1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 92 #include <linux/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/termios.h> 106 #include <linux/sockios.h> 107 #include <net/busy_poll.h> 108 #include <linux/errqueue.h> 109 #include <linux/ptp_clock_kernel.h> 110 #include <trace/events/sock.h> 111 112 #ifdef CONFIG_NET_RX_BUSY_POLL 113 unsigned int sysctl_net_busy_read __read_mostly; 114 unsigned int sysctl_net_busy_poll __read_mostly; 115 #endif 116 117 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 118 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 119 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 120 121 static int sock_close(struct inode *inode, struct file *file); 122 static __poll_t sock_poll(struct file *file, 123 struct poll_table_struct *wait); 124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 125 #ifdef CONFIG_COMPAT 126 static long compat_sock_ioctl(struct file *file, 127 unsigned int cmd, unsigned long arg); 128 #endif 129 static int sock_fasync(int fd, struct file *filp, int on); 130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 131 struct pipe_inode_info *pipe, size_t len, 132 unsigned int flags); 133 static void sock_splice_eof(struct file *file); 134 135 #ifdef CONFIG_PROC_FS 136 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 137 { 138 struct socket *sock = f->private_data; 139 140 if (sock->ops->show_fdinfo) 141 sock->ops->show_fdinfo(m, sock); 142 } 143 #else 144 #define sock_show_fdinfo NULL 145 #endif 146 147 /* 148 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 149 * in the operation structures but are done directly via the socketcall() multiplexor. 150 */ 151 152 static const struct file_operations socket_file_ops = { 153 .owner = THIS_MODULE, 154 .llseek = no_llseek, 155 .read_iter = sock_read_iter, 156 .write_iter = sock_write_iter, 157 .poll = sock_poll, 158 .unlocked_ioctl = sock_ioctl, 159 #ifdef CONFIG_COMPAT 160 .compat_ioctl = compat_sock_ioctl, 161 #endif 162 .mmap = sock_mmap, 163 .release = sock_close, 164 .fasync = sock_fasync, 165 .splice_write = splice_to_socket, 166 .splice_read = sock_splice_read, 167 .splice_eof = sock_splice_eof, 168 .show_fdinfo = sock_show_fdinfo, 169 }; 170 171 static const char * const pf_family_names[] = { 172 [PF_UNSPEC] = "PF_UNSPEC", 173 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 174 [PF_INET] = "PF_INET", 175 [PF_AX25] = "PF_AX25", 176 [PF_IPX] = "PF_IPX", 177 [PF_APPLETALK] = "PF_APPLETALK", 178 [PF_NETROM] = "PF_NETROM", 179 [PF_BRIDGE] = "PF_BRIDGE", 180 [PF_ATMPVC] = "PF_ATMPVC", 181 [PF_X25] = "PF_X25", 182 [PF_INET6] = "PF_INET6", 183 [PF_ROSE] = "PF_ROSE", 184 [PF_DECnet] = "PF_DECnet", 185 [PF_NETBEUI] = "PF_NETBEUI", 186 [PF_SECURITY] = "PF_SECURITY", 187 [PF_KEY] = "PF_KEY", 188 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 189 [PF_PACKET] = "PF_PACKET", 190 [PF_ASH] = "PF_ASH", 191 [PF_ECONET] = "PF_ECONET", 192 [PF_ATMSVC] = "PF_ATMSVC", 193 [PF_RDS] = "PF_RDS", 194 [PF_SNA] = "PF_SNA", 195 [PF_IRDA] = "PF_IRDA", 196 [PF_PPPOX] = "PF_PPPOX", 197 [PF_WANPIPE] = "PF_WANPIPE", 198 [PF_LLC] = "PF_LLC", 199 [PF_IB] = "PF_IB", 200 [PF_MPLS] = "PF_MPLS", 201 [PF_CAN] = "PF_CAN", 202 [PF_TIPC] = "PF_TIPC", 203 [PF_BLUETOOTH] = "PF_BLUETOOTH", 204 [PF_IUCV] = "PF_IUCV", 205 [PF_RXRPC] = "PF_RXRPC", 206 [PF_ISDN] = "PF_ISDN", 207 [PF_PHONET] = "PF_PHONET", 208 [PF_IEEE802154] = "PF_IEEE802154", 209 [PF_CAIF] = "PF_CAIF", 210 [PF_ALG] = "PF_ALG", 211 [PF_NFC] = "PF_NFC", 212 [PF_VSOCK] = "PF_VSOCK", 213 [PF_KCM] = "PF_KCM", 214 [PF_QIPCRTR] = "PF_QIPCRTR", 215 [PF_SMC] = "PF_SMC", 216 [PF_XDP] = "PF_XDP", 217 [PF_MCTP] = "PF_MCTP", 218 }; 219 220 /* 221 * The protocol list. Each protocol is registered in here. 222 */ 223 224 static DEFINE_SPINLOCK(net_family_lock); 225 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 226 227 /* 228 * Support routines. 229 * Move socket addresses back and forth across the kernel/user 230 * divide and look after the messy bits. 231 */ 232 233 /** 234 * move_addr_to_kernel - copy a socket address into kernel space 235 * @uaddr: Address in user space 236 * @kaddr: Address in kernel space 237 * @ulen: Length in user space 238 * 239 * The address is copied into kernel space. If the provided address is 240 * too long an error code of -EINVAL is returned. If the copy gives 241 * invalid addresses -EFAULT is returned. On a success 0 is returned. 242 */ 243 244 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 245 { 246 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 247 return -EINVAL; 248 if (ulen == 0) 249 return 0; 250 if (copy_from_user(kaddr, uaddr, ulen)) 251 return -EFAULT; 252 return audit_sockaddr(ulen, kaddr); 253 } 254 255 /** 256 * move_addr_to_user - copy an address to user space 257 * @kaddr: kernel space address 258 * @klen: length of address in kernel 259 * @uaddr: user space address 260 * @ulen: pointer to user length field 261 * 262 * The value pointed to by ulen on entry is the buffer length available. 263 * This is overwritten with the buffer space used. -EINVAL is returned 264 * if an overlong buffer is specified or a negative buffer size. -EFAULT 265 * is returned if either the buffer or the length field are not 266 * accessible. 267 * After copying the data up to the limit the user specifies, the true 268 * length of the data is written over the length limit the user 269 * specified. Zero is returned for a success. 270 */ 271 272 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 273 void __user *uaddr, int __user *ulen) 274 { 275 int err; 276 int len; 277 278 BUG_ON(klen > sizeof(struct sockaddr_storage)); 279 err = get_user(len, ulen); 280 if (err) 281 return err; 282 if (len > klen) 283 len = klen; 284 if (len < 0) 285 return -EINVAL; 286 if (len) { 287 if (audit_sockaddr(klen, kaddr)) 288 return -ENOMEM; 289 if (copy_to_user(uaddr, kaddr, len)) 290 return -EFAULT; 291 } 292 /* 293 * "fromlen shall refer to the value before truncation.." 294 * 1003.1g 295 */ 296 return __put_user(klen, ulen); 297 } 298 299 static struct kmem_cache *sock_inode_cachep __ro_after_init; 300 301 static struct inode *sock_alloc_inode(struct super_block *sb) 302 { 303 struct socket_alloc *ei; 304 305 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 306 if (!ei) 307 return NULL; 308 init_waitqueue_head(&ei->socket.wq.wait); 309 ei->socket.wq.fasync_list = NULL; 310 ei->socket.wq.flags = 0; 311 312 ei->socket.state = SS_UNCONNECTED; 313 ei->socket.flags = 0; 314 ei->socket.ops = NULL; 315 ei->socket.sk = NULL; 316 ei->socket.file = NULL; 317 318 return &ei->vfs_inode; 319 } 320 321 static void sock_free_inode(struct inode *inode) 322 { 323 struct socket_alloc *ei; 324 325 ei = container_of(inode, struct socket_alloc, vfs_inode); 326 kmem_cache_free(sock_inode_cachep, ei); 327 } 328 329 static void init_once(void *foo) 330 { 331 struct socket_alloc *ei = (struct socket_alloc *)foo; 332 333 inode_init_once(&ei->vfs_inode); 334 } 335 336 static void init_inodecache(void) 337 { 338 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 339 sizeof(struct socket_alloc), 340 0, 341 (SLAB_HWCACHE_ALIGN | 342 SLAB_RECLAIM_ACCOUNT | 343 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 344 init_once); 345 BUG_ON(sock_inode_cachep == NULL); 346 } 347 348 static const struct super_operations sockfs_ops = { 349 .alloc_inode = sock_alloc_inode, 350 .free_inode = sock_free_inode, 351 .statfs = simple_statfs, 352 }; 353 354 /* 355 * sockfs_dname() is called from d_path(). 356 */ 357 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 358 { 359 return dynamic_dname(buffer, buflen, "socket:[%lu]", 360 d_inode(dentry)->i_ino); 361 } 362 363 static const struct dentry_operations sockfs_dentry_operations = { 364 .d_dname = sockfs_dname, 365 }; 366 367 static int sockfs_xattr_get(const struct xattr_handler *handler, 368 struct dentry *dentry, struct inode *inode, 369 const char *suffix, void *value, size_t size) 370 { 371 if (value) { 372 if (dentry->d_name.len + 1 > size) 373 return -ERANGE; 374 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 375 } 376 return dentry->d_name.len + 1; 377 } 378 379 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 380 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 381 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 382 383 static const struct xattr_handler sockfs_xattr_handler = { 384 .name = XATTR_NAME_SOCKPROTONAME, 385 .get = sockfs_xattr_get, 386 }; 387 388 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 389 struct mnt_idmap *idmap, 390 struct dentry *dentry, struct inode *inode, 391 const char *suffix, const void *value, 392 size_t size, int flags) 393 { 394 /* Handled by LSM. */ 395 return -EAGAIN; 396 } 397 398 static const struct xattr_handler sockfs_security_xattr_handler = { 399 .prefix = XATTR_SECURITY_PREFIX, 400 .set = sockfs_security_xattr_set, 401 }; 402 403 static const struct xattr_handler *sockfs_xattr_handlers[] = { 404 &sockfs_xattr_handler, 405 &sockfs_security_xattr_handler, 406 NULL 407 }; 408 409 static int sockfs_init_fs_context(struct fs_context *fc) 410 { 411 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 412 if (!ctx) 413 return -ENOMEM; 414 ctx->ops = &sockfs_ops; 415 ctx->dops = &sockfs_dentry_operations; 416 ctx->xattr = sockfs_xattr_handlers; 417 return 0; 418 } 419 420 static struct vfsmount *sock_mnt __read_mostly; 421 422 static struct file_system_type sock_fs_type = { 423 .name = "sockfs", 424 .init_fs_context = sockfs_init_fs_context, 425 .kill_sb = kill_anon_super, 426 }; 427 428 /* 429 * Obtains the first available file descriptor and sets it up for use. 430 * 431 * These functions create file structures and maps them to fd space 432 * of the current process. On success it returns file descriptor 433 * and file struct implicitly stored in sock->file. 434 * Note that another thread may close file descriptor before we return 435 * from this function. We use the fact that now we do not refer 436 * to socket after mapping. If one day we will need it, this 437 * function will increment ref. count on file by 1. 438 * 439 * In any case returned fd MAY BE not valid! 440 * This race condition is unavoidable 441 * with shared fd spaces, we cannot solve it inside kernel, 442 * but we take care of internal coherence yet. 443 */ 444 445 /** 446 * sock_alloc_file - Bind a &socket to a &file 447 * @sock: socket 448 * @flags: file status flags 449 * @dname: protocol name 450 * 451 * Returns the &file bound with @sock, implicitly storing it 452 * in sock->file. If dname is %NULL, sets to "". 453 * 454 * On failure @sock is released, and an ERR pointer is returned. 455 * 456 * This function uses GFP_KERNEL internally. 457 */ 458 459 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 460 { 461 struct file *file; 462 463 if (!dname) 464 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 465 466 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 467 O_RDWR | (flags & O_NONBLOCK), 468 &socket_file_ops); 469 if (IS_ERR(file)) { 470 sock_release(sock); 471 return file; 472 } 473 474 file->f_mode |= FMODE_NOWAIT; 475 sock->file = file; 476 file->private_data = sock; 477 stream_open(SOCK_INODE(sock), file); 478 return file; 479 } 480 EXPORT_SYMBOL(sock_alloc_file); 481 482 static int sock_map_fd(struct socket *sock, int flags) 483 { 484 struct file *newfile; 485 int fd = get_unused_fd_flags(flags); 486 if (unlikely(fd < 0)) { 487 sock_release(sock); 488 return fd; 489 } 490 491 newfile = sock_alloc_file(sock, flags, NULL); 492 if (!IS_ERR(newfile)) { 493 fd_install(fd, newfile); 494 return fd; 495 } 496 497 put_unused_fd(fd); 498 return PTR_ERR(newfile); 499 } 500 501 /** 502 * sock_from_file - Return the &socket bounded to @file. 503 * @file: file 504 * 505 * On failure returns %NULL. 506 */ 507 508 struct socket *sock_from_file(struct file *file) 509 { 510 if (file->f_op == &socket_file_ops) 511 return file->private_data; /* set in sock_alloc_file */ 512 513 return NULL; 514 } 515 EXPORT_SYMBOL(sock_from_file); 516 517 /** 518 * sockfd_lookup - Go from a file number to its socket slot 519 * @fd: file handle 520 * @err: pointer to an error code return 521 * 522 * The file handle passed in is locked and the socket it is bound 523 * to is returned. If an error occurs the err pointer is overwritten 524 * with a negative errno code and NULL is returned. The function checks 525 * for both invalid handles and passing a handle which is not a socket. 526 * 527 * On a success the socket object pointer is returned. 528 */ 529 530 struct socket *sockfd_lookup(int fd, int *err) 531 { 532 struct file *file; 533 struct socket *sock; 534 535 file = fget(fd); 536 if (!file) { 537 *err = -EBADF; 538 return NULL; 539 } 540 541 sock = sock_from_file(file); 542 if (!sock) { 543 *err = -ENOTSOCK; 544 fput(file); 545 } 546 return sock; 547 } 548 EXPORT_SYMBOL(sockfd_lookup); 549 550 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 551 { 552 struct fd f = fdget(fd); 553 struct socket *sock; 554 555 *err = -EBADF; 556 if (f.file) { 557 sock = sock_from_file(f.file); 558 if (likely(sock)) { 559 *fput_needed = f.flags & FDPUT_FPUT; 560 return sock; 561 } 562 *err = -ENOTSOCK; 563 fdput(f); 564 } 565 return NULL; 566 } 567 568 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 569 size_t size) 570 { 571 ssize_t len; 572 ssize_t used = 0; 573 574 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 575 if (len < 0) 576 return len; 577 used += len; 578 if (buffer) { 579 if (size < used) 580 return -ERANGE; 581 buffer += len; 582 } 583 584 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 585 used += len; 586 if (buffer) { 587 if (size < used) 588 return -ERANGE; 589 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 590 buffer += len; 591 } 592 593 return used; 594 } 595 596 static int sockfs_setattr(struct mnt_idmap *idmap, 597 struct dentry *dentry, struct iattr *iattr) 598 { 599 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 600 601 if (!err && (iattr->ia_valid & ATTR_UID)) { 602 struct socket *sock = SOCKET_I(d_inode(dentry)); 603 604 if (sock->sk) 605 sock->sk->sk_uid = iattr->ia_uid; 606 else 607 err = -ENOENT; 608 } 609 610 return err; 611 } 612 613 static const struct inode_operations sockfs_inode_ops = { 614 .listxattr = sockfs_listxattr, 615 .setattr = sockfs_setattr, 616 }; 617 618 /** 619 * sock_alloc - allocate a socket 620 * 621 * Allocate a new inode and socket object. The two are bound together 622 * and initialised. The socket is then returned. If we are out of inodes 623 * NULL is returned. This functions uses GFP_KERNEL internally. 624 */ 625 626 struct socket *sock_alloc(void) 627 { 628 struct inode *inode; 629 struct socket *sock; 630 631 inode = new_inode_pseudo(sock_mnt->mnt_sb); 632 if (!inode) 633 return NULL; 634 635 sock = SOCKET_I(inode); 636 637 inode->i_ino = get_next_ino(); 638 inode->i_mode = S_IFSOCK | S_IRWXUGO; 639 inode->i_uid = current_fsuid(); 640 inode->i_gid = current_fsgid(); 641 inode->i_op = &sockfs_inode_ops; 642 643 return sock; 644 } 645 EXPORT_SYMBOL(sock_alloc); 646 647 static void __sock_release(struct socket *sock, struct inode *inode) 648 { 649 if (sock->ops) { 650 struct module *owner = sock->ops->owner; 651 652 if (inode) 653 inode_lock(inode); 654 sock->ops->release(sock); 655 sock->sk = NULL; 656 if (inode) 657 inode_unlock(inode); 658 sock->ops = NULL; 659 module_put(owner); 660 } 661 662 if (sock->wq.fasync_list) 663 pr_err("%s: fasync list not empty!\n", __func__); 664 665 if (!sock->file) { 666 iput(SOCK_INODE(sock)); 667 return; 668 } 669 sock->file = NULL; 670 } 671 672 /** 673 * sock_release - close a socket 674 * @sock: socket to close 675 * 676 * The socket is released from the protocol stack if it has a release 677 * callback, and the inode is then released if the socket is bound to 678 * an inode not a file. 679 */ 680 void sock_release(struct socket *sock) 681 { 682 __sock_release(sock, NULL); 683 } 684 EXPORT_SYMBOL(sock_release); 685 686 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 687 { 688 u8 flags = *tx_flags; 689 690 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 691 flags |= SKBTX_HW_TSTAMP; 692 693 /* PTP hardware clocks can provide a free running cycle counter 694 * as a time base for virtual clocks. Tell driver to use the 695 * free running cycle counter for timestamp if socket is bound 696 * to virtual clock. 697 */ 698 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 699 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 700 } 701 702 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 703 flags |= SKBTX_SW_TSTAMP; 704 705 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 706 flags |= SKBTX_SCHED_TSTAMP; 707 708 *tx_flags = flags; 709 } 710 EXPORT_SYMBOL(__sock_tx_timestamp); 711 712 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 713 size_t)); 714 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 715 size_t)); 716 717 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 718 int flags) 719 { 720 trace_sock_send_length(sk, ret, 0); 721 } 722 723 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 724 { 725 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 726 inet_sendmsg, sock, msg, 727 msg_data_left(msg)); 728 BUG_ON(ret == -EIOCBQUEUED); 729 730 if (trace_sock_send_length_enabled()) 731 call_trace_sock_send_length(sock->sk, ret, 0); 732 return ret; 733 } 734 735 /** 736 * sock_sendmsg - send a message through @sock 737 * @sock: socket 738 * @msg: message to send 739 * 740 * Sends @msg through @sock, passing through LSM. 741 * Returns the number of bytes sent, or an error code. 742 */ 743 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 744 { 745 int err = security_socket_sendmsg(sock, msg, 746 msg_data_left(msg)); 747 748 return err ?: sock_sendmsg_nosec(sock, msg); 749 } 750 EXPORT_SYMBOL(sock_sendmsg); 751 752 /** 753 * kernel_sendmsg - send a message through @sock (kernel-space) 754 * @sock: socket 755 * @msg: message header 756 * @vec: kernel vec 757 * @num: vec array length 758 * @size: total message data size 759 * 760 * Builds the message data with @vec and sends it through @sock. 761 * Returns the number of bytes sent, or an error code. 762 */ 763 764 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 765 struct kvec *vec, size_t num, size_t size) 766 { 767 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 768 return sock_sendmsg(sock, msg); 769 } 770 EXPORT_SYMBOL(kernel_sendmsg); 771 772 /** 773 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 774 * @sk: sock 775 * @msg: message header 776 * @vec: output s/g array 777 * @num: output s/g array length 778 * @size: total message data size 779 * 780 * Builds the message data with @vec and sends it through @sock. 781 * Returns the number of bytes sent, or an error code. 782 * Caller must hold @sk. 783 */ 784 785 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 786 struct kvec *vec, size_t num, size_t size) 787 { 788 struct socket *sock = sk->sk_socket; 789 790 if (!sock->ops->sendmsg_locked) 791 return sock_no_sendmsg_locked(sk, msg, size); 792 793 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 794 795 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 796 } 797 EXPORT_SYMBOL(kernel_sendmsg_locked); 798 799 static bool skb_is_err_queue(const struct sk_buff *skb) 800 { 801 /* pkt_type of skbs enqueued on the error queue are set to 802 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 803 * in recvmsg, since skbs received on a local socket will never 804 * have a pkt_type of PACKET_OUTGOING. 805 */ 806 return skb->pkt_type == PACKET_OUTGOING; 807 } 808 809 /* On transmit, software and hardware timestamps are returned independently. 810 * As the two skb clones share the hardware timestamp, which may be updated 811 * before the software timestamp is received, a hardware TX timestamp may be 812 * returned only if there is no software TX timestamp. Ignore false software 813 * timestamps, which may be made in the __sock_recv_timestamp() call when the 814 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 815 * hardware timestamp. 816 */ 817 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 818 { 819 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 820 } 821 822 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 823 { 824 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC; 825 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 826 struct net_device *orig_dev; 827 ktime_t hwtstamp; 828 829 rcu_read_lock(); 830 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 831 if (orig_dev) { 832 *if_index = orig_dev->ifindex; 833 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 834 } else { 835 hwtstamp = shhwtstamps->hwtstamp; 836 } 837 rcu_read_unlock(); 838 839 return hwtstamp; 840 } 841 842 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 843 int if_index) 844 { 845 struct scm_ts_pktinfo ts_pktinfo; 846 struct net_device *orig_dev; 847 848 if (!skb_mac_header_was_set(skb)) 849 return; 850 851 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 852 853 if (!if_index) { 854 rcu_read_lock(); 855 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 856 if (orig_dev) 857 if_index = orig_dev->ifindex; 858 rcu_read_unlock(); 859 } 860 ts_pktinfo.if_index = if_index; 861 862 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 863 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 864 sizeof(ts_pktinfo), &ts_pktinfo); 865 } 866 867 /* 868 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 869 */ 870 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 871 struct sk_buff *skb) 872 { 873 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 874 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 875 struct scm_timestamping_internal tss; 876 877 int empty = 1, false_tstamp = 0; 878 struct skb_shared_hwtstamps *shhwtstamps = 879 skb_hwtstamps(skb); 880 int if_index; 881 ktime_t hwtstamp; 882 883 /* Race occurred between timestamp enabling and packet 884 receiving. Fill in the current time for now. */ 885 if (need_software_tstamp && skb->tstamp == 0) { 886 __net_timestamp(skb); 887 false_tstamp = 1; 888 } 889 890 if (need_software_tstamp) { 891 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 892 if (new_tstamp) { 893 struct __kernel_sock_timeval tv; 894 895 skb_get_new_timestamp(skb, &tv); 896 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 897 sizeof(tv), &tv); 898 } else { 899 struct __kernel_old_timeval tv; 900 901 skb_get_timestamp(skb, &tv); 902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 903 sizeof(tv), &tv); 904 } 905 } else { 906 if (new_tstamp) { 907 struct __kernel_timespec ts; 908 909 skb_get_new_timestampns(skb, &ts); 910 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 911 sizeof(ts), &ts); 912 } else { 913 struct __kernel_old_timespec ts; 914 915 skb_get_timestampns(skb, &ts); 916 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 917 sizeof(ts), &ts); 918 } 919 } 920 } 921 922 memset(&tss, 0, sizeof(tss)); 923 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 924 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 925 empty = 0; 926 if (shhwtstamps && 927 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 928 !skb_is_swtx_tstamp(skb, false_tstamp)) { 929 if_index = 0; 930 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 931 hwtstamp = get_timestamp(sk, skb, &if_index); 932 else 933 hwtstamp = shhwtstamps->hwtstamp; 934 935 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC) 936 hwtstamp = ptp_convert_timestamp(&hwtstamp, 937 sk->sk_bind_phc); 938 939 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 940 empty = 0; 941 942 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 943 !skb_is_err_queue(skb)) 944 put_ts_pktinfo(msg, skb, if_index); 945 } 946 } 947 if (!empty) { 948 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 949 put_cmsg_scm_timestamping64(msg, &tss); 950 else 951 put_cmsg_scm_timestamping(msg, &tss); 952 953 if (skb_is_err_queue(skb) && skb->len && 954 SKB_EXT_ERR(skb)->opt_stats) 955 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 956 skb->len, skb->data); 957 } 958 } 959 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 960 961 #ifdef CONFIG_WIRELESS 962 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 963 struct sk_buff *skb) 964 { 965 int ack; 966 967 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 968 return; 969 if (!skb->wifi_acked_valid) 970 return; 971 972 ack = skb->wifi_acked; 973 974 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 975 } 976 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 977 #endif 978 979 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 980 struct sk_buff *skb) 981 { 982 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 983 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 984 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 985 } 986 987 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 988 struct sk_buff *skb) 989 { 990 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 991 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 992 __u32 mark = skb->mark; 993 994 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 995 } 996 } 997 998 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 999 struct sk_buff *skb) 1000 { 1001 sock_recv_timestamp(msg, sk, skb); 1002 sock_recv_drops(msg, sk, skb); 1003 sock_recv_mark(msg, sk, skb); 1004 } 1005 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1006 1007 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1008 size_t, int)); 1009 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1010 size_t, int)); 1011 1012 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1013 { 1014 trace_sock_recv_length(sk, ret, flags); 1015 } 1016 1017 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1018 int flags) 1019 { 1020 int ret = INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 1021 inet_recvmsg, sock, msg, 1022 msg_data_left(msg), flags); 1023 if (trace_sock_recv_length_enabled()) 1024 call_trace_sock_recv_length(sock->sk, ret, flags); 1025 return ret; 1026 } 1027 1028 /** 1029 * sock_recvmsg - receive a message from @sock 1030 * @sock: socket 1031 * @msg: message to receive 1032 * @flags: message flags 1033 * 1034 * Receives @msg from @sock, passing through LSM. Returns the total number 1035 * of bytes received, or an error. 1036 */ 1037 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1038 { 1039 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1040 1041 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1042 } 1043 EXPORT_SYMBOL(sock_recvmsg); 1044 1045 /** 1046 * kernel_recvmsg - Receive a message from a socket (kernel space) 1047 * @sock: The socket to receive the message from 1048 * @msg: Received message 1049 * @vec: Input s/g array for message data 1050 * @num: Size of input s/g array 1051 * @size: Number of bytes to read 1052 * @flags: Message flags (MSG_DONTWAIT, etc...) 1053 * 1054 * On return the msg structure contains the scatter/gather array passed in the 1055 * vec argument. The array is modified so that it consists of the unfilled 1056 * portion of the original array. 1057 * 1058 * The returned value is the total number of bytes received, or an error. 1059 */ 1060 1061 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1062 struct kvec *vec, size_t num, size_t size, int flags) 1063 { 1064 msg->msg_control_is_user = false; 1065 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1066 return sock_recvmsg(sock, msg, flags); 1067 } 1068 EXPORT_SYMBOL(kernel_recvmsg); 1069 1070 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1071 struct pipe_inode_info *pipe, size_t len, 1072 unsigned int flags) 1073 { 1074 struct socket *sock = file->private_data; 1075 1076 if (unlikely(!sock->ops->splice_read)) 1077 return copy_splice_read(file, ppos, pipe, len, flags); 1078 1079 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 1080 } 1081 1082 static void sock_splice_eof(struct file *file) 1083 { 1084 struct socket *sock = file->private_data; 1085 1086 if (sock->ops->splice_eof) 1087 sock->ops->splice_eof(sock); 1088 } 1089 1090 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1091 { 1092 struct file *file = iocb->ki_filp; 1093 struct socket *sock = file->private_data; 1094 struct msghdr msg = {.msg_iter = *to, 1095 .msg_iocb = iocb}; 1096 ssize_t res; 1097 1098 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1099 msg.msg_flags = MSG_DONTWAIT; 1100 1101 if (iocb->ki_pos != 0) 1102 return -ESPIPE; 1103 1104 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1105 return 0; 1106 1107 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1108 *to = msg.msg_iter; 1109 return res; 1110 } 1111 1112 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1113 { 1114 struct file *file = iocb->ki_filp; 1115 struct socket *sock = file->private_data; 1116 struct msghdr msg = {.msg_iter = *from, 1117 .msg_iocb = iocb}; 1118 ssize_t res; 1119 1120 if (iocb->ki_pos != 0) 1121 return -ESPIPE; 1122 1123 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1124 msg.msg_flags = MSG_DONTWAIT; 1125 1126 if (sock->type == SOCK_SEQPACKET) 1127 msg.msg_flags |= MSG_EOR; 1128 1129 res = sock_sendmsg(sock, &msg); 1130 *from = msg.msg_iter; 1131 return res; 1132 } 1133 1134 /* 1135 * Atomic setting of ioctl hooks to avoid race 1136 * with module unload. 1137 */ 1138 1139 static DEFINE_MUTEX(br_ioctl_mutex); 1140 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1141 unsigned int cmd, struct ifreq *ifr, 1142 void __user *uarg); 1143 1144 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1145 unsigned int cmd, struct ifreq *ifr, 1146 void __user *uarg)) 1147 { 1148 mutex_lock(&br_ioctl_mutex); 1149 br_ioctl_hook = hook; 1150 mutex_unlock(&br_ioctl_mutex); 1151 } 1152 EXPORT_SYMBOL(brioctl_set); 1153 1154 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1155 struct ifreq *ifr, void __user *uarg) 1156 { 1157 int err = -ENOPKG; 1158 1159 if (!br_ioctl_hook) 1160 request_module("bridge"); 1161 1162 mutex_lock(&br_ioctl_mutex); 1163 if (br_ioctl_hook) 1164 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1165 mutex_unlock(&br_ioctl_mutex); 1166 1167 return err; 1168 } 1169 1170 static DEFINE_MUTEX(vlan_ioctl_mutex); 1171 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1172 1173 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1174 { 1175 mutex_lock(&vlan_ioctl_mutex); 1176 vlan_ioctl_hook = hook; 1177 mutex_unlock(&vlan_ioctl_mutex); 1178 } 1179 EXPORT_SYMBOL(vlan_ioctl_set); 1180 1181 static long sock_do_ioctl(struct net *net, struct socket *sock, 1182 unsigned int cmd, unsigned long arg) 1183 { 1184 struct ifreq ifr; 1185 bool need_copyout; 1186 int err; 1187 void __user *argp = (void __user *)arg; 1188 void __user *data; 1189 1190 err = sock->ops->ioctl(sock, cmd, arg); 1191 1192 /* 1193 * If this ioctl is unknown try to hand it down 1194 * to the NIC driver. 1195 */ 1196 if (err != -ENOIOCTLCMD) 1197 return err; 1198 1199 if (!is_socket_ioctl_cmd(cmd)) 1200 return -ENOTTY; 1201 1202 if (get_user_ifreq(&ifr, &data, argp)) 1203 return -EFAULT; 1204 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1205 if (!err && need_copyout) 1206 if (put_user_ifreq(&ifr, argp)) 1207 return -EFAULT; 1208 1209 return err; 1210 } 1211 1212 /* 1213 * With an ioctl, arg may well be a user mode pointer, but we don't know 1214 * what to do with it - that's up to the protocol still. 1215 */ 1216 1217 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1218 { 1219 struct socket *sock; 1220 struct sock *sk; 1221 void __user *argp = (void __user *)arg; 1222 int pid, err; 1223 struct net *net; 1224 1225 sock = file->private_data; 1226 sk = sock->sk; 1227 net = sock_net(sk); 1228 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1229 struct ifreq ifr; 1230 void __user *data; 1231 bool need_copyout; 1232 if (get_user_ifreq(&ifr, &data, argp)) 1233 return -EFAULT; 1234 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1235 if (!err && need_copyout) 1236 if (put_user_ifreq(&ifr, argp)) 1237 return -EFAULT; 1238 } else 1239 #ifdef CONFIG_WEXT_CORE 1240 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1241 err = wext_handle_ioctl(net, cmd, argp); 1242 } else 1243 #endif 1244 switch (cmd) { 1245 case FIOSETOWN: 1246 case SIOCSPGRP: 1247 err = -EFAULT; 1248 if (get_user(pid, (int __user *)argp)) 1249 break; 1250 err = f_setown(sock->file, pid, 1); 1251 break; 1252 case FIOGETOWN: 1253 case SIOCGPGRP: 1254 err = put_user(f_getown(sock->file), 1255 (int __user *)argp); 1256 break; 1257 case SIOCGIFBR: 1258 case SIOCSIFBR: 1259 case SIOCBRADDBR: 1260 case SIOCBRDELBR: 1261 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1262 break; 1263 case SIOCGIFVLAN: 1264 case SIOCSIFVLAN: 1265 err = -ENOPKG; 1266 if (!vlan_ioctl_hook) 1267 request_module("8021q"); 1268 1269 mutex_lock(&vlan_ioctl_mutex); 1270 if (vlan_ioctl_hook) 1271 err = vlan_ioctl_hook(net, argp); 1272 mutex_unlock(&vlan_ioctl_mutex); 1273 break; 1274 case SIOCGSKNS: 1275 err = -EPERM; 1276 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1277 break; 1278 1279 err = open_related_ns(&net->ns, get_net_ns); 1280 break; 1281 case SIOCGSTAMP_OLD: 1282 case SIOCGSTAMPNS_OLD: 1283 if (!sock->ops->gettstamp) { 1284 err = -ENOIOCTLCMD; 1285 break; 1286 } 1287 err = sock->ops->gettstamp(sock, argp, 1288 cmd == SIOCGSTAMP_OLD, 1289 !IS_ENABLED(CONFIG_64BIT)); 1290 break; 1291 case SIOCGSTAMP_NEW: 1292 case SIOCGSTAMPNS_NEW: 1293 if (!sock->ops->gettstamp) { 1294 err = -ENOIOCTLCMD; 1295 break; 1296 } 1297 err = sock->ops->gettstamp(sock, argp, 1298 cmd == SIOCGSTAMP_NEW, 1299 false); 1300 break; 1301 1302 case SIOCGIFCONF: 1303 err = dev_ifconf(net, argp); 1304 break; 1305 1306 default: 1307 err = sock_do_ioctl(net, sock, cmd, arg); 1308 break; 1309 } 1310 return err; 1311 } 1312 1313 /** 1314 * sock_create_lite - creates a socket 1315 * @family: protocol family (AF_INET, ...) 1316 * @type: communication type (SOCK_STREAM, ...) 1317 * @protocol: protocol (0, ...) 1318 * @res: new socket 1319 * 1320 * Creates a new socket and assigns it to @res, passing through LSM. 1321 * The new socket initialization is not complete, see kernel_accept(). 1322 * Returns 0 or an error. On failure @res is set to %NULL. 1323 * This function internally uses GFP_KERNEL. 1324 */ 1325 1326 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1327 { 1328 int err; 1329 struct socket *sock = NULL; 1330 1331 err = security_socket_create(family, type, protocol, 1); 1332 if (err) 1333 goto out; 1334 1335 sock = sock_alloc(); 1336 if (!sock) { 1337 err = -ENOMEM; 1338 goto out; 1339 } 1340 1341 sock->type = type; 1342 err = security_socket_post_create(sock, family, type, protocol, 1); 1343 if (err) 1344 goto out_release; 1345 1346 out: 1347 *res = sock; 1348 return err; 1349 out_release: 1350 sock_release(sock); 1351 sock = NULL; 1352 goto out; 1353 } 1354 EXPORT_SYMBOL(sock_create_lite); 1355 1356 /* No kernel lock held - perfect */ 1357 static __poll_t sock_poll(struct file *file, poll_table *wait) 1358 { 1359 struct socket *sock = file->private_data; 1360 __poll_t events = poll_requested_events(wait), flag = 0; 1361 1362 if (!sock->ops->poll) 1363 return 0; 1364 1365 if (sk_can_busy_loop(sock->sk)) { 1366 /* poll once if requested by the syscall */ 1367 if (events & POLL_BUSY_LOOP) 1368 sk_busy_loop(sock->sk, 1); 1369 1370 /* if this socket can poll_ll, tell the system call */ 1371 flag = POLL_BUSY_LOOP; 1372 } 1373 1374 return sock->ops->poll(file, sock, wait) | flag; 1375 } 1376 1377 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1378 { 1379 struct socket *sock = file->private_data; 1380 1381 return sock->ops->mmap(file, sock, vma); 1382 } 1383 1384 static int sock_close(struct inode *inode, struct file *filp) 1385 { 1386 __sock_release(SOCKET_I(inode), inode); 1387 return 0; 1388 } 1389 1390 /* 1391 * Update the socket async list 1392 * 1393 * Fasync_list locking strategy. 1394 * 1395 * 1. fasync_list is modified only under process context socket lock 1396 * i.e. under semaphore. 1397 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1398 * or under socket lock 1399 */ 1400 1401 static int sock_fasync(int fd, struct file *filp, int on) 1402 { 1403 struct socket *sock = filp->private_data; 1404 struct sock *sk = sock->sk; 1405 struct socket_wq *wq = &sock->wq; 1406 1407 if (sk == NULL) 1408 return -EINVAL; 1409 1410 lock_sock(sk); 1411 fasync_helper(fd, filp, on, &wq->fasync_list); 1412 1413 if (!wq->fasync_list) 1414 sock_reset_flag(sk, SOCK_FASYNC); 1415 else 1416 sock_set_flag(sk, SOCK_FASYNC); 1417 1418 release_sock(sk); 1419 return 0; 1420 } 1421 1422 /* This function may be called only under rcu_lock */ 1423 1424 int sock_wake_async(struct socket_wq *wq, int how, int band) 1425 { 1426 if (!wq || !wq->fasync_list) 1427 return -1; 1428 1429 switch (how) { 1430 case SOCK_WAKE_WAITD: 1431 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1432 break; 1433 goto call_kill; 1434 case SOCK_WAKE_SPACE: 1435 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1436 break; 1437 fallthrough; 1438 case SOCK_WAKE_IO: 1439 call_kill: 1440 kill_fasync(&wq->fasync_list, SIGIO, band); 1441 break; 1442 case SOCK_WAKE_URG: 1443 kill_fasync(&wq->fasync_list, SIGURG, band); 1444 } 1445 1446 return 0; 1447 } 1448 EXPORT_SYMBOL(sock_wake_async); 1449 1450 /** 1451 * __sock_create - creates a socket 1452 * @net: net namespace 1453 * @family: protocol family (AF_INET, ...) 1454 * @type: communication type (SOCK_STREAM, ...) 1455 * @protocol: protocol (0, ...) 1456 * @res: new socket 1457 * @kern: boolean for kernel space sockets 1458 * 1459 * Creates a new socket and assigns it to @res, passing through LSM. 1460 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1461 * be set to true if the socket resides in kernel space. 1462 * This function internally uses GFP_KERNEL. 1463 */ 1464 1465 int __sock_create(struct net *net, int family, int type, int protocol, 1466 struct socket **res, int kern) 1467 { 1468 int err; 1469 struct socket *sock; 1470 const struct net_proto_family *pf; 1471 1472 /* 1473 * Check protocol is in range 1474 */ 1475 if (family < 0 || family >= NPROTO) 1476 return -EAFNOSUPPORT; 1477 if (type < 0 || type >= SOCK_MAX) 1478 return -EINVAL; 1479 1480 /* Compatibility. 1481 1482 This uglymoron is moved from INET layer to here to avoid 1483 deadlock in module load. 1484 */ 1485 if (family == PF_INET && type == SOCK_PACKET) { 1486 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1487 current->comm); 1488 family = PF_PACKET; 1489 } 1490 1491 err = security_socket_create(family, type, protocol, kern); 1492 if (err) 1493 return err; 1494 1495 /* 1496 * Allocate the socket and allow the family to set things up. if 1497 * the protocol is 0, the family is instructed to select an appropriate 1498 * default. 1499 */ 1500 sock = sock_alloc(); 1501 if (!sock) { 1502 net_warn_ratelimited("socket: no more sockets\n"); 1503 return -ENFILE; /* Not exactly a match, but its the 1504 closest posix thing */ 1505 } 1506 1507 sock->type = type; 1508 1509 #ifdef CONFIG_MODULES 1510 /* Attempt to load a protocol module if the find failed. 1511 * 1512 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1513 * requested real, full-featured networking support upon configuration. 1514 * Otherwise module support will break! 1515 */ 1516 if (rcu_access_pointer(net_families[family]) == NULL) 1517 request_module("net-pf-%d", family); 1518 #endif 1519 1520 rcu_read_lock(); 1521 pf = rcu_dereference(net_families[family]); 1522 err = -EAFNOSUPPORT; 1523 if (!pf) 1524 goto out_release; 1525 1526 /* 1527 * We will call the ->create function, that possibly is in a loadable 1528 * module, so we have to bump that loadable module refcnt first. 1529 */ 1530 if (!try_module_get(pf->owner)) 1531 goto out_release; 1532 1533 /* Now protected by module ref count */ 1534 rcu_read_unlock(); 1535 1536 err = pf->create(net, sock, protocol, kern); 1537 if (err < 0) 1538 goto out_module_put; 1539 1540 /* 1541 * Now to bump the refcnt of the [loadable] module that owns this 1542 * socket at sock_release time we decrement its refcnt. 1543 */ 1544 if (!try_module_get(sock->ops->owner)) 1545 goto out_module_busy; 1546 1547 /* 1548 * Now that we're done with the ->create function, the [loadable] 1549 * module can have its refcnt decremented 1550 */ 1551 module_put(pf->owner); 1552 err = security_socket_post_create(sock, family, type, protocol, kern); 1553 if (err) 1554 goto out_sock_release; 1555 *res = sock; 1556 1557 return 0; 1558 1559 out_module_busy: 1560 err = -EAFNOSUPPORT; 1561 out_module_put: 1562 sock->ops = NULL; 1563 module_put(pf->owner); 1564 out_sock_release: 1565 sock_release(sock); 1566 return err; 1567 1568 out_release: 1569 rcu_read_unlock(); 1570 goto out_sock_release; 1571 } 1572 EXPORT_SYMBOL(__sock_create); 1573 1574 /** 1575 * sock_create - creates a socket 1576 * @family: protocol family (AF_INET, ...) 1577 * @type: communication type (SOCK_STREAM, ...) 1578 * @protocol: protocol (0, ...) 1579 * @res: new socket 1580 * 1581 * A wrapper around __sock_create(). 1582 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1583 */ 1584 1585 int sock_create(int family, int type, int protocol, struct socket **res) 1586 { 1587 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1588 } 1589 EXPORT_SYMBOL(sock_create); 1590 1591 /** 1592 * sock_create_kern - creates a socket (kernel space) 1593 * @net: net namespace 1594 * @family: protocol family (AF_INET, ...) 1595 * @type: communication type (SOCK_STREAM, ...) 1596 * @protocol: protocol (0, ...) 1597 * @res: new socket 1598 * 1599 * A wrapper around __sock_create(). 1600 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1601 */ 1602 1603 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1604 { 1605 return __sock_create(net, family, type, protocol, res, 1); 1606 } 1607 EXPORT_SYMBOL(sock_create_kern); 1608 1609 static struct socket *__sys_socket_create(int family, int type, int protocol) 1610 { 1611 struct socket *sock; 1612 int retval; 1613 1614 /* Check the SOCK_* constants for consistency. */ 1615 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1616 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1617 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1618 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1619 1620 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1621 return ERR_PTR(-EINVAL); 1622 type &= SOCK_TYPE_MASK; 1623 1624 retval = sock_create(family, type, protocol, &sock); 1625 if (retval < 0) 1626 return ERR_PTR(retval); 1627 1628 return sock; 1629 } 1630 1631 struct file *__sys_socket_file(int family, int type, int protocol) 1632 { 1633 struct socket *sock; 1634 int flags; 1635 1636 sock = __sys_socket_create(family, type, protocol); 1637 if (IS_ERR(sock)) 1638 return ERR_CAST(sock); 1639 1640 flags = type & ~SOCK_TYPE_MASK; 1641 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1642 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1643 1644 return sock_alloc_file(sock, flags, NULL); 1645 } 1646 1647 int __sys_socket(int family, int type, int protocol) 1648 { 1649 struct socket *sock; 1650 int flags; 1651 1652 sock = __sys_socket_create(family, type, protocol); 1653 if (IS_ERR(sock)) 1654 return PTR_ERR(sock); 1655 1656 flags = type & ~SOCK_TYPE_MASK; 1657 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1658 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1659 1660 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1661 } 1662 1663 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1664 { 1665 return __sys_socket(family, type, protocol); 1666 } 1667 1668 /* 1669 * Create a pair of connected sockets. 1670 */ 1671 1672 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1673 { 1674 struct socket *sock1, *sock2; 1675 int fd1, fd2, err; 1676 struct file *newfile1, *newfile2; 1677 int flags; 1678 1679 flags = type & ~SOCK_TYPE_MASK; 1680 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1681 return -EINVAL; 1682 type &= SOCK_TYPE_MASK; 1683 1684 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1685 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1686 1687 /* 1688 * reserve descriptors and make sure we won't fail 1689 * to return them to userland. 1690 */ 1691 fd1 = get_unused_fd_flags(flags); 1692 if (unlikely(fd1 < 0)) 1693 return fd1; 1694 1695 fd2 = get_unused_fd_flags(flags); 1696 if (unlikely(fd2 < 0)) { 1697 put_unused_fd(fd1); 1698 return fd2; 1699 } 1700 1701 err = put_user(fd1, &usockvec[0]); 1702 if (err) 1703 goto out; 1704 1705 err = put_user(fd2, &usockvec[1]); 1706 if (err) 1707 goto out; 1708 1709 /* 1710 * Obtain the first socket and check if the underlying protocol 1711 * supports the socketpair call. 1712 */ 1713 1714 err = sock_create(family, type, protocol, &sock1); 1715 if (unlikely(err < 0)) 1716 goto out; 1717 1718 err = sock_create(family, type, protocol, &sock2); 1719 if (unlikely(err < 0)) { 1720 sock_release(sock1); 1721 goto out; 1722 } 1723 1724 err = security_socket_socketpair(sock1, sock2); 1725 if (unlikely(err)) { 1726 sock_release(sock2); 1727 sock_release(sock1); 1728 goto out; 1729 } 1730 1731 err = sock1->ops->socketpair(sock1, sock2); 1732 if (unlikely(err < 0)) { 1733 sock_release(sock2); 1734 sock_release(sock1); 1735 goto out; 1736 } 1737 1738 newfile1 = sock_alloc_file(sock1, flags, NULL); 1739 if (IS_ERR(newfile1)) { 1740 err = PTR_ERR(newfile1); 1741 sock_release(sock2); 1742 goto out; 1743 } 1744 1745 newfile2 = sock_alloc_file(sock2, flags, NULL); 1746 if (IS_ERR(newfile2)) { 1747 err = PTR_ERR(newfile2); 1748 fput(newfile1); 1749 goto out; 1750 } 1751 1752 audit_fd_pair(fd1, fd2); 1753 1754 fd_install(fd1, newfile1); 1755 fd_install(fd2, newfile2); 1756 return 0; 1757 1758 out: 1759 put_unused_fd(fd2); 1760 put_unused_fd(fd1); 1761 return err; 1762 } 1763 1764 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1765 int __user *, usockvec) 1766 { 1767 return __sys_socketpair(family, type, protocol, usockvec); 1768 } 1769 1770 /* 1771 * Bind a name to a socket. Nothing much to do here since it's 1772 * the protocol's responsibility to handle the local address. 1773 * 1774 * We move the socket address to kernel space before we call 1775 * the protocol layer (having also checked the address is ok). 1776 */ 1777 1778 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1779 { 1780 struct socket *sock; 1781 struct sockaddr_storage address; 1782 int err, fput_needed; 1783 1784 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1785 if (sock) { 1786 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1787 if (!err) { 1788 err = security_socket_bind(sock, 1789 (struct sockaddr *)&address, 1790 addrlen); 1791 if (!err) 1792 err = sock->ops->bind(sock, 1793 (struct sockaddr *) 1794 &address, addrlen); 1795 } 1796 fput_light(sock->file, fput_needed); 1797 } 1798 return err; 1799 } 1800 1801 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1802 { 1803 return __sys_bind(fd, umyaddr, addrlen); 1804 } 1805 1806 /* 1807 * Perform a listen. Basically, we allow the protocol to do anything 1808 * necessary for a listen, and if that works, we mark the socket as 1809 * ready for listening. 1810 */ 1811 1812 int __sys_listen(int fd, int backlog) 1813 { 1814 struct socket *sock; 1815 int err, fput_needed; 1816 int somaxconn; 1817 1818 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1819 if (sock) { 1820 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1821 if ((unsigned int)backlog > somaxconn) 1822 backlog = somaxconn; 1823 1824 err = security_socket_listen(sock, backlog); 1825 if (!err) 1826 err = sock->ops->listen(sock, backlog); 1827 1828 fput_light(sock->file, fput_needed); 1829 } 1830 return err; 1831 } 1832 1833 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1834 { 1835 return __sys_listen(fd, backlog); 1836 } 1837 1838 struct file *do_accept(struct file *file, unsigned file_flags, 1839 struct sockaddr __user *upeer_sockaddr, 1840 int __user *upeer_addrlen, int flags) 1841 { 1842 struct socket *sock, *newsock; 1843 struct file *newfile; 1844 int err, len; 1845 struct sockaddr_storage address; 1846 1847 sock = sock_from_file(file); 1848 if (!sock) 1849 return ERR_PTR(-ENOTSOCK); 1850 1851 newsock = sock_alloc(); 1852 if (!newsock) 1853 return ERR_PTR(-ENFILE); 1854 1855 newsock->type = sock->type; 1856 newsock->ops = sock->ops; 1857 1858 /* 1859 * We don't need try_module_get here, as the listening socket (sock) 1860 * has the protocol module (sock->ops->owner) held. 1861 */ 1862 __module_get(newsock->ops->owner); 1863 1864 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1865 if (IS_ERR(newfile)) 1866 return newfile; 1867 1868 err = security_socket_accept(sock, newsock); 1869 if (err) 1870 goto out_fd; 1871 1872 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1873 false); 1874 if (err < 0) 1875 goto out_fd; 1876 1877 if (upeer_sockaddr) { 1878 len = newsock->ops->getname(newsock, 1879 (struct sockaddr *)&address, 2); 1880 if (len < 0) { 1881 err = -ECONNABORTED; 1882 goto out_fd; 1883 } 1884 err = move_addr_to_user(&address, 1885 len, upeer_sockaddr, upeer_addrlen); 1886 if (err < 0) 1887 goto out_fd; 1888 } 1889 1890 /* File flags are not inherited via accept() unlike another OSes. */ 1891 return newfile; 1892 out_fd: 1893 fput(newfile); 1894 return ERR_PTR(err); 1895 } 1896 1897 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1898 int __user *upeer_addrlen, int flags) 1899 { 1900 struct file *newfile; 1901 int newfd; 1902 1903 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1904 return -EINVAL; 1905 1906 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1907 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1908 1909 newfd = get_unused_fd_flags(flags); 1910 if (unlikely(newfd < 0)) 1911 return newfd; 1912 1913 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen, 1914 flags); 1915 if (IS_ERR(newfile)) { 1916 put_unused_fd(newfd); 1917 return PTR_ERR(newfile); 1918 } 1919 fd_install(newfd, newfile); 1920 return newfd; 1921 } 1922 1923 /* 1924 * For accept, we attempt to create a new socket, set up the link 1925 * with the client, wake up the client, then return the new 1926 * connected fd. We collect the address of the connector in kernel 1927 * space and move it to user at the very end. This is unclean because 1928 * we open the socket then return an error. 1929 * 1930 * 1003.1g adds the ability to recvmsg() to query connection pending 1931 * status to recvmsg. We need to add that support in a way thats 1932 * clean when we restructure accept also. 1933 */ 1934 1935 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1936 int __user *upeer_addrlen, int flags) 1937 { 1938 int ret = -EBADF; 1939 struct fd f; 1940 1941 f = fdget(fd); 1942 if (f.file) { 1943 ret = __sys_accept4_file(f.file, upeer_sockaddr, 1944 upeer_addrlen, flags); 1945 fdput(f); 1946 } 1947 1948 return ret; 1949 } 1950 1951 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1952 int __user *, upeer_addrlen, int, flags) 1953 { 1954 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1955 } 1956 1957 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1958 int __user *, upeer_addrlen) 1959 { 1960 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1961 } 1962 1963 /* 1964 * Attempt to connect to a socket with the server address. The address 1965 * is in user space so we verify it is OK and move it to kernel space. 1966 * 1967 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1968 * break bindings 1969 * 1970 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1971 * other SEQPACKET protocols that take time to connect() as it doesn't 1972 * include the -EINPROGRESS status for such sockets. 1973 */ 1974 1975 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1976 int addrlen, int file_flags) 1977 { 1978 struct socket *sock; 1979 int err; 1980 1981 sock = sock_from_file(file); 1982 if (!sock) { 1983 err = -ENOTSOCK; 1984 goto out; 1985 } 1986 1987 err = 1988 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1989 if (err) 1990 goto out; 1991 1992 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1993 sock->file->f_flags | file_flags); 1994 out: 1995 return err; 1996 } 1997 1998 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1999 { 2000 int ret = -EBADF; 2001 struct fd f; 2002 2003 f = fdget(fd); 2004 if (f.file) { 2005 struct sockaddr_storage address; 2006 2007 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2008 if (!ret) 2009 ret = __sys_connect_file(f.file, &address, addrlen, 0); 2010 fdput(f); 2011 } 2012 2013 return ret; 2014 } 2015 2016 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2017 int, addrlen) 2018 { 2019 return __sys_connect(fd, uservaddr, addrlen); 2020 } 2021 2022 /* 2023 * Get the local address ('name') of a socket object. Move the obtained 2024 * name to user space. 2025 */ 2026 2027 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2028 int __user *usockaddr_len) 2029 { 2030 struct socket *sock; 2031 struct sockaddr_storage address; 2032 int err, fput_needed; 2033 2034 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2035 if (!sock) 2036 goto out; 2037 2038 err = security_socket_getsockname(sock); 2039 if (err) 2040 goto out_put; 2041 2042 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 2043 if (err < 0) 2044 goto out_put; 2045 /* "err" is actually length in this case */ 2046 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2047 2048 out_put: 2049 fput_light(sock->file, fput_needed); 2050 out: 2051 return err; 2052 } 2053 2054 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2055 int __user *, usockaddr_len) 2056 { 2057 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2058 } 2059 2060 /* 2061 * Get the remote address ('name') of a socket object. Move the obtained 2062 * name to user space. 2063 */ 2064 2065 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2066 int __user *usockaddr_len) 2067 { 2068 struct socket *sock; 2069 struct sockaddr_storage address; 2070 int err, fput_needed; 2071 2072 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2073 if (sock != NULL) { 2074 err = security_socket_getpeername(sock); 2075 if (err) { 2076 fput_light(sock->file, fput_needed); 2077 return err; 2078 } 2079 2080 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 2081 if (err >= 0) 2082 /* "err" is actually length in this case */ 2083 err = move_addr_to_user(&address, err, usockaddr, 2084 usockaddr_len); 2085 fput_light(sock->file, fput_needed); 2086 } 2087 return err; 2088 } 2089 2090 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2091 int __user *, usockaddr_len) 2092 { 2093 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2094 } 2095 2096 /* 2097 * Send a datagram to a given address. We move the address into kernel 2098 * space and check the user space data area is readable before invoking 2099 * the protocol. 2100 */ 2101 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2102 struct sockaddr __user *addr, int addr_len) 2103 { 2104 struct socket *sock; 2105 struct sockaddr_storage address; 2106 int err; 2107 struct msghdr msg; 2108 struct iovec iov; 2109 int fput_needed; 2110 2111 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter); 2112 if (unlikely(err)) 2113 return err; 2114 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2115 if (!sock) 2116 goto out; 2117 2118 msg.msg_name = NULL; 2119 msg.msg_control = NULL; 2120 msg.msg_controllen = 0; 2121 msg.msg_namelen = 0; 2122 msg.msg_ubuf = NULL; 2123 if (addr) { 2124 err = move_addr_to_kernel(addr, addr_len, &address); 2125 if (err < 0) 2126 goto out_put; 2127 msg.msg_name = (struct sockaddr *)&address; 2128 msg.msg_namelen = addr_len; 2129 } 2130 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2131 if (sock->file->f_flags & O_NONBLOCK) 2132 flags |= MSG_DONTWAIT; 2133 msg.msg_flags = flags; 2134 err = sock_sendmsg(sock, &msg); 2135 2136 out_put: 2137 fput_light(sock->file, fput_needed); 2138 out: 2139 return err; 2140 } 2141 2142 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2143 unsigned int, flags, struct sockaddr __user *, addr, 2144 int, addr_len) 2145 { 2146 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2147 } 2148 2149 /* 2150 * Send a datagram down a socket. 2151 */ 2152 2153 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2154 unsigned int, flags) 2155 { 2156 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2157 } 2158 2159 /* 2160 * Receive a frame from the socket and optionally record the address of the 2161 * sender. We verify the buffers are writable and if needed move the 2162 * sender address from kernel to user space. 2163 */ 2164 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2165 struct sockaddr __user *addr, int __user *addr_len) 2166 { 2167 struct sockaddr_storage address; 2168 struct msghdr msg = { 2169 /* Save some cycles and don't copy the address if not needed */ 2170 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2171 }; 2172 struct socket *sock; 2173 struct iovec iov; 2174 int err, err2; 2175 int fput_needed; 2176 2177 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter); 2178 if (unlikely(err)) 2179 return err; 2180 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2181 if (!sock) 2182 goto out; 2183 2184 if (sock->file->f_flags & O_NONBLOCK) 2185 flags |= MSG_DONTWAIT; 2186 err = sock_recvmsg(sock, &msg, flags); 2187 2188 if (err >= 0 && addr != NULL) { 2189 err2 = move_addr_to_user(&address, 2190 msg.msg_namelen, addr, addr_len); 2191 if (err2 < 0) 2192 err = err2; 2193 } 2194 2195 fput_light(sock->file, fput_needed); 2196 out: 2197 return err; 2198 } 2199 2200 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2201 unsigned int, flags, struct sockaddr __user *, addr, 2202 int __user *, addr_len) 2203 { 2204 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2205 } 2206 2207 /* 2208 * Receive a datagram from a socket. 2209 */ 2210 2211 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2212 unsigned int, flags) 2213 { 2214 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2215 } 2216 2217 static bool sock_use_custom_sol_socket(const struct socket *sock) 2218 { 2219 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2220 } 2221 2222 /* 2223 * Set a socket option. Because we don't know the option lengths we have 2224 * to pass the user mode parameter for the protocols to sort out. 2225 */ 2226 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2227 int optlen) 2228 { 2229 sockptr_t optval = USER_SOCKPTR(user_optval); 2230 char *kernel_optval = NULL; 2231 int err, fput_needed; 2232 struct socket *sock; 2233 2234 if (optlen < 0) 2235 return -EINVAL; 2236 2237 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2238 if (!sock) 2239 return err; 2240 2241 err = security_socket_setsockopt(sock, level, optname); 2242 if (err) 2243 goto out_put; 2244 2245 if (!in_compat_syscall()) 2246 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2247 user_optval, &optlen, 2248 &kernel_optval); 2249 if (err < 0) 2250 goto out_put; 2251 if (err > 0) { 2252 err = 0; 2253 goto out_put; 2254 } 2255 2256 if (kernel_optval) 2257 optval = KERNEL_SOCKPTR(kernel_optval); 2258 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2259 err = sock_setsockopt(sock, level, optname, optval, optlen); 2260 else if (unlikely(!sock->ops->setsockopt)) 2261 err = -EOPNOTSUPP; 2262 else 2263 err = sock->ops->setsockopt(sock, level, optname, optval, 2264 optlen); 2265 kfree(kernel_optval); 2266 out_put: 2267 fput_light(sock->file, fput_needed); 2268 return err; 2269 } 2270 2271 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2272 char __user *, optval, int, optlen) 2273 { 2274 return __sys_setsockopt(fd, level, optname, optval, optlen); 2275 } 2276 2277 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2278 int optname)); 2279 2280 /* 2281 * Get a socket option. Because we don't know the option lengths we have 2282 * to pass a user mode parameter for the protocols to sort out. 2283 */ 2284 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2285 int __user *optlen) 2286 { 2287 int max_optlen __maybe_unused; 2288 int err, fput_needed; 2289 struct socket *sock; 2290 2291 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2292 if (!sock) 2293 return err; 2294 2295 err = security_socket_getsockopt(sock, level, optname); 2296 if (err) 2297 goto out_put; 2298 2299 if (!in_compat_syscall()) 2300 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2301 2302 if (level == SOL_SOCKET) 2303 err = sock_getsockopt(sock, level, optname, optval, optlen); 2304 else if (unlikely(!sock->ops->getsockopt)) 2305 err = -EOPNOTSUPP; 2306 else 2307 err = sock->ops->getsockopt(sock, level, optname, optval, 2308 optlen); 2309 2310 if (!in_compat_syscall()) 2311 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2312 optval, optlen, max_optlen, 2313 err); 2314 out_put: 2315 fput_light(sock->file, fput_needed); 2316 return err; 2317 } 2318 2319 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2320 char __user *, optval, int __user *, optlen) 2321 { 2322 return __sys_getsockopt(fd, level, optname, optval, optlen); 2323 } 2324 2325 /* 2326 * Shutdown a socket. 2327 */ 2328 2329 int __sys_shutdown_sock(struct socket *sock, int how) 2330 { 2331 int err; 2332 2333 err = security_socket_shutdown(sock, how); 2334 if (!err) 2335 err = sock->ops->shutdown(sock, how); 2336 2337 return err; 2338 } 2339 2340 int __sys_shutdown(int fd, int how) 2341 { 2342 int err, fput_needed; 2343 struct socket *sock; 2344 2345 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2346 if (sock != NULL) { 2347 err = __sys_shutdown_sock(sock, how); 2348 fput_light(sock->file, fput_needed); 2349 } 2350 return err; 2351 } 2352 2353 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2354 { 2355 return __sys_shutdown(fd, how); 2356 } 2357 2358 /* A couple of helpful macros for getting the address of the 32/64 bit 2359 * fields which are the same type (int / unsigned) on our platforms. 2360 */ 2361 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2362 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2363 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2364 2365 struct used_address { 2366 struct sockaddr_storage name; 2367 unsigned int name_len; 2368 }; 2369 2370 int __copy_msghdr(struct msghdr *kmsg, 2371 struct user_msghdr *msg, 2372 struct sockaddr __user **save_addr) 2373 { 2374 ssize_t err; 2375 2376 kmsg->msg_control_is_user = true; 2377 kmsg->msg_get_inq = 0; 2378 kmsg->msg_control_user = msg->msg_control; 2379 kmsg->msg_controllen = msg->msg_controllen; 2380 kmsg->msg_flags = msg->msg_flags; 2381 2382 kmsg->msg_namelen = msg->msg_namelen; 2383 if (!msg->msg_name) 2384 kmsg->msg_namelen = 0; 2385 2386 if (kmsg->msg_namelen < 0) 2387 return -EINVAL; 2388 2389 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2390 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2391 2392 if (save_addr) 2393 *save_addr = msg->msg_name; 2394 2395 if (msg->msg_name && kmsg->msg_namelen) { 2396 if (!save_addr) { 2397 err = move_addr_to_kernel(msg->msg_name, 2398 kmsg->msg_namelen, 2399 kmsg->msg_name); 2400 if (err < 0) 2401 return err; 2402 } 2403 } else { 2404 kmsg->msg_name = NULL; 2405 kmsg->msg_namelen = 0; 2406 } 2407 2408 if (msg->msg_iovlen > UIO_MAXIOV) 2409 return -EMSGSIZE; 2410 2411 kmsg->msg_iocb = NULL; 2412 kmsg->msg_ubuf = NULL; 2413 return 0; 2414 } 2415 2416 static int copy_msghdr_from_user(struct msghdr *kmsg, 2417 struct user_msghdr __user *umsg, 2418 struct sockaddr __user **save_addr, 2419 struct iovec **iov) 2420 { 2421 struct user_msghdr msg; 2422 ssize_t err; 2423 2424 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2425 return -EFAULT; 2426 2427 err = __copy_msghdr(kmsg, &msg, save_addr); 2428 if (err) 2429 return err; 2430 2431 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2432 msg.msg_iov, msg.msg_iovlen, 2433 UIO_FASTIOV, iov, &kmsg->msg_iter); 2434 return err < 0 ? err : 0; 2435 } 2436 2437 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2438 unsigned int flags, struct used_address *used_address, 2439 unsigned int allowed_msghdr_flags) 2440 { 2441 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2442 __aligned(sizeof(__kernel_size_t)); 2443 /* 20 is size of ipv6_pktinfo */ 2444 unsigned char *ctl_buf = ctl; 2445 int ctl_len; 2446 ssize_t err; 2447 2448 err = -ENOBUFS; 2449 2450 if (msg_sys->msg_controllen > INT_MAX) 2451 goto out; 2452 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2453 ctl_len = msg_sys->msg_controllen; 2454 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2455 err = 2456 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2457 sizeof(ctl)); 2458 if (err) 2459 goto out; 2460 ctl_buf = msg_sys->msg_control; 2461 ctl_len = msg_sys->msg_controllen; 2462 } else if (ctl_len) { 2463 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2464 CMSG_ALIGN(sizeof(struct cmsghdr))); 2465 if (ctl_len > sizeof(ctl)) { 2466 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2467 if (ctl_buf == NULL) 2468 goto out; 2469 } 2470 err = -EFAULT; 2471 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2472 goto out_freectl; 2473 msg_sys->msg_control = ctl_buf; 2474 msg_sys->msg_control_is_user = false; 2475 } 2476 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2477 msg_sys->msg_flags = flags; 2478 2479 if (sock->file->f_flags & O_NONBLOCK) 2480 msg_sys->msg_flags |= MSG_DONTWAIT; 2481 /* 2482 * If this is sendmmsg() and current destination address is same as 2483 * previously succeeded address, omit asking LSM's decision. 2484 * used_address->name_len is initialized to UINT_MAX so that the first 2485 * destination address never matches. 2486 */ 2487 if (used_address && msg_sys->msg_name && 2488 used_address->name_len == msg_sys->msg_namelen && 2489 !memcmp(&used_address->name, msg_sys->msg_name, 2490 used_address->name_len)) { 2491 err = sock_sendmsg_nosec(sock, msg_sys); 2492 goto out_freectl; 2493 } 2494 err = sock_sendmsg(sock, msg_sys); 2495 /* 2496 * If this is sendmmsg() and sending to current destination address was 2497 * successful, remember it. 2498 */ 2499 if (used_address && err >= 0) { 2500 used_address->name_len = msg_sys->msg_namelen; 2501 if (msg_sys->msg_name) 2502 memcpy(&used_address->name, msg_sys->msg_name, 2503 used_address->name_len); 2504 } 2505 2506 out_freectl: 2507 if (ctl_buf != ctl) 2508 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2509 out: 2510 return err; 2511 } 2512 2513 int sendmsg_copy_msghdr(struct msghdr *msg, 2514 struct user_msghdr __user *umsg, unsigned flags, 2515 struct iovec **iov) 2516 { 2517 int err; 2518 2519 if (flags & MSG_CMSG_COMPAT) { 2520 struct compat_msghdr __user *msg_compat; 2521 2522 msg_compat = (struct compat_msghdr __user *) umsg; 2523 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2524 } else { 2525 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2526 } 2527 if (err < 0) 2528 return err; 2529 2530 return 0; 2531 } 2532 2533 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2534 struct msghdr *msg_sys, unsigned int flags, 2535 struct used_address *used_address, 2536 unsigned int allowed_msghdr_flags) 2537 { 2538 struct sockaddr_storage address; 2539 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2540 ssize_t err; 2541 2542 msg_sys->msg_name = &address; 2543 2544 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2545 if (err < 0) 2546 return err; 2547 2548 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2549 allowed_msghdr_flags); 2550 kfree(iov); 2551 return err; 2552 } 2553 2554 /* 2555 * BSD sendmsg interface 2556 */ 2557 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2558 unsigned int flags) 2559 { 2560 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2561 } 2562 2563 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2564 bool forbid_cmsg_compat) 2565 { 2566 int fput_needed, err; 2567 struct msghdr msg_sys; 2568 struct socket *sock; 2569 2570 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2571 return -EINVAL; 2572 2573 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2574 if (!sock) 2575 goto out; 2576 2577 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2578 2579 fput_light(sock->file, fput_needed); 2580 out: 2581 return err; 2582 } 2583 2584 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2585 { 2586 return __sys_sendmsg(fd, msg, flags, true); 2587 } 2588 2589 /* 2590 * Linux sendmmsg interface 2591 */ 2592 2593 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2594 unsigned int flags, bool forbid_cmsg_compat) 2595 { 2596 int fput_needed, err, datagrams; 2597 struct socket *sock; 2598 struct mmsghdr __user *entry; 2599 struct compat_mmsghdr __user *compat_entry; 2600 struct msghdr msg_sys; 2601 struct used_address used_address; 2602 unsigned int oflags = flags; 2603 2604 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2605 return -EINVAL; 2606 2607 if (vlen > UIO_MAXIOV) 2608 vlen = UIO_MAXIOV; 2609 2610 datagrams = 0; 2611 2612 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2613 if (!sock) 2614 return err; 2615 2616 used_address.name_len = UINT_MAX; 2617 entry = mmsg; 2618 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2619 err = 0; 2620 flags |= MSG_BATCH; 2621 2622 while (datagrams < vlen) { 2623 if (datagrams == vlen - 1) 2624 flags = oflags; 2625 2626 if (MSG_CMSG_COMPAT & flags) { 2627 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2628 &msg_sys, flags, &used_address, MSG_EOR); 2629 if (err < 0) 2630 break; 2631 err = __put_user(err, &compat_entry->msg_len); 2632 ++compat_entry; 2633 } else { 2634 err = ___sys_sendmsg(sock, 2635 (struct user_msghdr __user *)entry, 2636 &msg_sys, flags, &used_address, MSG_EOR); 2637 if (err < 0) 2638 break; 2639 err = put_user(err, &entry->msg_len); 2640 ++entry; 2641 } 2642 2643 if (err) 2644 break; 2645 ++datagrams; 2646 if (msg_data_left(&msg_sys)) 2647 break; 2648 cond_resched(); 2649 } 2650 2651 fput_light(sock->file, fput_needed); 2652 2653 /* We only return an error if no datagrams were able to be sent */ 2654 if (datagrams != 0) 2655 return datagrams; 2656 2657 return err; 2658 } 2659 2660 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2661 unsigned int, vlen, unsigned int, flags) 2662 { 2663 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2664 } 2665 2666 int recvmsg_copy_msghdr(struct msghdr *msg, 2667 struct user_msghdr __user *umsg, unsigned flags, 2668 struct sockaddr __user **uaddr, 2669 struct iovec **iov) 2670 { 2671 ssize_t err; 2672 2673 if (MSG_CMSG_COMPAT & flags) { 2674 struct compat_msghdr __user *msg_compat; 2675 2676 msg_compat = (struct compat_msghdr __user *) umsg; 2677 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2678 } else { 2679 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2680 } 2681 if (err < 0) 2682 return err; 2683 2684 return 0; 2685 } 2686 2687 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2688 struct user_msghdr __user *msg, 2689 struct sockaddr __user *uaddr, 2690 unsigned int flags, int nosec) 2691 { 2692 struct compat_msghdr __user *msg_compat = 2693 (struct compat_msghdr __user *) msg; 2694 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2695 struct sockaddr_storage addr; 2696 unsigned long cmsg_ptr; 2697 int len; 2698 ssize_t err; 2699 2700 msg_sys->msg_name = &addr; 2701 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2702 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2703 2704 /* We assume all kernel code knows the size of sockaddr_storage */ 2705 msg_sys->msg_namelen = 0; 2706 2707 if (sock->file->f_flags & O_NONBLOCK) 2708 flags |= MSG_DONTWAIT; 2709 2710 if (unlikely(nosec)) 2711 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2712 else 2713 err = sock_recvmsg(sock, msg_sys, flags); 2714 2715 if (err < 0) 2716 goto out; 2717 len = err; 2718 2719 if (uaddr != NULL) { 2720 err = move_addr_to_user(&addr, 2721 msg_sys->msg_namelen, uaddr, 2722 uaddr_len); 2723 if (err < 0) 2724 goto out; 2725 } 2726 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2727 COMPAT_FLAGS(msg)); 2728 if (err) 2729 goto out; 2730 if (MSG_CMSG_COMPAT & flags) 2731 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2732 &msg_compat->msg_controllen); 2733 else 2734 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2735 &msg->msg_controllen); 2736 if (err) 2737 goto out; 2738 err = len; 2739 out: 2740 return err; 2741 } 2742 2743 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2744 struct msghdr *msg_sys, unsigned int flags, int nosec) 2745 { 2746 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2747 /* user mode address pointers */ 2748 struct sockaddr __user *uaddr; 2749 ssize_t err; 2750 2751 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2752 if (err < 0) 2753 return err; 2754 2755 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2756 kfree(iov); 2757 return err; 2758 } 2759 2760 /* 2761 * BSD recvmsg interface 2762 */ 2763 2764 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2765 struct user_msghdr __user *umsg, 2766 struct sockaddr __user *uaddr, unsigned int flags) 2767 { 2768 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2769 } 2770 2771 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2772 bool forbid_cmsg_compat) 2773 { 2774 int fput_needed, err; 2775 struct msghdr msg_sys; 2776 struct socket *sock; 2777 2778 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2779 return -EINVAL; 2780 2781 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2782 if (!sock) 2783 goto out; 2784 2785 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2786 2787 fput_light(sock->file, fput_needed); 2788 out: 2789 return err; 2790 } 2791 2792 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2793 unsigned int, flags) 2794 { 2795 return __sys_recvmsg(fd, msg, flags, true); 2796 } 2797 2798 /* 2799 * Linux recvmmsg interface 2800 */ 2801 2802 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2803 unsigned int vlen, unsigned int flags, 2804 struct timespec64 *timeout) 2805 { 2806 int fput_needed, err, datagrams; 2807 struct socket *sock; 2808 struct mmsghdr __user *entry; 2809 struct compat_mmsghdr __user *compat_entry; 2810 struct msghdr msg_sys; 2811 struct timespec64 end_time; 2812 struct timespec64 timeout64; 2813 2814 if (timeout && 2815 poll_select_set_timeout(&end_time, timeout->tv_sec, 2816 timeout->tv_nsec)) 2817 return -EINVAL; 2818 2819 datagrams = 0; 2820 2821 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2822 if (!sock) 2823 return err; 2824 2825 if (likely(!(flags & MSG_ERRQUEUE))) { 2826 err = sock_error(sock->sk); 2827 if (err) { 2828 datagrams = err; 2829 goto out_put; 2830 } 2831 } 2832 2833 entry = mmsg; 2834 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2835 2836 while (datagrams < vlen) { 2837 /* 2838 * No need to ask LSM for more than the first datagram. 2839 */ 2840 if (MSG_CMSG_COMPAT & flags) { 2841 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2842 &msg_sys, flags & ~MSG_WAITFORONE, 2843 datagrams); 2844 if (err < 0) 2845 break; 2846 err = __put_user(err, &compat_entry->msg_len); 2847 ++compat_entry; 2848 } else { 2849 err = ___sys_recvmsg(sock, 2850 (struct user_msghdr __user *)entry, 2851 &msg_sys, flags & ~MSG_WAITFORONE, 2852 datagrams); 2853 if (err < 0) 2854 break; 2855 err = put_user(err, &entry->msg_len); 2856 ++entry; 2857 } 2858 2859 if (err) 2860 break; 2861 ++datagrams; 2862 2863 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2864 if (flags & MSG_WAITFORONE) 2865 flags |= MSG_DONTWAIT; 2866 2867 if (timeout) { 2868 ktime_get_ts64(&timeout64); 2869 *timeout = timespec64_sub(end_time, timeout64); 2870 if (timeout->tv_sec < 0) { 2871 timeout->tv_sec = timeout->tv_nsec = 0; 2872 break; 2873 } 2874 2875 /* Timeout, return less than vlen datagrams */ 2876 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2877 break; 2878 } 2879 2880 /* Out of band data, return right away */ 2881 if (msg_sys.msg_flags & MSG_OOB) 2882 break; 2883 cond_resched(); 2884 } 2885 2886 if (err == 0) 2887 goto out_put; 2888 2889 if (datagrams == 0) { 2890 datagrams = err; 2891 goto out_put; 2892 } 2893 2894 /* 2895 * We may return less entries than requested (vlen) if the 2896 * sock is non block and there aren't enough datagrams... 2897 */ 2898 if (err != -EAGAIN) { 2899 /* 2900 * ... or if recvmsg returns an error after we 2901 * received some datagrams, where we record the 2902 * error to return on the next call or if the 2903 * app asks about it using getsockopt(SO_ERROR). 2904 */ 2905 WRITE_ONCE(sock->sk->sk_err, -err); 2906 } 2907 out_put: 2908 fput_light(sock->file, fput_needed); 2909 2910 return datagrams; 2911 } 2912 2913 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2914 unsigned int vlen, unsigned int flags, 2915 struct __kernel_timespec __user *timeout, 2916 struct old_timespec32 __user *timeout32) 2917 { 2918 int datagrams; 2919 struct timespec64 timeout_sys; 2920 2921 if (timeout && get_timespec64(&timeout_sys, timeout)) 2922 return -EFAULT; 2923 2924 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2925 return -EFAULT; 2926 2927 if (!timeout && !timeout32) 2928 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2929 2930 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2931 2932 if (datagrams <= 0) 2933 return datagrams; 2934 2935 if (timeout && put_timespec64(&timeout_sys, timeout)) 2936 datagrams = -EFAULT; 2937 2938 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2939 datagrams = -EFAULT; 2940 2941 return datagrams; 2942 } 2943 2944 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2945 unsigned int, vlen, unsigned int, flags, 2946 struct __kernel_timespec __user *, timeout) 2947 { 2948 if (flags & MSG_CMSG_COMPAT) 2949 return -EINVAL; 2950 2951 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2952 } 2953 2954 #ifdef CONFIG_COMPAT_32BIT_TIME 2955 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2956 unsigned int, vlen, unsigned int, flags, 2957 struct old_timespec32 __user *, timeout) 2958 { 2959 if (flags & MSG_CMSG_COMPAT) 2960 return -EINVAL; 2961 2962 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2963 } 2964 #endif 2965 2966 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2967 /* Argument list sizes for sys_socketcall */ 2968 #define AL(x) ((x) * sizeof(unsigned long)) 2969 static const unsigned char nargs[21] = { 2970 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2971 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2972 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2973 AL(4), AL(5), AL(4) 2974 }; 2975 2976 #undef AL 2977 2978 /* 2979 * System call vectors. 2980 * 2981 * Argument checking cleaned up. Saved 20% in size. 2982 * This function doesn't need to set the kernel lock because 2983 * it is set by the callees. 2984 */ 2985 2986 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2987 { 2988 unsigned long a[AUDITSC_ARGS]; 2989 unsigned long a0, a1; 2990 int err; 2991 unsigned int len; 2992 2993 if (call < 1 || call > SYS_SENDMMSG) 2994 return -EINVAL; 2995 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2996 2997 len = nargs[call]; 2998 if (len > sizeof(a)) 2999 return -EINVAL; 3000 3001 /* copy_from_user should be SMP safe. */ 3002 if (copy_from_user(a, args, len)) 3003 return -EFAULT; 3004 3005 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3006 if (err) 3007 return err; 3008 3009 a0 = a[0]; 3010 a1 = a[1]; 3011 3012 switch (call) { 3013 case SYS_SOCKET: 3014 err = __sys_socket(a0, a1, a[2]); 3015 break; 3016 case SYS_BIND: 3017 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3018 break; 3019 case SYS_CONNECT: 3020 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3021 break; 3022 case SYS_LISTEN: 3023 err = __sys_listen(a0, a1); 3024 break; 3025 case SYS_ACCEPT: 3026 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3027 (int __user *)a[2], 0); 3028 break; 3029 case SYS_GETSOCKNAME: 3030 err = 3031 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3032 (int __user *)a[2]); 3033 break; 3034 case SYS_GETPEERNAME: 3035 err = 3036 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3037 (int __user *)a[2]); 3038 break; 3039 case SYS_SOCKETPAIR: 3040 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3041 break; 3042 case SYS_SEND: 3043 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3044 NULL, 0); 3045 break; 3046 case SYS_SENDTO: 3047 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3048 (struct sockaddr __user *)a[4], a[5]); 3049 break; 3050 case SYS_RECV: 3051 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3052 NULL, NULL); 3053 break; 3054 case SYS_RECVFROM: 3055 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3056 (struct sockaddr __user *)a[4], 3057 (int __user *)a[5]); 3058 break; 3059 case SYS_SHUTDOWN: 3060 err = __sys_shutdown(a0, a1); 3061 break; 3062 case SYS_SETSOCKOPT: 3063 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3064 a[4]); 3065 break; 3066 case SYS_GETSOCKOPT: 3067 err = 3068 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3069 (int __user *)a[4]); 3070 break; 3071 case SYS_SENDMSG: 3072 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3073 a[2], true); 3074 break; 3075 case SYS_SENDMMSG: 3076 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3077 a[3], true); 3078 break; 3079 case SYS_RECVMSG: 3080 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3081 a[2], true); 3082 break; 3083 case SYS_RECVMMSG: 3084 if (IS_ENABLED(CONFIG_64BIT)) 3085 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3086 a[2], a[3], 3087 (struct __kernel_timespec __user *)a[4], 3088 NULL); 3089 else 3090 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3091 a[2], a[3], NULL, 3092 (struct old_timespec32 __user *)a[4]); 3093 break; 3094 case SYS_ACCEPT4: 3095 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3096 (int __user *)a[2], a[3]); 3097 break; 3098 default: 3099 err = -EINVAL; 3100 break; 3101 } 3102 return err; 3103 } 3104 3105 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3106 3107 /** 3108 * sock_register - add a socket protocol handler 3109 * @ops: description of protocol 3110 * 3111 * This function is called by a protocol handler that wants to 3112 * advertise its address family, and have it linked into the 3113 * socket interface. The value ops->family corresponds to the 3114 * socket system call protocol family. 3115 */ 3116 int sock_register(const struct net_proto_family *ops) 3117 { 3118 int err; 3119 3120 if (ops->family >= NPROTO) { 3121 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3122 return -ENOBUFS; 3123 } 3124 3125 spin_lock(&net_family_lock); 3126 if (rcu_dereference_protected(net_families[ops->family], 3127 lockdep_is_held(&net_family_lock))) 3128 err = -EEXIST; 3129 else { 3130 rcu_assign_pointer(net_families[ops->family], ops); 3131 err = 0; 3132 } 3133 spin_unlock(&net_family_lock); 3134 3135 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3136 return err; 3137 } 3138 EXPORT_SYMBOL(sock_register); 3139 3140 /** 3141 * sock_unregister - remove a protocol handler 3142 * @family: protocol family to remove 3143 * 3144 * This function is called by a protocol handler that wants to 3145 * remove its address family, and have it unlinked from the 3146 * new socket creation. 3147 * 3148 * If protocol handler is a module, then it can use module reference 3149 * counts to protect against new references. If protocol handler is not 3150 * a module then it needs to provide its own protection in 3151 * the ops->create routine. 3152 */ 3153 void sock_unregister(int family) 3154 { 3155 BUG_ON(family < 0 || family >= NPROTO); 3156 3157 spin_lock(&net_family_lock); 3158 RCU_INIT_POINTER(net_families[family], NULL); 3159 spin_unlock(&net_family_lock); 3160 3161 synchronize_rcu(); 3162 3163 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3164 } 3165 EXPORT_SYMBOL(sock_unregister); 3166 3167 bool sock_is_registered(int family) 3168 { 3169 return family < NPROTO && rcu_access_pointer(net_families[family]); 3170 } 3171 3172 static int __init sock_init(void) 3173 { 3174 int err; 3175 /* 3176 * Initialize the network sysctl infrastructure. 3177 */ 3178 err = net_sysctl_init(); 3179 if (err) 3180 goto out; 3181 3182 /* 3183 * Initialize skbuff SLAB cache 3184 */ 3185 skb_init(); 3186 3187 /* 3188 * Initialize the protocols module. 3189 */ 3190 3191 init_inodecache(); 3192 3193 err = register_filesystem(&sock_fs_type); 3194 if (err) 3195 goto out; 3196 sock_mnt = kern_mount(&sock_fs_type); 3197 if (IS_ERR(sock_mnt)) { 3198 err = PTR_ERR(sock_mnt); 3199 goto out_mount; 3200 } 3201 3202 /* The real protocol initialization is performed in later initcalls. 3203 */ 3204 3205 #ifdef CONFIG_NETFILTER 3206 err = netfilter_init(); 3207 if (err) 3208 goto out; 3209 #endif 3210 3211 ptp_classifier_init(); 3212 3213 out: 3214 return err; 3215 3216 out_mount: 3217 unregister_filesystem(&sock_fs_type); 3218 goto out; 3219 } 3220 3221 core_initcall(sock_init); /* early initcall */ 3222 3223 #ifdef CONFIG_PROC_FS 3224 void socket_seq_show(struct seq_file *seq) 3225 { 3226 seq_printf(seq, "sockets: used %d\n", 3227 sock_inuse_get(seq->private)); 3228 } 3229 #endif /* CONFIG_PROC_FS */ 3230 3231 /* Handle the fact that while struct ifreq has the same *layout* on 3232 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3233 * which are handled elsewhere, it still has different *size* due to 3234 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3235 * resulting in struct ifreq being 32 and 40 bytes respectively). 3236 * As a result, if the struct happens to be at the end of a page and 3237 * the next page isn't readable/writable, we get a fault. To prevent 3238 * that, copy back and forth to the full size. 3239 */ 3240 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3241 { 3242 if (in_compat_syscall()) { 3243 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3244 3245 memset(ifr, 0, sizeof(*ifr)); 3246 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3247 return -EFAULT; 3248 3249 if (ifrdata) 3250 *ifrdata = compat_ptr(ifr32->ifr_data); 3251 3252 return 0; 3253 } 3254 3255 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3256 return -EFAULT; 3257 3258 if (ifrdata) 3259 *ifrdata = ifr->ifr_data; 3260 3261 return 0; 3262 } 3263 EXPORT_SYMBOL(get_user_ifreq); 3264 3265 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3266 { 3267 size_t size = sizeof(*ifr); 3268 3269 if (in_compat_syscall()) 3270 size = sizeof(struct compat_ifreq); 3271 3272 if (copy_to_user(arg, ifr, size)) 3273 return -EFAULT; 3274 3275 return 0; 3276 } 3277 EXPORT_SYMBOL(put_user_ifreq); 3278 3279 #ifdef CONFIG_COMPAT 3280 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3281 { 3282 compat_uptr_t uptr32; 3283 struct ifreq ifr; 3284 void __user *saved; 3285 int err; 3286 3287 if (get_user_ifreq(&ifr, NULL, uifr32)) 3288 return -EFAULT; 3289 3290 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3291 return -EFAULT; 3292 3293 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3294 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3295 3296 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3297 if (!err) { 3298 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3299 if (put_user_ifreq(&ifr, uifr32)) 3300 err = -EFAULT; 3301 } 3302 return err; 3303 } 3304 3305 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3306 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3307 struct compat_ifreq __user *u_ifreq32) 3308 { 3309 struct ifreq ifreq; 3310 void __user *data; 3311 3312 if (!is_socket_ioctl_cmd(cmd)) 3313 return -ENOTTY; 3314 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3315 return -EFAULT; 3316 ifreq.ifr_data = data; 3317 3318 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3319 } 3320 3321 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3322 unsigned int cmd, unsigned long arg) 3323 { 3324 void __user *argp = compat_ptr(arg); 3325 struct sock *sk = sock->sk; 3326 struct net *net = sock_net(sk); 3327 3328 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3329 return sock_ioctl(file, cmd, (unsigned long)argp); 3330 3331 switch (cmd) { 3332 case SIOCWANDEV: 3333 return compat_siocwandev(net, argp); 3334 case SIOCGSTAMP_OLD: 3335 case SIOCGSTAMPNS_OLD: 3336 if (!sock->ops->gettstamp) 3337 return -ENOIOCTLCMD; 3338 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3339 !COMPAT_USE_64BIT_TIME); 3340 3341 case SIOCETHTOOL: 3342 case SIOCBONDSLAVEINFOQUERY: 3343 case SIOCBONDINFOQUERY: 3344 case SIOCSHWTSTAMP: 3345 case SIOCGHWTSTAMP: 3346 return compat_ifr_data_ioctl(net, cmd, argp); 3347 3348 case FIOSETOWN: 3349 case SIOCSPGRP: 3350 case FIOGETOWN: 3351 case SIOCGPGRP: 3352 case SIOCBRADDBR: 3353 case SIOCBRDELBR: 3354 case SIOCGIFVLAN: 3355 case SIOCSIFVLAN: 3356 case SIOCGSKNS: 3357 case SIOCGSTAMP_NEW: 3358 case SIOCGSTAMPNS_NEW: 3359 case SIOCGIFCONF: 3360 case SIOCSIFBR: 3361 case SIOCGIFBR: 3362 return sock_ioctl(file, cmd, arg); 3363 3364 case SIOCGIFFLAGS: 3365 case SIOCSIFFLAGS: 3366 case SIOCGIFMAP: 3367 case SIOCSIFMAP: 3368 case SIOCGIFMETRIC: 3369 case SIOCSIFMETRIC: 3370 case SIOCGIFMTU: 3371 case SIOCSIFMTU: 3372 case SIOCGIFMEM: 3373 case SIOCSIFMEM: 3374 case SIOCGIFHWADDR: 3375 case SIOCSIFHWADDR: 3376 case SIOCADDMULTI: 3377 case SIOCDELMULTI: 3378 case SIOCGIFINDEX: 3379 case SIOCGIFADDR: 3380 case SIOCSIFADDR: 3381 case SIOCSIFHWBROADCAST: 3382 case SIOCDIFADDR: 3383 case SIOCGIFBRDADDR: 3384 case SIOCSIFBRDADDR: 3385 case SIOCGIFDSTADDR: 3386 case SIOCSIFDSTADDR: 3387 case SIOCGIFNETMASK: 3388 case SIOCSIFNETMASK: 3389 case SIOCSIFPFLAGS: 3390 case SIOCGIFPFLAGS: 3391 case SIOCGIFTXQLEN: 3392 case SIOCSIFTXQLEN: 3393 case SIOCBRADDIF: 3394 case SIOCBRDELIF: 3395 case SIOCGIFNAME: 3396 case SIOCSIFNAME: 3397 case SIOCGMIIPHY: 3398 case SIOCGMIIREG: 3399 case SIOCSMIIREG: 3400 case SIOCBONDENSLAVE: 3401 case SIOCBONDRELEASE: 3402 case SIOCBONDSETHWADDR: 3403 case SIOCBONDCHANGEACTIVE: 3404 case SIOCSARP: 3405 case SIOCGARP: 3406 case SIOCDARP: 3407 case SIOCOUTQ: 3408 case SIOCOUTQNSD: 3409 case SIOCATMARK: 3410 return sock_do_ioctl(net, sock, cmd, arg); 3411 } 3412 3413 return -ENOIOCTLCMD; 3414 } 3415 3416 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3417 unsigned long arg) 3418 { 3419 struct socket *sock = file->private_data; 3420 int ret = -ENOIOCTLCMD; 3421 struct sock *sk; 3422 struct net *net; 3423 3424 sk = sock->sk; 3425 net = sock_net(sk); 3426 3427 if (sock->ops->compat_ioctl) 3428 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3429 3430 if (ret == -ENOIOCTLCMD && 3431 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3432 ret = compat_wext_handle_ioctl(net, cmd, arg); 3433 3434 if (ret == -ENOIOCTLCMD) 3435 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3436 3437 return ret; 3438 } 3439 #endif 3440 3441 /** 3442 * kernel_bind - bind an address to a socket (kernel space) 3443 * @sock: socket 3444 * @addr: address 3445 * @addrlen: length of address 3446 * 3447 * Returns 0 or an error. 3448 */ 3449 3450 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3451 { 3452 return sock->ops->bind(sock, addr, addrlen); 3453 } 3454 EXPORT_SYMBOL(kernel_bind); 3455 3456 /** 3457 * kernel_listen - move socket to listening state (kernel space) 3458 * @sock: socket 3459 * @backlog: pending connections queue size 3460 * 3461 * Returns 0 or an error. 3462 */ 3463 3464 int kernel_listen(struct socket *sock, int backlog) 3465 { 3466 return sock->ops->listen(sock, backlog); 3467 } 3468 EXPORT_SYMBOL(kernel_listen); 3469 3470 /** 3471 * kernel_accept - accept a connection (kernel space) 3472 * @sock: listening socket 3473 * @newsock: new connected socket 3474 * @flags: flags 3475 * 3476 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3477 * If it fails, @newsock is guaranteed to be %NULL. 3478 * Returns 0 or an error. 3479 */ 3480 3481 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3482 { 3483 struct sock *sk = sock->sk; 3484 int err; 3485 3486 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3487 newsock); 3488 if (err < 0) 3489 goto done; 3490 3491 err = sock->ops->accept(sock, *newsock, flags, true); 3492 if (err < 0) { 3493 sock_release(*newsock); 3494 *newsock = NULL; 3495 goto done; 3496 } 3497 3498 (*newsock)->ops = sock->ops; 3499 __module_get((*newsock)->ops->owner); 3500 3501 done: 3502 return err; 3503 } 3504 EXPORT_SYMBOL(kernel_accept); 3505 3506 /** 3507 * kernel_connect - connect a socket (kernel space) 3508 * @sock: socket 3509 * @addr: address 3510 * @addrlen: address length 3511 * @flags: flags (O_NONBLOCK, ...) 3512 * 3513 * For datagram sockets, @addr is the address to which datagrams are sent 3514 * by default, and the only address from which datagrams are received. 3515 * For stream sockets, attempts to connect to @addr. 3516 * Returns 0 or an error code. 3517 */ 3518 3519 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3520 int flags) 3521 { 3522 return sock->ops->connect(sock, addr, addrlen, flags); 3523 } 3524 EXPORT_SYMBOL(kernel_connect); 3525 3526 /** 3527 * kernel_getsockname - get the address which the socket is bound (kernel space) 3528 * @sock: socket 3529 * @addr: address holder 3530 * 3531 * Fills the @addr pointer with the address which the socket is bound. 3532 * Returns the length of the address in bytes or an error code. 3533 */ 3534 3535 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3536 { 3537 return sock->ops->getname(sock, addr, 0); 3538 } 3539 EXPORT_SYMBOL(kernel_getsockname); 3540 3541 /** 3542 * kernel_getpeername - get the address which the socket is connected (kernel space) 3543 * @sock: socket 3544 * @addr: address holder 3545 * 3546 * Fills the @addr pointer with the address which the socket is connected. 3547 * Returns the length of the address in bytes or an error code. 3548 */ 3549 3550 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3551 { 3552 return sock->ops->getname(sock, addr, 1); 3553 } 3554 EXPORT_SYMBOL(kernel_getpeername); 3555 3556 /** 3557 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3558 * @sock: socket 3559 * @how: connection part 3560 * 3561 * Returns 0 or an error. 3562 */ 3563 3564 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3565 { 3566 return sock->ops->shutdown(sock, how); 3567 } 3568 EXPORT_SYMBOL(kernel_sock_shutdown); 3569 3570 /** 3571 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3572 * @sk: socket 3573 * 3574 * This routine returns the IP overhead imposed by a socket i.e. 3575 * the length of the underlying IP header, depending on whether 3576 * this is an IPv4 or IPv6 socket and the length from IP options turned 3577 * on at the socket. Assumes that the caller has a lock on the socket. 3578 */ 3579 3580 u32 kernel_sock_ip_overhead(struct sock *sk) 3581 { 3582 struct inet_sock *inet; 3583 struct ip_options_rcu *opt; 3584 u32 overhead = 0; 3585 #if IS_ENABLED(CONFIG_IPV6) 3586 struct ipv6_pinfo *np; 3587 struct ipv6_txoptions *optv6 = NULL; 3588 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3589 3590 if (!sk) 3591 return overhead; 3592 3593 switch (sk->sk_family) { 3594 case AF_INET: 3595 inet = inet_sk(sk); 3596 overhead += sizeof(struct iphdr); 3597 opt = rcu_dereference_protected(inet->inet_opt, 3598 sock_owned_by_user(sk)); 3599 if (opt) 3600 overhead += opt->opt.optlen; 3601 return overhead; 3602 #if IS_ENABLED(CONFIG_IPV6) 3603 case AF_INET6: 3604 np = inet6_sk(sk); 3605 overhead += sizeof(struct ipv6hdr); 3606 if (np) 3607 optv6 = rcu_dereference_protected(np->opt, 3608 sock_owned_by_user(sk)); 3609 if (optv6) 3610 overhead += (optv6->opt_flen + optv6->opt_nflen); 3611 return overhead; 3612 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3613 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3614 return overhead; 3615 } 3616 } 3617 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3618