xref: /linux/net/socket.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *	Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 			     void __user *uaddr, int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	BUG_ON(klen > sizeof(struct sockaddr_storage));
223 	err = get_user(len, ulen);
224 	if (err)
225 		return err;
226 	if (len > klen)
227 		len = klen;
228 	if (len < 0)
229 		return -EINVAL;
230 	if (len) {
231 		if (audit_sockaddr(klen, kaddr))
232 			return -ENOMEM;
233 		if (copy_to_user(uaddr, kaddr, len))
234 			return -EFAULT;
235 	}
236 	/*
237 	 *      "fromlen shall refer to the value before truncation.."
238 	 *                      1003.1g
239 	 */
240 	return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 	struct socket_alloc *ei;
248 	struct socket_wq *wq;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 	if (!wq) {
255 		kmem_cache_free(sock_inode_cachep, ei);
256 		return NULL;
257 	}
258 	init_waitqueue_head(&wq->wait);
259 	wq->fasync_list = NULL;
260 	wq->flags = 0;
261 	RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 	struct socket_wq *wq;
276 
277 	ei = container_of(inode, struct socket_alloc, vfs_inode);
278 	wq = rcu_dereference_protected(ei->socket.wq, 1);
279 	kfree_rcu(wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static int init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 					      init_once);
299 	if (sock_inode_cachep == NULL)
300 		return -ENOMEM;
301 	return 0;
302 }
303 
304 static const struct super_operations sockfs_ops = {
305 	.alloc_inode	= sock_alloc_inode,
306 	.destroy_inode	= sock_destroy_inode,
307 	.statfs		= simple_statfs,
308 };
309 
310 /*
311  * sockfs_dname() is called from d_path().
312  */
313 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
314 {
315 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
316 				d_inode(dentry)->i_ino);
317 }
318 
319 static const struct dentry_operations sockfs_dentry_operations = {
320 	.d_dname  = sockfs_dname,
321 };
322 
323 static int sockfs_xattr_get(const struct xattr_handler *handler,
324 			    struct dentry *dentry, struct inode *inode,
325 			    const char *suffix, void *value, size_t size)
326 {
327 	if (value) {
328 		if (dentry->d_name.len + 1 > size)
329 			return -ERANGE;
330 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
331 	}
332 	return dentry->d_name.len + 1;
333 }
334 
335 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
336 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
337 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
338 
339 static const struct xattr_handler sockfs_xattr_handler = {
340 	.name = XATTR_NAME_SOCKPROTONAME,
341 	.get = sockfs_xattr_get,
342 };
343 
344 static const struct xattr_handler *sockfs_xattr_handlers[] = {
345 	&sockfs_xattr_handler,
346 	NULL
347 };
348 
349 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
350 			 int flags, const char *dev_name, void *data)
351 {
352 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
353 				  sockfs_xattr_handlers,
354 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
355 }
356 
357 static struct vfsmount *sock_mnt __read_mostly;
358 
359 static struct file_system_type sock_fs_type = {
360 	.name =		"sockfs",
361 	.mount =	sockfs_mount,
362 	.kill_sb =	kill_anon_super,
363 };
364 
365 /*
366  *	Obtains the first available file descriptor and sets it up for use.
367  *
368  *	These functions create file structures and maps them to fd space
369  *	of the current process. On success it returns file descriptor
370  *	and file struct implicitly stored in sock->file.
371  *	Note that another thread may close file descriptor before we return
372  *	from this function. We use the fact that now we do not refer
373  *	to socket after mapping. If one day we will need it, this
374  *	function will increment ref. count on file by 1.
375  *
376  *	In any case returned fd MAY BE not valid!
377  *	This race condition is unavoidable
378  *	with shared fd spaces, we cannot solve it inside kernel,
379  *	but we take care of internal coherence yet.
380  */
381 
382 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
383 {
384 	struct qstr name = { .name = "" };
385 	struct path path;
386 	struct file *file;
387 
388 	if (dname) {
389 		name.name = dname;
390 		name.len = strlen(name.name);
391 	} else if (sock->sk) {
392 		name.name = sock->sk->sk_prot_creator->name;
393 		name.len = strlen(name.name);
394 	}
395 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
396 	if (unlikely(!path.dentry))
397 		return ERR_PTR(-ENOMEM);
398 	path.mnt = mntget(sock_mnt);
399 
400 	d_instantiate(path.dentry, SOCK_INODE(sock));
401 
402 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
403 		  &socket_file_ops);
404 	if (IS_ERR(file)) {
405 		/* drop dentry, keep inode */
406 		ihold(d_inode(path.dentry));
407 		path_put(&path);
408 		return file;
409 	}
410 
411 	sock->file = file;
412 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
413 	file->private_data = sock;
414 	return file;
415 }
416 EXPORT_SYMBOL(sock_alloc_file);
417 
418 static int sock_map_fd(struct socket *sock, int flags)
419 {
420 	struct file *newfile;
421 	int fd = get_unused_fd_flags(flags);
422 	if (unlikely(fd < 0))
423 		return fd;
424 
425 	newfile = sock_alloc_file(sock, flags, NULL);
426 	if (likely(!IS_ERR(newfile))) {
427 		fd_install(fd, newfile);
428 		return fd;
429 	}
430 
431 	put_unused_fd(fd);
432 	return PTR_ERR(newfile);
433 }
434 
435 struct socket *sock_from_file(struct file *file, int *err)
436 {
437 	if (file->f_op == &socket_file_ops)
438 		return file->private_data;	/* set in sock_map_fd */
439 
440 	*err = -ENOTSOCK;
441 	return NULL;
442 }
443 EXPORT_SYMBOL(sock_from_file);
444 
445 /**
446  *	sockfd_lookup - Go from a file number to its socket slot
447  *	@fd: file handle
448  *	@err: pointer to an error code return
449  *
450  *	The file handle passed in is locked and the socket it is bound
451  *	too is returned. If an error occurs the err pointer is overwritten
452  *	with a negative errno code and NULL is returned. The function checks
453  *	for both invalid handles and passing a handle which is not a socket.
454  *
455  *	On a success the socket object pointer is returned.
456  */
457 
458 struct socket *sockfd_lookup(int fd, int *err)
459 {
460 	struct file *file;
461 	struct socket *sock;
462 
463 	file = fget(fd);
464 	if (!file) {
465 		*err = -EBADF;
466 		return NULL;
467 	}
468 
469 	sock = sock_from_file(file, err);
470 	if (!sock)
471 		fput(file);
472 	return sock;
473 }
474 EXPORT_SYMBOL(sockfd_lookup);
475 
476 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
477 {
478 	struct fd f = fdget(fd);
479 	struct socket *sock;
480 
481 	*err = -EBADF;
482 	if (f.file) {
483 		sock = sock_from_file(f.file, err);
484 		if (likely(sock)) {
485 			*fput_needed = f.flags;
486 			return sock;
487 		}
488 		fdput(f);
489 	}
490 	return NULL;
491 }
492 
493 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
494 				size_t size)
495 {
496 	ssize_t len;
497 	ssize_t used = 0;
498 
499 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
500 	if (len < 0)
501 		return len;
502 	used += len;
503 	if (buffer) {
504 		if (size < used)
505 			return -ERANGE;
506 		buffer += len;
507 	}
508 
509 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
510 	used += len;
511 	if (buffer) {
512 		if (size < used)
513 			return -ERANGE;
514 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
515 		buffer += len;
516 	}
517 
518 	return used;
519 }
520 
521 static const struct inode_operations sockfs_inode_ops = {
522 	.listxattr = sockfs_listxattr,
523 };
524 
525 /**
526  *	sock_alloc	-	allocate a socket
527  *
528  *	Allocate a new inode and socket object. The two are bound together
529  *	and initialised. The socket is then returned. If we are out of inodes
530  *	NULL is returned.
531  */
532 
533 struct socket *sock_alloc(void)
534 {
535 	struct inode *inode;
536 	struct socket *sock;
537 
538 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
539 	if (!inode)
540 		return NULL;
541 
542 	sock = SOCKET_I(inode);
543 
544 	kmemcheck_annotate_bitfield(sock, type);
545 	inode->i_ino = get_next_ino();
546 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
547 	inode->i_uid = current_fsuid();
548 	inode->i_gid = current_fsgid();
549 	inode->i_op = &sockfs_inode_ops;
550 
551 	this_cpu_add(sockets_in_use, 1);
552 	return sock;
553 }
554 EXPORT_SYMBOL(sock_alloc);
555 
556 /**
557  *	sock_release	-	close a socket
558  *	@sock: socket to close
559  *
560  *	The socket is released from the protocol stack if it has a release
561  *	callback, and the inode is then released if the socket is bound to
562  *	an inode not a file.
563  */
564 
565 void sock_release(struct socket *sock)
566 {
567 	if (sock->ops) {
568 		struct module *owner = sock->ops->owner;
569 
570 		sock->ops->release(sock);
571 		sock->ops = NULL;
572 		module_put(owner);
573 	}
574 
575 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
576 		pr_err("%s: fasync list not empty!\n", __func__);
577 
578 	this_cpu_sub(sockets_in_use, 1);
579 	if (!sock->file) {
580 		iput(SOCK_INODE(sock));
581 		return;
582 	}
583 	sock->file = NULL;
584 }
585 EXPORT_SYMBOL(sock_release);
586 
587 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
588 {
589 	u8 flags = *tx_flags;
590 
591 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
592 		flags |= SKBTX_HW_TSTAMP;
593 
594 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
595 		flags |= SKBTX_SW_TSTAMP;
596 
597 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
598 		flags |= SKBTX_SCHED_TSTAMP;
599 
600 	*tx_flags = flags;
601 }
602 EXPORT_SYMBOL(__sock_tx_timestamp);
603 
604 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
605 {
606 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
607 	BUG_ON(ret == -EIOCBQUEUED);
608 	return ret;
609 }
610 
611 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
612 {
613 	int err = security_socket_sendmsg(sock, msg,
614 					  msg_data_left(msg));
615 
616 	return err ?: sock_sendmsg_nosec(sock, msg);
617 }
618 EXPORT_SYMBOL(sock_sendmsg);
619 
620 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
621 		   struct kvec *vec, size_t num, size_t size)
622 {
623 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
624 	return sock_sendmsg(sock, msg);
625 }
626 EXPORT_SYMBOL(kernel_sendmsg);
627 
628 /*
629  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
630  */
631 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
632 	struct sk_buff *skb)
633 {
634 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
635 	struct scm_timestamping tss;
636 	int empty = 1;
637 	struct skb_shared_hwtstamps *shhwtstamps =
638 		skb_hwtstamps(skb);
639 
640 	/* Race occurred between timestamp enabling and packet
641 	   receiving.  Fill in the current time for now. */
642 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
643 		__net_timestamp(skb);
644 
645 	if (need_software_tstamp) {
646 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
647 			struct timeval tv;
648 			skb_get_timestamp(skb, &tv);
649 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
650 				 sizeof(tv), &tv);
651 		} else {
652 			struct timespec ts;
653 			skb_get_timestampns(skb, &ts);
654 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
655 				 sizeof(ts), &ts);
656 		}
657 	}
658 
659 	memset(&tss, 0, sizeof(tss));
660 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
661 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
662 		empty = 0;
663 	if (shhwtstamps &&
664 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
665 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
666 		empty = 0;
667 	if (!empty)
668 		put_cmsg(msg, SOL_SOCKET,
669 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
670 }
671 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
672 
673 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
674 	struct sk_buff *skb)
675 {
676 	int ack;
677 
678 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
679 		return;
680 	if (!skb->wifi_acked_valid)
681 		return;
682 
683 	ack = skb->wifi_acked;
684 
685 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
686 }
687 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
688 
689 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
690 				   struct sk_buff *skb)
691 {
692 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
693 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
694 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
695 }
696 
697 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
698 	struct sk_buff *skb)
699 {
700 	sock_recv_timestamp(msg, sk, skb);
701 	sock_recv_drops(msg, sk, skb);
702 }
703 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
704 
705 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
706 				     int flags)
707 {
708 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
709 }
710 
711 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
712 {
713 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
714 
715 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
716 }
717 EXPORT_SYMBOL(sock_recvmsg);
718 
719 /**
720  * kernel_recvmsg - Receive a message from a socket (kernel space)
721  * @sock:       The socket to receive the message from
722  * @msg:        Received message
723  * @vec:        Input s/g array for message data
724  * @num:        Size of input s/g array
725  * @size:       Number of bytes to read
726  * @flags:      Message flags (MSG_DONTWAIT, etc...)
727  *
728  * On return the msg structure contains the scatter/gather array passed in the
729  * vec argument. The array is modified so that it consists of the unfilled
730  * portion of the original array.
731  *
732  * The returned value is the total number of bytes received, or an error.
733  */
734 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
735 		   struct kvec *vec, size_t num, size_t size, int flags)
736 {
737 	mm_segment_t oldfs = get_fs();
738 	int result;
739 
740 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
741 	set_fs(KERNEL_DS);
742 	result = sock_recvmsg(sock, msg, flags);
743 	set_fs(oldfs);
744 	return result;
745 }
746 EXPORT_SYMBOL(kernel_recvmsg);
747 
748 static ssize_t sock_sendpage(struct file *file, struct page *page,
749 			     int offset, size_t size, loff_t *ppos, int more)
750 {
751 	struct socket *sock;
752 	int flags;
753 
754 	sock = file->private_data;
755 
756 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
757 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
758 	flags |= more;
759 
760 	return kernel_sendpage(sock, page, offset, size, flags);
761 }
762 
763 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
764 				struct pipe_inode_info *pipe, size_t len,
765 				unsigned int flags)
766 {
767 	struct socket *sock = file->private_data;
768 
769 	if (unlikely(!sock->ops->splice_read))
770 		return -EINVAL;
771 
772 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
773 }
774 
775 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
776 {
777 	struct file *file = iocb->ki_filp;
778 	struct socket *sock = file->private_data;
779 	struct msghdr msg = {.msg_iter = *to,
780 			     .msg_iocb = iocb};
781 	ssize_t res;
782 
783 	if (file->f_flags & O_NONBLOCK)
784 		msg.msg_flags = MSG_DONTWAIT;
785 
786 	if (iocb->ki_pos != 0)
787 		return -ESPIPE;
788 
789 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
790 		return 0;
791 
792 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
793 	*to = msg.msg_iter;
794 	return res;
795 }
796 
797 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
798 {
799 	struct file *file = iocb->ki_filp;
800 	struct socket *sock = file->private_data;
801 	struct msghdr msg = {.msg_iter = *from,
802 			     .msg_iocb = iocb};
803 	ssize_t res;
804 
805 	if (iocb->ki_pos != 0)
806 		return -ESPIPE;
807 
808 	if (file->f_flags & O_NONBLOCK)
809 		msg.msg_flags = MSG_DONTWAIT;
810 
811 	if (sock->type == SOCK_SEQPACKET)
812 		msg.msg_flags |= MSG_EOR;
813 
814 	res = sock_sendmsg(sock, &msg);
815 	*from = msg.msg_iter;
816 	return res;
817 }
818 
819 /*
820  * Atomic setting of ioctl hooks to avoid race
821  * with module unload.
822  */
823 
824 static DEFINE_MUTEX(br_ioctl_mutex);
825 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
826 
827 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
828 {
829 	mutex_lock(&br_ioctl_mutex);
830 	br_ioctl_hook = hook;
831 	mutex_unlock(&br_ioctl_mutex);
832 }
833 EXPORT_SYMBOL(brioctl_set);
834 
835 static DEFINE_MUTEX(vlan_ioctl_mutex);
836 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
837 
838 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
839 {
840 	mutex_lock(&vlan_ioctl_mutex);
841 	vlan_ioctl_hook = hook;
842 	mutex_unlock(&vlan_ioctl_mutex);
843 }
844 EXPORT_SYMBOL(vlan_ioctl_set);
845 
846 static DEFINE_MUTEX(dlci_ioctl_mutex);
847 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
848 
849 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
850 {
851 	mutex_lock(&dlci_ioctl_mutex);
852 	dlci_ioctl_hook = hook;
853 	mutex_unlock(&dlci_ioctl_mutex);
854 }
855 EXPORT_SYMBOL(dlci_ioctl_set);
856 
857 static long sock_do_ioctl(struct net *net, struct socket *sock,
858 				 unsigned int cmd, unsigned long arg)
859 {
860 	int err;
861 	void __user *argp = (void __user *)arg;
862 
863 	err = sock->ops->ioctl(sock, cmd, arg);
864 
865 	/*
866 	 * If this ioctl is unknown try to hand it down
867 	 * to the NIC driver.
868 	 */
869 	if (err == -ENOIOCTLCMD)
870 		err = dev_ioctl(net, cmd, argp);
871 
872 	return err;
873 }
874 
875 /*
876  *	With an ioctl, arg may well be a user mode pointer, but we don't know
877  *	what to do with it - that's up to the protocol still.
878  */
879 
880 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
881 {
882 	struct socket *sock;
883 	struct sock *sk;
884 	void __user *argp = (void __user *)arg;
885 	int pid, err;
886 	struct net *net;
887 
888 	sock = file->private_data;
889 	sk = sock->sk;
890 	net = sock_net(sk);
891 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
892 		err = dev_ioctl(net, cmd, argp);
893 	} else
894 #ifdef CONFIG_WEXT_CORE
895 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
896 		err = dev_ioctl(net, cmd, argp);
897 	} else
898 #endif
899 		switch (cmd) {
900 		case FIOSETOWN:
901 		case SIOCSPGRP:
902 			err = -EFAULT;
903 			if (get_user(pid, (int __user *)argp))
904 				break;
905 			f_setown(sock->file, pid, 1);
906 			err = 0;
907 			break;
908 		case FIOGETOWN:
909 		case SIOCGPGRP:
910 			err = put_user(f_getown(sock->file),
911 				       (int __user *)argp);
912 			break;
913 		case SIOCGIFBR:
914 		case SIOCSIFBR:
915 		case SIOCBRADDBR:
916 		case SIOCBRDELBR:
917 			err = -ENOPKG;
918 			if (!br_ioctl_hook)
919 				request_module("bridge");
920 
921 			mutex_lock(&br_ioctl_mutex);
922 			if (br_ioctl_hook)
923 				err = br_ioctl_hook(net, cmd, argp);
924 			mutex_unlock(&br_ioctl_mutex);
925 			break;
926 		case SIOCGIFVLAN:
927 		case SIOCSIFVLAN:
928 			err = -ENOPKG;
929 			if (!vlan_ioctl_hook)
930 				request_module("8021q");
931 
932 			mutex_lock(&vlan_ioctl_mutex);
933 			if (vlan_ioctl_hook)
934 				err = vlan_ioctl_hook(net, argp);
935 			mutex_unlock(&vlan_ioctl_mutex);
936 			break;
937 		case SIOCADDDLCI:
938 		case SIOCDELDLCI:
939 			err = -ENOPKG;
940 			if (!dlci_ioctl_hook)
941 				request_module("dlci");
942 
943 			mutex_lock(&dlci_ioctl_mutex);
944 			if (dlci_ioctl_hook)
945 				err = dlci_ioctl_hook(cmd, argp);
946 			mutex_unlock(&dlci_ioctl_mutex);
947 			break;
948 		default:
949 			err = sock_do_ioctl(net, sock, cmd, arg);
950 			break;
951 		}
952 	return err;
953 }
954 
955 int sock_create_lite(int family, int type, int protocol, struct socket **res)
956 {
957 	int err;
958 	struct socket *sock = NULL;
959 
960 	err = security_socket_create(family, type, protocol, 1);
961 	if (err)
962 		goto out;
963 
964 	sock = sock_alloc();
965 	if (!sock) {
966 		err = -ENOMEM;
967 		goto out;
968 	}
969 
970 	sock->type = type;
971 	err = security_socket_post_create(sock, family, type, protocol, 1);
972 	if (err)
973 		goto out_release;
974 
975 out:
976 	*res = sock;
977 	return err;
978 out_release:
979 	sock_release(sock);
980 	sock = NULL;
981 	goto out;
982 }
983 EXPORT_SYMBOL(sock_create_lite);
984 
985 /* No kernel lock held - perfect */
986 static unsigned int sock_poll(struct file *file, poll_table *wait)
987 {
988 	unsigned int busy_flag = 0;
989 	struct socket *sock;
990 
991 	/*
992 	 *      We can't return errors to poll, so it's either yes or no.
993 	 */
994 	sock = file->private_data;
995 
996 	if (sk_can_busy_loop(sock->sk)) {
997 		/* this socket can poll_ll so tell the system call */
998 		busy_flag = POLL_BUSY_LOOP;
999 
1000 		/* once, only if requested by syscall */
1001 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1002 			sk_busy_loop(sock->sk, 1);
1003 	}
1004 
1005 	return busy_flag | sock->ops->poll(file, sock, wait);
1006 }
1007 
1008 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1009 {
1010 	struct socket *sock = file->private_data;
1011 
1012 	return sock->ops->mmap(file, sock, vma);
1013 }
1014 
1015 static int sock_close(struct inode *inode, struct file *filp)
1016 {
1017 	sock_release(SOCKET_I(inode));
1018 	return 0;
1019 }
1020 
1021 /*
1022  *	Update the socket async list
1023  *
1024  *	Fasync_list locking strategy.
1025  *
1026  *	1. fasync_list is modified only under process context socket lock
1027  *	   i.e. under semaphore.
1028  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1029  *	   or under socket lock
1030  */
1031 
1032 static int sock_fasync(int fd, struct file *filp, int on)
1033 {
1034 	struct socket *sock = filp->private_data;
1035 	struct sock *sk = sock->sk;
1036 	struct socket_wq *wq;
1037 
1038 	if (sk == NULL)
1039 		return -EINVAL;
1040 
1041 	lock_sock(sk);
1042 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1043 	fasync_helper(fd, filp, on, &wq->fasync_list);
1044 
1045 	if (!wq->fasync_list)
1046 		sock_reset_flag(sk, SOCK_FASYNC);
1047 	else
1048 		sock_set_flag(sk, SOCK_FASYNC);
1049 
1050 	release_sock(sk);
1051 	return 0;
1052 }
1053 
1054 /* This function may be called only under rcu_lock */
1055 
1056 int sock_wake_async(struct socket_wq *wq, int how, int band)
1057 {
1058 	if (!wq || !wq->fasync_list)
1059 		return -1;
1060 
1061 	switch (how) {
1062 	case SOCK_WAKE_WAITD:
1063 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1064 			break;
1065 		goto call_kill;
1066 	case SOCK_WAKE_SPACE:
1067 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1068 			break;
1069 		/* fall through */
1070 	case SOCK_WAKE_IO:
1071 call_kill:
1072 		kill_fasync(&wq->fasync_list, SIGIO, band);
1073 		break;
1074 	case SOCK_WAKE_URG:
1075 		kill_fasync(&wq->fasync_list, SIGURG, band);
1076 	}
1077 
1078 	return 0;
1079 }
1080 EXPORT_SYMBOL(sock_wake_async);
1081 
1082 int __sock_create(struct net *net, int family, int type, int protocol,
1083 			 struct socket **res, int kern)
1084 {
1085 	int err;
1086 	struct socket *sock;
1087 	const struct net_proto_family *pf;
1088 
1089 	/*
1090 	 *      Check protocol is in range
1091 	 */
1092 	if (family < 0 || family >= NPROTO)
1093 		return -EAFNOSUPPORT;
1094 	if (type < 0 || type >= SOCK_MAX)
1095 		return -EINVAL;
1096 
1097 	/* Compatibility.
1098 
1099 	   This uglymoron is moved from INET layer to here to avoid
1100 	   deadlock in module load.
1101 	 */
1102 	if (family == PF_INET && type == SOCK_PACKET) {
1103 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1104 			     current->comm);
1105 		family = PF_PACKET;
1106 	}
1107 
1108 	err = security_socket_create(family, type, protocol, kern);
1109 	if (err)
1110 		return err;
1111 
1112 	/*
1113 	 *	Allocate the socket and allow the family to set things up. if
1114 	 *	the protocol is 0, the family is instructed to select an appropriate
1115 	 *	default.
1116 	 */
1117 	sock = sock_alloc();
1118 	if (!sock) {
1119 		net_warn_ratelimited("socket: no more sockets\n");
1120 		return -ENFILE;	/* Not exactly a match, but its the
1121 				   closest posix thing */
1122 	}
1123 
1124 	sock->type = type;
1125 
1126 #ifdef CONFIG_MODULES
1127 	/* Attempt to load a protocol module if the find failed.
1128 	 *
1129 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1130 	 * requested real, full-featured networking support upon configuration.
1131 	 * Otherwise module support will break!
1132 	 */
1133 	if (rcu_access_pointer(net_families[family]) == NULL)
1134 		request_module("net-pf-%d", family);
1135 #endif
1136 
1137 	rcu_read_lock();
1138 	pf = rcu_dereference(net_families[family]);
1139 	err = -EAFNOSUPPORT;
1140 	if (!pf)
1141 		goto out_release;
1142 
1143 	/*
1144 	 * We will call the ->create function, that possibly is in a loadable
1145 	 * module, so we have to bump that loadable module refcnt first.
1146 	 */
1147 	if (!try_module_get(pf->owner))
1148 		goto out_release;
1149 
1150 	/* Now protected by module ref count */
1151 	rcu_read_unlock();
1152 
1153 	err = pf->create(net, sock, protocol, kern);
1154 	if (err < 0)
1155 		goto out_module_put;
1156 
1157 	/*
1158 	 * Now to bump the refcnt of the [loadable] module that owns this
1159 	 * socket at sock_release time we decrement its refcnt.
1160 	 */
1161 	if (!try_module_get(sock->ops->owner))
1162 		goto out_module_busy;
1163 
1164 	/*
1165 	 * Now that we're done with the ->create function, the [loadable]
1166 	 * module can have its refcnt decremented
1167 	 */
1168 	module_put(pf->owner);
1169 	err = security_socket_post_create(sock, family, type, protocol, kern);
1170 	if (err)
1171 		goto out_sock_release;
1172 	*res = sock;
1173 
1174 	return 0;
1175 
1176 out_module_busy:
1177 	err = -EAFNOSUPPORT;
1178 out_module_put:
1179 	sock->ops = NULL;
1180 	module_put(pf->owner);
1181 out_sock_release:
1182 	sock_release(sock);
1183 	return err;
1184 
1185 out_release:
1186 	rcu_read_unlock();
1187 	goto out_sock_release;
1188 }
1189 EXPORT_SYMBOL(__sock_create);
1190 
1191 int sock_create(int family, int type, int protocol, struct socket **res)
1192 {
1193 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1194 }
1195 EXPORT_SYMBOL(sock_create);
1196 
1197 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1198 {
1199 	return __sock_create(net, family, type, protocol, res, 1);
1200 }
1201 EXPORT_SYMBOL(sock_create_kern);
1202 
1203 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1204 {
1205 	int retval;
1206 	struct socket *sock;
1207 	int flags;
1208 
1209 	/* Check the SOCK_* constants for consistency.  */
1210 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1211 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1212 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1213 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1214 
1215 	flags = type & ~SOCK_TYPE_MASK;
1216 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1217 		return -EINVAL;
1218 	type &= SOCK_TYPE_MASK;
1219 
1220 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1221 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1222 
1223 	retval = sock_create(family, type, protocol, &sock);
1224 	if (retval < 0)
1225 		goto out;
1226 
1227 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1228 	if (retval < 0)
1229 		goto out_release;
1230 
1231 out:
1232 	/* It may be already another descriptor 8) Not kernel problem. */
1233 	return retval;
1234 
1235 out_release:
1236 	sock_release(sock);
1237 	return retval;
1238 }
1239 
1240 /*
1241  *	Create a pair of connected sockets.
1242  */
1243 
1244 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1245 		int __user *, usockvec)
1246 {
1247 	struct socket *sock1, *sock2;
1248 	int fd1, fd2, err;
1249 	struct file *newfile1, *newfile2;
1250 	int flags;
1251 
1252 	flags = type & ~SOCK_TYPE_MASK;
1253 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1254 		return -EINVAL;
1255 	type &= SOCK_TYPE_MASK;
1256 
1257 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1258 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1259 
1260 	/*
1261 	 * Obtain the first socket and check if the underlying protocol
1262 	 * supports the socketpair call.
1263 	 */
1264 
1265 	err = sock_create(family, type, protocol, &sock1);
1266 	if (err < 0)
1267 		goto out;
1268 
1269 	err = sock_create(family, type, protocol, &sock2);
1270 	if (err < 0)
1271 		goto out_release_1;
1272 
1273 	err = sock1->ops->socketpair(sock1, sock2);
1274 	if (err < 0)
1275 		goto out_release_both;
1276 
1277 	fd1 = get_unused_fd_flags(flags);
1278 	if (unlikely(fd1 < 0)) {
1279 		err = fd1;
1280 		goto out_release_both;
1281 	}
1282 
1283 	fd2 = get_unused_fd_flags(flags);
1284 	if (unlikely(fd2 < 0)) {
1285 		err = fd2;
1286 		goto out_put_unused_1;
1287 	}
1288 
1289 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1290 	if (IS_ERR(newfile1)) {
1291 		err = PTR_ERR(newfile1);
1292 		goto out_put_unused_both;
1293 	}
1294 
1295 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1296 	if (IS_ERR(newfile2)) {
1297 		err = PTR_ERR(newfile2);
1298 		goto out_fput_1;
1299 	}
1300 
1301 	err = put_user(fd1, &usockvec[0]);
1302 	if (err)
1303 		goto out_fput_both;
1304 
1305 	err = put_user(fd2, &usockvec[1]);
1306 	if (err)
1307 		goto out_fput_both;
1308 
1309 	audit_fd_pair(fd1, fd2);
1310 
1311 	fd_install(fd1, newfile1);
1312 	fd_install(fd2, newfile2);
1313 	/* fd1 and fd2 may be already another descriptors.
1314 	 * Not kernel problem.
1315 	 */
1316 
1317 	return 0;
1318 
1319 out_fput_both:
1320 	fput(newfile2);
1321 	fput(newfile1);
1322 	put_unused_fd(fd2);
1323 	put_unused_fd(fd1);
1324 	goto out;
1325 
1326 out_fput_1:
1327 	fput(newfile1);
1328 	put_unused_fd(fd2);
1329 	put_unused_fd(fd1);
1330 	sock_release(sock2);
1331 	goto out;
1332 
1333 out_put_unused_both:
1334 	put_unused_fd(fd2);
1335 out_put_unused_1:
1336 	put_unused_fd(fd1);
1337 out_release_both:
1338 	sock_release(sock2);
1339 out_release_1:
1340 	sock_release(sock1);
1341 out:
1342 	return err;
1343 }
1344 
1345 /*
1346  *	Bind a name to a socket. Nothing much to do here since it's
1347  *	the protocol's responsibility to handle the local address.
1348  *
1349  *	We move the socket address to kernel space before we call
1350  *	the protocol layer (having also checked the address is ok).
1351  */
1352 
1353 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1354 {
1355 	struct socket *sock;
1356 	struct sockaddr_storage address;
1357 	int err, fput_needed;
1358 
1359 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1360 	if (sock) {
1361 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1362 		if (err >= 0) {
1363 			err = security_socket_bind(sock,
1364 						   (struct sockaddr *)&address,
1365 						   addrlen);
1366 			if (!err)
1367 				err = sock->ops->bind(sock,
1368 						      (struct sockaddr *)
1369 						      &address, addrlen);
1370 		}
1371 		fput_light(sock->file, fput_needed);
1372 	}
1373 	return err;
1374 }
1375 
1376 /*
1377  *	Perform a listen. Basically, we allow the protocol to do anything
1378  *	necessary for a listen, and if that works, we mark the socket as
1379  *	ready for listening.
1380  */
1381 
1382 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1383 {
1384 	struct socket *sock;
1385 	int err, fput_needed;
1386 	int somaxconn;
1387 
1388 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1389 	if (sock) {
1390 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1391 		if ((unsigned int)backlog > somaxconn)
1392 			backlog = somaxconn;
1393 
1394 		err = security_socket_listen(sock, backlog);
1395 		if (!err)
1396 			err = sock->ops->listen(sock, backlog);
1397 
1398 		fput_light(sock->file, fput_needed);
1399 	}
1400 	return err;
1401 }
1402 
1403 /*
1404  *	For accept, we attempt to create a new socket, set up the link
1405  *	with the client, wake up the client, then return the new
1406  *	connected fd. We collect the address of the connector in kernel
1407  *	space and move it to user at the very end. This is unclean because
1408  *	we open the socket then return an error.
1409  *
1410  *	1003.1g adds the ability to recvmsg() to query connection pending
1411  *	status to recvmsg. We need to add that support in a way thats
1412  *	clean when we restucture accept also.
1413  */
1414 
1415 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1416 		int __user *, upeer_addrlen, int, flags)
1417 {
1418 	struct socket *sock, *newsock;
1419 	struct file *newfile;
1420 	int err, len, newfd, fput_needed;
1421 	struct sockaddr_storage address;
1422 
1423 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1424 		return -EINVAL;
1425 
1426 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1427 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1428 
1429 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1430 	if (!sock)
1431 		goto out;
1432 
1433 	err = -ENFILE;
1434 	newsock = sock_alloc();
1435 	if (!newsock)
1436 		goto out_put;
1437 
1438 	newsock->type = sock->type;
1439 	newsock->ops = sock->ops;
1440 
1441 	/*
1442 	 * We don't need try_module_get here, as the listening socket (sock)
1443 	 * has the protocol module (sock->ops->owner) held.
1444 	 */
1445 	__module_get(newsock->ops->owner);
1446 
1447 	newfd = get_unused_fd_flags(flags);
1448 	if (unlikely(newfd < 0)) {
1449 		err = newfd;
1450 		sock_release(newsock);
1451 		goto out_put;
1452 	}
1453 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1454 	if (IS_ERR(newfile)) {
1455 		err = PTR_ERR(newfile);
1456 		put_unused_fd(newfd);
1457 		sock_release(newsock);
1458 		goto out_put;
1459 	}
1460 
1461 	err = security_socket_accept(sock, newsock);
1462 	if (err)
1463 		goto out_fd;
1464 
1465 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1466 	if (err < 0)
1467 		goto out_fd;
1468 
1469 	if (upeer_sockaddr) {
1470 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1471 					  &len, 2) < 0) {
1472 			err = -ECONNABORTED;
1473 			goto out_fd;
1474 		}
1475 		err = move_addr_to_user(&address,
1476 					len, upeer_sockaddr, upeer_addrlen);
1477 		if (err < 0)
1478 			goto out_fd;
1479 	}
1480 
1481 	/* File flags are not inherited via accept() unlike another OSes. */
1482 
1483 	fd_install(newfd, newfile);
1484 	err = newfd;
1485 
1486 out_put:
1487 	fput_light(sock->file, fput_needed);
1488 out:
1489 	return err;
1490 out_fd:
1491 	fput(newfile);
1492 	put_unused_fd(newfd);
1493 	goto out_put;
1494 }
1495 
1496 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1497 		int __user *, upeer_addrlen)
1498 {
1499 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1500 }
1501 
1502 /*
1503  *	Attempt to connect to a socket with the server address.  The address
1504  *	is in user space so we verify it is OK and move it to kernel space.
1505  *
1506  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1507  *	break bindings
1508  *
1509  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1510  *	other SEQPACKET protocols that take time to connect() as it doesn't
1511  *	include the -EINPROGRESS status for such sockets.
1512  */
1513 
1514 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1515 		int, addrlen)
1516 {
1517 	struct socket *sock;
1518 	struct sockaddr_storage address;
1519 	int err, fput_needed;
1520 
1521 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1522 	if (!sock)
1523 		goto out;
1524 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1525 	if (err < 0)
1526 		goto out_put;
1527 
1528 	err =
1529 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1530 	if (err)
1531 		goto out_put;
1532 
1533 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1534 				 sock->file->f_flags);
1535 out_put:
1536 	fput_light(sock->file, fput_needed);
1537 out:
1538 	return err;
1539 }
1540 
1541 /*
1542  *	Get the local address ('name') of a socket object. Move the obtained
1543  *	name to user space.
1544  */
1545 
1546 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1547 		int __user *, usockaddr_len)
1548 {
1549 	struct socket *sock;
1550 	struct sockaddr_storage address;
1551 	int len, err, fput_needed;
1552 
1553 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1554 	if (!sock)
1555 		goto out;
1556 
1557 	err = security_socket_getsockname(sock);
1558 	if (err)
1559 		goto out_put;
1560 
1561 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1562 	if (err)
1563 		goto out_put;
1564 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1565 
1566 out_put:
1567 	fput_light(sock->file, fput_needed);
1568 out:
1569 	return err;
1570 }
1571 
1572 /*
1573  *	Get the remote address ('name') of a socket object. Move the obtained
1574  *	name to user space.
1575  */
1576 
1577 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1578 		int __user *, usockaddr_len)
1579 {
1580 	struct socket *sock;
1581 	struct sockaddr_storage address;
1582 	int len, err, fput_needed;
1583 
1584 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1585 	if (sock != NULL) {
1586 		err = security_socket_getpeername(sock);
1587 		if (err) {
1588 			fput_light(sock->file, fput_needed);
1589 			return err;
1590 		}
1591 
1592 		err =
1593 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1594 				       1);
1595 		if (!err)
1596 			err = move_addr_to_user(&address, len, usockaddr,
1597 						usockaddr_len);
1598 		fput_light(sock->file, fput_needed);
1599 	}
1600 	return err;
1601 }
1602 
1603 /*
1604  *	Send a datagram to a given address. We move the address into kernel
1605  *	space and check the user space data area is readable before invoking
1606  *	the protocol.
1607  */
1608 
1609 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1610 		unsigned int, flags, struct sockaddr __user *, addr,
1611 		int, addr_len)
1612 {
1613 	struct socket *sock;
1614 	struct sockaddr_storage address;
1615 	int err;
1616 	struct msghdr msg;
1617 	struct iovec iov;
1618 	int fput_needed;
1619 
1620 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1621 	if (unlikely(err))
1622 		return err;
1623 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1624 	if (!sock)
1625 		goto out;
1626 
1627 	msg.msg_name = NULL;
1628 	msg.msg_control = NULL;
1629 	msg.msg_controllen = 0;
1630 	msg.msg_namelen = 0;
1631 	if (addr) {
1632 		err = move_addr_to_kernel(addr, addr_len, &address);
1633 		if (err < 0)
1634 			goto out_put;
1635 		msg.msg_name = (struct sockaddr *)&address;
1636 		msg.msg_namelen = addr_len;
1637 	}
1638 	if (sock->file->f_flags & O_NONBLOCK)
1639 		flags |= MSG_DONTWAIT;
1640 	msg.msg_flags = flags;
1641 	err = sock_sendmsg(sock, &msg);
1642 
1643 out_put:
1644 	fput_light(sock->file, fput_needed);
1645 out:
1646 	return err;
1647 }
1648 
1649 /*
1650  *	Send a datagram down a socket.
1651  */
1652 
1653 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1654 		unsigned int, flags)
1655 {
1656 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1657 }
1658 
1659 /*
1660  *	Receive a frame from the socket and optionally record the address of the
1661  *	sender. We verify the buffers are writable and if needed move the
1662  *	sender address from kernel to user space.
1663  */
1664 
1665 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1666 		unsigned int, flags, struct sockaddr __user *, addr,
1667 		int __user *, addr_len)
1668 {
1669 	struct socket *sock;
1670 	struct iovec iov;
1671 	struct msghdr msg;
1672 	struct sockaddr_storage address;
1673 	int err, err2;
1674 	int fput_needed;
1675 
1676 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1677 	if (unlikely(err))
1678 		return err;
1679 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1680 	if (!sock)
1681 		goto out;
1682 
1683 	msg.msg_control = NULL;
1684 	msg.msg_controllen = 0;
1685 	/* Save some cycles and don't copy the address if not needed */
1686 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1687 	/* We assume all kernel code knows the size of sockaddr_storage */
1688 	msg.msg_namelen = 0;
1689 	msg.msg_iocb = NULL;
1690 	if (sock->file->f_flags & O_NONBLOCK)
1691 		flags |= MSG_DONTWAIT;
1692 	err = sock_recvmsg(sock, &msg, flags);
1693 
1694 	if (err >= 0 && addr != NULL) {
1695 		err2 = move_addr_to_user(&address,
1696 					 msg.msg_namelen, addr, addr_len);
1697 		if (err2 < 0)
1698 			err = err2;
1699 	}
1700 
1701 	fput_light(sock->file, fput_needed);
1702 out:
1703 	return err;
1704 }
1705 
1706 /*
1707  *	Receive a datagram from a socket.
1708  */
1709 
1710 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1711 		unsigned int, flags)
1712 {
1713 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1714 }
1715 
1716 /*
1717  *	Set a socket option. Because we don't know the option lengths we have
1718  *	to pass the user mode parameter for the protocols to sort out.
1719  */
1720 
1721 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1722 		char __user *, optval, int, optlen)
1723 {
1724 	int err, fput_needed;
1725 	struct socket *sock;
1726 
1727 	if (optlen < 0)
1728 		return -EINVAL;
1729 
1730 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1731 	if (sock != NULL) {
1732 		err = security_socket_setsockopt(sock, level, optname);
1733 		if (err)
1734 			goto out_put;
1735 
1736 		if (level == SOL_SOCKET)
1737 			err =
1738 			    sock_setsockopt(sock, level, optname, optval,
1739 					    optlen);
1740 		else
1741 			err =
1742 			    sock->ops->setsockopt(sock, level, optname, optval,
1743 						  optlen);
1744 out_put:
1745 		fput_light(sock->file, fput_needed);
1746 	}
1747 	return err;
1748 }
1749 
1750 /*
1751  *	Get a socket option. Because we don't know the option lengths we have
1752  *	to pass a user mode parameter for the protocols to sort out.
1753  */
1754 
1755 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1756 		char __user *, optval, int __user *, optlen)
1757 {
1758 	int err, fput_needed;
1759 	struct socket *sock;
1760 
1761 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1762 	if (sock != NULL) {
1763 		err = security_socket_getsockopt(sock, level, optname);
1764 		if (err)
1765 			goto out_put;
1766 
1767 		if (level == SOL_SOCKET)
1768 			err =
1769 			    sock_getsockopt(sock, level, optname, optval,
1770 					    optlen);
1771 		else
1772 			err =
1773 			    sock->ops->getsockopt(sock, level, optname, optval,
1774 						  optlen);
1775 out_put:
1776 		fput_light(sock->file, fput_needed);
1777 	}
1778 	return err;
1779 }
1780 
1781 /*
1782  *	Shutdown a socket.
1783  */
1784 
1785 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1786 {
1787 	int err, fput_needed;
1788 	struct socket *sock;
1789 
1790 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1791 	if (sock != NULL) {
1792 		err = security_socket_shutdown(sock, how);
1793 		if (!err)
1794 			err = sock->ops->shutdown(sock, how);
1795 		fput_light(sock->file, fput_needed);
1796 	}
1797 	return err;
1798 }
1799 
1800 /* A couple of helpful macros for getting the address of the 32/64 bit
1801  * fields which are the same type (int / unsigned) on our platforms.
1802  */
1803 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1804 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1805 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1806 
1807 struct used_address {
1808 	struct sockaddr_storage name;
1809 	unsigned int name_len;
1810 };
1811 
1812 static int copy_msghdr_from_user(struct msghdr *kmsg,
1813 				 struct user_msghdr __user *umsg,
1814 				 struct sockaddr __user **save_addr,
1815 				 struct iovec **iov)
1816 {
1817 	struct sockaddr __user *uaddr;
1818 	struct iovec __user *uiov;
1819 	size_t nr_segs;
1820 	ssize_t err;
1821 
1822 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1823 	    __get_user(uaddr, &umsg->msg_name) ||
1824 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1825 	    __get_user(uiov, &umsg->msg_iov) ||
1826 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1827 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1828 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1829 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1830 		return -EFAULT;
1831 
1832 	if (!uaddr)
1833 		kmsg->msg_namelen = 0;
1834 
1835 	if (kmsg->msg_namelen < 0)
1836 		return -EINVAL;
1837 
1838 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1839 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1840 
1841 	if (save_addr)
1842 		*save_addr = uaddr;
1843 
1844 	if (uaddr && kmsg->msg_namelen) {
1845 		if (!save_addr) {
1846 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1847 						  kmsg->msg_name);
1848 			if (err < 0)
1849 				return err;
1850 		}
1851 	} else {
1852 		kmsg->msg_name = NULL;
1853 		kmsg->msg_namelen = 0;
1854 	}
1855 
1856 	if (nr_segs > UIO_MAXIOV)
1857 		return -EMSGSIZE;
1858 
1859 	kmsg->msg_iocb = NULL;
1860 
1861 	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1862 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1863 }
1864 
1865 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1866 			 struct msghdr *msg_sys, unsigned int flags,
1867 			 struct used_address *used_address,
1868 			 unsigned int allowed_msghdr_flags)
1869 {
1870 	struct compat_msghdr __user *msg_compat =
1871 	    (struct compat_msghdr __user *)msg;
1872 	struct sockaddr_storage address;
1873 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1874 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1875 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1876 	/* 20 is size of ipv6_pktinfo */
1877 	unsigned char *ctl_buf = ctl;
1878 	int ctl_len;
1879 	ssize_t err;
1880 
1881 	msg_sys->msg_name = &address;
1882 
1883 	if (MSG_CMSG_COMPAT & flags)
1884 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1885 	else
1886 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1887 	if (err < 0)
1888 		return err;
1889 
1890 	err = -ENOBUFS;
1891 
1892 	if (msg_sys->msg_controllen > INT_MAX)
1893 		goto out_freeiov;
1894 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1895 	ctl_len = msg_sys->msg_controllen;
1896 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1897 		err =
1898 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1899 						     sizeof(ctl));
1900 		if (err)
1901 			goto out_freeiov;
1902 		ctl_buf = msg_sys->msg_control;
1903 		ctl_len = msg_sys->msg_controllen;
1904 	} else if (ctl_len) {
1905 		if (ctl_len > sizeof(ctl)) {
1906 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1907 			if (ctl_buf == NULL)
1908 				goto out_freeiov;
1909 		}
1910 		err = -EFAULT;
1911 		/*
1912 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1913 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1914 		 * checking falls down on this.
1915 		 */
1916 		if (copy_from_user(ctl_buf,
1917 				   (void __user __force *)msg_sys->msg_control,
1918 				   ctl_len))
1919 			goto out_freectl;
1920 		msg_sys->msg_control = ctl_buf;
1921 	}
1922 	msg_sys->msg_flags = flags;
1923 
1924 	if (sock->file->f_flags & O_NONBLOCK)
1925 		msg_sys->msg_flags |= MSG_DONTWAIT;
1926 	/*
1927 	 * If this is sendmmsg() and current destination address is same as
1928 	 * previously succeeded address, omit asking LSM's decision.
1929 	 * used_address->name_len is initialized to UINT_MAX so that the first
1930 	 * destination address never matches.
1931 	 */
1932 	if (used_address && msg_sys->msg_name &&
1933 	    used_address->name_len == msg_sys->msg_namelen &&
1934 	    !memcmp(&used_address->name, msg_sys->msg_name,
1935 		    used_address->name_len)) {
1936 		err = sock_sendmsg_nosec(sock, msg_sys);
1937 		goto out_freectl;
1938 	}
1939 	err = sock_sendmsg(sock, msg_sys);
1940 	/*
1941 	 * If this is sendmmsg() and sending to current destination address was
1942 	 * successful, remember it.
1943 	 */
1944 	if (used_address && err >= 0) {
1945 		used_address->name_len = msg_sys->msg_namelen;
1946 		if (msg_sys->msg_name)
1947 			memcpy(&used_address->name, msg_sys->msg_name,
1948 			       used_address->name_len);
1949 	}
1950 
1951 out_freectl:
1952 	if (ctl_buf != ctl)
1953 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1954 out_freeiov:
1955 	kfree(iov);
1956 	return err;
1957 }
1958 
1959 /*
1960  *	BSD sendmsg interface
1961  */
1962 
1963 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1964 {
1965 	int fput_needed, err;
1966 	struct msghdr msg_sys;
1967 	struct socket *sock;
1968 
1969 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1970 	if (!sock)
1971 		goto out;
1972 
1973 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1974 
1975 	fput_light(sock->file, fput_needed);
1976 out:
1977 	return err;
1978 }
1979 
1980 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1981 {
1982 	if (flags & MSG_CMSG_COMPAT)
1983 		return -EINVAL;
1984 	return __sys_sendmsg(fd, msg, flags);
1985 }
1986 
1987 /*
1988  *	Linux sendmmsg interface
1989  */
1990 
1991 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
1992 		   unsigned int flags)
1993 {
1994 	int fput_needed, err, datagrams;
1995 	struct socket *sock;
1996 	struct mmsghdr __user *entry;
1997 	struct compat_mmsghdr __user *compat_entry;
1998 	struct msghdr msg_sys;
1999 	struct used_address used_address;
2000 	unsigned int oflags = flags;
2001 
2002 	if (vlen > UIO_MAXIOV)
2003 		vlen = UIO_MAXIOV;
2004 
2005 	datagrams = 0;
2006 
2007 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2008 	if (!sock)
2009 		return err;
2010 
2011 	used_address.name_len = UINT_MAX;
2012 	entry = mmsg;
2013 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2014 	err = 0;
2015 	flags |= MSG_BATCH;
2016 
2017 	while (datagrams < vlen) {
2018 		if (datagrams == vlen - 1)
2019 			flags = oflags;
2020 
2021 		if (MSG_CMSG_COMPAT & flags) {
2022 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2023 					     &msg_sys, flags, &used_address, MSG_EOR);
2024 			if (err < 0)
2025 				break;
2026 			err = __put_user(err, &compat_entry->msg_len);
2027 			++compat_entry;
2028 		} else {
2029 			err = ___sys_sendmsg(sock,
2030 					     (struct user_msghdr __user *)entry,
2031 					     &msg_sys, flags, &used_address, MSG_EOR);
2032 			if (err < 0)
2033 				break;
2034 			err = put_user(err, &entry->msg_len);
2035 			++entry;
2036 		}
2037 
2038 		if (err)
2039 			break;
2040 		++datagrams;
2041 		cond_resched();
2042 	}
2043 
2044 	fput_light(sock->file, fput_needed);
2045 
2046 	/* We only return an error if no datagrams were able to be sent */
2047 	if (datagrams != 0)
2048 		return datagrams;
2049 
2050 	return err;
2051 }
2052 
2053 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2054 		unsigned int, vlen, unsigned int, flags)
2055 {
2056 	if (flags & MSG_CMSG_COMPAT)
2057 		return -EINVAL;
2058 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2059 }
2060 
2061 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2062 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2063 {
2064 	struct compat_msghdr __user *msg_compat =
2065 	    (struct compat_msghdr __user *)msg;
2066 	struct iovec iovstack[UIO_FASTIOV];
2067 	struct iovec *iov = iovstack;
2068 	unsigned long cmsg_ptr;
2069 	int len;
2070 	ssize_t err;
2071 
2072 	/* kernel mode address */
2073 	struct sockaddr_storage addr;
2074 
2075 	/* user mode address pointers */
2076 	struct sockaddr __user *uaddr;
2077 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2078 
2079 	msg_sys->msg_name = &addr;
2080 
2081 	if (MSG_CMSG_COMPAT & flags)
2082 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2083 	else
2084 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2085 	if (err < 0)
2086 		return err;
2087 
2088 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2089 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2090 
2091 	/* We assume all kernel code knows the size of sockaddr_storage */
2092 	msg_sys->msg_namelen = 0;
2093 
2094 	if (sock->file->f_flags & O_NONBLOCK)
2095 		flags |= MSG_DONTWAIT;
2096 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2097 	if (err < 0)
2098 		goto out_freeiov;
2099 	len = err;
2100 
2101 	if (uaddr != NULL) {
2102 		err = move_addr_to_user(&addr,
2103 					msg_sys->msg_namelen, uaddr,
2104 					uaddr_len);
2105 		if (err < 0)
2106 			goto out_freeiov;
2107 	}
2108 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2109 			 COMPAT_FLAGS(msg));
2110 	if (err)
2111 		goto out_freeiov;
2112 	if (MSG_CMSG_COMPAT & flags)
2113 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2114 				 &msg_compat->msg_controllen);
2115 	else
2116 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2117 				 &msg->msg_controllen);
2118 	if (err)
2119 		goto out_freeiov;
2120 	err = len;
2121 
2122 out_freeiov:
2123 	kfree(iov);
2124 	return err;
2125 }
2126 
2127 /*
2128  *	BSD recvmsg interface
2129  */
2130 
2131 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2132 {
2133 	int fput_needed, err;
2134 	struct msghdr msg_sys;
2135 	struct socket *sock;
2136 
2137 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2138 	if (!sock)
2139 		goto out;
2140 
2141 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2142 
2143 	fput_light(sock->file, fput_needed);
2144 out:
2145 	return err;
2146 }
2147 
2148 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2149 		unsigned int, flags)
2150 {
2151 	if (flags & MSG_CMSG_COMPAT)
2152 		return -EINVAL;
2153 	return __sys_recvmsg(fd, msg, flags);
2154 }
2155 
2156 /*
2157  *     Linux recvmmsg interface
2158  */
2159 
2160 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2161 		   unsigned int flags, struct timespec *timeout)
2162 {
2163 	int fput_needed, err, datagrams;
2164 	struct socket *sock;
2165 	struct mmsghdr __user *entry;
2166 	struct compat_mmsghdr __user *compat_entry;
2167 	struct msghdr msg_sys;
2168 	struct timespec64 end_time;
2169 	struct timespec64 timeout64;
2170 
2171 	if (timeout &&
2172 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2173 				    timeout->tv_nsec))
2174 		return -EINVAL;
2175 
2176 	datagrams = 0;
2177 
2178 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2179 	if (!sock)
2180 		return err;
2181 
2182 	err = sock_error(sock->sk);
2183 	if (err)
2184 		goto out_put;
2185 
2186 	entry = mmsg;
2187 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2188 
2189 	while (datagrams < vlen) {
2190 		/*
2191 		 * No need to ask LSM for more than the first datagram.
2192 		 */
2193 		if (MSG_CMSG_COMPAT & flags) {
2194 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2195 					     &msg_sys, flags & ~MSG_WAITFORONE,
2196 					     datagrams);
2197 			if (err < 0)
2198 				break;
2199 			err = __put_user(err, &compat_entry->msg_len);
2200 			++compat_entry;
2201 		} else {
2202 			err = ___sys_recvmsg(sock,
2203 					     (struct user_msghdr __user *)entry,
2204 					     &msg_sys, flags & ~MSG_WAITFORONE,
2205 					     datagrams);
2206 			if (err < 0)
2207 				break;
2208 			err = put_user(err, &entry->msg_len);
2209 			++entry;
2210 		}
2211 
2212 		if (err)
2213 			break;
2214 		++datagrams;
2215 
2216 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2217 		if (flags & MSG_WAITFORONE)
2218 			flags |= MSG_DONTWAIT;
2219 
2220 		if (timeout) {
2221 			ktime_get_ts64(&timeout64);
2222 			*timeout = timespec64_to_timespec(
2223 					timespec64_sub(end_time, timeout64));
2224 			if (timeout->tv_sec < 0) {
2225 				timeout->tv_sec = timeout->tv_nsec = 0;
2226 				break;
2227 			}
2228 
2229 			/* Timeout, return less than vlen datagrams */
2230 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2231 				break;
2232 		}
2233 
2234 		/* Out of band data, return right away */
2235 		if (msg_sys.msg_flags & MSG_OOB)
2236 			break;
2237 		cond_resched();
2238 	}
2239 
2240 	if (err == 0)
2241 		goto out_put;
2242 
2243 	if (datagrams == 0) {
2244 		datagrams = err;
2245 		goto out_put;
2246 	}
2247 
2248 	/*
2249 	 * We may return less entries than requested (vlen) if the
2250 	 * sock is non block and there aren't enough datagrams...
2251 	 */
2252 	if (err != -EAGAIN) {
2253 		/*
2254 		 * ... or  if recvmsg returns an error after we
2255 		 * received some datagrams, where we record the
2256 		 * error to return on the next call or if the
2257 		 * app asks about it using getsockopt(SO_ERROR).
2258 		 */
2259 		sock->sk->sk_err = -err;
2260 	}
2261 out_put:
2262 	fput_light(sock->file, fput_needed);
2263 
2264 	return datagrams;
2265 }
2266 
2267 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2268 		unsigned int, vlen, unsigned int, flags,
2269 		struct timespec __user *, timeout)
2270 {
2271 	int datagrams;
2272 	struct timespec timeout_sys;
2273 
2274 	if (flags & MSG_CMSG_COMPAT)
2275 		return -EINVAL;
2276 
2277 	if (!timeout)
2278 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2279 
2280 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2281 		return -EFAULT;
2282 
2283 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2284 
2285 	if (datagrams > 0 &&
2286 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2287 		datagrams = -EFAULT;
2288 
2289 	return datagrams;
2290 }
2291 
2292 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2293 /* Argument list sizes for sys_socketcall */
2294 #define AL(x) ((x) * sizeof(unsigned long))
2295 static const unsigned char nargs[21] = {
2296 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2297 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2298 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2299 	AL(4), AL(5), AL(4)
2300 };
2301 
2302 #undef AL
2303 
2304 /*
2305  *	System call vectors.
2306  *
2307  *	Argument checking cleaned up. Saved 20% in size.
2308  *  This function doesn't need to set the kernel lock because
2309  *  it is set by the callees.
2310  */
2311 
2312 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2313 {
2314 	unsigned long a[AUDITSC_ARGS];
2315 	unsigned long a0, a1;
2316 	int err;
2317 	unsigned int len;
2318 
2319 	if (call < 1 || call > SYS_SENDMMSG)
2320 		return -EINVAL;
2321 
2322 	len = nargs[call];
2323 	if (len > sizeof(a))
2324 		return -EINVAL;
2325 
2326 	/* copy_from_user should be SMP safe. */
2327 	if (copy_from_user(a, args, len))
2328 		return -EFAULT;
2329 
2330 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2331 	if (err)
2332 		return err;
2333 
2334 	a0 = a[0];
2335 	a1 = a[1];
2336 
2337 	switch (call) {
2338 	case SYS_SOCKET:
2339 		err = sys_socket(a0, a1, a[2]);
2340 		break;
2341 	case SYS_BIND:
2342 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2343 		break;
2344 	case SYS_CONNECT:
2345 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2346 		break;
2347 	case SYS_LISTEN:
2348 		err = sys_listen(a0, a1);
2349 		break;
2350 	case SYS_ACCEPT:
2351 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2352 				  (int __user *)a[2], 0);
2353 		break;
2354 	case SYS_GETSOCKNAME:
2355 		err =
2356 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2357 				    (int __user *)a[2]);
2358 		break;
2359 	case SYS_GETPEERNAME:
2360 		err =
2361 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2362 				    (int __user *)a[2]);
2363 		break;
2364 	case SYS_SOCKETPAIR:
2365 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2366 		break;
2367 	case SYS_SEND:
2368 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2369 		break;
2370 	case SYS_SENDTO:
2371 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2372 				 (struct sockaddr __user *)a[4], a[5]);
2373 		break;
2374 	case SYS_RECV:
2375 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2376 		break;
2377 	case SYS_RECVFROM:
2378 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2379 				   (struct sockaddr __user *)a[4],
2380 				   (int __user *)a[5]);
2381 		break;
2382 	case SYS_SHUTDOWN:
2383 		err = sys_shutdown(a0, a1);
2384 		break;
2385 	case SYS_SETSOCKOPT:
2386 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2387 		break;
2388 	case SYS_GETSOCKOPT:
2389 		err =
2390 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2391 				   (int __user *)a[4]);
2392 		break;
2393 	case SYS_SENDMSG:
2394 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2395 		break;
2396 	case SYS_SENDMMSG:
2397 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2398 		break;
2399 	case SYS_RECVMSG:
2400 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2401 		break;
2402 	case SYS_RECVMMSG:
2403 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2404 				   (struct timespec __user *)a[4]);
2405 		break;
2406 	case SYS_ACCEPT4:
2407 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2408 				  (int __user *)a[2], a[3]);
2409 		break;
2410 	default:
2411 		err = -EINVAL;
2412 		break;
2413 	}
2414 	return err;
2415 }
2416 
2417 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2418 
2419 /**
2420  *	sock_register - add a socket protocol handler
2421  *	@ops: description of protocol
2422  *
2423  *	This function is called by a protocol handler that wants to
2424  *	advertise its address family, and have it linked into the
2425  *	socket interface. The value ops->family corresponds to the
2426  *	socket system call protocol family.
2427  */
2428 int sock_register(const struct net_proto_family *ops)
2429 {
2430 	int err;
2431 
2432 	if (ops->family >= NPROTO) {
2433 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2434 		return -ENOBUFS;
2435 	}
2436 
2437 	spin_lock(&net_family_lock);
2438 	if (rcu_dereference_protected(net_families[ops->family],
2439 				      lockdep_is_held(&net_family_lock)))
2440 		err = -EEXIST;
2441 	else {
2442 		rcu_assign_pointer(net_families[ops->family], ops);
2443 		err = 0;
2444 	}
2445 	spin_unlock(&net_family_lock);
2446 
2447 	pr_info("NET: Registered protocol family %d\n", ops->family);
2448 	return err;
2449 }
2450 EXPORT_SYMBOL(sock_register);
2451 
2452 /**
2453  *	sock_unregister - remove a protocol handler
2454  *	@family: protocol family to remove
2455  *
2456  *	This function is called by a protocol handler that wants to
2457  *	remove its address family, and have it unlinked from the
2458  *	new socket creation.
2459  *
2460  *	If protocol handler is a module, then it can use module reference
2461  *	counts to protect against new references. If protocol handler is not
2462  *	a module then it needs to provide its own protection in
2463  *	the ops->create routine.
2464  */
2465 void sock_unregister(int family)
2466 {
2467 	BUG_ON(family < 0 || family >= NPROTO);
2468 
2469 	spin_lock(&net_family_lock);
2470 	RCU_INIT_POINTER(net_families[family], NULL);
2471 	spin_unlock(&net_family_lock);
2472 
2473 	synchronize_rcu();
2474 
2475 	pr_info("NET: Unregistered protocol family %d\n", family);
2476 }
2477 EXPORT_SYMBOL(sock_unregister);
2478 
2479 static int __init sock_init(void)
2480 {
2481 	int err;
2482 	/*
2483 	 *      Initialize the network sysctl infrastructure.
2484 	 */
2485 	err = net_sysctl_init();
2486 	if (err)
2487 		goto out;
2488 
2489 	/*
2490 	 *      Initialize skbuff SLAB cache
2491 	 */
2492 	skb_init();
2493 
2494 	/*
2495 	 *      Initialize the protocols module.
2496 	 */
2497 
2498 	init_inodecache();
2499 
2500 	err = register_filesystem(&sock_fs_type);
2501 	if (err)
2502 		goto out_fs;
2503 	sock_mnt = kern_mount(&sock_fs_type);
2504 	if (IS_ERR(sock_mnt)) {
2505 		err = PTR_ERR(sock_mnt);
2506 		goto out_mount;
2507 	}
2508 
2509 	/* The real protocol initialization is performed in later initcalls.
2510 	 */
2511 
2512 #ifdef CONFIG_NETFILTER
2513 	err = netfilter_init();
2514 	if (err)
2515 		goto out;
2516 #endif
2517 
2518 	ptp_classifier_init();
2519 
2520 out:
2521 	return err;
2522 
2523 out_mount:
2524 	unregister_filesystem(&sock_fs_type);
2525 out_fs:
2526 	goto out;
2527 }
2528 
2529 core_initcall(sock_init);	/* early initcall */
2530 
2531 #ifdef CONFIG_PROC_FS
2532 void socket_seq_show(struct seq_file *seq)
2533 {
2534 	int cpu;
2535 	int counter = 0;
2536 
2537 	for_each_possible_cpu(cpu)
2538 	    counter += per_cpu(sockets_in_use, cpu);
2539 
2540 	/* It can be negative, by the way. 8) */
2541 	if (counter < 0)
2542 		counter = 0;
2543 
2544 	seq_printf(seq, "sockets: used %d\n", counter);
2545 }
2546 #endif				/* CONFIG_PROC_FS */
2547 
2548 #ifdef CONFIG_COMPAT
2549 static int do_siocgstamp(struct net *net, struct socket *sock,
2550 			 unsigned int cmd, void __user *up)
2551 {
2552 	mm_segment_t old_fs = get_fs();
2553 	struct timeval ktv;
2554 	int err;
2555 
2556 	set_fs(KERNEL_DS);
2557 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2558 	set_fs(old_fs);
2559 	if (!err)
2560 		err = compat_put_timeval(&ktv, up);
2561 
2562 	return err;
2563 }
2564 
2565 static int do_siocgstampns(struct net *net, struct socket *sock,
2566 			   unsigned int cmd, void __user *up)
2567 {
2568 	mm_segment_t old_fs = get_fs();
2569 	struct timespec kts;
2570 	int err;
2571 
2572 	set_fs(KERNEL_DS);
2573 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2574 	set_fs(old_fs);
2575 	if (!err)
2576 		err = compat_put_timespec(&kts, up);
2577 
2578 	return err;
2579 }
2580 
2581 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2582 {
2583 	struct ifreq __user *uifr;
2584 	int err;
2585 
2586 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2587 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2588 		return -EFAULT;
2589 
2590 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2591 	if (err)
2592 		return err;
2593 
2594 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2595 		return -EFAULT;
2596 
2597 	return 0;
2598 }
2599 
2600 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2601 {
2602 	struct compat_ifconf ifc32;
2603 	struct ifconf ifc;
2604 	struct ifconf __user *uifc;
2605 	struct compat_ifreq __user *ifr32;
2606 	struct ifreq __user *ifr;
2607 	unsigned int i, j;
2608 	int err;
2609 
2610 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2611 		return -EFAULT;
2612 
2613 	memset(&ifc, 0, sizeof(ifc));
2614 	if (ifc32.ifcbuf == 0) {
2615 		ifc32.ifc_len = 0;
2616 		ifc.ifc_len = 0;
2617 		ifc.ifc_req = NULL;
2618 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2619 	} else {
2620 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2621 			sizeof(struct ifreq);
2622 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2623 		ifc.ifc_len = len;
2624 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2625 		ifr32 = compat_ptr(ifc32.ifcbuf);
2626 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2627 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2628 				return -EFAULT;
2629 			ifr++;
2630 			ifr32++;
2631 		}
2632 	}
2633 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2634 		return -EFAULT;
2635 
2636 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2637 	if (err)
2638 		return err;
2639 
2640 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2641 		return -EFAULT;
2642 
2643 	ifr = ifc.ifc_req;
2644 	ifr32 = compat_ptr(ifc32.ifcbuf);
2645 	for (i = 0, j = 0;
2646 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2647 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2648 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2649 			return -EFAULT;
2650 		ifr32++;
2651 		ifr++;
2652 	}
2653 
2654 	if (ifc32.ifcbuf == 0) {
2655 		/* Translate from 64-bit structure multiple to
2656 		 * a 32-bit one.
2657 		 */
2658 		i = ifc.ifc_len;
2659 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2660 		ifc32.ifc_len = i;
2661 	} else {
2662 		ifc32.ifc_len = i;
2663 	}
2664 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2665 		return -EFAULT;
2666 
2667 	return 0;
2668 }
2669 
2670 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2671 {
2672 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2673 	bool convert_in = false, convert_out = false;
2674 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2675 	struct ethtool_rxnfc __user *rxnfc;
2676 	struct ifreq __user *ifr;
2677 	u32 rule_cnt = 0, actual_rule_cnt;
2678 	u32 ethcmd;
2679 	u32 data;
2680 	int ret;
2681 
2682 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2683 		return -EFAULT;
2684 
2685 	compat_rxnfc = compat_ptr(data);
2686 
2687 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2688 		return -EFAULT;
2689 
2690 	/* Most ethtool structures are defined without padding.
2691 	 * Unfortunately struct ethtool_rxnfc is an exception.
2692 	 */
2693 	switch (ethcmd) {
2694 	default:
2695 		break;
2696 	case ETHTOOL_GRXCLSRLALL:
2697 		/* Buffer size is variable */
2698 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2699 			return -EFAULT;
2700 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2701 			return -ENOMEM;
2702 		buf_size += rule_cnt * sizeof(u32);
2703 		/* fall through */
2704 	case ETHTOOL_GRXRINGS:
2705 	case ETHTOOL_GRXCLSRLCNT:
2706 	case ETHTOOL_GRXCLSRULE:
2707 	case ETHTOOL_SRXCLSRLINS:
2708 		convert_out = true;
2709 		/* fall through */
2710 	case ETHTOOL_SRXCLSRLDEL:
2711 		buf_size += sizeof(struct ethtool_rxnfc);
2712 		convert_in = true;
2713 		break;
2714 	}
2715 
2716 	ifr = compat_alloc_user_space(buf_size);
2717 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2718 
2719 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2720 		return -EFAULT;
2721 
2722 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2723 		     &ifr->ifr_ifru.ifru_data))
2724 		return -EFAULT;
2725 
2726 	if (convert_in) {
2727 		/* We expect there to be holes between fs.m_ext and
2728 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2729 		 */
2730 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2731 			     sizeof(compat_rxnfc->fs.m_ext) !=
2732 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2733 			     sizeof(rxnfc->fs.m_ext));
2734 		BUILD_BUG_ON(
2735 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2736 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2737 			offsetof(struct ethtool_rxnfc, fs.location) -
2738 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2739 
2740 		if (copy_in_user(rxnfc, compat_rxnfc,
2741 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2742 				 (void __user *)rxnfc) ||
2743 		    copy_in_user(&rxnfc->fs.ring_cookie,
2744 				 &compat_rxnfc->fs.ring_cookie,
2745 				 (void __user *)(&rxnfc->fs.location + 1) -
2746 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2747 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2748 				 sizeof(rxnfc->rule_cnt)))
2749 			return -EFAULT;
2750 	}
2751 
2752 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2753 	if (ret)
2754 		return ret;
2755 
2756 	if (convert_out) {
2757 		if (copy_in_user(compat_rxnfc, rxnfc,
2758 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2759 				 (const void __user *)rxnfc) ||
2760 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2761 				 &rxnfc->fs.ring_cookie,
2762 				 (const void __user *)(&rxnfc->fs.location + 1) -
2763 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2764 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2765 				 sizeof(rxnfc->rule_cnt)))
2766 			return -EFAULT;
2767 
2768 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2769 			/* As an optimisation, we only copy the actual
2770 			 * number of rules that the underlying
2771 			 * function returned.  Since Mallory might
2772 			 * change the rule count in user memory, we
2773 			 * check that it is less than the rule count
2774 			 * originally given (as the user buffer size),
2775 			 * which has been range-checked.
2776 			 */
2777 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2778 				return -EFAULT;
2779 			if (actual_rule_cnt < rule_cnt)
2780 				rule_cnt = actual_rule_cnt;
2781 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2782 					 &rxnfc->rule_locs[0],
2783 					 rule_cnt * sizeof(u32)))
2784 				return -EFAULT;
2785 		}
2786 	}
2787 
2788 	return 0;
2789 }
2790 
2791 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2792 {
2793 	void __user *uptr;
2794 	compat_uptr_t uptr32;
2795 	struct ifreq __user *uifr;
2796 
2797 	uifr = compat_alloc_user_space(sizeof(*uifr));
2798 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2799 		return -EFAULT;
2800 
2801 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2802 		return -EFAULT;
2803 
2804 	uptr = compat_ptr(uptr32);
2805 
2806 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2807 		return -EFAULT;
2808 
2809 	return dev_ioctl(net, SIOCWANDEV, uifr);
2810 }
2811 
2812 static int bond_ioctl(struct net *net, unsigned int cmd,
2813 			 struct compat_ifreq __user *ifr32)
2814 {
2815 	struct ifreq kifr;
2816 	mm_segment_t old_fs;
2817 	int err;
2818 
2819 	switch (cmd) {
2820 	case SIOCBONDENSLAVE:
2821 	case SIOCBONDRELEASE:
2822 	case SIOCBONDSETHWADDR:
2823 	case SIOCBONDCHANGEACTIVE:
2824 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2825 			return -EFAULT;
2826 
2827 		old_fs = get_fs();
2828 		set_fs(KERNEL_DS);
2829 		err = dev_ioctl(net, cmd,
2830 				(struct ifreq __user __force *) &kifr);
2831 		set_fs(old_fs);
2832 
2833 		return err;
2834 	default:
2835 		return -ENOIOCTLCMD;
2836 	}
2837 }
2838 
2839 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2840 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2841 				 struct compat_ifreq __user *u_ifreq32)
2842 {
2843 	struct ifreq __user *u_ifreq64;
2844 	char tmp_buf[IFNAMSIZ];
2845 	void __user *data64;
2846 	u32 data32;
2847 
2848 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2849 			   IFNAMSIZ))
2850 		return -EFAULT;
2851 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2852 		return -EFAULT;
2853 	data64 = compat_ptr(data32);
2854 
2855 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2856 
2857 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2858 			 IFNAMSIZ))
2859 		return -EFAULT;
2860 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2861 		return -EFAULT;
2862 
2863 	return dev_ioctl(net, cmd, u_ifreq64);
2864 }
2865 
2866 static int dev_ifsioc(struct net *net, struct socket *sock,
2867 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2868 {
2869 	struct ifreq __user *uifr;
2870 	int err;
2871 
2872 	uifr = compat_alloc_user_space(sizeof(*uifr));
2873 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2874 		return -EFAULT;
2875 
2876 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2877 
2878 	if (!err) {
2879 		switch (cmd) {
2880 		case SIOCGIFFLAGS:
2881 		case SIOCGIFMETRIC:
2882 		case SIOCGIFMTU:
2883 		case SIOCGIFMEM:
2884 		case SIOCGIFHWADDR:
2885 		case SIOCGIFINDEX:
2886 		case SIOCGIFADDR:
2887 		case SIOCGIFBRDADDR:
2888 		case SIOCGIFDSTADDR:
2889 		case SIOCGIFNETMASK:
2890 		case SIOCGIFPFLAGS:
2891 		case SIOCGIFTXQLEN:
2892 		case SIOCGMIIPHY:
2893 		case SIOCGMIIREG:
2894 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2895 				err = -EFAULT;
2896 			break;
2897 		}
2898 	}
2899 	return err;
2900 }
2901 
2902 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2903 			struct compat_ifreq __user *uifr32)
2904 {
2905 	struct ifreq ifr;
2906 	struct compat_ifmap __user *uifmap32;
2907 	mm_segment_t old_fs;
2908 	int err;
2909 
2910 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2911 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2912 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2913 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2914 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2915 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2916 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2917 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2918 	if (err)
2919 		return -EFAULT;
2920 
2921 	old_fs = get_fs();
2922 	set_fs(KERNEL_DS);
2923 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2924 	set_fs(old_fs);
2925 
2926 	if (cmd == SIOCGIFMAP && !err) {
2927 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2928 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2929 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2930 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2931 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2932 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2933 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2934 		if (err)
2935 			err = -EFAULT;
2936 	}
2937 	return err;
2938 }
2939 
2940 struct rtentry32 {
2941 	u32		rt_pad1;
2942 	struct sockaddr rt_dst;         /* target address               */
2943 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2944 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2945 	unsigned short	rt_flags;
2946 	short		rt_pad2;
2947 	u32		rt_pad3;
2948 	unsigned char	rt_tos;
2949 	unsigned char	rt_class;
2950 	short		rt_pad4;
2951 	short		rt_metric;      /* +1 for binary compatibility! */
2952 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2953 	u32		rt_mtu;         /* per route MTU/Window         */
2954 	u32		rt_window;      /* Window clamping              */
2955 	unsigned short  rt_irtt;        /* Initial RTT                  */
2956 };
2957 
2958 struct in6_rtmsg32 {
2959 	struct in6_addr		rtmsg_dst;
2960 	struct in6_addr		rtmsg_src;
2961 	struct in6_addr		rtmsg_gateway;
2962 	u32			rtmsg_type;
2963 	u16			rtmsg_dst_len;
2964 	u16			rtmsg_src_len;
2965 	u32			rtmsg_metric;
2966 	u32			rtmsg_info;
2967 	u32			rtmsg_flags;
2968 	s32			rtmsg_ifindex;
2969 };
2970 
2971 static int routing_ioctl(struct net *net, struct socket *sock,
2972 			 unsigned int cmd, void __user *argp)
2973 {
2974 	int ret;
2975 	void *r = NULL;
2976 	struct in6_rtmsg r6;
2977 	struct rtentry r4;
2978 	char devname[16];
2979 	u32 rtdev;
2980 	mm_segment_t old_fs = get_fs();
2981 
2982 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2983 		struct in6_rtmsg32 __user *ur6 = argp;
2984 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2985 			3 * sizeof(struct in6_addr));
2986 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2987 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2988 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2989 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2990 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2991 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2992 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2993 
2994 		r = (void *) &r6;
2995 	} else { /* ipv4 */
2996 		struct rtentry32 __user *ur4 = argp;
2997 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2998 					3 * sizeof(struct sockaddr));
2999 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3000 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3001 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3002 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3003 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3004 		ret |= get_user(rtdev, &(ur4->rt_dev));
3005 		if (rtdev) {
3006 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3007 			r4.rt_dev = (char __user __force *)devname;
3008 			devname[15] = 0;
3009 		} else
3010 			r4.rt_dev = NULL;
3011 
3012 		r = (void *) &r4;
3013 	}
3014 
3015 	if (ret) {
3016 		ret = -EFAULT;
3017 		goto out;
3018 	}
3019 
3020 	set_fs(KERNEL_DS);
3021 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3022 	set_fs(old_fs);
3023 
3024 out:
3025 	return ret;
3026 }
3027 
3028 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3029  * for some operations; this forces use of the newer bridge-utils that
3030  * use compatible ioctls
3031  */
3032 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3033 {
3034 	compat_ulong_t tmp;
3035 
3036 	if (get_user(tmp, argp))
3037 		return -EFAULT;
3038 	if (tmp == BRCTL_GET_VERSION)
3039 		return BRCTL_VERSION + 1;
3040 	return -EINVAL;
3041 }
3042 
3043 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3044 			 unsigned int cmd, unsigned long arg)
3045 {
3046 	void __user *argp = compat_ptr(arg);
3047 	struct sock *sk = sock->sk;
3048 	struct net *net = sock_net(sk);
3049 
3050 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3051 		return compat_ifr_data_ioctl(net, cmd, argp);
3052 
3053 	switch (cmd) {
3054 	case SIOCSIFBR:
3055 	case SIOCGIFBR:
3056 		return old_bridge_ioctl(argp);
3057 	case SIOCGIFNAME:
3058 		return dev_ifname32(net, argp);
3059 	case SIOCGIFCONF:
3060 		return dev_ifconf(net, argp);
3061 	case SIOCETHTOOL:
3062 		return ethtool_ioctl(net, argp);
3063 	case SIOCWANDEV:
3064 		return compat_siocwandev(net, argp);
3065 	case SIOCGIFMAP:
3066 	case SIOCSIFMAP:
3067 		return compat_sioc_ifmap(net, cmd, argp);
3068 	case SIOCBONDENSLAVE:
3069 	case SIOCBONDRELEASE:
3070 	case SIOCBONDSETHWADDR:
3071 	case SIOCBONDCHANGEACTIVE:
3072 		return bond_ioctl(net, cmd, argp);
3073 	case SIOCADDRT:
3074 	case SIOCDELRT:
3075 		return routing_ioctl(net, sock, cmd, argp);
3076 	case SIOCGSTAMP:
3077 		return do_siocgstamp(net, sock, cmd, argp);
3078 	case SIOCGSTAMPNS:
3079 		return do_siocgstampns(net, sock, cmd, argp);
3080 	case SIOCBONDSLAVEINFOQUERY:
3081 	case SIOCBONDINFOQUERY:
3082 	case SIOCSHWTSTAMP:
3083 	case SIOCGHWTSTAMP:
3084 		return compat_ifr_data_ioctl(net, cmd, argp);
3085 
3086 	case FIOSETOWN:
3087 	case SIOCSPGRP:
3088 	case FIOGETOWN:
3089 	case SIOCGPGRP:
3090 	case SIOCBRADDBR:
3091 	case SIOCBRDELBR:
3092 	case SIOCGIFVLAN:
3093 	case SIOCSIFVLAN:
3094 	case SIOCADDDLCI:
3095 	case SIOCDELDLCI:
3096 		return sock_ioctl(file, cmd, arg);
3097 
3098 	case SIOCGIFFLAGS:
3099 	case SIOCSIFFLAGS:
3100 	case SIOCGIFMETRIC:
3101 	case SIOCSIFMETRIC:
3102 	case SIOCGIFMTU:
3103 	case SIOCSIFMTU:
3104 	case SIOCGIFMEM:
3105 	case SIOCSIFMEM:
3106 	case SIOCGIFHWADDR:
3107 	case SIOCSIFHWADDR:
3108 	case SIOCADDMULTI:
3109 	case SIOCDELMULTI:
3110 	case SIOCGIFINDEX:
3111 	case SIOCGIFADDR:
3112 	case SIOCSIFADDR:
3113 	case SIOCSIFHWBROADCAST:
3114 	case SIOCDIFADDR:
3115 	case SIOCGIFBRDADDR:
3116 	case SIOCSIFBRDADDR:
3117 	case SIOCGIFDSTADDR:
3118 	case SIOCSIFDSTADDR:
3119 	case SIOCGIFNETMASK:
3120 	case SIOCSIFNETMASK:
3121 	case SIOCSIFPFLAGS:
3122 	case SIOCGIFPFLAGS:
3123 	case SIOCGIFTXQLEN:
3124 	case SIOCSIFTXQLEN:
3125 	case SIOCBRADDIF:
3126 	case SIOCBRDELIF:
3127 	case SIOCSIFNAME:
3128 	case SIOCGMIIPHY:
3129 	case SIOCGMIIREG:
3130 	case SIOCSMIIREG:
3131 		return dev_ifsioc(net, sock, cmd, argp);
3132 
3133 	case SIOCSARP:
3134 	case SIOCGARP:
3135 	case SIOCDARP:
3136 	case SIOCATMARK:
3137 		return sock_do_ioctl(net, sock, cmd, arg);
3138 	}
3139 
3140 	return -ENOIOCTLCMD;
3141 }
3142 
3143 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3144 			      unsigned long arg)
3145 {
3146 	struct socket *sock = file->private_data;
3147 	int ret = -ENOIOCTLCMD;
3148 	struct sock *sk;
3149 	struct net *net;
3150 
3151 	sk = sock->sk;
3152 	net = sock_net(sk);
3153 
3154 	if (sock->ops->compat_ioctl)
3155 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3156 
3157 	if (ret == -ENOIOCTLCMD &&
3158 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3159 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3160 
3161 	if (ret == -ENOIOCTLCMD)
3162 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3163 
3164 	return ret;
3165 }
3166 #endif
3167 
3168 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3169 {
3170 	return sock->ops->bind(sock, addr, addrlen);
3171 }
3172 EXPORT_SYMBOL(kernel_bind);
3173 
3174 int kernel_listen(struct socket *sock, int backlog)
3175 {
3176 	return sock->ops->listen(sock, backlog);
3177 }
3178 EXPORT_SYMBOL(kernel_listen);
3179 
3180 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3181 {
3182 	struct sock *sk = sock->sk;
3183 	int err;
3184 
3185 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3186 			       newsock);
3187 	if (err < 0)
3188 		goto done;
3189 
3190 	err = sock->ops->accept(sock, *newsock, flags);
3191 	if (err < 0) {
3192 		sock_release(*newsock);
3193 		*newsock = NULL;
3194 		goto done;
3195 	}
3196 
3197 	(*newsock)->ops = sock->ops;
3198 	__module_get((*newsock)->ops->owner);
3199 
3200 done:
3201 	return err;
3202 }
3203 EXPORT_SYMBOL(kernel_accept);
3204 
3205 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3206 		   int flags)
3207 {
3208 	return sock->ops->connect(sock, addr, addrlen, flags);
3209 }
3210 EXPORT_SYMBOL(kernel_connect);
3211 
3212 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3213 			 int *addrlen)
3214 {
3215 	return sock->ops->getname(sock, addr, addrlen, 0);
3216 }
3217 EXPORT_SYMBOL(kernel_getsockname);
3218 
3219 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3220 			 int *addrlen)
3221 {
3222 	return sock->ops->getname(sock, addr, addrlen, 1);
3223 }
3224 EXPORT_SYMBOL(kernel_getpeername);
3225 
3226 int kernel_getsockopt(struct socket *sock, int level, int optname,
3227 			char *optval, int *optlen)
3228 {
3229 	mm_segment_t oldfs = get_fs();
3230 	char __user *uoptval;
3231 	int __user *uoptlen;
3232 	int err;
3233 
3234 	uoptval = (char __user __force *) optval;
3235 	uoptlen = (int __user __force *) optlen;
3236 
3237 	set_fs(KERNEL_DS);
3238 	if (level == SOL_SOCKET)
3239 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3240 	else
3241 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3242 					    uoptlen);
3243 	set_fs(oldfs);
3244 	return err;
3245 }
3246 EXPORT_SYMBOL(kernel_getsockopt);
3247 
3248 int kernel_setsockopt(struct socket *sock, int level, int optname,
3249 			char *optval, unsigned int optlen)
3250 {
3251 	mm_segment_t oldfs = get_fs();
3252 	char __user *uoptval;
3253 	int err;
3254 
3255 	uoptval = (char __user __force *) optval;
3256 
3257 	set_fs(KERNEL_DS);
3258 	if (level == SOL_SOCKET)
3259 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3260 	else
3261 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3262 					    optlen);
3263 	set_fs(oldfs);
3264 	return err;
3265 }
3266 EXPORT_SYMBOL(kernel_setsockopt);
3267 
3268 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3269 		    size_t size, int flags)
3270 {
3271 	if (sock->ops->sendpage)
3272 		return sock->ops->sendpage(sock, page, offset, size, flags);
3273 
3274 	return sock_no_sendpage(sock, page, offset, size, flags);
3275 }
3276 EXPORT_SYMBOL(kernel_sendpage);
3277 
3278 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3279 {
3280 	mm_segment_t oldfs = get_fs();
3281 	int err;
3282 
3283 	set_fs(KERNEL_DS);
3284 	err = sock->ops->ioctl(sock, cmd, arg);
3285 	set_fs(oldfs);
3286 
3287 	return err;
3288 }
3289 EXPORT_SYMBOL(kernel_sock_ioctl);
3290 
3291 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3292 {
3293 	return sock->ops->shutdown(sock, how);
3294 }
3295 EXPORT_SYMBOL(kernel_sock_shutdown);
3296