xref: /linux/net/socket.c (revision f37130533f68711fd6bae2c79950b8e72002bad6)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 			 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 			  unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 				struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.aio_read =	sock_aio_read,
139 	.aio_write =	sock_aio_write,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160 
161 /*
162  *	Statistics counters of the socket lists
163  */
164 
165 static DEFINE_PER_CPU(int, sockets_in_use);
166 
167 /*
168  * Support routines.
169  * Move socket addresses back and forth across the kernel/user
170  * divide and look after the messy bits.
171  */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
213 			     void __user *uaddr, int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 	struct socket_wq *wq;
244 
245 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
246 	if (!ei)
247 		return NULL;
248 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
249 	if (!wq) {
250 		kmem_cache_free(sock_inode_cachep, ei);
251 		return NULL;
252 	}
253 	init_waitqueue_head(&wq->wait);
254 	wq->fasync_list = NULL;
255 	RCU_INIT_POINTER(ei->socket.wq, wq);
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 	struct socket_wq *wq;
270 
271 	ei = container_of(inode, struct socket_alloc, vfs_inode);
272 	wq = rcu_dereference_protected(ei->socket.wq, 1);
273 	kfree_rcu(wq, rcu);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static int init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD),
292 					      init_once);
293 	if (sock_inode_cachep == NULL)
294 		return -ENOMEM;
295 	return 0;
296 }
297 
298 static const struct super_operations sockfs_ops = {
299 	.alloc_inode	= sock_alloc_inode,
300 	.destroy_inode	= sock_destroy_inode,
301 	.statfs		= simple_statfs,
302 };
303 
304 /*
305  * sockfs_dname() is called from d_path().
306  */
307 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
308 {
309 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
310 				dentry->d_inode->i_ino);
311 }
312 
313 static const struct dentry_operations sockfs_dentry_operations = {
314 	.d_dname  = sockfs_dname,
315 };
316 
317 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
318 			 int flags, const char *dev_name, void *data)
319 {
320 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
321 		&sockfs_dentry_operations, SOCKFS_MAGIC);
322 }
323 
324 static struct vfsmount *sock_mnt __read_mostly;
325 
326 static struct file_system_type sock_fs_type = {
327 	.name =		"sockfs",
328 	.mount =	sockfs_mount,
329 	.kill_sb =	kill_anon_super,
330 };
331 
332 /*
333  *	Obtains the first available file descriptor and sets it up for use.
334  *
335  *	These functions create file structures and maps them to fd space
336  *	of the current process. On success it returns file descriptor
337  *	and file struct implicitly stored in sock->file.
338  *	Note that another thread may close file descriptor before we return
339  *	from this function. We use the fact that now we do not refer
340  *	to socket after mapping. If one day we will need it, this
341  *	function will increment ref. count on file by 1.
342  *
343  *	In any case returned fd MAY BE not valid!
344  *	This race condition is unavoidable
345  *	with shared fd spaces, we cannot solve it inside kernel,
346  *	but we take care of internal coherence yet.
347  */
348 
349 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
350 {
351 	struct qstr name = { .name = "" };
352 	struct path path;
353 	struct file *file;
354 
355 	if (dname) {
356 		name.name = dname;
357 		name.len = strlen(name.name);
358 	} else if (sock->sk) {
359 		name.name = sock->sk->sk_prot_creator->name;
360 		name.len = strlen(name.name);
361 	}
362 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
363 	if (unlikely(!path.dentry))
364 		return ERR_PTR(-ENOMEM);
365 	path.mnt = mntget(sock_mnt);
366 
367 	d_instantiate(path.dentry, SOCK_INODE(sock));
368 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
369 
370 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
371 		  &socket_file_ops);
372 	if (unlikely(!file)) {
373 		/* drop dentry, keep inode */
374 		ihold(path.dentry->d_inode);
375 		path_put(&path);
376 		return ERR_PTR(-ENFILE);
377 	}
378 
379 	sock->file = file;
380 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
381 	file->f_pos = 0;
382 	file->private_data = sock;
383 	return file;
384 }
385 EXPORT_SYMBOL(sock_alloc_file);
386 
387 static int sock_map_fd(struct socket *sock, int flags)
388 {
389 	struct file *newfile;
390 	int fd = get_unused_fd_flags(flags);
391 	if (unlikely(fd < 0))
392 		return fd;
393 
394 	newfile = sock_alloc_file(sock, flags, NULL);
395 	if (likely(!IS_ERR(newfile))) {
396 		fd_install(fd, newfile);
397 		return fd;
398 	}
399 
400 	put_unused_fd(fd);
401 	return PTR_ERR(newfile);
402 }
403 
404 struct socket *sock_from_file(struct file *file, int *err)
405 {
406 	if (file->f_op == &socket_file_ops)
407 		return file->private_data;	/* set in sock_map_fd */
408 
409 	*err = -ENOTSOCK;
410 	return NULL;
411 }
412 EXPORT_SYMBOL(sock_from_file);
413 
414 /**
415  *	sockfd_lookup - Go from a file number to its socket slot
416  *	@fd: file handle
417  *	@err: pointer to an error code return
418  *
419  *	The file handle passed in is locked and the socket it is bound
420  *	too is returned. If an error occurs the err pointer is overwritten
421  *	with a negative errno code and NULL is returned. The function checks
422  *	for both invalid handles and passing a handle which is not a socket.
423  *
424  *	On a success the socket object pointer is returned.
425  */
426 
427 struct socket *sockfd_lookup(int fd, int *err)
428 {
429 	struct file *file;
430 	struct socket *sock;
431 
432 	file = fget(fd);
433 	if (!file) {
434 		*err = -EBADF;
435 		return NULL;
436 	}
437 
438 	sock = sock_from_file(file, err);
439 	if (!sock)
440 		fput(file);
441 	return sock;
442 }
443 EXPORT_SYMBOL(sockfd_lookup);
444 
445 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
446 {
447 	struct file *file;
448 	struct socket *sock;
449 
450 	*err = -EBADF;
451 	file = fget_light(fd, fput_needed);
452 	if (file) {
453 		sock = sock_from_file(file, err);
454 		if (sock)
455 			return sock;
456 		fput_light(file, *fput_needed);
457 	}
458 	return NULL;
459 }
460 
461 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
462 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
463 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
464 static ssize_t sockfs_getxattr(struct dentry *dentry,
465 			       const char *name, void *value, size_t size)
466 {
467 	const char *proto_name;
468 	size_t proto_size;
469 	int error;
470 
471 	error = -ENODATA;
472 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
473 		proto_name = dentry->d_name.name;
474 		proto_size = strlen(proto_name);
475 
476 		if (value) {
477 			error = -ERANGE;
478 			if (proto_size + 1 > size)
479 				goto out;
480 
481 			strncpy(value, proto_name, proto_size + 1);
482 		}
483 		error = proto_size + 1;
484 	}
485 
486 out:
487 	return error;
488 }
489 
490 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
491 				size_t size)
492 {
493 	ssize_t len;
494 	ssize_t used = 0;
495 
496 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
497 	if (len < 0)
498 		return len;
499 	used += len;
500 	if (buffer) {
501 		if (size < used)
502 			return -ERANGE;
503 		buffer += len;
504 	}
505 
506 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
507 	used += len;
508 	if (buffer) {
509 		if (size < used)
510 			return -ERANGE;
511 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
512 		buffer += len;
513 	}
514 
515 	return used;
516 }
517 
518 static const struct inode_operations sockfs_inode_ops = {
519 	.getxattr = sockfs_getxattr,
520 	.listxattr = sockfs_listxattr,
521 };
522 
523 /**
524  *	sock_alloc	-	allocate a socket
525  *
526  *	Allocate a new inode and socket object. The two are bound together
527  *	and initialised. The socket is then returned. If we are out of inodes
528  *	NULL is returned.
529  */
530 
531 static struct socket *sock_alloc(void)
532 {
533 	struct inode *inode;
534 	struct socket *sock;
535 
536 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
537 	if (!inode)
538 		return NULL;
539 
540 	sock = SOCKET_I(inode);
541 
542 	kmemcheck_annotate_bitfield(sock, type);
543 	inode->i_ino = get_next_ino();
544 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
545 	inode->i_uid = current_fsuid();
546 	inode->i_gid = current_fsgid();
547 	inode->i_op = &sockfs_inode_ops;
548 
549 	this_cpu_add(sockets_in_use, 1);
550 	return sock;
551 }
552 
553 /*
554  *	In theory you can't get an open on this inode, but /proc provides
555  *	a back door. Remember to keep it shut otherwise you'll let the
556  *	creepy crawlies in.
557  */
558 
559 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
560 {
561 	return -ENXIO;
562 }
563 
564 const struct file_operations bad_sock_fops = {
565 	.owner = THIS_MODULE,
566 	.open = sock_no_open,
567 	.llseek = noop_llseek,
568 };
569 
570 /**
571  *	sock_release	-	close a socket
572  *	@sock: socket to close
573  *
574  *	The socket is released from the protocol stack if it has a release
575  *	callback, and the inode is then released if the socket is bound to
576  *	an inode not a file.
577  */
578 
579 void sock_release(struct socket *sock)
580 {
581 	if (sock->ops) {
582 		struct module *owner = sock->ops->owner;
583 
584 		sock->ops->release(sock);
585 		sock->ops = NULL;
586 		module_put(owner);
587 	}
588 
589 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
590 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
591 
592 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
593 		return;
594 
595 	this_cpu_sub(sockets_in_use, 1);
596 	if (!sock->file) {
597 		iput(SOCK_INODE(sock));
598 		return;
599 	}
600 	sock->file = NULL;
601 }
602 EXPORT_SYMBOL(sock_release);
603 
604 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
605 {
606 	*tx_flags = 0;
607 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
608 		*tx_flags |= SKBTX_HW_TSTAMP;
609 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
610 		*tx_flags |= SKBTX_SW_TSTAMP;
611 	if (sock_flag(sk, SOCK_WIFI_STATUS))
612 		*tx_flags |= SKBTX_WIFI_STATUS;
613 	return 0;
614 }
615 EXPORT_SYMBOL(sock_tx_timestamp);
616 
617 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
618 				       struct msghdr *msg, size_t size)
619 {
620 	struct sock_iocb *si = kiocb_to_siocb(iocb);
621 
622 	si->sock = sock;
623 	si->scm = NULL;
624 	si->msg = msg;
625 	si->size = size;
626 
627 	return sock->ops->sendmsg(iocb, sock, msg, size);
628 }
629 
630 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
631 				 struct msghdr *msg, size_t size)
632 {
633 	int err = security_socket_sendmsg(sock, msg, size);
634 
635 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
636 }
637 
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
639 {
640 	struct kiocb iocb;
641 	struct sock_iocb siocb;
642 	int ret;
643 
644 	init_sync_kiocb(&iocb, NULL);
645 	iocb.private = &siocb;
646 	ret = __sock_sendmsg(&iocb, sock, msg, size);
647 	if (-EIOCBQUEUED == ret)
648 		ret = wait_on_sync_kiocb(&iocb);
649 	return ret;
650 }
651 EXPORT_SYMBOL(sock_sendmsg);
652 
653 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
654 {
655 	struct kiocb iocb;
656 	struct sock_iocb siocb;
657 	int ret;
658 
659 	init_sync_kiocb(&iocb, NULL);
660 	iocb.private = &siocb;
661 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
662 	if (-EIOCBQUEUED == ret)
663 		ret = wait_on_sync_kiocb(&iocb);
664 	return ret;
665 }
666 
667 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
668 		   struct kvec *vec, size_t num, size_t size)
669 {
670 	mm_segment_t oldfs = get_fs();
671 	int result;
672 
673 	set_fs(KERNEL_DS);
674 	/*
675 	 * the following is safe, since for compiler definitions of kvec and
676 	 * iovec are identical, yielding the same in-core layout and alignment
677 	 */
678 	msg->msg_iov = (struct iovec *)vec;
679 	msg->msg_iovlen = num;
680 	result = sock_sendmsg(sock, msg, size);
681 	set_fs(oldfs);
682 	return result;
683 }
684 EXPORT_SYMBOL(kernel_sendmsg);
685 
686 static int ktime2ts(ktime_t kt, struct timespec *ts)
687 {
688 	if (kt.tv64) {
689 		*ts = ktime_to_timespec(kt);
690 		return 1;
691 	} else {
692 		return 0;
693 	}
694 }
695 
696 /*
697  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
698  */
699 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
700 	struct sk_buff *skb)
701 {
702 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
703 	struct timespec ts[3];
704 	int empty = 1;
705 	struct skb_shared_hwtstamps *shhwtstamps =
706 		skb_hwtstamps(skb);
707 
708 	/* Race occurred between timestamp enabling and packet
709 	   receiving.  Fill in the current time for now. */
710 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
711 		__net_timestamp(skb);
712 
713 	if (need_software_tstamp) {
714 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
715 			struct timeval tv;
716 			skb_get_timestamp(skb, &tv);
717 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
718 				 sizeof(tv), &tv);
719 		} else {
720 			skb_get_timestampns(skb, &ts[0]);
721 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
722 				 sizeof(ts[0]), &ts[0]);
723 		}
724 	}
725 
726 
727 	memset(ts, 0, sizeof(ts));
728 	if (skb->tstamp.tv64 &&
729 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
730 		skb_get_timestampns(skb, ts + 0);
731 		empty = 0;
732 	}
733 	if (shhwtstamps) {
734 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
735 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
736 			empty = 0;
737 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
738 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
739 			empty = 0;
740 	}
741 	if (!empty)
742 		put_cmsg(msg, SOL_SOCKET,
743 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
744 }
745 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
746 
747 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
748 	struct sk_buff *skb)
749 {
750 	int ack;
751 
752 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
753 		return;
754 	if (!skb->wifi_acked_valid)
755 		return;
756 
757 	ack = skb->wifi_acked;
758 
759 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
760 }
761 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
762 
763 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
764 				   struct sk_buff *skb)
765 {
766 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
767 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
768 			sizeof(__u32), &skb->dropcount);
769 }
770 
771 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
772 	struct sk_buff *skb)
773 {
774 	sock_recv_timestamp(msg, sk, skb);
775 	sock_recv_drops(msg, sk, skb);
776 }
777 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
778 
779 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
780 				       struct msghdr *msg, size_t size, int flags)
781 {
782 	struct sock_iocb *si = kiocb_to_siocb(iocb);
783 
784 	si->sock = sock;
785 	si->scm = NULL;
786 	si->msg = msg;
787 	si->size = size;
788 	si->flags = flags;
789 
790 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
791 }
792 
793 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
794 				 struct msghdr *msg, size_t size, int flags)
795 {
796 	int err = security_socket_recvmsg(sock, msg, size, flags);
797 
798 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
799 }
800 
801 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
802 		 size_t size, int flags)
803 {
804 	struct kiocb iocb;
805 	struct sock_iocb siocb;
806 	int ret;
807 
808 	init_sync_kiocb(&iocb, NULL);
809 	iocb.private = &siocb;
810 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
811 	if (-EIOCBQUEUED == ret)
812 		ret = wait_on_sync_kiocb(&iocb);
813 	return ret;
814 }
815 EXPORT_SYMBOL(sock_recvmsg);
816 
817 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
818 			      size_t size, int flags)
819 {
820 	struct kiocb iocb;
821 	struct sock_iocb siocb;
822 	int ret;
823 
824 	init_sync_kiocb(&iocb, NULL);
825 	iocb.private = &siocb;
826 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
827 	if (-EIOCBQUEUED == ret)
828 		ret = wait_on_sync_kiocb(&iocb);
829 	return ret;
830 }
831 
832 /**
833  * kernel_recvmsg - Receive a message from a socket (kernel space)
834  * @sock:       The socket to receive the message from
835  * @msg:        Received message
836  * @vec:        Input s/g array for message data
837  * @num:        Size of input s/g array
838  * @size:       Number of bytes to read
839  * @flags:      Message flags (MSG_DONTWAIT, etc...)
840  *
841  * On return the msg structure contains the scatter/gather array passed in the
842  * vec argument. The array is modified so that it consists of the unfilled
843  * portion of the original array.
844  *
845  * The returned value is the total number of bytes received, or an error.
846  */
847 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
848 		   struct kvec *vec, size_t num, size_t size, int flags)
849 {
850 	mm_segment_t oldfs = get_fs();
851 	int result;
852 
853 	set_fs(KERNEL_DS);
854 	/*
855 	 * the following is safe, since for compiler definitions of kvec and
856 	 * iovec are identical, yielding the same in-core layout and alignment
857 	 */
858 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
859 	result = sock_recvmsg(sock, msg, size, flags);
860 	set_fs(oldfs);
861 	return result;
862 }
863 EXPORT_SYMBOL(kernel_recvmsg);
864 
865 static void sock_aio_dtor(struct kiocb *iocb)
866 {
867 	kfree(iocb->private);
868 }
869 
870 static ssize_t sock_sendpage(struct file *file, struct page *page,
871 			     int offset, size_t size, loff_t *ppos, int more)
872 {
873 	struct socket *sock;
874 	int flags;
875 
876 	sock = file->private_data;
877 
878 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
879 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
880 	flags |= more;
881 
882 	return kernel_sendpage(sock, page, offset, size, flags);
883 }
884 
885 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
886 				struct pipe_inode_info *pipe, size_t len,
887 				unsigned int flags)
888 {
889 	struct socket *sock = file->private_data;
890 
891 	if (unlikely(!sock->ops->splice_read))
892 		return -EINVAL;
893 
894 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
895 }
896 
897 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
898 					 struct sock_iocb *siocb)
899 {
900 	if (!is_sync_kiocb(iocb)) {
901 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
902 		if (!siocb)
903 			return NULL;
904 		iocb->ki_dtor = sock_aio_dtor;
905 	}
906 
907 	siocb->kiocb = iocb;
908 	iocb->private = siocb;
909 	return siocb;
910 }
911 
912 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
913 		struct file *file, const struct iovec *iov,
914 		unsigned long nr_segs)
915 {
916 	struct socket *sock = file->private_data;
917 	size_t size = 0;
918 	int i;
919 
920 	for (i = 0; i < nr_segs; i++)
921 		size += iov[i].iov_len;
922 
923 	msg->msg_name = NULL;
924 	msg->msg_namelen = 0;
925 	msg->msg_control = NULL;
926 	msg->msg_controllen = 0;
927 	msg->msg_iov = (struct iovec *)iov;
928 	msg->msg_iovlen = nr_segs;
929 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
930 
931 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
932 }
933 
934 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
935 				unsigned long nr_segs, loff_t pos)
936 {
937 	struct sock_iocb siocb, *x;
938 
939 	if (pos != 0)
940 		return -ESPIPE;
941 
942 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
943 		return 0;
944 
945 
946 	x = alloc_sock_iocb(iocb, &siocb);
947 	if (!x)
948 		return -ENOMEM;
949 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
950 }
951 
952 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
953 			struct file *file, const struct iovec *iov,
954 			unsigned long nr_segs)
955 {
956 	struct socket *sock = file->private_data;
957 	size_t size = 0;
958 	int i;
959 
960 	for (i = 0; i < nr_segs; i++)
961 		size += iov[i].iov_len;
962 
963 	msg->msg_name = NULL;
964 	msg->msg_namelen = 0;
965 	msg->msg_control = NULL;
966 	msg->msg_controllen = 0;
967 	msg->msg_iov = (struct iovec *)iov;
968 	msg->msg_iovlen = nr_segs;
969 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
970 	if (sock->type == SOCK_SEQPACKET)
971 		msg->msg_flags |= MSG_EOR;
972 
973 	return __sock_sendmsg(iocb, sock, msg, size);
974 }
975 
976 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
977 			  unsigned long nr_segs, loff_t pos)
978 {
979 	struct sock_iocb siocb, *x;
980 
981 	if (pos != 0)
982 		return -ESPIPE;
983 
984 	x = alloc_sock_iocb(iocb, &siocb);
985 	if (!x)
986 		return -ENOMEM;
987 
988 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
989 }
990 
991 /*
992  * Atomic setting of ioctl hooks to avoid race
993  * with module unload.
994  */
995 
996 static DEFINE_MUTEX(br_ioctl_mutex);
997 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
998 
999 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1000 {
1001 	mutex_lock(&br_ioctl_mutex);
1002 	br_ioctl_hook = hook;
1003 	mutex_unlock(&br_ioctl_mutex);
1004 }
1005 EXPORT_SYMBOL(brioctl_set);
1006 
1007 static DEFINE_MUTEX(vlan_ioctl_mutex);
1008 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1009 
1010 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1011 {
1012 	mutex_lock(&vlan_ioctl_mutex);
1013 	vlan_ioctl_hook = hook;
1014 	mutex_unlock(&vlan_ioctl_mutex);
1015 }
1016 EXPORT_SYMBOL(vlan_ioctl_set);
1017 
1018 static DEFINE_MUTEX(dlci_ioctl_mutex);
1019 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1020 
1021 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1022 {
1023 	mutex_lock(&dlci_ioctl_mutex);
1024 	dlci_ioctl_hook = hook;
1025 	mutex_unlock(&dlci_ioctl_mutex);
1026 }
1027 EXPORT_SYMBOL(dlci_ioctl_set);
1028 
1029 static long sock_do_ioctl(struct net *net, struct socket *sock,
1030 				 unsigned int cmd, unsigned long arg)
1031 {
1032 	int err;
1033 	void __user *argp = (void __user *)arg;
1034 
1035 	err = sock->ops->ioctl(sock, cmd, arg);
1036 
1037 	/*
1038 	 * If this ioctl is unknown try to hand it down
1039 	 * to the NIC driver.
1040 	 */
1041 	if (err == -ENOIOCTLCMD)
1042 		err = dev_ioctl(net, cmd, argp);
1043 
1044 	return err;
1045 }
1046 
1047 /*
1048  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1049  *	what to do with it - that's up to the protocol still.
1050  */
1051 
1052 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1053 {
1054 	struct socket *sock;
1055 	struct sock *sk;
1056 	void __user *argp = (void __user *)arg;
1057 	int pid, err;
1058 	struct net *net;
1059 
1060 	sock = file->private_data;
1061 	sk = sock->sk;
1062 	net = sock_net(sk);
1063 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1064 		err = dev_ioctl(net, cmd, argp);
1065 	} else
1066 #ifdef CONFIG_WEXT_CORE
1067 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1068 		err = dev_ioctl(net, cmd, argp);
1069 	} else
1070 #endif
1071 		switch (cmd) {
1072 		case FIOSETOWN:
1073 		case SIOCSPGRP:
1074 			err = -EFAULT;
1075 			if (get_user(pid, (int __user *)argp))
1076 				break;
1077 			err = f_setown(sock->file, pid, 1);
1078 			break;
1079 		case FIOGETOWN:
1080 		case SIOCGPGRP:
1081 			err = put_user(f_getown(sock->file),
1082 				       (int __user *)argp);
1083 			break;
1084 		case SIOCGIFBR:
1085 		case SIOCSIFBR:
1086 		case SIOCBRADDBR:
1087 		case SIOCBRDELBR:
1088 			err = -ENOPKG;
1089 			if (!br_ioctl_hook)
1090 				request_module("bridge");
1091 
1092 			mutex_lock(&br_ioctl_mutex);
1093 			if (br_ioctl_hook)
1094 				err = br_ioctl_hook(net, cmd, argp);
1095 			mutex_unlock(&br_ioctl_mutex);
1096 			break;
1097 		case SIOCGIFVLAN:
1098 		case SIOCSIFVLAN:
1099 			err = -ENOPKG;
1100 			if (!vlan_ioctl_hook)
1101 				request_module("8021q");
1102 
1103 			mutex_lock(&vlan_ioctl_mutex);
1104 			if (vlan_ioctl_hook)
1105 				err = vlan_ioctl_hook(net, argp);
1106 			mutex_unlock(&vlan_ioctl_mutex);
1107 			break;
1108 		case SIOCADDDLCI:
1109 		case SIOCDELDLCI:
1110 			err = -ENOPKG;
1111 			if (!dlci_ioctl_hook)
1112 				request_module("dlci");
1113 
1114 			mutex_lock(&dlci_ioctl_mutex);
1115 			if (dlci_ioctl_hook)
1116 				err = dlci_ioctl_hook(cmd, argp);
1117 			mutex_unlock(&dlci_ioctl_mutex);
1118 			break;
1119 		default:
1120 			err = sock_do_ioctl(net, sock, cmd, arg);
1121 			break;
1122 		}
1123 	return err;
1124 }
1125 
1126 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1127 {
1128 	int err;
1129 	struct socket *sock = NULL;
1130 
1131 	err = security_socket_create(family, type, protocol, 1);
1132 	if (err)
1133 		goto out;
1134 
1135 	sock = sock_alloc();
1136 	if (!sock) {
1137 		err = -ENOMEM;
1138 		goto out;
1139 	}
1140 
1141 	sock->type = type;
1142 	err = security_socket_post_create(sock, family, type, protocol, 1);
1143 	if (err)
1144 		goto out_release;
1145 
1146 out:
1147 	*res = sock;
1148 	return err;
1149 out_release:
1150 	sock_release(sock);
1151 	sock = NULL;
1152 	goto out;
1153 }
1154 EXPORT_SYMBOL(sock_create_lite);
1155 
1156 /* No kernel lock held - perfect */
1157 static unsigned int sock_poll(struct file *file, poll_table *wait)
1158 {
1159 	struct socket *sock;
1160 
1161 	/*
1162 	 *      We can't return errors to poll, so it's either yes or no.
1163 	 */
1164 	sock = file->private_data;
1165 	return sock->ops->poll(file, sock, wait);
1166 }
1167 
1168 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1169 {
1170 	struct socket *sock = file->private_data;
1171 
1172 	return sock->ops->mmap(file, sock, vma);
1173 }
1174 
1175 static int sock_close(struct inode *inode, struct file *filp)
1176 {
1177 	/*
1178 	 *      It was possible the inode is NULL we were
1179 	 *      closing an unfinished socket.
1180 	 */
1181 
1182 	if (!inode) {
1183 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1184 		return 0;
1185 	}
1186 	sock_release(SOCKET_I(inode));
1187 	return 0;
1188 }
1189 
1190 /*
1191  *	Update the socket async list
1192  *
1193  *	Fasync_list locking strategy.
1194  *
1195  *	1. fasync_list is modified only under process context socket lock
1196  *	   i.e. under semaphore.
1197  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1198  *	   or under socket lock
1199  */
1200 
1201 static int sock_fasync(int fd, struct file *filp, int on)
1202 {
1203 	struct socket *sock = filp->private_data;
1204 	struct sock *sk = sock->sk;
1205 	struct socket_wq *wq;
1206 
1207 	if (sk == NULL)
1208 		return -EINVAL;
1209 
1210 	lock_sock(sk);
1211 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1212 	fasync_helper(fd, filp, on, &wq->fasync_list);
1213 
1214 	if (!wq->fasync_list)
1215 		sock_reset_flag(sk, SOCK_FASYNC);
1216 	else
1217 		sock_set_flag(sk, SOCK_FASYNC);
1218 
1219 	release_sock(sk);
1220 	return 0;
1221 }
1222 
1223 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1224 
1225 int sock_wake_async(struct socket *sock, int how, int band)
1226 {
1227 	struct socket_wq *wq;
1228 
1229 	if (!sock)
1230 		return -1;
1231 	rcu_read_lock();
1232 	wq = rcu_dereference(sock->wq);
1233 	if (!wq || !wq->fasync_list) {
1234 		rcu_read_unlock();
1235 		return -1;
1236 	}
1237 	switch (how) {
1238 	case SOCK_WAKE_WAITD:
1239 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1240 			break;
1241 		goto call_kill;
1242 	case SOCK_WAKE_SPACE:
1243 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1244 			break;
1245 		/* fall through */
1246 	case SOCK_WAKE_IO:
1247 call_kill:
1248 		kill_fasync(&wq->fasync_list, SIGIO, band);
1249 		break;
1250 	case SOCK_WAKE_URG:
1251 		kill_fasync(&wq->fasync_list, SIGURG, band);
1252 	}
1253 	rcu_read_unlock();
1254 	return 0;
1255 }
1256 EXPORT_SYMBOL(sock_wake_async);
1257 
1258 int __sock_create(struct net *net, int family, int type, int protocol,
1259 			 struct socket **res, int kern)
1260 {
1261 	int err;
1262 	struct socket *sock;
1263 	const struct net_proto_family *pf;
1264 
1265 	/*
1266 	 *      Check protocol is in range
1267 	 */
1268 	if (family < 0 || family >= NPROTO)
1269 		return -EAFNOSUPPORT;
1270 	if (type < 0 || type >= SOCK_MAX)
1271 		return -EINVAL;
1272 
1273 	/* Compatibility.
1274 
1275 	   This uglymoron is moved from INET layer to here to avoid
1276 	   deadlock in module load.
1277 	 */
1278 	if (family == PF_INET && type == SOCK_PACKET) {
1279 		static int warned;
1280 		if (!warned) {
1281 			warned = 1;
1282 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1283 			       current->comm);
1284 		}
1285 		family = PF_PACKET;
1286 	}
1287 
1288 	err = security_socket_create(family, type, protocol, kern);
1289 	if (err)
1290 		return err;
1291 
1292 	/*
1293 	 *	Allocate the socket and allow the family to set things up. if
1294 	 *	the protocol is 0, the family is instructed to select an appropriate
1295 	 *	default.
1296 	 */
1297 	sock = sock_alloc();
1298 	if (!sock) {
1299 		net_warn_ratelimited("socket: no more sockets\n");
1300 		return -ENFILE;	/* Not exactly a match, but its the
1301 				   closest posix thing */
1302 	}
1303 
1304 	sock->type = type;
1305 
1306 #ifdef CONFIG_MODULES
1307 	/* Attempt to load a protocol module if the find failed.
1308 	 *
1309 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1310 	 * requested real, full-featured networking support upon configuration.
1311 	 * Otherwise module support will break!
1312 	 */
1313 	if (rcu_access_pointer(net_families[family]) == NULL)
1314 		request_module("net-pf-%d", family);
1315 #endif
1316 
1317 	rcu_read_lock();
1318 	pf = rcu_dereference(net_families[family]);
1319 	err = -EAFNOSUPPORT;
1320 	if (!pf)
1321 		goto out_release;
1322 
1323 	/*
1324 	 * We will call the ->create function, that possibly is in a loadable
1325 	 * module, so we have to bump that loadable module refcnt first.
1326 	 */
1327 	if (!try_module_get(pf->owner))
1328 		goto out_release;
1329 
1330 	/* Now protected by module ref count */
1331 	rcu_read_unlock();
1332 
1333 	err = pf->create(net, sock, protocol, kern);
1334 	if (err < 0)
1335 		goto out_module_put;
1336 
1337 	/*
1338 	 * Now to bump the refcnt of the [loadable] module that owns this
1339 	 * socket at sock_release time we decrement its refcnt.
1340 	 */
1341 	if (!try_module_get(sock->ops->owner))
1342 		goto out_module_busy;
1343 
1344 	/*
1345 	 * Now that we're done with the ->create function, the [loadable]
1346 	 * module can have its refcnt decremented
1347 	 */
1348 	module_put(pf->owner);
1349 	err = security_socket_post_create(sock, family, type, protocol, kern);
1350 	if (err)
1351 		goto out_sock_release;
1352 	*res = sock;
1353 
1354 	return 0;
1355 
1356 out_module_busy:
1357 	err = -EAFNOSUPPORT;
1358 out_module_put:
1359 	sock->ops = NULL;
1360 	module_put(pf->owner);
1361 out_sock_release:
1362 	sock_release(sock);
1363 	return err;
1364 
1365 out_release:
1366 	rcu_read_unlock();
1367 	goto out_sock_release;
1368 }
1369 EXPORT_SYMBOL(__sock_create);
1370 
1371 int sock_create(int family, int type, int protocol, struct socket **res)
1372 {
1373 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1374 }
1375 EXPORT_SYMBOL(sock_create);
1376 
1377 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1378 {
1379 	return __sock_create(&init_net, family, type, protocol, res, 1);
1380 }
1381 EXPORT_SYMBOL(sock_create_kern);
1382 
1383 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1384 {
1385 	int retval;
1386 	struct socket *sock;
1387 	int flags;
1388 
1389 	/* Check the SOCK_* constants for consistency.  */
1390 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1391 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1392 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1393 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1394 
1395 	flags = type & ~SOCK_TYPE_MASK;
1396 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1397 		return -EINVAL;
1398 	type &= SOCK_TYPE_MASK;
1399 
1400 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1401 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1402 
1403 	retval = sock_create(family, type, protocol, &sock);
1404 	if (retval < 0)
1405 		goto out;
1406 
1407 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1408 	if (retval < 0)
1409 		goto out_release;
1410 
1411 out:
1412 	/* It may be already another descriptor 8) Not kernel problem. */
1413 	return retval;
1414 
1415 out_release:
1416 	sock_release(sock);
1417 	return retval;
1418 }
1419 
1420 /*
1421  *	Create a pair of connected sockets.
1422  */
1423 
1424 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1425 		int __user *, usockvec)
1426 {
1427 	struct socket *sock1, *sock2;
1428 	int fd1, fd2, err;
1429 	struct file *newfile1, *newfile2;
1430 	int flags;
1431 
1432 	flags = type & ~SOCK_TYPE_MASK;
1433 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1434 		return -EINVAL;
1435 	type &= SOCK_TYPE_MASK;
1436 
1437 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1438 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1439 
1440 	/*
1441 	 * Obtain the first socket and check if the underlying protocol
1442 	 * supports the socketpair call.
1443 	 */
1444 
1445 	err = sock_create(family, type, protocol, &sock1);
1446 	if (err < 0)
1447 		goto out;
1448 
1449 	err = sock_create(family, type, protocol, &sock2);
1450 	if (err < 0)
1451 		goto out_release_1;
1452 
1453 	err = sock1->ops->socketpair(sock1, sock2);
1454 	if (err < 0)
1455 		goto out_release_both;
1456 
1457 	fd1 = get_unused_fd_flags(flags);
1458 	if (unlikely(fd1 < 0)) {
1459 		err = fd1;
1460 		goto out_release_both;
1461 	}
1462 	fd2 = get_unused_fd_flags(flags);
1463 	if (unlikely(fd2 < 0)) {
1464 		err = fd2;
1465 		put_unused_fd(fd1);
1466 		goto out_release_both;
1467 	}
1468 
1469 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1470 	if (unlikely(IS_ERR(newfile1))) {
1471 		err = PTR_ERR(newfile1);
1472 		put_unused_fd(fd1);
1473 		put_unused_fd(fd2);
1474 		goto out_release_both;
1475 	}
1476 
1477 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1478 	if (IS_ERR(newfile2)) {
1479 		err = PTR_ERR(newfile2);
1480 		fput(newfile1);
1481 		put_unused_fd(fd1);
1482 		put_unused_fd(fd2);
1483 		sock_release(sock2);
1484 		goto out;
1485 	}
1486 
1487 	audit_fd_pair(fd1, fd2);
1488 	fd_install(fd1, newfile1);
1489 	fd_install(fd2, newfile2);
1490 	/* fd1 and fd2 may be already another descriptors.
1491 	 * Not kernel problem.
1492 	 */
1493 
1494 	err = put_user(fd1, &usockvec[0]);
1495 	if (!err)
1496 		err = put_user(fd2, &usockvec[1]);
1497 	if (!err)
1498 		return 0;
1499 
1500 	sys_close(fd2);
1501 	sys_close(fd1);
1502 	return err;
1503 
1504 out_release_both:
1505 	sock_release(sock2);
1506 out_release_1:
1507 	sock_release(sock1);
1508 out:
1509 	return err;
1510 }
1511 
1512 /*
1513  *	Bind a name to a socket. Nothing much to do here since it's
1514  *	the protocol's responsibility to handle the local address.
1515  *
1516  *	We move the socket address to kernel space before we call
1517  *	the protocol layer (having also checked the address is ok).
1518  */
1519 
1520 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1521 {
1522 	struct socket *sock;
1523 	struct sockaddr_storage address;
1524 	int err, fput_needed;
1525 
1526 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1527 	if (sock) {
1528 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1529 		if (err >= 0) {
1530 			err = security_socket_bind(sock,
1531 						   (struct sockaddr *)&address,
1532 						   addrlen);
1533 			if (!err)
1534 				err = sock->ops->bind(sock,
1535 						      (struct sockaddr *)
1536 						      &address, addrlen);
1537 		}
1538 		fput_light(sock->file, fput_needed);
1539 	}
1540 	return err;
1541 }
1542 
1543 /*
1544  *	Perform a listen. Basically, we allow the protocol to do anything
1545  *	necessary for a listen, and if that works, we mark the socket as
1546  *	ready for listening.
1547  */
1548 
1549 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1550 {
1551 	struct socket *sock;
1552 	int err, fput_needed;
1553 	int somaxconn;
1554 
1555 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1556 	if (sock) {
1557 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1558 		if ((unsigned int)backlog > somaxconn)
1559 			backlog = somaxconn;
1560 
1561 		err = security_socket_listen(sock, backlog);
1562 		if (!err)
1563 			err = sock->ops->listen(sock, backlog);
1564 
1565 		fput_light(sock->file, fput_needed);
1566 	}
1567 	return err;
1568 }
1569 
1570 /*
1571  *	For accept, we attempt to create a new socket, set up the link
1572  *	with the client, wake up the client, then return the new
1573  *	connected fd. We collect the address of the connector in kernel
1574  *	space and move it to user at the very end. This is unclean because
1575  *	we open the socket then return an error.
1576  *
1577  *	1003.1g adds the ability to recvmsg() to query connection pending
1578  *	status to recvmsg. We need to add that support in a way thats
1579  *	clean when we restucture accept also.
1580  */
1581 
1582 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1583 		int __user *, upeer_addrlen, int, flags)
1584 {
1585 	struct socket *sock, *newsock;
1586 	struct file *newfile;
1587 	int err, len, newfd, fput_needed;
1588 	struct sockaddr_storage address;
1589 
1590 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1591 		return -EINVAL;
1592 
1593 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1594 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1595 
1596 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1597 	if (!sock)
1598 		goto out;
1599 
1600 	err = -ENFILE;
1601 	newsock = sock_alloc();
1602 	if (!newsock)
1603 		goto out_put;
1604 
1605 	newsock->type = sock->type;
1606 	newsock->ops = sock->ops;
1607 
1608 	/*
1609 	 * We don't need try_module_get here, as the listening socket (sock)
1610 	 * has the protocol module (sock->ops->owner) held.
1611 	 */
1612 	__module_get(newsock->ops->owner);
1613 
1614 	newfd = get_unused_fd_flags(flags);
1615 	if (unlikely(newfd < 0)) {
1616 		err = newfd;
1617 		sock_release(newsock);
1618 		goto out_put;
1619 	}
1620 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1621 	if (unlikely(IS_ERR(newfile))) {
1622 		err = PTR_ERR(newfile);
1623 		put_unused_fd(newfd);
1624 		sock_release(newsock);
1625 		goto out_put;
1626 	}
1627 
1628 	err = security_socket_accept(sock, newsock);
1629 	if (err)
1630 		goto out_fd;
1631 
1632 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1633 	if (err < 0)
1634 		goto out_fd;
1635 
1636 	if (upeer_sockaddr) {
1637 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1638 					  &len, 2) < 0) {
1639 			err = -ECONNABORTED;
1640 			goto out_fd;
1641 		}
1642 		err = move_addr_to_user(&address,
1643 					len, upeer_sockaddr, upeer_addrlen);
1644 		if (err < 0)
1645 			goto out_fd;
1646 	}
1647 
1648 	/* File flags are not inherited via accept() unlike another OSes. */
1649 
1650 	fd_install(newfd, newfile);
1651 	err = newfd;
1652 
1653 out_put:
1654 	fput_light(sock->file, fput_needed);
1655 out:
1656 	return err;
1657 out_fd:
1658 	fput(newfile);
1659 	put_unused_fd(newfd);
1660 	goto out_put;
1661 }
1662 
1663 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1664 		int __user *, upeer_addrlen)
1665 {
1666 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1667 }
1668 
1669 /*
1670  *	Attempt to connect to a socket with the server address.  The address
1671  *	is in user space so we verify it is OK and move it to kernel space.
1672  *
1673  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1674  *	break bindings
1675  *
1676  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1677  *	other SEQPACKET protocols that take time to connect() as it doesn't
1678  *	include the -EINPROGRESS status for such sockets.
1679  */
1680 
1681 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1682 		int, addrlen)
1683 {
1684 	struct socket *sock;
1685 	struct sockaddr_storage address;
1686 	int err, fput_needed;
1687 
1688 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1689 	if (!sock)
1690 		goto out;
1691 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1692 	if (err < 0)
1693 		goto out_put;
1694 
1695 	err =
1696 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1697 	if (err)
1698 		goto out_put;
1699 
1700 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1701 				 sock->file->f_flags);
1702 out_put:
1703 	fput_light(sock->file, fput_needed);
1704 out:
1705 	return err;
1706 }
1707 
1708 /*
1709  *	Get the local address ('name') of a socket object. Move the obtained
1710  *	name to user space.
1711  */
1712 
1713 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1714 		int __user *, usockaddr_len)
1715 {
1716 	struct socket *sock;
1717 	struct sockaddr_storage address;
1718 	int len, err, fput_needed;
1719 
1720 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1721 	if (!sock)
1722 		goto out;
1723 
1724 	err = security_socket_getsockname(sock);
1725 	if (err)
1726 		goto out_put;
1727 
1728 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1729 	if (err)
1730 		goto out_put;
1731 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1732 
1733 out_put:
1734 	fput_light(sock->file, fput_needed);
1735 out:
1736 	return err;
1737 }
1738 
1739 /*
1740  *	Get the remote address ('name') of a socket object. Move the obtained
1741  *	name to user space.
1742  */
1743 
1744 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1745 		int __user *, usockaddr_len)
1746 {
1747 	struct socket *sock;
1748 	struct sockaddr_storage address;
1749 	int len, err, fput_needed;
1750 
1751 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1752 	if (sock != NULL) {
1753 		err = security_socket_getpeername(sock);
1754 		if (err) {
1755 			fput_light(sock->file, fput_needed);
1756 			return err;
1757 		}
1758 
1759 		err =
1760 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1761 				       1);
1762 		if (!err)
1763 			err = move_addr_to_user(&address, len, usockaddr,
1764 						usockaddr_len);
1765 		fput_light(sock->file, fput_needed);
1766 	}
1767 	return err;
1768 }
1769 
1770 /*
1771  *	Send a datagram to a given address. We move the address into kernel
1772  *	space and check the user space data area is readable before invoking
1773  *	the protocol.
1774  */
1775 
1776 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1777 		unsigned int, flags, struct sockaddr __user *, addr,
1778 		int, addr_len)
1779 {
1780 	struct socket *sock;
1781 	struct sockaddr_storage address;
1782 	int err;
1783 	struct msghdr msg;
1784 	struct iovec iov;
1785 	int fput_needed;
1786 
1787 	if (len > INT_MAX)
1788 		len = INT_MAX;
1789 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1790 	if (!sock)
1791 		goto out;
1792 
1793 	iov.iov_base = buff;
1794 	iov.iov_len = len;
1795 	msg.msg_name = NULL;
1796 	msg.msg_iov = &iov;
1797 	msg.msg_iovlen = 1;
1798 	msg.msg_control = NULL;
1799 	msg.msg_controllen = 0;
1800 	msg.msg_namelen = 0;
1801 	if (addr) {
1802 		err = move_addr_to_kernel(addr, addr_len, &address);
1803 		if (err < 0)
1804 			goto out_put;
1805 		msg.msg_name = (struct sockaddr *)&address;
1806 		msg.msg_namelen = addr_len;
1807 	}
1808 	if (sock->file->f_flags & O_NONBLOCK)
1809 		flags |= MSG_DONTWAIT;
1810 	msg.msg_flags = flags;
1811 	err = sock_sendmsg(sock, &msg, len);
1812 
1813 out_put:
1814 	fput_light(sock->file, fput_needed);
1815 out:
1816 	return err;
1817 }
1818 
1819 /*
1820  *	Send a datagram down a socket.
1821  */
1822 
1823 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1824 		unsigned int, flags)
1825 {
1826 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1827 }
1828 
1829 /*
1830  *	Receive a frame from the socket and optionally record the address of the
1831  *	sender. We verify the buffers are writable and if needed move the
1832  *	sender address from kernel to user space.
1833  */
1834 
1835 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1836 		unsigned int, flags, struct sockaddr __user *, addr,
1837 		int __user *, addr_len)
1838 {
1839 	struct socket *sock;
1840 	struct iovec iov;
1841 	struct msghdr msg;
1842 	struct sockaddr_storage address;
1843 	int err, err2;
1844 	int fput_needed;
1845 
1846 	if (size > INT_MAX)
1847 		size = INT_MAX;
1848 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1849 	if (!sock)
1850 		goto out;
1851 
1852 	msg.msg_control = NULL;
1853 	msg.msg_controllen = 0;
1854 	msg.msg_iovlen = 1;
1855 	msg.msg_iov = &iov;
1856 	iov.iov_len = size;
1857 	iov.iov_base = ubuf;
1858 	msg.msg_name = (struct sockaddr *)&address;
1859 	msg.msg_namelen = sizeof(address);
1860 	if (sock->file->f_flags & O_NONBLOCK)
1861 		flags |= MSG_DONTWAIT;
1862 	err = sock_recvmsg(sock, &msg, size, flags);
1863 
1864 	if (err >= 0 && addr != NULL) {
1865 		err2 = move_addr_to_user(&address,
1866 					 msg.msg_namelen, addr, addr_len);
1867 		if (err2 < 0)
1868 			err = err2;
1869 	}
1870 
1871 	fput_light(sock->file, fput_needed);
1872 out:
1873 	return err;
1874 }
1875 
1876 /*
1877  *	Receive a datagram from a socket.
1878  */
1879 
1880 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1881 			 unsigned int flags)
1882 {
1883 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1884 }
1885 
1886 /*
1887  *	Set a socket option. Because we don't know the option lengths we have
1888  *	to pass the user mode parameter for the protocols to sort out.
1889  */
1890 
1891 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1892 		char __user *, optval, int, optlen)
1893 {
1894 	int err, fput_needed;
1895 	struct socket *sock;
1896 
1897 	if (optlen < 0)
1898 		return -EINVAL;
1899 
1900 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1901 	if (sock != NULL) {
1902 		err = security_socket_setsockopt(sock, level, optname);
1903 		if (err)
1904 			goto out_put;
1905 
1906 		if (level == SOL_SOCKET)
1907 			err =
1908 			    sock_setsockopt(sock, level, optname, optval,
1909 					    optlen);
1910 		else
1911 			err =
1912 			    sock->ops->setsockopt(sock, level, optname, optval,
1913 						  optlen);
1914 out_put:
1915 		fput_light(sock->file, fput_needed);
1916 	}
1917 	return err;
1918 }
1919 
1920 /*
1921  *	Get a socket option. Because we don't know the option lengths we have
1922  *	to pass a user mode parameter for the protocols to sort out.
1923  */
1924 
1925 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1926 		char __user *, optval, int __user *, optlen)
1927 {
1928 	int err, fput_needed;
1929 	struct socket *sock;
1930 
1931 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1932 	if (sock != NULL) {
1933 		err = security_socket_getsockopt(sock, level, optname);
1934 		if (err)
1935 			goto out_put;
1936 
1937 		if (level == SOL_SOCKET)
1938 			err =
1939 			    sock_getsockopt(sock, level, optname, optval,
1940 					    optlen);
1941 		else
1942 			err =
1943 			    sock->ops->getsockopt(sock, level, optname, optval,
1944 						  optlen);
1945 out_put:
1946 		fput_light(sock->file, fput_needed);
1947 	}
1948 	return err;
1949 }
1950 
1951 /*
1952  *	Shutdown a socket.
1953  */
1954 
1955 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1956 {
1957 	int err, fput_needed;
1958 	struct socket *sock;
1959 
1960 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1961 	if (sock != NULL) {
1962 		err = security_socket_shutdown(sock, how);
1963 		if (!err)
1964 			err = sock->ops->shutdown(sock, how);
1965 		fput_light(sock->file, fput_needed);
1966 	}
1967 	return err;
1968 }
1969 
1970 /* A couple of helpful macros for getting the address of the 32/64 bit
1971  * fields which are the same type (int / unsigned) on our platforms.
1972  */
1973 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1974 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1975 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1976 
1977 struct used_address {
1978 	struct sockaddr_storage name;
1979 	unsigned int name_len;
1980 };
1981 
1982 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1983 			 struct msghdr *msg_sys, unsigned int flags,
1984 			 struct used_address *used_address)
1985 {
1986 	struct compat_msghdr __user *msg_compat =
1987 	    (struct compat_msghdr __user *)msg;
1988 	struct sockaddr_storage address;
1989 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1990 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1991 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1992 	/* 20 is size of ipv6_pktinfo */
1993 	unsigned char *ctl_buf = ctl;
1994 	int err, ctl_len, total_len;
1995 
1996 	err = -EFAULT;
1997 	if (MSG_CMSG_COMPAT & flags) {
1998 		if (get_compat_msghdr(msg_sys, msg_compat))
1999 			return -EFAULT;
2000 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2001 		return -EFAULT;
2002 
2003 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2004 		err = -EMSGSIZE;
2005 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2006 			goto out;
2007 		err = -ENOMEM;
2008 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2009 			      GFP_KERNEL);
2010 		if (!iov)
2011 			goto out;
2012 	}
2013 
2014 	/* This will also move the address data into kernel space */
2015 	if (MSG_CMSG_COMPAT & flags) {
2016 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2017 	} else
2018 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2019 	if (err < 0)
2020 		goto out_freeiov;
2021 	total_len = err;
2022 
2023 	err = -ENOBUFS;
2024 
2025 	if (msg_sys->msg_controllen > INT_MAX)
2026 		goto out_freeiov;
2027 	ctl_len = msg_sys->msg_controllen;
2028 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2029 		err =
2030 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2031 						     sizeof(ctl));
2032 		if (err)
2033 			goto out_freeiov;
2034 		ctl_buf = msg_sys->msg_control;
2035 		ctl_len = msg_sys->msg_controllen;
2036 	} else if (ctl_len) {
2037 		if (ctl_len > sizeof(ctl)) {
2038 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2039 			if (ctl_buf == NULL)
2040 				goto out_freeiov;
2041 		}
2042 		err = -EFAULT;
2043 		/*
2044 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2045 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2046 		 * checking falls down on this.
2047 		 */
2048 		if (copy_from_user(ctl_buf,
2049 				   (void __user __force *)msg_sys->msg_control,
2050 				   ctl_len))
2051 			goto out_freectl;
2052 		msg_sys->msg_control = ctl_buf;
2053 	}
2054 	msg_sys->msg_flags = flags;
2055 
2056 	if (sock->file->f_flags & O_NONBLOCK)
2057 		msg_sys->msg_flags |= MSG_DONTWAIT;
2058 	/*
2059 	 * If this is sendmmsg() and current destination address is same as
2060 	 * previously succeeded address, omit asking LSM's decision.
2061 	 * used_address->name_len is initialized to UINT_MAX so that the first
2062 	 * destination address never matches.
2063 	 */
2064 	if (used_address && msg_sys->msg_name &&
2065 	    used_address->name_len == msg_sys->msg_namelen &&
2066 	    !memcmp(&used_address->name, msg_sys->msg_name,
2067 		    used_address->name_len)) {
2068 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2069 		goto out_freectl;
2070 	}
2071 	err = sock_sendmsg(sock, msg_sys, total_len);
2072 	/*
2073 	 * If this is sendmmsg() and sending to current destination address was
2074 	 * successful, remember it.
2075 	 */
2076 	if (used_address && err >= 0) {
2077 		used_address->name_len = msg_sys->msg_namelen;
2078 		if (msg_sys->msg_name)
2079 			memcpy(&used_address->name, msg_sys->msg_name,
2080 			       used_address->name_len);
2081 	}
2082 
2083 out_freectl:
2084 	if (ctl_buf != ctl)
2085 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2086 out_freeiov:
2087 	if (iov != iovstack)
2088 		kfree(iov);
2089 out:
2090 	return err;
2091 }
2092 
2093 /*
2094  *	BSD sendmsg interface
2095  */
2096 
2097 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2098 {
2099 	int fput_needed, err;
2100 	struct msghdr msg_sys;
2101 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2102 
2103 	if (!sock)
2104 		goto out;
2105 
2106 	err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2107 
2108 	fput_light(sock->file, fput_needed);
2109 out:
2110 	return err;
2111 }
2112 
2113 /*
2114  *	Linux sendmmsg interface
2115  */
2116 
2117 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2118 		   unsigned int flags)
2119 {
2120 	int fput_needed, err, datagrams;
2121 	struct socket *sock;
2122 	struct mmsghdr __user *entry;
2123 	struct compat_mmsghdr __user *compat_entry;
2124 	struct msghdr msg_sys;
2125 	struct used_address used_address;
2126 
2127 	if (vlen > UIO_MAXIOV)
2128 		vlen = UIO_MAXIOV;
2129 
2130 	datagrams = 0;
2131 
2132 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2133 	if (!sock)
2134 		return err;
2135 
2136 	used_address.name_len = UINT_MAX;
2137 	entry = mmsg;
2138 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2139 	err = 0;
2140 
2141 	while (datagrams < vlen) {
2142 		if (MSG_CMSG_COMPAT & flags) {
2143 			err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2144 					    &msg_sys, flags, &used_address);
2145 			if (err < 0)
2146 				break;
2147 			err = __put_user(err, &compat_entry->msg_len);
2148 			++compat_entry;
2149 		} else {
2150 			err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2151 					    &msg_sys, flags, &used_address);
2152 			if (err < 0)
2153 				break;
2154 			err = put_user(err, &entry->msg_len);
2155 			++entry;
2156 		}
2157 
2158 		if (err)
2159 			break;
2160 		++datagrams;
2161 	}
2162 
2163 	fput_light(sock->file, fput_needed);
2164 
2165 	/* We only return an error if no datagrams were able to be sent */
2166 	if (datagrams != 0)
2167 		return datagrams;
2168 
2169 	return err;
2170 }
2171 
2172 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2173 		unsigned int, vlen, unsigned int, flags)
2174 {
2175 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2176 }
2177 
2178 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2179 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2180 {
2181 	struct compat_msghdr __user *msg_compat =
2182 	    (struct compat_msghdr __user *)msg;
2183 	struct iovec iovstack[UIO_FASTIOV];
2184 	struct iovec *iov = iovstack;
2185 	unsigned long cmsg_ptr;
2186 	int err, total_len, len;
2187 
2188 	/* kernel mode address */
2189 	struct sockaddr_storage addr;
2190 
2191 	/* user mode address pointers */
2192 	struct sockaddr __user *uaddr;
2193 	int __user *uaddr_len;
2194 
2195 	if (MSG_CMSG_COMPAT & flags) {
2196 		if (get_compat_msghdr(msg_sys, msg_compat))
2197 			return -EFAULT;
2198 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2199 		return -EFAULT;
2200 
2201 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2202 		err = -EMSGSIZE;
2203 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2204 			goto out;
2205 		err = -ENOMEM;
2206 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2207 			      GFP_KERNEL);
2208 		if (!iov)
2209 			goto out;
2210 	}
2211 
2212 	/*
2213 	 *      Save the user-mode address (verify_iovec will change the
2214 	 *      kernel msghdr to use the kernel address space)
2215 	 */
2216 
2217 	uaddr = (__force void __user *)msg_sys->msg_name;
2218 	uaddr_len = COMPAT_NAMELEN(msg);
2219 	if (MSG_CMSG_COMPAT & flags) {
2220 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2221 	} else
2222 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2223 	if (err < 0)
2224 		goto out_freeiov;
2225 	total_len = err;
2226 
2227 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2228 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2229 
2230 	if (sock->file->f_flags & O_NONBLOCK)
2231 		flags |= MSG_DONTWAIT;
2232 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2233 							  total_len, flags);
2234 	if (err < 0)
2235 		goto out_freeiov;
2236 	len = err;
2237 
2238 	if (uaddr != NULL) {
2239 		err = move_addr_to_user(&addr,
2240 					msg_sys->msg_namelen, uaddr,
2241 					uaddr_len);
2242 		if (err < 0)
2243 			goto out_freeiov;
2244 	}
2245 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2246 			 COMPAT_FLAGS(msg));
2247 	if (err)
2248 		goto out_freeiov;
2249 	if (MSG_CMSG_COMPAT & flags)
2250 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2251 				 &msg_compat->msg_controllen);
2252 	else
2253 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2254 				 &msg->msg_controllen);
2255 	if (err)
2256 		goto out_freeiov;
2257 	err = len;
2258 
2259 out_freeiov:
2260 	if (iov != iovstack)
2261 		kfree(iov);
2262 out:
2263 	return err;
2264 }
2265 
2266 /*
2267  *	BSD recvmsg interface
2268  */
2269 
2270 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2271 		unsigned int, flags)
2272 {
2273 	int fput_needed, err;
2274 	struct msghdr msg_sys;
2275 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2276 
2277 	if (!sock)
2278 		goto out;
2279 
2280 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2281 
2282 	fput_light(sock->file, fput_needed);
2283 out:
2284 	return err;
2285 }
2286 
2287 /*
2288  *     Linux recvmmsg interface
2289  */
2290 
2291 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2292 		   unsigned int flags, struct timespec *timeout)
2293 {
2294 	int fput_needed, err, datagrams;
2295 	struct socket *sock;
2296 	struct mmsghdr __user *entry;
2297 	struct compat_mmsghdr __user *compat_entry;
2298 	struct msghdr msg_sys;
2299 	struct timespec end_time;
2300 
2301 	if (timeout &&
2302 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2303 				    timeout->tv_nsec))
2304 		return -EINVAL;
2305 
2306 	datagrams = 0;
2307 
2308 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2309 	if (!sock)
2310 		return err;
2311 
2312 	err = sock_error(sock->sk);
2313 	if (err)
2314 		goto out_put;
2315 
2316 	entry = mmsg;
2317 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2318 
2319 	while (datagrams < vlen) {
2320 		/*
2321 		 * No need to ask LSM for more than the first datagram.
2322 		 */
2323 		if (MSG_CMSG_COMPAT & flags) {
2324 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2325 					    &msg_sys, flags & ~MSG_WAITFORONE,
2326 					    datagrams);
2327 			if (err < 0)
2328 				break;
2329 			err = __put_user(err, &compat_entry->msg_len);
2330 			++compat_entry;
2331 		} else {
2332 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2333 					    &msg_sys, flags & ~MSG_WAITFORONE,
2334 					    datagrams);
2335 			if (err < 0)
2336 				break;
2337 			err = put_user(err, &entry->msg_len);
2338 			++entry;
2339 		}
2340 
2341 		if (err)
2342 			break;
2343 		++datagrams;
2344 
2345 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2346 		if (flags & MSG_WAITFORONE)
2347 			flags |= MSG_DONTWAIT;
2348 
2349 		if (timeout) {
2350 			ktime_get_ts(timeout);
2351 			*timeout = timespec_sub(end_time, *timeout);
2352 			if (timeout->tv_sec < 0) {
2353 				timeout->tv_sec = timeout->tv_nsec = 0;
2354 				break;
2355 			}
2356 
2357 			/* Timeout, return less than vlen datagrams */
2358 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2359 				break;
2360 		}
2361 
2362 		/* Out of band data, return right away */
2363 		if (msg_sys.msg_flags & MSG_OOB)
2364 			break;
2365 	}
2366 
2367 out_put:
2368 	fput_light(sock->file, fput_needed);
2369 
2370 	if (err == 0)
2371 		return datagrams;
2372 
2373 	if (datagrams != 0) {
2374 		/*
2375 		 * We may return less entries than requested (vlen) if the
2376 		 * sock is non block and there aren't enough datagrams...
2377 		 */
2378 		if (err != -EAGAIN) {
2379 			/*
2380 			 * ... or  if recvmsg returns an error after we
2381 			 * received some datagrams, where we record the
2382 			 * error to return on the next call or if the
2383 			 * app asks about it using getsockopt(SO_ERROR).
2384 			 */
2385 			sock->sk->sk_err = -err;
2386 		}
2387 
2388 		return datagrams;
2389 	}
2390 
2391 	return err;
2392 }
2393 
2394 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2395 		unsigned int, vlen, unsigned int, flags,
2396 		struct timespec __user *, timeout)
2397 {
2398 	int datagrams;
2399 	struct timespec timeout_sys;
2400 
2401 	if (!timeout)
2402 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2403 
2404 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2405 		return -EFAULT;
2406 
2407 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2408 
2409 	if (datagrams > 0 &&
2410 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2411 		datagrams = -EFAULT;
2412 
2413 	return datagrams;
2414 }
2415 
2416 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2417 /* Argument list sizes for sys_socketcall */
2418 #define AL(x) ((x) * sizeof(unsigned long))
2419 static const unsigned char nargs[21] = {
2420 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2421 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2422 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2423 	AL(4), AL(5), AL(4)
2424 };
2425 
2426 #undef AL
2427 
2428 /*
2429  *	System call vectors.
2430  *
2431  *	Argument checking cleaned up. Saved 20% in size.
2432  *  This function doesn't need to set the kernel lock because
2433  *  it is set by the callees.
2434  */
2435 
2436 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2437 {
2438 	unsigned long a[6];
2439 	unsigned long a0, a1;
2440 	int err;
2441 	unsigned int len;
2442 
2443 	if (call < 1 || call > SYS_SENDMMSG)
2444 		return -EINVAL;
2445 
2446 	len = nargs[call];
2447 	if (len > sizeof(a))
2448 		return -EINVAL;
2449 
2450 	/* copy_from_user should be SMP safe. */
2451 	if (copy_from_user(a, args, len))
2452 		return -EFAULT;
2453 
2454 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2455 
2456 	a0 = a[0];
2457 	a1 = a[1];
2458 
2459 	switch (call) {
2460 	case SYS_SOCKET:
2461 		err = sys_socket(a0, a1, a[2]);
2462 		break;
2463 	case SYS_BIND:
2464 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2465 		break;
2466 	case SYS_CONNECT:
2467 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2468 		break;
2469 	case SYS_LISTEN:
2470 		err = sys_listen(a0, a1);
2471 		break;
2472 	case SYS_ACCEPT:
2473 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2474 				  (int __user *)a[2], 0);
2475 		break;
2476 	case SYS_GETSOCKNAME:
2477 		err =
2478 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2479 				    (int __user *)a[2]);
2480 		break;
2481 	case SYS_GETPEERNAME:
2482 		err =
2483 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2484 				    (int __user *)a[2]);
2485 		break;
2486 	case SYS_SOCKETPAIR:
2487 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2488 		break;
2489 	case SYS_SEND:
2490 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2491 		break;
2492 	case SYS_SENDTO:
2493 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2494 				 (struct sockaddr __user *)a[4], a[5]);
2495 		break;
2496 	case SYS_RECV:
2497 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2498 		break;
2499 	case SYS_RECVFROM:
2500 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2501 				   (struct sockaddr __user *)a[4],
2502 				   (int __user *)a[5]);
2503 		break;
2504 	case SYS_SHUTDOWN:
2505 		err = sys_shutdown(a0, a1);
2506 		break;
2507 	case SYS_SETSOCKOPT:
2508 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2509 		break;
2510 	case SYS_GETSOCKOPT:
2511 		err =
2512 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2513 				   (int __user *)a[4]);
2514 		break;
2515 	case SYS_SENDMSG:
2516 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2517 		break;
2518 	case SYS_SENDMMSG:
2519 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2520 		break;
2521 	case SYS_RECVMSG:
2522 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2523 		break;
2524 	case SYS_RECVMMSG:
2525 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2526 				   (struct timespec __user *)a[4]);
2527 		break;
2528 	case SYS_ACCEPT4:
2529 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2530 				  (int __user *)a[2], a[3]);
2531 		break;
2532 	default:
2533 		err = -EINVAL;
2534 		break;
2535 	}
2536 	return err;
2537 }
2538 
2539 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2540 
2541 /**
2542  *	sock_register - add a socket protocol handler
2543  *	@ops: description of protocol
2544  *
2545  *	This function is called by a protocol handler that wants to
2546  *	advertise its address family, and have it linked into the
2547  *	socket interface. The value ops->family coresponds to the
2548  *	socket system call protocol family.
2549  */
2550 int sock_register(const struct net_proto_family *ops)
2551 {
2552 	int err;
2553 
2554 	if (ops->family >= NPROTO) {
2555 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2556 		       NPROTO);
2557 		return -ENOBUFS;
2558 	}
2559 
2560 	spin_lock(&net_family_lock);
2561 	if (rcu_dereference_protected(net_families[ops->family],
2562 				      lockdep_is_held(&net_family_lock)))
2563 		err = -EEXIST;
2564 	else {
2565 		rcu_assign_pointer(net_families[ops->family], ops);
2566 		err = 0;
2567 	}
2568 	spin_unlock(&net_family_lock);
2569 
2570 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2571 	return err;
2572 }
2573 EXPORT_SYMBOL(sock_register);
2574 
2575 /**
2576  *	sock_unregister - remove a protocol handler
2577  *	@family: protocol family to remove
2578  *
2579  *	This function is called by a protocol handler that wants to
2580  *	remove its address family, and have it unlinked from the
2581  *	new socket creation.
2582  *
2583  *	If protocol handler is a module, then it can use module reference
2584  *	counts to protect against new references. If protocol handler is not
2585  *	a module then it needs to provide its own protection in
2586  *	the ops->create routine.
2587  */
2588 void sock_unregister(int family)
2589 {
2590 	BUG_ON(family < 0 || family >= NPROTO);
2591 
2592 	spin_lock(&net_family_lock);
2593 	RCU_INIT_POINTER(net_families[family], NULL);
2594 	spin_unlock(&net_family_lock);
2595 
2596 	synchronize_rcu();
2597 
2598 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2599 }
2600 EXPORT_SYMBOL(sock_unregister);
2601 
2602 static int __init sock_init(void)
2603 {
2604 	int err;
2605 	/*
2606 	 *      Initialize the network sysctl infrastructure.
2607 	 */
2608 	err = net_sysctl_init();
2609 	if (err)
2610 		goto out;
2611 
2612 	/*
2613 	 *      Initialize skbuff SLAB cache
2614 	 */
2615 	skb_init();
2616 
2617 	/*
2618 	 *      Initialize the protocols module.
2619 	 */
2620 
2621 	init_inodecache();
2622 
2623 	err = register_filesystem(&sock_fs_type);
2624 	if (err)
2625 		goto out_fs;
2626 	sock_mnt = kern_mount(&sock_fs_type);
2627 	if (IS_ERR(sock_mnt)) {
2628 		err = PTR_ERR(sock_mnt);
2629 		goto out_mount;
2630 	}
2631 
2632 	/* The real protocol initialization is performed in later initcalls.
2633 	 */
2634 
2635 #ifdef CONFIG_NETFILTER
2636 	netfilter_init();
2637 #endif
2638 
2639 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2640 	skb_timestamping_init();
2641 #endif
2642 
2643 out:
2644 	return err;
2645 
2646 out_mount:
2647 	unregister_filesystem(&sock_fs_type);
2648 out_fs:
2649 	goto out;
2650 }
2651 
2652 core_initcall(sock_init);	/* early initcall */
2653 
2654 #ifdef CONFIG_PROC_FS
2655 void socket_seq_show(struct seq_file *seq)
2656 {
2657 	int cpu;
2658 	int counter = 0;
2659 
2660 	for_each_possible_cpu(cpu)
2661 	    counter += per_cpu(sockets_in_use, cpu);
2662 
2663 	/* It can be negative, by the way. 8) */
2664 	if (counter < 0)
2665 		counter = 0;
2666 
2667 	seq_printf(seq, "sockets: used %d\n", counter);
2668 }
2669 #endif				/* CONFIG_PROC_FS */
2670 
2671 #ifdef CONFIG_COMPAT
2672 static int do_siocgstamp(struct net *net, struct socket *sock,
2673 			 unsigned int cmd, void __user *up)
2674 {
2675 	mm_segment_t old_fs = get_fs();
2676 	struct timeval ktv;
2677 	int err;
2678 
2679 	set_fs(KERNEL_DS);
2680 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2681 	set_fs(old_fs);
2682 	if (!err)
2683 		err = compat_put_timeval(&ktv, up);
2684 
2685 	return err;
2686 }
2687 
2688 static int do_siocgstampns(struct net *net, struct socket *sock,
2689 			   unsigned int cmd, void __user *up)
2690 {
2691 	mm_segment_t old_fs = get_fs();
2692 	struct timespec kts;
2693 	int err;
2694 
2695 	set_fs(KERNEL_DS);
2696 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2697 	set_fs(old_fs);
2698 	if (!err)
2699 		err = compat_put_timespec(&kts, up);
2700 
2701 	return err;
2702 }
2703 
2704 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2705 {
2706 	struct ifreq __user *uifr;
2707 	int err;
2708 
2709 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2710 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2711 		return -EFAULT;
2712 
2713 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2714 	if (err)
2715 		return err;
2716 
2717 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2718 		return -EFAULT;
2719 
2720 	return 0;
2721 }
2722 
2723 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2724 {
2725 	struct compat_ifconf ifc32;
2726 	struct ifconf ifc;
2727 	struct ifconf __user *uifc;
2728 	struct compat_ifreq __user *ifr32;
2729 	struct ifreq __user *ifr;
2730 	unsigned int i, j;
2731 	int err;
2732 
2733 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2734 		return -EFAULT;
2735 
2736 	memset(&ifc, 0, sizeof(ifc));
2737 	if (ifc32.ifcbuf == 0) {
2738 		ifc32.ifc_len = 0;
2739 		ifc.ifc_len = 0;
2740 		ifc.ifc_req = NULL;
2741 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2742 	} else {
2743 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2744 			sizeof(struct ifreq);
2745 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2746 		ifc.ifc_len = len;
2747 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2748 		ifr32 = compat_ptr(ifc32.ifcbuf);
2749 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2750 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2751 				return -EFAULT;
2752 			ifr++;
2753 			ifr32++;
2754 		}
2755 	}
2756 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2757 		return -EFAULT;
2758 
2759 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2760 	if (err)
2761 		return err;
2762 
2763 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2764 		return -EFAULT;
2765 
2766 	ifr = ifc.ifc_req;
2767 	ifr32 = compat_ptr(ifc32.ifcbuf);
2768 	for (i = 0, j = 0;
2769 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2770 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2771 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2772 			return -EFAULT;
2773 		ifr32++;
2774 		ifr++;
2775 	}
2776 
2777 	if (ifc32.ifcbuf == 0) {
2778 		/* Translate from 64-bit structure multiple to
2779 		 * a 32-bit one.
2780 		 */
2781 		i = ifc.ifc_len;
2782 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2783 		ifc32.ifc_len = i;
2784 	} else {
2785 		ifc32.ifc_len = i;
2786 	}
2787 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2788 		return -EFAULT;
2789 
2790 	return 0;
2791 }
2792 
2793 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2794 {
2795 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2796 	bool convert_in = false, convert_out = false;
2797 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2798 	struct ethtool_rxnfc __user *rxnfc;
2799 	struct ifreq __user *ifr;
2800 	u32 rule_cnt = 0, actual_rule_cnt;
2801 	u32 ethcmd;
2802 	u32 data;
2803 	int ret;
2804 
2805 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2806 		return -EFAULT;
2807 
2808 	compat_rxnfc = compat_ptr(data);
2809 
2810 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2811 		return -EFAULT;
2812 
2813 	/* Most ethtool structures are defined without padding.
2814 	 * Unfortunately struct ethtool_rxnfc is an exception.
2815 	 */
2816 	switch (ethcmd) {
2817 	default:
2818 		break;
2819 	case ETHTOOL_GRXCLSRLALL:
2820 		/* Buffer size is variable */
2821 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2822 			return -EFAULT;
2823 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2824 			return -ENOMEM;
2825 		buf_size += rule_cnt * sizeof(u32);
2826 		/* fall through */
2827 	case ETHTOOL_GRXRINGS:
2828 	case ETHTOOL_GRXCLSRLCNT:
2829 	case ETHTOOL_GRXCLSRULE:
2830 	case ETHTOOL_SRXCLSRLINS:
2831 		convert_out = true;
2832 		/* fall through */
2833 	case ETHTOOL_SRXCLSRLDEL:
2834 		buf_size += sizeof(struct ethtool_rxnfc);
2835 		convert_in = true;
2836 		break;
2837 	}
2838 
2839 	ifr = compat_alloc_user_space(buf_size);
2840 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2841 
2842 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2843 		return -EFAULT;
2844 
2845 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2846 		     &ifr->ifr_ifru.ifru_data))
2847 		return -EFAULT;
2848 
2849 	if (convert_in) {
2850 		/* We expect there to be holes between fs.m_ext and
2851 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2852 		 */
2853 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2854 			     sizeof(compat_rxnfc->fs.m_ext) !=
2855 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2856 			     sizeof(rxnfc->fs.m_ext));
2857 		BUILD_BUG_ON(
2858 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2859 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2860 			offsetof(struct ethtool_rxnfc, fs.location) -
2861 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2862 
2863 		if (copy_in_user(rxnfc, compat_rxnfc,
2864 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2865 				 (void __user *)rxnfc) ||
2866 		    copy_in_user(&rxnfc->fs.ring_cookie,
2867 				 &compat_rxnfc->fs.ring_cookie,
2868 				 (void __user *)(&rxnfc->fs.location + 1) -
2869 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2870 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2871 				 sizeof(rxnfc->rule_cnt)))
2872 			return -EFAULT;
2873 	}
2874 
2875 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2876 	if (ret)
2877 		return ret;
2878 
2879 	if (convert_out) {
2880 		if (copy_in_user(compat_rxnfc, rxnfc,
2881 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2882 				 (const void __user *)rxnfc) ||
2883 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2884 				 &rxnfc->fs.ring_cookie,
2885 				 (const void __user *)(&rxnfc->fs.location + 1) -
2886 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2887 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2888 				 sizeof(rxnfc->rule_cnt)))
2889 			return -EFAULT;
2890 
2891 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2892 			/* As an optimisation, we only copy the actual
2893 			 * number of rules that the underlying
2894 			 * function returned.  Since Mallory might
2895 			 * change the rule count in user memory, we
2896 			 * check that it is less than the rule count
2897 			 * originally given (as the user buffer size),
2898 			 * which has been range-checked.
2899 			 */
2900 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2901 				return -EFAULT;
2902 			if (actual_rule_cnt < rule_cnt)
2903 				rule_cnt = actual_rule_cnt;
2904 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2905 					 &rxnfc->rule_locs[0],
2906 					 rule_cnt * sizeof(u32)))
2907 				return -EFAULT;
2908 		}
2909 	}
2910 
2911 	return 0;
2912 }
2913 
2914 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2915 {
2916 	void __user *uptr;
2917 	compat_uptr_t uptr32;
2918 	struct ifreq __user *uifr;
2919 
2920 	uifr = compat_alloc_user_space(sizeof(*uifr));
2921 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2922 		return -EFAULT;
2923 
2924 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2925 		return -EFAULT;
2926 
2927 	uptr = compat_ptr(uptr32);
2928 
2929 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2930 		return -EFAULT;
2931 
2932 	return dev_ioctl(net, SIOCWANDEV, uifr);
2933 }
2934 
2935 static int bond_ioctl(struct net *net, unsigned int cmd,
2936 			 struct compat_ifreq __user *ifr32)
2937 {
2938 	struct ifreq kifr;
2939 	struct ifreq __user *uifr;
2940 	mm_segment_t old_fs;
2941 	int err;
2942 	u32 data;
2943 	void __user *datap;
2944 
2945 	switch (cmd) {
2946 	case SIOCBONDENSLAVE:
2947 	case SIOCBONDRELEASE:
2948 	case SIOCBONDSETHWADDR:
2949 	case SIOCBONDCHANGEACTIVE:
2950 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2951 			return -EFAULT;
2952 
2953 		old_fs = get_fs();
2954 		set_fs(KERNEL_DS);
2955 		err = dev_ioctl(net, cmd,
2956 				(struct ifreq __user __force *) &kifr);
2957 		set_fs(old_fs);
2958 
2959 		return err;
2960 	case SIOCBONDSLAVEINFOQUERY:
2961 	case SIOCBONDINFOQUERY:
2962 		uifr = compat_alloc_user_space(sizeof(*uifr));
2963 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2964 			return -EFAULT;
2965 
2966 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2967 			return -EFAULT;
2968 
2969 		datap = compat_ptr(data);
2970 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2971 			return -EFAULT;
2972 
2973 		return dev_ioctl(net, cmd, uifr);
2974 	default:
2975 		return -ENOIOCTLCMD;
2976 	}
2977 }
2978 
2979 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2980 				 struct compat_ifreq __user *u_ifreq32)
2981 {
2982 	struct ifreq __user *u_ifreq64;
2983 	char tmp_buf[IFNAMSIZ];
2984 	void __user *data64;
2985 	u32 data32;
2986 
2987 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2988 			   IFNAMSIZ))
2989 		return -EFAULT;
2990 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2991 		return -EFAULT;
2992 	data64 = compat_ptr(data32);
2993 
2994 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2995 
2996 	/* Don't check these user accesses, just let that get trapped
2997 	 * in the ioctl handler instead.
2998 	 */
2999 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3000 			 IFNAMSIZ))
3001 		return -EFAULT;
3002 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3003 		return -EFAULT;
3004 
3005 	return dev_ioctl(net, cmd, u_ifreq64);
3006 }
3007 
3008 static int dev_ifsioc(struct net *net, struct socket *sock,
3009 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3010 {
3011 	struct ifreq __user *uifr;
3012 	int err;
3013 
3014 	uifr = compat_alloc_user_space(sizeof(*uifr));
3015 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3016 		return -EFAULT;
3017 
3018 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3019 
3020 	if (!err) {
3021 		switch (cmd) {
3022 		case SIOCGIFFLAGS:
3023 		case SIOCGIFMETRIC:
3024 		case SIOCGIFMTU:
3025 		case SIOCGIFMEM:
3026 		case SIOCGIFHWADDR:
3027 		case SIOCGIFINDEX:
3028 		case SIOCGIFADDR:
3029 		case SIOCGIFBRDADDR:
3030 		case SIOCGIFDSTADDR:
3031 		case SIOCGIFNETMASK:
3032 		case SIOCGIFPFLAGS:
3033 		case SIOCGIFTXQLEN:
3034 		case SIOCGMIIPHY:
3035 		case SIOCGMIIREG:
3036 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3037 				err = -EFAULT;
3038 			break;
3039 		}
3040 	}
3041 	return err;
3042 }
3043 
3044 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3045 			struct compat_ifreq __user *uifr32)
3046 {
3047 	struct ifreq ifr;
3048 	struct compat_ifmap __user *uifmap32;
3049 	mm_segment_t old_fs;
3050 	int err;
3051 
3052 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3053 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3054 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3055 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3056 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3057 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3058 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3059 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3060 	if (err)
3061 		return -EFAULT;
3062 
3063 	old_fs = get_fs();
3064 	set_fs(KERNEL_DS);
3065 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3066 	set_fs(old_fs);
3067 
3068 	if (cmd == SIOCGIFMAP && !err) {
3069 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3070 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3071 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3072 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3073 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3074 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3075 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3076 		if (err)
3077 			err = -EFAULT;
3078 	}
3079 	return err;
3080 }
3081 
3082 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3083 {
3084 	void __user *uptr;
3085 	compat_uptr_t uptr32;
3086 	struct ifreq __user *uifr;
3087 
3088 	uifr = compat_alloc_user_space(sizeof(*uifr));
3089 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3090 		return -EFAULT;
3091 
3092 	if (get_user(uptr32, &uifr32->ifr_data))
3093 		return -EFAULT;
3094 
3095 	uptr = compat_ptr(uptr32);
3096 
3097 	if (put_user(uptr, &uifr->ifr_data))
3098 		return -EFAULT;
3099 
3100 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3101 }
3102 
3103 struct rtentry32 {
3104 	u32		rt_pad1;
3105 	struct sockaddr rt_dst;         /* target address               */
3106 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3107 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3108 	unsigned short	rt_flags;
3109 	short		rt_pad2;
3110 	u32		rt_pad3;
3111 	unsigned char	rt_tos;
3112 	unsigned char	rt_class;
3113 	short		rt_pad4;
3114 	short		rt_metric;      /* +1 for binary compatibility! */
3115 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3116 	u32		rt_mtu;         /* per route MTU/Window         */
3117 	u32		rt_window;      /* Window clamping              */
3118 	unsigned short  rt_irtt;        /* Initial RTT                  */
3119 };
3120 
3121 struct in6_rtmsg32 {
3122 	struct in6_addr		rtmsg_dst;
3123 	struct in6_addr		rtmsg_src;
3124 	struct in6_addr		rtmsg_gateway;
3125 	u32			rtmsg_type;
3126 	u16			rtmsg_dst_len;
3127 	u16			rtmsg_src_len;
3128 	u32			rtmsg_metric;
3129 	u32			rtmsg_info;
3130 	u32			rtmsg_flags;
3131 	s32			rtmsg_ifindex;
3132 };
3133 
3134 static int routing_ioctl(struct net *net, struct socket *sock,
3135 			 unsigned int cmd, void __user *argp)
3136 {
3137 	int ret;
3138 	void *r = NULL;
3139 	struct in6_rtmsg r6;
3140 	struct rtentry r4;
3141 	char devname[16];
3142 	u32 rtdev;
3143 	mm_segment_t old_fs = get_fs();
3144 
3145 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3146 		struct in6_rtmsg32 __user *ur6 = argp;
3147 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3148 			3 * sizeof(struct in6_addr));
3149 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3150 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3151 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3152 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3153 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3154 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3155 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3156 
3157 		r = (void *) &r6;
3158 	} else { /* ipv4 */
3159 		struct rtentry32 __user *ur4 = argp;
3160 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3161 					3 * sizeof(struct sockaddr));
3162 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3163 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3164 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3165 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3166 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3167 		ret |= __get_user(rtdev, &(ur4->rt_dev));
3168 		if (rtdev) {
3169 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3170 			r4.rt_dev = (char __user __force *)devname;
3171 			devname[15] = 0;
3172 		} else
3173 			r4.rt_dev = NULL;
3174 
3175 		r = (void *) &r4;
3176 	}
3177 
3178 	if (ret) {
3179 		ret = -EFAULT;
3180 		goto out;
3181 	}
3182 
3183 	set_fs(KERNEL_DS);
3184 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3185 	set_fs(old_fs);
3186 
3187 out:
3188 	return ret;
3189 }
3190 
3191 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3192  * for some operations; this forces use of the newer bridge-utils that
3193  * use compatible ioctls
3194  */
3195 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3196 {
3197 	compat_ulong_t tmp;
3198 
3199 	if (get_user(tmp, argp))
3200 		return -EFAULT;
3201 	if (tmp == BRCTL_GET_VERSION)
3202 		return BRCTL_VERSION + 1;
3203 	return -EINVAL;
3204 }
3205 
3206 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3207 			 unsigned int cmd, unsigned long arg)
3208 {
3209 	void __user *argp = compat_ptr(arg);
3210 	struct sock *sk = sock->sk;
3211 	struct net *net = sock_net(sk);
3212 
3213 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3214 		return siocdevprivate_ioctl(net, cmd, argp);
3215 
3216 	switch (cmd) {
3217 	case SIOCSIFBR:
3218 	case SIOCGIFBR:
3219 		return old_bridge_ioctl(argp);
3220 	case SIOCGIFNAME:
3221 		return dev_ifname32(net, argp);
3222 	case SIOCGIFCONF:
3223 		return dev_ifconf(net, argp);
3224 	case SIOCETHTOOL:
3225 		return ethtool_ioctl(net, argp);
3226 	case SIOCWANDEV:
3227 		return compat_siocwandev(net, argp);
3228 	case SIOCGIFMAP:
3229 	case SIOCSIFMAP:
3230 		return compat_sioc_ifmap(net, cmd, argp);
3231 	case SIOCBONDENSLAVE:
3232 	case SIOCBONDRELEASE:
3233 	case SIOCBONDSETHWADDR:
3234 	case SIOCBONDSLAVEINFOQUERY:
3235 	case SIOCBONDINFOQUERY:
3236 	case SIOCBONDCHANGEACTIVE:
3237 		return bond_ioctl(net, cmd, argp);
3238 	case SIOCADDRT:
3239 	case SIOCDELRT:
3240 		return routing_ioctl(net, sock, cmd, argp);
3241 	case SIOCGSTAMP:
3242 		return do_siocgstamp(net, sock, cmd, argp);
3243 	case SIOCGSTAMPNS:
3244 		return do_siocgstampns(net, sock, cmd, argp);
3245 	case SIOCSHWTSTAMP:
3246 		return compat_siocshwtstamp(net, argp);
3247 
3248 	case FIOSETOWN:
3249 	case SIOCSPGRP:
3250 	case FIOGETOWN:
3251 	case SIOCGPGRP:
3252 	case SIOCBRADDBR:
3253 	case SIOCBRDELBR:
3254 	case SIOCGIFVLAN:
3255 	case SIOCSIFVLAN:
3256 	case SIOCADDDLCI:
3257 	case SIOCDELDLCI:
3258 		return sock_ioctl(file, cmd, arg);
3259 
3260 	case SIOCGIFFLAGS:
3261 	case SIOCSIFFLAGS:
3262 	case SIOCGIFMETRIC:
3263 	case SIOCSIFMETRIC:
3264 	case SIOCGIFMTU:
3265 	case SIOCSIFMTU:
3266 	case SIOCGIFMEM:
3267 	case SIOCSIFMEM:
3268 	case SIOCGIFHWADDR:
3269 	case SIOCSIFHWADDR:
3270 	case SIOCADDMULTI:
3271 	case SIOCDELMULTI:
3272 	case SIOCGIFINDEX:
3273 	case SIOCGIFADDR:
3274 	case SIOCSIFADDR:
3275 	case SIOCSIFHWBROADCAST:
3276 	case SIOCDIFADDR:
3277 	case SIOCGIFBRDADDR:
3278 	case SIOCSIFBRDADDR:
3279 	case SIOCGIFDSTADDR:
3280 	case SIOCSIFDSTADDR:
3281 	case SIOCGIFNETMASK:
3282 	case SIOCSIFNETMASK:
3283 	case SIOCSIFPFLAGS:
3284 	case SIOCGIFPFLAGS:
3285 	case SIOCGIFTXQLEN:
3286 	case SIOCSIFTXQLEN:
3287 	case SIOCBRADDIF:
3288 	case SIOCBRDELIF:
3289 	case SIOCSIFNAME:
3290 	case SIOCGMIIPHY:
3291 	case SIOCGMIIREG:
3292 	case SIOCSMIIREG:
3293 		return dev_ifsioc(net, sock, cmd, argp);
3294 
3295 	case SIOCSARP:
3296 	case SIOCGARP:
3297 	case SIOCDARP:
3298 	case SIOCATMARK:
3299 		return sock_do_ioctl(net, sock, cmd, arg);
3300 	}
3301 
3302 	return -ENOIOCTLCMD;
3303 }
3304 
3305 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3306 			      unsigned long arg)
3307 {
3308 	struct socket *sock = file->private_data;
3309 	int ret = -ENOIOCTLCMD;
3310 	struct sock *sk;
3311 	struct net *net;
3312 
3313 	sk = sock->sk;
3314 	net = sock_net(sk);
3315 
3316 	if (sock->ops->compat_ioctl)
3317 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3318 
3319 	if (ret == -ENOIOCTLCMD &&
3320 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3321 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3322 
3323 	if (ret == -ENOIOCTLCMD)
3324 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3325 
3326 	return ret;
3327 }
3328 #endif
3329 
3330 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3331 {
3332 	return sock->ops->bind(sock, addr, addrlen);
3333 }
3334 EXPORT_SYMBOL(kernel_bind);
3335 
3336 int kernel_listen(struct socket *sock, int backlog)
3337 {
3338 	return sock->ops->listen(sock, backlog);
3339 }
3340 EXPORT_SYMBOL(kernel_listen);
3341 
3342 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3343 {
3344 	struct sock *sk = sock->sk;
3345 	int err;
3346 
3347 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3348 			       newsock);
3349 	if (err < 0)
3350 		goto done;
3351 
3352 	err = sock->ops->accept(sock, *newsock, flags);
3353 	if (err < 0) {
3354 		sock_release(*newsock);
3355 		*newsock = NULL;
3356 		goto done;
3357 	}
3358 
3359 	(*newsock)->ops = sock->ops;
3360 	__module_get((*newsock)->ops->owner);
3361 
3362 done:
3363 	return err;
3364 }
3365 EXPORT_SYMBOL(kernel_accept);
3366 
3367 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3368 		   int flags)
3369 {
3370 	return sock->ops->connect(sock, addr, addrlen, flags);
3371 }
3372 EXPORT_SYMBOL(kernel_connect);
3373 
3374 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3375 			 int *addrlen)
3376 {
3377 	return sock->ops->getname(sock, addr, addrlen, 0);
3378 }
3379 EXPORT_SYMBOL(kernel_getsockname);
3380 
3381 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3382 			 int *addrlen)
3383 {
3384 	return sock->ops->getname(sock, addr, addrlen, 1);
3385 }
3386 EXPORT_SYMBOL(kernel_getpeername);
3387 
3388 int kernel_getsockopt(struct socket *sock, int level, int optname,
3389 			char *optval, int *optlen)
3390 {
3391 	mm_segment_t oldfs = get_fs();
3392 	char __user *uoptval;
3393 	int __user *uoptlen;
3394 	int err;
3395 
3396 	uoptval = (char __user __force *) optval;
3397 	uoptlen = (int __user __force *) optlen;
3398 
3399 	set_fs(KERNEL_DS);
3400 	if (level == SOL_SOCKET)
3401 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3402 	else
3403 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3404 					    uoptlen);
3405 	set_fs(oldfs);
3406 	return err;
3407 }
3408 EXPORT_SYMBOL(kernel_getsockopt);
3409 
3410 int kernel_setsockopt(struct socket *sock, int level, int optname,
3411 			char *optval, unsigned int optlen)
3412 {
3413 	mm_segment_t oldfs = get_fs();
3414 	char __user *uoptval;
3415 	int err;
3416 
3417 	uoptval = (char __user __force *) optval;
3418 
3419 	set_fs(KERNEL_DS);
3420 	if (level == SOL_SOCKET)
3421 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3422 	else
3423 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3424 					    optlen);
3425 	set_fs(oldfs);
3426 	return err;
3427 }
3428 EXPORT_SYMBOL(kernel_setsockopt);
3429 
3430 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3431 		    size_t size, int flags)
3432 {
3433 	if (sock->ops->sendpage)
3434 		return sock->ops->sendpage(sock, page, offset, size, flags);
3435 
3436 	return sock_no_sendpage(sock, page, offset, size, flags);
3437 }
3438 EXPORT_SYMBOL(kernel_sendpage);
3439 
3440 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3441 {
3442 	mm_segment_t oldfs = get_fs();
3443 	int err;
3444 
3445 	set_fs(KERNEL_DS);
3446 	err = sock->ops->ioctl(sock, cmd, arg);
3447 	set_fs(oldfs);
3448 
3449 	return err;
3450 }
3451 EXPORT_SYMBOL(kernel_sock_ioctl);
3452 
3453 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3454 {
3455 	return sock->ops->shutdown(sock, how);
3456 }
3457 EXPORT_SYMBOL(kernel_sock_shutdown);
3458