1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static int init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 if (sock_inode_cachep == NULL) 300 return -ENOMEM; 301 return 0; 302 } 303 304 static const struct super_operations sockfs_ops = { 305 .alloc_inode = sock_alloc_inode, 306 .destroy_inode = sock_destroy_inode, 307 .statfs = simple_statfs, 308 }; 309 310 /* 311 * sockfs_dname() is called from d_path(). 312 */ 313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 314 { 315 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 316 d_inode(dentry)->i_ino); 317 } 318 319 static const struct dentry_operations sockfs_dentry_operations = { 320 .d_dname = sockfs_dname, 321 }; 322 323 static int sockfs_xattr_get(const struct xattr_handler *handler, 324 struct dentry *dentry, struct inode *inode, 325 const char *suffix, void *value, size_t size) 326 { 327 if (value) { 328 if (dentry->d_name.len + 1 > size) 329 return -ERANGE; 330 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 331 } 332 return dentry->d_name.len + 1; 333 } 334 335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 338 339 static const struct xattr_handler sockfs_xattr_handler = { 340 .name = XATTR_NAME_SOCKPROTONAME, 341 .get = sockfs_xattr_get, 342 }; 343 344 static const struct xattr_handler *sockfs_xattr_handlers[] = { 345 &sockfs_xattr_handler, 346 NULL 347 }; 348 349 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 350 int flags, const char *dev_name, void *data) 351 { 352 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 353 sockfs_xattr_handlers, 354 &sockfs_dentry_operations, SOCKFS_MAGIC); 355 } 356 357 static struct vfsmount *sock_mnt __read_mostly; 358 359 static struct file_system_type sock_fs_type = { 360 .name = "sockfs", 361 .mount = sockfs_mount, 362 .kill_sb = kill_anon_super, 363 }; 364 365 /* 366 * Obtains the first available file descriptor and sets it up for use. 367 * 368 * These functions create file structures and maps them to fd space 369 * of the current process. On success it returns file descriptor 370 * and file struct implicitly stored in sock->file. 371 * Note that another thread may close file descriptor before we return 372 * from this function. We use the fact that now we do not refer 373 * to socket after mapping. If one day we will need it, this 374 * function will increment ref. count on file by 1. 375 * 376 * In any case returned fd MAY BE not valid! 377 * This race condition is unavoidable 378 * with shared fd spaces, we cannot solve it inside kernel, 379 * but we take care of internal coherence yet. 380 */ 381 382 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 383 { 384 struct qstr name = { .name = "" }; 385 struct path path; 386 struct file *file; 387 388 if (dname) { 389 name.name = dname; 390 name.len = strlen(name.name); 391 } else if (sock->sk) { 392 name.name = sock->sk->sk_prot_creator->name; 393 name.len = strlen(name.name); 394 } 395 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 396 if (unlikely(!path.dentry)) 397 return ERR_PTR(-ENOMEM); 398 path.mnt = mntget(sock_mnt); 399 400 d_instantiate(path.dentry, SOCK_INODE(sock)); 401 402 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 403 &socket_file_ops); 404 if (IS_ERR(file)) { 405 /* drop dentry, keep inode */ 406 ihold(d_inode(path.dentry)); 407 path_put(&path); 408 return file; 409 } 410 411 sock->file = file; 412 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 413 file->private_data = sock; 414 return file; 415 } 416 EXPORT_SYMBOL(sock_alloc_file); 417 418 static int sock_map_fd(struct socket *sock, int flags) 419 { 420 struct file *newfile; 421 int fd = get_unused_fd_flags(flags); 422 if (unlikely(fd < 0)) 423 return fd; 424 425 newfile = sock_alloc_file(sock, flags, NULL); 426 if (likely(!IS_ERR(newfile))) { 427 fd_install(fd, newfile); 428 return fd; 429 } 430 431 put_unused_fd(fd); 432 return PTR_ERR(newfile); 433 } 434 435 struct socket *sock_from_file(struct file *file, int *err) 436 { 437 if (file->f_op == &socket_file_ops) 438 return file->private_data; /* set in sock_map_fd */ 439 440 *err = -ENOTSOCK; 441 return NULL; 442 } 443 EXPORT_SYMBOL(sock_from_file); 444 445 /** 446 * sockfd_lookup - Go from a file number to its socket slot 447 * @fd: file handle 448 * @err: pointer to an error code return 449 * 450 * The file handle passed in is locked and the socket it is bound 451 * too is returned. If an error occurs the err pointer is overwritten 452 * with a negative errno code and NULL is returned. The function checks 453 * for both invalid handles and passing a handle which is not a socket. 454 * 455 * On a success the socket object pointer is returned. 456 */ 457 458 struct socket *sockfd_lookup(int fd, int *err) 459 { 460 struct file *file; 461 struct socket *sock; 462 463 file = fget(fd); 464 if (!file) { 465 *err = -EBADF; 466 return NULL; 467 } 468 469 sock = sock_from_file(file, err); 470 if (!sock) 471 fput(file); 472 return sock; 473 } 474 EXPORT_SYMBOL(sockfd_lookup); 475 476 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 477 { 478 struct fd f = fdget(fd); 479 struct socket *sock; 480 481 *err = -EBADF; 482 if (f.file) { 483 sock = sock_from_file(f.file, err); 484 if (likely(sock)) { 485 *fput_needed = f.flags; 486 return sock; 487 } 488 fdput(f); 489 } 490 return NULL; 491 } 492 493 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 494 size_t size) 495 { 496 ssize_t len; 497 ssize_t used = 0; 498 499 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 500 if (len < 0) 501 return len; 502 used += len; 503 if (buffer) { 504 if (size < used) 505 return -ERANGE; 506 buffer += len; 507 } 508 509 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 510 used += len; 511 if (buffer) { 512 if (size < used) 513 return -ERANGE; 514 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 515 buffer += len; 516 } 517 518 return used; 519 } 520 521 static const struct inode_operations sockfs_inode_ops = { 522 .listxattr = sockfs_listxattr, 523 }; 524 525 /** 526 * sock_alloc - allocate a socket 527 * 528 * Allocate a new inode and socket object. The two are bound together 529 * and initialised. The socket is then returned. If we are out of inodes 530 * NULL is returned. 531 */ 532 533 struct socket *sock_alloc(void) 534 { 535 struct inode *inode; 536 struct socket *sock; 537 538 inode = new_inode_pseudo(sock_mnt->mnt_sb); 539 if (!inode) 540 return NULL; 541 542 sock = SOCKET_I(inode); 543 544 kmemcheck_annotate_bitfield(sock, type); 545 inode->i_ino = get_next_ino(); 546 inode->i_mode = S_IFSOCK | S_IRWXUGO; 547 inode->i_uid = current_fsuid(); 548 inode->i_gid = current_fsgid(); 549 inode->i_op = &sockfs_inode_ops; 550 551 this_cpu_add(sockets_in_use, 1); 552 return sock; 553 } 554 EXPORT_SYMBOL(sock_alloc); 555 556 /** 557 * sock_release - close a socket 558 * @sock: socket to close 559 * 560 * The socket is released from the protocol stack if it has a release 561 * callback, and the inode is then released if the socket is bound to 562 * an inode not a file. 563 */ 564 565 void sock_release(struct socket *sock) 566 { 567 if (sock->ops) { 568 struct module *owner = sock->ops->owner; 569 570 sock->ops->release(sock); 571 sock->ops = NULL; 572 module_put(owner); 573 } 574 575 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 576 pr_err("%s: fasync list not empty!\n", __func__); 577 578 this_cpu_sub(sockets_in_use, 1); 579 if (!sock->file) { 580 iput(SOCK_INODE(sock)); 581 return; 582 } 583 sock->file = NULL; 584 } 585 EXPORT_SYMBOL(sock_release); 586 587 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 588 { 589 u8 flags = *tx_flags; 590 591 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 592 flags |= SKBTX_HW_TSTAMP; 593 594 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 595 flags |= SKBTX_SW_TSTAMP; 596 597 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 598 flags |= SKBTX_SCHED_TSTAMP; 599 600 *tx_flags = flags; 601 } 602 EXPORT_SYMBOL(__sock_tx_timestamp); 603 604 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 605 { 606 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 607 BUG_ON(ret == -EIOCBQUEUED); 608 return ret; 609 } 610 611 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 612 { 613 int err = security_socket_sendmsg(sock, msg, 614 msg_data_left(msg)); 615 616 return err ?: sock_sendmsg_nosec(sock, msg); 617 } 618 EXPORT_SYMBOL(sock_sendmsg); 619 620 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 621 struct kvec *vec, size_t num, size_t size) 622 { 623 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 624 return sock_sendmsg(sock, msg); 625 } 626 EXPORT_SYMBOL(kernel_sendmsg); 627 628 /* 629 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 630 */ 631 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 632 struct sk_buff *skb) 633 { 634 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 635 struct scm_timestamping tss; 636 int empty = 1; 637 struct skb_shared_hwtstamps *shhwtstamps = 638 skb_hwtstamps(skb); 639 640 /* Race occurred between timestamp enabling and packet 641 receiving. Fill in the current time for now. */ 642 if (need_software_tstamp && skb->tstamp.tv64 == 0) 643 __net_timestamp(skb); 644 645 if (need_software_tstamp) { 646 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 647 struct timeval tv; 648 skb_get_timestamp(skb, &tv); 649 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 650 sizeof(tv), &tv); 651 } else { 652 struct timespec ts; 653 skb_get_timestampns(skb, &ts); 654 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 655 sizeof(ts), &ts); 656 } 657 } 658 659 memset(&tss, 0, sizeof(tss)); 660 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 661 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 662 empty = 0; 663 if (shhwtstamps && 664 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 665 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 666 empty = 0; 667 if (!empty) 668 put_cmsg(msg, SOL_SOCKET, 669 SCM_TIMESTAMPING, sizeof(tss), &tss); 670 } 671 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 672 673 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 674 struct sk_buff *skb) 675 { 676 int ack; 677 678 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 679 return; 680 if (!skb->wifi_acked_valid) 681 return; 682 683 ack = skb->wifi_acked; 684 685 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 686 } 687 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 688 689 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 690 struct sk_buff *skb) 691 { 692 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 693 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 694 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 695 } 696 697 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 698 struct sk_buff *skb) 699 { 700 sock_recv_timestamp(msg, sk, skb); 701 sock_recv_drops(msg, sk, skb); 702 } 703 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 704 705 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 706 int flags) 707 { 708 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 709 } 710 711 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 712 { 713 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 714 715 return err ?: sock_recvmsg_nosec(sock, msg, flags); 716 } 717 EXPORT_SYMBOL(sock_recvmsg); 718 719 /** 720 * kernel_recvmsg - Receive a message from a socket (kernel space) 721 * @sock: The socket to receive the message from 722 * @msg: Received message 723 * @vec: Input s/g array for message data 724 * @num: Size of input s/g array 725 * @size: Number of bytes to read 726 * @flags: Message flags (MSG_DONTWAIT, etc...) 727 * 728 * On return the msg structure contains the scatter/gather array passed in the 729 * vec argument. The array is modified so that it consists of the unfilled 730 * portion of the original array. 731 * 732 * The returned value is the total number of bytes received, or an error. 733 */ 734 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 735 struct kvec *vec, size_t num, size_t size, int flags) 736 { 737 mm_segment_t oldfs = get_fs(); 738 int result; 739 740 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 741 set_fs(KERNEL_DS); 742 result = sock_recvmsg(sock, msg, flags); 743 set_fs(oldfs); 744 return result; 745 } 746 EXPORT_SYMBOL(kernel_recvmsg); 747 748 static ssize_t sock_sendpage(struct file *file, struct page *page, 749 int offset, size_t size, loff_t *ppos, int more) 750 { 751 struct socket *sock; 752 int flags; 753 754 sock = file->private_data; 755 756 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 757 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 758 flags |= more; 759 760 return kernel_sendpage(sock, page, offset, size, flags); 761 } 762 763 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 764 struct pipe_inode_info *pipe, size_t len, 765 unsigned int flags) 766 { 767 struct socket *sock = file->private_data; 768 769 if (unlikely(!sock->ops->splice_read)) 770 return -EINVAL; 771 772 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 773 } 774 775 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 776 { 777 struct file *file = iocb->ki_filp; 778 struct socket *sock = file->private_data; 779 struct msghdr msg = {.msg_iter = *to, 780 .msg_iocb = iocb}; 781 ssize_t res; 782 783 if (file->f_flags & O_NONBLOCK) 784 msg.msg_flags = MSG_DONTWAIT; 785 786 if (iocb->ki_pos != 0) 787 return -ESPIPE; 788 789 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 790 return 0; 791 792 res = sock_recvmsg(sock, &msg, msg.msg_flags); 793 *to = msg.msg_iter; 794 return res; 795 } 796 797 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 798 { 799 struct file *file = iocb->ki_filp; 800 struct socket *sock = file->private_data; 801 struct msghdr msg = {.msg_iter = *from, 802 .msg_iocb = iocb}; 803 ssize_t res; 804 805 if (iocb->ki_pos != 0) 806 return -ESPIPE; 807 808 if (file->f_flags & O_NONBLOCK) 809 msg.msg_flags = MSG_DONTWAIT; 810 811 if (sock->type == SOCK_SEQPACKET) 812 msg.msg_flags |= MSG_EOR; 813 814 res = sock_sendmsg(sock, &msg); 815 *from = msg.msg_iter; 816 return res; 817 } 818 819 /* 820 * Atomic setting of ioctl hooks to avoid race 821 * with module unload. 822 */ 823 824 static DEFINE_MUTEX(br_ioctl_mutex); 825 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 826 827 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 828 { 829 mutex_lock(&br_ioctl_mutex); 830 br_ioctl_hook = hook; 831 mutex_unlock(&br_ioctl_mutex); 832 } 833 EXPORT_SYMBOL(brioctl_set); 834 835 static DEFINE_MUTEX(vlan_ioctl_mutex); 836 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 837 838 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 839 { 840 mutex_lock(&vlan_ioctl_mutex); 841 vlan_ioctl_hook = hook; 842 mutex_unlock(&vlan_ioctl_mutex); 843 } 844 EXPORT_SYMBOL(vlan_ioctl_set); 845 846 static DEFINE_MUTEX(dlci_ioctl_mutex); 847 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 848 849 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 850 { 851 mutex_lock(&dlci_ioctl_mutex); 852 dlci_ioctl_hook = hook; 853 mutex_unlock(&dlci_ioctl_mutex); 854 } 855 EXPORT_SYMBOL(dlci_ioctl_set); 856 857 static long sock_do_ioctl(struct net *net, struct socket *sock, 858 unsigned int cmd, unsigned long arg) 859 { 860 int err; 861 void __user *argp = (void __user *)arg; 862 863 err = sock->ops->ioctl(sock, cmd, arg); 864 865 /* 866 * If this ioctl is unknown try to hand it down 867 * to the NIC driver. 868 */ 869 if (err == -ENOIOCTLCMD) 870 err = dev_ioctl(net, cmd, argp); 871 872 return err; 873 } 874 875 /* 876 * With an ioctl, arg may well be a user mode pointer, but we don't know 877 * what to do with it - that's up to the protocol still. 878 */ 879 880 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 881 { 882 struct socket *sock; 883 struct sock *sk; 884 void __user *argp = (void __user *)arg; 885 int pid, err; 886 struct net *net; 887 888 sock = file->private_data; 889 sk = sock->sk; 890 net = sock_net(sk); 891 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 892 err = dev_ioctl(net, cmd, argp); 893 } else 894 #ifdef CONFIG_WEXT_CORE 895 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 896 err = dev_ioctl(net, cmd, argp); 897 } else 898 #endif 899 switch (cmd) { 900 case FIOSETOWN: 901 case SIOCSPGRP: 902 err = -EFAULT; 903 if (get_user(pid, (int __user *)argp)) 904 break; 905 f_setown(sock->file, pid, 1); 906 err = 0; 907 break; 908 case FIOGETOWN: 909 case SIOCGPGRP: 910 err = put_user(f_getown(sock->file), 911 (int __user *)argp); 912 break; 913 case SIOCGIFBR: 914 case SIOCSIFBR: 915 case SIOCBRADDBR: 916 case SIOCBRDELBR: 917 err = -ENOPKG; 918 if (!br_ioctl_hook) 919 request_module("bridge"); 920 921 mutex_lock(&br_ioctl_mutex); 922 if (br_ioctl_hook) 923 err = br_ioctl_hook(net, cmd, argp); 924 mutex_unlock(&br_ioctl_mutex); 925 break; 926 case SIOCGIFVLAN: 927 case SIOCSIFVLAN: 928 err = -ENOPKG; 929 if (!vlan_ioctl_hook) 930 request_module("8021q"); 931 932 mutex_lock(&vlan_ioctl_mutex); 933 if (vlan_ioctl_hook) 934 err = vlan_ioctl_hook(net, argp); 935 mutex_unlock(&vlan_ioctl_mutex); 936 break; 937 case SIOCADDDLCI: 938 case SIOCDELDLCI: 939 err = -ENOPKG; 940 if (!dlci_ioctl_hook) 941 request_module("dlci"); 942 943 mutex_lock(&dlci_ioctl_mutex); 944 if (dlci_ioctl_hook) 945 err = dlci_ioctl_hook(cmd, argp); 946 mutex_unlock(&dlci_ioctl_mutex); 947 break; 948 default: 949 err = sock_do_ioctl(net, sock, cmd, arg); 950 break; 951 } 952 return err; 953 } 954 955 int sock_create_lite(int family, int type, int protocol, struct socket **res) 956 { 957 int err; 958 struct socket *sock = NULL; 959 960 err = security_socket_create(family, type, protocol, 1); 961 if (err) 962 goto out; 963 964 sock = sock_alloc(); 965 if (!sock) { 966 err = -ENOMEM; 967 goto out; 968 } 969 970 sock->type = type; 971 err = security_socket_post_create(sock, family, type, protocol, 1); 972 if (err) 973 goto out_release; 974 975 out: 976 *res = sock; 977 return err; 978 out_release: 979 sock_release(sock); 980 sock = NULL; 981 goto out; 982 } 983 EXPORT_SYMBOL(sock_create_lite); 984 985 /* No kernel lock held - perfect */ 986 static unsigned int sock_poll(struct file *file, poll_table *wait) 987 { 988 unsigned int busy_flag = 0; 989 struct socket *sock; 990 991 /* 992 * We can't return errors to poll, so it's either yes or no. 993 */ 994 sock = file->private_data; 995 996 if (sk_can_busy_loop(sock->sk)) { 997 /* this socket can poll_ll so tell the system call */ 998 busy_flag = POLL_BUSY_LOOP; 999 1000 /* once, only if requested by syscall */ 1001 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1002 sk_busy_loop(sock->sk, 1); 1003 } 1004 1005 return busy_flag | sock->ops->poll(file, sock, wait); 1006 } 1007 1008 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1009 { 1010 struct socket *sock = file->private_data; 1011 1012 return sock->ops->mmap(file, sock, vma); 1013 } 1014 1015 static int sock_close(struct inode *inode, struct file *filp) 1016 { 1017 sock_release(SOCKET_I(inode)); 1018 return 0; 1019 } 1020 1021 /* 1022 * Update the socket async list 1023 * 1024 * Fasync_list locking strategy. 1025 * 1026 * 1. fasync_list is modified only under process context socket lock 1027 * i.e. under semaphore. 1028 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1029 * or under socket lock 1030 */ 1031 1032 static int sock_fasync(int fd, struct file *filp, int on) 1033 { 1034 struct socket *sock = filp->private_data; 1035 struct sock *sk = sock->sk; 1036 struct socket_wq *wq; 1037 1038 if (sk == NULL) 1039 return -EINVAL; 1040 1041 lock_sock(sk); 1042 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1043 fasync_helper(fd, filp, on, &wq->fasync_list); 1044 1045 if (!wq->fasync_list) 1046 sock_reset_flag(sk, SOCK_FASYNC); 1047 else 1048 sock_set_flag(sk, SOCK_FASYNC); 1049 1050 release_sock(sk); 1051 return 0; 1052 } 1053 1054 /* This function may be called only under rcu_lock */ 1055 1056 int sock_wake_async(struct socket_wq *wq, int how, int band) 1057 { 1058 if (!wq || !wq->fasync_list) 1059 return -1; 1060 1061 switch (how) { 1062 case SOCK_WAKE_WAITD: 1063 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1064 break; 1065 goto call_kill; 1066 case SOCK_WAKE_SPACE: 1067 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1068 break; 1069 /* fall through */ 1070 case SOCK_WAKE_IO: 1071 call_kill: 1072 kill_fasync(&wq->fasync_list, SIGIO, band); 1073 break; 1074 case SOCK_WAKE_URG: 1075 kill_fasync(&wq->fasync_list, SIGURG, band); 1076 } 1077 1078 return 0; 1079 } 1080 EXPORT_SYMBOL(sock_wake_async); 1081 1082 int __sock_create(struct net *net, int family, int type, int protocol, 1083 struct socket **res, int kern) 1084 { 1085 int err; 1086 struct socket *sock; 1087 const struct net_proto_family *pf; 1088 1089 /* 1090 * Check protocol is in range 1091 */ 1092 if (family < 0 || family >= NPROTO) 1093 return -EAFNOSUPPORT; 1094 if (type < 0 || type >= SOCK_MAX) 1095 return -EINVAL; 1096 1097 /* Compatibility. 1098 1099 This uglymoron is moved from INET layer to here to avoid 1100 deadlock in module load. 1101 */ 1102 if (family == PF_INET && type == SOCK_PACKET) { 1103 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1104 current->comm); 1105 family = PF_PACKET; 1106 } 1107 1108 err = security_socket_create(family, type, protocol, kern); 1109 if (err) 1110 return err; 1111 1112 /* 1113 * Allocate the socket and allow the family to set things up. if 1114 * the protocol is 0, the family is instructed to select an appropriate 1115 * default. 1116 */ 1117 sock = sock_alloc(); 1118 if (!sock) { 1119 net_warn_ratelimited("socket: no more sockets\n"); 1120 return -ENFILE; /* Not exactly a match, but its the 1121 closest posix thing */ 1122 } 1123 1124 sock->type = type; 1125 1126 #ifdef CONFIG_MODULES 1127 /* Attempt to load a protocol module if the find failed. 1128 * 1129 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1130 * requested real, full-featured networking support upon configuration. 1131 * Otherwise module support will break! 1132 */ 1133 if (rcu_access_pointer(net_families[family]) == NULL) 1134 request_module("net-pf-%d", family); 1135 #endif 1136 1137 rcu_read_lock(); 1138 pf = rcu_dereference(net_families[family]); 1139 err = -EAFNOSUPPORT; 1140 if (!pf) 1141 goto out_release; 1142 1143 /* 1144 * We will call the ->create function, that possibly is in a loadable 1145 * module, so we have to bump that loadable module refcnt first. 1146 */ 1147 if (!try_module_get(pf->owner)) 1148 goto out_release; 1149 1150 /* Now protected by module ref count */ 1151 rcu_read_unlock(); 1152 1153 err = pf->create(net, sock, protocol, kern); 1154 if (err < 0) 1155 goto out_module_put; 1156 1157 /* 1158 * Now to bump the refcnt of the [loadable] module that owns this 1159 * socket at sock_release time we decrement its refcnt. 1160 */ 1161 if (!try_module_get(sock->ops->owner)) 1162 goto out_module_busy; 1163 1164 /* 1165 * Now that we're done with the ->create function, the [loadable] 1166 * module can have its refcnt decremented 1167 */ 1168 module_put(pf->owner); 1169 err = security_socket_post_create(sock, family, type, protocol, kern); 1170 if (err) 1171 goto out_sock_release; 1172 *res = sock; 1173 1174 return 0; 1175 1176 out_module_busy: 1177 err = -EAFNOSUPPORT; 1178 out_module_put: 1179 sock->ops = NULL; 1180 module_put(pf->owner); 1181 out_sock_release: 1182 sock_release(sock); 1183 return err; 1184 1185 out_release: 1186 rcu_read_unlock(); 1187 goto out_sock_release; 1188 } 1189 EXPORT_SYMBOL(__sock_create); 1190 1191 int sock_create(int family, int type, int protocol, struct socket **res) 1192 { 1193 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1194 } 1195 EXPORT_SYMBOL(sock_create); 1196 1197 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1198 { 1199 return __sock_create(net, family, type, protocol, res, 1); 1200 } 1201 EXPORT_SYMBOL(sock_create_kern); 1202 1203 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1204 { 1205 int retval; 1206 struct socket *sock; 1207 int flags; 1208 1209 /* Check the SOCK_* constants for consistency. */ 1210 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1211 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1212 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1213 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1214 1215 flags = type & ~SOCK_TYPE_MASK; 1216 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1217 return -EINVAL; 1218 type &= SOCK_TYPE_MASK; 1219 1220 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1221 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1222 1223 retval = sock_create(family, type, protocol, &sock); 1224 if (retval < 0) 1225 goto out; 1226 1227 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1228 if (retval < 0) 1229 goto out_release; 1230 1231 out: 1232 /* It may be already another descriptor 8) Not kernel problem. */ 1233 return retval; 1234 1235 out_release: 1236 sock_release(sock); 1237 return retval; 1238 } 1239 1240 /* 1241 * Create a pair of connected sockets. 1242 */ 1243 1244 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1245 int __user *, usockvec) 1246 { 1247 struct socket *sock1, *sock2; 1248 int fd1, fd2, err; 1249 struct file *newfile1, *newfile2; 1250 int flags; 1251 1252 flags = type & ~SOCK_TYPE_MASK; 1253 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1254 return -EINVAL; 1255 type &= SOCK_TYPE_MASK; 1256 1257 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1258 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1259 1260 /* 1261 * Obtain the first socket and check if the underlying protocol 1262 * supports the socketpair call. 1263 */ 1264 1265 err = sock_create(family, type, protocol, &sock1); 1266 if (err < 0) 1267 goto out; 1268 1269 err = sock_create(family, type, protocol, &sock2); 1270 if (err < 0) 1271 goto out_release_1; 1272 1273 err = sock1->ops->socketpair(sock1, sock2); 1274 if (err < 0) 1275 goto out_release_both; 1276 1277 fd1 = get_unused_fd_flags(flags); 1278 if (unlikely(fd1 < 0)) { 1279 err = fd1; 1280 goto out_release_both; 1281 } 1282 1283 fd2 = get_unused_fd_flags(flags); 1284 if (unlikely(fd2 < 0)) { 1285 err = fd2; 1286 goto out_put_unused_1; 1287 } 1288 1289 newfile1 = sock_alloc_file(sock1, flags, NULL); 1290 if (IS_ERR(newfile1)) { 1291 err = PTR_ERR(newfile1); 1292 goto out_put_unused_both; 1293 } 1294 1295 newfile2 = sock_alloc_file(sock2, flags, NULL); 1296 if (IS_ERR(newfile2)) { 1297 err = PTR_ERR(newfile2); 1298 goto out_fput_1; 1299 } 1300 1301 err = put_user(fd1, &usockvec[0]); 1302 if (err) 1303 goto out_fput_both; 1304 1305 err = put_user(fd2, &usockvec[1]); 1306 if (err) 1307 goto out_fput_both; 1308 1309 audit_fd_pair(fd1, fd2); 1310 1311 fd_install(fd1, newfile1); 1312 fd_install(fd2, newfile2); 1313 /* fd1 and fd2 may be already another descriptors. 1314 * Not kernel problem. 1315 */ 1316 1317 return 0; 1318 1319 out_fput_both: 1320 fput(newfile2); 1321 fput(newfile1); 1322 put_unused_fd(fd2); 1323 put_unused_fd(fd1); 1324 goto out; 1325 1326 out_fput_1: 1327 fput(newfile1); 1328 put_unused_fd(fd2); 1329 put_unused_fd(fd1); 1330 sock_release(sock2); 1331 goto out; 1332 1333 out_put_unused_both: 1334 put_unused_fd(fd2); 1335 out_put_unused_1: 1336 put_unused_fd(fd1); 1337 out_release_both: 1338 sock_release(sock2); 1339 out_release_1: 1340 sock_release(sock1); 1341 out: 1342 return err; 1343 } 1344 1345 /* 1346 * Bind a name to a socket. Nothing much to do here since it's 1347 * the protocol's responsibility to handle the local address. 1348 * 1349 * We move the socket address to kernel space before we call 1350 * the protocol layer (having also checked the address is ok). 1351 */ 1352 1353 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1354 { 1355 struct socket *sock; 1356 struct sockaddr_storage address; 1357 int err, fput_needed; 1358 1359 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1360 if (sock) { 1361 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1362 if (err >= 0) { 1363 err = security_socket_bind(sock, 1364 (struct sockaddr *)&address, 1365 addrlen); 1366 if (!err) 1367 err = sock->ops->bind(sock, 1368 (struct sockaddr *) 1369 &address, addrlen); 1370 } 1371 fput_light(sock->file, fput_needed); 1372 } 1373 return err; 1374 } 1375 1376 /* 1377 * Perform a listen. Basically, we allow the protocol to do anything 1378 * necessary for a listen, and if that works, we mark the socket as 1379 * ready for listening. 1380 */ 1381 1382 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1383 { 1384 struct socket *sock; 1385 int err, fput_needed; 1386 int somaxconn; 1387 1388 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1389 if (sock) { 1390 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1391 if ((unsigned int)backlog > somaxconn) 1392 backlog = somaxconn; 1393 1394 err = security_socket_listen(sock, backlog); 1395 if (!err) 1396 err = sock->ops->listen(sock, backlog); 1397 1398 fput_light(sock->file, fput_needed); 1399 } 1400 return err; 1401 } 1402 1403 /* 1404 * For accept, we attempt to create a new socket, set up the link 1405 * with the client, wake up the client, then return the new 1406 * connected fd. We collect the address of the connector in kernel 1407 * space and move it to user at the very end. This is unclean because 1408 * we open the socket then return an error. 1409 * 1410 * 1003.1g adds the ability to recvmsg() to query connection pending 1411 * status to recvmsg. We need to add that support in a way thats 1412 * clean when we restucture accept also. 1413 */ 1414 1415 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1416 int __user *, upeer_addrlen, int, flags) 1417 { 1418 struct socket *sock, *newsock; 1419 struct file *newfile; 1420 int err, len, newfd, fput_needed; 1421 struct sockaddr_storage address; 1422 1423 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1424 return -EINVAL; 1425 1426 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1427 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1428 1429 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1430 if (!sock) 1431 goto out; 1432 1433 err = -ENFILE; 1434 newsock = sock_alloc(); 1435 if (!newsock) 1436 goto out_put; 1437 1438 newsock->type = sock->type; 1439 newsock->ops = sock->ops; 1440 1441 /* 1442 * We don't need try_module_get here, as the listening socket (sock) 1443 * has the protocol module (sock->ops->owner) held. 1444 */ 1445 __module_get(newsock->ops->owner); 1446 1447 newfd = get_unused_fd_flags(flags); 1448 if (unlikely(newfd < 0)) { 1449 err = newfd; 1450 sock_release(newsock); 1451 goto out_put; 1452 } 1453 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1454 if (IS_ERR(newfile)) { 1455 err = PTR_ERR(newfile); 1456 put_unused_fd(newfd); 1457 sock_release(newsock); 1458 goto out_put; 1459 } 1460 1461 err = security_socket_accept(sock, newsock); 1462 if (err) 1463 goto out_fd; 1464 1465 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1466 if (err < 0) 1467 goto out_fd; 1468 1469 if (upeer_sockaddr) { 1470 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1471 &len, 2) < 0) { 1472 err = -ECONNABORTED; 1473 goto out_fd; 1474 } 1475 err = move_addr_to_user(&address, 1476 len, upeer_sockaddr, upeer_addrlen); 1477 if (err < 0) 1478 goto out_fd; 1479 } 1480 1481 /* File flags are not inherited via accept() unlike another OSes. */ 1482 1483 fd_install(newfd, newfile); 1484 err = newfd; 1485 1486 out_put: 1487 fput_light(sock->file, fput_needed); 1488 out: 1489 return err; 1490 out_fd: 1491 fput(newfile); 1492 put_unused_fd(newfd); 1493 goto out_put; 1494 } 1495 1496 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1497 int __user *, upeer_addrlen) 1498 { 1499 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1500 } 1501 1502 /* 1503 * Attempt to connect to a socket with the server address. The address 1504 * is in user space so we verify it is OK and move it to kernel space. 1505 * 1506 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1507 * break bindings 1508 * 1509 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1510 * other SEQPACKET protocols that take time to connect() as it doesn't 1511 * include the -EINPROGRESS status for such sockets. 1512 */ 1513 1514 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1515 int, addrlen) 1516 { 1517 struct socket *sock; 1518 struct sockaddr_storage address; 1519 int err, fput_needed; 1520 1521 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1522 if (!sock) 1523 goto out; 1524 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1525 if (err < 0) 1526 goto out_put; 1527 1528 err = 1529 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1530 if (err) 1531 goto out_put; 1532 1533 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1534 sock->file->f_flags); 1535 out_put: 1536 fput_light(sock->file, fput_needed); 1537 out: 1538 return err; 1539 } 1540 1541 /* 1542 * Get the local address ('name') of a socket object. Move the obtained 1543 * name to user space. 1544 */ 1545 1546 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1547 int __user *, usockaddr_len) 1548 { 1549 struct socket *sock; 1550 struct sockaddr_storage address; 1551 int len, err, fput_needed; 1552 1553 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1554 if (!sock) 1555 goto out; 1556 1557 err = security_socket_getsockname(sock); 1558 if (err) 1559 goto out_put; 1560 1561 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1562 if (err) 1563 goto out_put; 1564 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1565 1566 out_put: 1567 fput_light(sock->file, fput_needed); 1568 out: 1569 return err; 1570 } 1571 1572 /* 1573 * Get the remote address ('name') of a socket object. Move the obtained 1574 * name to user space. 1575 */ 1576 1577 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1578 int __user *, usockaddr_len) 1579 { 1580 struct socket *sock; 1581 struct sockaddr_storage address; 1582 int len, err, fput_needed; 1583 1584 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1585 if (sock != NULL) { 1586 err = security_socket_getpeername(sock); 1587 if (err) { 1588 fput_light(sock->file, fput_needed); 1589 return err; 1590 } 1591 1592 err = 1593 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1594 1); 1595 if (!err) 1596 err = move_addr_to_user(&address, len, usockaddr, 1597 usockaddr_len); 1598 fput_light(sock->file, fput_needed); 1599 } 1600 return err; 1601 } 1602 1603 /* 1604 * Send a datagram to a given address. We move the address into kernel 1605 * space and check the user space data area is readable before invoking 1606 * the protocol. 1607 */ 1608 1609 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1610 unsigned int, flags, struct sockaddr __user *, addr, 1611 int, addr_len) 1612 { 1613 struct socket *sock; 1614 struct sockaddr_storage address; 1615 int err; 1616 struct msghdr msg; 1617 struct iovec iov; 1618 int fput_needed; 1619 1620 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1621 if (unlikely(err)) 1622 return err; 1623 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1624 if (!sock) 1625 goto out; 1626 1627 msg.msg_name = NULL; 1628 msg.msg_control = NULL; 1629 msg.msg_controllen = 0; 1630 msg.msg_namelen = 0; 1631 if (addr) { 1632 err = move_addr_to_kernel(addr, addr_len, &address); 1633 if (err < 0) 1634 goto out_put; 1635 msg.msg_name = (struct sockaddr *)&address; 1636 msg.msg_namelen = addr_len; 1637 } 1638 if (sock->file->f_flags & O_NONBLOCK) 1639 flags |= MSG_DONTWAIT; 1640 msg.msg_flags = flags; 1641 err = sock_sendmsg(sock, &msg); 1642 1643 out_put: 1644 fput_light(sock->file, fput_needed); 1645 out: 1646 return err; 1647 } 1648 1649 /* 1650 * Send a datagram down a socket. 1651 */ 1652 1653 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1654 unsigned int, flags) 1655 { 1656 return sys_sendto(fd, buff, len, flags, NULL, 0); 1657 } 1658 1659 /* 1660 * Receive a frame from the socket and optionally record the address of the 1661 * sender. We verify the buffers are writable and if needed move the 1662 * sender address from kernel to user space. 1663 */ 1664 1665 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1666 unsigned int, flags, struct sockaddr __user *, addr, 1667 int __user *, addr_len) 1668 { 1669 struct socket *sock; 1670 struct iovec iov; 1671 struct msghdr msg; 1672 struct sockaddr_storage address; 1673 int err, err2; 1674 int fput_needed; 1675 1676 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1677 if (unlikely(err)) 1678 return err; 1679 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1680 if (!sock) 1681 goto out; 1682 1683 msg.msg_control = NULL; 1684 msg.msg_controllen = 0; 1685 /* Save some cycles and don't copy the address if not needed */ 1686 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1687 /* We assume all kernel code knows the size of sockaddr_storage */ 1688 msg.msg_namelen = 0; 1689 msg.msg_iocb = NULL; 1690 if (sock->file->f_flags & O_NONBLOCK) 1691 flags |= MSG_DONTWAIT; 1692 err = sock_recvmsg(sock, &msg, flags); 1693 1694 if (err >= 0 && addr != NULL) { 1695 err2 = move_addr_to_user(&address, 1696 msg.msg_namelen, addr, addr_len); 1697 if (err2 < 0) 1698 err = err2; 1699 } 1700 1701 fput_light(sock->file, fput_needed); 1702 out: 1703 return err; 1704 } 1705 1706 /* 1707 * Receive a datagram from a socket. 1708 */ 1709 1710 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1711 unsigned int, flags) 1712 { 1713 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1714 } 1715 1716 /* 1717 * Set a socket option. Because we don't know the option lengths we have 1718 * to pass the user mode parameter for the protocols to sort out. 1719 */ 1720 1721 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1722 char __user *, optval, int, optlen) 1723 { 1724 int err, fput_needed; 1725 struct socket *sock; 1726 1727 if (optlen < 0) 1728 return -EINVAL; 1729 1730 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1731 if (sock != NULL) { 1732 err = security_socket_setsockopt(sock, level, optname); 1733 if (err) 1734 goto out_put; 1735 1736 if (level == SOL_SOCKET) 1737 err = 1738 sock_setsockopt(sock, level, optname, optval, 1739 optlen); 1740 else 1741 err = 1742 sock->ops->setsockopt(sock, level, optname, optval, 1743 optlen); 1744 out_put: 1745 fput_light(sock->file, fput_needed); 1746 } 1747 return err; 1748 } 1749 1750 /* 1751 * Get a socket option. Because we don't know the option lengths we have 1752 * to pass a user mode parameter for the protocols to sort out. 1753 */ 1754 1755 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1756 char __user *, optval, int __user *, optlen) 1757 { 1758 int err, fput_needed; 1759 struct socket *sock; 1760 1761 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1762 if (sock != NULL) { 1763 err = security_socket_getsockopt(sock, level, optname); 1764 if (err) 1765 goto out_put; 1766 1767 if (level == SOL_SOCKET) 1768 err = 1769 sock_getsockopt(sock, level, optname, optval, 1770 optlen); 1771 else 1772 err = 1773 sock->ops->getsockopt(sock, level, optname, optval, 1774 optlen); 1775 out_put: 1776 fput_light(sock->file, fput_needed); 1777 } 1778 return err; 1779 } 1780 1781 /* 1782 * Shutdown a socket. 1783 */ 1784 1785 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1786 { 1787 int err, fput_needed; 1788 struct socket *sock; 1789 1790 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1791 if (sock != NULL) { 1792 err = security_socket_shutdown(sock, how); 1793 if (!err) 1794 err = sock->ops->shutdown(sock, how); 1795 fput_light(sock->file, fput_needed); 1796 } 1797 return err; 1798 } 1799 1800 /* A couple of helpful macros for getting the address of the 32/64 bit 1801 * fields which are the same type (int / unsigned) on our platforms. 1802 */ 1803 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1804 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1805 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1806 1807 struct used_address { 1808 struct sockaddr_storage name; 1809 unsigned int name_len; 1810 }; 1811 1812 static int copy_msghdr_from_user(struct msghdr *kmsg, 1813 struct user_msghdr __user *umsg, 1814 struct sockaddr __user **save_addr, 1815 struct iovec **iov) 1816 { 1817 struct sockaddr __user *uaddr; 1818 struct iovec __user *uiov; 1819 size_t nr_segs; 1820 ssize_t err; 1821 1822 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1823 __get_user(uaddr, &umsg->msg_name) || 1824 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1825 __get_user(uiov, &umsg->msg_iov) || 1826 __get_user(nr_segs, &umsg->msg_iovlen) || 1827 __get_user(kmsg->msg_control, &umsg->msg_control) || 1828 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1829 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1830 return -EFAULT; 1831 1832 if (!uaddr) 1833 kmsg->msg_namelen = 0; 1834 1835 if (kmsg->msg_namelen < 0) 1836 return -EINVAL; 1837 1838 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1839 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1840 1841 if (save_addr) 1842 *save_addr = uaddr; 1843 1844 if (uaddr && kmsg->msg_namelen) { 1845 if (!save_addr) { 1846 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1847 kmsg->msg_name); 1848 if (err < 0) 1849 return err; 1850 } 1851 } else { 1852 kmsg->msg_name = NULL; 1853 kmsg->msg_namelen = 0; 1854 } 1855 1856 if (nr_segs > UIO_MAXIOV) 1857 return -EMSGSIZE; 1858 1859 kmsg->msg_iocb = NULL; 1860 1861 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1862 UIO_FASTIOV, iov, &kmsg->msg_iter); 1863 } 1864 1865 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1866 struct msghdr *msg_sys, unsigned int flags, 1867 struct used_address *used_address, 1868 unsigned int allowed_msghdr_flags) 1869 { 1870 struct compat_msghdr __user *msg_compat = 1871 (struct compat_msghdr __user *)msg; 1872 struct sockaddr_storage address; 1873 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1874 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1875 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1876 /* 20 is size of ipv6_pktinfo */ 1877 unsigned char *ctl_buf = ctl; 1878 int ctl_len; 1879 ssize_t err; 1880 1881 msg_sys->msg_name = &address; 1882 1883 if (MSG_CMSG_COMPAT & flags) 1884 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1885 else 1886 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1887 if (err < 0) 1888 return err; 1889 1890 err = -ENOBUFS; 1891 1892 if (msg_sys->msg_controllen > INT_MAX) 1893 goto out_freeiov; 1894 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 1895 ctl_len = msg_sys->msg_controllen; 1896 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1897 err = 1898 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1899 sizeof(ctl)); 1900 if (err) 1901 goto out_freeiov; 1902 ctl_buf = msg_sys->msg_control; 1903 ctl_len = msg_sys->msg_controllen; 1904 } else if (ctl_len) { 1905 if (ctl_len > sizeof(ctl)) { 1906 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1907 if (ctl_buf == NULL) 1908 goto out_freeiov; 1909 } 1910 err = -EFAULT; 1911 /* 1912 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1913 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1914 * checking falls down on this. 1915 */ 1916 if (copy_from_user(ctl_buf, 1917 (void __user __force *)msg_sys->msg_control, 1918 ctl_len)) 1919 goto out_freectl; 1920 msg_sys->msg_control = ctl_buf; 1921 } 1922 msg_sys->msg_flags = flags; 1923 1924 if (sock->file->f_flags & O_NONBLOCK) 1925 msg_sys->msg_flags |= MSG_DONTWAIT; 1926 /* 1927 * If this is sendmmsg() and current destination address is same as 1928 * previously succeeded address, omit asking LSM's decision. 1929 * used_address->name_len is initialized to UINT_MAX so that the first 1930 * destination address never matches. 1931 */ 1932 if (used_address && msg_sys->msg_name && 1933 used_address->name_len == msg_sys->msg_namelen && 1934 !memcmp(&used_address->name, msg_sys->msg_name, 1935 used_address->name_len)) { 1936 err = sock_sendmsg_nosec(sock, msg_sys); 1937 goto out_freectl; 1938 } 1939 err = sock_sendmsg(sock, msg_sys); 1940 /* 1941 * If this is sendmmsg() and sending to current destination address was 1942 * successful, remember it. 1943 */ 1944 if (used_address && err >= 0) { 1945 used_address->name_len = msg_sys->msg_namelen; 1946 if (msg_sys->msg_name) 1947 memcpy(&used_address->name, msg_sys->msg_name, 1948 used_address->name_len); 1949 } 1950 1951 out_freectl: 1952 if (ctl_buf != ctl) 1953 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1954 out_freeiov: 1955 kfree(iov); 1956 return err; 1957 } 1958 1959 /* 1960 * BSD sendmsg interface 1961 */ 1962 1963 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 1964 { 1965 int fput_needed, err; 1966 struct msghdr msg_sys; 1967 struct socket *sock; 1968 1969 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1970 if (!sock) 1971 goto out; 1972 1973 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 1974 1975 fput_light(sock->file, fput_needed); 1976 out: 1977 return err; 1978 } 1979 1980 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 1981 { 1982 if (flags & MSG_CMSG_COMPAT) 1983 return -EINVAL; 1984 return __sys_sendmsg(fd, msg, flags); 1985 } 1986 1987 /* 1988 * Linux sendmmsg interface 1989 */ 1990 1991 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 1992 unsigned int flags) 1993 { 1994 int fput_needed, err, datagrams; 1995 struct socket *sock; 1996 struct mmsghdr __user *entry; 1997 struct compat_mmsghdr __user *compat_entry; 1998 struct msghdr msg_sys; 1999 struct used_address used_address; 2000 unsigned int oflags = flags; 2001 2002 if (vlen > UIO_MAXIOV) 2003 vlen = UIO_MAXIOV; 2004 2005 datagrams = 0; 2006 2007 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2008 if (!sock) 2009 return err; 2010 2011 used_address.name_len = UINT_MAX; 2012 entry = mmsg; 2013 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2014 err = 0; 2015 flags |= MSG_BATCH; 2016 2017 while (datagrams < vlen) { 2018 if (datagrams == vlen - 1) 2019 flags = oflags; 2020 2021 if (MSG_CMSG_COMPAT & flags) { 2022 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2023 &msg_sys, flags, &used_address, MSG_EOR); 2024 if (err < 0) 2025 break; 2026 err = __put_user(err, &compat_entry->msg_len); 2027 ++compat_entry; 2028 } else { 2029 err = ___sys_sendmsg(sock, 2030 (struct user_msghdr __user *)entry, 2031 &msg_sys, flags, &used_address, MSG_EOR); 2032 if (err < 0) 2033 break; 2034 err = put_user(err, &entry->msg_len); 2035 ++entry; 2036 } 2037 2038 if (err) 2039 break; 2040 ++datagrams; 2041 cond_resched(); 2042 } 2043 2044 fput_light(sock->file, fput_needed); 2045 2046 /* We only return an error if no datagrams were able to be sent */ 2047 if (datagrams != 0) 2048 return datagrams; 2049 2050 return err; 2051 } 2052 2053 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2054 unsigned int, vlen, unsigned int, flags) 2055 { 2056 if (flags & MSG_CMSG_COMPAT) 2057 return -EINVAL; 2058 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2059 } 2060 2061 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2062 struct msghdr *msg_sys, unsigned int flags, int nosec) 2063 { 2064 struct compat_msghdr __user *msg_compat = 2065 (struct compat_msghdr __user *)msg; 2066 struct iovec iovstack[UIO_FASTIOV]; 2067 struct iovec *iov = iovstack; 2068 unsigned long cmsg_ptr; 2069 int len; 2070 ssize_t err; 2071 2072 /* kernel mode address */ 2073 struct sockaddr_storage addr; 2074 2075 /* user mode address pointers */ 2076 struct sockaddr __user *uaddr; 2077 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2078 2079 msg_sys->msg_name = &addr; 2080 2081 if (MSG_CMSG_COMPAT & flags) 2082 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2083 else 2084 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2085 if (err < 0) 2086 return err; 2087 2088 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2089 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2090 2091 /* We assume all kernel code knows the size of sockaddr_storage */ 2092 msg_sys->msg_namelen = 0; 2093 2094 if (sock->file->f_flags & O_NONBLOCK) 2095 flags |= MSG_DONTWAIT; 2096 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2097 if (err < 0) 2098 goto out_freeiov; 2099 len = err; 2100 2101 if (uaddr != NULL) { 2102 err = move_addr_to_user(&addr, 2103 msg_sys->msg_namelen, uaddr, 2104 uaddr_len); 2105 if (err < 0) 2106 goto out_freeiov; 2107 } 2108 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2109 COMPAT_FLAGS(msg)); 2110 if (err) 2111 goto out_freeiov; 2112 if (MSG_CMSG_COMPAT & flags) 2113 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2114 &msg_compat->msg_controllen); 2115 else 2116 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2117 &msg->msg_controllen); 2118 if (err) 2119 goto out_freeiov; 2120 err = len; 2121 2122 out_freeiov: 2123 kfree(iov); 2124 return err; 2125 } 2126 2127 /* 2128 * BSD recvmsg interface 2129 */ 2130 2131 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2132 { 2133 int fput_needed, err; 2134 struct msghdr msg_sys; 2135 struct socket *sock; 2136 2137 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2138 if (!sock) 2139 goto out; 2140 2141 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2142 2143 fput_light(sock->file, fput_needed); 2144 out: 2145 return err; 2146 } 2147 2148 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2149 unsigned int, flags) 2150 { 2151 if (flags & MSG_CMSG_COMPAT) 2152 return -EINVAL; 2153 return __sys_recvmsg(fd, msg, flags); 2154 } 2155 2156 /* 2157 * Linux recvmmsg interface 2158 */ 2159 2160 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2161 unsigned int flags, struct timespec *timeout) 2162 { 2163 int fput_needed, err, datagrams; 2164 struct socket *sock; 2165 struct mmsghdr __user *entry; 2166 struct compat_mmsghdr __user *compat_entry; 2167 struct msghdr msg_sys; 2168 struct timespec64 end_time; 2169 struct timespec64 timeout64; 2170 2171 if (timeout && 2172 poll_select_set_timeout(&end_time, timeout->tv_sec, 2173 timeout->tv_nsec)) 2174 return -EINVAL; 2175 2176 datagrams = 0; 2177 2178 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2179 if (!sock) 2180 return err; 2181 2182 err = sock_error(sock->sk); 2183 if (err) 2184 goto out_put; 2185 2186 entry = mmsg; 2187 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2188 2189 while (datagrams < vlen) { 2190 /* 2191 * No need to ask LSM for more than the first datagram. 2192 */ 2193 if (MSG_CMSG_COMPAT & flags) { 2194 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2195 &msg_sys, flags & ~MSG_WAITFORONE, 2196 datagrams); 2197 if (err < 0) 2198 break; 2199 err = __put_user(err, &compat_entry->msg_len); 2200 ++compat_entry; 2201 } else { 2202 err = ___sys_recvmsg(sock, 2203 (struct user_msghdr __user *)entry, 2204 &msg_sys, flags & ~MSG_WAITFORONE, 2205 datagrams); 2206 if (err < 0) 2207 break; 2208 err = put_user(err, &entry->msg_len); 2209 ++entry; 2210 } 2211 2212 if (err) 2213 break; 2214 ++datagrams; 2215 2216 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2217 if (flags & MSG_WAITFORONE) 2218 flags |= MSG_DONTWAIT; 2219 2220 if (timeout) { 2221 ktime_get_ts64(&timeout64); 2222 *timeout = timespec64_to_timespec( 2223 timespec64_sub(end_time, timeout64)); 2224 if (timeout->tv_sec < 0) { 2225 timeout->tv_sec = timeout->tv_nsec = 0; 2226 break; 2227 } 2228 2229 /* Timeout, return less than vlen datagrams */ 2230 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2231 break; 2232 } 2233 2234 /* Out of band data, return right away */ 2235 if (msg_sys.msg_flags & MSG_OOB) 2236 break; 2237 cond_resched(); 2238 } 2239 2240 if (err == 0) 2241 goto out_put; 2242 2243 if (datagrams == 0) { 2244 datagrams = err; 2245 goto out_put; 2246 } 2247 2248 /* 2249 * We may return less entries than requested (vlen) if the 2250 * sock is non block and there aren't enough datagrams... 2251 */ 2252 if (err != -EAGAIN) { 2253 /* 2254 * ... or if recvmsg returns an error after we 2255 * received some datagrams, where we record the 2256 * error to return on the next call or if the 2257 * app asks about it using getsockopt(SO_ERROR). 2258 */ 2259 sock->sk->sk_err = -err; 2260 } 2261 out_put: 2262 fput_light(sock->file, fput_needed); 2263 2264 return datagrams; 2265 } 2266 2267 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2268 unsigned int, vlen, unsigned int, flags, 2269 struct timespec __user *, timeout) 2270 { 2271 int datagrams; 2272 struct timespec timeout_sys; 2273 2274 if (flags & MSG_CMSG_COMPAT) 2275 return -EINVAL; 2276 2277 if (!timeout) 2278 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2279 2280 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2281 return -EFAULT; 2282 2283 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2284 2285 if (datagrams > 0 && 2286 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2287 datagrams = -EFAULT; 2288 2289 return datagrams; 2290 } 2291 2292 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2293 /* Argument list sizes for sys_socketcall */ 2294 #define AL(x) ((x) * sizeof(unsigned long)) 2295 static const unsigned char nargs[21] = { 2296 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2297 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2298 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2299 AL(4), AL(5), AL(4) 2300 }; 2301 2302 #undef AL 2303 2304 /* 2305 * System call vectors. 2306 * 2307 * Argument checking cleaned up. Saved 20% in size. 2308 * This function doesn't need to set the kernel lock because 2309 * it is set by the callees. 2310 */ 2311 2312 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2313 { 2314 unsigned long a[AUDITSC_ARGS]; 2315 unsigned long a0, a1; 2316 int err; 2317 unsigned int len; 2318 2319 if (call < 1 || call > SYS_SENDMMSG) 2320 return -EINVAL; 2321 2322 len = nargs[call]; 2323 if (len > sizeof(a)) 2324 return -EINVAL; 2325 2326 /* copy_from_user should be SMP safe. */ 2327 if (copy_from_user(a, args, len)) 2328 return -EFAULT; 2329 2330 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2331 if (err) 2332 return err; 2333 2334 a0 = a[0]; 2335 a1 = a[1]; 2336 2337 switch (call) { 2338 case SYS_SOCKET: 2339 err = sys_socket(a0, a1, a[2]); 2340 break; 2341 case SYS_BIND: 2342 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2343 break; 2344 case SYS_CONNECT: 2345 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2346 break; 2347 case SYS_LISTEN: 2348 err = sys_listen(a0, a1); 2349 break; 2350 case SYS_ACCEPT: 2351 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2352 (int __user *)a[2], 0); 2353 break; 2354 case SYS_GETSOCKNAME: 2355 err = 2356 sys_getsockname(a0, (struct sockaddr __user *)a1, 2357 (int __user *)a[2]); 2358 break; 2359 case SYS_GETPEERNAME: 2360 err = 2361 sys_getpeername(a0, (struct sockaddr __user *)a1, 2362 (int __user *)a[2]); 2363 break; 2364 case SYS_SOCKETPAIR: 2365 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2366 break; 2367 case SYS_SEND: 2368 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2369 break; 2370 case SYS_SENDTO: 2371 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2372 (struct sockaddr __user *)a[4], a[5]); 2373 break; 2374 case SYS_RECV: 2375 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2376 break; 2377 case SYS_RECVFROM: 2378 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2379 (struct sockaddr __user *)a[4], 2380 (int __user *)a[5]); 2381 break; 2382 case SYS_SHUTDOWN: 2383 err = sys_shutdown(a0, a1); 2384 break; 2385 case SYS_SETSOCKOPT: 2386 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2387 break; 2388 case SYS_GETSOCKOPT: 2389 err = 2390 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2391 (int __user *)a[4]); 2392 break; 2393 case SYS_SENDMSG: 2394 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2395 break; 2396 case SYS_SENDMMSG: 2397 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2398 break; 2399 case SYS_RECVMSG: 2400 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2401 break; 2402 case SYS_RECVMMSG: 2403 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2404 (struct timespec __user *)a[4]); 2405 break; 2406 case SYS_ACCEPT4: 2407 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2408 (int __user *)a[2], a[3]); 2409 break; 2410 default: 2411 err = -EINVAL; 2412 break; 2413 } 2414 return err; 2415 } 2416 2417 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2418 2419 /** 2420 * sock_register - add a socket protocol handler 2421 * @ops: description of protocol 2422 * 2423 * This function is called by a protocol handler that wants to 2424 * advertise its address family, and have it linked into the 2425 * socket interface. The value ops->family corresponds to the 2426 * socket system call protocol family. 2427 */ 2428 int sock_register(const struct net_proto_family *ops) 2429 { 2430 int err; 2431 2432 if (ops->family >= NPROTO) { 2433 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2434 return -ENOBUFS; 2435 } 2436 2437 spin_lock(&net_family_lock); 2438 if (rcu_dereference_protected(net_families[ops->family], 2439 lockdep_is_held(&net_family_lock))) 2440 err = -EEXIST; 2441 else { 2442 rcu_assign_pointer(net_families[ops->family], ops); 2443 err = 0; 2444 } 2445 spin_unlock(&net_family_lock); 2446 2447 pr_info("NET: Registered protocol family %d\n", ops->family); 2448 return err; 2449 } 2450 EXPORT_SYMBOL(sock_register); 2451 2452 /** 2453 * sock_unregister - remove a protocol handler 2454 * @family: protocol family to remove 2455 * 2456 * This function is called by a protocol handler that wants to 2457 * remove its address family, and have it unlinked from the 2458 * new socket creation. 2459 * 2460 * If protocol handler is a module, then it can use module reference 2461 * counts to protect against new references. If protocol handler is not 2462 * a module then it needs to provide its own protection in 2463 * the ops->create routine. 2464 */ 2465 void sock_unregister(int family) 2466 { 2467 BUG_ON(family < 0 || family >= NPROTO); 2468 2469 spin_lock(&net_family_lock); 2470 RCU_INIT_POINTER(net_families[family], NULL); 2471 spin_unlock(&net_family_lock); 2472 2473 synchronize_rcu(); 2474 2475 pr_info("NET: Unregistered protocol family %d\n", family); 2476 } 2477 EXPORT_SYMBOL(sock_unregister); 2478 2479 static int __init sock_init(void) 2480 { 2481 int err; 2482 /* 2483 * Initialize the network sysctl infrastructure. 2484 */ 2485 err = net_sysctl_init(); 2486 if (err) 2487 goto out; 2488 2489 /* 2490 * Initialize skbuff SLAB cache 2491 */ 2492 skb_init(); 2493 2494 /* 2495 * Initialize the protocols module. 2496 */ 2497 2498 init_inodecache(); 2499 2500 err = register_filesystem(&sock_fs_type); 2501 if (err) 2502 goto out_fs; 2503 sock_mnt = kern_mount(&sock_fs_type); 2504 if (IS_ERR(sock_mnt)) { 2505 err = PTR_ERR(sock_mnt); 2506 goto out_mount; 2507 } 2508 2509 /* The real protocol initialization is performed in later initcalls. 2510 */ 2511 2512 #ifdef CONFIG_NETFILTER 2513 err = netfilter_init(); 2514 if (err) 2515 goto out; 2516 #endif 2517 2518 ptp_classifier_init(); 2519 2520 out: 2521 return err; 2522 2523 out_mount: 2524 unregister_filesystem(&sock_fs_type); 2525 out_fs: 2526 goto out; 2527 } 2528 2529 core_initcall(sock_init); /* early initcall */ 2530 2531 #ifdef CONFIG_PROC_FS 2532 void socket_seq_show(struct seq_file *seq) 2533 { 2534 int cpu; 2535 int counter = 0; 2536 2537 for_each_possible_cpu(cpu) 2538 counter += per_cpu(sockets_in_use, cpu); 2539 2540 /* It can be negative, by the way. 8) */ 2541 if (counter < 0) 2542 counter = 0; 2543 2544 seq_printf(seq, "sockets: used %d\n", counter); 2545 } 2546 #endif /* CONFIG_PROC_FS */ 2547 2548 #ifdef CONFIG_COMPAT 2549 static int do_siocgstamp(struct net *net, struct socket *sock, 2550 unsigned int cmd, void __user *up) 2551 { 2552 mm_segment_t old_fs = get_fs(); 2553 struct timeval ktv; 2554 int err; 2555 2556 set_fs(KERNEL_DS); 2557 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2558 set_fs(old_fs); 2559 if (!err) 2560 err = compat_put_timeval(&ktv, up); 2561 2562 return err; 2563 } 2564 2565 static int do_siocgstampns(struct net *net, struct socket *sock, 2566 unsigned int cmd, void __user *up) 2567 { 2568 mm_segment_t old_fs = get_fs(); 2569 struct timespec kts; 2570 int err; 2571 2572 set_fs(KERNEL_DS); 2573 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2574 set_fs(old_fs); 2575 if (!err) 2576 err = compat_put_timespec(&kts, up); 2577 2578 return err; 2579 } 2580 2581 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2582 { 2583 struct ifreq __user *uifr; 2584 int err; 2585 2586 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2587 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2588 return -EFAULT; 2589 2590 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2591 if (err) 2592 return err; 2593 2594 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2595 return -EFAULT; 2596 2597 return 0; 2598 } 2599 2600 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2601 { 2602 struct compat_ifconf ifc32; 2603 struct ifconf ifc; 2604 struct ifconf __user *uifc; 2605 struct compat_ifreq __user *ifr32; 2606 struct ifreq __user *ifr; 2607 unsigned int i, j; 2608 int err; 2609 2610 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2611 return -EFAULT; 2612 2613 memset(&ifc, 0, sizeof(ifc)); 2614 if (ifc32.ifcbuf == 0) { 2615 ifc32.ifc_len = 0; 2616 ifc.ifc_len = 0; 2617 ifc.ifc_req = NULL; 2618 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2619 } else { 2620 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2621 sizeof(struct ifreq); 2622 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2623 ifc.ifc_len = len; 2624 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2625 ifr32 = compat_ptr(ifc32.ifcbuf); 2626 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2627 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2628 return -EFAULT; 2629 ifr++; 2630 ifr32++; 2631 } 2632 } 2633 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2634 return -EFAULT; 2635 2636 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2637 if (err) 2638 return err; 2639 2640 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2641 return -EFAULT; 2642 2643 ifr = ifc.ifc_req; 2644 ifr32 = compat_ptr(ifc32.ifcbuf); 2645 for (i = 0, j = 0; 2646 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2647 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2648 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2649 return -EFAULT; 2650 ifr32++; 2651 ifr++; 2652 } 2653 2654 if (ifc32.ifcbuf == 0) { 2655 /* Translate from 64-bit structure multiple to 2656 * a 32-bit one. 2657 */ 2658 i = ifc.ifc_len; 2659 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2660 ifc32.ifc_len = i; 2661 } else { 2662 ifc32.ifc_len = i; 2663 } 2664 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2665 return -EFAULT; 2666 2667 return 0; 2668 } 2669 2670 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2671 { 2672 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2673 bool convert_in = false, convert_out = false; 2674 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2675 struct ethtool_rxnfc __user *rxnfc; 2676 struct ifreq __user *ifr; 2677 u32 rule_cnt = 0, actual_rule_cnt; 2678 u32 ethcmd; 2679 u32 data; 2680 int ret; 2681 2682 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2683 return -EFAULT; 2684 2685 compat_rxnfc = compat_ptr(data); 2686 2687 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2688 return -EFAULT; 2689 2690 /* Most ethtool structures are defined without padding. 2691 * Unfortunately struct ethtool_rxnfc is an exception. 2692 */ 2693 switch (ethcmd) { 2694 default: 2695 break; 2696 case ETHTOOL_GRXCLSRLALL: 2697 /* Buffer size is variable */ 2698 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2699 return -EFAULT; 2700 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2701 return -ENOMEM; 2702 buf_size += rule_cnt * sizeof(u32); 2703 /* fall through */ 2704 case ETHTOOL_GRXRINGS: 2705 case ETHTOOL_GRXCLSRLCNT: 2706 case ETHTOOL_GRXCLSRULE: 2707 case ETHTOOL_SRXCLSRLINS: 2708 convert_out = true; 2709 /* fall through */ 2710 case ETHTOOL_SRXCLSRLDEL: 2711 buf_size += sizeof(struct ethtool_rxnfc); 2712 convert_in = true; 2713 break; 2714 } 2715 2716 ifr = compat_alloc_user_space(buf_size); 2717 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2718 2719 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2720 return -EFAULT; 2721 2722 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2723 &ifr->ifr_ifru.ifru_data)) 2724 return -EFAULT; 2725 2726 if (convert_in) { 2727 /* We expect there to be holes between fs.m_ext and 2728 * fs.ring_cookie and at the end of fs, but nowhere else. 2729 */ 2730 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2731 sizeof(compat_rxnfc->fs.m_ext) != 2732 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2733 sizeof(rxnfc->fs.m_ext)); 2734 BUILD_BUG_ON( 2735 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2736 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2737 offsetof(struct ethtool_rxnfc, fs.location) - 2738 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2739 2740 if (copy_in_user(rxnfc, compat_rxnfc, 2741 (void __user *)(&rxnfc->fs.m_ext + 1) - 2742 (void __user *)rxnfc) || 2743 copy_in_user(&rxnfc->fs.ring_cookie, 2744 &compat_rxnfc->fs.ring_cookie, 2745 (void __user *)(&rxnfc->fs.location + 1) - 2746 (void __user *)&rxnfc->fs.ring_cookie) || 2747 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2748 sizeof(rxnfc->rule_cnt))) 2749 return -EFAULT; 2750 } 2751 2752 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2753 if (ret) 2754 return ret; 2755 2756 if (convert_out) { 2757 if (copy_in_user(compat_rxnfc, rxnfc, 2758 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2759 (const void __user *)rxnfc) || 2760 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2761 &rxnfc->fs.ring_cookie, 2762 (const void __user *)(&rxnfc->fs.location + 1) - 2763 (const void __user *)&rxnfc->fs.ring_cookie) || 2764 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2765 sizeof(rxnfc->rule_cnt))) 2766 return -EFAULT; 2767 2768 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2769 /* As an optimisation, we only copy the actual 2770 * number of rules that the underlying 2771 * function returned. Since Mallory might 2772 * change the rule count in user memory, we 2773 * check that it is less than the rule count 2774 * originally given (as the user buffer size), 2775 * which has been range-checked. 2776 */ 2777 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2778 return -EFAULT; 2779 if (actual_rule_cnt < rule_cnt) 2780 rule_cnt = actual_rule_cnt; 2781 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2782 &rxnfc->rule_locs[0], 2783 rule_cnt * sizeof(u32))) 2784 return -EFAULT; 2785 } 2786 } 2787 2788 return 0; 2789 } 2790 2791 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2792 { 2793 void __user *uptr; 2794 compat_uptr_t uptr32; 2795 struct ifreq __user *uifr; 2796 2797 uifr = compat_alloc_user_space(sizeof(*uifr)); 2798 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2799 return -EFAULT; 2800 2801 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2802 return -EFAULT; 2803 2804 uptr = compat_ptr(uptr32); 2805 2806 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2807 return -EFAULT; 2808 2809 return dev_ioctl(net, SIOCWANDEV, uifr); 2810 } 2811 2812 static int bond_ioctl(struct net *net, unsigned int cmd, 2813 struct compat_ifreq __user *ifr32) 2814 { 2815 struct ifreq kifr; 2816 mm_segment_t old_fs; 2817 int err; 2818 2819 switch (cmd) { 2820 case SIOCBONDENSLAVE: 2821 case SIOCBONDRELEASE: 2822 case SIOCBONDSETHWADDR: 2823 case SIOCBONDCHANGEACTIVE: 2824 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2825 return -EFAULT; 2826 2827 old_fs = get_fs(); 2828 set_fs(KERNEL_DS); 2829 err = dev_ioctl(net, cmd, 2830 (struct ifreq __user __force *) &kifr); 2831 set_fs(old_fs); 2832 2833 return err; 2834 default: 2835 return -ENOIOCTLCMD; 2836 } 2837 } 2838 2839 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2840 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2841 struct compat_ifreq __user *u_ifreq32) 2842 { 2843 struct ifreq __user *u_ifreq64; 2844 char tmp_buf[IFNAMSIZ]; 2845 void __user *data64; 2846 u32 data32; 2847 2848 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2849 IFNAMSIZ)) 2850 return -EFAULT; 2851 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2852 return -EFAULT; 2853 data64 = compat_ptr(data32); 2854 2855 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2856 2857 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2858 IFNAMSIZ)) 2859 return -EFAULT; 2860 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2861 return -EFAULT; 2862 2863 return dev_ioctl(net, cmd, u_ifreq64); 2864 } 2865 2866 static int dev_ifsioc(struct net *net, struct socket *sock, 2867 unsigned int cmd, struct compat_ifreq __user *uifr32) 2868 { 2869 struct ifreq __user *uifr; 2870 int err; 2871 2872 uifr = compat_alloc_user_space(sizeof(*uifr)); 2873 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2874 return -EFAULT; 2875 2876 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2877 2878 if (!err) { 2879 switch (cmd) { 2880 case SIOCGIFFLAGS: 2881 case SIOCGIFMETRIC: 2882 case SIOCGIFMTU: 2883 case SIOCGIFMEM: 2884 case SIOCGIFHWADDR: 2885 case SIOCGIFINDEX: 2886 case SIOCGIFADDR: 2887 case SIOCGIFBRDADDR: 2888 case SIOCGIFDSTADDR: 2889 case SIOCGIFNETMASK: 2890 case SIOCGIFPFLAGS: 2891 case SIOCGIFTXQLEN: 2892 case SIOCGMIIPHY: 2893 case SIOCGMIIREG: 2894 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2895 err = -EFAULT; 2896 break; 2897 } 2898 } 2899 return err; 2900 } 2901 2902 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2903 struct compat_ifreq __user *uifr32) 2904 { 2905 struct ifreq ifr; 2906 struct compat_ifmap __user *uifmap32; 2907 mm_segment_t old_fs; 2908 int err; 2909 2910 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2911 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2912 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2913 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2914 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2915 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2916 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2917 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2918 if (err) 2919 return -EFAULT; 2920 2921 old_fs = get_fs(); 2922 set_fs(KERNEL_DS); 2923 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2924 set_fs(old_fs); 2925 2926 if (cmd == SIOCGIFMAP && !err) { 2927 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2928 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2929 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2930 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2931 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2932 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2933 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2934 if (err) 2935 err = -EFAULT; 2936 } 2937 return err; 2938 } 2939 2940 struct rtentry32 { 2941 u32 rt_pad1; 2942 struct sockaddr rt_dst; /* target address */ 2943 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2944 struct sockaddr rt_genmask; /* target network mask (IP) */ 2945 unsigned short rt_flags; 2946 short rt_pad2; 2947 u32 rt_pad3; 2948 unsigned char rt_tos; 2949 unsigned char rt_class; 2950 short rt_pad4; 2951 short rt_metric; /* +1 for binary compatibility! */ 2952 /* char * */ u32 rt_dev; /* forcing the device at add */ 2953 u32 rt_mtu; /* per route MTU/Window */ 2954 u32 rt_window; /* Window clamping */ 2955 unsigned short rt_irtt; /* Initial RTT */ 2956 }; 2957 2958 struct in6_rtmsg32 { 2959 struct in6_addr rtmsg_dst; 2960 struct in6_addr rtmsg_src; 2961 struct in6_addr rtmsg_gateway; 2962 u32 rtmsg_type; 2963 u16 rtmsg_dst_len; 2964 u16 rtmsg_src_len; 2965 u32 rtmsg_metric; 2966 u32 rtmsg_info; 2967 u32 rtmsg_flags; 2968 s32 rtmsg_ifindex; 2969 }; 2970 2971 static int routing_ioctl(struct net *net, struct socket *sock, 2972 unsigned int cmd, void __user *argp) 2973 { 2974 int ret; 2975 void *r = NULL; 2976 struct in6_rtmsg r6; 2977 struct rtentry r4; 2978 char devname[16]; 2979 u32 rtdev; 2980 mm_segment_t old_fs = get_fs(); 2981 2982 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2983 struct in6_rtmsg32 __user *ur6 = argp; 2984 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2985 3 * sizeof(struct in6_addr)); 2986 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2987 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2988 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2989 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2990 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2991 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2992 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2993 2994 r = (void *) &r6; 2995 } else { /* ipv4 */ 2996 struct rtentry32 __user *ur4 = argp; 2997 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 2998 3 * sizeof(struct sockaddr)); 2999 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3000 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3001 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3002 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3003 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3004 ret |= get_user(rtdev, &(ur4->rt_dev)); 3005 if (rtdev) { 3006 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3007 r4.rt_dev = (char __user __force *)devname; 3008 devname[15] = 0; 3009 } else 3010 r4.rt_dev = NULL; 3011 3012 r = (void *) &r4; 3013 } 3014 3015 if (ret) { 3016 ret = -EFAULT; 3017 goto out; 3018 } 3019 3020 set_fs(KERNEL_DS); 3021 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3022 set_fs(old_fs); 3023 3024 out: 3025 return ret; 3026 } 3027 3028 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3029 * for some operations; this forces use of the newer bridge-utils that 3030 * use compatible ioctls 3031 */ 3032 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3033 { 3034 compat_ulong_t tmp; 3035 3036 if (get_user(tmp, argp)) 3037 return -EFAULT; 3038 if (tmp == BRCTL_GET_VERSION) 3039 return BRCTL_VERSION + 1; 3040 return -EINVAL; 3041 } 3042 3043 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3044 unsigned int cmd, unsigned long arg) 3045 { 3046 void __user *argp = compat_ptr(arg); 3047 struct sock *sk = sock->sk; 3048 struct net *net = sock_net(sk); 3049 3050 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3051 return compat_ifr_data_ioctl(net, cmd, argp); 3052 3053 switch (cmd) { 3054 case SIOCSIFBR: 3055 case SIOCGIFBR: 3056 return old_bridge_ioctl(argp); 3057 case SIOCGIFNAME: 3058 return dev_ifname32(net, argp); 3059 case SIOCGIFCONF: 3060 return dev_ifconf(net, argp); 3061 case SIOCETHTOOL: 3062 return ethtool_ioctl(net, argp); 3063 case SIOCWANDEV: 3064 return compat_siocwandev(net, argp); 3065 case SIOCGIFMAP: 3066 case SIOCSIFMAP: 3067 return compat_sioc_ifmap(net, cmd, argp); 3068 case SIOCBONDENSLAVE: 3069 case SIOCBONDRELEASE: 3070 case SIOCBONDSETHWADDR: 3071 case SIOCBONDCHANGEACTIVE: 3072 return bond_ioctl(net, cmd, argp); 3073 case SIOCADDRT: 3074 case SIOCDELRT: 3075 return routing_ioctl(net, sock, cmd, argp); 3076 case SIOCGSTAMP: 3077 return do_siocgstamp(net, sock, cmd, argp); 3078 case SIOCGSTAMPNS: 3079 return do_siocgstampns(net, sock, cmd, argp); 3080 case SIOCBONDSLAVEINFOQUERY: 3081 case SIOCBONDINFOQUERY: 3082 case SIOCSHWTSTAMP: 3083 case SIOCGHWTSTAMP: 3084 return compat_ifr_data_ioctl(net, cmd, argp); 3085 3086 case FIOSETOWN: 3087 case SIOCSPGRP: 3088 case FIOGETOWN: 3089 case SIOCGPGRP: 3090 case SIOCBRADDBR: 3091 case SIOCBRDELBR: 3092 case SIOCGIFVLAN: 3093 case SIOCSIFVLAN: 3094 case SIOCADDDLCI: 3095 case SIOCDELDLCI: 3096 return sock_ioctl(file, cmd, arg); 3097 3098 case SIOCGIFFLAGS: 3099 case SIOCSIFFLAGS: 3100 case SIOCGIFMETRIC: 3101 case SIOCSIFMETRIC: 3102 case SIOCGIFMTU: 3103 case SIOCSIFMTU: 3104 case SIOCGIFMEM: 3105 case SIOCSIFMEM: 3106 case SIOCGIFHWADDR: 3107 case SIOCSIFHWADDR: 3108 case SIOCADDMULTI: 3109 case SIOCDELMULTI: 3110 case SIOCGIFINDEX: 3111 case SIOCGIFADDR: 3112 case SIOCSIFADDR: 3113 case SIOCSIFHWBROADCAST: 3114 case SIOCDIFADDR: 3115 case SIOCGIFBRDADDR: 3116 case SIOCSIFBRDADDR: 3117 case SIOCGIFDSTADDR: 3118 case SIOCSIFDSTADDR: 3119 case SIOCGIFNETMASK: 3120 case SIOCSIFNETMASK: 3121 case SIOCSIFPFLAGS: 3122 case SIOCGIFPFLAGS: 3123 case SIOCGIFTXQLEN: 3124 case SIOCSIFTXQLEN: 3125 case SIOCBRADDIF: 3126 case SIOCBRDELIF: 3127 case SIOCSIFNAME: 3128 case SIOCGMIIPHY: 3129 case SIOCGMIIREG: 3130 case SIOCSMIIREG: 3131 return dev_ifsioc(net, sock, cmd, argp); 3132 3133 case SIOCSARP: 3134 case SIOCGARP: 3135 case SIOCDARP: 3136 case SIOCATMARK: 3137 return sock_do_ioctl(net, sock, cmd, arg); 3138 } 3139 3140 return -ENOIOCTLCMD; 3141 } 3142 3143 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3144 unsigned long arg) 3145 { 3146 struct socket *sock = file->private_data; 3147 int ret = -ENOIOCTLCMD; 3148 struct sock *sk; 3149 struct net *net; 3150 3151 sk = sock->sk; 3152 net = sock_net(sk); 3153 3154 if (sock->ops->compat_ioctl) 3155 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3156 3157 if (ret == -ENOIOCTLCMD && 3158 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3159 ret = compat_wext_handle_ioctl(net, cmd, arg); 3160 3161 if (ret == -ENOIOCTLCMD) 3162 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3163 3164 return ret; 3165 } 3166 #endif 3167 3168 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3169 { 3170 return sock->ops->bind(sock, addr, addrlen); 3171 } 3172 EXPORT_SYMBOL(kernel_bind); 3173 3174 int kernel_listen(struct socket *sock, int backlog) 3175 { 3176 return sock->ops->listen(sock, backlog); 3177 } 3178 EXPORT_SYMBOL(kernel_listen); 3179 3180 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3181 { 3182 struct sock *sk = sock->sk; 3183 int err; 3184 3185 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3186 newsock); 3187 if (err < 0) 3188 goto done; 3189 3190 err = sock->ops->accept(sock, *newsock, flags); 3191 if (err < 0) { 3192 sock_release(*newsock); 3193 *newsock = NULL; 3194 goto done; 3195 } 3196 3197 (*newsock)->ops = sock->ops; 3198 __module_get((*newsock)->ops->owner); 3199 3200 done: 3201 return err; 3202 } 3203 EXPORT_SYMBOL(kernel_accept); 3204 3205 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3206 int flags) 3207 { 3208 return sock->ops->connect(sock, addr, addrlen, flags); 3209 } 3210 EXPORT_SYMBOL(kernel_connect); 3211 3212 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3213 int *addrlen) 3214 { 3215 return sock->ops->getname(sock, addr, addrlen, 0); 3216 } 3217 EXPORT_SYMBOL(kernel_getsockname); 3218 3219 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3220 int *addrlen) 3221 { 3222 return sock->ops->getname(sock, addr, addrlen, 1); 3223 } 3224 EXPORT_SYMBOL(kernel_getpeername); 3225 3226 int kernel_getsockopt(struct socket *sock, int level, int optname, 3227 char *optval, int *optlen) 3228 { 3229 mm_segment_t oldfs = get_fs(); 3230 char __user *uoptval; 3231 int __user *uoptlen; 3232 int err; 3233 3234 uoptval = (char __user __force *) optval; 3235 uoptlen = (int __user __force *) optlen; 3236 3237 set_fs(KERNEL_DS); 3238 if (level == SOL_SOCKET) 3239 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3240 else 3241 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3242 uoptlen); 3243 set_fs(oldfs); 3244 return err; 3245 } 3246 EXPORT_SYMBOL(kernel_getsockopt); 3247 3248 int kernel_setsockopt(struct socket *sock, int level, int optname, 3249 char *optval, unsigned int optlen) 3250 { 3251 mm_segment_t oldfs = get_fs(); 3252 char __user *uoptval; 3253 int err; 3254 3255 uoptval = (char __user __force *) optval; 3256 3257 set_fs(KERNEL_DS); 3258 if (level == SOL_SOCKET) 3259 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3260 else 3261 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3262 optlen); 3263 set_fs(oldfs); 3264 return err; 3265 } 3266 EXPORT_SYMBOL(kernel_setsockopt); 3267 3268 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3269 size_t size, int flags) 3270 { 3271 if (sock->ops->sendpage) 3272 return sock->ops->sendpage(sock, page, offset, size, flags); 3273 3274 return sock_no_sendpage(sock, page, offset, size, flags); 3275 } 3276 EXPORT_SYMBOL(kernel_sendpage); 3277 3278 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3279 { 3280 mm_segment_t oldfs = get_fs(); 3281 int err; 3282 3283 set_fs(KERNEL_DS); 3284 err = sock->ops->ioctl(sock, cmd, arg); 3285 set_fs(oldfs); 3286 3287 return err; 3288 } 3289 EXPORT_SYMBOL(kernel_sock_ioctl); 3290 3291 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3292 { 3293 return sock->ops->shutdown(sock, how); 3294 } 3295 EXPORT_SYMBOL(kernel_sock_shutdown); 3296