677 /** 678 * sock_release - close a socket 679 * @sock: socket to close 680 * 681 * The socket is released from the protocol stack if it has a release 682 * callback, and the inode is then released if the socket is bound to 683 * an inode not a file. 684 */ 685 void sock_release(struct socket *sock) 686 { 687 __sock_release(sock, NULL); 688 } 689 EXPORT_SYMBOL(sock_release); 690 691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 692 { 693 u8 flags = *tx_flags; 694 695 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 696 flags |= SKBTX_HW_TSTAMP; 697 698 /* PTP hardware clocks can provide a free running cycle counter 699 * as a time base for virtual clocks. Tell driver to use the 700 * free running cycle counter for timestamp if socket is bound 701 * to virtual clock. 702 */ 703 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 704 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 705 } 706 707 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 708 flags |= SKBTX_SW_TSTAMP; 709 710 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 711 flags |= SKBTX_SCHED_TSTAMP; 712 713 *tx_flags = flags; 714 } 715 EXPORT_SYMBOL(__sock_tx_timestamp); 716 717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 718 size_t)); 719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 720 size_t)); 721 722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 723 int flags) 724 { 725 trace_sock_send_length(sk, ret, 0); 726 } 727 728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 729 { 730 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 731 inet_sendmsg, sock, msg, 732 msg_data_left(msg)); 733 BUG_ON(ret == -EIOCBQUEUED); 734 735 if (trace_sock_send_length_enabled()) 736 call_trace_sock_send_length(sock->sk, ret, 0); 737 return ret; 738 } 739 740 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) 741 { 742 int err = security_socket_sendmsg(sock, msg, 743 msg_data_left(msg)); 744 745 return err ?: sock_sendmsg_nosec(sock, msg); 746 } 747 748 /** 749 * sock_sendmsg - send a message through @sock 750 * @sock: socket 751 * @msg: message to send 752 * 753 * Sends @msg through @sock, passing through LSM. 754 * Returns the number of bytes sent, or an error code. 755 */ 756 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 757 { 758 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; 759 struct sockaddr_storage address; 760 int save_len = msg->msg_namelen; 761 int ret; 762 763 if (msg->msg_name) { 764 memcpy(&address, msg->msg_name, msg->msg_namelen); 765 msg->msg_name = &address; 766 } 767 768 ret = __sock_sendmsg(sock, msg); 769 msg->msg_name = save_addr; 770 msg->msg_namelen = save_len; 771 772 return ret; 773 } 774 EXPORT_SYMBOL(sock_sendmsg); 775 776 /** 777 * kernel_sendmsg - send a message through @sock (kernel-space) 778 * @sock: socket 779 * @msg: message header 780 * @vec: kernel vec 781 * @num: vec array length 782 * @size: total message data size 783 * 784 * Builds the message data with @vec and sends it through @sock. 785 * Returns the number of bytes sent, or an error code. 786 */ 787 788 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 789 struct kvec *vec, size_t num, size_t size) 790 { 791 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 792 return sock_sendmsg(sock, msg); 793 } 794 EXPORT_SYMBOL(kernel_sendmsg); 795 796 /** 797 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 798 * @sk: sock 799 * @msg: message header 800 * @vec: output s/g array 801 * @num: output s/g array length 802 * @size: total message data size 803 * 804 * Builds the message data with @vec and sends it through @sock. 805 * Returns the number of bytes sent, or an error code. 806 * Caller must hold @sk. 807 */ 808 809 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 810 struct kvec *vec, size_t num, size_t size) 811 { 812 struct socket *sock = sk->sk_socket; 813 const struct proto_ops *ops = READ_ONCE(sock->ops); 814 815 if (!ops->sendmsg_locked) 816 return sock_no_sendmsg_locked(sk, msg, size); 817 818 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 819 820 return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 821 } 822 EXPORT_SYMBOL(kernel_sendmsg_locked); 823 824 static bool skb_is_err_queue(const struct sk_buff *skb) 825 { 826 /* pkt_type of skbs enqueued on the error queue are set to 827 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 828 * in recvmsg, since skbs received on a local socket will never 829 * have a pkt_type of PACKET_OUTGOING. 830 */ 831 return skb->pkt_type == PACKET_OUTGOING; 832 } 833 834 /* On transmit, software and hardware timestamps are returned independently. 835 * As the two skb clones share the hardware timestamp, which may be updated 836 * before the software timestamp is received, a hardware TX timestamp may be 837 * returned only if there is no software TX timestamp. Ignore false software 838 * timestamps, which may be made in the __sock_recv_timestamp() call when the 839 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 840 * hardware timestamp. 841 */ 842 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 843 { 844 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 845 } 846 847 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 848 { 849 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 850 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 851 struct net_device *orig_dev; 852 ktime_t hwtstamp; 853 854 rcu_read_lock(); 855 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 856 if (orig_dev) { 857 *if_index = orig_dev->ifindex; 858 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 859 } else { 860 hwtstamp = shhwtstamps->hwtstamp; 861 } 862 rcu_read_unlock(); 863 864 return hwtstamp; 865 } 866 867 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 868 int if_index) 869 { 870 struct scm_ts_pktinfo ts_pktinfo; 871 struct net_device *orig_dev; 872 873 if (!skb_mac_header_was_set(skb)) 874 return; 875 876 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 877 878 if (!if_index) { 879 rcu_read_lock(); 880 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 881 if (orig_dev) 882 if_index = orig_dev->ifindex; 883 rcu_read_unlock(); 884 } 885 ts_pktinfo.if_index = if_index; 886 887 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 888 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 889 sizeof(ts_pktinfo), &ts_pktinfo); 890 } 891 892 /* 893 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 894 */ 895 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 896 struct sk_buff *skb) 897 { 898 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 899 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 900 struct scm_timestamping_internal tss; 901 int empty = 1, false_tstamp = 0; 902 struct skb_shared_hwtstamps *shhwtstamps = 903 skb_hwtstamps(skb); 904 int if_index; 905 ktime_t hwtstamp; 906 u32 tsflags; 907 908 /* Race occurred between timestamp enabling and packet 909 receiving. Fill in the current time for now. */ 910 if (need_software_tstamp && skb->tstamp == 0) { 911 __net_timestamp(skb); 912 false_tstamp = 1; 913 } 914 915 if (need_software_tstamp) { 916 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 917 if (new_tstamp) { 918 struct __kernel_sock_timeval tv; 919 920 skb_get_new_timestamp(skb, &tv); 921 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 922 sizeof(tv), &tv); 923 } else { 924 struct __kernel_old_timeval tv; 925 926 skb_get_timestamp(skb, &tv); 927 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 928 sizeof(tv), &tv); 929 } 930 } else { 931 if (new_tstamp) { 932 struct __kernel_timespec ts; 933 934 skb_get_new_timestampns(skb, &ts); 935 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 936 sizeof(ts), &ts); 937 } else { 938 struct __kernel_old_timespec ts; 939 940 skb_get_timestampns(skb, &ts); 941 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 942 sizeof(ts), &ts); 943 } 944 } 945 } 946 947 memset(&tss, 0, sizeof(tss)); 948 tsflags = READ_ONCE(sk->sk_tsflags); 949 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && 950 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 951 empty = 0; 952 if (shhwtstamps && 953 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 954 !skb_is_swtx_tstamp(skb, false_tstamp)) { 955 if_index = 0; 956 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 957 hwtstamp = get_timestamp(sk, skb, &if_index); 958 else 959 hwtstamp = shhwtstamps->hwtstamp; 960 961 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 962 hwtstamp = ptp_convert_timestamp(&hwtstamp, 963 READ_ONCE(sk->sk_bind_phc)); 964 965 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 966 empty = 0; 967 968 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 969 !skb_is_err_queue(skb)) 970 put_ts_pktinfo(msg, skb, if_index); 971 } 972 } 973 if (!empty) { 974 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 975 put_cmsg_scm_timestamping64(msg, &tss); 976 else 977 put_cmsg_scm_timestamping(msg, &tss); 978 979 if (skb_is_err_queue(skb) && skb->len && 980 SKB_EXT_ERR(skb)->opt_stats) 981 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 982 skb->len, skb->data); 983 } 984 } 985 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 986 987 #ifdef CONFIG_WIRELESS 988 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 989 struct sk_buff *skb) 990 { 991 int ack; 992 993 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 994 return; 995 if (!skb->wifi_acked_valid) 996 return; 997 998 ack = skb->wifi_acked; 999 1000 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 1001 } 1002 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 1003 #endif 1004 1005 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 1006 struct sk_buff *skb) 1007 { 1008 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 1009 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 1010 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 1011 } 1012 1013 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 1014 struct sk_buff *skb) 1015 { 1016 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 1017 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 1018 __u32 mark = skb->mark; 1019 1020 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1021 } 1022 } 1023 1024 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1025 struct sk_buff *skb) 1026 { 1027 sock_recv_timestamp(msg, sk, skb); 1028 sock_recv_drops(msg, sk, skb); 1029 sock_recv_mark(msg, sk, skb); 1030 } 1031 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1032 1033 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1034 size_t, int)); 1035 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1036 size_t, int)); 1037 1038 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1039 { 1040 trace_sock_recv_length(sk, ret, flags); 1041 } 1042 1043 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1044 int flags) 1045 { 1046 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1047 inet6_recvmsg, 1048 inet_recvmsg, sock, msg, 1049 msg_data_left(msg), flags); 1050 if (trace_sock_recv_length_enabled()) 1051 call_trace_sock_recv_length(sock->sk, ret, flags); 1052 return ret; 1053 } 1054 1055 /** 1056 * sock_recvmsg - receive a message from @sock 1057 * @sock: socket 1058 * @msg: message to receive 1059 * @flags: message flags 1060 * 1061 * Receives @msg from @sock, passing through LSM. Returns the total number 1062 * of bytes received, or an error. 1063 */ 1064 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1065 { 1066 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1067 1068 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1069 } 1070 EXPORT_SYMBOL(sock_recvmsg); 1071 1072 /** 1073 * kernel_recvmsg - Receive a message from a socket (kernel space) 1074 * @sock: The socket to receive the message from 1075 * @msg: Received message 1076 * @vec: Input s/g array for message data 1077 * @num: Size of input s/g array 1078 * @size: Number of bytes to read 1079 * @flags: Message flags (MSG_DONTWAIT, etc...) 1080 * 1081 * On return the msg structure contains the scatter/gather array passed in the 1082 * vec argument. The array is modified so that it consists of the unfilled 1083 * portion of the original array. 1084 * 1085 * The returned value is the total number of bytes received, or an error. 1086 */ 1087 1088 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1089 struct kvec *vec, size_t num, size_t size, int flags) 1090 { 1091 msg->msg_control_is_user = false; 1092 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1093 return sock_recvmsg(sock, msg, flags); 1094 } 1095 EXPORT_SYMBOL(kernel_recvmsg); 1096 1097 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1098 struct pipe_inode_info *pipe, size_t len, 1099 unsigned int flags) 1100 { 1101 struct socket *sock = file->private_data; 1102 const struct proto_ops *ops; 1103 1104 ops = READ_ONCE(sock->ops); 1105 if (unlikely(!ops->splice_read)) 1106 return copy_splice_read(file, ppos, pipe, len, flags); 1107 1108 return ops->splice_read(sock, ppos, pipe, len, flags); 1109 } 1110 1111 static void sock_splice_eof(struct file *file) 1112 { 1113 struct socket *sock = file->private_data; 1114 const struct proto_ops *ops; 1115 1116 ops = READ_ONCE(sock->ops); 1117 if (ops->splice_eof) 1118 ops->splice_eof(sock); 1119 } 1120 1121 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1122 { 1123 struct file *file = iocb->ki_filp; 1124 struct socket *sock = file->private_data; 1125 struct msghdr msg = {.msg_iter = *to, 1126 .msg_iocb = iocb}; 1127 ssize_t res; 1128 1129 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1130 msg.msg_flags = MSG_DONTWAIT; 1131 1132 if (iocb->ki_pos != 0) 1133 return -ESPIPE; 1134 1135 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1136 return 0; 1137 1138 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1139 *to = msg.msg_iter; 1140 return res; 1141 } 1142 1143 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1144 { 1145 struct file *file = iocb->ki_filp; 1146 struct socket *sock = file->private_data; 1147 struct msghdr msg = {.msg_iter = *from, 1148 .msg_iocb = iocb}; 1149 ssize_t res; 1150 1151 if (iocb->ki_pos != 0) 1152 return -ESPIPE; 1153 1154 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1155 msg.msg_flags = MSG_DONTWAIT; 1156 1157 if (sock->type == SOCK_SEQPACKET) 1158 msg.msg_flags |= MSG_EOR; 1159 1160 res = __sock_sendmsg(sock, &msg); 1161 *from = msg.msg_iter; 1162 return res; 1163 } 1164 1165 /* 1166 * Atomic setting of ioctl hooks to avoid race 1167 * with module unload. 1168 */ 1169 1170 static DEFINE_MUTEX(br_ioctl_mutex); 1171 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1172 unsigned int cmd, struct ifreq *ifr, 1173 void __user *uarg); 1174 1175 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1176 unsigned int cmd, struct ifreq *ifr, 1177 void __user *uarg)) 1178 { 1179 mutex_lock(&br_ioctl_mutex); 1180 br_ioctl_hook = hook; 1181 mutex_unlock(&br_ioctl_mutex); 1182 } 1183 EXPORT_SYMBOL(brioctl_set); 1184 1185 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1186 struct ifreq *ifr, void __user *uarg) 1187 { 1188 int err = -ENOPKG; 1189 1190 if (!br_ioctl_hook) 1191 request_module("bridge"); 1192 1193 mutex_lock(&br_ioctl_mutex); 1194 if (br_ioctl_hook) 1195 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1196 mutex_unlock(&br_ioctl_mutex); 1197 1198 return err; 1199 } 1200 1201 static DEFINE_MUTEX(vlan_ioctl_mutex); 1202 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1203 1204 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1205 { 1206 mutex_lock(&vlan_ioctl_mutex); 1207 vlan_ioctl_hook = hook; 1208 mutex_unlock(&vlan_ioctl_mutex); 1209 } 1210 EXPORT_SYMBOL(vlan_ioctl_set); 1211 1212 static long sock_do_ioctl(struct net *net, struct socket *sock, 1213 unsigned int cmd, unsigned long arg) 1214 { 1215 const struct proto_ops *ops = READ_ONCE(sock->ops); 1216 struct ifreq ifr; 1217 bool need_copyout; 1218 int err; 1219 void __user *argp = (void __user *)arg; 1220 void __user *data; 1221 1222 err = ops->ioctl(sock, cmd, arg); 1223 1224 /* 1225 * If this ioctl is unknown try to hand it down 1226 * to the NIC driver. 1227 */ 1228 if (err != -ENOIOCTLCMD) 1229 return err; 1230 1231 if (!is_socket_ioctl_cmd(cmd)) 1232 return -ENOTTY; 1233 1234 if (get_user_ifreq(&ifr, &data, argp)) 1235 return -EFAULT; 1236 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1237 if (!err && need_copyout) 1238 if (put_user_ifreq(&ifr, argp)) 1239 return -EFAULT; 1240 1241 return err; 1242 } 1243 1244 /* 1245 * With an ioctl, arg may well be a user mode pointer, but we don't know 1246 * what to do with it - that's up to the protocol still. 1247 */ 1248 1249 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1250 { 1251 const struct proto_ops *ops; 1252 struct socket *sock; 1253 struct sock *sk; 1254 void __user *argp = (void __user *)arg; 1255 int pid, err; 1256 struct net *net; 1257 1258 sock = file->private_data; 1259 ops = READ_ONCE(sock->ops); 1260 sk = sock->sk; 1261 net = sock_net(sk); 1262 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1263 struct ifreq ifr; 1264 void __user *data; 1265 bool need_copyout; 1266 if (get_user_ifreq(&ifr, &data, argp)) 1267 return -EFAULT; 1268 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1269 if (!err && need_copyout) 1270 if (put_user_ifreq(&ifr, argp)) 1271 return -EFAULT; 1272 } else 1273 #ifdef CONFIG_WEXT_CORE 1274 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1275 err = wext_handle_ioctl(net, cmd, argp); 1276 } else 1277 #endif 1278 switch (cmd) { 1279 case FIOSETOWN: 1280 case SIOCSPGRP: 1281 err = -EFAULT; 1282 if (get_user(pid, (int __user *)argp)) 1283 break; 1284 err = f_setown(sock->file, pid, 1); 1285 break; 1286 case FIOGETOWN: 1287 case SIOCGPGRP: 1288 err = put_user(f_getown(sock->file), 1289 (int __user *)argp); 1290 break; 1291 case SIOCGIFBR: 1292 case SIOCSIFBR: 1293 case SIOCBRADDBR: 1294 case SIOCBRDELBR: 1295 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1296 break; 1297 case SIOCGIFVLAN: 1298 case SIOCSIFVLAN: 1299 err = -ENOPKG; 1300 if (!vlan_ioctl_hook) 1301 request_module("8021q"); 1302 1303 mutex_lock(&vlan_ioctl_mutex); 1304 if (vlan_ioctl_hook) 1305 err = vlan_ioctl_hook(net, argp); 1306 mutex_unlock(&vlan_ioctl_mutex); 1307 break; 1308 case SIOCGSKNS: 1309 err = -EPERM; 1310 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1311 break; 1312 1313 err = open_related_ns(&net->ns, get_net_ns); 1314 break; 1315 case SIOCGSTAMP_OLD: 1316 case SIOCGSTAMPNS_OLD: 1317 if (!ops->gettstamp) { 1318 err = -ENOIOCTLCMD; 1319 break; 1320 } 1321 err = ops->gettstamp(sock, argp, 1322 cmd == SIOCGSTAMP_OLD, 1323 !IS_ENABLED(CONFIG_64BIT)); 1324 break; 1325 case SIOCGSTAMP_NEW: 1326 case SIOCGSTAMPNS_NEW: 1327 if (!ops->gettstamp) { 1328 err = -ENOIOCTLCMD; 1329 break; 1330 } 1331 err = ops->gettstamp(sock, argp, 1332 cmd == SIOCGSTAMP_NEW, 1333 false); 1334 break; 1335 1336 case SIOCGIFCONF: 1337 err = dev_ifconf(net, argp); 1338 break; 1339 1340 default: 1341 err = sock_do_ioctl(net, sock, cmd, arg); 1342 break; 1343 } 1344 return err; 1345 } 1346 1347 /** 1348 * sock_create_lite - creates a socket 1349 * @family: protocol family (AF_INET, ...) 1350 * @type: communication type (SOCK_STREAM, ...) 1351 * @protocol: protocol (0, ...) 1352 * @res: new socket 1353 * 1354 * Creates a new socket and assigns it to @res, passing through LSM. 1355 * The new socket initialization is not complete, see kernel_accept(). 1356 * Returns 0 or an error. On failure @res is set to %NULL. 1357 * This function internally uses GFP_KERNEL. 1358 */ 1359 1360 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1361 { 1362 int err; 1363 struct socket *sock = NULL; 1364 1365 err = security_socket_create(family, type, protocol, 1); 1366 if (err) 1367 goto out; 1368 1369 sock = sock_alloc(); 1370 if (!sock) { 1371 err = -ENOMEM; 1372 goto out; 1373 } 1374 1375 sock->type = type; 1376 err = security_socket_post_create(sock, family, type, protocol, 1); 1377 if (err) 1378 goto out_release; 1379 1380 out: 1381 *res = sock; 1382 return err; 1383 out_release: 1384 sock_release(sock); 1385 sock = NULL; 1386 goto out; 1387 } 1388 EXPORT_SYMBOL(sock_create_lite); 1389 1390 /* No kernel lock held - perfect */ 1391 static __poll_t sock_poll(struct file *file, poll_table *wait) 1392 { 1393 struct socket *sock = file->private_data; 1394 const struct proto_ops *ops = READ_ONCE(sock->ops); 1395 __poll_t events = poll_requested_events(wait), flag = 0; 1396 1397 if (!ops->poll) 1398 return 0; 1399 1400 if (sk_can_busy_loop(sock->sk)) { 1401 /* poll once if requested by the syscall */ 1402 if (events & POLL_BUSY_LOOP) 1403 sk_busy_loop(sock->sk, 1); 1404 1405 /* if this socket can poll_ll, tell the system call */ 1406 flag = POLL_BUSY_LOOP; 1407 } 1408 1409 return ops->poll(file, sock, wait) | flag; 1410 } 1411 1412 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1413 { 1414 struct socket *sock = file->private_data; 1415 1416 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1417 } 1418 1419 static int sock_close(struct inode *inode, struct file *filp) 1420 { 1421 __sock_release(SOCKET_I(inode), inode); 1422 return 0; 1423 } 1424 1425 /* 1426 * Update the socket async list 1427 * 1428 * Fasync_list locking strategy. 1429 * 1430 * 1. fasync_list is modified only under process context socket lock 1431 * i.e. under semaphore. 1432 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1433 * or under socket lock 1434 */ 1435 1436 static int sock_fasync(int fd, struct file *filp, int on) 1437 { 1438 struct socket *sock = filp->private_data; 1439 struct sock *sk = sock->sk; 1440 struct socket_wq *wq = &sock->wq; 1441 1442 if (sk == NULL) 1443 return -EINVAL; 1444 1445 lock_sock(sk); 1446 fasync_helper(fd, filp, on, &wq->fasync_list); 1447 1448 if (!wq->fasync_list) 1449 sock_reset_flag(sk, SOCK_FASYNC); 1450 else 1451 sock_set_flag(sk, SOCK_FASYNC); 1452 1453 release_sock(sk); 1454 return 0; 1455 } 1456 1457 /* This function may be called only under rcu_lock */ 1458 1459 int sock_wake_async(struct socket_wq *wq, int how, int band) 1460 { 1461 if (!wq || !wq->fasync_list) 1462 return -1; 1463 1464 switch (how) { 1465 case SOCK_WAKE_WAITD: 1466 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1467 break; 1468 goto call_kill; 1469 case SOCK_WAKE_SPACE: 1470 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1471 break; 1472 fallthrough; 1473 case SOCK_WAKE_IO: 1474 call_kill: 1475 kill_fasync(&wq->fasync_list, SIGIO, band); 1476 break; 1477 case SOCK_WAKE_URG: 1478 kill_fasync(&wq->fasync_list, SIGURG, band); 1479 } 1480 1481 return 0; 1482 } 1483 EXPORT_SYMBOL(sock_wake_async); 1484 1485 /** 1486 * __sock_create - creates a socket 1487 * @net: net namespace 1488 * @family: protocol family (AF_INET, ...) 1489 * @type: communication type (SOCK_STREAM, ...) 1490 * @protocol: protocol (0, ...) 1491 * @res: new socket 1492 * @kern: boolean for kernel space sockets 1493 * 1494 * Creates a new socket and assigns it to @res, passing through LSM. 1495 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1496 * be set to true if the socket resides in kernel space. 1497 * This function internally uses GFP_KERNEL. 1498 */ 1499 1500 int __sock_create(struct net *net, int family, int type, int protocol, 1501 struct socket **res, int kern) 1502 { 1503 int err; 1504 struct socket *sock; 1505 const struct net_proto_family *pf; 1506 1507 /* 1508 * Check protocol is in range 1509 */ 1510 if (family < 0 || family >= NPROTO) 1511 return -EAFNOSUPPORT; 1512 if (type < 0 || type >= SOCK_MAX) 1513 return -EINVAL; 1514 1515 /* Compatibility. 1516 1517 This uglymoron is moved from INET layer to here to avoid 1518 deadlock in module load. 1519 */ 1520 if (family == PF_INET && type == SOCK_PACKET) { 1521 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1522 current->comm); 1523 family = PF_PACKET; 1524 } 1525 1526 err = security_socket_create(family, type, protocol, kern); 1527 if (err) 1528 return err; 1529 1530 /* 1531 * Allocate the socket and allow the family to set things up. if 1532 * the protocol is 0, the family is instructed to select an appropriate 1533 * default. 1534 */ 1535 sock = sock_alloc(); 1536 if (!sock) { 1537 net_warn_ratelimited("socket: no more sockets\n"); 1538 return -ENFILE; /* Not exactly a match, but its the 1539 closest posix thing */ 1540 } 1541 1542 sock->type = type; 1543 1544 #ifdef CONFIG_MODULES 1545 /* Attempt to load a protocol module if the find failed. 1546 * 1547 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1548 * requested real, full-featured networking support upon configuration. 1549 * Otherwise module support will break! 1550 */ 1551 if (rcu_access_pointer(net_families[family]) == NULL) 1552 request_module("net-pf-%d", family); 1553 #endif 1554 1555 rcu_read_lock(); 1556 pf = rcu_dereference(net_families[family]); 1557 err = -EAFNOSUPPORT; 1558 if (!pf) 1559 goto out_release; 1560 1561 /* 1562 * We will call the ->create function, that possibly is in a loadable 1563 * module, so we have to bump that loadable module refcnt first. 1564 */ 1565 if (!try_module_get(pf->owner)) 1566 goto out_release; 1567 1568 /* Now protected by module ref count */ 1569 rcu_read_unlock(); 1570 1571 err = pf->create(net, sock, protocol, kern); 1572 if (err < 0) 1573 goto out_module_put; 1574 1575 /* 1576 * Now to bump the refcnt of the [loadable] module that owns this 1577 * socket at sock_release time we decrement its refcnt. 1578 */ 1579 if (!try_module_get(sock->ops->owner)) 1580 goto out_module_busy; 1581 1582 /* 1583 * Now that we're done with the ->create function, the [loadable] 1584 * module can have its refcnt decremented 1585 */ 1586 module_put(pf->owner); 1587 err = security_socket_post_create(sock, family, type, protocol, kern); 1588 if (err) 1589 goto out_sock_release; 1590 *res = sock; 1591 1592 return 0; 1593 1594 out_module_busy: 1595 err = -EAFNOSUPPORT; 1596 out_module_put: 1597 sock->ops = NULL; 1598 module_put(pf->owner); 1599 out_sock_release: 1600 sock_release(sock); 1601 return err; 1602 1603 out_release: 1604 rcu_read_unlock(); 1605 goto out_sock_release; 1606 } 1607 EXPORT_SYMBOL(__sock_create); 1608 1609 /** 1610 * sock_create - creates a socket 1611 * @family: protocol family (AF_INET, ...) 1612 * @type: communication type (SOCK_STREAM, ...) 1613 * @protocol: protocol (0, ...) 1614 * @res: new socket 1615 * 1616 * A wrapper around __sock_create(). 1617 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1618 */ 1619 1620 int sock_create(int family, int type, int protocol, struct socket **res) 1621 { 1622 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1623 } 1624 EXPORT_SYMBOL(sock_create); 1625 1626 /** 1627 * sock_create_kern - creates a socket (kernel space) 1628 * @net: net namespace 1629 * @family: protocol family (AF_INET, ...) 1630 * @type: communication type (SOCK_STREAM, ...) 1631 * @protocol: protocol (0, ...) 1632 * @res: new socket 1633 * 1634 * A wrapper around __sock_create(). 1635 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1636 */ 1637 1638 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1639 { 1640 return __sock_create(net, family, type, protocol, res, 1); 1641 } 1642 EXPORT_SYMBOL(sock_create_kern); 1643 1644 static struct socket *__sys_socket_create(int family, int type, int protocol) 1645 { 1646 struct socket *sock; 1647 int retval; 1648 1649 /* Check the SOCK_* constants for consistency. */ 1650 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1651 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1652 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1653 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1654 1655 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1656 return ERR_PTR(-EINVAL); 1657 type &= SOCK_TYPE_MASK; 1658 1659 retval = sock_create(family, type, protocol, &sock); 1660 if (retval < 0) 1661 return ERR_PTR(retval); 1662 1663 return sock; 1664 } 1665 1666 struct file *__sys_socket_file(int family, int type, int protocol) 1667 { 1668 struct socket *sock; 1669 int flags; 1670 1671 sock = __sys_socket_create(family, type, protocol); 1672 if (IS_ERR(sock)) 1673 return ERR_CAST(sock); 1674 1675 flags = type & ~SOCK_TYPE_MASK; 1676 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1677 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1678 1679 return sock_alloc_file(sock, flags, NULL); 1680 } 1681 1682 /* A hook for bpf progs to attach to and update socket protocol. 1683 * 1684 * A static noinline declaration here could cause the compiler to 1685 * optimize away the function. A global noinline declaration will 1686 * keep the definition, but may optimize away the callsite. 1687 * Therefore, __weak is needed to ensure that the call is still 1688 * emitted, by telling the compiler that we don't know what the 1689 * function might eventually be. 1690 */ 1691 1692 __bpf_hook_start(); 1693 1694 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1695 { 1696 return protocol; 1697 } 1698 1699 __bpf_hook_end(); 1700 1701 int __sys_socket(int family, int type, int protocol) 1702 { 1703 struct socket *sock; 1704 int flags; 1705 1706 sock = __sys_socket_create(family, type, 1707 update_socket_protocol(family, type, protocol)); 1708 if (IS_ERR(sock)) 1709 return PTR_ERR(sock); 1710 1711 flags = type & ~SOCK_TYPE_MASK; 1712 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1713 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1714 1715 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1716 } 1717 1718 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1719 { 1720 return __sys_socket(family, type, protocol); 1721 } 1722 1723 /* 1724 * Create a pair of connected sockets. 1725 */ 1726 1727 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1728 { 1729 struct socket *sock1, *sock2; 1730 int fd1, fd2, err; 1731 struct file *newfile1, *newfile2; 1732 int flags; 1733 1734 flags = type & ~SOCK_TYPE_MASK; 1735 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1736 return -EINVAL; 1737 type &= SOCK_TYPE_MASK; 1738 1739 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1740 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1741 1742 /* 1743 * reserve descriptors and make sure we won't fail 1744 * to return them to userland. 1745 */ 1746 fd1 = get_unused_fd_flags(flags); 1747 if (unlikely(fd1 < 0)) 1748 return fd1; 1749 1750 fd2 = get_unused_fd_flags(flags); 1751 if (unlikely(fd2 < 0)) { 1752 put_unused_fd(fd1); 1753 return fd2; 1754 } 1755 1756 err = put_user(fd1, &usockvec[0]); 1757 if (err) 1758 goto out; 1759 1760 err = put_user(fd2, &usockvec[1]); 1761 if (err) 1762 goto out; 1763 1764 /* 1765 * Obtain the first socket and check if the underlying protocol 1766 * supports the socketpair call. 1767 */ 1768 1769 err = sock_create(family, type, protocol, &sock1); 1770 if (unlikely(err < 0)) 1771 goto out; 1772 1773 err = sock_create(family, type, protocol, &sock2); 1774 if (unlikely(err < 0)) { 1775 sock_release(sock1); 1776 goto out; 1777 } 1778 1779 err = security_socket_socketpair(sock1, sock2); 1780 if (unlikely(err)) { 1781 sock_release(sock2); 1782 sock_release(sock1); 1783 goto out; 1784 } 1785 1786 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1787 if (unlikely(err < 0)) { 1788 sock_release(sock2); 1789 sock_release(sock1); 1790 goto out; 1791 } 1792 1793 newfile1 = sock_alloc_file(sock1, flags, NULL); 1794 if (IS_ERR(newfile1)) { 1795 err = PTR_ERR(newfile1); 1796 sock_release(sock2); 1797 goto out; 1798 } 1799 1800 newfile2 = sock_alloc_file(sock2, flags, NULL); 1801 if (IS_ERR(newfile2)) { 1802 err = PTR_ERR(newfile2); 1803 fput(newfile1); 1804 goto out; 1805 } 1806 1807 audit_fd_pair(fd1, fd2); 1808 1809 fd_install(fd1, newfile1); 1810 fd_install(fd2, newfile2); 1811 return 0; 1812 1813 out: 1814 put_unused_fd(fd2); 1815 put_unused_fd(fd1); 1816 return err; 1817 } 1818 1819 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1820 int __user *, usockvec) 1821 { 1822 return __sys_socketpair(family, type, protocol, usockvec); 1823 } 1824 1825 /* 1826 * Bind a name to a socket. Nothing much to do here since it's 1827 * the protocol's responsibility to handle the local address. 1828 * 1829 * We move the socket address to kernel space before we call 1830 * the protocol layer (having also checked the address is ok). 1831 */ 1832 1833 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1834 { 1835 struct socket *sock; 1836 struct sockaddr_storage address; 1837 int err, fput_needed; 1838 1839 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1840 if (sock) { 1841 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1842 if (!err) { 1843 err = security_socket_bind(sock, 1844 (struct sockaddr *)&address, 1845 addrlen); 1846 if (!err) 1847 err = READ_ONCE(sock->ops)->bind(sock, 1848 (struct sockaddr *) 1849 &address, addrlen); 1850 } 1851 fput_light(sock->file, fput_needed); 1852 } 1853 return err; 1854 } 1855 1856 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1857 { 1858 return __sys_bind(fd, umyaddr, addrlen); 1859 } 1860 1861 /* 1862 * Perform a listen. Basically, we allow the protocol to do anything 1863 * necessary for a listen, and if that works, we mark the socket as 1864 * ready for listening. 1865 */ 1866 1867 int __sys_listen(int fd, int backlog) 1868 { 1869 struct socket *sock; 1870 int err, fput_needed; 1871 int somaxconn; 1872 1873 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1874 if (sock) { 1875 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1876 if ((unsigned int)backlog > somaxconn) 1877 backlog = somaxconn; 1878 1879 err = security_socket_listen(sock, backlog); 1880 if (!err) 1881 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1882 1883 fput_light(sock->file, fput_needed); 1884 } 1885 return err; 1886 } 1887 1888 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1889 { 1890 return __sys_listen(fd, backlog); 1891 } 1892 1893 struct file *do_accept(struct file *file, struct proto_accept_arg *arg, 1894 struct sockaddr __user *upeer_sockaddr, 1895 int __user *upeer_addrlen, int flags) 1896 { 1897 struct socket *sock, *newsock; 1898 struct file *newfile; 1899 int err, len; 1900 struct sockaddr_storage address; 1901 const struct proto_ops *ops; 1902 1903 sock = sock_from_file(file); 1904 if (!sock) 1905 return ERR_PTR(-ENOTSOCK); 1906 1907 newsock = sock_alloc(); 1908 if (!newsock) 1909 return ERR_PTR(-ENFILE); 1910 ops = READ_ONCE(sock->ops); 1911 1912 newsock->type = sock->type; 1913 newsock->ops = ops; 1914 1915 /* 1916 * We don't need try_module_get here, as the listening socket (sock) 1917 * has the protocol module (sock->ops->owner) held. 1918 */ 1919 __module_get(ops->owner); 1920 1921 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1922 if (IS_ERR(newfile)) 1923 return newfile; 1924 1925 err = security_socket_accept(sock, newsock); 1926 if (err) 1927 goto out_fd; 1928 1929 arg->flags |= sock->file->f_flags; 1930 err = ops->accept(sock, newsock, arg); 1931 if (err < 0) 1932 goto out_fd; 1933 1934 if (upeer_sockaddr) { 1935 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1936 if (len < 0) { 1937 err = -ECONNABORTED; 1938 goto out_fd; 1939 } 1940 err = move_addr_to_user(&address, 1941 len, upeer_sockaddr, upeer_addrlen); 1942 if (err < 0) 1943 goto out_fd; 1944 } 1945 1946 /* File flags are not inherited via accept() unlike another OSes. */ 1947 return newfile; 1948 out_fd: 1949 fput(newfile); 1950 return ERR_PTR(err); 1951 } 1952 1953 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1954 int __user *upeer_addrlen, int flags) 1955 { 1956 struct proto_accept_arg arg = { }; 1957 struct file *newfile; 1958 int newfd; 1959 1960 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1961 return -EINVAL; 1962 1963 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1964 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1965 1966 newfd = get_unused_fd_flags(flags); 1967 if (unlikely(newfd < 0)) 1968 return newfd; 1969 1970 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, 1971 flags); 1972 if (IS_ERR(newfile)) { 1973 put_unused_fd(newfd); 1974 return PTR_ERR(newfile); 1975 } 1976 fd_install(newfd, newfile); 1977 return newfd; 1978 } 1979 1980 /* 1981 * For accept, we attempt to create a new socket, set up the link 1982 * with the client, wake up the client, then return the new 1983 * connected fd. We collect the address of the connector in kernel 1984 * space and move it to user at the very end. This is unclean because 1985 * we open the socket then return an error. 1986 * 1987 * 1003.1g adds the ability to recvmsg() to query connection pending 1988 * status to recvmsg. We need to add that support in a way thats 1989 * clean when we restructure accept also. 1990 */ 1991 1992 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1993 int __user *upeer_addrlen, int flags) 1994 { 1995 int ret = -EBADF; 1996 struct fd f; 1997 1998 f = fdget(fd); 1999 if (f.file) { 2000 ret = __sys_accept4_file(f.file, upeer_sockaddr, 2001 upeer_addrlen, flags); 2002 fdput(f); 2003 } 2004 2005 return ret; 2006 } 2007 2008 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 2009 int __user *, upeer_addrlen, int, flags) 2010 { 2011 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 2012 } 2013 2014 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 2015 int __user *, upeer_addrlen) 2016 { 2017 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2018 } 2019 2020 /* 2021 * Attempt to connect to a socket with the server address. The address 2022 * is in user space so we verify it is OK and move it to kernel space. 2023 * 2024 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2025 * break bindings 2026 * 2027 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2028 * other SEQPACKET protocols that take time to connect() as it doesn't 2029 * include the -EINPROGRESS status for such sockets. 2030 */ 2031 2032 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2033 int addrlen, int file_flags) 2034 { 2035 struct socket *sock; 2036 int err; 2037 2038 sock = sock_from_file(file); 2039 if (!sock) { 2040 err = -ENOTSOCK; 2041 goto out; 2042 } 2043 2044 err = 2045 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2046 if (err) 2047 goto out; 2048 2049 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2050 addrlen, sock->file->f_flags | file_flags); 2051 out: 2052 return err; 2053 } 2054 2055 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2056 { 2057 int ret = -EBADF; 2058 struct fd f; 2059 2060 f = fdget(fd); 2061 if (f.file) { 2062 struct sockaddr_storage address; 2063 2064 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2065 if (!ret) 2066 ret = __sys_connect_file(f.file, &address, addrlen, 0); 2067 fdput(f); 2068 } 2069 2070 return ret; 2071 } 2072 2073 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2074 int, addrlen) 2075 { 2076 return __sys_connect(fd, uservaddr, addrlen); 2077 } 2078 2079 /* 2080 * Get the local address ('name') of a socket object. Move the obtained 2081 * name to user space. 2082 */ 2083 2084 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2085 int __user *usockaddr_len) 2086 { 2087 struct socket *sock; 2088 struct sockaddr_storage address; 2089 int err, fput_needed; 2090 2091 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2092 if (!sock) 2093 goto out; 2094 2095 err = security_socket_getsockname(sock); 2096 if (err) 2097 goto out_put; 2098 2099 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2100 if (err < 0) 2101 goto out_put; 2102 /* "err" is actually length in this case */ 2103 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2104 2105 out_put: 2106 fput_light(sock->file, fput_needed); 2107 out: 2108 return err; 2109 } 2110 2111 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2112 int __user *, usockaddr_len) 2113 { 2114 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2115 } 2116 2117 /* 2118 * Get the remote address ('name') of a socket object. Move the obtained 2119 * name to user space. 2120 */ 2121 2122 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2123 int __user *usockaddr_len) 2124 { 2125 struct socket *sock; 2126 struct sockaddr_storage address; 2127 int err, fput_needed; 2128 2129 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2130 if (sock != NULL) { 2131 const struct proto_ops *ops = READ_ONCE(sock->ops); 2132 2133 err = security_socket_getpeername(sock); 2134 if (err) { 2135 fput_light(sock->file, fput_needed); 2136 return err; 2137 } 2138 2139 err = ops->getname(sock, (struct sockaddr *)&address, 1); 2140 if (err >= 0) 2141 /* "err" is actually length in this case */ 2142 err = move_addr_to_user(&address, err, usockaddr, 2143 usockaddr_len); 2144 fput_light(sock->file, fput_needed); 2145 } 2146 return err; 2147 } 2148 2149 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2150 int __user *, usockaddr_len) 2151 { 2152 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2153 } 2154 2155 /* 2156 * Send a datagram to a given address. We move the address into kernel 2157 * space and check the user space data area is readable before invoking 2158 * the protocol. 2159 */ 2160 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2161 struct sockaddr __user *addr, int addr_len) 2162 { 2163 struct socket *sock; 2164 struct sockaddr_storage address; 2165 int err; 2166 struct msghdr msg; 2167 int fput_needed; 2168 2169 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); 2170 if (unlikely(err)) 2171 return err; 2172 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2173 if (!sock) 2174 goto out; 2175 2176 msg.msg_name = NULL; 2177 msg.msg_control = NULL; 2178 msg.msg_controllen = 0; 2179 msg.msg_namelen = 0; 2180 msg.msg_ubuf = NULL; 2181 if (addr) { 2182 err = move_addr_to_kernel(addr, addr_len, &address); 2183 if (err < 0) 2184 goto out_put; 2185 msg.msg_name = (struct sockaddr *)&address; 2186 msg.msg_namelen = addr_len; 2187 } 2188 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2189 if (sock->file->f_flags & O_NONBLOCK) 2190 flags |= MSG_DONTWAIT; 2191 msg.msg_flags = flags; 2192 err = __sock_sendmsg(sock, &msg); 2193 2194 out_put: 2195 fput_light(sock->file, fput_needed); 2196 out: 2197 return err; 2198 } 2199 2200 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2201 unsigned int, flags, struct sockaddr __user *, addr, 2202 int, addr_len) 2203 { 2204 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2205 } 2206 2207 /* 2208 * Send a datagram down a socket. 2209 */ 2210 2211 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2212 unsigned int, flags) 2213 { 2214 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2215 } 2216 2217 /* 2218 * Receive a frame from the socket and optionally record the address of the 2219 * sender. We verify the buffers are writable and if needed move the 2220 * sender address from kernel to user space. 2221 */ 2222 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2223 struct sockaddr __user *addr, int __user *addr_len) 2224 { 2225 struct sockaddr_storage address; 2226 struct msghdr msg = { 2227 /* Save some cycles and don't copy the address if not needed */ 2228 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2229 }; 2230 struct socket *sock; 2231 int err, err2; 2232 int fput_needed; 2233 2234 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); 2235 if (unlikely(err)) 2236 return err; 2237 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2238 if (!sock) 2239 goto out; 2240 2241 if (sock->file->f_flags & O_NONBLOCK) 2242 flags |= MSG_DONTWAIT; 2243 err = sock_recvmsg(sock, &msg, flags); 2244 2245 if (err >= 0 && addr != NULL) { 2246 err2 = move_addr_to_user(&address, 2247 msg.msg_namelen, addr, addr_len); 2248 if (err2 < 0) 2249 err = err2; 2250 } 2251 2252 fput_light(sock->file, fput_needed); 2253 out: 2254 return err; 2255 } 2256 2257 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2258 unsigned int, flags, struct sockaddr __user *, addr, 2259 int __user *, addr_len) 2260 { 2261 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2262 } 2263 2264 /* 2265 * Receive a datagram from a socket. 2266 */ 2267 2268 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2269 unsigned int, flags) 2270 { 2271 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2272 } 2273 2274 static bool sock_use_custom_sol_socket(const struct socket *sock) 2275 { 2276 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2277 } 2278 2279 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 2280 int optname, sockptr_t optval, int optlen) 2281 { 2282 const struct proto_ops *ops; 2283 char *kernel_optval = NULL; 2284 int err; 2285 2286 if (optlen < 0) 2287 return -EINVAL; 2288 2289 err = security_socket_setsockopt(sock, level, optname); 2290 if (err) 2291 goto out_put; 2292 2293 if (!compat) 2294 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2295 optval, &optlen, 2296 &kernel_optval); 2297 if (err < 0) 2298 goto out_put; 2299 if (err > 0) { 2300 err = 0; 2301 goto out_put; 2302 } 2303 2304 if (kernel_optval) 2305 optval = KERNEL_SOCKPTR(kernel_optval); 2306 ops = READ_ONCE(sock->ops); 2307 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2308 err = sock_setsockopt(sock, level, optname, optval, optlen); 2309 else if (unlikely(!ops->setsockopt)) 2310 err = -EOPNOTSUPP; 2311 else 2312 err = ops->setsockopt(sock, level, optname, optval, 2313 optlen); 2314 kfree(kernel_optval); 2315 out_put: 2316 return err; 2317 } 2318 EXPORT_SYMBOL(do_sock_setsockopt); 2319 2320 /* Set a socket option. Because we don't know the option lengths we have 2321 * to pass the user mode parameter for the protocols to sort out. 2322 */ 2323 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2324 int optlen) 2325 { 2326 sockptr_t optval = USER_SOCKPTR(user_optval); 2327 bool compat = in_compat_syscall(); 2328 int err, fput_needed; 2329 struct socket *sock; 2330 2331 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2332 if (!sock) 2333 return err; 2334 2335 err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen); 2336 2337 fput_light(sock->file, fput_needed); 2338 return err; 2339 } 2340 2341 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2342 char __user *, optval, int, optlen) 2343 { 2344 return __sys_setsockopt(fd, level, optname, optval, optlen); 2345 } 2346 2347 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2348 int optname)); 2349 2350 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 2351 int optname, sockptr_t optval, sockptr_t optlen) 2352 { 2353 int max_optlen __maybe_unused; 2354 const struct proto_ops *ops; 2355 int err; 2356 2357 err = security_socket_getsockopt(sock, level, optname); 2358 if (err) 2359 return err; 2360 2361 if (!compat) 2362 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2363 2364 ops = READ_ONCE(sock->ops); 2365 if (level == SOL_SOCKET) { 2366 err = sk_getsockopt(sock->sk, level, optname, optval, optlen); 2367 } else if (unlikely(!ops->getsockopt)) { 2368 err = -EOPNOTSUPP; 2369 } else { 2370 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, 2371 "Invalid argument type")) 2372 return -EOPNOTSUPP; 2373 2374 err = ops->getsockopt(sock, level, optname, optval.user, 2375 optlen.user); 2376 } 2377 2378 if (!compat) 2379 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2380 optval, optlen, max_optlen, 2381 err); 2382 2383 return err; 2384 } 2385 EXPORT_SYMBOL(do_sock_getsockopt); 2386 2387 /* 2388 * Get a socket option. Because we don't know the option lengths we have 2389 * to pass a user mode parameter for the protocols to sort out. 2390 */ 2391 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2392 int __user *optlen) 2393 { 2394 int err, fput_needed; 2395 struct socket *sock; 2396 bool compat; 2397 2398 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2399 if (!sock) 2400 return err; 2401 2402 compat = in_compat_syscall(); 2403 err = do_sock_getsockopt(sock, compat, level, optname, 2404 USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); 2405 2406 fput_light(sock->file, fput_needed); 2407 return err; 2408 } 2409 2410 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2411 char __user *, optval, int __user *, optlen) 2412 { 2413 return __sys_getsockopt(fd, level, optname, optval, optlen); 2414 } 2415 2416 /* 2417 * Shutdown a socket. 2418 */ 2419 2420 int __sys_shutdown_sock(struct socket *sock, int how) 2421 { 2422 int err; 2423 2424 err = security_socket_shutdown(sock, how); 2425 if (!err) 2426 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2427 2428 return err; 2429 } 2430 2431 int __sys_shutdown(int fd, int how) 2432 { 2433 int err, fput_needed; 2434 struct socket *sock; 2435 2436 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2437 if (sock != NULL) { 2438 err = __sys_shutdown_sock(sock, how); 2439 fput_light(sock->file, fput_needed); 2440 } 2441 return err; 2442 } 2443 2444 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2445 { 2446 return __sys_shutdown(fd, how); 2447 } 2448 2449 /* A couple of helpful macros for getting the address of the 32/64 bit 2450 * fields which are the same type (int / unsigned) on our platforms. 2451 */ 2452 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2453 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2454 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2455 2456 struct used_address { 2457 struct sockaddr_storage name; 2458 unsigned int name_len; 2459 }; 2460 2461 int __copy_msghdr(struct msghdr *kmsg, 2462 struct user_msghdr *msg, 2463 struct sockaddr __user **save_addr) 2464 { 2465 ssize_t err; 2466 2467 kmsg->msg_control_is_user = true; 2468 kmsg->msg_get_inq = 0; 2469 kmsg->msg_control_user = msg->msg_control; 2470 kmsg->msg_controllen = msg->msg_controllen; 2471 kmsg->msg_flags = msg->msg_flags; 2472 2473 kmsg->msg_namelen = msg->msg_namelen; 2474 if (!msg->msg_name) 2475 kmsg->msg_namelen = 0; 2476 2477 if (kmsg->msg_namelen < 0) 2478 return -EINVAL; 2479 2480 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2481 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2482 2483 if (save_addr) 2484 *save_addr = msg->msg_name; 2485 2486 if (msg->msg_name && kmsg->msg_namelen) { 2487 if (!save_addr) { 2488 err = move_addr_to_kernel(msg->msg_name, 2489 kmsg->msg_namelen, 2490 kmsg->msg_name); 2491 if (err < 0) 2492 return err; 2493 } 2494 } else { 2495 kmsg->msg_name = NULL; 2496 kmsg->msg_namelen = 0; 2497 } 2498 2499 if (msg->msg_iovlen > UIO_MAXIOV) 2500 return -EMSGSIZE; 2501 2502 kmsg->msg_iocb = NULL; 2503 kmsg->msg_ubuf = NULL; 2504 return 0; 2505 } 2506 2507 static int copy_msghdr_from_user(struct msghdr *kmsg, 2508 struct user_msghdr __user *umsg, 2509 struct sockaddr __user **save_addr, 2510 struct iovec **iov) 2511 { 2512 struct user_msghdr msg; 2513 ssize_t err; 2514 2515 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2516 return -EFAULT; 2517 2518 err = __copy_msghdr(kmsg, &msg, save_addr); 2519 if (err) 2520 return err; 2521 2522 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2523 msg.msg_iov, msg.msg_iovlen, 2524 UIO_FASTIOV, iov, &kmsg->msg_iter); 2525 return err < 0 ? err : 0; 2526 } 2527 2528 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2529 unsigned int flags, struct used_address *used_address, 2530 unsigned int allowed_msghdr_flags) 2531 { 2532 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2533 __aligned(sizeof(__kernel_size_t)); 2534 /* 20 is size of ipv6_pktinfo */ 2535 unsigned char *ctl_buf = ctl; 2536 int ctl_len; 2537 ssize_t err; 2538 2539 err = -ENOBUFS; 2540 2541 if (msg_sys->msg_controllen > INT_MAX) 2542 goto out; 2543 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2544 ctl_len = msg_sys->msg_controllen; 2545 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2546 err = 2547 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2548 sizeof(ctl)); 2549 if (err) 2550 goto out; 2551 ctl_buf = msg_sys->msg_control; 2552 ctl_len = msg_sys->msg_controllen; 2553 } else if (ctl_len) { 2554 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2555 CMSG_ALIGN(sizeof(struct cmsghdr))); 2556 if (ctl_len > sizeof(ctl)) { 2557 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2558 if (ctl_buf == NULL) 2559 goto out; 2560 } 2561 err = -EFAULT; 2562 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2563 goto out_freectl; 2564 msg_sys->msg_control = ctl_buf; 2565 msg_sys->msg_control_is_user = false; 2566 } 2567 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2568 msg_sys->msg_flags = flags; 2569 2570 if (sock->file->f_flags & O_NONBLOCK) 2571 msg_sys->msg_flags |= MSG_DONTWAIT; 2572 /* 2573 * If this is sendmmsg() and current destination address is same as 2574 * previously succeeded address, omit asking LSM's decision. 2575 * used_address->name_len is initialized to UINT_MAX so that the first 2576 * destination address never matches. 2577 */ 2578 if (used_address && msg_sys->msg_name && 2579 used_address->name_len == msg_sys->msg_namelen && 2580 !memcmp(&used_address->name, msg_sys->msg_name, 2581 used_address->name_len)) { 2582 err = sock_sendmsg_nosec(sock, msg_sys); 2583 goto out_freectl; 2584 } 2585 err = __sock_sendmsg(sock, msg_sys); 2586 /* 2587 * If this is sendmmsg() and sending to current destination address was 2588 * successful, remember it. 2589 */ 2590 if (used_address && err >= 0) { 2591 used_address->name_len = msg_sys->msg_namelen; 2592 if (msg_sys->msg_name) 2593 memcpy(&used_address->name, msg_sys->msg_name, 2594 used_address->name_len); 2595 } 2596 2597 out_freectl: 2598 if (ctl_buf != ctl) 2599 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2600 out: 2601 return err; 2602 } 2603 2604 static int sendmsg_copy_msghdr(struct msghdr *msg, 2605 struct user_msghdr __user *umsg, unsigned flags, 2606 struct iovec **iov) 2607 { 2608 int err; 2609 2610 if (flags & MSG_CMSG_COMPAT) { 2611 struct compat_msghdr __user *msg_compat; 2612 2613 msg_compat = (struct compat_msghdr __user *) umsg; 2614 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2615 } else { 2616 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2617 } 2618 if (err < 0) 2619 return err; 2620 2621 return 0; 2622 } 2623 2624 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2625 struct msghdr *msg_sys, unsigned int flags, 2626 struct used_address *used_address, 2627 unsigned int allowed_msghdr_flags) 2628 { 2629 struct sockaddr_storage address; 2630 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2631 ssize_t err; 2632 2633 msg_sys->msg_name = &address; 2634 2635 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2636 if (err < 0) 2637 return err; 2638 2639 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2640 allowed_msghdr_flags); 2641 kfree(iov); 2642 return err; 2643 } 2644 2645 /* 2646 * BSD sendmsg interface 2647 */ 2648 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2649 unsigned int flags) 2650 { 2651 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2652 } 2653 2654 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2655 bool forbid_cmsg_compat) 2656 { 2657 int fput_needed, err; 2658 struct msghdr msg_sys; 2659 struct socket *sock; 2660 2661 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2662 return -EINVAL; 2663 2664 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2665 if (!sock) 2666 goto out; 2667 2668 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2669 2670 fput_light(sock->file, fput_needed); 2671 out: 2672 return err; 2673 } 2674 2675 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2676 { 2677 return __sys_sendmsg(fd, msg, flags, true); 2678 } 2679 2680 /* 2681 * Linux sendmmsg interface 2682 */ 2683 2684 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2685 unsigned int flags, bool forbid_cmsg_compat) 2686 { 2687 int fput_needed, err, datagrams; 2688 struct socket *sock; 2689 struct mmsghdr __user *entry; 2690 struct compat_mmsghdr __user *compat_entry; 2691 struct msghdr msg_sys; 2692 struct used_address used_address; 2693 unsigned int oflags = flags; 2694 2695 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2696 return -EINVAL; 2697 2698 if (vlen > UIO_MAXIOV) 2699 vlen = UIO_MAXIOV; 2700 2701 datagrams = 0; 2702 2703 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2704 if (!sock) 2705 return err; 2706 2707 used_address.name_len = UINT_MAX; 2708 entry = mmsg; 2709 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2710 err = 0; 2711 flags |= MSG_BATCH; 2712 2713 while (datagrams < vlen) { 2714 if (datagrams == vlen - 1) 2715 flags = oflags; 2716 2717 if (MSG_CMSG_COMPAT & flags) { 2718 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2719 &msg_sys, flags, &used_address, MSG_EOR); 2720 if (err < 0) 2721 break; 2722 err = __put_user(err, &compat_entry->msg_len); 2723 ++compat_entry; 2724 } else { 2725 err = ___sys_sendmsg(sock, 2726 (struct user_msghdr __user *)entry, 2727 &msg_sys, flags, &used_address, MSG_EOR); 2728 if (err < 0) 2729 break; 2730 err = put_user(err, &entry->msg_len); 2731 ++entry; 2732 } 2733 2734 if (err) 2735 break; 2736 ++datagrams; 2737 if (msg_data_left(&msg_sys)) 2738 break; 2739 cond_resched(); 2740 } 2741 2742 fput_light(sock->file, fput_needed); 2743 2744 /* We only return an error if no datagrams were able to be sent */ 2745 if (datagrams != 0) 2746 return datagrams; 2747 2748 return err; 2749 } 2750 2751 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2752 unsigned int, vlen, unsigned int, flags) 2753 { 2754 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2755 } 2756 2757 static int recvmsg_copy_msghdr(struct msghdr *msg, 2758 struct user_msghdr __user *umsg, unsigned flags, 2759 struct sockaddr __user **uaddr, 2760 struct iovec **iov) 2761 { 2762 ssize_t err; 2763 2764 if (MSG_CMSG_COMPAT & flags) { 2765 struct compat_msghdr __user *msg_compat; 2766 2767 msg_compat = (struct compat_msghdr __user *) umsg; 2768 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2769 } else { 2770 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2771 } 2772 if (err < 0) 2773 return err; 2774 2775 return 0; 2776 } 2777 2778 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2779 struct user_msghdr __user *msg, 2780 struct sockaddr __user *uaddr, 2781 unsigned int flags, int nosec) 2782 { 2783 struct compat_msghdr __user *msg_compat = 2784 (struct compat_msghdr __user *) msg; 2785 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2786 struct sockaddr_storage addr; 2787 unsigned long cmsg_ptr; 2788 int len; 2789 ssize_t err; 2790 2791 msg_sys->msg_name = &addr; 2792 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2793 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2794 2795 /* We assume all kernel code knows the size of sockaddr_storage */ 2796 msg_sys->msg_namelen = 0; 2797 2798 if (sock->file->f_flags & O_NONBLOCK) 2799 flags |= MSG_DONTWAIT; 2800 2801 if (unlikely(nosec)) 2802 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2803 else 2804 err = sock_recvmsg(sock, msg_sys, flags); 2805 2806 if (err < 0) 2807 goto out; 2808 len = err; 2809 2810 if (uaddr != NULL) { 2811 err = move_addr_to_user(&addr, 2812 msg_sys->msg_namelen, uaddr, 2813 uaddr_len); 2814 if (err < 0) 2815 goto out; 2816 } 2817 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2818 COMPAT_FLAGS(msg)); 2819 if (err) 2820 goto out; 2821 if (MSG_CMSG_COMPAT & flags) 2822 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2823 &msg_compat->msg_controllen); 2824 else 2825 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2826 &msg->msg_controllen); 2827 if (err) 2828 goto out; 2829 err = len; 2830 out: 2831 return err; 2832 } 2833 2834 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2835 struct msghdr *msg_sys, unsigned int flags, int nosec) 2836 { 2837 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2838 /* user mode address pointers */ 2839 struct sockaddr __user *uaddr; 2840 ssize_t err; 2841 2842 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2843 if (err < 0) 2844 return err; 2845 2846 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2847 kfree(iov); 2848 return err; 2849 } 2850 2851 /* 2852 * BSD recvmsg interface 2853 */ 2854 2855 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2856 struct user_msghdr __user *umsg, 2857 struct sockaddr __user *uaddr, unsigned int flags) 2858 { 2859 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2860 } 2861 2862 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2863 bool forbid_cmsg_compat) 2864 { 2865 int fput_needed, err; 2866 struct msghdr msg_sys; 2867 struct socket *sock; 2868 2869 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2870 return -EINVAL; 2871 2872 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2873 if (!sock) 2874 goto out; 2875 2876 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2877 2878 fput_light(sock->file, fput_needed); 2879 out: 2880 return err; 2881 } 2882 2883 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2884 unsigned int, flags) 2885 { 2886 return __sys_recvmsg(fd, msg, flags, true); 2887 } 2888 2889 /* 2890 * Linux recvmmsg interface 2891 */ 2892 2893 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2894 unsigned int vlen, unsigned int flags, 2895 struct timespec64 *timeout) 2896 { 2897 int fput_needed, err, datagrams; 2898 struct socket *sock; 2899 struct mmsghdr __user *entry; 2900 struct compat_mmsghdr __user *compat_entry; 2901 struct msghdr msg_sys; 2902 struct timespec64 end_time; 2903 struct timespec64 timeout64; 2904 2905 if (timeout && 2906 poll_select_set_timeout(&end_time, timeout->tv_sec, 2907 timeout->tv_nsec)) 2908 return -EINVAL; 2909 2910 datagrams = 0; 2911 2912 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2913 if (!sock) 2914 return err; 2915 2916 if (likely(!(flags & MSG_ERRQUEUE))) { 2917 err = sock_error(sock->sk); 2918 if (err) { 2919 datagrams = err; 2920 goto out_put; 2921 } 2922 } 2923 2924 entry = mmsg; 2925 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2926 2927 while (datagrams < vlen) { 2928 /* 2929 * No need to ask LSM for more than the first datagram. 2930 */ 2931 if (MSG_CMSG_COMPAT & flags) { 2932 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2933 &msg_sys, flags & ~MSG_WAITFORONE, 2934 datagrams); 2935 if (err < 0) 2936 break; 2937 err = __put_user(err, &compat_entry->msg_len); 2938 ++compat_entry; 2939 } else { 2940 err = ___sys_recvmsg(sock, 2941 (struct user_msghdr __user *)entry, 2942 &msg_sys, flags & ~MSG_WAITFORONE, 2943 datagrams); 2944 if (err < 0) 2945 break; 2946 err = put_user(err, &entry->msg_len); 2947 ++entry; 2948 } 2949 2950 if (err) 2951 break; 2952 ++datagrams; 2953 2954 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2955 if (flags & MSG_WAITFORONE) 2956 flags |= MSG_DONTWAIT; 2957 2958 if (timeout) { 2959 ktime_get_ts64(&timeout64); 2960 *timeout = timespec64_sub(end_time, timeout64); 2961 if (timeout->tv_sec < 0) { 2962 timeout->tv_sec = timeout->tv_nsec = 0; 2963 break; 2964 } 2965 2966 /* Timeout, return less than vlen datagrams */ 2967 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2968 break; 2969 } 2970 2971 /* Out of band data, return right away */ 2972 if (msg_sys.msg_flags & MSG_OOB) 2973 break; 2974 cond_resched(); 2975 } 2976 2977 if (err == 0) 2978 goto out_put; 2979 2980 if (datagrams == 0) { 2981 datagrams = err; 2982 goto out_put; 2983 } 2984 2985 /* 2986 * We may return less entries than requested (vlen) if the 2987 * sock is non block and there aren't enough datagrams... 2988 */ 2989 if (err != -EAGAIN) { 2990 /* 2991 * ... or if recvmsg returns an error after we 2992 * received some datagrams, where we record the 2993 * error to return on the next call or if the 2994 * app asks about it using getsockopt(SO_ERROR). 2995 */ 2996 WRITE_ONCE(sock->sk->sk_err, -err); 2997 } 2998 out_put: 2999 fput_light(sock->file, fput_needed); 3000 3001 return datagrams; 3002 } 3003 3004 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 3005 unsigned int vlen, unsigned int flags, 3006 struct __kernel_timespec __user *timeout, 3007 struct old_timespec32 __user *timeout32) 3008 { 3009 int datagrams; 3010 struct timespec64 timeout_sys; 3011 3012 if (timeout && get_timespec64(&timeout_sys, timeout)) 3013 return -EFAULT; 3014 3015 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 3016 return -EFAULT; 3017 3018 if (!timeout && !timeout32) 3019 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 3020 3021 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 3022 3023 if (datagrams <= 0) 3024 return datagrams; 3025 3026 if (timeout && put_timespec64(&timeout_sys, timeout)) 3027 datagrams = -EFAULT; 3028 3029 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 3030 datagrams = -EFAULT; 3031 3032 return datagrams; 3033 } 3034 3035 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 3036 unsigned int, vlen, unsigned int, flags, 3037 struct __kernel_timespec __user *, timeout) 3038 { 3039 if (flags & MSG_CMSG_COMPAT) 3040 return -EINVAL; 3041 3042 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 3043 } 3044 3045 #ifdef CONFIG_COMPAT_32BIT_TIME 3046 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3047 unsigned int, vlen, unsigned int, flags, 3048 struct old_timespec32 __user *, timeout) 3049 { 3050 if (flags & MSG_CMSG_COMPAT) 3051 return -EINVAL; 3052 3053 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3054 } 3055 #endif 3056 3057 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3058 /* Argument list sizes for sys_socketcall */ 3059 #define AL(x) ((x) * sizeof(unsigned long)) 3060 static const unsigned char nargs[21] = { 3061 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3062 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3063 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3064 AL(4), AL(5), AL(4) 3065 }; 3066 3067 #undef AL 3068 3069 /* 3070 * System call vectors. 3071 * 3072 * Argument checking cleaned up. Saved 20% in size. 3073 * This function doesn't need to set the kernel lock because 3074 * it is set by the callees. 3075 */ 3076 3077 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3078 { 3079 unsigned long a[AUDITSC_ARGS]; 3080 unsigned long a0, a1; 3081 int err; 3082 unsigned int len; 3083 3084 if (call < 1 || call > SYS_SENDMMSG) 3085 return -EINVAL; 3086 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3087 3088 len = nargs[call]; 3089 if (len > sizeof(a)) 3090 return -EINVAL; 3091 3092 /* copy_from_user should be SMP safe. */ 3093 if (copy_from_user(a, args, len)) 3094 return -EFAULT; 3095 3096 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3097 if (err) 3098 return err; 3099 3100 a0 = a[0]; 3101 a1 = a[1]; 3102 3103 switch (call) { 3104 case SYS_SOCKET: 3105 err = __sys_socket(a0, a1, a[2]); 3106 break; 3107 case SYS_BIND: 3108 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3109 break; 3110 case SYS_CONNECT: 3111 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3112 break; 3113 case SYS_LISTEN: 3114 err = __sys_listen(a0, a1); 3115 break; 3116 case SYS_ACCEPT: 3117 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3118 (int __user *)a[2], 0); 3119 break; 3120 case SYS_GETSOCKNAME: 3121 err = 3122 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3123 (int __user *)a[2]); 3124 break; 3125 case SYS_GETPEERNAME: 3126 err = 3127 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3128 (int __user *)a[2]); 3129 break; 3130 case SYS_SOCKETPAIR: 3131 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3132 break; 3133 case SYS_SEND: 3134 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3135 NULL, 0); 3136 break; 3137 case SYS_SENDTO: 3138 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3139 (struct sockaddr __user *)a[4], a[5]); 3140 break; 3141 case SYS_RECV: 3142 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3143 NULL, NULL); 3144 break; 3145 case SYS_RECVFROM: 3146 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3147 (struct sockaddr __user *)a[4], 3148 (int __user *)a[5]); 3149 break; 3150 case SYS_SHUTDOWN: 3151 err = __sys_shutdown(a0, a1); 3152 break; 3153 case SYS_SETSOCKOPT: 3154 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3155 a[4]); 3156 break; 3157 case SYS_GETSOCKOPT: 3158 err = 3159 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3160 (int __user *)a[4]); 3161 break; 3162 case SYS_SENDMSG: 3163 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3164 a[2], true); 3165 break; 3166 case SYS_SENDMMSG: 3167 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3168 a[3], true); 3169 break; 3170 case SYS_RECVMSG: 3171 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3172 a[2], true); 3173 break; 3174 case SYS_RECVMMSG: 3175 if (IS_ENABLED(CONFIG_64BIT)) 3176 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3177 a[2], a[3], 3178 (struct __kernel_timespec __user *)a[4], 3179 NULL); 3180 else 3181 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3182 a[2], a[3], NULL, 3183 (struct old_timespec32 __user *)a[4]); 3184 break; 3185 case SYS_ACCEPT4: 3186 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3187 (int __user *)a[2], a[3]); 3188 break; 3189 default: 3190 err = -EINVAL; 3191 break; 3192 } 3193 return err; 3194 } 3195 3196 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3197 3198 /** 3199 * sock_register - add a socket protocol handler 3200 * @ops: description of protocol 3201 * 3202 * This function is called by a protocol handler that wants to 3203 * advertise its address family, and have it linked into the 3204 * socket interface. The value ops->family corresponds to the 3205 * socket system call protocol family. 3206 */ 3207 int sock_register(const struct net_proto_family *ops) 3208 { 3209 int err; 3210 3211 if (ops->family >= NPROTO) { 3212 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3213 return -ENOBUFS; 3214 } 3215 3216 spin_lock(&net_family_lock); 3217 if (rcu_dereference_protected(net_families[ops->family], 3218 lockdep_is_held(&net_family_lock))) 3219 err = -EEXIST; 3220 else { 3221 rcu_assign_pointer(net_families[ops->family], ops); 3222 err = 0; 3223 } 3224 spin_unlock(&net_family_lock); 3225 3226 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3227 return err; 3228 } 3229 EXPORT_SYMBOL(sock_register); 3230 3231 /** 3232 * sock_unregister - remove a protocol handler 3233 * @family: protocol family to remove 3234 * 3235 * This function is called by a protocol handler that wants to 3236 * remove its address family, and have it unlinked from the 3237 * new socket creation. 3238 * 3239 * If protocol handler is a module, then it can use module reference 3240 * counts to protect against new references. If protocol handler is not 3241 * a module then it needs to provide its own protection in 3242 * the ops->create routine. 3243 */ 3244 void sock_unregister(int family) 3245 { 3246 BUG_ON(family < 0 || family >= NPROTO); 3247 3248 spin_lock(&net_family_lock); 3249 RCU_INIT_POINTER(net_families[family], NULL); 3250 spin_unlock(&net_family_lock); 3251 3252 synchronize_rcu(); 3253 3254 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3255 } 3256 EXPORT_SYMBOL(sock_unregister); 3257 3258 bool sock_is_registered(int family) 3259 { 3260 return family < NPROTO && rcu_access_pointer(net_families[family]); 3261 } 3262 3263 static int __init sock_init(void) 3264 { 3265 int err; 3266 /* 3267 * Initialize the network sysctl infrastructure. 3268 */ 3269 err = net_sysctl_init(); 3270 if (err) 3271 goto out; 3272 3273 /* 3274 * Initialize skbuff SLAB cache 3275 */ 3276 skb_init(); 3277 3278 /* 3279 * Initialize the protocols module. 3280 */ 3281 3282 init_inodecache(); 3283 3284 err = register_filesystem(&sock_fs_type); 3285 if (err) 3286 goto out; 3287 sock_mnt = kern_mount(&sock_fs_type); 3288 if (IS_ERR(sock_mnt)) { 3289 err = PTR_ERR(sock_mnt); 3290 goto out_mount; 3291 } 3292 3293 /* The real protocol initialization is performed in later initcalls. 3294 */ 3295 3296 #ifdef CONFIG_NETFILTER 3297 err = netfilter_init(); 3298 if (err) 3299 goto out; 3300 #endif 3301 3302 ptp_classifier_init(); 3303 3304 out: 3305 return err; 3306 3307 out_mount: 3308 unregister_filesystem(&sock_fs_type); 3309 goto out; 3310 } 3311 3312 core_initcall(sock_init); /* early initcall */ 3313 3314 #ifdef CONFIG_PROC_FS 3315 void socket_seq_show(struct seq_file *seq) 3316 { 3317 seq_printf(seq, "sockets: used %d\n", 3318 sock_inuse_get(seq->private)); 3319 } 3320 #endif /* CONFIG_PROC_FS */ 3321 3322 /* Handle the fact that while struct ifreq has the same *layout* on 3323 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3324 * which are handled elsewhere, it still has different *size* due to 3325 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3326 * resulting in struct ifreq being 32 and 40 bytes respectively). 3327 * As a result, if the struct happens to be at the end of a page and 3328 * the next page isn't readable/writable, we get a fault. To prevent 3329 * that, copy back and forth to the full size. 3330 */ 3331 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3332 { 3333 if (in_compat_syscall()) { 3334 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3335 3336 memset(ifr, 0, sizeof(*ifr)); 3337 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3338 return -EFAULT; 3339 3340 if (ifrdata) 3341 *ifrdata = compat_ptr(ifr32->ifr_data); 3342 3343 return 0; 3344 } 3345 3346 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3347 return -EFAULT; 3348 3349 if (ifrdata) 3350 *ifrdata = ifr->ifr_data; 3351 3352 return 0; 3353 } 3354 EXPORT_SYMBOL(get_user_ifreq); 3355 3356 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3357 { 3358 size_t size = sizeof(*ifr); 3359 3360 if (in_compat_syscall()) 3361 size = sizeof(struct compat_ifreq); 3362 3363 if (copy_to_user(arg, ifr, size)) 3364 return -EFAULT; 3365 3366 return 0; 3367 } 3368 EXPORT_SYMBOL(put_user_ifreq); 3369 3370 #ifdef CONFIG_COMPAT 3371 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3372 { 3373 compat_uptr_t uptr32; 3374 struct ifreq ifr; 3375 void __user *saved; 3376 int err; 3377 3378 if (get_user_ifreq(&ifr, NULL, uifr32)) 3379 return -EFAULT; 3380 3381 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3382 return -EFAULT; 3383 3384 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3385 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3386 3387 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3388 if (!err) { 3389 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3390 if (put_user_ifreq(&ifr, uifr32)) 3391 err = -EFAULT; 3392 } 3393 return err; 3394 } 3395 3396 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3397 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3398 struct compat_ifreq __user *u_ifreq32) 3399 { 3400 struct ifreq ifreq; 3401 void __user *data; 3402 3403 if (!is_socket_ioctl_cmd(cmd)) 3404 return -ENOTTY; 3405 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3406 return -EFAULT; 3407 ifreq.ifr_data = data; 3408 3409 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3410 } 3411 3412 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3413 unsigned int cmd, unsigned long arg) 3414 { 3415 void __user *argp = compat_ptr(arg); 3416 struct sock *sk = sock->sk; 3417 struct net *net = sock_net(sk); 3418 const struct proto_ops *ops; 3419 3420 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3421 return sock_ioctl(file, cmd, (unsigned long)argp); 3422 3423 switch (cmd) { 3424 case SIOCWANDEV: 3425 return compat_siocwandev(net, argp); 3426 case SIOCGSTAMP_OLD: 3427 case SIOCGSTAMPNS_OLD: 3428 ops = READ_ONCE(sock->ops); 3429 if (!ops->gettstamp) 3430 return -ENOIOCTLCMD; 3431 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3432 !COMPAT_USE_64BIT_TIME); 3433 3434 case SIOCETHTOOL: 3435 case SIOCBONDSLAVEINFOQUERY: 3436 case SIOCBONDINFOQUERY: 3437 case SIOCSHWTSTAMP: 3438 case SIOCGHWTSTAMP: 3439 return compat_ifr_data_ioctl(net, cmd, argp); 3440 3441 case FIOSETOWN: 3442 case SIOCSPGRP: 3443 case FIOGETOWN: 3444 case SIOCGPGRP: 3445 case SIOCBRADDBR: 3446 case SIOCBRDELBR: 3447 case SIOCGIFVLAN: 3448 case SIOCSIFVLAN: 3449 case SIOCGSKNS: 3450 case SIOCGSTAMP_NEW: 3451 case SIOCGSTAMPNS_NEW: 3452 case SIOCGIFCONF: 3453 case SIOCSIFBR: 3454 case SIOCGIFBR: 3455 return sock_ioctl(file, cmd, arg); 3456 3457 case SIOCGIFFLAGS: 3458 case SIOCSIFFLAGS: 3459 case SIOCGIFMAP: 3460 case SIOCSIFMAP: 3461 case SIOCGIFMETRIC: 3462 case SIOCSIFMETRIC: 3463 case SIOCGIFMTU: 3464 case SIOCSIFMTU: 3465 case SIOCGIFMEM: 3466 case SIOCSIFMEM: 3467 case SIOCGIFHWADDR: 3468 case SIOCSIFHWADDR: 3469 case SIOCADDMULTI: 3470 case SIOCDELMULTI: 3471 case SIOCGIFINDEX: 3472 case SIOCGIFADDR: 3473 case SIOCSIFADDR: 3474 case SIOCSIFHWBROADCAST: 3475 case SIOCDIFADDR: 3476 case SIOCGIFBRDADDR: 3477 case SIOCSIFBRDADDR: 3478 case SIOCGIFDSTADDR: 3479 case SIOCSIFDSTADDR: 3480 case SIOCGIFNETMASK: 3481 case SIOCSIFNETMASK: 3482 case SIOCSIFPFLAGS: 3483 case SIOCGIFPFLAGS: 3484 case SIOCGIFTXQLEN: 3485 case SIOCSIFTXQLEN: 3486 case SIOCBRADDIF: 3487 case SIOCBRDELIF: 3488 case SIOCGIFNAME: 3489 case SIOCSIFNAME: 3490 case SIOCGMIIPHY: 3491 case SIOCGMIIREG: 3492 case SIOCSMIIREG: 3493 case SIOCBONDENSLAVE: 3494 case SIOCBONDRELEASE: 3495 case SIOCBONDSETHWADDR: 3496 case SIOCBONDCHANGEACTIVE: 3497 case SIOCSARP: 3498 case SIOCGARP: 3499 case SIOCDARP: 3500 case SIOCOUTQ: 3501 case SIOCOUTQNSD: 3502 case SIOCATMARK: 3503 return sock_do_ioctl(net, sock, cmd, arg); 3504 } 3505 3506 return -ENOIOCTLCMD; 3507 } 3508 3509 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3510 unsigned long arg) 3511 { 3512 struct socket *sock = file->private_data; 3513 const struct proto_ops *ops = READ_ONCE(sock->ops); 3514 int ret = -ENOIOCTLCMD; 3515 struct sock *sk; 3516 struct net *net; 3517 3518 sk = sock->sk; 3519 net = sock_net(sk); 3520 3521 if (ops->compat_ioctl) 3522 ret = ops->compat_ioctl(sock, cmd, arg); 3523 3524 if (ret == -ENOIOCTLCMD && 3525 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3526 ret = compat_wext_handle_ioctl(net, cmd, arg); 3527 3528 if (ret == -ENOIOCTLCMD) 3529 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3530 3531 return ret; 3532 } 3533 #endif 3534 3535 /** 3536 * kernel_bind - bind an address to a socket (kernel space) 3537 * @sock: socket 3538 * @addr: address 3539 * @addrlen: length of address 3540 * 3541 * Returns 0 or an error. 3542 */ 3543 3544 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3545 { 3546 struct sockaddr_storage address; 3547 3548 memcpy(&address, addr, addrlen); 3549 3550 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, 3551 addrlen); 3552 } 3553 EXPORT_SYMBOL(kernel_bind); 3554 3555 /** 3556 * kernel_listen - move socket to listening state (kernel space) 3557 * @sock: socket 3558 * @backlog: pending connections queue size 3559 * 3560 * Returns 0 or an error. 3561 */ 3562 3563 int kernel_listen(struct socket *sock, int backlog) 3564 { 3565 return READ_ONCE(sock->ops)->listen(sock, backlog); 3566 } 3567 EXPORT_SYMBOL(kernel_listen); 3568 3569 /** 3570 * kernel_accept - accept a connection (kernel space) 3571 * @sock: listening socket 3572 * @newsock: new connected socket 3573 * @flags: flags 3574 * 3575 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3576 * If it fails, @newsock is guaranteed to be %NULL. 3577 * Returns 0 or an error. 3578 */ 3579 3580 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3581 { 3582 struct sock *sk = sock->sk; 3583 const struct proto_ops *ops = READ_ONCE(sock->ops); 3584 struct proto_accept_arg arg = { 3585 .flags = flags, 3586 .kern = true, 3587 }; 3588 int err; 3589 3590 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3591 newsock); 3592 if (err < 0) 3593 goto done; 3594 3595 err = ops->accept(sock, *newsock, &arg); 3596 if (err < 0) { 3597 sock_release(*newsock); 3598 *newsock = NULL; 3599 goto done; 3600 } 3601 3602 (*newsock)->ops = ops; 3603 __module_get(ops->owner); 3604 3605 done: 3606 return err; 3607 } 3608 EXPORT_SYMBOL(kernel_accept); 3609 3610 /** 3611 * kernel_connect - connect a socket (kernel space) 3612 * @sock: socket 3613 * @addr: address 3614 * @addrlen: address length 3615 * @flags: flags (O_NONBLOCK, ...) 3616 * 3617 * For datagram sockets, @addr is the address to which datagrams are sent 3618 * by default, and the only address from which datagrams are received. 3619 * For stream sockets, attempts to connect to @addr. 3620 * Returns 0 or an error code. 3621 */ 3622 3623 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3624 int flags) 3625 { 3626 struct sockaddr_storage address; 3627 3628 memcpy(&address, addr, addrlen); 3629 3630 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3631 addrlen, flags); 3632 } 3633 EXPORT_SYMBOL(kernel_connect); 3634 3635 /** 3636 * kernel_getsockname - get the address which the socket is bound (kernel space) 3637 * @sock: socket 3638 * @addr: address holder 3639 * 3640 * Fills the @addr pointer with the address which the socket is bound. 3641 * Returns the length of the address in bytes or an error code. 3642 */ 3643 3644 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3645 { 3646 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3647 } 3648 EXPORT_SYMBOL(kernel_getsockname); 3649 3650 /** 3651 * kernel_getpeername - get the address which the socket is connected (kernel space) 3652 * @sock: socket 3653 * @addr: address holder 3654 * 3655 * Fills the @addr pointer with the address which the socket is connected. 3656 * Returns the length of the address in bytes or an error code. 3657 */ 3658 3659 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3660 { 3661 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3662 } 3663 EXPORT_SYMBOL(kernel_getpeername); 3664 3665 /** 3666 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3667 * @sock: socket 3668 * @how: connection part 3669 * 3670 * Returns 0 or an error. 3671 */ 3672 3673 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3674 { 3675 return READ_ONCE(sock->ops)->shutdown(sock, how); 3676 } 3677 EXPORT_SYMBOL(kernel_sock_shutdown); 3678 3679 /** 3680 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3681 * @sk: socket 3682 * 3683 * This routine returns the IP overhead imposed by a socket i.e. 3684 * the length of the underlying IP header, depending on whether 3685 * this is an IPv4 or IPv6 socket and the length from IP options turned 3686 * on at the socket. Assumes that the caller has a lock on the socket. 3687 */ 3688 3689 u32 kernel_sock_ip_overhead(struct sock *sk) 3690 { 3691 struct inet_sock *inet; 3692 struct ip_options_rcu *opt; 3693 u32 overhead = 0; 3694 #if IS_ENABLED(CONFIG_IPV6) 3695 struct ipv6_pinfo *np; 3696 struct ipv6_txoptions *optv6 = NULL; 3697 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3698 3699 if (!sk) 3700 return overhead; 3701 3702 switch (sk->sk_family) { 3703 case AF_INET: 3704 inet = inet_sk(sk); 3705 overhead += sizeof(struct iphdr); 3706 opt = rcu_dereference_protected(inet->inet_opt, 3707 sock_owned_by_user(sk)); 3708 if (opt) 3709 overhead += opt->opt.optlen; 3710 return overhead; 3711 #if IS_ENABLED(CONFIG_IPV6) 3712 case AF_INET6: 3713 np = inet6_sk(sk); 3714 overhead += sizeof(struct ipv6hdr); 3715 if (np) 3716 optv6 = rcu_dereference_protected(np->opt, 3717 sock_owned_by_user(sk)); 3718 if (optv6) 3719 overhead += (optv6->opt_flen + optv6->opt_nflen); 3720 return overhead; 3721 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3722 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3723 return overhead; 3724 } 3725 } 3726 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3727