xref: /linux/net/socket.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/smp_lock.h>
63 #include <linux/socket.h>
64 #include <linux/file.h>
65 #include <linux/net.h>
66 #include <linux/interrupt.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/divert.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
91 
92 #include <net/compat.h>
93 
94 #include <net/sock.h>
95 #include <linux/netfilter.h>
96 
97 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
98 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
99 			 size_t size, loff_t pos);
100 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
101 			  size_t size, loff_t pos);
102 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
103 
104 static int sock_close(struct inode *inode, struct file *file);
105 static unsigned int sock_poll(struct file *file,
106 			      struct poll_table_struct *wait);
107 static long sock_ioctl(struct file *file,
108 		      unsigned int cmd, unsigned long arg);
109 #ifdef CONFIG_COMPAT
110 static long compat_sock_ioctl(struct file *file,
111 		      unsigned int cmd, unsigned long arg);
112 #endif
113 static int sock_fasync(int fd, struct file *filp, int on);
114 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
115 			  unsigned long count, loff_t *ppos);
116 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
117 			  unsigned long count, loff_t *ppos);
118 static ssize_t sock_sendpage(struct file *file, struct page *page,
119 			     int offset, size_t size, loff_t *ppos, int more);
120 
121 /*
122  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
123  *	in the operation structures but are done directly via the socketcall() multiplexor.
124  */
125 
126 static struct file_operations socket_file_ops = {
127 	.owner =	THIS_MODULE,
128 	.llseek =	no_llseek,
129 	.aio_read =	sock_aio_read,
130 	.aio_write =	sock_aio_write,
131 	.poll =		sock_poll,
132 	.unlocked_ioctl = sock_ioctl,
133 #ifdef CONFIG_COMPAT
134 	.compat_ioctl = compat_sock_ioctl,
135 #endif
136 	.mmap =		sock_mmap,
137 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
138 	.release =	sock_close,
139 	.fasync =	sock_fasync,
140 	.readv =	sock_readv,
141 	.writev =	sock_writev,
142 	.sendpage =	sock_sendpage,
143 	.splice_write = generic_splice_sendpage,
144 };
145 
146 /*
147  *	The protocol list. Each protocol is registered in here.
148  */
149 
150 static struct net_proto_family *net_families[NPROTO];
151 
152 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
153 static atomic_t net_family_lockct = ATOMIC_INIT(0);
154 static DEFINE_SPINLOCK(net_family_lock);
155 
156 /* The strategy is: modifications net_family vector are short, do not
157    sleep and veeery rare, but read access should be free of any exclusive
158    locks.
159  */
160 
161 static void net_family_write_lock(void)
162 {
163 	spin_lock(&net_family_lock);
164 	while (atomic_read(&net_family_lockct) != 0) {
165 		spin_unlock(&net_family_lock);
166 
167 		yield();
168 
169 		spin_lock(&net_family_lock);
170 	}
171 }
172 
173 static __inline__ void net_family_write_unlock(void)
174 {
175 	spin_unlock(&net_family_lock);
176 }
177 
178 static __inline__ void net_family_read_lock(void)
179 {
180 	atomic_inc(&net_family_lockct);
181 	spin_unlock_wait(&net_family_lock);
182 }
183 
184 static __inline__ void net_family_read_unlock(void)
185 {
186 	atomic_dec(&net_family_lockct);
187 }
188 
189 #else
190 #define net_family_write_lock() do { } while(0)
191 #define net_family_write_unlock() do { } while(0)
192 #define net_family_read_lock() do { } while(0)
193 #define net_family_read_unlock() do { } while(0)
194 #endif
195 
196 
197 /*
198  *	Statistics counters of the socket lists
199  */
200 
201 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
202 
203 /*
204  *	Support routines. Move socket addresses back and forth across the kernel/user
205  *	divide and look after the messy bits.
206  */
207 
208 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
209 					   16 for IP, 16 for IPX,
210 					   24 for IPv6,
211 					   about 80 for AX.25
212 					   must be at least one bigger than
213 					   the AF_UNIX size (see net/unix/af_unix.c
214 					   :unix_mkname()).
215 					 */
216 
217 /**
218  *	move_addr_to_kernel	-	copy a socket address into kernel space
219  *	@uaddr: Address in user space
220  *	@kaddr: Address in kernel space
221  *	@ulen: Length in user space
222  *
223  *	The address is copied into kernel space. If the provided address is
224  *	too long an error code of -EINVAL is returned. If the copy gives
225  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
226  */
227 
228 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
229 {
230 	if(ulen<0||ulen>MAX_SOCK_ADDR)
231 		return -EINVAL;
232 	if(ulen==0)
233 		return 0;
234 	if(copy_from_user(kaddr,uaddr,ulen))
235 		return -EFAULT;
236 	return audit_sockaddr(ulen, kaddr);
237 }
238 
239 /**
240  *	move_addr_to_user	-	copy an address to user space
241  *	@kaddr: kernel space address
242  *	@klen: length of address in kernel
243  *	@uaddr: user space address
244  *	@ulen: pointer to user length field
245  *
246  *	The value pointed to by ulen on entry is the buffer length available.
247  *	This is overwritten with the buffer space used. -EINVAL is returned
248  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
249  *	is returned if either the buffer or the length field are not
250  *	accessible.
251  *	After copying the data up to the limit the user specifies, the true
252  *	length of the data is written over the length limit the user
253  *	specified. Zero is returned for a success.
254  */
255 
256 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen)
257 {
258 	int err;
259 	int len;
260 
261 	if((err=get_user(len, ulen)))
262 		return err;
263 	if(len>klen)
264 		len=klen;
265 	if(len<0 || len> MAX_SOCK_ADDR)
266 		return -EINVAL;
267 	if(len)
268 	{
269 		if (audit_sockaddr(klen, kaddr))
270 			return -ENOMEM;
271 		if(copy_to_user(uaddr,kaddr,len))
272 			return -EFAULT;
273 	}
274 	/*
275 	 *	"fromlen shall refer to the value before truncation.."
276 	 *			1003.1g
277 	 */
278 	return __put_user(klen, ulen);
279 }
280 
281 #define SOCKFS_MAGIC 0x534F434B
282 
283 static kmem_cache_t * sock_inode_cachep __read_mostly;
284 
285 static struct inode *sock_alloc_inode(struct super_block *sb)
286 {
287 	struct socket_alloc *ei;
288 	ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
289 	if (!ei)
290 		return NULL;
291 	init_waitqueue_head(&ei->socket.wait);
292 
293 	ei->socket.fasync_list = NULL;
294 	ei->socket.state = SS_UNCONNECTED;
295 	ei->socket.flags = 0;
296 	ei->socket.ops = NULL;
297 	ei->socket.sk = NULL;
298 	ei->socket.file = NULL;
299 	ei->socket.flags = 0;
300 
301 	return &ei->vfs_inode;
302 }
303 
304 static void sock_destroy_inode(struct inode *inode)
305 {
306 	kmem_cache_free(sock_inode_cachep,
307 			container_of(inode, struct socket_alloc, vfs_inode));
308 }
309 
310 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
311 {
312 	struct socket_alloc *ei = (struct socket_alloc *) foo;
313 
314 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
315 	    SLAB_CTOR_CONSTRUCTOR)
316 		inode_init_once(&ei->vfs_inode);
317 }
318 
319 static int init_inodecache(void)
320 {
321 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
322 				sizeof(struct socket_alloc),
323 				0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
324 					SLAB_MEM_SPREAD),
325 				init_once, NULL);
326 	if (sock_inode_cachep == NULL)
327 		return -ENOMEM;
328 	return 0;
329 }
330 
331 static struct super_operations sockfs_ops = {
332 	.alloc_inode =	sock_alloc_inode,
333 	.destroy_inode =sock_destroy_inode,
334 	.statfs =	simple_statfs,
335 };
336 
337 static int sockfs_get_sb(struct file_system_type *fs_type,
338 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
339 {
340 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
341 			     mnt);
342 }
343 
344 static struct vfsmount *sock_mnt __read_mostly;
345 
346 static struct file_system_type sock_fs_type = {
347 	.name =		"sockfs",
348 	.get_sb =	sockfs_get_sb,
349 	.kill_sb =	kill_anon_super,
350 };
351 static int sockfs_delete_dentry(struct dentry *dentry)
352 {
353 	return 1;
354 }
355 static struct dentry_operations sockfs_dentry_operations = {
356 	.d_delete =	sockfs_delete_dentry,
357 };
358 
359 /*
360  *	Obtains the first available file descriptor and sets it up for use.
361  *
362  *	These functions create file structures and maps them to fd space
363  *	of the current process. On success it returns file descriptor
364  *	and file struct implicitly stored in sock->file.
365  *	Note that another thread may close file descriptor before we return
366  *	from this function. We use the fact that now we do not refer
367  *	to socket after mapping. If one day we will need it, this
368  *	function will increment ref. count on file by 1.
369  *
370  *	In any case returned fd MAY BE not valid!
371  *	This race condition is unavoidable
372  *	with shared fd spaces, we cannot solve it inside kernel,
373  *	but we take care of internal coherence yet.
374  */
375 
376 static int sock_alloc_fd(struct file **filep)
377 {
378 	int fd;
379 
380 	fd = get_unused_fd();
381 	if (likely(fd >= 0)) {
382 		struct file *file = get_empty_filp();
383 
384 		*filep = file;
385 		if (unlikely(!file)) {
386 			put_unused_fd(fd);
387 			return -ENFILE;
388 		}
389 	} else
390 		*filep = NULL;
391 	return fd;
392 }
393 
394 static int sock_attach_fd(struct socket *sock, struct file *file)
395 {
396 	struct qstr this;
397 	char name[32];
398 
399 	this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
400 	this.name = name;
401 	this.hash = SOCK_INODE(sock)->i_ino;
402 
403 	file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
404 	if (unlikely(!file->f_dentry))
405 		return -ENOMEM;
406 
407 	file->f_dentry->d_op = &sockfs_dentry_operations;
408 	d_add(file->f_dentry, SOCK_INODE(sock));
409 	file->f_vfsmnt = mntget(sock_mnt);
410 	file->f_mapping = file->f_dentry->d_inode->i_mapping;
411 
412 	sock->file = file;
413 	file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
414 	file->f_mode = FMODE_READ | FMODE_WRITE;
415 	file->f_flags = O_RDWR;
416 	file->f_pos = 0;
417 	file->private_data = sock;
418 
419 	return 0;
420 }
421 
422 int sock_map_fd(struct socket *sock)
423 {
424 	struct file *newfile;
425 	int fd = sock_alloc_fd(&newfile);
426 
427 	if (likely(fd >= 0)) {
428 		int err = sock_attach_fd(sock, newfile);
429 
430 		if (unlikely(err < 0)) {
431 			put_filp(newfile);
432 			put_unused_fd(fd);
433 			return err;
434 		}
435 		fd_install(fd, newfile);
436 	}
437 	return fd;
438 }
439 
440 static struct socket *sock_from_file(struct file *file, int *err)
441 {
442 	struct inode *inode;
443 	struct socket *sock;
444 
445 	if (file->f_op == &socket_file_ops)
446 		return file->private_data;	/* set in sock_map_fd */
447 
448 	inode = file->f_dentry->d_inode;
449 	if (!S_ISSOCK(inode->i_mode)) {
450 		*err = -ENOTSOCK;
451 		return NULL;
452 	}
453 
454 	sock = SOCKET_I(inode);
455 	if (sock->file != file) {
456 		printk(KERN_ERR "socki_lookup: socket file changed!\n");
457 		sock->file = file;
458 	}
459 	return sock;
460 }
461 
462 /**
463  *	sockfd_lookup	- 	Go from a file number to its socket slot
464  *	@fd: file handle
465  *	@err: pointer to an error code return
466  *
467  *	The file handle passed in is locked and the socket it is bound
468  *	too is returned. If an error occurs the err pointer is overwritten
469  *	with a negative errno code and NULL is returned. The function checks
470  *	for both invalid handles and passing a handle which is not a socket.
471  *
472  *	On a success the socket object pointer is returned.
473  */
474 
475 struct socket *sockfd_lookup(int fd, int *err)
476 {
477 	struct file *file;
478 	struct socket *sock;
479 
480 	if (!(file = fget(fd))) {
481 		*err = -EBADF;
482 		return NULL;
483 	}
484 	sock = sock_from_file(file, err);
485 	if (!sock)
486 		fput(file);
487 	return sock;
488 }
489 
490 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
491 {
492 	struct file *file;
493 	struct socket *sock;
494 
495 	*err = -EBADF;
496 	file = fget_light(fd, fput_needed);
497 	if (file) {
498 		sock = sock_from_file(file, err);
499 		if (sock)
500 			return sock;
501 		fput_light(file, *fput_needed);
502 	}
503 	return NULL;
504 }
505 
506 /**
507  *	sock_alloc	-	allocate a socket
508  *
509  *	Allocate a new inode and socket object. The two are bound together
510  *	and initialised. The socket is then returned. If we are out of inodes
511  *	NULL is returned.
512  */
513 
514 static struct socket *sock_alloc(void)
515 {
516 	struct inode * inode;
517 	struct socket * sock;
518 
519 	inode = new_inode(sock_mnt->mnt_sb);
520 	if (!inode)
521 		return NULL;
522 
523 	sock = SOCKET_I(inode);
524 
525 	inode->i_mode = S_IFSOCK|S_IRWXUGO;
526 	inode->i_uid = current->fsuid;
527 	inode->i_gid = current->fsgid;
528 
529 	get_cpu_var(sockets_in_use)++;
530 	put_cpu_var(sockets_in_use);
531 	return sock;
532 }
533 
534 /*
535  *	In theory you can't get an open on this inode, but /proc provides
536  *	a back door. Remember to keep it shut otherwise you'll let the
537  *	creepy crawlies in.
538  */
539 
540 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
541 {
542 	return -ENXIO;
543 }
544 
545 const struct file_operations bad_sock_fops = {
546 	.owner = THIS_MODULE,
547 	.open = sock_no_open,
548 };
549 
550 /**
551  *	sock_release	-	close a socket
552  *	@sock: socket to close
553  *
554  *	The socket is released from the protocol stack if it has a release
555  *	callback, and the inode is then released if the socket is bound to
556  *	an inode not a file.
557  */
558 
559 void sock_release(struct socket *sock)
560 {
561 	if (sock->ops) {
562 		struct module *owner = sock->ops->owner;
563 
564 		sock->ops->release(sock);
565 		sock->ops = NULL;
566 		module_put(owner);
567 	}
568 
569 	if (sock->fasync_list)
570 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
571 
572 	get_cpu_var(sockets_in_use)--;
573 	put_cpu_var(sockets_in_use);
574 	if (!sock->file) {
575 		iput(SOCK_INODE(sock));
576 		return;
577 	}
578 	sock->file=NULL;
579 }
580 
581 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
582 				 struct msghdr *msg, size_t size)
583 {
584 	struct sock_iocb *si = kiocb_to_siocb(iocb);
585 	int err;
586 
587 	si->sock = sock;
588 	si->scm = NULL;
589 	si->msg = msg;
590 	si->size = size;
591 
592 	err = security_socket_sendmsg(sock, msg, size);
593 	if (err)
594 		return err;
595 
596 	return sock->ops->sendmsg(iocb, sock, msg, size);
597 }
598 
599 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
600 {
601 	struct kiocb iocb;
602 	struct sock_iocb siocb;
603 	int ret;
604 
605 	init_sync_kiocb(&iocb, NULL);
606 	iocb.private = &siocb;
607 	ret = __sock_sendmsg(&iocb, sock, msg, size);
608 	if (-EIOCBQUEUED == ret)
609 		ret = wait_on_sync_kiocb(&iocb);
610 	return ret;
611 }
612 
613 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
614 		   struct kvec *vec, size_t num, size_t size)
615 {
616 	mm_segment_t oldfs = get_fs();
617 	int result;
618 
619 	set_fs(KERNEL_DS);
620 	/*
621 	 * the following is safe, since for compiler definitions of kvec and
622 	 * iovec are identical, yielding the same in-core layout and alignment
623 	 */
624 	msg->msg_iov = (struct iovec *)vec,
625 	msg->msg_iovlen = num;
626 	result = sock_sendmsg(sock, msg, size);
627 	set_fs(oldfs);
628 	return result;
629 }
630 
631 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
632 				 struct msghdr *msg, size_t size, int flags)
633 {
634 	int err;
635 	struct sock_iocb *si = kiocb_to_siocb(iocb);
636 
637 	si->sock = sock;
638 	si->scm = NULL;
639 	si->msg = msg;
640 	si->size = size;
641 	si->flags = flags;
642 
643 	err = security_socket_recvmsg(sock, msg, size, flags);
644 	if (err)
645 		return err;
646 
647 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
648 }
649 
650 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
651 		 size_t size, int flags)
652 {
653 	struct kiocb iocb;
654 	struct sock_iocb siocb;
655 	int ret;
656 
657         init_sync_kiocb(&iocb, NULL);
658 	iocb.private = &siocb;
659 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
660 	if (-EIOCBQUEUED == ret)
661 		ret = wait_on_sync_kiocb(&iocb);
662 	return ret;
663 }
664 
665 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
666 		   struct kvec *vec, size_t num,
667 		   size_t size, int flags)
668 {
669 	mm_segment_t oldfs = get_fs();
670 	int result;
671 
672 	set_fs(KERNEL_DS);
673 	/*
674 	 * the following is safe, since for compiler definitions of kvec and
675 	 * iovec are identical, yielding the same in-core layout and alignment
676 	 */
677 	msg->msg_iov = (struct iovec *)vec,
678 	msg->msg_iovlen = num;
679 	result = sock_recvmsg(sock, msg, size, flags);
680 	set_fs(oldfs);
681 	return result;
682 }
683 
684 static void sock_aio_dtor(struct kiocb *iocb)
685 {
686 	kfree(iocb->private);
687 }
688 
689 static ssize_t sock_sendpage(struct file *file, struct page *page,
690 			     int offset, size_t size, loff_t *ppos, int more)
691 {
692 	struct socket *sock;
693 	int flags;
694 
695 	sock = file->private_data;
696 
697 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
698 	if (more)
699 		flags |= MSG_MORE;
700 
701 	return sock->ops->sendpage(sock, page, offset, size, flags);
702 }
703 
704 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
705 		char __user *ubuf, size_t size, struct sock_iocb *siocb)
706 {
707 	if (!is_sync_kiocb(iocb)) {
708 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
709 		if (!siocb)
710 			return NULL;
711 		iocb->ki_dtor = sock_aio_dtor;
712 	}
713 
714 	siocb->kiocb = iocb;
715 	siocb->async_iov.iov_base = ubuf;
716 	siocb->async_iov.iov_len = size;
717 
718 	iocb->private = siocb;
719 	return siocb;
720 }
721 
722 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
723 		struct file *file, struct iovec *iov, unsigned long nr_segs)
724 {
725 	struct socket *sock = file->private_data;
726 	size_t size = 0;
727 	int i;
728 
729         for (i = 0 ; i < nr_segs ; i++)
730                 size += iov[i].iov_len;
731 
732 	msg->msg_name = NULL;
733 	msg->msg_namelen = 0;
734 	msg->msg_control = NULL;
735 	msg->msg_controllen = 0;
736 	msg->msg_iov = (struct iovec *) iov;
737 	msg->msg_iovlen = nr_segs;
738 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
739 
740 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
741 }
742 
743 static ssize_t sock_readv(struct file *file, const struct iovec *iov,
744 			  unsigned long nr_segs, loff_t *ppos)
745 {
746 	struct kiocb iocb;
747 	struct sock_iocb siocb;
748 	struct msghdr msg;
749 	int ret;
750 
751         init_sync_kiocb(&iocb, NULL);
752 	iocb.private = &siocb;
753 
754 	ret = do_sock_read(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
755 	if (-EIOCBQUEUED == ret)
756 		ret = wait_on_sync_kiocb(&iocb);
757 	return ret;
758 }
759 
760 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
761 			 size_t count, loff_t pos)
762 {
763 	struct sock_iocb siocb, *x;
764 
765 	if (pos != 0)
766 		return -ESPIPE;
767 	if (count == 0)		/* Match SYS5 behaviour */
768 		return 0;
769 
770 	x = alloc_sock_iocb(iocb, ubuf, count, &siocb);
771 	if (!x)
772 		return -ENOMEM;
773 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp,
774 			&x->async_iov, 1);
775 }
776 
777 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
778 		struct file *file, struct iovec *iov, unsigned long nr_segs)
779 {
780 	struct socket *sock = file->private_data;
781 	size_t size = 0;
782 	int i;
783 
784         for (i = 0 ; i < nr_segs ; i++)
785                 size += iov[i].iov_len;
786 
787 	msg->msg_name = NULL;
788 	msg->msg_namelen = 0;
789 	msg->msg_control = NULL;
790 	msg->msg_controllen = 0;
791 	msg->msg_iov = (struct iovec *) iov;
792 	msg->msg_iovlen = nr_segs;
793 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
794 	if (sock->type == SOCK_SEQPACKET)
795 		msg->msg_flags |= MSG_EOR;
796 
797 	return __sock_sendmsg(iocb, sock, msg, size);
798 }
799 
800 static ssize_t sock_writev(struct file *file, const struct iovec *iov,
801 			   unsigned long nr_segs, loff_t *ppos)
802 {
803 	struct msghdr msg;
804 	struct kiocb iocb;
805 	struct sock_iocb siocb;
806 	int ret;
807 
808 	init_sync_kiocb(&iocb, NULL);
809 	iocb.private = &siocb;
810 
811 	ret = do_sock_write(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
812 	if (-EIOCBQUEUED == ret)
813 		ret = wait_on_sync_kiocb(&iocb);
814 	return ret;
815 }
816 
817 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
818 			  size_t count, loff_t pos)
819 {
820 	struct sock_iocb siocb, *x;
821 
822 	if (pos != 0)
823 		return -ESPIPE;
824 	if (count == 0)		/* Match SYS5 behaviour */
825 		return 0;
826 
827 	x = alloc_sock_iocb(iocb, (void __user *)ubuf, count, &siocb);
828 	if (!x)
829 		return -ENOMEM;
830 
831 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp,
832 			&x->async_iov, 1);
833 }
834 
835 
836 /*
837  * Atomic setting of ioctl hooks to avoid race
838  * with module unload.
839  */
840 
841 static DEFINE_MUTEX(br_ioctl_mutex);
842 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL;
843 
844 void brioctl_set(int (*hook)(unsigned int, void __user *))
845 {
846 	mutex_lock(&br_ioctl_mutex);
847 	br_ioctl_hook = hook;
848 	mutex_unlock(&br_ioctl_mutex);
849 }
850 EXPORT_SYMBOL(brioctl_set);
851 
852 static DEFINE_MUTEX(vlan_ioctl_mutex);
853 static int (*vlan_ioctl_hook)(void __user *arg);
854 
855 void vlan_ioctl_set(int (*hook)(void __user *))
856 {
857 	mutex_lock(&vlan_ioctl_mutex);
858 	vlan_ioctl_hook = hook;
859 	mutex_unlock(&vlan_ioctl_mutex);
860 }
861 EXPORT_SYMBOL(vlan_ioctl_set);
862 
863 static DEFINE_MUTEX(dlci_ioctl_mutex);
864 static int (*dlci_ioctl_hook)(unsigned int, void __user *);
865 
866 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *))
867 {
868 	mutex_lock(&dlci_ioctl_mutex);
869 	dlci_ioctl_hook = hook;
870 	mutex_unlock(&dlci_ioctl_mutex);
871 }
872 EXPORT_SYMBOL(dlci_ioctl_set);
873 
874 /*
875  *	With an ioctl, arg may well be a user mode pointer, but we don't know
876  *	what to do with it - that's up to the protocol still.
877  */
878 
879 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
880 {
881 	struct socket *sock;
882 	void __user *argp = (void __user *)arg;
883 	int pid, err;
884 
885 	sock = file->private_data;
886 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
887 		err = dev_ioctl(cmd, argp);
888 	} else
889 #ifdef CONFIG_WIRELESS_EXT
890 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
891 		err = dev_ioctl(cmd, argp);
892 	} else
893 #endif	/* CONFIG_WIRELESS_EXT */
894 	switch (cmd) {
895 		case FIOSETOWN:
896 		case SIOCSPGRP:
897 			err = -EFAULT;
898 			if (get_user(pid, (int __user *)argp))
899 				break;
900 			err = f_setown(sock->file, pid, 1);
901 			break;
902 		case FIOGETOWN:
903 		case SIOCGPGRP:
904 			err = put_user(sock->file->f_owner.pid, (int __user *)argp);
905 			break;
906 		case SIOCGIFBR:
907 		case SIOCSIFBR:
908 		case SIOCBRADDBR:
909 		case SIOCBRDELBR:
910 			err = -ENOPKG;
911 			if (!br_ioctl_hook)
912 				request_module("bridge");
913 
914 			mutex_lock(&br_ioctl_mutex);
915 			if (br_ioctl_hook)
916 				err = br_ioctl_hook(cmd, argp);
917 			mutex_unlock(&br_ioctl_mutex);
918 			break;
919 		case SIOCGIFVLAN:
920 		case SIOCSIFVLAN:
921 			err = -ENOPKG;
922 			if (!vlan_ioctl_hook)
923 				request_module("8021q");
924 
925 			mutex_lock(&vlan_ioctl_mutex);
926 			if (vlan_ioctl_hook)
927 				err = vlan_ioctl_hook(argp);
928 			mutex_unlock(&vlan_ioctl_mutex);
929 			break;
930 		case SIOCGIFDIVERT:
931 		case SIOCSIFDIVERT:
932 		/* Convert this to call through a hook */
933 			err = divert_ioctl(cmd, argp);
934 			break;
935 		case SIOCADDDLCI:
936 		case SIOCDELDLCI:
937 			err = -ENOPKG;
938 			if (!dlci_ioctl_hook)
939 				request_module("dlci");
940 
941 			if (dlci_ioctl_hook) {
942 				mutex_lock(&dlci_ioctl_mutex);
943 				err = dlci_ioctl_hook(cmd, argp);
944 				mutex_unlock(&dlci_ioctl_mutex);
945 			}
946 			break;
947 		default:
948 			err = sock->ops->ioctl(sock, cmd, arg);
949 
950 			/*
951 			 * If this ioctl is unknown try to hand it down
952 			 * to the NIC driver.
953 			 */
954 			if (err == -ENOIOCTLCMD)
955 				err = dev_ioctl(cmd, argp);
956 			break;
957 	}
958 	return err;
959 }
960 
961 int sock_create_lite(int family, int type, int protocol, struct socket **res)
962 {
963 	int err;
964 	struct socket *sock = NULL;
965 
966 	err = security_socket_create(family, type, protocol, 1);
967 	if (err)
968 		goto out;
969 
970 	sock = sock_alloc();
971 	if (!sock) {
972 		err = -ENOMEM;
973 		goto out;
974 	}
975 
976 	security_socket_post_create(sock, family, type, protocol, 1);
977 	sock->type = type;
978 out:
979 	*res = sock;
980 	return err;
981 }
982 
983 /* No kernel lock held - perfect */
984 static unsigned int sock_poll(struct file *file, poll_table * wait)
985 {
986 	struct socket *sock;
987 
988 	/*
989 	 *	We can't return errors to poll, so it's either yes or no.
990 	 */
991 	sock = file->private_data;
992 	return sock->ops->poll(file, sock, wait);
993 }
994 
995 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
996 {
997 	struct socket *sock = file->private_data;
998 
999 	return sock->ops->mmap(file, sock, vma);
1000 }
1001 
1002 static int sock_close(struct inode *inode, struct file *filp)
1003 {
1004 	/*
1005 	 *	It was possible the inode is NULL we were
1006 	 *	closing an unfinished socket.
1007 	 */
1008 
1009 	if (!inode)
1010 	{
1011 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1012 		return 0;
1013 	}
1014 	sock_fasync(-1, filp, 0);
1015 	sock_release(SOCKET_I(inode));
1016 	return 0;
1017 }
1018 
1019 /*
1020  *	Update the socket async list
1021  *
1022  *	Fasync_list locking strategy.
1023  *
1024  *	1. fasync_list is modified only under process context socket lock
1025  *	   i.e. under semaphore.
1026  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1027  *	   or under socket lock.
1028  *	3. fasync_list can be used from softirq context, so that
1029  *	   modification under socket lock have to be enhanced with
1030  *	   write_lock_bh(&sk->sk_callback_lock).
1031  *							--ANK (990710)
1032  */
1033 
1034 static int sock_fasync(int fd, struct file *filp, int on)
1035 {
1036 	struct fasync_struct *fa, *fna=NULL, **prev;
1037 	struct socket *sock;
1038 	struct sock *sk;
1039 
1040 	if (on)
1041 	{
1042 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1043 		if(fna==NULL)
1044 			return -ENOMEM;
1045 	}
1046 
1047 	sock = filp->private_data;
1048 
1049 	if ((sk=sock->sk) == NULL) {
1050 		kfree(fna);
1051 		return -EINVAL;
1052 	}
1053 
1054 	lock_sock(sk);
1055 
1056 	prev=&(sock->fasync_list);
1057 
1058 	for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
1059 		if (fa->fa_file==filp)
1060 			break;
1061 
1062 	if(on)
1063 	{
1064 		if(fa!=NULL)
1065 		{
1066 			write_lock_bh(&sk->sk_callback_lock);
1067 			fa->fa_fd=fd;
1068 			write_unlock_bh(&sk->sk_callback_lock);
1069 
1070 			kfree(fna);
1071 			goto out;
1072 		}
1073 		fna->fa_file=filp;
1074 		fna->fa_fd=fd;
1075 		fna->magic=FASYNC_MAGIC;
1076 		fna->fa_next=sock->fasync_list;
1077 		write_lock_bh(&sk->sk_callback_lock);
1078 		sock->fasync_list=fna;
1079 		write_unlock_bh(&sk->sk_callback_lock);
1080 	}
1081 	else
1082 	{
1083 		if (fa!=NULL)
1084 		{
1085 			write_lock_bh(&sk->sk_callback_lock);
1086 			*prev=fa->fa_next;
1087 			write_unlock_bh(&sk->sk_callback_lock);
1088 			kfree(fa);
1089 		}
1090 	}
1091 
1092 out:
1093 	release_sock(sock->sk);
1094 	return 0;
1095 }
1096 
1097 /* This function may be called only under socket lock or callback_lock */
1098 
1099 int sock_wake_async(struct socket *sock, int how, int band)
1100 {
1101 	if (!sock || !sock->fasync_list)
1102 		return -1;
1103 	switch (how)
1104 	{
1105 	case 1:
1106 
1107 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1108 			break;
1109 		goto call_kill;
1110 	case 2:
1111 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1112 			break;
1113 		/* fall through */
1114 	case 0:
1115 	call_kill:
1116 		__kill_fasync(sock->fasync_list, SIGIO, band);
1117 		break;
1118 	case 3:
1119 		__kill_fasync(sock->fasync_list, SIGURG, band);
1120 	}
1121 	return 0;
1122 }
1123 
1124 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
1125 {
1126 	int err;
1127 	struct socket *sock;
1128 
1129 	/*
1130 	 *	Check protocol is in range
1131 	 */
1132 	if (family < 0 || family >= NPROTO)
1133 		return -EAFNOSUPPORT;
1134 	if (type < 0 || type >= SOCK_MAX)
1135 		return -EINVAL;
1136 
1137 	/* Compatibility.
1138 
1139 	   This uglymoron is moved from INET layer to here to avoid
1140 	   deadlock in module load.
1141 	 */
1142 	if (family == PF_INET && type == SOCK_PACKET) {
1143 		static int warned;
1144 		if (!warned) {
1145 			warned = 1;
1146 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
1147 		}
1148 		family = PF_PACKET;
1149 	}
1150 
1151 	err = security_socket_create(family, type, protocol, kern);
1152 	if (err)
1153 		return err;
1154 
1155 #if defined(CONFIG_KMOD)
1156 	/* Attempt to load a protocol module if the find failed.
1157 	 *
1158 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1159 	 * requested real, full-featured networking support upon configuration.
1160 	 * Otherwise module support will break!
1161 	 */
1162 	if (net_families[family]==NULL)
1163 	{
1164 		request_module("net-pf-%d",family);
1165 	}
1166 #endif
1167 
1168 	net_family_read_lock();
1169 	if (net_families[family] == NULL) {
1170 		err = -EAFNOSUPPORT;
1171 		goto out;
1172 	}
1173 
1174 /*
1175  *	Allocate the socket and allow the family to set things up. if
1176  *	the protocol is 0, the family is instructed to select an appropriate
1177  *	default.
1178  */
1179 
1180 	if (!(sock = sock_alloc())) {
1181 		if (net_ratelimit())
1182 			printk(KERN_WARNING "socket: no more sockets\n");
1183 		err = -ENFILE;		/* Not exactly a match, but its the
1184 					   closest posix thing */
1185 		goto out;
1186 	}
1187 
1188 	sock->type  = type;
1189 
1190 	/*
1191 	 * We will call the ->create function, that possibly is in a loadable
1192 	 * module, so we have to bump that loadable module refcnt first.
1193 	 */
1194 	err = -EAFNOSUPPORT;
1195 	if (!try_module_get(net_families[family]->owner))
1196 		goto out_release;
1197 
1198 	if ((err = net_families[family]->create(sock, protocol)) < 0) {
1199 		sock->ops = NULL;
1200 		goto out_module_put;
1201 	}
1202 
1203 	/*
1204 	 * Now to bump the refcnt of the [loadable] module that owns this
1205 	 * socket at sock_release time we decrement its refcnt.
1206 	 */
1207 	if (!try_module_get(sock->ops->owner)) {
1208 		sock->ops = NULL;
1209 		goto out_module_put;
1210 	}
1211 	/*
1212 	 * Now that we're done with the ->create function, the [loadable]
1213 	 * module can have its refcnt decremented
1214 	 */
1215 	module_put(net_families[family]->owner);
1216 	*res = sock;
1217 	security_socket_post_create(sock, family, type, protocol, kern);
1218 
1219 out:
1220 	net_family_read_unlock();
1221 	return err;
1222 out_module_put:
1223 	module_put(net_families[family]->owner);
1224 out_release:
1225 	sock_release(sock);
1226 	goto out;
1227 }
1228 
1229 int sock_create(int family, int type, int protocol, struct socket **res)
1230 {
1231 	return __sock_create(family, type, protocol, res, 0);
1232 }
1233 
1234 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1235 {
1236 	return __sock_create(family, type, protocol, res, 1);
1237 }
1238 
1239 asmlinkage long sys_socket(int family, int type, int protocol)
1240 {
1241 	int retval;
1242 	struct socket *sock;
1243 
1244 	retval = sock_create(family, type, protocol, &sock);
1245 	if (retval < 0)
1246 		goto out;
1247 
1248 	retval = sock_map_fd(sock);
1249 	if (retval < 0)
1250 		goto out_release;
1251 
1252 out:
1253 	/* It may be already another descriptor 8) Not kernel problem. */
1254 	return retval;
1255 
1256 out_release:
1257 	sock_release(sock);
1258 	return retval;
1259 }
1260 
1261 /*
1262  *	Create a pair of connected sockets.
1263  */
1264 
1265 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1266 {
1267 	struct socket *sock1, *sock2;
1268 	int fd1, fd2, err;
1269 
1270 	/*
1271 	 * Obtain the first socket and check if the underlying protocol
1272 	 * supports the socketpair call.
1273 	 */
1274 
1275 	err = sock_create(family, type, protocol, &sock1);
1276 	if (err < 0)
1277 		goto out;
1278 
1279 	err = sock_create(family, type, protocol, &sock2);
1280 	if (err < 0)
1281 		goto out_release_1;
1282 
1283 	err = sock1->ops->socketpair(sock1, sock2);
1284 	if (err < 0)
1285 		goto out_release_both;
1286 
1287 	fd1 = fd2 = -1;
1288 
1289 	err = sock_map_fd(sock1);
1290 	if (err < 0)
1291 		goto out_release_both;
1292 	fd1 = err;
1293 
1294 	err = sock_map_fd(sock2);
1295 	if (err < 0)
1296 		goto out_close_1;
1297 	fd2 = err;
1298 
1299 	/* fd1 and fd2 may be already another descriptors.
1300 	 * Not kernel problem.
1301 	 */
1302 
1303 	err = put_user(fd1, &usockvec[0]);
1304 	if (!err)
1305 		err = put_user(fd2, &usockvec[1]);
1306 	if (!err)
1307 		return 0;
1308 
1309 	sys_close(fd2);
1310 	sys_close(fd1);
1311 	return err;
1312 
1313 out_close_1:
1314         sock_release(sock2);
1315 	sys_close(fd1);
1316 	return err;
1317 
1318 out_release_both:
1319         sock_release(sock2);
1320 out_release_1:
1321         sock_release(sock1);
1322 out:
1323 	return err;
1324 }
1325 
1326 
1327 /*
1328  *	Bind a name to a socket. Nothing much to do here since it's
1329  *	the protocol's responsibility to handle the local address.
1330  *
1331  *	We move the socket address to kernel space before we call
1332  *	the protocol layer (having also checked the address is ok).
1333  */
1334 
1335 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1336 {
1337 	struct socket *sock;
1338 	char address[MAX_SOCK_ADDR];
1339 	int err, fput_needed;
1340 
1341 	if((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL)
1342 	{
1343 		if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) {
1344 			err = security_socket_bind(sock, (struct sockaddr *)address, addrlen);
1345 			if (!err)
1346 				err = sock->ops->bind(sock,
1347 					(struct sockaddr *)address, addrlen);
1348 		}
1349 		fput_light(sock->file, fput_needed);
1350 	}
1351 	return err;
1352 }
1353 
1354 
1355 /*
1356  *	Perform a listen. Basically, we allow the protocol to do anything
1357  *	necessary for a listen, and if that works, we mark the socket as
1358  *	ready for listening.
1359  */
1360 
1361 int sysctl_somaxconn = SOMAXCONN;
1362 
1363 asmlinkage long sys_listen(int fd, int backlog)
1364 {
1365 	struct socket *sock;
1366 	int err, fput_needed;
1367 
1368 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1369 		if ((unsigned) backlog > sysctl_somaxconn)
1370 			backlog = sysctl_somaxconn;
1371 
1372 		err = security_socket_listen(sock, backlog);
1373 		if (!err)
1374 			err = sock->ops->listen(sock, backlog);
1375 
1376 		fput_light(sock->file, fput_needed);
1377 	}
1378 	return err;
1379 }
1380 
1381 
1382 /*
1383  *	For accept, we attempt to create a new socket, set up the link
1384  *	with the client, wake up the client, then return the new
1385  *	connected fd. We collect the address of the connector in kernel
1386  *	space and move it to user at the very end. This is unclean because
1387  *	we open the socket then return an error.
1388  *
1389  *	1003.1g adds the ability to recvmsg() to query connection pending
1390  *	status to recvmsg. We need to add that support in a way thats
1391  *	clean when we restucture accept also.
1392  */
1393 
1394 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen)
1395 {
1396 	struct socket *sock, *newsock;
1397 	struct file *newfile;
1398 	int err, len, newfd, fput_needed;
1399 	char address[MAX_SOCK_ADDR];
1400 
1401 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1402 	if (!sock)
1403 		goto out;
1404 
1405 	err = -ENFILE;
1406 	if (!(newsock = sock_alloc()))
1407 		goto out_put;
1408 
1409 	newsock->type = sock->type;
1410 	newsock->ops = sock->ops;
1411 
1412 	/*
1413 	 * We don't need try_module_get here, as the listening socket (sock)
1414 	 * has the protocol module (sock->ops->owner) held.
1415 	 */
1416 	__module_get(newsock->ops->owner);
1417 
1418 	newfd = sock_alloc_fd(&newfile);
1419 	if (unlikely(newfd < 0)) {
1420 		err = newfd;
1421 		sock_release(newsock);
1422 		goto out_put;
1423 	}
1424 
1425 	err = sock_attach_fd(newsock, newfile);
1426 	if (err < 0)
1427 		goto out_fd;
1428 
1429 	err = security_socket_accept(sock, newsock);
1430 	if (err)
1431 		goto out_fd;
1432 
1433 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1434 	if (err < 0)
1435 		goto out_fd;
1436 
1437 	if (upeer_sockaddr) {
1438 		if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1439 			err = -ECONNABORTED;
1440 			goto out_fd;
1441 		}
1442 		err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1443 		if (err < 0)
1444 			goto out_fd;
1445 	}
1446 
1447 	/* File flags are not inherited via accept() unlike another OSes. */
1448 
1449 	fd_install(newfd, newfile);
1450 	err = newfd;
1451 
1452 	security_socket_post_accept(sock, newsock);
1453 
1454 out_put:
1455 	fput_light(sock->file, fput_needed);
1456 out:
1457 	return err;
1458 out_fd:
1459 	fput(newfile);
1460 	put_unused_fd(newfd);
1461 	goto out_put;
1462 }
1463 
1464 
1465 /*
1466  *	Attempt to connect to a socket with the server address.  The address
1467  *	is in user space so we verify it is OK and move it to kernel space.
1468  *
1469  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1470  *	break bindings
1471  *
1472  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1473  *	other SEQPACKET protocols that take time to connect() as it doesn't
1474  *	include the -EINPROGRESS status for such sockets.
1475  */
1476 
1477 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1478 {
1479 	struct socket *sock;
1480 	char address[MAX_SOCK_ADDR];
1481 	int err, fput_needed;
1482 
1483 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1484 	if (!sock)
1485 		goto out;
1486 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1487 	if (err < 0)
1488 		goto out_put;
1489 
1490 	err = security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1491 	if (err)
1492 		goto out_put;
1493 
1494 	err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1495 				 sock->file->f_flags);
1496 out_put:
1497 	fput_light(sock->file, fput_needed);
1498 out:
1499 	return err;
1500 }
1501 
1502 /*
1503  *	Get the local address ('name') of a socket object. Move the obtained
1504  *	name to user space.
1505  */
1506 
1507 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1508 {
1509 	struct socket *sock;
1510 	char address[MAX_SOCK_ADDR];
1511 	int len, err, fput_needed;
1512 
1513 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1514 	if (!sock)
1515 		goto out;
1516 
1517 	err = security_socket_getsockname(sock);
1518 	if (err)
1519 		goto out_put;
1520 
1521 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1522 	if (err)
1523 		goto out_put;
1524 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1525 
1526 out_put:
1527 	fput_light(sock->file, fput_needed);
1528 out:
1529 	return err;
1530 }
1531 
1532 /*
1533  *	Get the remote address ('name') of a socket object. Move the obtained
1534  *	name to user space.
1535  */
1536 
1537 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1538 {
1539 	struct socket *sock;
1540 	char address[MAX_SOCK_ADDR];
1541 	int len, err, fput_needed;
1542 
1543 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1544 		err = security_socket_getpeername(sock);
1545 		if (err) {
1546 			fput_light(sock->file, fput_needed);
1547 			return err;
1548 		}
1549 
1550 		err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1551 		if (!err)
1552 			err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1553 		fput_light(sock->file, fput_needed);
1554 	}
1555 	return err;
1556 }
1557 
1558 /*
1559  *	Send a datagram to a given address. We move the address into kernel
1560  *	space and check the user space data area is readable before invoking
1561  *	the protocol.
1562  */
1563 
1564 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
1565 			   struct sockaddr __user *addr, int addr_len)
1566 {
1567 	struct socket *sock;
1568 	char address[MAX_SOCK_ADDR];
1569 	int err;
1570 	struct msghdr msg;
1571 	struct iovec iov;
1572 	int fput_needed;
1573 	struct file *sock_file;
1574 
1575 	sock_file = fget_light(fd, &fput_needed);
1576 	if (!sock_file)
1577 		return -EBADF;
1578 
1579 	sock = sock_from_file(sock_file, &err);
1580 	if (!sock)
1581 		goto out_put;
1582 	iov.iov_base=buff;
1583 	iov.iov_len=len;
1584 	msg.msg_name=NULL;
1585 	msg.msg_iov=&iov;
1586 	msg.msg_iovlen=1;
1587 	msg.msg_control=NULL;
1588 	msg.msg_controllen=0;
1589 	msg.msg_namelen=0;
1590 	if (addr) {
1591 		err = move_addr_to_kernel(addr, addr_len, address);
1592 		if (err < 0)
1593 			goto out_put;
1594 		msg.msg_name=address;
1595 		msg.msg_namelen=addr_len;
1596 	}
1597 	if (sock->file->f_flags & O_NONBLOCK)
1598 		flags |= MSG_DONTWAIT;
1599 	msg.msg_flags = flags;
1600 	err = sock_sendmsg(sock, &msg, len);
1601 
1602 out_put:
1603 	fput_light(sock_file, fput_needed);
1604 	return err;
1605 }
1606 
1607 /*
1608  *	Send a datagram down a socket.
1609  */
1610 
1611 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags)
1612 {
1613 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1614 }
1615 
1616 /*
1617  *	Receive a frame from the socket and optionally record the address of the
1618  *	sender. We verify the buffers are writable and if needed move the
1619  *	sender address from kernel to user space.
1620  */
1621 
1622 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags,
1623 			     struct sockaddr __user *addr, int __user *addr_len)
1624 {
1625 	struct socket *sock;
1626 	struct iovec iov;
1627 	struct msghdr msg;
1628 	char address[MAX_SOCK_ADDR];
1629 	int err,err2;
1630 	struct file *sock_file;
1631 	int fput_needed;
1632 
1633 	sock_file = fget_light(fd, &fput_needed);
1634 	if (!sock_file)
1635 		return -EBADF;
1636 
1637 	sock = sock_from_file(sock_file, &err);
1638 	if (!sock)
1639 		goto out;
1640 
1641 	msg.msg_control=NULL;
1642 	msg.msg_controllen=0;
1643 	msg.msg_iovlen=1;
1644 	msg.msg_iov=&iov;
1645 	iov.iov_len=size;
1646 	iov.iov_base=ubuf;
1647 	msg.msg_name=address;
1648 	msg.msg_namelen=MAX_SOCK_ADDR;
1649 	if (sock->file->f_flags & O_NONBLOCK)
1650 		flags |= MSG_DONTWAIT;
1651 	err=sock_recvmsg(sock, &msg, size, flags);
1652 
1653 	if(err >= 0 && addr != NULL)
1654 	{
1655 		err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1656 		if(err2<0)
1657 			err=err2;
1658 	}
1659 out:
1660 	fput_light(sock_file, fput_needed);
1661 	return err;
1662 }
1663 
1664 /*
1665  *	Receive a datagram from a socket.
1666  */
1667 
1668 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags)
1669 {
1670 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1671 }
1672 
1673 /*
1674  *	Set a socket option. Because we don't know the option lengths we have
1675  *	to pass the user mode parameter for the protocols to sort out.
1676  */
1677 
1678 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen)
1679 {
1680 	int err, fput_needed;
1681 	struct socket *sock;
1682 
1683 	if (optlen < 0)
1684 		return -EINVAL;
1685 
1686 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL)
1687 	{
1688 		err = security_socket_setsockopt(sock,level,optname);
1689 		if (err)
1690 			goto out_put;
1691 
1692 		if (level == SOL_SOCKET)
1693 			err=sock_setsockopt(sock,level,optname,optval,optlen);
1694 		else
1695 			err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1696 out_put:
1697 		fput_light(sock->file, fput_needed);
1698 	}
1699 	return err;
1700 }
1701 
1702 /*
1703  *	Get a socket option. Because we don't know the option lengths we have
1704  *	to pass a user mode parameter for the protocols to sort out.
1705  */
1706 
1707 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)
1708 {
1709 	int err, fput_needed;
1710 	struct socket *sock;
1711 
1712 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1713 		err = security_socket_getsockopt(sock, level, optname);
1714 		if (err)
1715 			goto out_put;
1716 
1717 		if (level == SOL_SOCKET)
1718 			err=sock_getsockopt(sock,level,optname,optval,optlen);
1719 		else
1720 			err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1721 out_put:
1722 		fput_light(sock->file, fput_needed);
1723 	}
1724 	return err;
1725 }
1726 
1727 
1728 /*
1729  *	Shutdown a socket.
1730  */
1731 
1732 asmlinkage long sys_shutdown(int fd, int how)
1733 {
1734 	int err, fput_needed;
1735 	struct socket *sock;
1736 
1737 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL)
1738 	{
1739 		err = security_socket_shutdown(sock, how);
1740 		if (!err)
1741 			err = sock->ops->shutdown(sock, how);
1742 		fput_light(sock->file, fput_needed);
1743 	}
1744 	return err;
1745 }
1746 
1747 /* A couple of helpful macros for getting the address of the 32/64 bit
1748  * fields which are the same type (int / unsigned) on our platforms.
1749  */
1750 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1751 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1752 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1753 
1754 
1755 /*
1756  *	BSD sendmsg interface
1757  */
1758 
1759 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1760 {
1761 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1762 	struct socket *sock;
1763 	char address[MAX_SOCK_ADDR];
1764 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1765 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1766 			__attribute__ ((aligned (sizeof(__kernel_size_t))));
1767 			/* 20 is size of ipv6_pktinfo */
1768 	unsigned char *ctl_buf = ctl;
1769 	struct msghdr msg_sys;
1770 	int err, ctl_len, iov_size, total_len;
1771 	int fput_needed;
1772 
1773 	err = -EFAULT;
1774 	if (MSG_CMSG_COMPAT & flags) {
1775 		if (get_compat_msghdr(&msg_sys, msg_compat))
1776 			return -EFAULT;
1777 	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1778 		return -EFAULT;
1779 
1780 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1781 	if (!sock)
1782 		goto out;
1783 
1784 	/* do not move before msg_sys is valid */
1785 	err = -EMSGSIZE;
1786 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1787 		goto out_put;
1788 
1789 	/* Check whether to allocate the iovec area*/
1790 	err = -ENOMEM;
1791 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1792 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1793 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1794 		if (!iov)
1795 			goto out_put;
1796 	}
1797 
1798 	/* This will also move the address data into kernel space */
1799 	if (MSG_CMSG_COMPAT & flags) {
1800 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1801 	} else
1802 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1803 	if (err < 0)
1804 		goto out_freeiov;
1805 	total_len = err;
1806 
1807 	err = -ENOBUFS;
1808 
1809 	if (msg_sys.msg_controllen > INT_MAX)
1810 		goto out_freeiov;
1811 	ctl_len = msg_sys.msg_controllen;
1812 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1813 		err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl));
1814 		if (err)
1815 			goto out_freeiov;
1816 		ctl_buf = msg_sys.msg_control;
1817 		ctl_len = msg_sys.msg_controllen;
1818 	} else if (ctl_len) {
1819 		if (ctl_len > sizeof(ctl))
1820 		{
1821 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1822 			if (ctl_buf == NULL)
1823 				goto out_freeiov;
1824 		}
1825 		err = -EFAULT;
1826 		/*
1827 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1828 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1829 		 * checking falls down on this.
1830 		 */
1831 		if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len))
1832 			goto out_freectl;
1833 		msg_sys.msg_control = ctl_buf;
1834 	}
1835 	msg_sys.msg_flags = flags;
1836 
1837 	if (sock->file->f_flags & O_NONBLOCK)
1838 		msg_sys.msg_flags |= MSG_DONTWAIT;
1839 	err = sock_sendmsg(sock, &msg_sys, total_len);
1840 
1841 out_freectl:
1842 	if (ctl_buf != ctl)
1843 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1844 out_freeiov:
1845 	if (iov != iovstack)
1846 		sock_kfree_s(sock->sk, iov, iov_size);
1847 out_put:
1848 	fput_light(sock->file, fput_needed);
1849 out:
1850 	return err;
1851 }
1852 
1853 /*
1854  *	BSD recvmsg interface
1855  */
1856 
1857 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags)
1858 {
1859 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1860 	struct socket *sock;
1861 	struct iovec iovstack[UIO_FASTIOV];
1862 	struct iovec *iov=iovstack;
1863 	struct msghdr msg_sys;
1864 	unsigned long cmsg_ptr;
1865 	int err, iov_size, total_len, len;
1866 	int fput_needed;
1867 
1868 	/* kernel mode address */
1869 	char addr[MAX_SOCK_ADDR];
1870 
1871 	/* user mode address pointers */
1872 	struct sockaddr __user *uaddr;
1873 	int __user *uaddr_len;
1874 
1875 	if (MSG_CMSG_COMPAT & flags) {
1876 		if (get_compat_msghdr(&msg_sys, msg_compat))
1877 			return -EFAULT;
1878 	} else
1879 		if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1880 			return -EFAULT;
1881 
1882 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1883 	if (!sock)
1884 		goto out;
1885 
1886 	err = -EMSGSIZE;
1887 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1888 		goto out_put;
1889 
1890 	/* Check whether to allocate the iovec area*/
1891 	err = -ENOMEM;
1892 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1893 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1894 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1895 		if (!iov)
1896 			goto out_put;
1897 	}
1898 
1899 	/*
1900 	 *	Save the user-mode address (verify_iovec will change the
1901 	 *	kernel msghdr to use the kernel address space)
1902 	 */
1903 
1904 	uaddr = (void __user *) msg_sys.msg_name;
1905 	uaddr_len = COMPAT_NAMELEN(msg);
1906 	if (MSG_CMSG_COMPAT & flags) {
1907 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1908 	} else
1909 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1910 	if (err < 0)
1911 		goto out_freeiov;
1912 	total_len=err;
1913 
1914 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1915 	msg_sys.msg_flags = 0;
1916 	if (MSG_CMSG_COMPAT & flags)
1917 		msg_sys.msg_flags = MSG_CMSG_COMPAT;
1918 
1919 	if (sock->file->f_flags & O_NONBLOCK)
1920 		flags |= MSG_DONTWAIT;
1921 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1922 	if (err < 0)
1923 		goto out_freeiov;
1924 	len = err;
1925 
1926 	if (uaddr != NULL) {
1927 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1928 		if (err < 0)
1929 			goto out_freeiov;
1930 	}
1931 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1932 			 COMPAT_FLAGS(msg));
1933 	if (err)
1934 		goto out_freeiov;
1935 	if (MSG_CMSG_COMPAT & flags)
1936 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1937 				 &msg_compat->msg_controllen);
1938 	else
1939 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1940 				 &msg->msg_controllen);
1941 	if (err)
1942 		goto out_freeiov;
1943 	err = len;
1944 
1945 out_freeiov:
1946 	if (iov != iovstack)
1947 		sock_kfree_s(sock->sk, iov, iov_size);
1948 out_put:
1949 	fput_light(sock->file, fput_needed);
1950 out:
1951 	return err;
1952 }
1953 
1954 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1955 
1956 /* Argument list sizes for sys_socketcall */
1957 #define AL(x) ((x) * sizeof(unsigned long))
1958 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1959 				AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1960 				AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1961 #undef AL
1962 
1963 /*
1964  *	System call vectors.
1965  *
1966  *	Argument checking cleaned up. Saved 20% in size.
1967  *  This function doesn't need to set the kernel lock because
1968  *  it is set by the callees.
1969  */
1970 
1971 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1972 {
1973 	unsigned long a[6];
1974 	unsigned long a0,a1;
1975 	int err;
1976 
1977 	if(call<1||call>SYS_RECVMSG)
1978 		return -EINVAL;
1979 
1980 	/* copy_from_user should be SMP safe. */
1981 	if (copy_from_user(a, args, nargs[call]))
1982 		return -EFAULT;
1983 
1984 	err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
1985 	if (err)
1986 		return err;
1987 
1988 	a0=a[0];
1989 	a1=a[1];
1990 
1991 	switch(call)
1992 	{
1993 		case SYS_SOCKET:
1994 			err = sys_socket(a0,a1,a[2]);
1995 			break;
1996 		case SYS_BIND:
1997 			err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
1998 			break;
1999 		case SYS_CONNECT:
2000 			err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2001 			break;
2002 		case SYS_LISTEN:
2003 			err = sys_listen(a0,a1);
2004 			break;
2005 		case SYS_ACCEPT:
2006 			err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
2007 			break;
2008 		case SYS_GETSOCKNAME:
2009 			err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
2010 			break;
2011 		case SYS_GETPEERNAME:
2012 			err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
2013 			break;
2014 		case SYS_SOCKETPAIR:
2015 			err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
2016 			break;
2017 		case SYS_SEND:
2018 			err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2019 			break;
2020 		case SYS_SENDTO:
2021 			err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
2022 					 (struct sockaddr __user *)a[4], a[5]);
2023 			break;
2024 		case SYS_RECV:
2025 			err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2026 			break;
2027 		case SYS_RECVFROM:
2028 			err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2029 					   (struct sockaddr __user *)a[4], (int __user *)a[5]);
2030 			break;
2031 		case SYS_SHUTDOWN:
2032 			err = sys_shutdown(a0,a1);
2033 			break;
2034 		case SYS_SETSOCKOPT:
2035 			err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2036 			break;
2037 		case SYS_GETSOCKOPT:
2038 			err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
2039 			break;
2040 		case SYS_SENDMSG:
2041 			err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
2042 			break;
2043 		case SYS_RECVMSG:
2044 			err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
2045 			break;
2046 		default:
2047 			err = -EINVAL;
2048 			break;
2049 	}
2050 	return err;
2051 }
2052 
2053 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2054 
2055 /*
2056  *	This function is called by a protocol handler that wants to
2057  *	advertise its address family, and have it linked into the
2058  *	SOCKET module.
2059  */
2060 
2061 int sock_register(struct net_proto_family *ops)
2062 {
2063 	int err;
2064 
2065 	if (ops->family >= NPROTO) {
2066 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2067 		return -ENOBUFS;
2068 	}
2069 	net_family_write_lock();
2070 	err = -EEXIST;
2071 	if (net_families[ops->family] == NULL) {
2072 		net_families[ops->family]=ops;
2073 		err = 0;
2074 	}
2075 	net_family_write_unlock();
2076 	printk(KERN_INFO "NET: Registered protocol family %d\n",
2077 	       ops->family);
2078 	return err;
2079 }
2080 
2081 /*
2082  *	This function is called by a protocol handler that wants to
2083  *	remove its address family, and have it unlinked from the
2084  *	SOCKET module.
2085  */
2086 
2087 int sock_unregister(int family)
2088 {
2089 	if (family < 0 || family >= NPROTO)
2090 		return -1;
2091 
2092 	net_family_write_lock();
2093 	net_families[family]=NULL;
2094 	net_family_write_unlock();
2095 	printk(KERN_INFO "NET: Unregistered protocol family %d\n",
2096 	       family);
2097 	return 0;
2098 }
2099 
2100 static int __init sock_init(void)
2101 {
2102 	/*
2103 	 *	Initialize sock SLAB cache.
2104 	 */
2105 
2106 	sk_init();
2107 
2108 	/*
2109 	 *	Initialize skbuff SLAB cache
2110 	 */
2111 	skb_init();
2112 
2113 	/*
2114 	 *	Initialize the protocols module.
2115 	 */
2116 
2117 	init_inodecache();
2118 	register_filesystem(&sock_fs_type);
2119 	sock_mnt = kern_mount(&sock_fs_type);
2120 
2121 	/* The real protocol initialization is performed in later initcalls.
2122 	 */
2123 
2124 #ifdef CONFIG_NETFILTER
2125 	netfilter_init();
2126 #endif
2127 
2128 	return 0;
2129 }
2130 
2131 core_initcall(sock_init);	/* early initcall */
2132 
2133 #ifdef CONFIG_PROC_FS
2134 void socket_seq_show(struct seq_file *seq)
2135 {
2136 	int cpu;
2137 	int counter = 0;
2138 
2139 	for_each_possible_cpu(cpu)
2140 		counter += per_cpu(sockets_in_use, cpu);
2141 
2142 	/* It can be negative, by the way. 8) */
2143 	if (counter < 0)
2144 		counter = 0;
2145 
2146 	seq_printf(seq, "sockets: used %d\n", counter);
2147 }
2148 #endif /* CONFIG_PROC_FS */
2149 
2150 #ifdef CONFIG_COMPAT
2151 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2152 				unsigned long arg)
2153 {
2154 	struct socket *sock = file->private_data;
2155 	int ret = -ENOIOCTLCMD;
2156 
2157 	if (sock->ops->compat_ioctl)
2158 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2159 
2160 	return ret;
2161 }
2162 #endif
2163 
2164 /* ABI emulation layers need these two */
2165 EXPORT_SYMBOL(move_addr_to_kernel);
2166 EXPORT_SYMBOL(move_addr_to_user);
2167 EXPORT_SYMBOL(sock_create);
2168 EXPORT_SYMBOL(sock_create_kern);
2169 EXPORT_SYMBOL(sock_create_lite);
2170 EXPORT_SYMBOL(sock_map_fd);
2171 EXPORT_SYMBOL(sock_recvmsg);
2172 EXPORT_SYMBOL(sock_register);
2173 EXPORT_SYMBOL(sock_release);
2174 EXPORT_SYMBOL(sock_sendmsg);
2175 EXPORT_SYMBOL(sock_unregister);
2176 EXPORT_SYMBOL(sock_wake_async);
2177 EXPORT_SYMBOL(sockfd_lookup);
2178 EXPORT_SYMBOL(kernel_sendmsg);
2179 EXPORT_SYMBOL(kernel_recvmsg);
2180