1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 #include <linux/nsproxy.h> 88 #include <linux/magic.h> 89 #include <linux/slab.h> 90 #include <linux/xattr.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 112 unsigned long nr_segs, loff_t pos); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static unsigned int sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .aio_read = sock_aio_read, 139 .aio_write = sock_aio_write, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .open = sock_no_open, /* special open code to disallow open via /proc */ 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Statistics counters of the socket lists 163 */ 164 165 static DEFINE_PER_CPU(int, sockets_in_use); 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 213 void __user *uaddr, int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 struct socket_wq *wq; 244 245 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 246 if (!ei) 247 return NULL; 248 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 249 if (!wq) { 250 kmem_cache_free(sock_inode_cachep, ei); 251 return NULL; 252 } 253 init_waitqueue_head(&wq->wait); 254 wq->fasync_list = NULL; 255 RCU_INIT_POINTER(ei->socket.wq, wq); 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 struct socket_wq *wq; 270 271 ei = container_of(inode, struct socket_alloc, vfs_inode); 272 wq = rcu_dereference_protected(ei->socket.wq, 1); 273 kfree_rcu(wq, rcu); 274 kmem_cache_free(sock_inode_cachep, ei); 275 } 276 277 static void init_once(void *foo) 278 { 279 struct socket_alloc *ei = (struct socket_alloc *)foo; 280 281 inode_init_once(&ei->vfs_inode); 282 } 283 284 static int init_inodecache(void) 285 { 286 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 287 sizeof(struct socket_alloc), 288 0, 289 (SLAB_HWCACHE_ALIGN | 290 SLAB_RECLAIM_ACCOUNT | 291 SLAB_MEM_SPREAD), 292 init_once); 293 if (sock_inode_cachep == NULL) 294 return -ENOMEM; 295 return 0; 296 } 297 298 static const struct super_operations sockfs_ops = { 299 .alloc_inode = sock_alloc_inode, 300 .destroy_inode = sock_destroy_inode, 301 .statfs = simple_statfs, 302 }; 303 304 /* 305 * sockfs_dname() is called from d_path(). 306 */ 307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 308 { 309 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 310 dentry->d_inode->i_ino); 311 } 312 313 static const struct dentry_operations sockfs_dentry_operations = { 314 .d_dname = sockfs_dname, 315 }; 316 317 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 318 int flags, const char *dev_name, void *data) 319 { 320 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 321 &sockfs_dentry_operations, SOCKFS_MAGIC); 322 } 323 324 static struct vfsmount *sock_mnt __read_mostly; 325 326 static struct file_system_type sock_fs_type = { 327 .name = "sockfs", 328 .mount = sockfs_mount, 329 .kill_sb = kill_anon_super, 330 }; 331 332 /* 333 * Obtains the first available file descriptor and sets it up for use. 334 * 335 * These functions create file structures and maps them to fd space 336 * of the current process. On success it returns file descriptor 337 * and file struct implicitly stored in sock->file. 338 * Note that another thread may close file descriptor before we return 339 * from this function. We use the fact that now we do not refer 340 * to socket after mapping. If one day we will need it, this 341 * function will increment ref. count on file by 1. 342 * 343 * In any case returned fd MAY BE not valid! 344 * This race condition is unavoidable 345 * with shared fd spaces, we cannot solve it inside kernel, 346 * but we take care of internal coherence yet. 347 */ 348 349 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 350 { 351 struct qstr name = { .name = "" }; 352 struct path path; 353 struct file *file; 354 355 if (dname) { 356 name.name = dname; 357 name.len = strlen(name.name); 358 } else if (sock->sk) { 359 name.name = sock->sk->sk_prot_creator->name; 360 name.len = strlen(name.name); 361 } 362 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 363 if (unlikely(!path.dentry)) 364 return ERR_PTR(-ENOMEM); 365 path.mnt = mntget(sock_mnt); 366 367 d_instantiate(path.dentry, SOCK_INODE(sock)); 368 SOCK_INODE(sock)->i_fop = &socket_file_ops; 369 370 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 371 &socket_file_ops); 372 if (unlikely(!file)) { 373 /* drop dentry, keep inode */ 374 ihold(path.dentry->d_inode); 375 path_put(&path); 376 return ERR_PTR(-ENFILE); 377 } 378 379 sock->file = file; 380 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 381 file->f_pos = 0; 382 file->private_data = sock; 383 return file; 384 } 385 EXPORT_SYMBOL(sock_alloc_file); 386 387 static int sock_map_fd(struct socket *sock, int flags) 388 { 389 struct file *newfile; 390 int fd = get_unused_fd_flags(flags); 391 if (unlikely(fd < 0)) 392 return fd; 393 394 newfile = sock_alloc_file(sock, flags, NULL); 395 if (likely(!IS_ERR(newfile))) { 396 fd_install(fd, newfile); 397 return fd; 398 } 399 400 put_unused_fd(fd); 401 return PTR_ERR(newfile); 402 } 403 404 struct socket *sock_from_file(struct file *file, int *err) 405 { 406 if (file->f_op == &socket_file_ops) 407 return file->private_data; /* set in sock_map_fd */ 408 409 *err = -ENOTSOCK; 410 return NULL; 411 } 412 EXPORT_SYMBOL(sock_from_file); 413 414 /** 415 * sockfd_lookup - Go from a file number to its socket slot 416 * @fd: file handle 417 * @err: pointer to an error code return 418 * 419 * The file handle passed in is locked and the socket it is bound 420 * too is returned. If an error occurs the err pointer is overwritten 421 * with a negative errno code and NULL is returned. The function checks 422 * for both invalid handles and passing a handle which is not a socket. 423 * 424 * On a success the socket object pointer is returned. 425 */ 426 427 struct socket *sockfd_lookup(int fd, int *err) 428 { 429 struct file *file; 430 struct socket *sock; 431 432 file = fget(fd); 433 if (!file) { 434 *err = -EBADF; 435 return NULL; 436 } 437 438 sock = sock_from_file(file, err); 439 if (!sock) 440 fput(file); 441 return sock; 442 } 443 EXPORT_SYMBOL(sockfd_lookup); 444 445 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 446 { 447 struct file *file; 448 struct socket *sock; 449 450 *err = -EBADF; 451 file = fget_light(fd, fput_needed); 452 if (file) { 453 sock = sock_from_file(file, err); 454 if (sock) 455 return sock; 456 fput_light(file, *fput_needed); 457 } 458 return NULL; 459 } 460 461 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 462 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 463 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 464 static ssize_t sockfs_getxattr(struct dentry *dentry, 465 const char *name, void *value, size_t size) 466 { 467 const char *proto_name; 468 size_t proto_size; 469 int error; 470 471 error = -ENODATA; 472 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 473 proto_name = dentry->d_name.name; 474 proto_size = strlen(proto_name); 475 476 if (value) { 477 error = -ERANGE; 478 if (proto_size + 1 > size) 479 goto out; 480 481 strncpy(value, proto_name, proto_size + 1); 482 } 483 error = proto_size + 1; 484 } 485 486 out: 487 return error; 488 } 489 490 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 491 size_t size) 492 { 493 ssize_t len; 494 ssize_t used = 0; 495 496 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 497 if (len < 0) 498 return len; 499 used += len; 500 if (buffer) { 501 if (size < used) 502 return -ERANGE; 503 buffer += len; 504 } 505 506 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 507 used += len; 508 if (buffer) { 509 if (size < used) 510 return -ERANGE; 511 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 512 buffer += len; 513 } 514 515 return used; 516 } 517 518 static const struct inode_operations sockfs_inode_ops = { 519 .getxattr = sockfs_getxattr, 520 .listxattr = sockfs_listxattr, 521 }; 522 523 /** 524 * sock_alloc - allocate a socket 525 * 526 * Allocate a new inode and socket object. The two are bound together 527 * and initialised. The socket is then returned. If we are out of inodes 528 * NULL is returned. 529 */ 530 531 static struct socket *sock_alloc(void) 532 { 533 struct inode *inode; 534 struct socket *sock; 535 536 inode = new_inode_pseudo(sock_mnt->mnt_sb); 537 if (!inode) 538 return NULL; 539 540 sock = SOCKET_I(inode); 541 542 kmemcheck_annotate_bitfield(sock, type); 543 inode->i_ino = get_next_ino(); 544 inode->i_mode = S_IFSOCK | S_IRWXUGO; 545 inode->i_uid = current_fsuid(); 546 inode->i_gid = current_fsgid(); 547 inode->i_op = &sockfs_inode_ops; 548 549 this_cpu_add(sockets_in_use, 1); 550 return sock; 551 } 552 553 /* 554 * In theory you can't get an open on this inode, but /proc provides 555 * a back door. Remember to keep it shut otherwise you'll let the 556 * creepy crawlies in. 557 */ 558 559 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 560 { 561 return -ENXIO; 562 } 563 564 const struct file_operations bad_sock_fops = { 565 .owner = THIS_MODULE, 566 .open = sock_no_open, 567 .llseek = noop_llseek, 568 }; 569 570 /** 571 * sock_release - close a socket 572 * @sock: socket to close 573 * 574 * The socket is released from the protocol stack if it has a release 575 * callback, and the inode is then released if the socket is bound to 576 * an inode not a file. 577 */ 578 579 void sock_release(struct socket *sock) 580 { 581 if (sock->ops) { 582 struct module *owner = sock->ops->owner; 583 584 sock->ops->release(sock); 585 sock->ops = NULL; 586 module_put(owner); 587 } 588 589 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 590 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 591 592 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 593 return; 594 595 this_cpu_sub(sockets_in_use, 1); 596 if (!sock->file) { 597 iput(SOCK_INODE(sock)); 598 return; 599 } 600 sock->file = NULL; 601 } 602 EXPORT_SYMBOL(sock_release); 603 604 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 605 { 606 *tx_flags = 0; 607 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 608 *tx_flags |= SKBTX_HW_TSTAMP; 609 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 610 *tx_flags |= SKBTX_SW_TSTAMP; 611 if (sock_flag(sk, SOCK_WIFI_STATUS)) 612 *tx_flags |= SKBTX_WIFI_STATUS; 613 return 0; 614 } 615 EXPORT_SYMBOL(sock_tx_timestamp); 616 617 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 618 struct msghdr *msg, size_t size) 619 { 620 struct sock_iocb *si = kiocb_to_siocb(iocb); 621 622 si->sock = sock; 623 si->scm = NULL; 624 si->msg = msg; 625 si->size = size; 626 627 return sock->ops->sendmsg(iocb, sock, msg, size); 628 } 629 630 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 631 struct msghdr *msg, size_t size) 632 { 633 int err = security_socket_sendmsg(sock, msg, size); 634 635 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 636 } 637 638 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 639 { 640 struct kiocb iocb; 641 struct sock_iocb siocb; 642 int ret; 643 644 init_sync_kiocb(&iocb, NULL); 645 iocb.private = &siocb; 646 ret = __sock_sendmsg(&iocb, sock, msg, size); 647 if (-EIOCBQUEUED == ret) 648 ret = wait_on_sync_kiocb(&iocb); 649 return ret; 650 } 651 EXPORT_SYMBOL(sock_sendmsg); 652 653 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 654 { 655 struct kiocb iocb; 656 struct sock_iocb siocb; 657 int ret; 658 659 init_sync_kiocb(&iocb, NULL); 660 iocb.private = &siocb; 661 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 662 if (-EIOCBQUEUED == ret) 663 ret = wait_on_sync_kiocb(&iocb); 664 return ret; 665 } 666 667 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 668 struct kvec *vec, size_t num, size_t size) 669 { 670 mm_segment_t oldfs = get_fs(); 671 int result; 672 673 set_fs(KERNEL_DS); 674 /* 675 * the following is safe, since for compiler definitions of kvec and 676 * iovec are identical, yielding the same in-core layout and alignment 677 */ 678 msg->msg_iov = (struct iovec *)vec; 679 msg->msg_iovlen = num; 680 result = sock_sendmsg(sock, msg, size); 681 set_fs(oldfs); 682 return result; 683 } 684 EXPORT_SYMBOL(kernel_sendmsg); 685 686 static int ktime2ts(ktime_t kt, struct timespec *ts) 687 { 688 if (kt.tv64) { 689 *ts = ktime_to_timespec(kt); 690 return 1; 691 } else { 692 return 0; 693 } 694 } 695 696 /* 697 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 698 */ 699 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 700 struct sk_buff *skb) 701 { 702 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 703 struct timespec ts[3]; 704 int empty = 1; 705 struct skb_shared_hwtstamps *shhwtstamps = 706 skb_hwtstamps(skb); 707 708 /* Race occurred between timestamp enabling and packet 709 receiving. Fill in the current time for now. */ 710 if (need_software_tstamp && skb->tstamp.tv64 == 0) 711 __net_timestamp(skb); 712 713 if (need_software_tstamp) { 714 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 715 struct timeval tv; 716 skb_get_timestamp(skb, &tv); 717 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 718 sizeof(tv), &tv); 719 } else { 720 skb_get_timestampns(skb, &ts[0]); 721 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 722 sizeof(ts[0]), &ts[0]); 723 } 724 } 725 726 727 memset(ts, 0, sizeof(ts)); 728 if (skb->tstamp.tv64 && 729 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 730 skb_get_timestampns(skb, ts + 0); 731 empty = 0; 732 } 733 if (shhwtstamps) { 734 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 735 ktime2ts(shhwtstamps->syststamp, ts + 1)) 736 empty = 0; 737 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 738 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 739 empty = 0; 740 } 741 if (!empty) 742 put_cmsg(msg, SOL_SOCKET, 743 SCM_TIMESTAMPING, sizeof(ts), &ts); 744 } 745 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 746 747 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 748 struct sk_buff *skb) 749 { 750 int ack; 751 752 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 753 return; 754 if (!skb->wifi_acked_valid) 755 return; 756 757 ack = skb->wifi_acked; 758 759 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 760 } 761 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 762 763 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 764 struct sk_buff *skb) 765 { 766 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 767 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 768 sizeof(__u32), &skb->dropcount); 769 } 770 771 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 772 struct sk_buff *skb) 773 { 774 sock_recv_timestamp(msg, sk, skb); 775 sock_recv_drops(msg, sk, skb); 776 } 777 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 778 779 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 780 struct msghdr *msg, size_t size, int flags) 781 { 782 struct sock_iocb *si = kiocb_to_siocb(iocb); 783 784 si->sock = sock; 785 si->scm = NULL; 786 si->msg = msg; 787 si->size = size; 788 si->flags = flags; 789 790 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 791 } 792 793 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 794 struct msghdr *msg, size_t size, int flags) 795 { 796 int err = security_socket_recvmsg(sock, msg, size, flags); 797 798 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 799 } 800 801 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 802 size_t size, int flags) 803 { 804 struct kiocb iocb; 805 struct sock_iocb siocb; 806 int ret; 807 808 init_sync_kiocb(&iocb, NULL); 809 iocb.private = &siocb; 810 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 811 if (-EIOCBQUEUED == ret) 812 ret = wait_on_sync_kiocb(&iocb); 813 return ret; 814 } 815 EXPORT_SYMBOL(sock_recvmsg); 816 817 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 818 size_t size, int flags) 819 { 820 struct kiocb iocb; 821 struct sock_iocb siocb; 822 int ret; 823 824 init_sync_kiocb(&iocb, NULL); 825 iocb.private = &siocb; 826 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 827 if (-EIOCBQUEUED == ret) 828 ret = wait_on_sync_kiocb(&iocb); 829 return ret; 830 } 831 832 /** 833 * kernel_recvmsg - Receive a message from a socket (kernel space) 834 * @sock: The socket to receive the message from 835 * @msg: Received message 836 * @vec: Input s/g array for message data 837 * @num: Size of input s/g array 838 * @size: Number of bytes to read 839 * @flags: Message flags (MSG_DONTWAIT, etc...) 840 * 841 * On return the msg structure contains the scatter/gather array passed in the 842 * vec argument. The array is modified so that it consists of the unfilled 843 * portion of the original array. 844 * 845 * The returned value is the total number of bytes received, or an error. 846 */ 847 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 848 struct kvec *vec, size_t num, size_t size, int flags) 849 { 850 mm_segment_t oldfs = get_fs(); 851 int result; 852 853 set_fs(KERNEL_DS); 854 /* 855 * the following is safe, since for compiler definitions of kvec and 856 * iovec are identical, yielding the same in-core layout and alignment 857 */ 858 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 859 result = sock_recvmsg(sock, msg, size, flags); 860 set_fs(oldfs); 861 return result; 862 } 863 EXPORT_SYMBOL(kernel_recvmsg); 864 865 static void sock_aio_dtor(struct kiocb *iocb) 866 { 867 kfree(iocb->private); 868 } 869 870 static ssize_t sock_sendpage(struct file *file, struct page *page, 871 int offset, size_t size, loff_t *ppos, int more) 872 { 873 struct socket *sock; 874 int flags; 875 876 sock = file->private_data; 877 878 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 879 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 880 flags |= more; 881 882 return kernel_sendpage(sock, page, offset, size, flags); 883 } 884 885 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 886 struct pipe_inode_info *pipe, size_t len, 887 unsigned int flags) 888 { 889 struct socket *sock = file->private_data; 890 891 if (unlikely(!sock->ops->splice_read)) 892 return -EINVAL; 893 894 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 895 } 896 897 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 898 struct sock_iocb *siocb) 899 { 900 if (!is_sync_kiocb(iocb)) { 901 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 902 if (!siocb) 903 return NULL; 904 iocb->ki_dtor = sock_aio_dtor; 905 } 906 907 siocb->kiocb = iocb; 908 iocb->private = siocb; 909 return siocb; 910 } 911 912 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 913 struct file *file, const struct iovec *iov, 914 unsigned long nr_segs) 915 { 916 struct socket *sock = file->private_data; 917 size_t size = 0; 918 int i; 919 920 for (i = 0; i < nr_segs; i++) 921 size += iov[i].iov_len; 922 923 msg->msg_name = NULL; 924 msg->msg_namelen = 0; 925 msg->msg_control = NULL; 926 msg->msg_controllen = 0; 927 msg->msg_iov = (struct iovec *)iov; 928 msg->msg_iovlen = nr_segs; 929 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 930 931 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 932 } 933 934 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 935 unsigned long nr_segs, loff_t pos) 936 { 937 struct sock_iocb siocb, *x; 938 939 if (pos != 0) 940 return -ESPIPE; 941 942 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 943 return 0; 944 945 946 x = alloc_sock_iocb(iocb, &siocb); 947 if (!x) 948 return -ENOMEM; 949 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 950 } 951 952 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 953 struct file *file, const struct iovec *iov, 954 unsigned long nr_segs) 955 { 956 struct socket *sock = file->private_data; 957 size_t size = 0; 958 int i; 959 960 for (i = 0; i < nr_segs; i++) 961 size += iov[i].iov_len; 962 963 msg->msg_name = NULL; 964 msg->msg_namelen = 0; 965 msg->msg_control = NULL; 966 msg->msg_controllen = 0; 967 msg->msg_iov = (struct iovec *)iov; 968 msg->msg_iovlen = nr_segs; 969 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 970 if (sock->type == SOCK_SEQPACKET) 971 msg->msg_flags |= MSG_EOR; 972 973 return __sock_sendmsg(iocb, sock, msg, size); 974 } 975 976 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 977 unsigned long nr_segs, loff_t pos) 978 { 979 struct sock_iocb siocb, *x; 980 981 if (pos != 0) 982 return -ESPIPE; 983 984 x = alloc_sock_iocb(iocb, &siocb); 985 if (!x) 986 return -ENOMEM; 987 988 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 989 } 990 991 /* 992 * Atomic setting of ioctl hooks to avoid race 993 * with module unload. 994 */ 995 996 static DEFINE_MUTEX(br_ioctl_mutex); 997 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 998 999 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1000 { 1001 mutex_lock(&br_ioctl_mutex); 1002 br_ioctl_hook = hook; 1003 mutex_unlock(&br_ioctl_mutex); 1004 } 1005 EXPORT_SYMBOL(brioctl_set); 1006 1007 static DEFINE_MUTEX(vlan_ioctl_mutex); 1008 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1009 1010 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1011 { 1012 mutex_lock(&vlan_ioctl_mutex); 1013 vlan_ioctl_hook = hook; 1014 mutex_unlock(&vlan_ioctl_mutex); 1015 } 1016 EXPORT_SYMBOL(vlan_ioctl_set); 1017 1018 static DEFINE_MUTEX(dlci_ioctl_mutex); 1019 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1020 1021 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1022 { 1023 mutex_lock(&dlci_ioctl_mutex); 1024 dlci_ioctl_hook = hook; 1025 mutex_unlock(&dlci_ioctl_mutex); 1026 } 1027 EXPORT_SYMBOL(dlci_ioctl_set); 1028 1029 static long sock_do_ioctl(struct net *net, struct socket *sock, 1030 unsigned int cmd, unsigned long arg) 1031 { 1032 int err; 1033 void __user *argp = (void __user *)arg; 1034 1035 err = sock->ops->ioctl(sock, cmd, arg); 1036 1037 /* 1038 * If this ioctl is unknown try to hand it down 1039 * to the NIC driver. 1040 */ 1041 if (err == -ENOIOCTLCMD) 1042 err = dev_ioctl(net, cmd, argp); 1043 1044 return err; 1045 } 1046 1047 /* 1048 * With an ioctl, arg may well be a user mode pointer, but we don't know 1049 * what to do with it - that's up to the protocol still. 1050 */ 1051 1052 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1053 { 1054 struct socket *sock; 1055 struct sock *sk; 1056 void __user *argp = (void __user *)arg; 1057 int pid, err; 1058 struct net *net; 1059 1060 sock = file->private_data; 1061 sk = sock->sk; 1062 net = sock_net(sk); 1063 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1064 err = dev_ioctl(net, cmd, argp); 1065 } else 1066 #ifdef CONFIG_WEXT_CORE 1067 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1068 err = dev_ioctl(net, cmd, argp); 1069 } else 1070 #endif 1071 switch (cmd) { 1072 case FIOSETOWN: 1073 case SIOCSPGRP: 1074 err = -EFAULT; 1075 if (get_user(pid, (int __user *)argp)) 1076 break; 1077 err = f_setown(sock->file, pid, 1); 1078 break; 1079 case FIOGETOWN: 1080 case SIOCGPGRP: 1081 err = put_user(f_getown(sock->file), 1082 (int __user *)argp); 1083 break; 1084 case SIOCGIFBR: 1085 case SIOCSIFBR: 1086 case SIOCBRADDBR: 1087 case SIOCBRDELBR: 1088 err = -ENOPKG; 1089 if (!br_ioctl_hook) 1090 request_module("bridge"); 1091 1092 mutex_lock(&br_ioctl_mutex); 1093 if (br_ioctl_hook) 1094 err = br_ioctl_hook(net, cmd, argp); 1095 mutex_unlock(&br_ioctl_mutex); 1096 break; 1097 case SIOCGIFVLAN: 1098 case SIOCSIFVLAN: 1099 err = -ENOPKG; 1100 if (!vlan_ioctl_hook) 1101 request_module("8021q"); 1102 1103 mutex_lock(&vlan_ioctl_mutex); 1104 if (vlan_ioctl_hook) 1105 err = vlan_ioctl_hook(net, argp); 1106 mutex_unlock(&vlan_ioctl_mutex); 1107 break; 1108 case SIOCADDDLCI: 1109 case SIOCDELDLCI: 1110 err = -ENOPKG; 1111 if (!dlci_ioctl_hook) 1112 request_module("dlci"); 1113 1114 mutex_lock(&dlci_ioctl_mutex); 1115 if (dlci_ioctl_hook) 1116 err = dlci_ioctl_hook(cmd, argp); 1117 mutex_unlock(&dlci_ioctl_mutex); 1118 break; 1119 default: 1120 err = sock_do_ioctl(net, sock, cmd, arg); 1121 break; 1122 } 1123 return err; 1124 } 1125 1126 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1127 { 1128 int err; 1129 struct socket *sock = NULL; 1130 1131 err = security_socket_create(family, type, protocol, 1); 1132 if (err) 1133 goto out; 1134 1135 sock = sock_alloc(); 1136 if (!sock) { 1137 err = -ENOMEM; 1138 goto out; 1139 } 1140 1141 sock->type = type; 1142 err = security_socket_post_create(sock, family, type, protocol, 1); 1143 if (err) 1144 goto out_release; 1145 1146 out: 1147 *res = sock; 1148 return err; 1149 out_release: 1150 sock_release(sock); 1151 sock = NULL; 1152 goto out; 1153 } 1154 EXPORT_SYMBOL(sock_create_lite); 1155 1156 /* No kernel lock held - perfect */ 1157 static unsigned int sock_poll(struct file *file, poll_table *wait) 1158 { 1159 struct socket *sock; 1160 1161 /* 1162 * We can't return errors to poll, so it's either yes or no. 1163 */ 1164 sock = file->private_data; 1165 return sock->ops->poll(file, sock, wait); 1166 } 1167 1168 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1169 { 1170 struct socket *sock = file->private_data; 1171 1172 return sock->ops->mmap(file, sock, vma); 1173 } 1174 1175 static int sock_close(struct inode *inode, struct file *filp) 1176 { 1177 /* 1178 * It was possible the inode is NULL we were 1179 * closing an unfinished socket. 1180 */ 1181 1182 if (!inode) { 1183 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1184 return 0; 1185 } 1186 sock_release(SOCKET_I(inode)); 1187 return 0; 1188 } 1189 1190 /* 1191 * Update the socket async list 1192 * 1193 * Fasync_list locking strategy. 1194 * 1195 * 1. fasync_list is modified only under process context socket lock 1196 * i.e. under semaphore. 1197 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1198 * or under socket lock 1199 */ 1200 1201 static int sock_fasync(int fd, struct file *filp, int on) 1202 { 1203 struct socket *sock = filp->private_data; 1204 struct sock *sk = sock->sk; 1205 struct socket_wq *wq; 1206 1207 if (sk == NULL) 1208 return -EINVAL; 1209 1210 lock_sock(sk); 1211 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1212 fasync_helper(fd, filp, on, &wq->fasync_list); 1213 1214 if (!wq->fasync_list) 1215 sock_reset_flag(sk, SOCK_FASYNC); 1216 else 1217 sock_set_flag(sk, SOCK_FASYNC); 1218 1219 release_sock(sk); 1220 return 0; 1221 } 1222 1223 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1224 1225 int sock_wake_async(struct socket *sock, int how, int band) 1226 { 1227 struct socket_wq *wq; 1228 1229 if (!sock) 1230 return -1; 1231 rcu_read_lock(); 1232 wq = rcu_dereference(sock->wq); 1233 if (!wq || !wq->fasync_list) { 1234 rcu_read_unlock(); 1235 return -1; 1236 } 1237 switch (how) { 1238 case SOCK_WAKE_WAITD: 1239 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1240 break; 1241 goto call_kill; 1242 case SOCK_WAKE_SPACE: 1243 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1244 break; 1245 /* fall through */ 1246 case SOCK_WAKE_IO: 1247 call_kill: 1248 kill_fasync(&wq->fasync_list, SIGIO, band); 1249 break; 1250 case SOCK_WAKE_URG: 1251 kill_fasync(&wq->fasync_list, SIGURG, band); 1252 } 1253 rcu_read_unlock(); 1254 return 0; 1255 } 1256 EXPORT_SYMBOL(sock_wake_async); 1257 1258 int __sock_create(struct net *net, int family, int type, int protocol, 1259 struct socket **res, int kern) 1260 { 1261 int err; 1262 struct socket *sock; 1263 const struct net_proto_family *pf; 1264 1265 /* 1266 * Check protocol is in range 1267 */ 1268 if (family < 0 || family >= NPROTO) 1269 return -EAFNOSUPPORT; 1270 if (type < 0 || type >= SOCK_MAX) 1271 return -EINVAL; 1272 1273 /* Compatibility. 1274 1275 This uglymoron is moved from INET layer to here to avoid 1276 deadlock in module load. 1277 */ 1278 if (family == PF_INET && type == SOCK_PACKET) { 1279 static int warned; 1280 if (!warned) { 1281 warned = 1; 1282 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1283 current->comm); 1284 } 1285 family = PF_PACKET; 1286 } 1287 1288 err = security_socket_create(family, type, protocol, kern); 1289 if (err) 1290 return err; 1291 1292 /* 1293 * Allocate the socket and allow the family to set things up. if 1294 * the protocol is 0, the family is instructed to select an appropriate 1295 * default. 1296 */ 1297 sock = sock_alloc(); 1298 if (!sock) { 1299 net_warn_ratelimited("socket: no more sockets\n"); 1300 return -ENFILE; /* Not exactly a match, but its the 1301 closest posix thing */ 1302 } 1303 1304 sock->type = type; 1305 1306 #ifdef CONFIG_MODULES 1307 /* Attempt to load a protocol module if the find failed. 1308 * 1309 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1310 * requested real, full-featured networking support upon configuration. 1311 * Otherwise module support will break! 1312 */ 1313 if (rcu_access_pointer(net_families[family]) == NULL) 1314 request_module("net-pf-%d", family); 1315 #endif 1316 1317 rcu_read_lock(); 1318 pf = rcu_dereference(net_families[family]); 1319 err = -EAFNOSUPPORT; 1320 if (!pf) 1321 goto out_release; 1322 1323 /* 1324 * We will call the ->create function, that possibly is in a loadable 1325 * module, so we have to bump that loadable module refcnt first. 1326 */ 1327 if (!try_module_get(pf->owner)) 1328 goto out_release; 1329 1330 /* Now protected by module ref count */ 1331 rcu_read_unlock(); 1332 1333 err = pf->create(net, sock, protocol, kern); 1334 if (err < 0) 1335 goto out_module_put; 1336 1337 /* 1338 * Now to bump the refcnt of the [loadable] module that owns this 1339 * socket at sock_release time we decrement its refcnt. 1340 */ 1341 if (!try_module_get(sock->ops->owner)) 1342 goto out_module_busy; 1343 1344 /* 1345 * Now that we're done with the ->create function, the [loadable] 1346 * module can have its refcnt decremented 1347 */ 1348 module_put(pf->owner); 1349 err = security_socket_post_create(sock, family, type, protocol, kern); 1350 if (err) 1351 goto out_sock_release; 1352 *res = sock; 1353 1354 return 0; 1355 1356 out_module_busy: 1357 err = -EAFNOSUPPORT; 1358 out_module_put: 1359 sock->ops = NULL; 1360 module_put(pf->owner); 1361 out_sock_release: 1362 sock_release(sock); 1363 return err; 1364 1365 out_release: 1366 rcu_read_unlock(); 1367 goto out_sock_release; 1368 } 1369 EXPORT_SYMBOL(__sock_create); 1370 1371 int sock_create(int family, int type, int protocol, struct socket **res) 1372 { 1373 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1374 } 1375 EXPORT_SYMBOL(sock_create); 1376 1377 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1378 { 1379 return __sock_create(&init_net, family, type, protocol, res, 1); 1380 } 1381 EXPORT_SYMBOL(sock_create_kern); 1382 1383 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1384 { 1385 int retval; 1386 struct socket *sock; 1387 int flags; 1388 1389 /* Check the SOCK_* constants for consistency. */ 1390 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1391 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1392 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1393 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1394 1395 flags = type & ~SOCK_TYPE_MASK; 1396 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1397 return -EINVAL; 1398 type &= SOCK_TYPE_MASK; 1399 1400 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1401 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1402 1403 retval = sock_create(family, type, protocol, &sock); 1404 if (retval < 0) 1405 goto out; 1406 1407 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1408 if (retval < 0) 1409 goto out_release; 1410 1411 out: 1412 /* It may be already another descriptor 8) Not kernel problem. */ 1413 return retval; 1414 1415 out_release: 1416 sock_release(sock); 1417 return retval; 1418 } 1419 1420 /* 1421 * Create a pair of connected sockets. 1422 */ 1423 1424 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1425 int __user *, usockvec) 1426 { 1427 struct socket *sock1, *sock2; 1428 int fd1, fd2, err; 1429 struct file *newfile1, *newfile2; 1430 int flags; 1431 1432 flags = type & ~SOCK_TYPE_MASK; 1433 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1434 return -EINVAL; 1435 type &= SOCK_TYPE_MASK; 1436 1437 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1438 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1439 1440 /* 1441 * Obtain the first socket and check if the underlying protocol 1442 * supports the socketpair call. 1443 */ 1444 1445 err = sock_create(family, type, protocol, &sock1); 1446 if (err < 0) 1447 goto out; 1448 1449 err = sock_create(family, type, protocol, &sock2); 1450 if (err < 0) 1451 goto out_release_1; 1452 1453 err = sock1->ops->socketpair(sock1, sock2); 1454 if (err < 0) 1455 goto out_release_both; 1456 1457 fd1 = get_unused_fd_flags(flags); 1458 if (unlikely(fd1 < 0)) { 1459 err = fd1; 1460 goto out_release_both; 1461 } 1462 fd2 = get_unused_fd_flags(flags); 1463 if (unlikely(fd2 < 0)) { 1464 err = fd2; 1465 put_unused_fd(fd1); 1466 goto out_release_both; 1467 } 1468 1469 newfile1 = sock_alloc_file(sock1, flags, NULL); 1470 if (unlikely(IS_ERR(newfile1))) { 1471 err = PTR_ERR(newfile1); 1472 put_unused_fd(fd1); 1473 put_unused_fd(fd2); 1474 goto out_release_both; 1475 } 1476 1477 newfile2 = sock_alloc_file(sock2, flags, NULL); 1478 if (IS_ERR(newfile2)) { 1479 err = PTR_ERR(newfile2); 1480 fput(newfile1); 1481 put_unused_fd(fd1); 1482 put_unused_fd(fd2); 1483 sock_release(sock2); 1484 goto out; 1485 } 1486 1487 audit_fd_pair(fd1, fd2); 1488 fd_install(fd1, newfile1); 1489 fd_install(fd2, newfile2); 1490 /* fd1 and fd2 may be already another descriptors. 1491 * Not kernel problem. 1492 */ 1493 1494 err = put_user(fd1, &usockvec[0]); 1495 if (!err) 1496 err = put_user(fd2, &usockvec[1]); 1497 if (!err) 1498 return 0; 1499 1500 sys_close(fd2); 1501 sys_close(fd1); 1502 return err; 1503 1504 out_release_both: 1505 sock_release(sock2); 1506 out_release_1: 1507 sock_release(sock1); 1508 out: 1509 return err; 1510 } 1511 1512 /* 1513 * Bind a name to a socket. Nothing much to do here since it's 1514 * the protocol's responsibility to handle the local address. 1515 * 1516 * We move the socket address to kernel space before we call 1517 * the protocol layer (having also checked the address is ok). 1518 */ 1519 1520 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1521 { 1522 struct socket *sock; 1523 struct sockaddr_storage address; 1524 int err, fput_needed; 1525 1526 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1527 if (sock) { 1528 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1529 if (err >= 0) { 1530 err = security_socket_bind(sock, 1531 (struct sockaddr *)&address, 1532 addrlen); 1533 if (!err) 1534 err = sock->ops->bind(sock, 1535 (struct sockaddr *) 1536 &address, addrlen); 1537 } 1538 fput_light(sock->file, fput_needed); 1539 } 1540 return err; 1541 } 1542 1543 /* 1544 * Perform a listen. Basically, we allow the protocol to do anything 1545 * necessary for a listen, and if that works, we mark the socket as 1546 * ready for listening. 1547 */ 1548 1549 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1550 { 1551 struct socket *sock; 1552 int err, fput_needed; 1553 int somaxconn; 1554 1555 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1556 if (sock) { 1557 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1558 if ((unsigned int)backlog > somaxconn) 1559 backlog = somaxconn; 1560 1561 err = security_socket_listen(sock, backlog); 1562 if (!err) 1563 err = sock->ops->listen(sock, backlog); 1564 1565 fput_light(sock->file, fput_needed); 1566 } 1567 return err; 1568 } 1569 1570 /* 1571 * For accept, we attempt to create a new socket, set up the link 1572 * with the client, wake up the client, then return the new 1573 * connected fd. We collect the address of the connector in kernel 1574 * space and move it to user at the very end. This is unclean because 1575 * we open the socket then return an error. 1576 * 1577 * 1003.1g adds the ability to recvmsg() to query connection pending 1578 * status to recvmsg. We need to add that support in a way thats 1579 * clean when we restucture accept also. 1580 */ 1581 1582 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1583 int __user *, upeer_addrlen, int, flags) 1584 { 1585 struct socket *sock, *newsock; 1586 struct file *newfile; 1587 int err, len, newfd, fput_needed; 1588 struct sockaddr_storage address; 1589 1590 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1591 return -EINVAL; 1592 1593 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1594 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1595 1596 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1597 if (!sock) 1598 goto out; 1599 1600 err = -ENFILE; 1601 newsock = sock_alloc(); 1602 if (!newsock) 1603 goto out_put; 1604 1605 newsock->type = sock->type; 1606 newsock->ops = sock->ops; 1607 1608 /* 1609 * We don't need try_module_get here, as the listening socket (sock) 1610 * has the protocol module (sock->ops->owner) held. 1611 */ 1612 __module_get(newsock->ops->owner); 1613 1614 newfd = get_unused_fd_flags(flags); 1615 if (unlikely(newfd < 0)) { 1616 err = newfd; 1617 sock_release(newsock); 1618 goto out_put; 1619 } 1620 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1621 if (unlikely(IS_ERR(newfile))) { 1622 err = PTR_ERR(newfile); 1623 put_unused_fd(newfd); 1624 sock_release(newsock); 1625 goto out_put; 1626 } 1627 1628 err = security_socket_accept(sock, newsock); 1629 if (err) 1630 goto out_fd; 1631 1632 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1633 if (err < 0) 1634 goto out_fd; 1635 1636 if (upeer_sockaddr) { 1637 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1638 &len, 2) < 0) { 1639 err = -ECONNABORTED; 1640 goto out_fd; 1641 } 1642 err = move_addr_to_user(&address, 1643 len, upeer_sockaddr, upeer_addrlen); 1644 if (err < 0) 1645 goto out_fd; 1646 } 1647 1648 /* File flags are not inherited via accept() unlike another OSes. */ 1649 1650 fd_install(newfd, newfile); 1651 err = newfd; 1652 1653 out_put: 1654 fput_light(sock->file, fput_needed); 1655 out: 1656 return err; 1657 out_fd: 1658 fput(newfile); 1659 put_unused_fd(newfd); 1660 goto out_put; 1661 } 1662 1663 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1664 int __user *, upeer_addrlen) 1665 { 1666 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1667 } 1668 1669 /* 1670 * Attempt to connect to a socket with the server address. The address 1671 * is in user space so we verify it is OK and move it to kernel space. 1672 * 1673 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1674 * break bindings 1675 * 1676 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1677 * other SEQPACKET protocols that take time to connect() as it doesn't 1678 * include the -EINPROGRESS status for such sockets. 1679 */ 1680 1681 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1682 int, addrlen) 1683 { 1684 struct socket *sock; 1685 struct sockaddr_storage address; 1686 int err, fput_needed; 1687 1688 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1689 if (!sock) 1690 goto out; 1691 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1692 if (err < 0) 1693 goto out_put; 1694 1695 err = 1696 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1697 if (err) 1698 goto out_put; 1699 1700 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1701 sock->file->f_flags); 1702 out_put: 1703 fput_light(sock->file, fput_needed); 1704 out: 1705 return err; 1706 } 1707 1708 /* 1709 * Get the local address ('name') of a socket object. Move the obtained 1710 * name to user space. 1711 */ 1712 1713 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1714 int __user *, usockaddr_len) 1715 { 1716 struct socket *sock; 1717 struct sockaddr_storage address; 1718 int len, err, fput_needed; 1719 1720 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1721 if (!sock) 1722 goto out; 1723 1724 err = security_socket_getsockname(sock); 1725 if (err) 1726 goto out_put; 1727 1728 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1729 if (err) 1730 goto out_put; 1731 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1732 1733 out_put: 1734 fput_light(sock->file, fput_needed); 1735 out: 1736 return err; 1737 } 1738 1739 /* 1740 * Get the remote address ('name') of a socket object. Move the obtained 1741 * name to user space. 1742 */ 1743 1744 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1745 int __user *, usockaddr_len) 1746 { 1747 struct socket *sock; 1748 struct sockaddr_storage address; 1749 int len, err, fput_needed; 1750 1751 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1752 if (sock != NULL) { 1753 err = security_socket_getpeername(sock); 1754 if (err) { 1755 fput_light(sock->file, fput_needed); 1756 return err; 1757 } 1758 1759 err = 1760 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1761 1); 1762 if (!err) 1763 err = move_addr_to_user(&address, len, usockaddr, 1764 usockaddr_len); 1765 fput_light(sock->file, fput_needed); 1766 } 1767 return err; 1768 } 1769 1770 /* 1771 * Send a datagram to a given address. We move the address into kernel 1772 * space and check the user space data area is readable before invoking 1773 * the protocol. 1774 */ 1775 1776 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1777 unsigned int, flags, struct sockaddr __user *, addr, 1778 int, addr_len) 1779 { 1780 struct socket *sock; 1781 struct sockaddr_storage address; 1782 int err; 1783 struct msghdr msg; 1784 struct iovec iov; 1785 int fput_needed; 1786 1787 if (len > INT_MAX) 1788 len = INT_MAX; 1789 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1790 if (!sock) 1791 goto out; 1792 1793 iov.iov_base = buff; 1794 iov.iov_len = len; 1795 msg.msg_name = NULL; 1796 msg.msg_iov = &iov; 1797 msg.msg_iovlen = 1; 1798 msg.msg_control = NULL; 1799 msg.msg_controllen = 0; 1800 msg.msg_namelen = 0; 1801 if (addr) { 1802 err = move_addr_to_kernel(addr, addr_len, &address); 1803 if (err < 0) 1804 goto out_put; 1805 msg.msg_name = (struct sockaddr *)&address; 1806 msg.msg_namelen = addr_len; 1807 } 1808 if (sock->file->f_flags & O_NONBLOCK) 1809 flags |= MSG_DONTWAIT; 1810 msg.msg_flags = flags; 1811 err = sock_sendmsg(sock, &msg, len); 1812 1813 out_put: 1814 fput_light(sock->file, fput_needed); 1815 out: 1816 return err; 1817 } 1818 1819 /* 1820 * Send a datagram down a socket. 1821 */ 1822 1823 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1824 unsigned int, flags) 1825 { 1826 return sys_sendto(fd, buff, len, flags, NULL, 0); 1827 } 1828 1829 /* 1830 * Receive a frame from the socket and optionally record the address of the 1831 * sender. We verify the buffers are writable and if needed move the 1832 * sender address from kernel to user space. 1833 */ 1834 1835 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1836 unsigned int, flags, struct sockaddr __user *, addr, 1837 int __user *, addr_len) 1838 { 1839 struct socket *sock; 1840 struct iovec iov; 1841 struct msghdr msg; 1842 struct sockaddr_storage address; 1843 int err, err2; 1844 int fput_needed; 1845 1846 if (size > INT_MAX) 1847 size = INT_MAX; 1848 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1849 if (!sock) 1850 goto out; 1851 1852 msg.msg_control = NULL; 1853 msg.msg_controllen = 0; 1854 msg.msg_iovlen = 1; 1855 msg.msg_iov = &iov; 1856 iov.iov_len = size; 1857 iov.iov_base = ubuf; 1858 msg.msg_name = (struct sockaddr *)&address; 1859 msg.msg_namelen = sizeof(address); 1860 if (sock->file->f_flags & O_NONBLOCK) 1861 flags |= MSG_DONTWAIT; 1862 err = sock_recvmsg(sock, &msg, size, flags); 1863 1864 if (err >= 0 && addr != NULL) { 1865 err2 = move_addr_to_user(&address, 1866 msg.msg_namelen, addr, addr_len); 1867 if (err2 < 0) 1868 err = err2; 1869 } 1870 1871 fput_light(sock->file, fput_needed); 1872 out: 1873 return err; 1874 } 1875 1876 /* 1877 * Receive a datagram from a socket. 1878 */ 1879 1880 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1881 unsigned int flags) 1882 { 1883 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1884 } 1885 1886 /* 1887 * Set a socket option. Because we don't know the option lengths we have 1888 * to pass the user mode parameter for the protocols to sort out. 1889 */ 1890 1891 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1892 char __user *, optval, int, optlen) 1893 { 1894 int err, fput_needed; 1895 struct socket *sock; 1896 1897 if (optlen < 0) 1898 return -EINVAL; 1899 1900 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1901 if (sock != NULL) { 1902 err = security_socket_setsockopt(sock, level, optname); 1903 if (err) 1904 goto out_put; 1905 1906 if (level == SOL_SOCKET) 1907 err = 1908 sock_setsockopt(sock, level, optname, optval, 1909 optlen); 1910 else 1911 err = 1912 sock->ops->setsockopt(sock, level, optname, optval, 1913 optlen); 1914 out_put: 1915 fput_light(sock->file, fput_needed); 1916 } 1917 return err; 1918 } 1919 1920 /* 1921 * Get a socket option. Because we don't know the option lengths we have 1922 * to pass a user mode parameter for the protocols to sort out. 1923 */ 1924 1925 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1926 char __user *, optval, int __user *, optlen) 1927 { 1928 int err, fput_needed; 1929 struct socket *sock; 1930 1931 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1932 if (sock != NULL) { 1933 err = security_socket_getsockopt(sock, level, optname); 1934 if (err) 1935 goto out_put; 1936 1937 if (level == SOL_SOCKET) 1938 err = 1939 sock_getsockopt(sock, level, optname, optval, 1940 optlen); 1941 else 1942 err = 1943 sock->ops->getsockopt(sock, level, optname, optval, 1944 optlen); 1945 out_put: 1946 fput_light(sock->file, fput_needed); 1947 } 1948 return err; 1949 } 1950 1951 /* 1952 * Shutdown a socket. 1953 */ 1954 1955 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1956 { 1957 int err, fput_needed; 1958 struct socket *sock; 1959 1960 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1961 if (sock != NULL) { 1962 err = security_socket_shutdown(sock, how); 1963 if (!err) 1964 err = sock->ops->shutdown(sock, how); 1965 fput_light(sock->file, fput_needed); 1966 } 1967 return err; 1968 } 1969 1970 /* A couple of helpful macros for getting the address of the 32/64 bit 1971 * fields which are the same type (int / unsigned) on our platforms. 1972 */ 1973 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1974 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1975 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1976 1977 struct used_address { 1978 struct sockaddr_storage name; 1979 unsigned int name_len; 1980 }; 1981 1982 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 1983 struct msghdr *msg_sys, unsigned int flags, 1984 struct used_address *used_address) 1985 { 1986 struct compat_msghdr __user *msg_compat = 1987 (struct compat_msghdr __user *)msg; 1988 struct sockaddr_storage address; 1989 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1990 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1991 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1992 /* 20 is size of ipv6_pktinfo */ 1993 unsigned char *ctl_buf = ctl; 1994 int err, ctl_len, total_len; 1995 1996 err = -EFAULT; 1997 if (MSG_CMSG_COMPAT & flags) { 1998 if (get_compat_msghdr(msg_sys, msg_compat)) 1999 return -EFAULT; 2000 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 2001 return -EFAULT; 2002 2003 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2004 err = -EMSGSIZE; 2005 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2006 goto out; 2007 err = -ENOMEM; 2008 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2009 GFP_KERNEL); 2010 if (!iov) 2011 goto out; 2012 } 2013 2014 /* This will also move the address data into kernel space */ 2015 if (MSG_CMSG_COMPAT & flags) { 2016 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 2017 } else 2018 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 2019 if (err < 0) 2020 goto out_freeiov; 2021 total_len = err; 2022 2023 err = -ENOBUFS; 2024 2025 if (msg_sys->msg_controllen > INT_MAX) 2026 goto out_freeiov; 2027 ctl_len = msg_sys->msg_controllen; 2028 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2029 err = 2030 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2031 sizeof(ctl)); 2032 if (err) 2033 goto out_freeiov; 2034 ctl_buf = msg_sys->msg_control; 2035 ctl_len = msg_sys->msg_controllen; 2036 } else if (ctl_len) { 2037 if (ctl_len > sizeof(ctl)) { 2038 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2039 if (ctl_buf == NULL) 2040 goto out_freeiov; 2041 } 2042 err = -EFAULT; 2043 /* 2044 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2045 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2046 * checking falls down on this. 2047 */ 2048 if (copy_from_user(ctl_buf, 2049 (void __user __force *)msg_sys->msg_control, 2050 ctl_len)) 2051 goto out_freectl; 2052 msg_sys->msg_control = ctl_buf; 2053 } 2054 msg_sys->msg_flags = flags; 2055 2056 if (sock->file->f_flags & O_NONBLOCK) 2057 msg_sys->msg_flags |= MSG_DONTWAIT; 2058 /* 2059 * If this is sendmmsg() and current destination address is same as 2060 * previously succeeded address, omit asking LSM's decision. 2061 * used_address->name_len is initialized to UINT_MAX so that the first 2062 * destination address never matches. 2063 */ 2064 if (used_address && msg_sys->msg_name && 2065 used_address->name_len == msg_sys->msg_namelen && 2066 !memcmp(&used_address->name, msg_sys->msg_name, 2067 used_address->name_len)) { 2068 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2069 goto out_freectl; 2070 } 2071 err = sock_sendmsg(sock, msg_sys, total_len); 2072 /* 2073 * If this is sendmmsg() and sending to current destination address was 2074 * successful, remember it. 2075 */ 2076 if (used_address && err >= 0) { 2077 used_address->name_len = msg_sys->msg_namelen; 2078 if (msg_sys->msg_name) 2079 memcpy(&used_address->name, msg_sys->msg_name, 2080 used_address->name_len); 2081 } 2082 2083 out_freectl: 2084 if (ctl_buf != ctl) 2085 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2086 out_freeiov: 2087 if (iov != iovstack) 2088 kfree(iov); 2089 out: 2090 return err; 2091 } 2092 2093 /* 2094 * BSD sendmsg interface 2095 */ 2096 2097 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2098 { 2099 int fput_needed, err; 2100 struct msghdr msg_sys; 2101 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2102 2103 if (!sock) 2104 goto out; 2105 2106 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2107 2108 fput_light(sock->file, fput_needed); 2109 out: 2110 return err; 2111 } 2112 2113 /* 2114 * Linux sendmmsg interface 2115 */ 2116 2117 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2118 unsigned int flags) 2119 { 2120 int fput_needed, err, datagrams; 2121 struct socket *sock; 2122 struct mmsghdr __user *entry; 2123 struct compat_mmsghdr __user *compat_entry; 2124 struct msghdr msg_sys; 2125 struct used_address used_address; 2126 2127 if (vlen > UIO_MAXIOV) 2128 vlen = UIO_MAXIOV; 2129 2130 datagrams = 0; 2131 2132 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2133 if (!sock) 2134 return err; 2135 2136 used_address.name_len = UINT_MAX; 2137 entry = mmsg; 2138 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2139 err = 0; 2140 2141 while (datagrams < vlen) { 2142 if (MSG_CMSG_COMPAT & flags) { 2143 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2144 &msg_sys, flags, &used_address); 2145 if (err < 0) 2146 break; 2147 err = __put_user(err, &compat_entry->msg_len); 2148 ++compat_entry; 2149 } else { 2150 err = __sys_sendmsg(sock, (struct msghdr __user *)entry, 2151 &msg_sys, flags, &used_address); 2152 if (err < 0) 2153 break; 2154 err = put_user(err, &entry->msg_len); 2155 ++entry; 2156 } 2157 2158 if (err) 2159 break; 2160 ++datagrams; 2161 } 2162 2163 fput_light(sock->file, fput_needed); 2164 2165 /* We only return an error if no datagrams were able to be sent */ 2166 if (datagrams != 0) 2167 return datagrams; 2168 2169 return err; 2170 } 2171 2172 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2173 unsigned int, vlen, unsigned int, flags) 2174 { 2175 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2176 } 2177 2178 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2179 struct msghdr *msg_sys, unsigned int flags, int nosec) 2180 { 2181 struct compat_msghdr __user *msg_compat = 2182 (struct compat_msghdr __user *)msg; 2183 struct iovec iovstack[UIO_FASTIOV]; 2184 struct iovec *iov = iovstack; 2185 unsigned long cmsg_ptr; 2186 int err, total_len, len; 2187 2188 /* kernel mode address */ 2189 struct sockaddr_storage addr; 2190 2191 /* user mode address pointers */ 2192 struct sockaddr __user *uaddr; 2193 int __user *uaddr_len; 2194 2195 if (MSG_CMSG_COMPAT & flags) { 2196 if (get_compat_msghdr(msg_sys, msg_compat)) 2197 return -EFAULT; 2198 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 2199 return -EFAULT; 2200 2201 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2202 err = -EMSGSIZE; 2203 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2204 goto out; 2205 err = -ENOMEM; 2206 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2207 GFP_KERNEL); 2208 if (!iov) 2209 goto out; 2210 } 2211 2212 /* 2213 * Save the user-mode address (verify_iovec will change the 2214 * kernel msghdr to use the kernel address space) 2215 */ 2216 2217 uaddr = (__force void __user *)msg_sys->msg_name; 2218 uaddr_len = COMPAT_NAMELEN(msg); 2219 if (MSG_CMSG_COMPAT & flags) { 2220 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2221 } else 2222 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2223 if (err < 0) 2224 goto out_freeiov; 2225 total_len = err; 2226 2227 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2228 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2229 2230 if (sock->file->f_flags & O_NONBLOCK) 2231 flags |= MSG_DONTWAIT; 2232 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2233 total_len, flags); 2234 if (err < 0) 2235 goto out_freeiov; 2236 len = err; 2237 2238 if (uaddr != NULL) { 2239 err = move_addr_to_user(&addr, 2240 msg_sys->msg_namelen, uaddr, 2241 uaddr_len); 2242 if (err < 0) 2243 goto out_freeiov; 2244 } 2245 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2246 COMPAT_FLAGS(msg)); 2247 if (err) 2248 goto out_freeiov; 2249 if (MSG_CMSG_COMPAT & flags) 2250 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2251 &msg_compat->msg_controllen); 2252 else 2253 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2254 &msg->msg_controllen); 2255 if (err) 2256 goto out_freeiov; 2257 err = len; 2258 2259 out_freeiov: 2260 if (iov != iovstack) 2261 kfree(iov); 2262 out: 2263 return err; 2264 } 2265 2266 /* 2267 * BSD recvmsg interface 2268 */ 2269 2270 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2271 unsigned int, flags) 2272 { 2273 int fput_needed, err; 2274 struct msghdr msg_sys; 2275 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2276 2277 if (!sock) 2278 goto out; 2279 2280 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2281 2282 fput_light(sock->file, fput_needed); 2283 out: 2284 return err; 2285 } 2286 2287 /* 2288 * Linux recvmmsg interface 2289 */ 2290 2291 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2292 unsigned int flags, struct timespec *timeout) 2293 { 2294 int fput_needed, err, datagrams; 2295 struct socket *sock; 2296 struct mmsghdr __user *entry; 2297 struct compat_mmsghdr __user *compat_entry; 2298 struct msghdr msg_sys; 2299 struct timespec end_time; 2300 2301 if (timeout && 2302 poll_select_set_timeout(&end_time, timeout->tv_sec, 2303 timeout->tv_nsec)) 2304 return -EINVAL; 2305 2306 datagrams = 0; 2307 2308 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2309 if (!sock) 2310 return err; 2311 2312 err = sock_error(sock->sk); 2313 if (err) 2314 goto out_put; 2315 2316 entry = mmsg; 2317 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2318 2319 while (datagrams < vlen) { 2320 /* 2321 * No need to ask LSM for more than the first datagram. 2322 */ 2323 if (MSG_CMSG_COMPAT & flags) { 2324 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2325 &msg_sys, flags & ~MSG_WAITFORONE, 2326 datagrams); 2327 if (err < 0) 2328 break; 2329 err = __put_user(err, &compat_entry->msg_len); 2330 ++compat_entry; 2331 } else { 2332 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2333 &msg_sys, flags & ~MSG_WAITFORONE, 2334 datagrams); 2335 if (err < 0) 2336 break; 2337 err = put_user(err, &entry->msg_len); 2338 ++entry; 2339 } 2340 2341 if (err) 2342 break; 2343 ++datagrams; 2344 2345 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2346 if (flags & MSG_WAITFORONE) 2347 flags |= MSG_DONTWAIT; 2348 2349 if (timeout) { 2350 ktime_get_ts(timeout); 2351 *timeout = timespec_sub(end_time, *timeout); 2352 if (timeout->tv_sec < 0) { 2353 timeout->tv_sec = timeout->tv_nsec = 0; 2354 break; 2355 } 2356 2357 /* Timeout, return less than vlen datagrams */ 2358 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2359 break; 2360 } 2361 2362 /* Out of band data, return right away */ 2363 if (msg_sys.msg_flags & MSG_OOB) 2364 break; 2365 } 2366 2367 out_put: 2368 fput_light(sock->file, fput_needed); 2369 2370 if (err == 0) 2371 return datagrams; 2372 2373 if (datagrams != 0) { 2374 /* 2375 * We may return less entries than requested (vlen) if the 2376 * sock is non block and there aren't enough datagrams... 2377 */ 2378 if (err != -EAGAIN) { 2379 /* 2380 * ... or if recvmsg returns an error after we 2381 * received some datagrams, where we record the 2382 * error to return on the next call or if the 2383 * app asks about it using getsockopt(SO_ERROR). 2384 */ 2385 sock->sk->sk_err = -err; 2386 } 2387 2388 return datagrams; 2389 } 2390 2391 return err; 2392 } 2393 2394 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2395 unsigned int, vlen, unsigned int, flags, 2396 struct timespec __user *, timeout) 2397 { 2398 int datagrams; 2399 struct timespec timeout_sys; 2400 2401 if (!timeout) 2402 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2403 2404 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2405 return -EFAULT; 2406 2407 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2408 2409 if (datagrams > 0 && 2410 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2411 datagrams = -EFAULT; 2412 2413 return datagrams; 2414 } 2415 2416 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2417 /* Argument list sizes for sys_socketcall */ 2418 #define AL(x) ((x) * sizeof(unsigned long)) 2419 static const unsigned char nargs[21] = { 2420 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2421 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2422 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2423 AL(4), AL(5), AL(4) 2424 }; 2425 2426 #undef AL 2427 2428 /* 2429 * System call vectors. 2430 * 2431 * Argument checking cleaned up. Saved 20% in size. 2432 * This function doesn't need to set the kernel lock because 2433 * it is set by the callees. 2434 */ 2435 2436 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2437 { 2438 unsigned long a[6]; 2439 unsigned long a0, a1; 2440 int err; 2441 unsigned int len; 2442 2443 if (call < 1 || call > SYS_SENDMMSG) 2444 return -EINVAL; 2445 2446 len = nargs[call]; 2447 if (len > sizeof(a)) 2448 return -EINVAL; 2449 2450 /* copy_from_user should be SMP safe. */ 2451 if (copy_from_user(a, args, len)) 2452 return -EFAULT; 2453 2454 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2455 2456 a0 = a[0]; 2457 a1 = a[1]; 2458 2459 switch (call) { 2460 case SYS_SOCKET: 2461 err = sys_socket(a0, a1, a[2]); 2462 break; 2463 case SYS_BIND: 2464 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2465 break; 2466 case SYS_CONNECT: 2467 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2468 break; 2469 case SYS_LISTEN: 2470 err = sys_listen(a0, a1); 2471 break; 2472 case SYS_ACCEPT: 2473 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2474 (int __user *)a[2], 0); 2475 break; 2476 case SYS_GETSOCKNAME: 2477 err = 2478 sys_getsockname(a0, (struct sockaddr __user *)a1, 2479 (int __user *)a[2]); 2480 break; 2481 case SYS_GETPEERNAME: 2482 err = 2483 sys_getpeername(a0, (struct sockaddr __user *)a1, 2484 (int __user *)a[2]); 2485 break; 2486 case SYS_SOCKETPAIR: 2487 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2488 break; 2489 case SYS_SEND: 2490 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2491 break; 2492 case SYS_SENDTO: 2493 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2494 (struct sockaddr __user *)a[4], a[5]); 2495 break; 2496 case SYS_RECV: 2497 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2498 break; 2499 case SYS_RECVFROM: 2500 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2501 (struct sockaddr __user *)a[4], 2502 (int __user *)a[5]); 2503 break; 2504 case SYS_SHUTDOWN: 2505 err = sys_shutdown(a0, a1); 2506 break; 2507 case SYS_SETSOCKOPT: 2508 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2509 break; 2510 case SYS_GETSOCKOPT: 2511 err = 2512 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2513 (int __user *)a[4]); 2514 break; 2515 case SYS_SENDMSG: 2516 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2517 break; 2518 case SYS_SENDMMSG: 2519 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2520 break; 2521 case SYS_RECVMSG: 2522 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2523 break; 2524 case SYS_RECVMMSG: 2525 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2526 (struct timespec __user *)a[4]); 2527 break; 2528 case SYS_ACCEPT4: 2529 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2530 (int __user *)a[2], a[3]); 2531 break; 2532 default: 2533 err = -EINVAL; 2534 break; 2535 } 2536 return err; 2537 } 2538 2539 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2540 2541 /** 2542 * sock_register - add a socket protocol handler 2543 * @ops: description of protocol 2544 * 2545 * This function is called by a protocol handler that wants to 2546 * advertise its address family, and have it linked into the 2547 * socket interface. The value ops->family coresponds to the 2548 * socket system call protocol family. 2549 */ 2550 int sock_register(const struct net_proto_family *ops) 2551 { 2552 int err; 2553 2554 if (ops->family >= NPROTO) { 2555 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2556 NPROTO); 2557 return -ENOBUFS; 2558 } 2559 2560 spin_lock(&net_family_lock); 2561 if (rcu_dereference_protected(net_families[ops->family], 2562 lockdep_is_held(&net_family_lock))) 2563 err = -EEXIST; 2564 else { 2565 rcu_assign_pointer(net_families[ops->family], ops); 2566 err = 0; 2567 } 2568 spin_unlock(&net_family_lock); 2569 2570 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2571 return err; 2572 } 2573 EXPORT_SYMBOL(sock_register); 2574 2575 /** 2576 * sock_unregister - remove a protocol handler 2577 * @family: protocol family to remove 2578 * 2579 * This function is called by a protocol handler that wants to 2580 * remove its address family, and have it unlinked from the 2581 * new socket creation. 2582 * 2583 * If protocol handler is a module, then it can use module reference 2584 * counts to protect against new references. If protocol handler is not 2585 * a module then it needs to provide its own protection in 2586 * the ops->create routine. 2587 */ 2588 void sock_unregister(int family) 2589 { 2590 BUG_ON(family < 0 || family >= NPROTO); 2591 2592 spin_lock(&net_family_lock); 2593 RCU_INIT_POINTER(net_families[family], NULL); 2594 spin_unlock(&net_family_lock); 2595 2596 synchronize_rcu(); 2597 2598 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2599 } 2600 EXPORT_SYMBOL(sock_unregister); 2601 2602 static int __init sock_init(void) 2603 { 2604 int err; 2605 /* 2606 * Initialize the network sysctl infrastructure. 2607 */ 2608 err = net_sysctl_init(); 2609 if (err) 2610 goto out; 2611 2612 /* 2613 * Initialize skbuff SLAB cache 2614 */ 2615 skb_init(); 2616 2617 /* 2618 * Initialize the protocols module. 2619 */ 2620 2621 init_inodecache(); 2622 2623 err = register_filesystem(&sock_fs_type); 2624 if (err) 2625 goto out_fs; 2626 sock_mnt = kern_mount(&sock_fs_type); 2627 if (IS_ERR(sock_mnt)) { 2628 err = PTR_ERR(sock_mnt); 2629 goto out_mount; 2630 } 2631 2632 /* The real protocol initialization is performed in later initcalls. 2633 */ 2634 2635 #ifdef CONFIG_NETFILTER 2636 netfilter_init(); 2637 #endif 2638 2639 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2640 skb_timestamping_init(); 2641 #endif 2642 2643 out: 2644 return err; 2645 2646 out_mount: 2647 unregister_filesystem(&sock_fs_type); 2648 out_fs: 2649 goto out; 2650 } 2651 2652 core_initcall(sock_init); /* early initcall */ 2653 2654 #ifdef CONFIG_PROC_FS 2655 void socket_seq_show(struct seq_file *seq) 2656 { 2657 int cpu; 2658 int counter = 0; 2659 2660 for_each_possible_cpu(cpu) 2661 counter += per_cpu(sockets_in_use, cpu); 2662 2663 /* It can be negative, by the way. 8) */ 2664 if (counter < 0) 2665 counter = 0; 2666 2667 seq_printf(seq, "sockets: used %d\n", counter); 2668 } 2669 #endif /* CONFIG_PROC_FS */ 2670 2671 #ifdef CONFIG_COMPAT 2672 static int do_siocgstamp(struct net *net, struct socket *sock, 2673 unsigned int cmd, void __user *up) 2674 { 2675 mm_segment_t old_fs = get_fs(); 2676 struct timeval ktv; 2677 int err; 2678 2679 set_fs(KERNEL_DS); 2680 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2681 set_fs(old_fs); 2682 if (!err) 2683 err = compat_put_timeval(&ktv, up); 2684 2685 return err; 2686 } 2687 2688 static int do_siocgstampns(struct net *net, struct socket *sock, 2689 unsigned int cmd, void __user *up) 2690 { 2691 mm_segment_t old_fs = get_fs(); 2692 struct timespec kts; 2693 int err; 2694 2695 set_fs(KERNEL_DS); 2696 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2697 set_fs(old_fs); 2698 if (!err) 2699 err = compat_put_timespec(&kts, up); 2700 2701 return err; 2702 } 2703 2704 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2705 { 2706 struct ifreq __user *uifr; 2707 int err; 2708 2709 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2710 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2711 return -EFAULT; 2712 2713 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2714 if (err) 2715 return err; 2716 2717 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2718 return -EFAULT; 2719 2720 return 0; 2721 } 2722 2723 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2724 { 2725 struct compat_ifconf ifc32; 2726 struct ifconf ifc; 2727 struct ifconf __user *uifc; 2728 struct compat_ifreq __user *ifr32; 2729 struct ifreq __user *ifr; 2730 unsigned int i, j; 2731 int err; 2732 2733 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2734 return -EFAULT; 2735 2736 memset(&ifc, 0, sizeof(ifc)); 2737 if (ifc32.ifcbuf == 0) { 2738 ifc32.ifc_len = 0; 2739 ifc.ifc_len = 0; 2740 ifc.ifc_req = NULL; 2741 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2742 } else { 2743 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2744 sizeof(struct ifreq); 2745 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2746 ifc.ifc_len = len; 2747 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2748 ifr32 = compat_ptr(ifc32.ifcbuf); 2749 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2750 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2751 return -EFAULT; 2752 ifr++; 2753 ifr32++; 2754 } 2755 } 2756 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2757 return -EFAULT; 2758 2759 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2760 if (err) 2761 return err; 2762 2763 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2764 return -EFAULT; 2765 2766 ifr = ifc.ifc_req; 2767 ifr32 = compat_ptr(ifc32.ifcbuf); 2768 for (i = 0, j = 0; 2769 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2770 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2771 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2772 return -EFAULT; 2773 ifr32++; 2774 ifr++; 2775 } 2776 2777 if (ifc32.ifcbuf == 0) { 2778 /* Translate from 64-bit structure multiple to 2779 * a 32-bit one. 2780 */ 2781 i = ifc.ifc_len; 2782 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2783 ifc32.ifc_len = i; 2784 } else { 2785 ifc32.ifc_len = i; 2786 } 2787 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2788 return -EFAULT; 2789 2790 return 0; 2791 } 2792 2793 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2794 { 2795 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2796 bool convert_in = false, convert_out = false; 2797 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2798 struct ethtool_rxnfc __user *rxnfc; 2799 struct ifreq __user *ifr; 2800 u32 rule_cnt = 0, actual_rule_cnt; 2801 u32 ethcmd; 2802 u32 data; 2803 int ret; 2804 2805 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2806 return -EFAULT; 2807 2808 compat_rxnfc = compat_ptr(data); 2809 2810 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2811 return -EFAULT; 2812 2813 /* Most ethtool structures are defined without padding. 2814 * Unfortunately struct ethtool_rxnfc is an exception. 2815 */ 2816 switch (ethcmd) { 2817 default: 2818 break; 2819 case ETHTOOL_GRXCLSRLALL: 2820 /* Buffer size is variable */ 2821 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2822 return -EFAULT; 2823 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2824 return -ENOMEM; 2825 buf_size += rule_cnt * sizeof(u32); 2826 /* fall through */ 2827 case ETHTOOL_GRXRINGS: 2828 case ETHTOOL_GRXCLSRLCNT: 2829 case ETHTOOL_GRXCLSRULE: 2830 case ETHTOOL_SRXCLSRLINS: 2831 convert_out = true; 2832 /* fall through */ 2833 case ETHTOOL_SRXCLSRLDEL: 2834 buf_size += sizeof(struct ethtool_rxnfc); 2835 convert_in = true; 2836 break; 2837 } 2838 2839 ifr = compat_alloc_user_space(buf_size); 2840 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2841 2842 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2843 return -EFAULT; 2844 2845 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2846 &ifr->ifr_ifru.ifru_data)) 2847 return -EFAULT; 2848 2849 if (convert_in) { 2850 /* We expect there to be holes between fs.m_ext and 2851 * fs.ring_cookie and at the end of fs, but nowhere else. 2852 */ 2853 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2854 sizeof(compat_rxnfc->fs.m_ext) != 2855 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2856 sizeof(rxnfc->fs.m_ext)); 2857 BUILD_BUG_ON( 2858 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2859 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2860 offsetof(struct ethtool_rxnfc, fs.location) - 2861 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2862 2863 if (copy_in_user(rxnfc, compat_rxnfc, 2864 (void __user *)(&rxnfc->fs.m_ext + 1) - 2865 (void __user *)rxnfc) || 2866 copy_in_user(&rxnfc->fs.ring_cookie, 2867 &compat_rxnfc->fs.ring_cookie, 2868 (void __user *)(&rxnfc->fs.location + 1) - 2869 (void __user *)&rxnfc->fs.ring_cookie) || 2870 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2871 sizeof(rxnfc->rule_cnt))) 2872 return -EFAULT; 2873 } 2874 2875 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2876 if (ret) 2877 return ret; 2878 2879 if (convert_out) { 2880 if (copy_in_user(compat_rxnfc, rxnfc, 2881 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2882 (const void __user *)rxnfc) || 2883 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2884 &rxnfc->fs.ring_cookie, 2885 (const void __user *)(&rxnfc->fs.location + 1) - 2886 (const void __user *)&rxnfc->fs.ring_cookie) || 2887 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2888 sizeof(rxnfc->rule_cnt))) 2889 return -EFAULT; 2890 2891 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2892 /* As an optimisation, we only copy the actual 2893 * number of rules that the underlying 2894 * function returned. Since Mallory might 2895 * change the rule count in user memory, we 2896 * check that it is less than the rule count 2897 * originally given (as the user buffer size), 2898 * which has been range-checked. 2899 */ 2900 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2901 return -EFAULT; 2902 if (actual_rule_cnt < rule_cnt) 2903 rule_cnt = actual_rule_cnt; 2904 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2905 &rxnfc->rule_locs[0], 2906 rule_cnt * sizeof(u32))) 2907 return -EFAULT; 2908 } 2909 } 2910 2911 return 0; 2912 } 2913 2914 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2915 { 2916 void __user *uptr; 2917 compat_uptr_t uptr32; 2918 struct ifreq __user *uifr; 2919 2920 uifr = compat_alloc_user_space(sizeof(*uifr)); 2921 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2922 return -EFAULT; 2923 2924 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2925 return -EFAULT; 2926 2927 uptr = compat_ptr(uptr32); 2928 2929 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2930 return -EFAULT; 2931 2932 return dev_ioctl(net, SIOCWANDEV, uifr); 2933 } 2934 2935 static int bond_ioctl(struct net *net, unsigned int cmd, 2936 struct compat_ifreq __user *ifr32) 2937 { 2938 struct ifreq kifr; 2939 struct ifreq __user *uifr; 2940 mm_segment_t old_fs; 2941 int err; 2942 u32 data; 2943 void __user *datap; 2944 2945 switch (cmd) { 2946 case SIOCBONDENSLAVE: 2947 case SIOCBONDRELEASE: 2948 case SIOCBONDSETHWADDR: 2949 case SIOCBONDCHANGEACTIVE: 2950 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2951 return -EFAULT; 2952 2953 old_fs = get_fs(); 2954 set_fs(KERNEL_DS); 2955 err = dev_ioctl(net, cmd, 2956 (struct ifreq __user __force *) &kifr); 2957 set_fs(old_fs); 2958 2959 return err; 2960 case SIOCBONDSLAVEINFOQUERY: 2961 case SIOCBONDINFOQUERY: 2962 uifr = compat_alloc_user_space(sizeof(*uifr)); 2963 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2964 return -EFAULT; 2965 2966 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2967 return -EFAULT; 2968 2969 datap = compat_ptr(data); 2970 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2971 return -EFAULT; 2972 2973 return dev_ioctl(net, cmd, uifr); 2974 default: 2975 return -ENOIOCTLCMD; 2976 } 2977 } 2978 2979 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2980 struct compat_ifreq __user *u_ifreq32) 2981 { 2982 struct ifreq __user *u_ifreq64; 2983 char tmp_buf[IFNAMSIZ]; 2984 void __user *data64; 2985 u32 data32; 2986 2987 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2988 IFNAMSIZ)) 2989 return -EFAULT; 2990 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2991 return -EFAULT; 2992 data64 = compat_ptr(data32); 2993 2994 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2995 2996 /* Don't check these user accesses, just let that get trapped 2997 * in the ioctl handler instead. 2998 */ 2999 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 3000 IFNAMSIZ)) 3001 return -EFAULT; 3002 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 3003 return -EFAULT; 3004 3005 return dev_ioctl(net, cmd, u_ifreq64); 3006 } 3007 3008 static int dev_ifsioc(struct net *net, struct socket *sock, 3009 unsigned int cmd, struct compat_ifreq __user *uifr32) 3010 { 3011 struct ifreq __user *uifr; 3012 int err; 3013 3014 uifr = compat_alloc_user_space(sizeof(*uifr)); 3015 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3016 return -EFAULT; 3017 3018 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3019 3020 if (!err) { 3021 switch (cmd) { 3022 case SIOCGIFFLAGS: 3023 case SIOCGIFMETRIC: 3024 case SIOCGIFMTU: 3025 case SIOCGIFMEM: 3026 case SIOCGIFHWADDR: 3027 case SIOCGIFINDEX: 3028 case SIOCGIFADDR: 3029 case SIOCGIFBRDADDR: 3030 case SIOCGIFDSTADDR: 3031 case SIOCGIFNETMASK: 3032 case SIOCGIFPFLAGS: 3033 case SIOCGIFTXQLEN: 3034 case SIOCGMIIPHY: 3035 case SIOCGMIIREG: 3036 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3037 err = -EFAULT; 3038 break; 3039 } 3040 } 3041 return err; 3042 } 3043 3044 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3045 struct compat_ifreq __user *uifr32) 3046 { 3047 struct ifreq ifr; 3048 struct compat_ifmap __user *uifmap32; 3049 mm_segment_t old_fs; 3050 int err; 3051 3052 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3053 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3054 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3055 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3056 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3057 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 3058 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 3059 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 3060 if (err) 3061 return -EFAULT; 3062 3063 old_fs = get_fs(); 3064 set_fs(KERNEL_DS); 3065 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3066 set_fs(old_fs); 3067 3068 if (cmd == SIOCGIFMAP && !err) { 3069 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3070 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3071 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3072 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3073 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 3074 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 3075 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 3076 if (err) 3077 err = -EFAULT; 3078 } 3079 return err; 3080 } 3081 3082 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 3083 { 3084 void __user *uptr; 3085 compat_uptr_t uptr32; 3086 struct ifreq __user *uifr; 3087 3088 uifr = compat_alloc_user_space(sizeof(*uifr)); 3089 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 3090 return -EFAULT; 3091 3092 if (get_user(uptr32, &uifr32->ifr_data)) 3093 return -EFAULT; 3094 3095 uptr = compat_ptr(uptr32); 3096 3097 if (put_user(uptr, &uifr->ifr_data)) 3098 return -EFAULT; 3099 3100 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 3101 } 3102 3103 struct rtentry32 { 3104 u32 rt_pad1; 3105 struct sockaddr rt_dst; /* target address */ 3106 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3107 struct sockaddr rt_genmask; /* target network mask (IP) */ 3108 unsigned short rt_flags; 3109 short rt_pad2; 3110 u32 rt_pad3; 3111 unsigned char rt_tos; 3112 unsigned char rt_class; 3113 short rt_pad4; 3114 short rt_metric; /* +1 for binary compatibility! */ 3115 /* char * */ u32 rt_dev; /* forcing the device at add */ 3116 u32 rt_mtu; /* per route MTU/Window */ 3117 u32 rt_window; /* Window clamping */ 3118 unsigned short rt_irtt; /* Initial RTT */ 3119 }; 3120 3121 struct in6_rtmsg32 { 3122 struct in6_addr rtmsg_dst; 3123 struct in6_addr rtmsg_src; 3124 struct in6_addr rtmsg_gateway; 3125 u32 rtmsg_type; 3126 u16 rtmsg_dst_len; 3127 u16 rtmsg_src_len; 3128 u32 rtmsg_metric; 3129 u32 rtmsg_info; 3130 u32 rtmsg_flags; 3131 s32 rtmsg_ifindex; 3132 }; 3133 3134 static int routing_ioctl(struct net *net, struct socket *sock, 3135 unsigned int cmd, void __user *argp) 3136 { 3137 int ret; 3138 void *r = NULL; 3139 struct in6_rtmsg r6; 3140 struct rtentry r4; 3141 char devname[16]; 3142 u32 rtdev; 3143 mm_segment_t old_fs = get_fs(); 3144 3145 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3146 struct in6_rtmsg32 __user *ur6 = argp; 3147 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3148 3 * sizeof(struct in6_addr)); 3149 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3150 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3151 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3152 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3153 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3154 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3155 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3156 3157 r = (void *) &r6; 3158 } else { /* ipv4 */ 3159 struct rtentry32 __user *ur4 = argp; 3160 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3161 3 * sizeof(struct sockaddr)); 3162 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 3163 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 3164 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3165 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 3166 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3167 ret |= __get_user(rtdev, &(ur4->rt_dev)); 3168 if (rtdev) { 3169 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3170 r4.rt_dev = (char __user __force *)devname; 3171 devname[15] = 0; 3172 } else 3173 r4.rt_dev = NULL; 3174 3175 r = (void *) &r4; 3176 } 3177 3178 if (ret) { 3179 ret = -EFAULT; 3180 goto out; 3181 } 3182 3183 set_fs(KERNEL_DS); 3184 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3185 set_fs(old_fs); 3186 3187 out: 3188 return ret; 3189 } 3190 3191 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3192 * for some operations; this forces use of the newer bridge-utils that 3193 * use compatible ioctls 3194 */ 3195 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3196 { 3197 compat_ulong_t tmp; 3198 3199 if (get_user(tmp, argp)) 3200 return -EFAULT; 3201 if (tmp == BRCTL_GET_VERSION) 3202 return BRCTL_VERSION + 1; 3203 return -EINVAL; 3204 } 3205 3206 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3207 unsigned int cmd, unsigned long arg) 3208 { 3209 void __user *argp = compat_ptr(arg); 3210 struct sock *sk = sock->sk; 3211 struct net *net = sock_net(sk); 3212 3213 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3214 return siocdevprivate_ioctl(net, cmd, argp); 3215 3216 switch (cmd) { 3217 case SIOCSIFBR: 3218 case SIOCGIFBR: 3219 return old_bridge_ioctl(argp); 3220 case SIOCGIFNAME: 3221 return dev_ifname32(net, argp); 3222 case SIOCGIFCONF: 3223 return dev_ifconf(net, argp); 3224 case SIOCETHTOOL: 3225 return ethtool_ioctl(net, argp); 3226 case SIOCWANDEV: 3227 return compat_siocwandev(net, argp); 3228 case SIOCGIFMAP: 3229 case SIOCSIFMAP: 3230 return compat_sioc_ifmap(net, cmd, argp); 3231 case SIOCBONDENSLAVE: 3232 case SIOCBONDRELEASE: 3233 case SIOCBONDSETHWADDR: 3234 case SIOCBONDSLAVEINFOQUERY: 3235 case SIOCBONDINFOQUERY: 3236 case SIOCBONDCHANGEACTIVE: 3237 return bond_ioctl(net, cmd, argp); 3238 case SIOCADDRT: 3239 case SIOCDELRT: 3240 return routing_ioctl(net, sock, cmd, argp); 3241 case SIOCGSTAMP: 3242 return do_siocgstamp(net, sock, cmd, argp); 3243 case SIOCGSTAMPNS: 3244 return do_siocgstampns(net, sock, cmd, argp); 3245 case SIOCSHWTSTAMP: 3246 return compat_siocshwtstamp(net, argp); 3247 3248 case FIOSETOWN: 3249 case SIOCSPGRP: 3250 case FIOGETOWN: 3251 case SIOCGPGRP: 3252 case SIOCBRADDBR: 3253 case SIOCBRDELBR: 3254 case SIOCGIFVLAN: 3255 case SIOCSIFVLAN: 3256 case SIOCADDDLCI: 3257 case SIOCDELDLCI: 3258 return sock_ioctl(file, cmd, arg); 3259 3260 case SIOCGIFFLAGS: 3261 case SIOCSIFFLAGS: 3262 case SIOCGIFMETRIC: 3263 case SIOCSIFMETRIC: 3264 case SIOCGIFMTU: 3265 case SIOCSIFMTU: 3266 case SIOCGIFMEM: 3267 case SIOCSIFMEM: 3268 case SIOCGIFHWADDR: 3269 case SIOCSIFHWADDR: 3270 case SIOCADDMULTI: 3271 case SIOCDELMULTI: 3272 case SIOCGIFINDEX: 3273 case SIOCGIFADDR: 3274 case SIOCSIFADDR: 3275 case SIOCSIFHWBROADCAST: 3276 case SIOCDIFADDR: 3277 case SIOCGIFBRDADDR: 3278 case SIOCSIFBRDADDR: 3279 case SIOCGIFDSTADDR: 3280 case SIOCSIFDSTADDR: 3281 case SIOCGIFNETMASK: 3282 case SIOCSIFNETMASK: 3283 case SIOCSIFPFLAGS: 3284 case SIOCGIFPFLAGS: 3285 case SIOCGIFTXQLEN: 3286 case SIOCSIFTXQLEN: 3287 case SIOCBRADDIF: 3288 case SIOCBRDELIF: 3289 case SIOCSIFNAME: 3290 case SIOCGMIIPHY: 3291 case SIOCGMIIREG: 3292 case SIOCSMIIREG: 3293 return dev_ifsioc(net, sock, cmd, argp); 3294 3295 case SIOCSARP: 3296 case SIOCGARP: 3297 case SIOCDARP: 3298 case SIOCATMARK: 3299 return sock_do_ioctl(net, sock, cmd, arg); 3300 } 3301 3302 return -ENOIOCTLCMD; 3303 } 3304 3305 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3306 unsigned long arg) 3307 { 3308 struct socket *sock = file->private_data; 3309 int ret = -ENOIOCTLCMD; 3310 struct sock *sk; 3311 struct net *net; 3312 3313 sk = sock->sk; 3314 net = sock_net(sk); 3315 3316 if (sock->ops->compat_ioctl) 3317 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3318 3319 if (ret == -ENOIOCTLCMD && 3320 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3321 ret = compat_wext_handle_ioctl(net, cmd, arg); 3322 3323 if (ret == -ENOIOCTLCMD) 3324 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3325 3326 return ret; 3327 } 3328 #endif 3329 3330 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3331 { 3332 return sock->ops->bind(sock, addr, addrlen); 3333 } 3334 EXPORT_SYMBOL(kernel_bind); 3335 3336 int kernel_listen(struct socket *sock, int backlog) 3337 { 3338 return sock->ops->listen(sock, backlog); 3339 } 3340 EXPORT_SYMBOL(kernel_listen); 3341 3342 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3343 { 3344 struct sock *sk = sock->sk; 3345 int err; 3346 3347 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3348 newsock); 3349 if (err < 0) 3350 goto done; 3351 3352 err = sock->ops->accept(sock, *newsock, flags); 3353 if (err < 0) { 3354 sock_release(*newsock); 3355 *newsock = NULL; 3356 goto done; 3357 } 3358 3359 (*newsock)->ops = sock->ops; 3360 __module_get((*newsock)->ops->owner); 3361 3362 done: 3363 return err; 3364 } 3365 EXPORT_SYMBOL(kernel_accept); 3366 3367 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3368 int flags) 3369 { 3370 return sock->ops->connect(sock, addr, addrlen, flags); 3371 } 3372 EXPORT_SYMBOL(kernel_connect); 3373 3374 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3375 int *addrlen) 3376 { 3377 return sock->ops->getname(sock, addr, addrlen, 0); 3378 } 3379 EXPORT_SYMBOL(kernel_getsockname); 3380 3381 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3382 int *addrlen) 3383 { 3384 return sock->ops->getname(sock, addr, addrlen, 1); 3385 } 3386 EXPORT_SYMBOL(kernel_getpeername); 3387 3388 int kernel_getsockopt(struct socket *sock, int level, int optname, 3389 char *optval, int *optlen) 3390 { 3391 mm_segment_t oldfs = get_fs(); 3392 char __user *uoptval; 3393 int __user *uoptlen; 3394 int err; 3395 3396 uoptval = (char __user __force *) optval; 3397 uoptlen = (int __user __force *) optlen; 3398 3399 set_fs(KERNEL_DS); 3400 if (level == SOL_SOCKET) 3401 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3402 else 3403 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3404 uoptlen); 3405 set_fs(oldfs); 3406 return err; 3407 } 3408 EXPORT_SYMBOL(kernel_getsockopt); 3409 3410 int kernel_setsockopt(struct socket *sock, int level, int optname, 3411 char *optval, unsigned int optlen) 3412 { 3413 mm_segment_t oldfs = get_fs(); 3414 char __user *uoptval; 3415 int err; 3416 3417 uoptval = (char __user __force *) optval; 3418 3419 set_fs(KERNEL_DS); 3420 if (level == SOL_SOCKET) 3421 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3422 else 3423 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3424 optlen); 3425 set_fs(oldfs); 3426 return err; 3427 } 3428 EXPORT_SYMBOL(kernel_setsockopt); 3429 3430 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3431 size_t size, int flags) 3432 { 3433 if (sock->ops->sendpage) 3434 return sock->ops->sendpage(sock, page, offset, size, flags); 3435 3436 return sock_no_sendpage(sock, page, offset, size, flags); 3437 } 3438 EXPORT_SYMBOL(kernel_sendpage); 3439 3440 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3441 { 3442 mm_segment_t oldfs = get_fs(); 3443 int err; 3444 3445 set_fs(KERNEL_DS); 3446 err = sock->ops->ioctl(sock, cmd, arg); 3447 set_fs(oldfs); 3448 3449 return err; 3450 } 3451 EXPORT_SYMBOL(kernel_sock_ioctl); 3452 3453 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3454 { 3455 return sock->ops->shutdown(sock, how); 3456 } 3457 EXPORT_SYMBOL(kernel_sock_shutdown); 3458