xref: /linux/net/socket.c (revision f4e0ff7e45c30f4665cfbbe2f0538e9c5789bebc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #include "core/dev.h"
114 
115 #ifdef CONFIG_NET_RX_BUSY_POLL
116 unsigned int sysctl_net_busy_read __read_mostly;
117 unsigned int sysctl_net_busy_poll __read_mostly;
118 #endif
119 
120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123 
124 static int sock_close(struct inode *inode, struct file *file);
125 static __poll_t sock_poll(struct file *file,
126 			      struct poll_table_struct *wait);
127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128 #ifdef CONFIG_COMPAT
129 static long compat_sock_ioctl(struct file *file,
130 			      unsigned int cmd, unsigned long arg);
131 #endif
132 static int sock_fasync(int fd, struct file *filp, int on);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 				struct pipe_inode_info *pipe, size_t len,
135 				unsigned int flags);
136 static void sock_splice_eof(struct file *file);
137 
138 #ifdef CONFIG_PROC_FS
139 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140 {
141 	struct socket *sock = f->private_data;
142 	const struct proto_ops *ops = READ_ONCE(sock->ops);
143 
144 	if (ops->show_fdinfo)
145 		ops->show_fdinfo(m, sock);
146 }
147 #else
148 #define sock_show_fdinfo NULL
149 #endif
150 
151 /*
152  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153  *	in the operation structures but are done directly via the socketcall() multiplexor.
154  */
155 
156 static const struct file_operations socket_file_ops = {
157 	.owner =	THIS_MODULE,
158 	.read_iter =	sock_read_iter,
159 	.write_iter =	sock_write_iter,
160 	.poll =		sock_poll,
161 	.unlocked_ioctl = sock_ioctl,
162 #ifdef CONFIG_COMPAT
163 	.compat_ioctl = compat_sock_ioctl,
164 #endif
165 	.uring_cmd =    io_uring_cmd_sock,
166 	.mmap =		sock_mmap,
167 	.release =	sock_close,
168 	.fasync =	sock_fasync,
169 	.splice_write = splice_to_socket,
170 	.splice_read =	sock_splice_read,
171 	.splice_eof =	sock_splice_eof,
172 	.show_fdinfo =	sock_show_fdinfo,
173 };
174 
175 static const char * const pf_family_names[] = {
176 	[PF_UNSPEC]	= "PF_UNSPEC",
177 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
178 	[PF_INET]	= "PF_INET",
179 	[PF_AX25]	= "PF_AX25",
180 	[PF_IPX]	= "PF_IPX",
181 	[PF_APPLETALK]	= "PF_APPLETALK",
182 	[PF_NETROM]	= "PF_NETROM",
183 	[PF_BRIDGE]	= "PF_BRIDGE",
184 	[PF_ATMPVC]	= "PF_ATMPVC",
185 	[PF_X25]	= "PF_X25",
186 	[PF_INET6]	= "PF_INET6",
187 	[PF_ROSE]	= "PF_ROSE",
188 	[PF_DECnet]	= "PF_DECnet",
189 	[PF_NETBEUI]	= "PF_NETBEUI",
190 	[PF_SECURITY]	= "PF_SECURITY",
191 	[PF_KEY]	= "PF_KEY",
192 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
193 	[PF_PACKET]	= "PF_PACKET",
194 	[PF_ASH]	= "PF_ASH",
195 	[PF_ECONET]	= "PF_ECONET",
196 	[PF_ATMSVC]	= "PF_ATMSVC",
197 	[PF_RDS]	= "PF_RDS",
198 	[PF_SNA]	= "PF_SNA",
199 	[PF_IRDA]	= "PF_IRDA",
200 	[PF_PPPOX]	= "PF_PPPOX",
201 	[PF_WANPIPE]	= "PF_WANPIPE",
202 	[PF_LLC]	= "PF_LLC",
203 	[PF_IB]		= "PF_IB",
204 	[PF_MPLS]	= "PF_MPLS",
205 	[PF_CAN]	= "PF_CAN",
206 	[PF_TIPC]	= "PF_TIPC",
207 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
208 	[PF_IUCV]	= "PF_IUCV",
209 	[PF_RXRPC]	= "PF_RXRPC",
210 	[PF_ISDN]	= "PF_ISDN",
211 	[PF_PHONET]	= "PF_PHONET",
212 	[PF_IEEE802154]	= "PF_IEEE802154",
213 	[PF_CAIF]	= "PF_CAIF",
214 	[PF_ALG]	= "PF_ALG",
215 	[PF_NFC]	= "PF_NFC",
216 	[PF_VSOCK]	= "PF_VSOCK",
217 	[PF_KCM]	= "PF_KCM",
218 	[PF_QIPCRTR]	= "PF_QIPCRTR",
219 	[PF_SMC]	= "PF_SMC",
220 	[PF_XDP]	= "PF_XDP",
221 	[PF_MCTP]	= "PF_MCTP",
222 };
223 
224 /*
225  *	The protocol list. Each protocol is registered in here.
226  */
227 
228 static DEFINE_SPINLOCK(net_family_lock);
229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230 
231 /*
232  * Support routines.
233  * Move socket addresses back and forth across the kernel/user
234  * divide and look after the messy bits.
235  */
236 
237 /**
238  *	move_addr_to_kernel	-	copy a socket address into kernel space
239  *	@uaddr: Address in user space
240  *	@kaddr: Address in kernel space
241  *	@ulen: Length in user space
242  *
243  *	The address is copied into kernel space. If the provided address is
244  *	too long an error code of -EINVAL is returned. If the copy gives
245  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
246  */
247 
248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249 {
250 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 		return -EINVAL;
252 	if (ulen == 0)
253 		return 0;
254 	if (copy_from_user(kaddr, uaddr, ulen))
255 		return -EFAULT;
256 	return audit_sockaddr(ulen, kaddr);
257 }
258 
259 /**
260  *	move_addr_to_user	-	copy an address to user space
261  *	@kaddr: kernel space address
262  *	@klen: length of address in kernel
263  *	@uaddr: user space address
264  *	@ulen: pointer to user length field
265  *
266  *	The value pointed to by ulen on entry is the buffer length available.
267  *	This is overwritten with the buffer space used. -EINVAL is returned
268  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
269  *	is returned if either the buffer or the length field are not
270  *	accessible.
271  *	After copying the data up to the limit the user specifies, the true
272  *	length of the data is written over the length limit the user
273  *	specified. Zero is returned for a success.
274  */
275 
276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277 			     void __user *uaddr, int __user *ulen)
278 {
279 	int err;
280 	int len;
281 
282 	BUG_ON(klen > sizeof(struct sockaddr_storage));
283 	err = get_user(len, ulen);
284 	if (err)
285 		return err;
286 	if (len > klen)
287 		len = klen;
288 	if (len < 0)
289 		return -EINVAL;
290 	if (len) {
291 		if (audit_sockaddr(klen, kaddr))
292 			return -ENOMEM;
293 		if (copy_to_user(uaddr, kaddr, len))
294 			return -EFAULT;
295 	}
296 	/*
297 	 *      "fromlen shall refer to the value before truncation.."
298 	 *                      1003.1g
299 	 */
300 	return __put_user(klen, ulen);
301 }
302 
303 static struct kmem_cache *sock_inode_cachep __ro_after_init;
304 
305 static struct inode *sock_alloc_inode(struct super_block *sb)
306 {
307 	struct socket_alloc *ei;
308 
309 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
310 	if (!ei)
311 		return NULL;
312 	init_waitqueue_head(&ei->socket.wq.wait);
313 	ei->socket.wq.fasync_list = NULL;
314 	ei->socket.wq.flags = 0;
315 
316 	ei->socket.state = SS_UNCONNECTED;
317 	ei->socket.flags = 0;
318 	ei->socket.ops = NULL;
319 	ei->socket.sk = NULL;
320 	ei->socket.file = NULL;
321 
322 	return &ei->vfs_inode;
323 }
324 
325 static void sock_free_inode(struct inode *inode)
326 {
327 	struct socket_alloc *ei;
328 
329 	ei = container_of(inode, struct socket_alloc, vfs_inode);
330 	kmem_cache_free(sock_inode_cachep, ei);
331 }
332 
333 static void init_once(void *foo)
334 {
335 	struct socket_alloc *ei = (struct socket_alloc *)foo;
336 
337 	inode_init_once(&ei->vfs_inode);
338 }
339 
340 static void init_inodecache(void)
341 {
342 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
343 					      sizeof(struct socket_alloc),
344 					      0,
345 					      (SLAB_HWCACHE_ALIGN |
346 					       SLAB_RECLAIM_ACCOUNT |
347 					       SLAB_ACCOUNT),
348 					      init_once);
349 	BUG_ON(sock_inode_cachep == NULL);
350 }
351 
352 static const struct super_operations sockfs_ops = {
353 	.alloc_inode	= sock_alloc_inode,
354 	.free_inode	= sock_free_inode,
355 	.statfs		= simple_statfs,
356 };
357 
358 /*
359  * sockfs_dname() is called from d_path().
360  */
361 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
362 {
363 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
364 				d_inode(dentry)->i_ino);
365 }
366 
367 static const struct dentry_operations sockfs_dentry_operations = {
368 	.d_dname  = sockfs_dname,
369 };
370 
371 static int sockfs_xattr_get(const struct xattr_handler *handler,
372 			    struct dentry *dentry, struct inode *inode,
373 			    const char *suffix, void *value, size_t size)
374 {
375 	if (value) {
376 		if (dentry->d_name.len + 1 > size)
377 			return -ERANGE;
378 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
379 	}
380 	return dentry->d_name.len + 1;
381 }
382 
383 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
384 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
385 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
386 
387 static const struct xattr_handler sockfs_xattr_handler = {
388 	.name = XATTR_NAME_SOCKPROTONAME,
389 	.get = sockfs_xattr_get,
390 };
391 
392 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
393 				     struct mnt_idmap *idmap,
394 				     struct dentry *dentry, struct inode *inode,
395 				     const char *suffix, const void *value,
396 				     size_t size, int flags)
397 {
398 	/* Handled by LSM. */
399 	return -EAGAIN;
400 }
401 
402 static const struct xattr_handler sockfs_security_xattr_handler = {
403 	.prefix = XATTR_SECURITY_PREFIX,
404 	.set = sockfs_security_xattr_set,
405 };
406 
407 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
408 	&sockfs_xattr_handler,
409 	&sockfs_security_xattr_handler,
410 	NULL
411 };
412 
413 static int sockfs_init_fs_context(struct fs_context *fc)
414 {
415 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
416 	if (!ctx)
417 		return -ENOMEM;
418 	ctx->ops = &sockfs_ops;
419 	ctx->dops = &sockfs_dentry_operations;
420 	ctx->xattr = sockfs_xattr_handlers;
421 	return 0;
422 }
423 
424 static struct vfsmount *sock_mnt __read_mostly;
425 
426 static struct file_system_type sock_fs_type = {
427 	.name =		"sockfs",
428 	.init_fs_context = sockfs_init_fs_context,
429 	.kill_sb =	kill_anon_super,
430 };
431 
432 /*
433  *	Obtains the first available file descriptor and sets it up for use.
434  *
435  *	These functions create file structures and maps them to fd space
436  *	of the current process. On success it returns file descriptor
437  *	and file struct implicitly stored in sock->file.
438  *	Note that another thread may close file descriptor before we return
439  *	from this function. We use the fact that now we do not refer
440  *	to socket after mapping. If one day we will need it, this
441  *	function will increment ref. count on file by 1.
442  *
443  *	In any case returned fd MAY BE not valid!
444  *	This race condition is unavoidable
445  *	with shared fd spaces, we cannot solve it inside kernel,
446  *	but we take care of internal coherence yet.
447  */
448 
449 /**
450  *	sock_alloc_file - Bind a &socket to a &file
451  *	@sock: socket
452  *	@flags: file status flags
453  *	@dname: protocol name
454  *
455  *	Returns the &file bound with @sock, implicitly storing it
456  *	in sock->file. If dname is %NULL, sets to "".
457  *
458  *	On failure @sock is released, and an ERR pointer is returned.
459  *
460  *	This function uses GFP_KERNEL internally.
461  */
462 
463 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
464 {
465 	struct file *file;
466 
467 	if (!dname)
468 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
469 
470 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
471 				O_RDWR | (flags & O_NONBLOCK),
472 				&socket_file_ops);
473 	if (IS_ERR(file)) {
474 		sock_release(sock);
475 		return file;
476 	}
477 
478 	file->f_mode |= FMODE_NOWAIT;
479 	sock->file = file;
480 	file->private_data = sock;
481 	stream_open(SOCK_INODE(sock), file);
482 	/*
483 	 * Disable permission and pre-content events, but enable legacy
484 	 * inotify events for legacy users.
485 	 */
486 	file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
487 	return file;
488 }
489 EXPORT_SYMBOL(sock_alloc_file);
490 
491 static int sock_map_fd(struct socket *sock, int flags)
492 {
493 	struct file *newfile;
494 	int fd = get_unused_fd_flags(flags);
495 	if (unlikely(fd < 0)) {
496 		sock_release(sock);
497 		return fd;
498 	}
499 
500 	newfile = sock_alloc_file(sock, flags, NULL);
501 	if (!IS_ERR(newfile)) {
502 		fd_install(fd, newfile);
503 		return fd;
504 	}
505 
506 	put_unused_fd(fd);
507 	return PTR_ERR(newfile);
508 }
509 
510 /**
511  *	sock_from_file - Return the &socket bounded to @file.
512  *	@file: file
513  *
514  *	On failure returns %NULL.
515  */
516 
517 struct socket *sock_from_file(struct file *file)
518 {
519 	if (likely(file->f_op == &socket_file_ops))
520 		return file->private_data;	/* set in sock_alloc_file */
521 
522 	return NULL;
523 }
524 EXPORT_SYMBOL(sock_from_file);
525 
526 /**
527  *	sockfd_lookup - Go from a file number to its socket slot
528  *	@fd: file handle
529  *	@err: pointer to an error code return
530  *
531  *	The file handle passed in is locked and the socket it is bound
532  *	to is returned. If an error occurs the err pointer is overwritten
533  *	with a negative errno code and NULL is returned. The function checks
534  *	for both invalid handles and passing a handle which is not a socket.
535  *
536  *	On a success the socket object pointer is returned.
537  */
538 
539 struct socket *sockfd_lookup(int fd, int *err)
540 {
541 	struct file *file;
542 	struct socket *sock;
543 
544 	file = fget(fd);
545 	if (!file) {
546 		*err = -EBADF;
547 		return NULL;
548 	}
549 
550 	sock = sock_from_file(file);
551 	if (!sock) {
552 		*err = -ENOTSOCK;
553 		fput(file);
554 	}
555 	return sock;
556 }
557 EXPORT_SYMBOL(sockfd_lookup);
558 
559 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
560 				size_t size)
561 {
562 	ssize_t len;
563 	ssize_t used = 0;
564 
565 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
566 	if (len < 0)
567 		return len;
568 	used += len;
569 	if (buffer) {
570 		if (size < used)
571 			return -ERANGE;
572 		buffer += len;
573 	}
574 
575 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
576 	used += len;
577 	if (buffer) {
578 		if (size < used)
579 			return -ERANGE;
580 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
581 		buffer += len;
582 	}
583 
584 	return used;
585 }
586 
587 static int sockfs_setattr(struct mnt_idmap *idmap,
588 			  struct dentry *dentry, struct iattr *iattr)
589 {
590 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
591 
592 	if (!err && (iattr->ia_valid & ATTR_UID)) {
593 		struct socket *sock = SOCKET_I(d_inode(dentry));
594 
595 		if (sock->sk) {
596 			/* Paired with READ_ONCE() in sk_uid() */
597 			WRITE_ONCE(sock->sk->sk_uid, iattr->ia_uid);
598 		} else {
599 			err = -ENOENT;
600 		}
601 	}
602 
603 	return err;
604 }
605 
606 static const struct inode_operations sockfs_inode_ops = {
607 	.listxattr = sockfs_listxattr,
608 	.setattr = sockfs_setattr,
609 };
610 
611 /**
612  *	sock_alloc - allocate a socket
613  *
614  *	Allocate a new inode and socket object. The two are bound together
615  *	and initialised. The socket is then returned. If we are out of inodes
616  *	NULL is returned. This functions uses GFP_KERNEL internally.
617  */
618 
619 struct socket *sock_alloc(void)
620 {
621 	struct inode *inode;
622 	struct socket *sock;
623 
624 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
625 	if (!inode)
626 		return NULL;
627 
628 	sock = SOCKET_I(inode);
629 
630 	inode->i_ino = get_next_ino();
631 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
632 	inode->i_uid = current_fsuid();
633 	inode->i_gid = current_fsgid();
634 	inode->i_op = &sockfs_inode_ops;
635 
636 	return sock;
637 }
638 EXPORT_SYMBOL(sock_alloc);
639 
640 static void __sock_release(struct socket *sock, struct inode *inode)
641 {
642 	const struct proto_ops *ops = READ_ONCE(sock->ops);
643 
644 	if (ops) {
645 		struct module *owner = ops->owner;
646 
647 		if (inode)
648 			inode_lock(inode);
649 		ops->release(sock);
650 		sock->sk = NULL;
651 		if (inode)
652 			inode_unlock(inode);
653 		sock->ops = NULL;
654 		module_put(owner);
655 	}
656 
657 	if (sock->wq.fasync_list)
658 		pr_err("%s: fasync list not empty!\n", __func__);
659 
660 	if (!sock->file) {
661 		iput(SOCK_INODE(sock));
662 		return;
663 	}
664 	sock->file = NULL;
665 }
666 
667 /**
668  *	sock_release - close a socket
669  *	@sock: socket to close
670  *
671  *	The socket is released from the protocol stack if it has a release
672  *	callback, and the inode is then released if the socket is bound to
673  *	an inode not a file.
674  */
675 void sock_release(struct socket *sock)
676 {
677 	__sock_release(sock, NULL);
678 }
679 EXPORT_SYMBOL(sock_release);
680 
681 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
682 {
683 	u8 flags = *tx_flags;
684 
685 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
686 		flags |= SKBTX_HW_TSTAMP_NOBPF;
687 
688 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
689 		flags |= SKBTX_SW_TSTAMP;
690 
691 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
692 		flags |= SKBTX_SCHED_TSTAMP;
693 
694 	if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION)
695 		flags |= SKBTX_COMPLETION_TSTAMP;
696 
697 	*tx_flags = flags;
698 }
699 EXPORT_SYMBOL(__sock_tx_timestamp);
700 
701 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
702 					   size_t));
703 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
704 					    size_t));
705 
706 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
707 						 int flags)
708 {
709 	trace_sock_send_length(sk, ret, 0);
710 }
711 
712 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
713 {
714 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
715 				     inet_sendmsg, sock, msg,
716 				     msg_data_left(msg));
717 	BUG_ON(ret == -EIOCBQUEUED);
718 
719 	if (trace_sock_send_length_enabled())
720 		call_trace_sock_send_length(sock->sk, ret, 0);
721 	return ret;
722 }
723 
724 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
725 {
726 	int err = security_socket_sendmsg(sock, msg,
727 					  msg_data_left(msg));
728 
729 	return err ?: sock_sendmsg_nosec(sock, msg);
730 }
731 
732 /**
733  *	sock_sendmsg - send a message through @sock
734  *	@sock: socket
735  *	@msg: message to send
736  *
737  *	Sends @msg through @sock, passing through LSM.
738  *	Returns the number of bytes sent, or an error code.
739  */
740 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
741 {
742 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
743 	struct sockaddr_storage address;
744 	int save_len = msg->msg_namelen;
745 	int ret;
746 
747 	if (msg->msg_name) {
748 		memcpy(&address, msg->msg_name, msg->msg_namelen);
749 		msg->msg_name = &address;
750 	}
751 
752 	ret = __sock_sendmsg(sock, msg);
753 	msg->msg_name = save_addr;
754 	msg->msg_namelen = save_len;
755 
756 	return ret;
757 }
758 EXPORT_SYMBOL(sock_sendmsg);
759 
760 /**
761  *	kernel_sendmsg - send a message through @sock (kernel-space)
762  *	@sock: socket
763  *	@msg: message header
764  *	@vec: kernel vec
765  *	@num: vec array length
766  *	@size: total message data size
767  *
768  *	Builds the message data with @vec and sends it through @sock.
769  *	Returns the number of bytes sent, or an error code.
770  */
771 
772 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
773 		   struct kvec *vec, size_t num, size_t size)
774 {
775 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
776 	return sock_sendmsg(sock, msg);
777 }
778 EXPORT_SYMBOL(kernel_sendmsg);
779 
780 static bool skb_is_err_queue(const struct sk_buff *skb)
781 {
782 	/* pkt_type of skbs enqueued on the error queue are set to
783 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
784 	 * in recvmsg, since skbs received on a local socket will never
785 	 * have a pkt_type of PACKET_OUTGOING.
786 	 */
787 	return skb->pkt_type == PACKET_OUTGOING;
788 }
789 
790 /* On transmit, software and hardware timestamps are returned independently.
791  * As the two skb clones share the hardware timestamp, which may be updated
792  * before the software timestamp is received, a hardware TX timestamp may be
793  * returned only if there is no software TX timestamp. Ignore false software
794  * timestamps, which may be made in the __sock_recv_timestamp() call when the
795  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
796  * hardware timestamp.
797  */
798 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
799 {
800 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
801 }
802 
803 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
804 {
805 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
806 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
807 	struct net_device *orig_dev;
808 	ktime_t hwtstamp;
809 
810 	rcu_read_lock();
811 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
812 	if (orig_dev) {
813 		*if_index = orig_dev->ifindex;
814 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
815 	} else {
816 		hwtstamp = shhwtstamps->hwtstamp;
817 	}
818 	rcu_read_unlock();
819 
820 	return hwtstamp;
821 }
822 
823 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
824 			   int if_index)
825 {
826 	struct scm_ts_pktinfo ts_pktinfo;
827 	struct net_device *orig_dev;
828 
829 	if (!skb_mac_header_was_set(skb))
830 		return;
831 
832 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
833 
834 	if (!if_index) {
835 		rcu_read_lock();
836 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
837 		if (orig_dev)
838 			if_index = orig_dev->ifindex;
839 		rcu_read_unlock();
840 	}
841 	ts_pktinfo.if_index = if_index;
842 
843 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
844 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
845 		 sizeof(ts_pktinfo), &ts_pktinfo);
846 }
847 
848 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk)
849 {
850 	const struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
851 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
852 
853 	if (serr->ee.ee_errno != ENOMSG ||
854 	   serr->ee.ee_origin != SO_EE_ORIGIN_TIMESTAMPING)
855 		return false;
856 
857 	/* software time stamp available and wanted */
858 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && skb->tstamp)
859 		return true;
860 	/* hardware time stamps available and wanted */
861 	return (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
862 		skb_hwtstamps(skb)->hwtstamp;
863 }
864 
865 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk,
866 			  struct timespec64 *ts)
867 {
868 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
869 	ktime_t hwtstamp;
870 	int if_index = 0;
871 
872 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
873 	    ktime_to_timespec64_cond(skb->tstamp, ts))
874 		return SOF_TIMESTAMPING_TX_SOFTWARE;
875 
876 	if (!(tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) ||
877 	    skb_is_swtx_tstamp(skb, false))
878 		return -ENOENT;
879 
880 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
881 		hwtstamp = get_timestamp(sk, skb, &if_index);
882 	else
883 		hwtstamp = skb_hwtstamps(skb)->hwtstamp;
884 
885 	if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
886 		hwtstamp = ptp_convert_timestamp(&hwtstamp,
887 						READ_ONCE(sk->sk_bind_phc));
888 	if (!ktime_to_timespec64_cond(hwtstamp, ts))
889 		return -ENOENT;
890 
891 	return SOF_TIMESTAMPING_TX_HARDWARE;
892 }
893 
894 /*
895  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
896  */
897 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
898 	struct sk_buff *skb)
899 {
900 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
901 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
902 	struct scm_timestamping_internal tss;
903 	int empty = 1, false_tstamp = 0;
904 	struct skb_shared_hwtstamps *shhwtstamps =
905 		skb_hwtstamps(skb);
906 	int if_index;
907 	ktime_t hwtstamp;
908 	u32 tsflags;
909 
910 	/* Race occurred between timestamp enabling and packet
911 	   receiving.  Fill in the current time for now. */
912 	if (need_software_tstamp && skb->tstamp == 0) {
913 		__net_timestamp(skb);
914 		false_tstamp = 1;
915 	}
916 
917 	if (need_software_tstamp) {
918 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
919 			if (new_tstamp) {
920 				struct __kernel_sock_timeval tv;
921 
922 				skb_get_new_timestamp(skb, &tv);
923 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
924 					 sizeof(tv), &tv);
925 			} else {
926 				struct __kernel_old_timeval tv;
927 
928 				skb_get_timestamp(skb, &tv);
929 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
930 					 sizeof(tv), &tv);
931 			}
932 		} else {
933 			if (new_tstamp) {
934 				struct __kernel_timespec ts;
935 
936 				skb_get_new_timestampns(skb, &ts);
937 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
938 					 sizeof(ts), &ts);
939 			} else {
940 				struct __kernel_old_timespec ts;
941 
942 				skb_get_timestampns(skb, &ts);
943 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
944 					 sizeof(ts), &ts);
945 			}
946 		}
947 	}
948 
949 	memset(&tss, 0, sizeof(tss));
950 	tsflags = READ_ONCE(sk->sk_tsflags);
951 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
952 	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
953 	      skb_is_err_queue(skb) ||
954 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
955 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
956 		empty = 0;
957 	if (shhwtstamps &&
958 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
959 	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
960 	      skb_is_err_queue(skb) ||
961 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
962 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
963 		if_index = 0;
964 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
965 			hwtstamp = get_timestamp(sk, skb, &if_index);
966 		else
967 			hwtstamp = shhwtstamps->hwtstamp;
968 
969 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
970 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
971 							 READ_ONCE(sk->sk_bind_phc));
972 
973 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
974 			empty = 0;
975 
976 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
977 			    !skb_is_err_queue(skb))
978 				put_ts_pktinfo(msg, skb, if_index);
979 		}
980 	}
981 	if (!empty) {
982 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
983 			put_cmsg_scm_timestamping64(msg, &tss);
984 		else
985 			put_cmsg_scm_timestamping(msg, &tss);
986 
987 		if (skb_is_err_queue(skb) && skb->len &&
988 		    SKB_EXT_ERR(skb)->opt_stats)
989 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
990 				 skb->len, skb->data);
991 	}
992 }
993 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
994 
995 #ifdef CONFIG_WIRELESS
996 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
997 	struct sk_buff *skb)
998 {
999 	int ack;
1000 
1001 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
1002 		return;
1003 	if (!skb->wifi_acked_valid)
1004 		return;
1005 
1006 	ack = skb->wifi_acked;
1007 
1008 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1009 }
1010 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1011 #endif
1012 
1013 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1014 				   struct sk_buff *skb)
1015 {
1016 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1017 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1018 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1019 }
1020 
1021 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1022 			   struct sk_buff *skb)
1023 {
1024 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1025 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1026 		__u32 mark = skb->mark;
1027 
1028 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1029 	}
1030 }
1031 
1032 static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
1033 			       struct sk_buff *skb)
1034 {
1035 	if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
1036 		__u32 priority = skb->priority;
1037 
1038 		put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
1039 	}
1040 }
1041 
1042 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1043 		       struct sk_buff *skb)
1044 {
1045 	sock_recv_timestamp(msg, sk, skb);
1046 	sock_recv_drops(msg, sk, skb);
1047 	sock_recv_mark(msg, sk, skb);
1048 	sock_recv_priority(msg, sk, skb);
1049 }
1050 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1051 
1052 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1053 					   size_t, int));
1054 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1055 					    size_t, int));
1056 
1057 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1058 {
1059 	trace_sock_recv_length(sk, ret, flags);
1060 }
1061 
1062 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1063 				     int flags)
1064 {
1065 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1066 				     inet6_recvmsg,
1067 				     inet_recvmsg, sock, msg,
1068 				     msg_data_left(msg), flags);
1069 	if (trace_sock_recv_length_enabled())
1070 		call_trace_sock_recv_length(sock->sk, ret, flags);
1071 	return ret;
1072 }
1073 
1074 /**
1075  *	sock_recvmsg - receive a message from @sock
1076  *	@sock: socket
1077  *	@msg: message to receive
1078  *	@flags: message flags
1079  *
1080  *	Receives @msg from @sock, passing through LSM. Returns the total number
1081  *	of bytes received, or an error.
1082  */
1083 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1084 {
1085 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1086 
1087 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1088 }
1089 EXPORT_SYMBOL(sock_recvmsg);
1090 
1091 /**
1092  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1093  *	@sock: The socket to receive the message from
1094  *	@msg: Received message
1095  *	@vec: Input s/g array for message data
1096  *	@num: Size of input s/g array
1097  *	@size: Number of bytes to read
1098  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1099  *
1100  *	On return the msg structure contains the scatter/gather array passed in the
1101  *	vec argument. The array is modified so that it consists of the unfilled
1102  *	portion of the original array.
1103  *
1104  *	The returned value is the total number of bytes received, or an error.
1105  */
1106 
1107 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1108 		   struct kvec *vec, size_t num, size_t size, int flags)
1109 {
1110 	msg->msg_control_is_user = false;
1111 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1112 	return sock_recvmsg(sock, msg, flags);
1113 }
1114 EXPORT_SYMBOL(kernel_recvmsg);
1115 
1116 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1117 				struct pipe_inode_info *pipe, size_t len,
1118 				unsigned int flags)
1119 {
1120 	struct socket *sock = file->private_data;
1121 	const struct proto_ops *ops;
1122 
1123 	ops = READ_ONCE(sock->ops);
1124 	if (unlikely(!ops->splice_read))
1125 		return copy_splice_read(file, ppos, pipe, len, flags);
1126 
1127 	return ops->splice_read(sock, ppos, pipe, len, flags);
1128 }
1129 
1130 static void sock_splice_eof(struct file *file)
1131 {
1132 	struct socket *sock = file->private_data;
1133 	const struct proto_ops *ops;
1134 
1135 	ops = READ_ONCE(sock->ops);
1136 	if (ops->splice_eof)
1137 		ops->splice_eof(sock);
1138 }
1139 
1140 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1141 {
1142 	struct file *file = iocb->ki_filp;
1143 	struct socket *sock = file->private_data;
1144 	struct msghdr msg = {.msg_iter = *to,
1145 			     .msg_iocb = iocb};
1146 	ssize_t res;
1147 
1148 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1149 		msg.msg_flags = MSG_DONTWAIT;
1150 
1151 	if (iocb->ki_pos != 0)
1152 		return -ESPIPE;
1153 
1154 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1155 		return 0;
1156 
1157 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1158 	*to = msg.msg_iter;
1159 	return res;
1160 }
1161 
1162 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1163 {
1164 	struct file *file = iocb->ki_filp;
1165 	struct socket *sock = file->private_data;
1166 	struct msghdr msg = {.msg_iter = *from,
1167 			     .msg_iocb = iocb};
1168 	ssize_t res;
1169 
1170 	if (iocb->ki_pos != 0)
1171 		return -ESPIPE;
1172 
1173 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1174 		msg.msg_flags = MSG_DONTWAIT;
1175 
1176 	if (sock->type == SOCK_SEQPACKET)
1177 		msg.msg_flags |= MSG_EOR;
1178 
1179 	if (iocb->ki_flags & IOCB_NOSIGNAL)
1180 		msg.msg_flags |= MSG_NOSIGNAL;
1181 
1182 	res = __sock_sendmsg(sock, &msg);
1183 	*from = msg.msg_iter;
1184 	return res;
1185 }
1186 
1187 /*
1188  * Atomic setting of ioctl hooks to avoid race
1189  * with module unload.
1190  */
1191 
1192 static DEFINE_MUTEX(br_ioctl_mutex);
1193 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd,
1194 			    void __user *uarg);
1195 
1196 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd,
1197 			     void __user *uarg))
1198 {
1199 	mutex_lock(&br_ioctl_mutex);
1200 	br_ioctl_hook = hook;
1201 	mutex_unlock(&br_ioctl_mutex);
1202 }
1203 EXPORT_SYMBOL(brioctl_set);
1204 
1205 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg)
1206 {
1207 	int err = -ENOPKG;
1208 
1209 	if (!br_ioctl_hook)
1210 		request_module("bridge");
1211 
1212 	mutex_lock(&br_ioctl_mutex);
1213 	if (br_ioctl_hook)
1214 		err = br_ioctl_hook(net, cmd, uarg);
1215 	mutex_unlock(&br_ioctl_mutex);
1216 
1217 	return err;
1218 }
1219 
1220 static DEFINE_MUTEX(vlan_ioctl_mutex);
1221 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1222 
1223 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1224 {
1225 	mutex_lock(&vlan_ioctl_mutex);
1226 	vlan_ioctl_hook = hook;
1227 	mutex_unlock(&vlan_ioctl_mutex);
1228 }
1229 EXPORT_SYMBOL(vlan_ioctl_set);
1230 
1231 static long sock_do_ioctl(struct net *net, struct socket *sock,
1232 			  unsigned int cmd, unsigned long arg)
1233 {
1234 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1235 	struct ifreq ifr;
1236 	bool need_copyout;
1237 	int err;
1238 	void __user *argp = (void __user *)arg;
1239 	void __user *data;
1240 
1241 	err = ops->ioctl(sock, cmd, arg);
1242 
1243 	/*
1244 	 * If this ioctl is unknown try to hand it down
1245 	 * to the NIC driver.
1246 	 */
1247 	if (err != -ENOIOCTLCMD)
1248 		return err;
1249 
1250 	if (!is_socket_ioctl_cmd(cmd))
1251 		return -ENOTTY;
1252 
1253 	if (get_user_ifreq(&ifr, &data, argp))
1254 		return -EFAULT;
1255 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1256 	if (!err && need_copyout)
1257 		if (put_user_ifreq(&ifr, argp))
1258 			return -EFAULT;
1259 
1260 	return err;
1261 }
1262 
1263 /*
1264  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1265  *	what to do with it - that's up to the protocol still.
1266  */
1267 
1268 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1269 {
1270 	const struct proto_ops  *ops;
1271 	struct socket *sock;
1272 	struct sock *sk;
1273 	void __user *argp = (void __user *)arg;
1274 	int pid, err;
1275 	struct net *net;
1276 
1277 	sock = file->private_data;
1278 	ops = READ_ONCE(sock->ops);
1279 	sk = sock->sk;
1280 	net = sock_net(sk);
1281 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1282 		struct ifreq ifr;
1283 		void __user *data;
1284 		bool need_copyout;
1285 		if (get_user_ifreq(&ifr, &data, argp))
1286 			return -EFAULT;
1287 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1288 		if (!err && need_copyout)
1289 			if (put_user_ifreq(&ifr, argp))
1290 				return -EFAULT;
1291 	} else
1292 #ifdef CONFIG_WEXT_CORE
1293 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1294 		err = wext_handle_ioctl(net, cmd, argp);
1295 	} else
1296 #endif
1297 		switch (cmd) {
1298 		case FIOSETOWN:
1299 		case SIOCSPGRP:
1300 			err = -EFAULT;
1301 			if (get_user(pid, (int __user *)argp))
1302 				break;
1303 			err = f_setown(sock->file, pid, 1);
1304 			break;
1305 		case FIOGETOWN:
1306 		case SIOCGPGRP:
1307 			err = put_user(f_getown(sock->file),
1308 				       (int __user *)argp);
1309 			break;
1310 		case SIOCGIFBR:
1311 		case SIOCSIFBR:
1312 		case SIOCBRADDBR:
1313 		case SIOCBRDELBR:
1314 		case SIOCBRADDIF:
1315 		case SIOCBRDELIF:
1316 			err = br_ioctl_call(net, cmd, argp);
1317 			break;
1318 		case SIOCGIFVLAN:
1319 		case SIOCSIFVLAN:
1320 			err = -ENOPKG;
1321 			if (!vlan_ioctl_hook)
1322 				request_module("8021q");
1323 
1324 			mutex_lock(&vlan_ioctl_mutex);
1325 			if (vlan_ioctl_hook)
1326 				err = vlan_ioctl_hook(net, argp);
1327 			mutex_unlock(&vlan_ioctl_mutex);
1328 			break;
1329 		case SIOCGSKNS:
1330 			err = -EPERM;
1331 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1332 				break;
1333 
1334 			err = open_related_ns(&net->ns, get_net_ns);
1335 			break;
1336 		case SIOCGSTAMP_OLD:
1337 		case SIOCGSTAMPNS_OLD:
1338 			if (!ops->gettstamp) {
1339 				err = -ENOIOCTLCMD;
1340 				break;
1341 			}
1342 			err = ops->gettstamp(sock, argp,
1343 					     cmd == SIOCGSTAMP_OLD,
1344 					     !IS_ENABLED(CONFIG_64BIT));
1345 			break;
1346 		case SIOCGSTAMP_NEW:
1347 		case SIOCGSTAMPNS_NEW:
1348 			if (!ops->gettstamp) {
1349 				err = -ENOIOCTLCMD;
1350 				break;
1351 			}
1352 			err = ops->gettstamp(sock, argp,
1353 					     cmd == SIOCGSTAMP_NEW,
1354 					     false);
1355 			break;
1356 
1357 		case SIOCGIFCONF:
1358 			err = dev_ifconf(net, argp);
1359 			break;
1360 
1361 		default:
1362 			err = sock_do_ioctl(net, sock, cmd, arg);
1363 			break;
1364 		}
1365 	return err;
1366 }
1367 
1368 /**
1369  *	sock_create_lite - creates a socket
1370  *	@family: protocol family (AF_INET, ...)
1371  *	@type: communication type (SOCK_STREAM, ...)
1372  *	@protocol: protocol (0, ...)
1373  *	@res: new socket
1374  *
1375  *	Creates a new socket and assigns it to @res, passing through LSM.
1376  *	The new socket initialization is not complete, see kernel_accept().
1377  *	Returns 0 or an error. On failure @res is set to %NULL.
1378  *	This function internally uses GFP_KERNEL.
1379  */
1380 
1381 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1382 {
1383 	int err;
1384 	struct socket *sock = NULL;
1385 
1386 	err = security_socket_create(family, type, protocol, 1);
1387 	if (err)
1388 		goto out;
1389 
1390 	sock = sock_alloc();
1391 	if (!sock) {
1392 		err = -ENOMEM;
1393 		goto out;
1394 	}
1395 
1396 	sock->type = type;
1397 	err = security_socket_post_create(sock, family, type, protocol, 1);
1398 	if (err)
1399 		goto out_release;
1400 
1401 out:
1402 	*res = sock;
1403 	return err;
1404 out_release:
1405 	sock_release(sock);
1406 	sock = NULL;
1407 	goto out;
1408 }
1409 EXPORT_SYMBOL(sock_create_lite);
1410 
1411 /* No kernel lock held - perfect */
1412 static __poll_t sock_poll(struct file *file, poll_table *wait)
1413 {
1414 	struct socket *sock = file->private_data;
1415 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1416 	__poll_t events = poll_requested_events(wait), flag = 0;
1417 
1418 	if (!ops->poll)
1419 		return 0;
1420 
1421 	if (sk_can_busy_loop(sock->sk)) {
1422 		/* poll once if requested by the syscall */
1423 		if (events & POLL_BUSY_LOOP)
1424 			sk_busy_loop(sock->sk, 1);
1425 
1426 		/* if this socket can poll_ll, tell the system call */
1427 		flag = POLL_BUSY_LOOP;
1428 	}
1429 
1430 	return ops->poll(file, sock, wait) | flag;
1431 }
1432 
1433 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1434 {
1435 	struct socket *sock = file->private_data;
1436 
1437 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1438 }
1439 
1440 static int sock_close(struct inode *inode, struct file *filp)
1441 {
1442 	__sock_release(SOCKET_I(inode), inode);
1443 	return 0;
1444 }
1445 
1446 /*
1447  *	Update the socket async list
1448  *
1449  *	Fasync_list locking strategy.
1450  *
1451  *	1. fasync_list is modified only under process context socket lock
1452  *	   i.e. under semaphore.
1453  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1454  *	   or under socket lock
1455  */
1456 
1457 static int sock_fasync(int fd, struct file *filp, int on)
1458 {
1459 	struct socket *sock = filp->private_data;
1460 	struct sock *sk = sock->sk;
1461 	struct socket_wq *wq = &sock->wq;
1462 
1463 	if (sk == NULL)
1464 		return -EINVAL;
1465 
1466 	lock_sock(sk);
1467 	fasync_helper(fd, filp, on, &wq->fasync_list);
1468 
1469 	if (!wq->fasync_list)
1470 		sock_reset_flag(sk, SOCK_FASYNC);
1471 	else
1472 		sock_set_flag(sk, SOCK_FASYNC);
1473 
1474 	release_sock(sk);
1475 	return 0;
1476 }
1477 
1478 /* This function may be called only under rcu_lock */
1479 
1480 int sock_wake_async(struct socket_wq *wq, int how, int band)
1481 {
1482 	if (!wq || !wq->fasync_list)
1483 		return -1;
1484 
1485 	switch (how) {
1486 	case SOCK_WAKE_WAITD:
1487 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1488 			break;
1489 		goto call_kill;
1490 	case SOCK_WAKE_SPACE:
1491 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1492 			break;
1493 		fallthrough;
1494 	case SOCK_WAKE_IO:
1495 call_kill:
1496 		kill_fasync(&wq->fasync_list, SIGIO, band);
1497 		break;
1498 	case SOCK_WAKE_URG:
1499 		kill_fasync(&wq->fasync_list, SIGURG, band);
1500 	}
1501 
1502 	return 0;
1503 }
1504 EXPORT_SYMBOL(sock_wake_async);
1505 
1506 /**
1507  *	__sock_create - creates a socket
1508  *	@net: net namespace
1509  *	@family: protocol family (AF_INET, ...)
1510  *	@type: communication type (SOCK_STREAM, ...)
1511  *	@protocol: protocol (0, ...)
1512  *	@res: new socket
1513  *	@kern: boolean for kernel space sockets
1514  *
1515  *	Creates a new socket and assigns it to @res, passing through LSM.
1516  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1517  *	be set to true if the socket resides in kernel space.
1518  *	This function internally uses GFP_KERNEL.
1519  */
1520 
1521 int __sock_create(struct net *net, int family, int type, int protocol,
1522 			 struct socket **res, int kern)
1523 {
1524 	int err;
1525 	struct socket *sock;
1526 	const struct net_proto_family *pf;
1527 
1528 	/*
1529 	 *      Check protocol is in range
1530 	 */
1531 	if (family < 0 || family >= NPROTO)
1532 		return -EAFNOSUPPORT;
1533 	if (type < 0 || type >= SOCK_MAX)
1534 		return -EINVAL;
1535 
1536 	/* Compatibility.
1537 
1538 	   This uglymoron is moved from INET layer to here to avoid
1539 	   deadlock in module load.
1540 	 */
1541 	if (family == PF_INET && type == SOCK_PACKET) {
1542 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1543 			     current->comm);
1544 		family = PF_PACKET;
1545 	}
1546 
1547 	err = security_socket_create(family, type, protocol, kern);
1548 	if (err)
1549 		return err;
1550 
1551 	/*
1552 	 *	Allocate the socket and allow the family to set things up. if
1553 	 *	the protocol is 0, the family is instructed to select an appropriate
1554 	 *	default.
1555 	 */
1556 	sock = sock_alloc();
1557 	if (!sock) {
1558 		net_warn_ratelimited("socket: no more sockets\n");
1559 		return -ENFILE;	/* Not exactly a match, but its the
1560 				   closest posix thing */
1561 	}
1562 
1563 	sock->type = type;
1564 
1565 #ifdef CONFIG_MODULES
1566 	/* Attempt to load a protocol module if the find failed.
1567 	 *
1568 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1569 	 * requested real, full-featured networking support upon configuration.
1570 	 * Otherwise module support will break!
1571 	 */
1572 	if (rcu_access_pointer(net_families[family]) == NULL)
1573 		request_module("net-pf-%d", family);
1574 #endif
1575 
1576 	rcu_read_lock();
1577 	pf = rcu_dereference(net_families[family]);
1578 	err = -EAFNOSUPPORT;
1579 	if (!pf)
1580 		goto out_release;
1581 
1582 	/*
1583 	 * We will call the ->create function, that possibly is in a loadable
1584 	 * module, so we have to bump that loadable module refcnt first.
1585 	 */
1586 	if (!try_module_get(pf->owner))
1587 		goto out_release;
1588 
1589 	/* Now protected by module ref count */
1590 	rcu_read_unlock();
1591 
1592 	err = pf->create(net, sock, protocol, kern);
1593 	if (err < 0) {
1594 		/* ->create should release the allocated sock->sk object on error
1595 		 * and make sure sock->sk is set to NULL to avoid use-after-free
1596 		 */
1597 		DEBUG_NET_WARN_ONCE(sock->sk,
1598 				    "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1599 				    pf->create, family, type, protocol);
1600 		goto out_module_put;
1601 	}
1602 
1603 	/*
1604 	 * Now to bump the refcnt of the [loadable] module that owns this
1605 	 * socket at sock_release time we decrement its refcnt.
1606 	 */
1607 	if (!try_module_get(sock->ops->owner))
1608 		goto out_module_busy;
1609 
1610 	/*
1611 	 * Now that we're done with the ->create function, the [loadable]
1612 	 * module can have its refcnt decremented
1613 	 */
1614 	module_put(pf->owner);
1615 	err = security_socket_post_create(sock, family, type, protocol, kern);
1616 	if (err)
1617 		goto out_sock_release;
1618 	*res = sock;
1619 
1620 	return 0;
1621 
1622 out_module_busy:
1623 	err = -EAFNOSUPPORT;
1624 out_module_put:
1625 	sock->ops = NULL;
1626 	module_put(pf->owner);
1627 out_sock_release:
1628 	sock_release(sock);
1629 	return err;
1630 
1631 out_release:
1632 	rcu_read_unlock();
1633 	goto out_sock_release;
1634 }
1635 EXPORT_SYMBOL(__sock_create);
1636 
1637 /**
1638  *	sock_create - creates a socket
1639  *	@family: protocol family (AF_INET, ...)
1640  *	@type: communication type (SOCK_STREAM, ...)
1641  *	@protocol: protocol (0, ...)
1642  *	@res: new socket
1643  *
1644  *	A wrapper around __sock_create().
1645  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1646  */
1647 
1648 int sock_create(int family, int type, int protocol, struct socket **res)
1649 {
1650 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1651 }
1652 EXPORT_SYMBOL(sock_create);
1653 
1654 /**
1655  *	sock_create_kern - creates a socket (kernel space)
1656  *	@net: net namespace
1657  *	@family: protocol family (AF_INET, ...)
1658  *	@type: communication type (SOCK_STREAM, ...)
1659  *	@protocol: protocol (0, ...)
1660  *	@res: new socket
1661  *
1662  *	A wrapper around __sock_create().
1663  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1664  */
1665 
1666 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1667 {
1668 	return __sock_create(net, family, type, protocol, res, 1);
1669 }
1670 EXPORT_SYMBOL(sock_create_kern);
1671 
1672 static struct socket *__sys_socket_create(int family, int type, int protocol)
1673 {
1674 	struct socket *sock;
1675 	int retval;
1676 
1677 	/* Check the SOCK_* constants for consistency.  */
1678 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1679 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1680 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1681 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1682 
1683 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1684 		return ERR_PTR(-EINVAL);
1685 	type &= SOCK_TYPE_MASK;
1686 
1687 	retval = sock_create(family, type, protocol, &sock);
1688 	if (retval < 0)
1689 		return ERR_PTR(retval);
1690 
1691 	return sock;
1692 }
1693 
1694 struct file *__sys_socket_file(int family, int type, int protocol)
1695 {
1696 	struct socket *sock;
1697 	int flags;
1698 
1699 	sock = __sys_socket_create(family, type, protocol);
1700 	if (IS_ERR(sock))
1701 		return ERR_CAST(sock);
1702 
1703 	flags = type & ~SOCK_TYPE_MASK;
1704 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1705 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1706 
1707 	return sock_alloc_file(sock, flags, NULL);
1708 }
1709 
1710 /*	A hook for bpf progs to attach to and update socket protocol.
1711  *
1712  *	A static noinline declaration here could cause the compiler to
1713  *	optimize away the function. A global noinline declaration will
1714  *	keep the definition, but may optimize away the callsite.
1715  *	Therefore, __weak is needed to ensure that the call is still
1716  *	emitted, by telling the compiler that we don't know what the
1717  *	function might eventually be.
1718  */
1719 
1720 __bpf_hook_start();
1721 
1722 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1723 {
1724 	return protocol;
1725 }
1726 
1727 __bpf_hook_end();
1728 
1729 int __sys_socket(int family, int type, int protocol)
1730 {
1731 	struct socket *sock;
1732 	int flags;
1733 
1734 	sock = __sys_socket_create(family, type,
1735 				   update_socket_protocol(family, type, protocol));
1736 	if (IS_ERR(sock))
1737 		return PTR_ERR(sock);
1738 
1739 	flags = type & ~SOCK_TYPE_MASK;
1740 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1741 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1742 
1743 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1744 }
1745 
1746 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1747 {
1748 	return __sys_socket(family, type, protocol);
1749 }
1750 
1751 /*
1752  *	Create a pair of connected sockets.
1753  */
1754 
1755 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1756 {
1757 	struct socket *sock1, *sock2;
1758 	int fd1, fd2, err;
1759 	struct file *newfile1, *newfile2;
1760 	int flags;
1761 
1762 	flags = type & ~SOCK_TYPE_MASK;
1763 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1764 		return -EINVAL;
1765 	type &= SOCK_TYPE_MASK;
1766 
1767 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1768 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1769 
1770 	/*
1771 	 * reserve descriptors and make sure we won't fail
1772 	 * to return them to userland.
1773 	 */
1774 	fd1 = get_unused_fd_flags(flags);
1775 	if (unlikely(fd1 < 0))
1776 		return fd1;
1777 
1778 	fd2 = get_unused_fd_flags(flags);
1779 	if (unlikely(fd2 < 0)) {
1780 		put_unused_fd(fd1);
1781 		return fd2;
1782 	}
1783 
1784 	err = put_user(fd1, &usockvec[0]);
1785 	if (err)
1786 		goto out;
1787 
1788 	err = put_user(fd2, &usockvec[1]);
1789 	if (err)
1790 		goto out;
1791 
1792 	/*
1793 	 * Obtain the first socket and check if the underlying protocol
1794 	 * supports the socketpair call.
1795 	 */
1796 
1797 	err = sock_create(family, type, protocol, &sock1);
1798 	if (unlikely(err < 0))
1799 		goto out;
1800 
1801 	err = sock_create(family, type, protocol, &sock2);
1802 	if (unlikely(err < 0)) {
1803 		sock_release(sock1);
1804 		goto out;
1805 	}
1806 
1807 	err = security_socket_socketpair(sock1, sock2);
1808 	if (unlikely(err)) {
1809 		sock_release(sock2);
1810 		sock_release(sock1);
1811 		goto out;
1812 	}
1813 
1814 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1815 	if (unlikely(err < 0)) {
1816 		sock_release(sock2);
1817 		sock_release(sock1);
1818 		goto out;
1819 	}
1820 
1821 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1822 	if (IS_ERR(newfile1)) {
1823 		err = PTR_ERR(newfile1);
1824 		sock_release(sock2);
1825 		goto out;
1826 	}
1827 
1828 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1829 	if (IS_ERR(newfile2)) {
1830 		err = PTR_ERR(newfile2);
1831 		fput(newfile1);
1832 		goto out;
1833 	}
1834 
1835 	audit_fd_pair(fd1, fd2);
1836 
1837 	fd_install(fd1, newfile1);
1838 	fd_install(fd2, newfile2);
1839 	return 0;
1840 
1841 out:
1842 	put_unused_fd(fd2);
1843 	put_unused_fd(fd1);
1844 	return err;
1845 }
1846 
1847 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1848 		int __user *, usockvec)
1849 {
1850 	return __sys_socketpair(family, type, protocol, usockvec);
1851 }
1852 
1853 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1854 		      int addrlen)
1855 {
1856 	int err;
1857 
1858 	err = security_socket_bind(sock, (struct sockaddr *)address,
1859 				   addrlen);
1860 	if (!err)
1861 		err = READ_ONCE(sock->ops)->bind(sock,
1862 						 (struct sockaddr *)address,
1863 						 addrlen);
1864 	return err;
1865 }
1866 
1867 /*
1868  *	Bind a name to a socket. Nothing much to do here since it's
1869  *	the protocol's responsibility to handle the local address.
1870  *
1871  *	We move the socket address to kernel space before we call
1872  *	the protocol layer (having also checked the address is ok).
1873  */
1874 
1875 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1876 {
1877 	struct socket *sock;
1878 	struct sockaddr_storage address;
1879 	CLASS(fd, f)(fd);
1880 	int err;
1881 
1882 	if (fd_empty(f))
1883 		return -EBADF;
1884 	sock = sock_from_file(fd_file(f));
1885 	if (unlikely(!sock))
1886 		return -ENOTSOCK;
1887 
1888 	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1889 	if (unlikely(err))
1890 		return err;
1891 
1892 	return __sys_bind_socket(sock, &address, addrlen);
1893 }
1894 
1895 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1896 {
1897 	return __sys_bind(fd, umyaddr, addrlen);
1898 }
1899 
1900 /*
1901  *	Perform a listen. Basically, we allow the protocol to do anything
1902  *	necessary for a listen, and if that works, we mark the socket as
1903  *	ready for listening.
1904  */
1905 int __sys_listen_socket(struct socket *sock, int backlog)
1906 {
1907 	int somaxconn, err;
1908 
1909 	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1910 	if ((unsigned int)backlog > somaxconn)
1911 		backlog = somaxconn;
1912 
1913 	err = security_socket_listen(sock, backlog);
1914 	if (!err)
1915 		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1916 	return err;
1917 }
1918 
1919 int __sys_listen(int fd, int backlog)
1920 {
1921 	CLASS(fd, f)(fd);
1922 	struct socket *sock;
1923 
1924 	if (fd_empty(f))
1925 		return -EBADF;
1926 	sock = sock_from_file(fd_file(f));
1927 	if (unlikely(!sock))
1928 		return -ENOTSOCK;
1929 
1930 	return __sys_listen_socket(sock, backlog);
1931 }
1932 
1933 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1934 {
1935 	return __sys_listen(fd, backlog);
1936 }
1937 
1938 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1939 		       struct sockaddr __user *upeer_sockaddr,
1940 		       int __user *upeer_addrlen, int flags)
1941 {
1942 	struct socket *sock, *newsock;
1943 	struct file *newfile;
1944 	int err, len;
1945 	struct sockaddr_storage address;
1946 	const struct proto_ops *ops;
1947 
1948 	sock = sock_from_file(file);
1949 	if (!sock)
1950 		return ERR_PTR(-ENOTSOCK);
1951 
1952 	newsock = sock_alloc();
1953 	if (!newsock)
1954 		return ERR_PTR(-ENFILE);
1955 	ops = READ_ONCE(sock->ops);
1956 
1957 	newsock->type = sock->type;
1958 	newsock->ops = ops;
1959 
1960 	/*
1961 	 * We don't need try_module_get here, as the listening socket (sock)
1962 	 * has the protocol module (sock->ops->owner) held.
1963 	 */
1964 	__module_get(ops->owner);
1965 
1966 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1967 	if (IS_ERR(newfile))
1968 		return newfile;
1969 
1970 	err = security_socket_accept(sock, newsock);
1971 	if (err)
1972 		goto out_fd;
1973 
1974 	arg->flags |= sock->file->f_flags;
1975 	err = ops->accept(sock, newsock, arg);
1976 	if (err < 0)
1977 		goto out_fd;
1978 
1979 	if (upeer_sockaddr) {
1980 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1981 		if (len < 0) {
1982 			err = -ECONNABORTED;
1983 			goto out_fd;
1984 		}
1985 		err = move_addr_to_user(&address,
1986 					len, upeer_sockaddr, upeer_addrlen);
1987 		if (err < 0)
1988 			goto out_fd;
1989 	}
1990 
1991 	/* File flags are not inherited via accept() unlike another OSes. */
1992 	return newfile;
1993 out_fd:
1994 	fput(newfile);
1995 	return ERR_PTR(err);
1996 }
1997 
1998 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1999 			      int __user *upeer_addrlen, int flags)
2000 {
2001 	struct proto_accept_arg arg = { };
2002 	struct file *newfile;
2003 	int newfd;
2004 
2005 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
2006 		return -EINVAL;
2007 
2008 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
2009 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
2010 
2011 	newfd = get_unused_fd_flags(flags);
2012 	if (unlikely(newfd < 0))
2013 		return newfd;
2014 
2015 	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
2016 			    flags);
2017 	if (IS_ERR(newfile)) {
2018 		put_unused_fd(newfd);
2019 		return PTR_ERR(newfile);
2020 	}
2021 	fd_install(newfd, newfile);
2022 	return newfd;
2023 }
2024 
2025 /*
2026  *	For accept, we attempt to create a new socket, set up the link
2027  *	with the client, wake up the client, then return the new
2028  *	connected fd. We collect the address of the connector in kernel
2029  *	space and move it to user at the very end. This is unclean because
2030  *	we open the socket then return an error.
2031  *
2032  *	1003.1g adds the ability to recvmsg() to query connection pending
2033  *	status to recvmsg. We need to add that support in a way thats
2034  *	clean when we restructure accept also.
2035  */
2036 
2037 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2038 		  int __user *upeer_addrlen, int flags)
2039 {
2040 	CLASS(fd, f)(fd);
2041 
2042 	if (fd_empty(f))
2043 		return -EBADF;
2044 	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2045 					 upeer_addrlen, flags);
2046 }
2047 
2048 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2049 		int __user *, upeer_addrlen, int, flags)
2050 {
2051 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2052 }
2053 
2054 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2055 		int __user *, upeer_addrlen)
2056 {
2057 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2058 }
2059 
2060 /*
2061  *	Attempt to connect to a socket with the server address.  The address
2062  *	is in user space so we verify it is OK and move it to kernel space.
2063  *
2064  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2065  *	break bindings
2066  *
2067  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2068  *	other SEQPACKET protocols that take time to connect() as it doesn't
2069  *	include the -EINPROGRESS status for such sockets.
2070  */
2071 
2072 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2073 		       int addrlen, int file_flags)
2074 {
2075 	struct socket *sock;
2076 	int err;
2077 
2078 	sock = sock_from_file(file);
2079 	if (!sock) {
2080 		err = -ENOTSOCK;
2081 		goto out;
2082 	}
2083 
2084 	err =
2085 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2086 	if (err)
2087 		goto out;
2088 
2089 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2090 				addrlen, sock->file->f_flags | file_flags);
2091 out:
2092 	return err;
2093 }
2094 
2095 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2096 {
2097 	struct sockaddr_storage address;
2098 	CLASS(fd, f)(fd);
2099 	int ret;
2100 
2101 	if (fd_empty(f))
2102 		return -EBADF;
2103 
2104 	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2105 	if (ret)
2106 		return ret;
2107 
2108 	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2109 }
2110 
2111 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2112 		int, addrlen)
2113 {
2114 	return __sys_connect(fd, uservaddr, addrlen);
2115 }
2116 
2117 /*
2118  *	Get the local address ('name') of a socket object. Move the obtained
2119  *	name to user space.
2120  */
2121 
2122 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2123 		      int __user *usockaddr_len)
2124 {
2125 	struct socket *sock;
2126 	struct sockaddr_storage address;
2127 	CLASS(fd, f)(fd);
2128 	int err;
2129 
2130 	if (fd_empty(f))
2131 		return -EBADF;
2132 	sock = sock_from_file(fd_file(f));
2133 	if (unlikely(!sock))
2134 		return -ENOTSOCK;
2135 
2136 	err = security_socket_getsockname(sock);
2137 	if (err)
2138 		return err;
2139 
2140 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2141 	if (err < 0)
2142 		return err;
2143 
2144 	/* "err" is actually length in this case */
2145 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2146 }
2147 
2148 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2149 		int __user *, usockaddr_len)
2150 {
2151 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2152 }
2153 
2154 /*
2155  *	Get the remote address ('name') of a socket object. Move the obtained
2156  *	name to user space.
2157  */
2158 
2159 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2160 		      int __user *usockaddr_len)
2161 {
2162 	struct socket *sock;
2163 	struct sockaddr_storage address;
2164 	CLASS(fd, f)(fd);
2165 	int err;
2166 
2167 	if (fd_empty(f))
2168 		return -EBADF;
2169 	sock = sock_from_file(fd_file(f));
2170 	if (unlikely(!sock))
2171 		return -ENOTSOCK;
2172 
2173 	err = security_socket_getpeername(sock);
2174 	if (err)
2175 		return err;
2176 
2177 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2178 	if (err < 0)
2179 		return err;
2180 
2181 	/* "err" is actually length in this case */
2182 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2183 }
2184 
2185 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2186 		int __user *, usockaddr_len)
2187 {
2188 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2189 }
2190 
2191 /*
2192  *	Send a datagram to a given address. We move the address into kernel
2193  *	space and check the user space data area is readable before invoking
2194  *	the protocol.
2195  */
2196 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2197 		 struct sockaddr __user *addr,  int addr_len)
2198 {
2199 	struct socket *sock;
2200 	struct sockaddr_storage address;
2201 	int err;
2202 	struct msghdr msg;
2203 
2204 	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2205 	if (unlikely(err))
2206 		return err;
2207 
2208 	CLASS(fd, f)(fd);
2209 	if (fd_empty(f))
2210 		return -EBADF;
2211 	sock = sock_from_file(fd_file(f));
2212 	if (unlikely(!sock))
2213 		return -ENOTSOCK;
2214 
2215 	msg.msg_name = NULL;
2216 	msg.msg_control = NULL;
2217 	msg.msg_controllen = 0;
2218 	msg.msg_namelen = 0;
2219 	msg.msg_ubuf = NULL;
2220 	if (addr) {
2221 		err = move_addr_to_kernel(addr, addr_len, &address);
2222 		if (err < 0)
2223 			return err;
2224 		msg.msg_name = (struct sockaddr *)&address;
2225 		msg.msg_namelen = addr_len;
2226 	}
2227 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2228 	if (sock->file->f_flags & O_NONBLOCK)
2229 		flags |= MSG_DONTWAIT;
2230 	msg.msg_flags = flags;
2231 	return __sock_sendmsg(sock, &msg);
2232 }
2233 
2234 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2235 		unsigned int, flags, struct sockaddr __user *, addr,
2236 		int, addr_len)
2237 {
2238 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2239 }
2240 
2241 /*
2242  *	Send a datagram down a socket.
2243  */
2244 
2245 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2246 		unsigned int, flags)
2247 {
2248 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2249 }
2250 
2251 /*
2252  *	Receive a frame from the socket and optionally record the address of the
2253  *	sender. We verify the buffers are writable and if needed move the
2254  *	sender address from kernel to user space.
2255  */
2256 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2257 		   struct sockaddr __user *addr, int __user *addr_len)
2258 {
2259 	struct sockaddr_storage address;
2260 	struct msghdr msg = {
2261 		/* Save some cycles and don't copy the address if not needed */
2262 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2263 	};
2264 	struct socket *sock;
2265 	int err, err2;
2266 
2267 	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2268 	if (unlikely(err))
2269 		return err;
2270 
2271 	CLASS(fd, f)(fd);
2272 
2273 	if (fd_empty(f))
2274 		return -EBADF;
2275 	sock = sock_from_file(fd_file(f));
2276 	if (unlikely(!sock))
2277 		return -ENOTSOCK;
2278 
2279 	if (sock->file->f_flags & O_NONBLOCK)
2280 		flags |= MSG_DONTWAIT;
2281 	err = sock_recvmsg(sock, &msg, flags);
2282 
2283 	if (err >= 0 && addr != NULL) {
2284 		err2 = move_addr_to_user(&address,
2285 					 msg.msg_namelen, addr, addr_len);
2286 		if (err2 < 0)
2287 			err = err2;
2288 	}
2289 	return err;
2290 }
2291 
2292 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2293 		unsigned int, flags, struct sockaddr __user *, addr,
2294 		int __user *, addr_len)
2295 {
2296 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2297 }
2298 
2299 /*
2300  *	Receive a datagram from a socket.
2301  */
2302 
2303 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2304 		unsigned int, flags)
2305 {
2306 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2307 }
2308 
2309 static bool sock_use_custom_sol_socket(const struct socket *sock)
2310 {
2311 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2312 }
2313 
2314 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2315 		       int optname, sockptr_t optval, int optlen)
2316 {
2317 	const struct proto_ops *ops;
2318 	char *kernel_optval = NULL;
2319 	int err;
2320 
2321 	if (optlen < 0)
2322 		return -EINVAL;
2323 
2324 	err = security_socket_setsockopt(sock, level, optname);
2325 	if (err)
2326 		goto out_put;
2327 
2328 	if (!compat)
2329 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2330 						     optval, &optlen,
2331 						     &kernel_optval);
2332 	if (err < 0)
2333 		goto out_put;
2334 	if (err > 0) {
2335 		err = 0;
2336 		goto out_put;
2337 	}
2338 
2339 	if (kernel_optval)
2340 		optval = KERNEL_SOCKPTR(kernel_optval);
2341 	ops = READ_ONCE(sock->ops);
2342 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2343 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2344 	else if (unlikely(!ops->setsockopt))
2345 		err = -EOPNOTSUPP;
2346 	else
2347 		err = ops->setsockopt(sock, level, optname, optval,
2348 					    optlen);
2349 	kfree(kernel_optval);
2350 out_put:
2351 	return err;
2352 }
2353 EXPORT_SYMBOL(do_sock_setsockopt);
2354 
2355 /* Set a socket option. Because we don't know the option lengths we have
2356  * to pass the user mode parameter for the protocols to sort out.
2357  */
2358 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2359 		     int optlen)
2360 {
2361 	sockptr_t optval = USER_SOCKPTR(user_optval);
2362 	bool compat = in_compat_syscall();
2363 	struct socket *sock;
2364 	CLASS(fd, f)(fd);
2365 
2366 	if (fd_empty(f))
2367 		return -EBADF;
2368 	sock = sock_from_file(fd_file(f));
2369 	if (unlikely(!sock))
2370 		return -ENOTSOCK;
2371 
2372 	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2373 }
2374 
2375 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2376 		char __user *, optval, int, optlen)
2377 {
2378 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2379 }
2380 
2381 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2382 							 int optname));
2383 
2384 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2385 		       int optname, sockptr_t optval, sockptr_t optlen)
2386 {
2387 	int max_optlen __maybe_unused = 0;
2388 	const struct proto_ops *ops;
2389 	int err;
2390 
2391 	err = security_socket_getsockopt(sock, level, optname);
2392 	if (err)
2393 		return err;
2394 
2395 	if (!compat)
2396 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2397 
2398 	ops = READ_ONCE(sock->ops);
2399 	if (level == SOL_SOCKET) {
2400 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2401 	} else if (unlikely(!ops->getsockopt)) {
2402 		err = -EOPNOTSUPP;
2403 	} else {
2404 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2405 			      "Invalid argument type"))
2406 			return -EOPNOTSUPP;
2407 
2408 		err = ops->getsockopt(sock, level, optname, optval.user,
2409 				      optlen.user);
2410 	}
2411 
2412 	if (!compat)
2413 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2414 						     optval, optlen, max_optlen,
2415 						     err);
2416 
2417 	return err;
2418 }
2419 EXPORT_SYMBOL(do_sock_getsockopt);
2420 
2421 /*
2422  *	Get a socket option. Because we don't know the option lengths we have
2423  *	to pass a user mode parameter for the protocols to sort out.
2424  */
2425 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2426 		int __user *optlen)
2427 {
2428 	struct socket *sock;
2429 	CLASS(fd, f)(fd);
2430 
2431 	if (fd_empty(f))
2432 		return -EBADF;
2433 	sock = sock_from_file(fd_file(f));
2434 	if (unlikely(!sock))
2435 		return -ENOTSOCK;
2436 
2437 	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2438 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2439 }
2440 
2441 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2442 		char __user *, optval, int __user *, optlen)
2443 {
2444 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2445 }
2446 
2447 /*
2448  *	Shutdown a socket.
2449  */
2450 
2451 int __sys_shutdown_sock(struct socket *sock, int how)
2452 {
2453 	int err;
2454 
2455 	err = security_socket_shutdown(sock, how);
2456 	if (!err)
2457 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2458 
2459 	return err;
2460 }
2461 
2462 int __sys_shutdown(int fd, int how)
2463 {
2464 	struct socket *sock;
2465 	CLASS(fd, f)(fd);
2466 
2467 	if (fd_empty(f))
2468 		return -EBADF;
2469 	sock = sock_from_file(fd_file(f));
2470 	if (unlikely(!sock))
2471 		return -ENOTSOCK;
2472 
2473 	return __sys_shutdown_sock(sock, how);
2474 }
2475 
2476 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2477 {
2478 	return __sys_shutdown(fd, how);
2479 }
2480 
2481 /* A couple of helpful macros for getting the address of the 32/64 bit
2482  * fields which are the same type (int / unsigned) on our platforms.
2483  */
2484 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2485 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2486 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2487 
2488 struct used_address {
2489 	struct sockaddr_storage name;
2490 	unsigned int name_len;
2491 };
2492 
2493 int __copy_msghdr(struct msghdr *kmsg,
2494 		  struct user_msghdr *msg,
2495 		  struct sockaddr __user **save_addr)
2496 {
2497 	ssize_t err;
2498 
2499 	kmsg->msg_control_is_user = true;
2500 	kmsg->msg_get_inq = 0;
2501 	kmsg->msg_control_user = msg->msg_control;
2502 	kmsg->msg_controllen = msg->msg_controllen;
2503 	kmsg->msg_flags = msg->msg_flags;
2504 
2505 	kmsg->msg_namelen = msg->msg_namelen;
2506 	if (!msg->msg_name)
2507 		kmsg->msg_namelen = 0;
2508 
2509 	if (kmsg->msg_namelen < 0)
2510 		return -EINVAL;
2511 
2512 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2513 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2514 
2515 	if (save_addr)
2516 		*save_addr = msg->msg_name;
2517 
2518 	if (msg->msg_name && kmsg->msg_namelen) {
2519 		if (!save_addr) {
2520 			err = move_addr_to_kernel(msg->msg_name,
2521 						  kmsg->msg_namelen,
2522 						  kmsg->msg_name);
2523 			if (err < 0)
2524 				return err;
2525 		}
2526 	} else {
2527 		kmsg->msg_name = NULL;
2528 		kmsg->msg_namelen = 0;
2529 	}
2530 
2531 	if (msg->msg_iovlen > UIO_MAXIOV)
2532 		return -EMSGSIZE;
2533 
2534 	kmsg->msg_iocb = NULL;
2535 	kmsg->msg_ubuf = NULL;
2536 	return 0;
2537 }
2538 
2539 static int copy_msghdr_from_user(struct msghdr *kmsg,
2540 				 struct user_msghdr __user *umsg,
2541 				 struct sockaddr __user **save_addr,
2542 				 struct iovec **iov)
2543 {
2544 	struct user_msghdr msg;
2545 	ssize_t err;
2546 
2547 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2548 		return -EFAULT;
2549 
2550 	err = __copy_msghdr(kmsg, &msg, save_addr);
2551 	if (err)
2552 		return err;
2553 
2554 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2555 			    msg.msg_iov, msg.msg_iovlen,
2556 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2557 	return err < 0 ? err : 0;
2558 }
2559 
2560 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2561 			   unsigned int flags, struct used_address *used_address,
2562 			   unsigned int allowed_msghdr_flags)
2563 {
2564 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2565 				__aligned(sizeof(__kernel_size_t));
2566 	/* 20 is size of ipv6_pktinfo */
2567 	unsigned char *ctl_buf = ctl;
2568 	int ctl_len;
2569 	ssize_t err;
2570 
2571 	err = -ENOBUFS;
2572 
2573 	if (msg_sys->msg_controllen > INT_MAX)
2574 		goto out;
2575 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2576 	ctl_len = msg_sys->msg_controllen;
2577 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2578 		err =
2579 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2580 						     sizeof(ctl));
2581 		if (err)
2582 			goto out;
2583 		ctl_buf = msg_sys->msg_control;
2584 		ctl_len = msg_sys->msg_controllen;
2585 	} else if (ctl_len) {
2586 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2587 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2588 		if (ctl_len > sizeof(ctl)) {
2589 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2590 			if (ctl_buf == NULL)
2591 				goto out;
2592 		}
2593 		err = -EFAULT;
2594 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2595 			goto out_freectl;
2596 		msg_sys->msg_control = ctl_buf;
2597 		msg_sys->msg_control_is_user = false;
2598 	}
2599 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2600 	msg_sys->msg_flags = flags;
2601 
2602 	if (sock->file->f_flags & O_NONBLOCK)
2603 		msg_sys->msg_flags |= MSG_DONTWAIT;
2604 	/*
2605 	 * If this is sendmmsg() and current destination address is same as
2606 	 * previously succeeded address, omit asking LSM's decision.
2607 	 * used_address->name_len is initialized to UINT_MAX so that the first
2608 	 * destination address never matches.
2609 	 */
2610 	if (used_address && msg_sys->msg_name &&
2611 	    used_address->name_len == msg_sys->msg_namelen &&
2612 	    !memcmp(&used_address->name, msg_sys->msg_name,
2613 		    used_address->name_len)) {
2614 		err = sock_sendmsg_nosec(sock, msg_sys);
2615 		goto out_freectl;
2616 	}
2617 	err = __sock_sendmsg(sock, msg_sys);
2618 	/*
2619 	 * If this is sendmmsg() and sending to current destination address was
2620 	 * successful, remember it.
2621 	 */
2622 	if (used_address && err >= 0) {
2623 		used_address->name_len = msg_sys->msg_namelen;
2624 		if (msg_sys->msg_name)
2625 			memcpy(&used_address->name, msg_sys->msg_name,
2626 			       used_address->name_len);
2627 	}
2628 
2629 out_freectl:
2630 	if (ctl_buf != ctl)
2631 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2632 out:
2633 	return err;
2634 }
2635 
2636 static int sendmsg_copy_msghdr(struct msghdr *msg,
2637 			       struct user_msghdr __user *umsg, unsigned flags,
2638 			       struct iovec **iov)
2639 {
2640 	int err;
2641 
2642 	if (flags & MSG_CMSG_COMPAT) {
2643 		struct compat_msghdr __user *msg_compat;
2644 
2645 		msg_compat = (struct compat_msghdr __user *) umsg;
2646 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2647 	} else {
2648 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2649 	}
2650 	if (err < 0)
2651 		return err;
2652 
2653 	return 0;
2654 }
2655 
2656 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2657 			 struct msghdr *msg_sys, unsigned int flags,
2658 			 struct used_address *used_address,
2659 			 unsigned int allowed_msghdr_flags)
2660 {
2661 	struct sockaddr_storage address;
2662 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2663 	ssize_t err;
2664 
2665 	msg_sys->msg_name = &address;
2666 
2667 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2668 	if (err < 0)
2669 		return err;
2670 
2671 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2672 				allowed_msghdr_flags);
2673 	kfree(iov);
2674 	return err;
2675 }
2676 
2677 /*
2678  *	BSD sendmsg interface
2679  */
2680 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2681 			unsigned int flags)
2682 {
2683 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2684 }
2685 
2686 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2687 		   bool forbid_cmsg_compat)
2688 {
2689 	struct msghdr msg_sys;
2690 	struct socket *sock;
2691 
2692 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2693 		return -EINVAL;
2694 
2695 	CLASS(fd, f)(fd);
2696 
2697 	if (fd_empty(f))
2698 		return -EBADF;
2699 	sock = sock_from_file(fd_file(f));
2700 	if (unlikely(!sock))
2701 		return -ENOTSOCK;
2702 
2703 	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2704 }
2705 
2706 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2707 {
2708 	return __sys_sendmsg(fd, msg, flags, true);
2709 }
2710 
2711 /*
2712  *	Linux sendmmsg interface
2713  */
2714 
2715 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2716 		   unsigned int flags, bool forbid_cmsg_compat)
2717 {
2718 	int err, datagrams;
2719 	struct socket *sock;
2720 	struct mmsghdr __user *entry;
2721 	struct compat_mmsghdr __user *compat_entry;
2722 	struct msghdr msg_sys;
2723 	struct used_address used_address;
2724 	unsigned int oflags = flags;
2725 
2726 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2727 		return -EINVAL;
2728 
2729 	if (vlen > UIO_MAXIOV)
2730 		vlen = UIO_MAXIOV;
2731 
2732 	datagrams = 0;
2733 
2734 	CLASS(fd, f)(fd);
2735 
2736 	if (fd_empty(f))
2737 		return -EBADF;
2738 	sock = sock_from_file(fd_file(f));
2739 	if (unlikely(!sock))
2740 		return -ENOTSOCK;
2741 
2742 	used_address.name_len = UINT_MAX;
2743 	entry = mmsg;
2744 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2745 	err = 0;
2746 	flags |= MSG_BATCH;
2747 
2748 	while (datagrams < vlen) {
2749 		if (datagrams == vlen - 1)
2750 			flags = oflags;
2751 
2752 		if (MSG_CMSG_COMPAT & flags) {
2753 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2754 					     &msg_sys, flags, &used_address, MSG_EOR);
2755 			if (err < 0)
2756 				break;
2757 			err = __put_user(err, &compat_entry->msg_len);
2758 			++compat_entry;
2759 		} else {
2760 			err = ___sys_sendmsg(sock,
2761 					     (struct user_msghdr __user *)entry,
2762 					     &msg_sys, flags, &used_address, MSG_EOR);
2763 			if (err < 0)
2764 				break;
2765 			err = put_user(err, &entry->msg_len);
2766 			++entry;
2767 		}
2768 
2769 		if (err)
2770 			break;
2771 		++datagrams;
2772 		if (msg_data_left(&msg_sys))
2773 			break;
2774 		cond_resched();
2775 	}
2776 
2777 	/* We only return an error if no datagrams were able to be sent */
2778 	if (datagrams != 0)
2779 		return datagrams;
2780 
2781 	return err;
2782 }
2783 
2784 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2785 		unsigned int, vlen, unsigned int, flags)
2786 {
2787 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2788 }
2789 
2790 static int recvmsg_copy_msghdr(struct msghdr *msg,
2791 			       struct user_msghdr __user *umsg, unsigned flags,
2792 			       struct sockaddr __user **uaddr,
2793 			       struct iovec **iov)
2794 {
2795 	ssize_t err;
2796 
2797 	if (MSG_CMSG_COMPAT & flags) {
2798 		struct compat_msghdr __user *msg_compat;
2799 
2800 		msg_compat = (struct compat_msghdr __user *) umsg;
2801 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2802 	} else {
2803 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2804 	}
2805 	if (err < 0)
2806 		return err;
2807 
2808 	return 0;
2809 }
2810 
2811 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2812 			   struct user_msghdr __user *msg,
2813 			   struct sockaddr __user *uaddr,
2814 			   unsigned int flags, int nosec)
2815 {
2816 	struct compat_msghdr __user *msg_compat =
2817 					(struct compat_msghdr __user *) msg;
2818 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2819 	struct sockaddr_storage addr;
2820 	unsigned long cmsg_ptr;
2821 	int len;
2822 	ssize_t err;
2823 
2824 	msg_sys->msg_name = &addr;
2825 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2826 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2827 
2828 	/* We assume all kernel code knows the size of sockaddr_storage */
2829 	msg_sys->msg_namelen = 0;
2830 
2831 	if (sock->file->f_flags & O_NONBLOCK)
2832 		flags |= MSG_DONTWAIT;
2833 
2834 	if (unlikely(nosec))
2835 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2836 	else
2837 		err = sock_recvmsg(sock, msg_sys, flags);
2838 
2839 	if (err < 0)
2840 		goto out;
2841 	len = err;
2842 
2843 	if (uaddr != NULL) {
2844 		err = move_addr_to_user(&addr,
2845 					msg_sys->msg_namelen, uaddr,
2846 					uaddr_len);
2847 		if (err < 0)
2848 			goto out;
2849 	}
2850 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2851 			 COMPAT_FLAGS(msg));
2852 	if (err)
2853 		goto out;
2854 	if (MSG_CMSG_COMPAT & flags)
2855 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2856 				 &msg_compat->msg_controllen);
2857 	else
2858 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2859 				 &msg->msg_controllen);
2860 	if (err)
2861 		goto out;
2862 	err = len;
2863 out:
2864 	return err;
2865 }
2866 
2867 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2868 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2869 {
2870 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2871 	/* user mode address pointers */
2872 	struct sockaddr __user *uaddr;
2873 	ssize_t err;
2874 
2875 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2876 	if (err < 0)
2877 		return err;
2878 
2879 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2880 	kfree(iov);
2881 	return err;
2882 }
2883 
2884 /*
2885  *	BSD recvmsg interface
2886  */
2887 
2888 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2889 			struct user_msghdr __user *umsg,
2890 			struct sockaddr __user *uaddr, unsigned int flags)
2891 {
2892 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2893 }
2894 
2895 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2896 		   bool forbid_cmsg_compat)
2897 {
2898 	struct msghdr msg_sys;
2899 	struct socket *sock;
2900 
2901 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2902 		return -EINVAL;
2903 
2904 	CLASS(fd, f)(fd);
2905 
2906 	if (fd_empty(f))
2907 		return -EBADF;
2908 	sock = sock_from_file(fd_file(f));
2909 	if (unlikely(!sock))
2910 		return -ENOTSOCK;
2911 
2912 	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2913 }
2914 
2915 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2916 		unsigned int, flags)
2917 {
2918 	return __sys_recvmsg(fd, msg, flags, true);
2919 }
2920 
2921 /*
2922  *     Linux recvmmsg interface
2923  */
2924 
2925 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2926 			  unsigned int vlen, unsigned int flags,
2927 			  struct timespec64 *timeout)
2928 {
2929 	int err = 0, datagrams;
2930 	struct socket *sock;
2931 	struct mmsghdr __user *entry;
2932 	struct compat_mmsghdr __user *compat_entry;
2933 	struct msghdr msg_sys;
2934 	struct timespec64 end_time;
2935 	struct timespec64 timeout64;
2936 
2937 	if (timeout &&
2938 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2939 				    timeout->tv_nsec))
2940 		return -EINVAL;
2941 
2942 	datagrams = 0;
2943 
2944 	CLASS(fd, f)(fd);
2945 
2946 	if (fd_empty(f))
2947 		return -EBADF;
2948 	sock = sock_from_file(fd_file(f));
2949 	if (unlikely(!sock))
2950 		return -ENOTSOCK;
2951 
2952 	if (likely(!(flags & MSG_ERRQUEUE))) {
2953 		err = sock_error(sock->sk);
2954 		if (err)
2955 			return err;
2956 	}
2957 
2958 	entry = mmsg;
2959 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2960 
2961 	while (datagrams < vlen) {
2962 		/*
2963 		 * No need to ask LSM for more than the first datagram.
2964 		 */
2965 		if (MSG_CMSG_COMPAT & flags) {
2966 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2967 					     &msg_sys, flags & ~MSG_WAITFORONE,
2968 					     datagrams);
2969 			if (err < 0)
2970 				break;
2971 			err = __put_user(err, &compat_entry->msg_len);
2972 			++compat_entry;
2973 		} else {
2974 			err = ___sys_recvmsg(sock,
2975 					     (struct user_msghdr __user *)entry,
2976 					     &msg_sys, flags & ~MSG_WAITFORONE,
2977 					     datagrams);
2978 			if (err < 0)
2979 				break;
2980 			err = put_user(err, &entry->msg_len);
2981 			++entry;
2982 		}
2983 
2984 		if (err)
2985 			break;
2986 		++datagrams;
2987 
2988 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2989 		if (flags & MSG_WAITFORONE)
2990 			flags |= MSG_DONTWAIT;
2991 
2992 		if (timeout) {
2993 			ktime_get_ts64(&timeout64);
2994 			*timeout = timespec64_sub(end_time, timeout64);
2995 			if (timeout->tv_sec < 0) {
2996 				timeout->tv_sec = timeout->tv_nsec = 0;
2997 				break;
2998 			}
2999 
3000 			/* Timeout, return less than vlen datagrams */
3001 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
3002 				break;
3003 		}
3004 
3005 		/* Out of band data, return right away */
3006 		if (msg_sys.msg_flags & MSG_OOB)
3007 			break;
3008 		cond_resched();
3009 	}
3010 
3011 	if (err == 0)
3012 		return datagrams;
3013 
3014 	if (datagrams == 0)
3015 		return err;
3016 
3017 	/*
3018 	 * We may return less entries than requested (vlen) if the
3019 	 * sock is non block and there aren't enough datagrams...
3020 	 */
3021 	if (err != -EAGAIN) {
3022 		/*
3023 		 * ... or  if recvmsg returns an error after we
3024 		 * received some datagrams, where we record the
3025 		 * error to return on the next call or if the
3026 		 * app asks about it using getsockopt(SO_ERROR).
3027 		 */
3028 		WRITE_ONCE(sock->sk->sk_err, -err);
3029 	}
3030 	return datagrams;
3031 }
3032 
3033 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3034 		   unsigned int vlen, unsigned int flags,
3035 		   struct __kernel_timespec __user *timeout,
3036 		   struct old_timespec32 __user *timeout32)
3037 {
3038 	int datagrams;
3039 	struct timespec64 timeout_sys;
3040 
3041 	if (timeout && get_timespec64(&timeout_sys, timeout))
3042 		return -EFAULT;
3043 
3044 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3045 		return -EFAULT;
3046 
3047 	if (!timeout && !timeout32)
3048 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3049 
3050 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3051 
3052 	if (datagrams <= 0)
3053 		return datagrams;
3054 
3055 	if (timeout && put_timespec64(&timeout_sys, timeout))
3056 		datagrams = -EFAULT;
3057 
3058 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3059 		datagrams = -EFAULT;
3060 
3061 	return datagrams;
3062 }
3063 
3064 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3065 		unsigned int, vlen, unsigned int, flags,
3066 		struct __kernel_timespec __user *, timeout)
3067 {
3068 	if (flags & MSG_CMSG_COMPAT)
3069 		return -EINVAL;
3070 
3071 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3072 }
3073 
3074 #ifdef CONFIG_COMPAT_32BIT_TIME
3075 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3076 		unsigned int, vlen, unsigned int, flags,
3077 		struct old_timespec32 __user *, timeout)
3078 {
3079 	if (flags & MSG_CMSG_COMPAT)
3080 		return -EINVAL;
3081 
3082 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3083 }
3084 #endif
3085 
3086 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3087 /* Argument list sizes for sys_socketcall */
3088 #define AL(x) ((x) * sizeof(unsigned long))
3089 static const unsigned char nargs[21] = {
3090 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3091 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3092 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3093 	AL(4), AL(5), AL(4)
3094 };
3095 
3096 #undef AL
3097 
3098 /*
3099  *	System call vectors.
3100  *
3101  *	Argument checking cleaned up. Saved 20% in size.
3102  *  This function doesn't need to set the kernel lock because
3103  *  it is set by the callees.
3104  */
3105 
3106 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3107 {
3108 	unsigned long a[AUDITSC_ARGS];
3109 	unsigned long a0, a1;
3110 	int err;
3111 	unsigned int len;
3112 
3113 	if (call < 1 || call > SYS_SENDMMSG)
3114 		return -EINVAL;
3115 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3116 
3117 	len = nargs[call];
3118 	if (len > sizeof(a))
3119 		return -EINVAL;
3120 
3121 	/* copy_from_user should be SMP safe. */
3122 	if (copy_from_user(a, args, len))
3123 		return -EFAULT;
3124 
3125 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3126 	if (err)
3127 		return err;
3128 
3129 	a0 = a[0];
3130 	a1 = a[1];
3131 
3132 	switch (call) {
3133 	case SYS_SOCKET:
3134 		err = __sys_socket(a0, a1, a[2]);
3135 		break;
3136 	case SYS_BIND:
3137 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3138 		break;
3139 	case SYS_CONNECT:
3140 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3141 		break;
3142 	case SYS_LISTEN:
3143 		err = __sys_listen(a0, a1);
3144 		break;
3145 	case SYS_ACCEPT:
3146 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3147 				    (int __user *)a[2], 0);
3148 		break;
3149 	case SYS_GETSOCKNAME:
3150 		err =
3151 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3152 				      (int __user *)a[2]);
3153 		break;
3154 	case SYS_GETPEERNAME:
3155 		err =
3156 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3157 				      (int __user *)a[2]);
3158 		break;
3159 	case SYS_SOCKETPAIR:
3160 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3161 		break;
3162 	case SYS_SEND:
3163 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3164 				   NULL, 0);
3165 		break;
3166 	case SYS_SENDTO:
3167 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3168 				   (struct sockaddr __user *)a[4], a[5]);
3169 		break;
3170 	case SYS_RECV:
3171 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3172 				     NULL, NULL);
3173 		break;
3174 	case SYS_RECVFROM:
3175 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3176 				     (struct sockaddr __user *)a[4],
3177 				     (int __user *)a[5]);
3178 		break;
3179 	case SYS_SHUTDOWN:
3180 		err = __sys_shutdown(a0, a1);
3181 		break;
3182 	case SYS_SETSOCKOPT:
3183 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3184 				       a[4]);
3185 		break;
3186 	case SYS_GETSOCKOPT:
3187 		err =
3188 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3189 				     (int __user *)a[4]);
3190 		break;
3191 	case SYS_SENDMSG:
3192 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3193 				    a[2], true);
3194 		break;
3195 	case SYS_SENDMMSG:
3196 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3197 				     a[3], true);
3198 		break;
3199 	case SYS_RECVMSG:
3200 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3201 				    a[2], true);
3202 		break;
3203 	case SYS_RECVMMSG:
3204 		if (IS_ENABLED(CONFIG_64BIT))
3205 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3206 					     a[2], a[3],
3207 					     (struct __kernel_timespec __user *)a[4],
3208 					     NULL);
3209 		else
3210 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3211 					     a[2], a[3], NULL,
3212 					     (struct old_timespec32 __user *)a[4]);
3213 		break;
3214 	case SYS_ACCEPT4:
3215 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3216 				    (int __user *)a[2], a[3]);
3217 		break;
3218 	default:
3219 		err = -EINVAL;
3220 		break;
3221 	}
3222 	return err;
3223 }
3224 
3225 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3226 
3227 /**
3228  *	sock_register - add a socket protocol handler
3229  *	@ops: description of protocol
3230  *
3231  *	This function is called by a protocol handler that wants to
3232  *	advertise its address family, and have it linked into the
3233  *	socket interface. The value ops->family corresponds to the
3234  *	socket system call protocol family.
3235  */
3236 int sock_register(const struct net_proto_family *ops)
3237 {
3238 	int err;
3239 
3240 	if (ops->family >= NPROTO) {
3241 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3242 		return -ENOBUFS;
3243 	}
3244 
3245 	spin_lock(&net_family_lock);
3246 	if (rcu_dereference_protected(net_families[ops->family],
3247 				      lockdep_is_held(&net_family_lock)))
3248 		err = -EEXIST;
3249 	else {
3250 		rcu_assign_pointer(net_families[ops->family], ops);
3251 		err = 0;
3252 	}
3253 	spin_unlock(&net_family_lock);
3254 
3255 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3256 	return err;
3257 }
3258 EXPORT_SYMBOL(sock_register);
3259 
3260 /**
3261  *	sock_unregister - remove a protocol handler
3262  *	@family: protocol family to remove
3263  *
3264  *	This function is called by a protocol handler that wants to
3265  *	remove its address family, and have it unlinked from the
3266  *	new socket creation.
3267  *
3268  *	If protocol handler is a module, then it can use module reference
3269  *	counts to protect against new references. If protocol handler is not
3270  *	a module then it needs to provide its own protection in
3271  *	the ops->create routine.
3272  */
3273 void sock_unregister(int family)
3274 {
3275 	BUG_ON(family < 0 || family >= NPROTO);
3276 
3277 	spin_lock(&net_family_lock);
3278 	RCU_INIT_POINTER(net_families[family], NULL);
3279 	spin_unlock(&net_family_lock);
3280 
3281 	synchronize_rcu();
3282 
3283 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3284 }
3285 EXPORT_SYMBOL(sock_unregister);
3286 
3287 bool sock_is_registered(int family)
3288 {
3289 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3290 }
3291 
3292 static int __init sock_init(void)
3293 {
3294 	int err;
3295 	/*
3296 	 *      Initialize the network sysctl infrastructure.
3297 	 */
3298 	err = net_sysctl_init();
3299 	if (err)
3300 		goto out;
3301 
3302 	/*
3303 	 *      Initialize skbuff SLAB cache
3304 	 */
3305 	skb_init();
3306 
3307 	/*
3308 	 *      Initialize the protocols module.
3309 	 */
3310 
3311 	init_inodecache();
3312 
3313 	err = register_filesystem(&sock_fs_type);
3314 	if (err)
3315 		goto out;
3316 	sock_mnt = kern_mount(&sock_fs_type);
3317 	if (IS_ERR(sock_mnt)) {
3318 		err = PTR_ERR(sock_mnt);
3319 		goto out_mount;
3320 	}
3321 
3322 	/* The real protocol initialization is performed in later initcalls.
3323 	 */
3324 
3325 #ifdef CONFIG_NETFILTER
3326 	err = netfilter_init();
3327 	if (err)
3328 		goto out;
3329 #endif
3330 
3331 	ptp_classifier_init();
3332 
3333 out:
3334 	return err;
3335 
3336 out_mount:
3337 	unregister_filesystem(&sock_fs_type);
3338 	goto out;
3339 }
3340 
3341 core_initcall(sock_init);	/* early initcall */
3342 
3343 #ifdef CONFIG_PROC_FS
3344 void socket_seq_show(struct seq_file *seq)
3345 {
3346 	seq_printf(seq, "sockets: used %d\n",
3347 		   sock_inuse_get(seq->private));
3348 }
3349 #endif				/* CONFIG_PROC_FS */
3350 
3351 /* Handle the fact that while struct ifreq has the same *layout* on
3352  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3353  * which are handled elsewhere, it still has different *size* due to
3354  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3355  * resulting in struct ifreq being 32 and 40 bytes respectively).
3356  * As a result, if the struct happens to be at the end of a page and
3357  * the next page isn't readable/writable, we get a fault. To prevent
3358  * that, copy back and forth to the full size.
3359  */
3360 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3361 {
3362 	if (in_compat_syscall()) {
3363 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3364 
3365 		memset(ifr, 0, sizeof(*ifr));
3366 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3367 			return -EFAULT;
3368 
3369 		if (ifrdata)
3370 			*ifrdata = compat_ptr(ifr32->ifr_data);
3371 
3372 		return 0;
3373 	}
3374 
3375 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3376 		return -EFAULT;
3377 
3378 	if (ifrdata)
3379 		*ifrdata = ifr->ifr_data;
3380 
3381 	return 0;
3382 }
3383 EXPORT_SYMBOL(get_user_ifreq);
3384 
3385 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3386 {
3387 	size_t size = sizeof(*ifr);
3388 
3389 	if (in_compat_syscall())
3390 		size = sizeof(struct compat_ifreq);
3391 
3392 	if (copy_to_user(arg, ifr, size))
3393 		return -EFAULT;
3394 
3395 	return 0;
3396 }
3397 EXPORT_SYMBOL(put_user_ifreq);
3398 
3399 #ifdef CONFIG_COMPAT
3400 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3401 {
3402 	compat_uptr_t uptr32;
3403 	struct ifreq ifr;
3404 	void __user *saved;
3405 	int err;
3406 
3407 	if (get_user_ifreq(&ifr, NULL, uifr32))
3408 		return -EFAULT;
3409 
3410 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3411 		return -EFAULT;
3412 
3413 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3414 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3415 
3416 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3417 	if (!err) {
3418 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3419 		if (put_user_ifreq(&ifr, uifr32))
3420 			err = -EFAULT;
3421 	}
3422 	return err;
3423 }
3424 
3425 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3426 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3427 				 struct compat_ifreq __user *u_ifreq32)
3428 {
3429 	struct ifreq ifreq;
3430 	void __user *data;
3431 
3432 	if (!is_socket_ioctl_cmd(cmd))
3433 		return -ENOTTY;
3434 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3435 		return -EFAULT;
3436 	ifreq.ifr_data = data;
3437 
3438 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3439 }
3440 
3441 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3442 			 unsigned int cmd, unsigned long arg)
3443 {
3444 	void __user *argp = compat_ptr(arg);
3445 	struct sock *sk = sock->sk;
3446 	struct net *net = sock_net(sk);
3447 	const struct proto_ops *ops;
3448 
3449 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3450 		return sock_ioctl(file, cmd, (unsigned long)argp);
3451 
3452 	switch (cmd) {
3453 	case SIOCWANDEV:
3454 		return compat_siocwandev(net, argp);
3455 	case SIOCGSTAMP_OLD:
3456 	case SIOCGSTAMPNS_OLD:
3457 		ops = READ_ONCE(sock->ops);
3458 		if (!ops->gettstamp)
3459 			return -ENOIOCTLCMD;
3460 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3461 				      !COMPAT_USE_64BIT_TIME);
3462 
3463 	case SIOCETHTOOL:
3464 	case SIOCBONDSLAVEINFOQUERY:
3465 	case SIOCBONDINFOQUERY:
3466 	case SIOCSHWTSTAMP:
3467 	case SIOCGHWTSTAMP:
3468 		return compat_ifr_data_ioctl(net, cmd, argp);
3469 
3470 	case FIOSETOWN:
3471 	case SIOCSPGRP:
3472 	case FIOGETOWN:
3473 	case SIOCGPGRP:
3474 	case SIOCBRADDBR:
3475 	case SIOCBRDELBR:
3476 	case SIOCBRADDIF:
3477 	case SIOCBRDELIF:
3478 	case SIOCGIFVLAN:
3479 	case SIOCSIFVLAN:
3480 	case SIOCGSKNS:
3481 	case SIOCGSTAMP_NEW:
3482 	case SIOCGSTAMPNS_NEW:
3483 	case SIOCGIFCONF:
3484 	case SIOCSIFBR:
3485 	case SIOCGIFBR:
3486 		return sock_ioctl(file, cmd, arg);
3487 
3488 	case SIOCGIFFLAGS:
3489 	case SIOCSIFFLAGS:
3490 	case SIOCGIFMAP:
3491 	case SIOCSIFMAP:
3492 	case SIOCGIFMETRIC:
3493 	case SIOCSIFMETRIC:
3494 	case SIOCGIFMTU:
3495 	case SIOCSIFMTU:
3496 	case SIOCGIFMEM:
3497 	case SIOCSIFMEM:
3498 	case SIOCGIFHWADDR:
3499 	case SIOCSIFHWADDR:
3500 	case SIOCADDMULTI:
3501 	case SIOCDELMULTI:
3502 	case SIOCGIFINDEX:
3503 	case SIOCGIFADDR:
3504 	case SIOCSIFADDR:
3505 	case SIOCSIFHWBROADCAST:
3506 	case SIOCDIFADDR:
3507 	case SIOCGIFBRDADDR:
3508 	case SIOCSIFBRDADDR:
3509 	case SIOCGIFDSTADDR:
3510 	case SIOCSIFDSTADDR:
3511 	case SIOCGIFNETMASK:
3512 	case SIOCSIFNETMASK:
3513 	case SIOCSIFPFLAGS:
3514 	case SIOCGIFPFLAGS:
3515 	case SIOCGIFTXQLEN:
3516 	case SIOCSIFTXQLEN:
3517 	case SIOCGIFNAME:
3518 	case SIOCSIFNAME:
3519 	case SIOCGMIIPHY:
3520 	case SIOCGMIIREG:
3521 	case SIOCSMIIREG:
3522 	case SIOCBONDENSLAVE:
3523 	case SIOCBONDRELEASE:
3524 	case SIOCBONDSETHWADDR:
3525 	case SIOCBONDCHANGEACTIVE:
3526 	case SIOCSARP:
3527 	case SIOCGARP:
3528 	case SIOCDARP:
3529 	case SIOCOUTQ:
3530 	case SIOCOUTQNSD:
3531 	case SIOCATMARK:
3532 		return sock_do_ioctl(net, sock, cmd, arg);
3533 	}
3534 
3535 	return -ENOIOCTLCMD;
3536 }
3537 
3538 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3539 			      unsigned long arg)
3540 {
3541 	struct socket *sock = file->private_data;
3542 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3543 	int ret = -ENOIOCTLCMD;
3544 	struct sock *sk;
3545 	struct net *net;
3546 
3547 	sk = sock->sk;
3548 	net = sock_net(sk);
3549 
3550 	if (ops->compat_ioctl)
3551 		ret = ops->compat_ioctl(sock, cmd, arg);
3552 
3553 	if (ret == -ENOIOCTLCMD &&
3554 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3555 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3556 
3557 	if (ret == -ENOIOCTLCMD)
3558 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3559 
3560 	return ret;
3561 }
3562 #endif
3563 
3564 /**
3565  *	kernel_bind - bind an address to a socket (kernel space)
3566  *	@sock: socket
3567  *	@addr: address
3568  *	@addrlen: length of address
3569  *
3570  *	Returns 0 or an error.
3571  */
3572 
3573 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3574 {
3575 	struct sockaddr_storage address;
3576 
3577 	memcpy(&address, addr, addrlen);
3578 
3579 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3580 					  addrlen);
3581 }
3582 EXPORT_SYMBOL(kernel_bind);
3583 
3584 /**
3585  *	kernel_listen - move socket to listening state (kernel space)
3586  *	@sock: socket
3587  *	@backlog: pending connections queue size
3588  *
3589  *	Returns 0 or an error.
3590  */
3591 
3592 int kernel_listen(struct socket *sock, int backlog)
3593 {
3594 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3595 }
3596 EXPORT_SYMBOL(kernel_listen);
3597 
3598 /**
3599  *	kernel_accept - accept a connection (kernel space)
3600  *	@sock: listening socket
3601  *	@newsock: new connected socket
3602  *	@flags: flags
3603  *
3604  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3605  *	If it fails, @newsock is guaranteed to be %NULL.
3606  *	Returns 0 or an error.
3607  */
3608 
3609 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3610 {
3611 	struct sock *sk = sock->sk;
3612 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3613 	struct proto_accept_arg arg = {
3614 		.flags = flags,
3615 		.kern = true,
3616 	};
3617 	int err;
3618 
3619 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3620 			       newsock);
3621 	if (err < 0)
3622 		goto done;
3623 
3624 	err = ops->accept(sock, *newsock, &arg);
3625 	if (err < 0) {
3626 		sock_release(*newsock);
3627 		*newsock = NULL;
3628 		goto done;
3629 	}
3630 
3631 	(*newsock)->ops = ops;
3632 	__module_get(ops->owner);
3633 
3634 done:
3635 	return err;
3636 }
3637 EXPORT_SYMBOL(kernel_accept);
3638 
3639 /**
3640  *	kernel_connect - connect a socket (kernel space)
3641  *	@sock: socket
3642  *	@addr: address
3643  *	@addrlen: address length
3644  *	@flags: flags (O_NONBLOCK, ...)
3645  *
3646  *	For datagram sockets, @addr is the address to which datagrams are sent
3647  *	by default, and the only address from which datagrams are received.
3648  *	For stream sockets, attempts to connect to @addr.
3649  *	Returns 0 or an error code.
3650  */
3651 
3652 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3653 		   int flags)
3654 {
3655 	struct sockaddr_storage address;
3656 
3657 	memcpy(&address, addr, addrlen);
3658 
3659 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3660 					     addrlen, flags);
3661 }
3662 EXPORT_SYMBOL(kernel_connect);
3663 
3664 /**
3665  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3666  *	@sock: socket
3667  *	@addr: address holder
3668  *
3669  * 	Fills the @addr pointer with the address which the socket is bound.
3670  *	Returns the length of the address in bytes or an error code.
3671  */
3672 
3673 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3674 {
3675 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3676 }
3677 EXPORT_SYMBOL(kernel_getsockname);
3678 
3679 /**
3680  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3681  *	@sock: socket
3682  *	@addr: address holder
3683  *
3684  * 	Fills the @addr pointer with the address which the socket is connected.
3685  *	Returns the length of the address in bytes or an error code.
3686  */
3687 
3688 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3689 {
3690 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3691 }
3692 EXPORT_SYMBOL(kernel_getpeername);
3693 
3694 /**
3695  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3696  *	@sock: socket
3697  *	@how: connection part
3698  *
3699  *	Returns 0 or an error.
3700  */
3701 
3702 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3703 {
3704 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3705 }
3706 EXPORT_SYMBOL(kernel_sock_shutdown);
3707 
3708 /**
3709  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3710  *	@sk: socket
3711  *
3712  *	This routine returns the IP overhead imposed by a socket i.e.
3713  *	the length of the underlying IP header, depending on whether
3714  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3715  *	on at the socket. Assumes that the caller has a lock on the socket.
3716  */
3717 
3718 u32 kernel_sock_ip_overhead(struct sock *sk)
3719 {
3720 	struct inet_sock *inet;
3721 	struct ip_options_rcu *opt;
3722 	u32 overhead = 0;
3723 #if IS_ENABLED(CONFIG_IPV6)
3724 	struct ipv6_pinfo *np;
3725 	struct ipv6_txoptions *optv6 = NULL;
3726 #endif /* IS_ENABLED(CONFIG_IPV6) */
3727 
3728 	if (!sk)
3729 		return overhead;
3730 
3731 	switch (sk->sk_family) {
3732 	case AF_INET:
3733 		inet = inet_sk(sk);
3734 		overhead += sizeof(struct iphdr);
3735 		opt = rcu_dereference_protected(inet->inet_opt,
3736 						sock_owned_by_user(sk));
3737 		if (opt)
3738 			overhead += opt->opt.optlen;
3739 		return overhead;
3740 #if IS_ENABLED(CONFIG_IPV6)
3741 	case AF_INET6:
3742 		np = inet6_sk(sk);
3743 		overhead += sizeof(struct ipv6hdr);
3744 		if (np)
3745 			optv6 = rcu_dereference_protected(np->opt,
3746 							  sock_owned_by_user(sk));
3747 		if (optv6)
3748 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3749 		return overhead;
3750 #endif /* IS_ENABLED(CONFIG_IPV6) */
3751 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3752 		return overhead;
3753 	}
3754 }
3755 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3756