xref: /linux/net/socket.c (revision ef815d2cba782e96b9aad9483523d474ed41c62a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 
92 #include <linux/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/termios.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
109 #include <linux/ptp_clock_kernel.h>
110 #include <trace/events/sock.h>
111 
112 #ifdef CONFIG_NET_RX_BUSY_POLL
113 unsigned int sysctl_net_busy_read __read_mostly;
114 unsigned int sysctl_net_busy_poll __read_mostly;
115 #endif
116 
117 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
118 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 
121 static int sock_close(struct inode *inode, struct file *file);
122 static __poll_t sock_poll(struct file *file,
123 			      struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 			      unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 				struct pipe_inode_info *pipe, size_t len,
132 				unsigned int flags);
133 static void sock_splice_eof(struct file *file);
134 
135 #ifdef CONFIG_PROC_FS
136 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
137 {
138 	struct socket *sock = f->private_data;
139 
140 	if (sock->ops->show_fdinfo)
141 		sock->ops->show_fdinfo(m, sock);
142 }
143 #else
144 #define sock_show_fdinfo NULL
145 #endif
146 
147 /*
148  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
149  *	in the operation structures but are done directly via the socketcall() multiplexor.
150  */
151 
152 static const struct file_operations socket_file_ops = {
153 	.owner =	THIS_MODULE,
154 	.llseek =	no_llseek,
155 	.read_iter =	sock_read_iter,
156 	.write_iter =	sock_write_iter,
157 	.poll =		sock_poll,
158 	.unlocked_ioctl = sock_ioctl,
159 #ifdef CONFIG_COMPAT
160 	.compat_ioctl = compat_sock_ioctl,
161 #endif
162 	.mmap =		sock_mmap,
163 	.release =	sock_close,
164 	.fasync =	sock_fasync,
165 	.splice_write = splice_to_socket,
166 	.splice_read =	sock_splice_read,
167 	.splice_eof =	sock_splice_eof,
168 	.show_fdinfo =	sock_show_fdinfo,
169 };
170 
171 static const char * const pf_family_names[] = {
172 	[PF_UNSPEC]	= "PF_UNSPEC",
173 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
174 	[PF_INET]	= "PF_INET",
175 	[PF_AX25]	= "PF_AX25",
176 	[PF_IPX]	= "PF_IPX",
177 	[PF_APPLETALK]	= "PF_APPLETALK",
178 	[PF_NETROM]	= "PF_NETROM",
179 	[PF_BRIDGE]	= "PF_BRIDGE",
180 	[PF_ATMPVC]	= "PF_ATMPVC",
181 	[PF_X25]	= "PF_X25",
182 	[PF_INET6]	= "PF_INET6",
183 	[PF_ROSE]	= "PF_ROSE",
184 	[PF_DECnet]	= "PF_DECnet",
185 	[PF_NETBEUI]	= "PF_NETBEUI",
186 	[PF_SECURITY]	= "PF_SECURITY",
187 	[PF_KEY]	= "PF_KEY",
188 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
189 	[PF_PACKET]	= "PF_PACKET",
190 	[PF_ASH]	= "PF_ASH",
191 	[PF_ECONET]	= "PF_ECONET",
192 	[PF_ATMSVC]	= "PF_ATMSVC",
193 	[PF_RDS]	= "PF_RDS",
194 	[PF_SNA]	= "PF_SNA",
195 	[PF_IRDA]	= "PF_IRDA",
196 	[PF_PPPOX]	= "PF_PPPOX",
197 	[PF_WANPIPE]	= "PF_WANPIPE",
198 	[PF_LLC]	= "PF_LLC",
199 	[PF_IB]		= "PF_IB",
200 	[PF_MPLS]	= "PF_MPLS",
201 	[PF_CAN]	= "PF_CAN",
202 	[PF_TIPC]	= "PF_TIPC",
203 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
204 	[PF_IUCV]	= "PF_IUCV",
205 	[PF_RXRPC]	= "PF_RXRPC",
206 	[PF_ISDN]	= "PF_ISDN",
207 	[PF_PHONET]	= "PF_PHONET",
208 	[PF_IEEE802154]	= "PF_IEEE802154",
209 	[PF_CAIF]	= "PF_CAIF",
210 	[PF_ALG]	= "PF_ALG",
211 	[PF_NFC]	= "PF_NFC",
212 	[PF_VSOCK]	= "PF_VSOCK",
213 	[PF_KCM]	= "PF_KCM",
214 	[PF_QIPCRTR]	= "PF_QIPCRTR",
215 	[PF_SMC]	= "PF_SMC",
216 	[PF_XDP]	= "PF_XDP",
217 	[PF_MCTP]	= "PF_MCTP",
218 };
219 
220 /*
221  *	The protocol list. Each protocol is registered in here.
222  */
223 
224 static DEFINE_SPINLOCK(net_family_lock);
225 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
226 
227 /*
228  * Support routines.
229  * Move socket addresses back and forth across the kernel/user
230  * divide and look after the messy bits.
231  */
232 
233 /**
234  *	move_addr_to_kernel	-	copy a socket address into kernel space
235  *	@uaddr: Address in user space
236  *	@kaddr: Address in kernel space
237  *	@ulen: Length in user space
238  *
239  *	The address is copied into kernel space. If the provided address is
240  *	too long an error code of -EINVAL is returned. If the copy gives
241  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
242  */
243 
244 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
245 {
246 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
247 		return -EINVAL;
248 	if (ulen == 0)
249 		return 0;
250 	if (copy_from_user(kaddr, uaddr, ulen))
251 		return -EFAULT;
252 	return audit_sockaddr(ulen, kaddr);
253 }
254 
255 /**
256  *	move_addr_to_user	-	copy an address to user space
257  *	@kaddr: kernel space address
258  *	@klen: length of address in kernel
259  *	@uaddr: user space address
260  *	@ulen: pointer to user length field
261  *
262  *	The value pointed to by ulen on entry is the buffer length available.
263  *	This is overwritten with the buffer space used. -EINVAL is returned
264  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
265  *	is returned if either the buffer or the length field are not
266  *	accessible.
267  *	After copying the data up to the limit the user specifies, the true
268  *	length of the data is written over the length limit the user
269  *	specified. Zero is returned for a success.
270  */
271 
272 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
273 			     void __user *uaddr, int __user *ulen)
274 {
275 	int err;
276 	int len;
277 
278 	BUG_ON(klen > sizeof(struct sockaddr_storage));
279 	err = get_user(len, ulen);
280 	if (err)
281 		return err;
282 	if (len > klen)
283 		len = klen;
284 	if (len < 0)
285 		return -EINVAL;
286 	if (len) {
287 		if (audit_sockaddr(klen, kaddr))
288 			return -ENOMEM;
289 		if (copy_to_user(uaddr, kaddr, len))
290 			return -EFAULT;
291 	}
292 	/*
293 	 *      "fromlen shall refer to the value before truncation.."
294 	 *                      1003.1g
295 	 */
296 	return __put_user(klen, ulen);
297 }
298 
299 static struct kmem_cache *sock_inode_cachep __ro_after_init;
300 
301 static struct inode *sock_alloc_inode(struct super_block *sb)
302 {
303 	struct socket_alloc *ei;
304 
305 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
306 	if (!ei)
307 		return NULL;
308 	init_waitqueue_head(&ei->socket.wq.wait);
309 	ei->socket.wq.fasync_list = NULL;
310 	ei->socket.wq.flags = 0;
311 
312 	ei->socket.state = SS_UNCONNECTED;
313 	ei->socket.flags = 0;
314 	ei->socket.ops = NULL;
315 	ei->socket.sk = NULL;
316 	ei->socket.file = NULL;
317 
318 	return &ei->vfs_inode;
319 }
320 
321 static void sock_free_inode(struct inode *inode)
322 {
323 	struct socket_alloc *ei;
324 
325 	ei = container_of(inode, struct socket_alloc, vfs_inode);
326 	kmem_cache_free(sock_inode_cachep, ei);
327 }
328 
329 static void init_once(void *foo)
330 {
331 	struct socket_alloc *ei = (struct socket_alloc *)foo;
332 
333 	inode_init_once(&ei->vfs_inode);
334 }
335 
336 static void init_inodecache(void)
337 {
338 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
339 					      sizeof(struct socket_alloc),
340 					      0,
341 					      (SLAB_HWCACHE_ALIGN |
342 					       SLAB_RECLAIM_ACCOUNT |
343 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
344 					      init_once);
345 	BUG_ON(sock_inode_cachep == NULL);
346 }
347 
348 static const struct super_operations sockfs_ops = {
349 	.alloc_inode	= sock_alloc_inode,
350 	.free_inode	= sock_free_inode,
351 	.statfs		= simple_statfs,
352 };
353 
354 /*
355  * sockfs_dname() is called from d_path().
356  */
357 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
358 {
359 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
360 				d_inode(dentry)->i_ino);
361 }
362 
363 static const struct dentry_operations sockfs_dentry_operations = {
364 	.d_dname  = sockfs_dname,
365 };
366 
367 static int sockfs_xattr_get(const struct xattr_handler *handler,
368 			    struct dentry *dentry, struct inode *inode,
369 			    const char *suffix, void *value, size_t size)
370 {
371 	if (value) {
372 		if (dentry->d_name.len + 1 > size)
373 			return -ERANGE;
374 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
375 	}
376 	return dentry->d_name.len + 1;
377 }
378 
379 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
380 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
381 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
382 
383 static const struct xattr_handler sockfs_xattr_handler = {
384 	.name = XATTR_NAME_SOCKPROTONAME,
385 	.get = sockfs_xattr_get,
386 };
387 
388 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
389 				     struct mnt_idmap *idmap,
390 				     struct dentry *dentry, struct inode *inode,
391 				     const char *suffix, const void *value,
392 				     size_t size, int flags)
393 {
394 	/* Handled by LSM. */
395 	return -EAGAIN;
396 }
397 
398 static const struct xattr_handler sockfs_security_xattr_handler = {
399 	.prefix = XATTR_SECURITY_PREFIX,
400 	.set = sockfs_security_xattr_set,
401 };
402 
403 static const struct xattr_handler *sockfs_xattr_handlers[] = {
404 	&sockfs_xattr_handler,
405 	&sockfs_security_xattr_handler,
406 	NULL
407 };
408 
409 static int sockfs_init_fs_context(struct fs_context *fc)
410 {
411 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
412 	if (!ctx)
413 		return -ENOMEM;
414 	ctx->ops = &sockfs_ops;
415 	ctx->dops = &sockfs_dentry_operations;
416 	ctx->xattr = sockfs_xattr_handlers;
417 	return 0;
418 }
419 
420 static struct vfsmount *sock_mnt __read_mostly;
421 
422 static struct file_system_type sock_fs_type = {
423 	.name =		"sockfs",
424 	.init_fs_context = sockfs_init_fs_context,
425 	.kill_sb =	kill_anon_super,
426 };
427 
428 /*
429  *	Obtains the first available file descriptor and sets it up for use.
430  *
431  *	These functions create file structures and maps them to fd space
432  *	of the current process. On success it returns file descriptor
433  *	and file struct implicitly stored in sock->file.
434  *	Note that another thread may close file descriptor before we return
435  *	from this function. We use the fact that now we do not refer
436  *	to socket after mapping. If one day we will need it, this
437  *	function will increment ref. count on file by 1.
438  *
439  *	In any case returned fd MAY BE not valid!
440  *	This race condition is unavoidable
441  *	with shared fd spaces, we cannot solve it inside kernel,
442  *	but we take care of internal coherence yet.
443  */
444 
445 /**
446  *	sock_alloc_file - Bind a &socket to a &file
447  *	@sock: socket
448  *	@flags: file status flags
449  *	@dname: protocol name
450  *
451  *	Returns the &file bound with @sock, implicitly storing it
452  *	in sock->file. If dname is %NULL, sets to "".
453  *
454  *	On failure @sock is released, and an ERR pointer is returned.
455  *
456  *	This function uses GFP_KERNEL internally.
457  */
458 
459 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
460 {
461 	struct file *file;
462 
463 	if (!dname)
464 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
465 
466 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
467 				O_RDWR | (flags & O_NONBLOCK),
468 				&socket_file_ops);
469 	if (IS_ERR(file)) {
470 		sock_release(sock);
471 		return file;
472 	}
473 
474 	file->f_mode |= FMODE_NOWAIT;
475 	sock->file = file;
476 	file->private_data = sock;
477 	stream_open(SOCK_INODE(sock), file);
478 	return file;
479 }
480 EXPORT_SYMBOL(sock_alloc_file);
481 
482 static int sock_map_fd(struct socket *sock, int flags)
483 {
484 	struct file *newfile;
485 	int fd = get_unused_fd_flags(flags);
486 	if (unlikely(fd < 0)) {
487 		sock_release(sock);
488 		return fd;
489 	}
490 
491 	newfile = sock_alloc_file(sock, flags, NULL);
492 	if (!IS_ERR(newfile)) {
493 		fd_install(fd, newfile);
494 		return fd;
495 	}
496 
497 	put_unused_fd(fd);
498 	return PTR_ERR(newfile);
499 }
500 
501 /**
502  *	sock_from_file - Return the &socket bounded to @file.
503  *	@file: file
504  *
505  *	On failure returns %NULL.
506  */
507 
508 struct socket *sock_from_file(struct file *file)
509 {
510 	if (file->f_op == &socket_file_ops)
511 		return file->private_data;	/* set in sock_alloc_file */
512 
513 	return NULL;
514 }
515 EXPORT_SYMBOL(sock_from_file);
516 
517 /**
518  *	sockfd_lookup - Go from a file number to its socket slot
519  *	@fd: file handle
520  *	@err: pointer to an error code return
521  *
522  *	The file handle passed in is locked and the socket it is bound
523  *	to is returned. If an error occurs the err pointer is overwritten
524  *	with a negative errno code and NULL is returned. The function checks
525  *	for both invalid handles and passing a handle which is not a socket.
526  *
527  *	On a success the socket object pointer is returned.
528  */
529 
530 struct socket *sockfd_lookup(int fd, int *err)
531 {
532 	struct file *file;
533 	struct socket *sock;
534 
535 	file = fget(fd);
536 	if (!file) {
537 		*err = -EBADF;
538 		return NULL;
539 	}
540 
541 	sock = sock_from_file(file);
542 	if (!sock) {
543 		*err = -ENOTSOCK;
544 		fput(file);
545 	}
546 	return sock;
547 }
548 EXPORT_SYMBOL(sockfd_lookup);
549 
550 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
551 {
552 	struct fd f = fdget(fd);
553 	struct socket *sock;
554 
555 	*err = -EBADF;
556 	if (f.file) {
557 		sock = sock_from_file(f.file);
558 		if (likely(sock)) {
559 			*fput_needed = f.flags & FDPUT_FPUT;
560 			return sock;
561 		}
562 		*err = -ENOTSOCK;
563 		fdput(f);
564 	}
565 	return NULL;
566 }
567 
568 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
569 				size_t size)
570 {
571 	ssize_t len;
572 	ssize_t used = 0;
573 
574 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
575 	if (len < 0)
576 		return len;
577 	used += len;
578 	if (buffer) {
579 		if (size < used)
580 			return -ERANGE;
581 		buffer += len;
582 	}
583 
584 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
585 	used += len;
586 	if (buffer) {
587 		if (size < used)
588 			return -ERANGE;
589 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
590 		buffer += len;
591 	}
592 
593 	return used;
594 }
595 
596 static int sockfs_setattr(struct mnt_idmap *idmap,
597 			  struct dentry *dentry, struct iattr *iattr)
598 {
599 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
600 
601 	if (!err && (iattr->ia_valid & ATTR_UID)) {
602 		struct socket *sock = SOCKET_I(d_inode(dentry));
603 
604 		if (sock->sk)
605 			sock->sk->sk_uid = iattr->ia_uid;
606 		else
607 			err = -ENOENT;
608 	}
609 
610 	return err;
611 }
612 
613 static const struct inode_operations sockfs_inode_ops = {
614 	.listxattr = sockfs_listxattr,
615 	.setattr = sockfs_setattr,
616 };
617 
618 /**
619  *	sock_alloc - allocate a socket
620  *
621  *	Allocate a new inode and socket object. The two are bound together
622  *	and initialised. The socket is then returned. If we are out of inodes
623  *	NULL is returned. This functions uses GFP_KERNEL internally.
624  */
625 
626 struct socket *sock_alloc(void)
627 {
628 	struct inode *inode;
629 	struct socket *sock;
630 
631 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
632 	if (!inode)
633 		return NULL;
634 
635 	sock = SOCKET_I(inode);
636 
637 	inode->i_ino = get_next_ino();
638 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
639 	inode->i_uid = current_fsuid();
640 	inode->i_gid = current_fsgid();
641 	inode->i_op = &sockfs_inode_ops;
642 
643 	return sock;
644 }
645 EXPORT_SYMBOL(sock_alloc);
646 
647 static void __sock_release(struct socket *sock, struct inode *inode)
648 {
649 	if (sock->ops) {
650 		struct module *owner = sock->ops->owner;
651 
652 		if (inode)
653 			inode_lock(inode);
654 		sock->ops->release(sock);
655 		sock->sk = NULL;
656 		if (inode)
657 			inode_unlock(inode);
658 		sock->ops = NULL;
659 		module_put(owner);
660 	}
661 
662 	if (sock->wq.fasync_list)
663 		pr_err("%s: fasync list not empty!\n", __func__);
664 
665 	if (!sock->file) {
666 		iput(SOCK_INODE(sock));
667 		return;
668 	}
669 	sock->file = NULL;
670 }
671 
672 /**
673  *	sock_release - close a socket
674  *	@sock: socket to close
675  *
676  *	The socket is released from the protocol stack if it has a release
677  *	callback, and the inode is then released if the socket is bound to
678  *	an inode not a file.
679  */
680 void sock_release(struct socket *sock)
681 {
682 	__sock_release(sock, NULL);
683 }
684 EXPORT_SYMBOL(sock_release);
685 
686 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
687 {
688 	u8 flags = *tx_flags;
689 
690 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
691 		flags |= SKBTX_HW_TSTAMP;
692 
693 		/* PTP hardware clocks can provide a free running cycle counter
694 		 * as a time base for virtual clocks. Tell driver to use the
695 		 * free running cycle counter for timestamp if socket is bound
696 		 * to virtual clock.
697 		 */
698 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
699 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
700 	}
701 
702 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
703 		flags |= SKBTX_SW_TSTAMP;
704 
705 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
706 		flags |= SKBTX_SCHED_TSTAMP;
707 
708 	*tx_flags = flags;
709 }
710 EXPORT_SYMBOL(__sock_tx_timestamp);
711 
712 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
713 					   size_t));
714 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
715 					    size_t));
716 
717 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
718 						 int flags)
719 {
720 	trace_sock_send_length(sk, ret, 0);
721 }
722 
723 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
724 {
725 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
726 				     inet_sendmsg, sock, msg,
727 				     msg_data_left(msg));
728 	BUG_ON(ret == -EIOCBQUEUED);
729 
730 	if (trace_sock_send_length_enabled())
731 		call_trace_sock_send_length(sock->sk, ret, 0);
732 	return ret;
733 }
734 
735 /**
736  *	sock_sendmsg - send a message through @sock
737  *	@sock: socket
738  *	@msg: message to send
739  *
740  *	Sends @msg through @sock, passing through LSM.
741  *	Returns the number of bytes sent, or an error code.
742  */
743 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
744 {
745 	int err = security_socket_sendmsg(sock, msg,
746 					  msg_data_left(msg));
747 
748 	return err ?: sock_sendmsg_nosec(sock, msg);
749 }
750 EXPORT_SYMBOL(sock_sendmsg);
751 
752 /**
753  *	kernel_sendmsg - send a message through @sock (kernel-space)
754  *	@sock: socket
755  *	@msg: message header
756  *	@vec: kernel vec
757  *	@num: vec array length
758  *	@size: total message data size
759  *
760  *	Builds the message data with @vec and sends it through @sock.
761  *	Returns the number of bytes sent, or an error code.
762  */
763 
764 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
765 		   struct kvec *vec, size_t num, size_t size)
766 {
767 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
768 	return sock_sendmsg(sock, msg);
769 }
770 EXPORT_SYMBOL(kernel_sendmsg);
771 
772 /**
773  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
774  *	@sk: sock
775  *	@msg: message header
776  *	@vec: output s/g array
777  *	@num: output s/g array length
778  *	@size: total message data size
779  *
780  *	Builds the message data with @vec and sends it through @sock.
781  *	Returns the number of bytes sent, or an error code.
782  *	Caller must hold @sk.
783  */
784 
785 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
786 			  struct kvec *vec, size_t num, size_t size)
787 {
788 	struct socket *sock = sk->sk_socket;
789 
790 	if (!sock->ops->sendmsg_locked)
791 		return sock_no_sendmsg_locked(sk, msg, size);
792 
793 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
794 
795 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
796 }
797 EXPORT_SYMBOL(kernel_sendmsg_locked);
798 
799 static bool skb_is_err_queue(const struct sk_buff *skb)
800 {
801 	/* pkt_type of skbs enqueued on the error queue are set to
802 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
803 	 * in recvmsg, since skbs received on a local socket will never
804 	 * have a pkt_type of PACKET_OUTGOING.
805 	 */
806 	return skb->pkt_type == PACKET_OUTGOING;
807 }
808 
809 /* On transmit, software and hardware timestamps are returned independently.
810  * As the two skb clones share the hardware timestamp, which may be updated
811  * before the software timestamp is received, a hardware TX timestamp may be
812  * returned only if there is no software TX timestamp. Ignore false software
813  * timestamps, which may be made in the __sock_recv_timestamp() call when the
814  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
815  * hardware timestamp.
816  */
817 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
818 {
819 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
820 }
821 
822 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
823 {
824 	bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
825 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
826 	struct net_device *orig_dev;
827 	ktime_t hwtstamp;
828 
829 	rcu_read_lock();
830 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
831 	if (orig_dev) {
832 		*if_index = orig_dev->ifindex;
833 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
834 	} else {
835 		hwtstamp = shhwtstamps->hwtstamp;
836 	}
837 	rcu_read_unlock();
838 
839 	return hwtstamp;
840 }
841 
842 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
843 			   int if_index)
844 {
845 	struct scm_ts_pktinfo ts_pktinfo;
846 	struct net_device *orig_dev;
847 
848 	if (!skb_mac_header_was_set(skb))
849 		return;
850 
851 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
852 
853 	if (!if_index) {
854 		rcu_read_lock();
855 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
856 		if (orig_dev)
857 			if_index = orig_dev->ifindex;
858 		rcu_read_unlock();
859 	}
860 	ts_pktinfo.if_index = if_index;
861 
862 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
863 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
864 		 sizeof(ts_pktinfo), &ts_pktinfo);
865 }
866 
867 /*
868  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
869  */
870 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
871 	struct sk_buff *skb)
872 {
873 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
874 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
875 	struct scm_timestamping_internal tss;
876 
877 	int empty = 1, false_tstamp = 0;
878 	struct skb_shared_hwtstamps *shhwtstamps =
879 		skb_hwtstamps(skb);
880 	int if_index;
881 	ktime_t hwtstamp;
882 
883 	/* Race occurred between timestamp enabling and packet
884 	   receiving.  Fill in the current time for now. */
885 	if (need_software_tstamp && skb->tstamp == 0) {
886 		__net_timestamp(skb);
887 		false_tstamp = 1;
888 	}
889 
890 	if (need_software_tstamp) {
891 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
892 			if (new_tstamp) {
893 				struct __kernel_sock_timeval tv;
894 
895 				skb_get_new_timestamp(skb, &tv);
896 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
897 					 sizeof(tv), &tv);
898 			} else {
899 				struct __kernel_old_timeval tv;
900 
901 				skb_get_timestamp(skb, &tv);
902 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
903 					 sizeof(tv), &tv);
904 			}
905 		} else {
906 			if (new_tstamp) {
907 				struct __kernel_timespec ts;
908 
909 				skb_get_new_timestampns(skb, &ts);
910 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
911 					 sizeof(ts), &ts);
912 			} else {
913 				struct __kernel_old_timespec ts;
914 
915 				skb_get_timestampns(skb, &ts);
916 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
917 					 sizeof(ts), &ts);
918 			}
919 		}
920 	}
921 
922 	memset(&tss, 0, sizeof(tss));
923 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
924 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
925 		empty = 0;
926 	if (shhwtstamps &&
927 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
928 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
929 		if_index = 0;
930 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
931 			hwtstamp = get_timestamp(sk, skb, &if_index);
932 		else
933 			hwtstamp = shhwtstamps->hwtstamp;
934 
935 		if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
936 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
937 							 sk->sk_bind_phc);
938 
939 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
940 			empty = 0;
941 
942 			if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
943 			    !skb_is_err_queue(skb))
944 				put_ts_pktinfo(msg, skb, if_index);
945 		}
946 	}
947 	if (!empty) {
948 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
949 			put_cmsg_scm_timestamping64(msg, &tss);
950 		else
951 			put_cmsg_scm_timestamping(msg, &tss);
952 
953 		if (skb_is_err_queue(skb) && skb->len &&
954 		    SKB_EXT_ERR(skb)->opt_stats)
955 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
956 				 skb->len, skb->data);
957 	}
958 }
959 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
960 
961 #ifdef CONFIG_WIRELESS
962 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
963 	struct sk_buff *skb)
964 {
965 	int ack;
966 
967 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
968 		return;
969 	if (!skb->wifi_acked_valid)
970 		return;
971 
972 	ack = skb->wifi_acked;
973 
974 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
975 }
976 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
977 #endif
978 
979 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
980 				   struct sk_buff *skb)
981 {
982 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
983 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
984 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
985 }
986 
987 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
988 			   struct sk_buff *skb)
989 {
990 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
991 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
992 		__u32 mark = skb->mark;
993 
994 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
995 	}
996 }
997 
998 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
999 		       struct sk_buff *skb)
1000 {
1001 	sock_recv_timestamp(msg, sk, skb);
1002 	sock_recv_drops(msg, sk, skb);
1003 	sock_recv_mark(msg, sk, skb);
1004 }
1005 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1006 
1007 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1008 					   size_t, int));
1009 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1010 					    size_t, int));
1011 
1012 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1013 {
1014 	trace_sock_recv_length(sk, ret, flags);
1015 }
1016 
1017 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1018 				     int flags)
1019 {
1020 	int ret = INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
1021 				     inet_recvmsg, sock, msg,
1022 				     msg_data_left(msg), flags);
1023 	if (trace_sock_recv_length_enabled())
1024 		call_trace_sock_recv_length(sock->sk, ret, flags);
1025 	return ret;
1026 }
1027 
1028 /**
1029  *	sock_recvmsg - receive a message from @sock
1030  *	@sock: socket
1031  *	@msg: message to receive
1032  *	@flags: message flags
1033  *
1034  *	Receives @msg from @sock, passing through LSM. Returns the total number
1035  *	of bytes received, or an error.
1036  */
1037 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1038 {
1039 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1040 
1041 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1042 }
1043 EXPORT_SYMBOL(sock_recvmsg);
1044 
1045 /**
1046  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1047  *	@sock: The socket to receive the message from
1048  *	@msg: Received message
1049  *	@vec: Input s/g array for message data
1050  *	@num: Size of input s/g array
1051  *	@size: Number of bytes to read
1052  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1053  *
1054  *	On return the msg structure contains the scatter/gather array passed in the
1055  *	vec argument. The array is modified so that it consists of the unfilled
1056  *	portion of the original array.
1057  *
1058  *	The returned value is the total number of bytes received, or an error.
1059  */
1060 
1061 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1062 		   struct kvec *vec, size_t num, size_t size, int flags)
1063 {
1064 	msg->msg_control_is_user = false;
1065 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1066 	return sock_recvmsg(sock, msg, flags);
1067 }
1068 EXPORT_SYMBOL(kernel_recvmsg);
1069 
1070 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1071 				struct pipe_inode_info *pipe, size_t len,
1072 				unsigned int flags)
1073 {
1074 	struct socket *sock = file->private_data;
1075 
1076 	if (unlikely(!sock->ops->splice_read))
1077 		return copy_splice_read(file, ppos, pipe, len, flags);
1078 
1079 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1080 }
1081 
1082 static void sock_splice_eof(struct file *file)
1083 {
1084 	struct socket *sock = file->private_data;
1085 
1086 	if (sock->ops->splice_eof)
1087 		sock->ops->splice_eof(sock);
1088 }
1089 
1090 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1091 {
1092 	struct file *file = iocb->ki_filp;
1093 	struct socket *sock = file->private_data;
1094 	struct msghdr msg = {.msg_iter = *to,
1095 			     .msg_iocb = iocb};
1096 	ssize_t res;
1097 
1098 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1099 		msg.msg_flags = MSG_DONTWAIT;
1100 
1101 	if (iocb->ki_pos != 0)
1102 		return -ESPIPE;
1103 
1104 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1105 		return 0;
1106 
1107 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1108 	*to = msg.msg_iter;
1109 	return res;
1110 }
1111 
1112 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1113 {
1114 	struct file *file = iocb->ki_filp;
1115 	struct socket *sock = file->private_data;
1116 	struct msghdr msg = {.msg_iter = *from,
1117 			     .msg_iocb = iocb};
1118 	ssize_t res;
1119 
1120 	if (iocb->ki_pos != 0)
1121 		return -ESPIPE;
1122 
1123 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1124 		msg.msg_flags = MSG_DONTWAIT;
1125 
1126 	if (sock->type == SOCK_SEQPACKET)
1127 		msg.msg_flags |= MSG_EOR;
1128 
1129 	res = sock_sendmsg(sock, &msg);
1130 	*from = msg.msg_iter;
1131 	return res;
1132 }
1133 
1134 /*
1135  * Atomic setting of ioctl hooks to avoid race
1136  * with module unload.
1137  */
1138 
1139 static DEFINE_MUTEX(br_ioctl_mutex);
1140 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1141 			    unsigned int cmd, struct ifreq *ifr,
1142 			    void __user *uarg);
1143 
1144 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1145 			     unsigned int cmd, struct ifreq *ifr,
1146 			     void __user *uarg))
1147 {
1148 	mutex_lock(&br_ioctl_mutex);
1149 	br_ioctl_hook = hook;
1150 	mutex_unlock(&br_ioctl_mutex);
1151 }
1152 EXPORT_SYMBOL(brioctl_set);
1153 
1154 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1155 		  struct ifreq *ifr, void __user *uarg)
1156 {
1157 	int err = -ENOPKG;
1158 
1159 	if (!br_ioctl_hook)
1160 		request_module("bridge");
1161 
1162 	mutex_lock(&br_ioctl_mutex);
1163 	if (br_ioctl_hook)
1164 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1165 	mutex_unlock(&br_ioctl_mutex);
1166 
1167 	return err;
1168 }
1169 
1170 static DEFINE_MUTEX(vlan_ioctl_mutex);
1171 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1172 
1173 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1174 {
1175 	mutex_lock(&vlan_ioctl_mutex);
1176 	vlan_ioctl_hook = hook;
1177 	mutex_unlock(&vlan_ioctl_mutex);
1178 }
1179 EXPORT_SYMBOL(vlan_ioctl_set);
1180 
1181 static long sock_do_ioctl(struct net *net, struct socket *sock,
1182 			  unsigned int cmd, unsigned long arg)
1183 {
1184 	struct ifreq ifr;
1185 	bool need_copyout;
1186 	int err;
1187 	void __user *argp = (void __user *)arg;
1188 	void __user *data;
1189 
1190 	err = sock->ops->ioctl(sock, cmd, arg);
1191 
1192 	/*
1193 	 * If this ioctl is unknown try to hand it down
1194 	 * to the NIC driver.
1195 	 */
1196 	if (err != -ENOIOCTLCMD)
1197 		return err;
1198 
1199 	if (!is_socket_ioctl_cmd(cmd))
1200 		return -ENOTTY;
1201 
1202 	if (get_user_ifreq(&ifr, &data, argp))
1203 		return -EFAULT;
1204 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1205 	if (!err && need_copyout)
1206 		if (put_user_ifreq(&ifr, argp))
1207 			return -EFAULT;
1208 
1209 	return err;
1210 }
1211 
1212 /*
1213  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1214  *	what to do with it - that's up to the protocol still.
1215  */
1216 
1217 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1218 {
1219 	struct socket *sock;
1220 	struct sock *sk;
1221 	void __user *argp = (void __user *)arg;
1222 	int pid, err;
1223 	struct net *net;
1224 
1225 	sock = file->private_data;
1226 	sk = sock->sk;
1227 	net = sock_net(sk);
1228 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1229 		struct ifreq ifr;
1230 		void __user *data;
1231 		bool need_copyout;
1232 		if (get_user_ifreq(&ifr, &data, argp))
1233 			return -EFAULT;
1234 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1235 		if (!err && need_copyout)
1236 			if (put_user_ifreq(&ifr, argp))
1237 				return -EFAULT;
1238 	} else
1239 #ifdef CONFIG_WEXT_CORE
1240 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1241 		err = wext_handle_ioctl(net, cmd, argp);
1242 	} else
1243 #endif
1244 		switch (cmd) {
1245 		case FIOSETOWN:
1246 		case SIOCSPGRP:
1247 			err = -EFAULT;
1248 			if (get_user(pid, (int __user *)argp))
1249 				break;
1250 			err = f_setown(sock->file, pid, 1);
1251 			break;
1252 		case FIOGETOWN:
1253 		case SIOCGPGRP:
1254 			err = put_user(f_getown(sock->file),
1255 				       (int __user *)argp);
1256 			break;
1257 		case SIOCGIFBR:
1258 		case SIOCSIFBR:
1259 		case SIOCBRADDBR:
1260 		case SIOCBRDELBR:
1261 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1262 			break;
1263 		case SIOCGIFVLAN:
1264 		case SIOCSIFVLAN:
1265 			err = -ENOPKG;
1266 			if (!vlan_ioctl_hook)
1267 				request_module("8021q");
1268 
1269 			mutex_lock(&vlan_ioctl_mutex);
1270 			if (vlan_ioctl_hook)
1271 				err = vlan_ioctl_hook(net, argp);
1272 			mutex_unlock(&vlan_ioctl_mutex);
1273 			break;
1274 		case SIOCGSKNS:
1275 			err = -EPERM;
1276 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1277 				break;
1278 
1279 			err = open_related_ns(&net->ns, get_net_ns);
1280 			break;
1281 		case SIOCGSTAMP_OLD:
1282 		case SIOCGSTAMPNS_OLD:
1283 			if (!sock->ops->gettstamp) {
1284 				err = -ENOIOCTLCMD;
1285 				break;
1286 			}
1287 			err = sock->ops->gettstamp(sock, argp,
1288 						   cmd == SIOCGSTAMP_OLD,
1289 						   !IS_ENABLED(CONFIG_64BIT));
1290 			break;
1291 		case SIOCGSTAMP_NEW:
1292 		case SIOCGSTAMPNS_NEW:
1293 			if (!sock->ops->gettstamp) {
1294 				err = -ENOIOCTLCMD;
1295 				break;
1296 			}
1297 			err = sock->ops->gettstamp(sock, argp,
1298 						   cmd == SIOCGSTAMP_NEW,
1299 						   false);
1300 			break;
1301 
1302 		case SIOCGIFCONF:
1303 			err = dev_ifconf(net, argp);
1304 			break;
1305 
1306 		default:
1307 			err = sock_do_ioctl(net, sock, cmd, arg);
1308 			break;
1309 		}
1310 	return err;
1311 }
1312 
1313 /**
1314  *	sock_create_lite - creates a socket
1315  *	@family: protocol family (AF_INET, ...)
1316  *	@type: communication type (SOCK_STREAM, ...)
1317  *	@protocol: protocol (0, ...)
1318  *	@res: new socket
1319  *
1320  *	Creates a new socket and assigns it to @res, passing through LSM.
1321  *	The new socket initialization is not complete, see kernel_accept().
1322  *	Returns 0 or an error. On failure @res is set to %NULL.
1323  *	This function internally uses GFP_KERNEL.
1324  */
1325 
1326 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1327 {
1328 	int err;
1329 	struct socket *sock = NULL;
1330 
1331 	err = security_socket_create(family, type, protocol, 1);
1332 	if (err)
1333 		goto out;
1334 
1335 	sock = sock_alloc();
1336 	if (!sock) {
1337 		err = -ENOMEM;
1338 		goto out;
1339 	}
1340 
1341 	sock->type = type;
1342 	err = security_socket_post_create(sock, family, type, protocol, 1);
1343 	if (err)
1344 		goto out_release;
1345 
1346 out:
1347 	*res = sock;
1348 	return err;
1349 out_release:
1350 	sock_release(sock);
1351 	sock = NULL;
1352 	goto out;
1353 }
1354 EXPORT_SYMBOL(sock_create_lite);
1355 
1356 /* No kernel lock held - perfect */
1357 static __poll_t sock_poll(struct file *file, poll_table *wait)
1358 {
1359 	struct socket *sock = file->private_data;
1360 	__poll_t events = poll_requested_events(wait), flag = 0;
1361 
1362 	if (!sock->ops->poll)
1363 		return 0;
1364 
1365 	if (sk_can_busy_loop(sock->sk)) {
1366 		/* poll once if requested by the syscall */
1367 		if (events & POLL_BUSY_LOOP)
1368 			sk_busy_loop(sock->sk, 1);
1369 
1370 		/* if this socket can poll_ll, tell the system call */
1371 		flag = POLL_BUSY_LOOP;
1372 	}
1373 
1374 	return sock->ops->poll(file, sock, wait) | flag;
1375 }
1376 
1377 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1378 {
1379 	struct socket *sock = file->private_data;
1380 
1381 	return sock->ops->mmap(file, sock, vma);
1382 }
1383 
1384 static int sock_close(struct inode *inode, struct file *filp)
1385 {
1386 	__sock_release(SOCKET_I(inode), inode);
1387 	return 0;
1388 }
1389 
1390 /*
1391  *	Update the socket async list
1392  *
1393  *	Fasync_list locking strategy.
1394  *
1395  *	1. fasync_list is modified only under process context socket lock
1396  *	   i.e. under semaphore.
1397  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1398  *	   or under socket lock
1399  */
1400 
1401 static int sock_fasync(int fd, struct file *filp, int on)
1402 {
1403 	struct socket *sock = filp->private_data;
1404 	struct sock *sk = sock->sk;
1405 	struct socket_wq *wq = &sock->wq;
1406 
1407 	if (sk == NULL)
1408 		return -EINVAL;
1409 
1410 	lock_sock(sk);
1411 	fasync_helper(fd, filp, on, &wq->fasync_list);
1412 
1413 	if (!wq->fasync_list)
1414 		sock_reset_flag(sk, SOCK_FASYNC);
1415 	else
1416 		sock_set_flag(sk, SOCK_FASYNC);
1417 
1418 	release_sock(sk);
1419 	return 0;
1420 }
1421 
1422 /* This function may be called only under rcu_lock */
1423 
1424 int sock_wake_async(struct socket_wq *wq, int how, int band)
1425 {
1426 	if (!wq || !wq->fasync_list)
1427 		return -1;
1428 
1429 	switch (how) {
1430 	case SOCK_WAKE_WAITD:
1431 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1432 			break;
1433 		goto call_kill;
1434 	case SOCK_WAKE_SPACE:
1435 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1436 			break;
1437 		fallthrough;
1438 	case SOCK_WAKE_IO:
1439 call_kill:
1440 		kill_fasync(&wq->fasync_list, SIGIO, band);
1441 		break;
1442 	case SOCK_WAKE_URG:
1443 		kill_fasync(&wq->fasync_list, SIGURG, band);
1444 	}
1445 
1446 	return 0;
1447 }
1448 EXPORT_SYMBOL(sock_wake_async);
1449 
1450 /**
1451  *	__sock_create - creates a socket
1452  *	@net: net namespace
1453  *	@family: protocol family (AF_INET, ...)
1454  *	@type: communication type (SOCK_STREAM, ...)
1455  *	@protocol: protocol (0, ...)
1456  *	@res: new socket
1457  *	@kern: boolean for kernel space sockets
1458  *
1459  *	Creates a new socket and assigns it to @res, passing through LSM.
1460  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1461  *	be set to true if the socket resides in kernel space.
1462  *	This function internally uses GFP_KERNEL.
1463  */
1464 
1465 int __sock_create(struct net *net, int family, int type, int protocol,
1466 			 struct socket **res, int kern)
1467 {
1468 	int err;
1469 	struct socket *sock;
1470 	const struct net_proto_family *pf;
1471 
1472 	/*
1473 	 *      Check protocol is in range
1474 	 */
1475 	if (family < 0 || family >= NPROTO)
1476 		return -EAFNOSUPPORT;
1477 	if (type < 0 || type >= SOCK_MAX)
1478 		return -EINVAL;
1479 
1480 	/* Compatibility.
1481 
1482 	   This uglymoron is moved from INET layer to here to avoid
1483 	   deadlock in module load.
1484 	 */
1485 	if (family == PF_INET && type == SOCK_PACKET) {
1486 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1487 			     current->comm);
1488 		family = PF_PACKET;
1489 	}
1490 
1491 	err = security_socket_create(family, type, protocol, kern);
1492 	if (err)
1493 		return err;
1494 
1495 	/*
1496 	 *	Allocate the socket and allow the family to set things up. if
1497 	 *	the protocol is 0, the family is instructed to select an appropriate
1498 	 *	default.
1499 	 */
1500 	sock = sock_alloc();
1501 	if (!sock) {
1502 		net_warn_ratelimited("socket: no more sockets\n");
1503 		return -ENFILE;	/* Not exactly a match, but its the
1504 				   closest posix thing */
1505 	}
1506 
1507 	sock->type = type;
1508 
1509 #ifdef CONFIG_MODULES
1510 	/* Attempt to load a protocol module if the find failed.
1511 	 *
1512 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1513 	 * requested real, full-featured networking support upon configuration.
1514 	 * Otherwise module support will break!
1515 	 */
1516 	if (rcu_access_pointer(net_families[family]) == NULL)
1517 		request_module("net-pf-%d", family);
1518 #endif
1519 
1520 	rcu_read_lock();
1521 	pf = rcu_dereference(net_families[family]);
1522 	err = -EAFNOSUPPORT;
1523 	if (!pf)
1524 		goto out_release;
1525 
1526 	/*
1527 	 * We will call the ->create function, that possibly is in a loadable
1528 	 * module, so we have to bump that loadable module refcnt first.
1529 	 */
1530 	if (!try_module_get(pf->owner))
1531 		goto out_release;
1532 
1533 	/* Now protected by module ref count */
1534 	rcu_read_unlock();
1535 
1536 	err = pf->create(net, sock, protocol, kern);
1537 	if (err < 0)
1538 		goto out_module_put;
1539 
1540 	/*
1541 	 * Now to bump the refcnt of the [loadable] module that owns this
1542 	 * socket at sock_release time we decrement its refcnt.
1543 	 */
1544 	if (!try_module_get(sock->ops->owner))
1545 		goto out_module_busy;
1546 
1547 	/*
1548 	 * Now that we're done with the ->create function, the [loadable]
1549 	 * module can have its refcnt decremented
1550 	 */
1551 	module_put(pf->owner);
1552 	err = security_socket_post_create(sock, family, type, protocol, kern);
1553 	if (err)
1554 		goto out_sock_release;
1555 	*res = sock;
1556 
1557 	return 0;
1558 
1559 out_module_busy:
1560 	err = -EAFNOSUPPORT;
1561 out_module_put:
1562 	sock->ops = NULL;
1563 	module_put(pf->owner);
1564 out_sock_release:
1565 	sock_release(sock);
1566 	return err;
1567 
1568 out_release:
1569 	rcu_read_unlock();
1570 	goto out_sock_release;
1571 }
1572 EXPORT_SYMBOL(__sock_create);
1573 
1574 /**
1575  *	sock_create - creates a socket
1576  *	@family: protocol family (AF_INET, ...)
1577  *	@type: communication type (SOCK_STREAM, ...)
1578  *	@protocol: protocol (0, ...)
1579  *	@res: new socket
1580  *
1581  *	A wrapper around __sock_create().
1582  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1583  */
1584 
1585 int sock_create(int family, int type, int protocol, struct socket **res)
1586 {
1587 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1588 }
1589 EXPORT_SYMBOL(sock_create);
1590 
1591 /**
1592  *	sock_create_kern - creates a socket (kernel space)
1593  *	@net: net namespace
1594  *	@family: protocol family (AF_INET, ...)
1595  *	@type: communication type (SOCK_STREAM, ...)
1596  *	@protocol: protocol (0, ...)
1597  *	@res: new socket
1598  *
1599  *	A wrapper around __sock_create().
1600  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1601  */
1602 
1603 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1604 {
1605 	return __sock_create(net, family, type, protocol, res, 1);
1606 }
1607 EXPORT_SYMBOL(sock_create_kern);
1608 
1609 static struct socket *__sys_socket_create(int family, int type, int protocol)
1610 {
1611 	struct socket *sock;
1612 	int retval;
1613 
1614 	/* Check the SOCK_* constants for consistency.  */
1615 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1616 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1617 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1618 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1619 
1620 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1621 		return ERR_PTR(-EINVAL);
1622 	type &= SOCK_TYPE_MASK;
1623 
1624 	retval = sock_create(family, type, protocol, &sock);
1625 	if (retval < 0)
1626 		return ERR_PTR(retval);
1627 
1628 	return sock;
1629 }
1630 
1631 struct file *__sys_socket_file(int family, int type, int protocol)
1632 {
1633 	struct socket *sock;
1634 	int flags;
1635 
1636 	sock = __sys_socket_create(family, type, protocol);
1637 	if (IS_ERR(sock))
1638 		return ERR_CAST(sock);
1639 
1640 	flags = type & ~SOCK_TYPE_MASK;
1641 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1642 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1643 
1644 	return sock_alloc_file(sock, flags, NULL);
1645 }
1646 
1647 int __sys_socket(int family, int type, int protocol)
1648 {
1649 	struct socket *sock;
1650 	int flags;
1651 
1652 	sock = __sys_socket_create(family, type, protocol);
1653 	if (IS_ERR(sock))
1654 		return PTR_ERR(sock);
1655 
1656 	flags = type & ~SOCK_TYPE_MASK;
1657 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1658 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1659 
1660 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1661 }
1662 
1663 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1664 {
1665 	return __sys_socket(family, type, protocol);
1666 }
1667 
1668 /*
1669  *	Create a pair of connected sockets.
1670  */
1671 
1672 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1673 {
1674 	struct socket *sock1, *sock2;
1675 	int fd1, fd2, err;
1676 	struct file *newfile1, *newfile2;
1677 	int flags;
1678 
1679 	flags = type & ~SOCK_TYPE_MASK;
1680 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1681 		return -EINVAL;
1682 	type &= SOCK_TYPE_MASK;
1683 
1684 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1685 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1686 
1687 	/*
1688 	 * reserve descriptors and make sure we won't fail
1689 	 * to return them to userland.
1690 	 */
1691 	fd1 = get_unused_fd_flags(flags);
1692 	if (unlikely(fd1 < 0))
1693 		return fd1;
1694 
1695 	fd2 = get_unused_fd_flags(flags);
1696 	if (unlikely(fd2 < 0)) {
1697 		put_unused_fd(fd1);
1698 		return fd2;
1699 	}
1700 
1701 	err = put_user(fd1, &usockvec[0]);
1702 	if (err)
1703 		goto out;
1704 
1705 	err = put_user(fd2, &usockvec[1]);
1706 	if (err)
1707 		goto out;
1708 
1709 	/*
1710 	 * Obtain the first socket and check if the underlying protocol
1711 	 * supports the socketpair call.
1712 	 */
1713 
1714 	err = sock_create(family, type, protocol, &sock1);
1715 	if (unlikely(err < 0))
1716 		goto out;
1717 
1718 	err = sock_create(family, type, protocol, &sock2);
1719 	if (unlikely(err < 0)) {
1720 		sock_release(sock1);
1721 		goto out;
1722 	}
1723 
1724 	err = security_socket_socketpair(sock1, sock2);
1725 	if (unlikely(err)) {
1726 		sock_release(sock2);
1727 		sock_release(sock1);
1728 		goto out;
1729 	}
1730 
1731 	err = sock1->ops->socketpair(sock1, sock2);
1732 	if (unlikely(err < 0)) {
1733 		sock_release(sock2);
1734 		sock_release(sock1);
1735 		goto out;
1736 	}
1737 
1738 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1739 	if (IS_ERR(newfile1)) {
1740 		err = PTR_ERR(newfile1);
1741 		sock_release(sock2);
1742 		goto out;
1743 	}
1744 
1745 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1746 	if (IS_ERR(newfile2)) {
1747 		err = PTR_ERR(newfile2);
1748 		fput(newfile1);
1749 		goto out;
1750 	}
1751 
1752 	audit_fd_pair(fd1, fd2);
1753 
1754 	fd_install(fd1, newfile1);
1755 	fd_install(fd2, newfile2);
1756 	return 0;
1757 
1758 out:
1759 	put_unused_fd(fd2);
1760 	put_unused_fd(fd1);
1761 	return err;
1762 }
1763 
1764 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1765 		int __user *, usockvec)
1766 {
1767 	return __sys_socketpair(family, type, protocol, usockvec);
1768 }
1769 
1770 /*
1771  *	Bind a name to a socket. Nothing much to do here since it's
1772  *	the protocol's responsibility to handle the local address.
1773  *
1774  *	We move the socket address to kernel space before we call
1775  *	the protocol layer (having also checked the address is ok).
1776  */
1777 
1778 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1779 {
1780 	struct socket *sock;
1781 	struct sockaddr_storage address;
1782 	int err, fput_needed;
1783 
1784 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1785 	if (sock) {
1786 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1787 		if (!err) {
1788 			err = security_socket_bind(sock,
1789 						   (struct sockaddr *)&address,
1790 						   addrlen);
1791 			if (!err)
1792 				err = sock->ops->bind(sock,
1793 						      (struct sockaddr *)
1794 						      &address, addrlen);
1795 		}
1796 		fput_light(sock->file, fput_needed);
1797 	}
1798 	return err;
1799 }
1800 
1801 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1802 {
1803 	return __sys_bind(fd, umyaddr, addrlen);
1804 }
1805 
1806 /*
1807  *	Perform a listen. Basically, we allow the protocol to do anything
1808  *	necessary for a listen, and if that works, we mark the socket as
1809  *	ready for listening.
1810  */
1811 
1812 int __sys_listen(int fd, int backlog)
1813 {
1814 	struct socket *sock;
1815 	int err, fput_needed;
1816 	int somaxconn;
1817 
1818 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1819 	if (sock) {
1820 		somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1821 		if ((unsigned int)backlog > somaxconn)
1822 			backlog = somaxconn;
1823 
1824 		err = security_socket_listen(sock, backlog);
1825 		if (!err)
1826 			err = sock->ops->listen(sock, backlog);
1827 
1828 		fput_light(sock->file, fput_needed);
1829 	}
1830 	return err;
1831 }
1832 
1833 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1834 {
1835 	return __sys_listen(fd, backlog);
1836 }
1837 
1838 struct file *do_accept(struct file *file, unsigned file_flags,
1839 		       struct sockaddr __user *upeer_sockaddr,
1840 		       int __user *upeer_addrlen, int flags)
1841 {
1842 	struct socket *sock, *newsock;
1843 	struct file *newfile;
1844 	int err, len;
1845 	struct sockaddr_storage address;
1846 
1847 	sock = sock_from_file(file);
1848 	if (!sock)
1849 		return ERR_PTR(-ENOTSOCK);
1850 
1851 	newsock = sock_alloc();
1852 	if (!newsock)
1853 		return ERR_PTR(-ENFILE);
1854 
1855 	newsock->type = sock->type;
1856 	newsock->ops = sock->ops;
1857 
1858 	/*
1859 	 * We don't need try_module_get here, as the listening socket (sock)
1860 	 * has the protocol module (sock->ops->owner) held.
1861 	 */
1862 	__module_get(newsock->ops->owner);
1863 
1864 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1865 	if (IS_ERR(newfile))
1866 		return newfile;
1867 
1868 	err = security_socket_accept(sock, newsock);
1869 	if (err)
1870 		goto out_fd;
1871 
1872 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1873 					false);
1874 	if (err < 0)
1875 		goto out_fd;
1876 
1877 	if (upeer_sockaddr) {
1878 		len = newsock->ops->getname(newsock,
1879 					(struct sockaddr *)&address, 2);
1880 		if (len < 0) {
1881 			err = -ECONNABORTED;
1882 			goto out_fd;
1883 		}
1884 		err = move_addr_to_user(&address,
1885 					len, upeer_sockaddr, upeer_addrlen);
1886 		if (err < 0)
1887 			goto out_fd;
1888 	}
1889 
1890 	/* File flags are not inherited via accept() unlike another OSes. */
1891 	return newfile;
1892 out_fd:
1893 	fput(newfile);
1894 	return ERR_PTR(err);
1895 }
1896 
1897 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1898 			      int __user *upeer_addrlen, int flags)
1899 {
1900 	struct file *newfile;
1901 	int newfd;
1902 
1903 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1904 		return -EINVAL;
1905 
1906 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1907 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1908 
1909 	newfd = get_unused_fd_flags(flags);
1910 	if (unlikely(newfd < 0))
1911 		return newfd;
1912 
1913 	newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1914 			    flags);
1915 	if (IS_ERR(newfile)) {
1916 		put_unused_fd(newfd);
1917 		return PTR_ERR(newfile);
1918 	}
1919 	fd_install(newfd, newfile);
1920 	return newfd;
1921 }
1922 
1923 /*
1924  *	For accept, we attempt to create a new socket, set up the link
1925  *	with the client, wake up the client, then return the new
1926  *	connected fd. We collect the address of the connector in kernel
1927  *	space and move it to user at the very end. This is unclean because
1928  *	we open the socket then return an error.
1929  *
1930  *	1003.1g adds the ability to recvmsg() to query connection pending
1931  *	status to recvmsg. We need to add that support in a way thats
1932  *	clean when we restructure accept also.
1933  */
1934 
1935 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1936 		  int __user *upeer_addrlen, int flags)
1937 {
1938 	int ret = -EBADF;
1939 	struct fd f;
1940 
1941 	f = fdget(fd);
1942 	if (f.file) {
1943 		ret = __sys_accept4_file(f.file, upeer_sockaddr,
1944 					 upeer_addrlen, flags);
1945 		fdput(f);
1946 	}
1947 
1948 	return ret;
1949 }
1950 
1951 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1952 		int __user *, upeer_addrlen, int, flags)
1953 {
1954 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1955 }
1956 
1957 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1958 		int __user *, upeer_addrlen)
1959 {
1960 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1961 }
1962 
1963 /*
1964  *	Attempt to connect to a socket with the server address.  The address
1965  *	is in user space so we verify it is OK and move it to kernel space.
1966  *
1967  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1968  *	break bindings
1969  *
1970  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1971  *	other SEQPACKET protocols that take time to connect() as it doesn't
1972  *	include the -EINPROGRESS status for such sockets.
1973  */
1974 
1975 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1976 		       int addrlen, int file_flags)
1977 {
1978 	struct socket *sock;
1979 	int err;
1980 
1981 	sock = sock_from_file(file);
1982 	if (!sock) {
1983 		err = -ENOTSOCK;
1984 		goto out;
1985 	}
1986 
1987 	err =
1988 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1989 	if (err)
1990 		goto out;
1991 
1992 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1993 				 sock->file->f_flags | file_flags);
1994 out:
1995 	return err;
1996 }
1997 
1998 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1999 {
2000 	int ret = -EBADF;
2001 	struct fd f;
2002 
2003 	f = fdget(fd);
2004 	if (f.file) {
2005 		struct sockaddr_storage address;
2006 
2007 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2008 		if (!ret)
2009 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
2010 		fdput(f);
2011 	}
2012 
2013 	return ret;
2014 }
2015 
2016 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2017 		int, addrlen)
2018 {
2019 	return __sys_connect(fd, uservaddr, addrlen);
2020 }
2021 
2022 /*
2023  *	Get the local address ('name') of a socket object. Move the obtained
2024  *	name to user space.
2025  */
2026 
2027 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2028 		      int __user *usockaddr_len)
2029 {
2030 	struct socket *sock;
2031 	struct sockaddr_storage address;
2032 	int err, fput_needed;
2033 
2034 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2035 	if (!sock)
2036 		goto out;
2037 
2038 	err = security_socket_getsockname(sock);
2039 	if (err)
2040 		goto out_put;
2041 
2042 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2043 	if (err < 0)
2044 		goto out_put;
2045 	/* "err" is actually length in this case */
2046 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2047 
2048 out_put:
2049 	fput_light(sock->file, fput_needed);
2050 out:
2051 	return err;
2052 }
2053 
2054 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2055 		int __user *, usockaddr_len)
2056 {
2057 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2058 }
2059 
2060 /*
2061  *	Get the remote address ('name') of a socket object. Move the obtained
2062  *	name to user space.
2063  */
2064 
2065 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2066 		      int __user *usockaddr_len)
2067 {
2068 	struct socket *sock;
2069 	struct sockaddr_storage address;
2070 	int err, fput_needed;
2071 
2072 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2073 	if (sock != NULL) {
2074 		err = security_socket_getpeername(sock);
2075 		if (err) {
2076 			fput_light(sock->file, fput_needed);
2077 			return err;
2078 		}
2079 
2080 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2081 		if (err >= 0)
2082 			/* "err" is actually length in this case */
2083 			err = move_addr_to_user(&address, err, usockaddr,
2084 						usockaddr_len);
2085 		fput_light(sock->file, fput_needed);
2086 	}
2087 	return err;
2088 }
2089 
2090 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2091 		int __user *, usockaddr_len)
2092 {
2093 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2094 }
2095 
2096 /*
2097  *	Send a datagram to a given address. We move the address into kernel
2098  *	space and check the user space data area is readable before invoking
2099  *	the protocol.
2100  */
2101 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2102 		 struct sockaddr __user *addr,  int addr_len)
2103 {
2104 	struct socket *sock;
2105 	struct sockaddr_storage address;
2106 	int err;
2107 	struct msghdr msg;
2108 	struct iovec iov;
2109 	int fput_needed;
2110 
2111 	err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2112 	if (unlikely(err))
2113 		return err;
2114 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2115 	if (!sock)
2116 		goto out;
2117 
2118 	msg.msg_name = NULL;
2119 	msg.msg_control = NULL;
2120 	msg.msg_controllen = 0;
2121 	msg.msg_namelen = 0;
2122 	msg.msg_ubuf = NULL;
2123 	if (addr) {
2124 		err = move_addr_to_kernel(addr, addr_len, &address);
2125 		if (err < 0)
2126 			goto out_put;
2127 		msg.msg_name = (struct sockaddr *)&address;
2128 		msg.msg_namelen = addr_len;
2129 	}
2130 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2131 	if (sock->file->f_flags & O_NONBLOCK)
2132 		flags |= MSG_DONTWAIT;
2133 	msg.msg_flags = flags;
2134 	err = sock_sendmsg(sock, &msg);
2135 
2136 out_put:
2137 	fput_light(sock->file, fput_needed);
2138 out:
2139 	return err;
2140 }
2141 
2142 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2143 		unsigned int, flags, struct sockaddr __user *, addr,
2144 		int, addr_len)
2145 {
2146 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2147 }
2148 
2149 /*
2150  *	Send a datagram down a socket.
2151  */
2152 
2153 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2154 		unsigned int, flags)
2155 {
2156 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2157 }
2158 
2159 /*
2160  *	Receive a frame from the socket and optionally record the address of the
2161  *	sender. We verify the buffers are writable and if needed move the
2162  *	sender address from kernel to user space.
2163  */
2164 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2165 		   struct sockaddr __user *addr, int __user *addr_len)
2166 {
2167 	struct sockaddr_storage address;
2168 	struct msghdr msg = {
2169 		/* Save some cycles and don't copy the address if not needed */
2170 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2171 	};
2172 	struct socket *sock;
2173 	struct iovec iov;
2174 	int err, err2;
2175 	int fput_needed;
2176 
2177 	err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2178 	if (unlikely(err))
2179 		return err;
2180 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2181 	if (!sock)
2182 		goto out;
2183 
2184 	if (sock->file->f_flags & O_NONBLOCK)
2185 		flags |= MSG_DONTWAIT;
2186 	err = sock_recvmsg(sock, &msg, flags);
2187 
2188 	if (err >= 0 && addr != NULL) {
2189 		err2 = move_addr_to_user(&address,
2190 					 msg.msg_namelen, addr, addr_len);
2191 		if (err2 < 0)
2192 			err = err2;
2193 	}
2194 
2195 	fput_light(sock->file, fput_needed);
2196 out:
2197 	return err;
2198 }
2199 
2200 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2201 		unsigned int, flags, struct sockaddr __user *, addr,
2202 		int __user *, addr_len)
2203 {
2204 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2205 }
2206 
2207 /*
2208  *	Receive a datagram from a socket.
2209  */
2210 
2211 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2212 		unsigned int, flags)
2213 {
2214 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2215 }
2216 
2217 static bool sock_use_custom_sol_socket(const struct socket *sock)
2218 {
2219 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2220 }
2221 
2222 /*
2223  *	Set a socket option. Because we don't know the option lengths we have
2224  *	to pass the user mode parameter for the protocols to sort out.
2225  */
2226 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2227 		int optlen)
2228 {
2229 	sockptr_t optval = USER_SOCKPTR(user_optval);
2230 	char *kernel_optval = NULL;
2231 	int err, fput_needed;
2232 	struct socket *sock;
2233 
2234 	if (optlen < 0)
2235 		return -EINVAL;
2236 
2237 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2238 	if (!sock)
2239 		return err;
2240 
2241 	err = security_socket_setsockopt(sock, level, optname);
2242 	if (err)
2243 		goto out_put;
2244 
2245 	if (!in_compat_syscall())
2246 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2247 						     user_optval, &optlen,
2248 						     &kernel_optval);
2249 	if (err < 0)
2250 		goto out_put;
2251 	if (err > 0) {
2252 		err = 0;
2253 		goto out_put;
2254 	}
2255 
2256 	if (kernel_optval)
2257 		optval = KERNEL_SOCKPTR(kernel_optval);
2258 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2259 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2260 	else if (unlikely(!sock->ops->setsockopt))
2261 		err = -EOPNOTSUPP;
2262 	else
2263 		err = sock->ops->setsockopt(sock, level, optname, optval,
2264 					    optlen);
2265 	kfree(kernel_optval);
2266 out_put:
2267 	fput_light(sock->file, fput_needed);
2268 	return err;
2269 }
2270 
2271 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2272 		char __user *, optval, int, optlen)
2273 {
2274 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2275 }
2276 
2277 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2278 							 int optname));
2279 
2280 /*
2281  *	Get a socket option. Because we don't know the option lengths we have
2282  *	to pass a user mode parameter for the protocols to sort out.
2283  */
2284 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2285 		int __user *optlen)
2286 {
2287 	int max_optlen __maybe_unused;
2288 	int err, fput_needed;
2289 	struct socket *sock;
2290 
2291 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2292 	if (!sock)
2293 		return err;
2294 
2295 	err = security_socket_getsockopt(sock, level, optname);
2296 	if (err)
2297 		goto out_put;
2298 
2299 	if (!in_compat_syscall())
2300 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2301 
2302 	if (level == SOL_SOCKET)
2303 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2304 	else if (unlikely(!sock->ops->getsockopt))
2305 		err = -EOPNOTSUPP;
2306 	else
2307 		err = sock->ops->getsockopt(sock, level, optname, optval,
2308 					    optlen);
2309 
2310 	if (!in_compat_syscall())
2311 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2312 						     optval, optlen, max_optlen,
2313 						     err);
2314 out_put:
2315 	fput_light(sock->file, fput_needed);
2316 	return err;
2317 }
2318 
2319 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2320 		char __user *, optval, int __user *, optlen)
2321 {
2322 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2323 }
2324 
2325 /*
2326  *	Shutdown a socket.
2327  */
2328 
2329 int __sys_shutdown_sock(struct socket *sock, int how)
2330 {
2331 	int err;
2332 
2333 	err = security_socket_shutdown(sock, how);
2334 	if (!err)
2335 		err = sock->ops->shutdown(sock, how);
2336 
2337 	return err;
2338 }
2339 
2340 int __sys_shutdown(int fd, int how)
2341 {
2342 	int err, fput_needed;
2343 	struct socket *sock;
2344 
2345 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2346 	if (sock != NULL) {
2347 		err = __sys_shutdown_sock(sock, how);
2348 		fput_light(sock->file, fput_needed);
2349 	}
2350 	return err;
2351 }
2352 
2353 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2354 {
2355 	return __sys_shutdown(fd, how);
2356 }
2357 
2358 /* A couple of helpful macros for getting the address of the 32/64 bit
2359  * fields which are the same type (int / unsigned) on our platforms.
2360  */
2361 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2362 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2363 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2364 
2365 struct used_address {
2366 	struct sockaddr_storage name;
2367 	unsigned int name_len;
2368 };
2369 
2370 int __copy_msghdr(struct msghdr *kmsg,
2371 		  struct user_msghdr *msg,
2372 		  struct sockaddr __user **save_addr)
2373 {
2374 	ssize_t err;
2375 
2376 	kmsg->msg_control_is_user = true;
2377 	kmsg->msg_get_inq = 0;
2378 	kmsg->msg_control_user = msg->msg_control;
2379 	kmsg->msg_controllen = msg->msg_controllen;
2380 	kmsg->msg_flags = msg->msg_flags;
2381 
2382 	kmsg->msg_namelen = msg->msg_namelen;
2383 	if (!msg->msg_name)
2384 		kmsg->msg_namelen = 0;
2385 
2386 	if (kmsg->msg_namelen < 0)
2387 		return -EINVAL;
2388 
2389 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2390 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2391 
2392 	if (save_addr)
2393 		*save_addr = msg->msg_name;
2394 
2395 	if (msg->msg_name && kmsg->msg_namelen) {
2396 		if (!save_addr) {
2397 			err = move_addr_to_kernel(msg->msg_name,
2398 						  kmsg->msg_namelen,
2399 						  kmsg->msg_name);
2400 			if (err < 0)
2401 				return err;
2402 		}
2403 	} else {
2404 		kmsg->msg_name = NULL;
2405 		kmsg->msg_namelen = 0;
2406 	}
2407 
2408 	if (msg->msg_iovlen > UIO_MAXIOV)
2409 		return -EMSGSIZE;
2410 
2411 	kmsg->msg_iocb = NULL;
2412 	kmsg->msg_ubuf = NULL;
2413 	return 0;
2414 }
2415 
2416 static int copy_msghdr_from_user(struct msghdr *kmsg,
2417 				 struct user_msghdr __user *umsg,
2418 				 struct sockaddr __user **save_addr,
2419 				 struct iovec **iov)
2420 {
2421 	struct user_msghdr msg;
2422 	ssize_t err;
2423 
2424 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2425 		return -EFAULT;
2426 
2427 	err = __copy_msghdr(kmsg, &msg, save_addr);
2428 	if (err)
2429 		return err;
2430 
2431 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2432 			    msg.msg_iov, msg.msg_iovlen,
2433 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2434 	return err < 0 ? err : 0;
2435 }
2436 
2437 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2438 			   unsigned int flags, struct used_address *used_address,
2439 			   unsigned int allowed_msghdr_flags)
2440 {
2441 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2442 				__aligned(sizeof(__kernel_size_t));
2443 	/* 20 is size of ipv6_pktinfo */
2444 	unsigned char *ctl_buf = ctl;
2445 	int ctl_len;
2446 	ssize_t err;
2447 
2448 	err = -ENOBUFS;
2449 
2450 	if (msg_sys->msg_controllen > INT_MAX)
2451 		goto out;
2452 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2453 	ctl_len = msg_sys->msg_controllen;
2454 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2455 		err =
2456 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2457 						     sizeof(ctl));
2458 		if (err)
2459 			goto out;
2460 		ctl_buf = msg_sys->msg_control;
2461 		ctl_len = msg_sys->msg_controllen;
2462 	} else if (ctl_len) {
2463 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2464 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2465 		if (ctl_len > sizeof(ctl)) {
2466 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2467 			if (ctl_buf == NULL)
2468 				goto out;
2469 		}
2470 		err = -EFAULT;
2471 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2472 			goto out_freectl;
2473 		msg_sys->msg_control = ctl_buf;
2474 		msg_sys->msg_control_is_user = false;
2475 	}
2476 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2477 	msg_sys->msg_flags = flags;
2478 
2479 	if (sock->file->f_flags & O_NONBLOCK)
2480 		msg_sys->msg_flags |= MSG_DONTWAIT;
2481 	/*
2482 	 * If this is sendmmsg() and current destination address is same as
2483 	 * previously succeeded address, omit asking LSM's decision.
2484 	 * used_address->name_len is initialized to UINT_MAX so that the first
2485 	 * destination address never matches.
2486 	 */
2487 	if (used_address && msg_sys->msg_name &&
2488 	    used_address->name_len == msg_sys->msg_namelen &&
2489 	    !memcmp(&used_address->name, msg_sys->msg_name,
2490 		    used_address->name_len)) {
2491 		err = sock_sendmsg_nosec(sock, msg_sys);
2492 		goto out_freectl;
2493 	}
2494 	err = sock_sendmsg(sock, msg_sys);
2495 	/*
2496 	 * If this is sendmmsg() and sending to current destination address was
2497 	 * successful, remember it.
2498 	 */
2499 	if (used_address && err >= 0) {
2500 		used_address->name_len = msg_sys->msg_namelen;
2501 		if (msg_sys->msg_name)
2502 			memcpy(&used_address->name, msg_sys->msg_name,
2503 			       used_address->name_len);
2504 	}
2505 
2506 out_freectl:
2507 	if (ctl_buf != ctl)
2508 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2509 out:
2510 	return err;
2511 }
2512 
2513 int sendmsg_copy_msghdr(struct msghdr *msg,
2514 			struct user_msghdr __user *umsg, unsigned flags,
2515 			struct iovec **iov)
2516 {
2517 	int err;
2518 
2519 	if (flags & MSG_CMSG_COMPAT) {
2520 		struct compat_msghdr __user *msg_compat;
2521 
2522 		msg_compat = (struct compat_msghdr __user *) umsg;
2523 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2524 	} else {
2525 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2526 	}
2527 	if (err < 0)
2528 		return err;
2529 
2530 	return 0;
2531 }
2532 
2533 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2534 			 struct msghdr *msg_sys, unsigned int flags,
2535 			 struct used_address *used_address,
2536 			 unsigned int allowed_msghdr_flags)
2537 {
2538 	struct sockaddr_storage address;
2539 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2540 	ssize_t err;
2541 
2542 	msg_sys->msg_name = &address;
2543 
2544 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2545 	if (err < 0)
2546 		return err;
2547 
2548 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2549 				allowed_msghdr_flags);
2550 	kfree(iov);
2551 	return err;
2552 }
2553 
2554 /*
2555  *	BSD sendmsg interface
2556  */
2557 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2558 			unsigned int flags)
2559 {
2560 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2561 }
2562 
2563 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2564 		   bool forbid_cmsg_compat)
2565 {
2566 	int fput_needed, err;
2567 	struct msghdr msg_sys;
2568 	struct socket *sock;
2569 
2570 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2571 		return -EINVAL;
2572 
2573 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2574 	if (!sock)
2575 		goto out;
2576 
2577 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2578 
2579 	fput_light(sock->file, fput_needed);
2580 out:
2581 	return err;
2582 }
2583 
2584 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2585 {
2586 	return __sys_sendmsg(fd, msg, flags, true);
2587 }
2588 
2589 /*
2590  *	Linux sendmmsg interface
2591  */
2592 
2593 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2594 		   unsigned int flags, bool forbid_cmsg_compat)
2595 {
2596 	int fput_needed, err, datagrams;
2597 	struct socket *sock;
2598 	struct mmsghdr __user *entry;
2599 	struct compat_mmsghdr __user *compat_entry;
2600 	struct msghdr msg_sys;
2601 	struct used_address used_address;
2602 	unsigned int oflags = flags;
2603 
2604 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2605 		return -EINVAL;
2606 
2607 	if (vlen > UIO_MAXIOV)
2608 		vlen = UIO_MAXIOV;
2609 
2610 	datagrams = 0;
2611 
2612 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2613 	if (!sock)
2614 		return err;
2615 
2616 	used_address.name_len = UINT_MAX;
2617 	entry = mmsg;
2618 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2619 	err = 0;
2620 	flags |= MSG_BATCH;
2621 
2622 	while (datagrams < vlen) {
2623 		if (datagrams == vlen - 1)
2624 			flags = oflags;
2625 
2626 		if (MSG_CMSG_COMPAT & flags) {
2627 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2628 					     &msg_sys, flags, &used_address, MSG_EOR);
2629 			if (err < 0)
2630 				break;
2631 			err = __put_user(err, &compat_entry->msg_len);
2632 			++compat_entry;
2633 		} else {
2634 			err = ___sys_sendmsg(sock,
2635 					     (struct user_msghdr __user *)entry,
2636 					     &msg_sys, flags, &used_address, MSG_EOR);
2637 			if (err < 0)
2638 				break;
2639 			err = put_user(err, &entry->msg_len);
2640 			++entry;
2641 		}
2642 
2643 		if (err)
2644 			break;
2645 		++datagrams;
2646 		if (msg_data_left(&msg_sys))
2647 			break;
2648 		cond_resched();
2649 	}
2650 
2651 	fput_light(sock->file, fput_needed);
2652 
2653 	/* We only return an error if no datagrams were able to be sent */
2654 	if (datagrams != 0)
2655 		return datagrams;
2656 
2657 	return err;
2658 }
2659 
2660 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2661 		unsigned int, vlen, unsigned int, flags)
2662 {
2663 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2664 }
2665 
2666 int recvmsg_copy_msghdr(struct msghdr *msg,
2667 			struct user_msghdr __user *umsg, unsigned flags,
2668 			struct sockaddr __user **uaddr,
2669 			struct iovec **iov)
2670 {
2671 	ssize_t err;
2672 
2673 	if (MSG_CMSG_COMPAT & flags) {
2674 		struct compat_msghdr __user *msg_compat;
2675 
2676 		msg_compat = (struct compat_msghdr __user *) umsg;
2677 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2678 	} else {
2679 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2680 	}
2681 	if (err < 0)
2682 		return err;
2683 
2684 	return 0;
2685 }
2686 
2687 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2688 			   struct user_msghdr __user *msg,
2689 			   struct sockaddr __user *uaddr,
2690 			   unsigned int flags, int nosec)
2691 {
2692 	struct compat_msghdr __user *msg_compat =
2693 					(struct compat_msghdr __user *) msg;
2694 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2695 	struct sockaddr_storage addr;
2696 	unsigned long cmsg_ptr;
2697 	int len;
2698 	ssize_t err;
2699 
2700 	msg_sys->msg_name = &addr;
2701 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2702 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2703 
2704 	/* We assume all kernel code knows the size of sockaddr_storage */
2705 	msg_sys->msg_namelen = 0;
2706 
2707 	if (sock->file->f_flags & O_NONBLOCK)
2708 		flags |= MSG_DONTWAIT;
2709 
2710 	if (unlikely(nosec))
2711 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2712 	else
2713 		err = sock_recvmsg(sock, msg_sys, flags);
2714 
2715 	if (err < 0)
2716 		goto out;
2717 	len = err;
2718 
2719 	if (uaddr != NULL) {
2720 		err = move_addr_to_user(&addr,
2721 					msg_sys->msg_namelen, uaddr,
2722 					uaddr_len);
2723 		if (err < 0)
2724 			goto out;
2725 	}
2726 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2727 			 COMPAT_FLAGS(msg));
2728 	if (err)
2729 		goto out;
2730 	if (MSG_CMSG_COMPAT & flags)
2731 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2732 				 &msg_compat->msg_controllen);
2733 	else
2734 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2735 				 &msg->msg_controllen);
2736 	if (err)
2737 		goto out;
2738 	err = len;
2739 out:
2740 	return err;
2741 }
2742 
2743 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2744 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2745 {
2746 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2747 	/* user mode address pointers */
2748 	struct sockaddr __user *uaddr;
2749 	ssize_t err;
2750 
2751 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2752 	if (err < 0)
2753 		return err;
2754 
2755 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2756 	kfree(iov);
2757 	return err;
2758 }
2759 
2760 /*
2761  *	BSD recvmsg interface
2762  */
2763 
2764 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2765 			struct user_msghdr __user *umsg,
2766 			struct sockaddr __user *uaddr, unsigned int flags)
2767 {
2768 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2769 }
2770 
2771 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2772 		   bool forbid_cmsg_compat)
2773 {
2774 	int fput_needed, err;
2775 	struct msghdr msg_sys;
2776 	struct socket *sock;
2777 
2778 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2779 		return -EINVAL;
2780 
2781 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2782 	if (!sock)
2783 		goto out;
2784 
2785 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2786 
2787 	fput_light(sock->file, fput_needed);
2788 out:
2789 	return err;
2790 }
2791 
2792 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2793 		unsigned int, flags)
2794 {
2795 	return __sys_recvmsg(fd, msg, flags, true);
2796 }
2797 
2798 /*
2799  *     Linux recvmmsg interface
2800  */
2801 
2802 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2803 			  unsigned int vlen, unsigned int flags,
2804 			  struct timespec64 *timeout)
2805 {
2806 	int fput_needed, err, datagrams;
2807 	struct socket *sock;
2808 	struct mmsghdr __user *entry;
2809 	struct compat_mmsghdr __user *compat_entry;
2810 	struct msghdr msg_sys;
2811 	struct timespec64 end_time;
2812 	struct timespec64 timeout64;
2813 
2814 	if (timeout &&
2815 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2816 				    timeout->tv_nsec))
2817 		return -EINVAL;
2818 
2819 	datagrams = 0;
2820 
2821 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2822 	if (!sock)
2823 		return err;
2824 
2825 	if (likely(!(flags & MSG_ERRQUEUE))) {
2826 		err = sock_error(sock->sk);
2827 		if (err) {
2828 			datagrams = err;
2829 			goto out_put;
2830 		}
2831 	}
2832 
2833 	entry = mmsg;
2834 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2835 
2836 	while (datagrams < vlen) {
2837 		/*
2838 		 * No need to ask LSM for more than the first datagram.
2839 		 */
2840 		if (MSG_CMSG_COMPAT & flags) {
2841 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2842 					     &msg_sys, flags & ~MSG_WAITFORONE,
2843 					     datagrams);
2844 			if (err < 0)
2845 				break;
2846 			err = __put_user(err, &compat_entry->msg_len);
2847 			++compat_entry;
2848 		} else {
2849 			err = ___sys_recvmsg(sock,
2850 					     (struct user_msghdr __user *)entry,
2851 					     &msg_sys, flags & ~MSG_WAITFORONE,
2852 					     datagrams);
2853 			if (err < 0)
2854 				break;
2855 			err = put_user(err, &entry->msg_len);
2856 			++entry;
2857 		}
2858 
2859 		if (err)
2860 			break;
2861 		++datagrams;
2862 
2863 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2864 		if (flags & MSG_WAITFORONE)
2865 			flags |= MSG_DONTWAIT;
2866 
2867 		if (timeout) {
2868 			ktime_get_ts64(&timeout64);
2869 			*timeout = timespec64_sub(end_time, timeout64);
2870 			if (timeout->tv_sec < 0) {
2871 				timeout->tv_sec = timeout->tv_nsec = 0;
2872 				break;
2873 			}
2874 
2875 			/* Timeout, return less than vlen datagrams */
2876 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2877 				break;
2878 		}
2879 
2880 		/* Out of band data, return right away */
2881 		if (msg_sys.msg_flags & MSG_OOB)
2882 			break;
2883 		cond_resched();
2884 	}
2885 
2886 	if (err == 0)
2887 		goto out_put;
2888 
2889 	if (datagrams == 0) {
2890 		datagrams = err;
2891 		goto out_put;
2892 	}
2893 
2894 	/*
2895 	 * We may return less entries than requested (vlen) if the
2896 	 * sock is non block and there aren't enough datagrams...
2897 	 */
2898 	if (err != -EAGAIN) {
2899 		/*
2900 		 * ... or  if recvmsg returns an error after we
2901 		 * received some datagrams, where we record the
2902 		 * error to return on the next call or if the
2903 		 * app asks about it using getsockopt(SO_ERROR).
2904 		 */
2905 		WRITE_ONCE(sock->sk->sk_err, -err);
2906 	}
2907 out_put:
2908 	fput_light(sock->file, fput_needed);
2909 
2910 	return datagrams;
2911 }
2912 
2913 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2914 		   unsigned int vlen, unsigned int flags,
2915 		   struct __kernel_timespec __user *timeout,
2916 		   struct old_timespec32 __user *timeout32)
2917 {
2918 	int datagrams;
2919 	struct timespec64 timeout_sys;
2920 
2921 	if (timeout && get_timespec64(&timeout_sys, timeout))
2922 		return -EFAULT;
2923 
2924 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2925 		return -EFAULT;
2926 
2927 	if (!timeout && !timeout32)
2928 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2929 
2930 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2931 
2932 	if (datagrams <= 0)
2933 		return datagrams;
2934 
2935 	if (timeout && put_timespec64(&timeout_sys, timeout))
2936 		datagrams = -EFAULT;
2937 
2938 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2939 		datagrams = -EFAULT;
2940 
2941 	return datagrams;
2942 }
2943 
2944 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2945 		unsigned int, vlen, unsigned int, flags,
2946 		struct __kernel_timespec __user *, timeout)
2947 {
2948 	if (flags & MSG_CMSG_COMPAT)
2949 		return -EINVAL;
2950 
2951 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2952 }
2953 
2954 #ifdef CONFIG_COMPAT_32BIT_TIME
2955 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2956 		unsigned int, vlen, unsigned int, flags,
2957 		struct old_timespec32 __user *, timeout)
2958 {
2959 	if (flags & MSG_CMSG_COMPAT)
2960 		return -EINVAL;
2961 
2962 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2963 }
2964 #endif
2965 
2966 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2967 /* Argument list sizes for sys_socketcall */
2968 #define AL(x) ((x) * sizeof(unsigned long))
2969 static const unsigned char nargs[21] = {
2970 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2971 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2972 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2973 	AL(4), AL(5), AL(4)
2974 };
2975 
2976 #undef AL
2977 
2978 /*
2979  *	System call vectors.
2980  *
2981  *	Argument checking cleaned up. Saved 20% in size.
2982  *  This function doesn't need to set the kernel lock because
2983  *  it is set by the callees.
2984  */
2985 
2986 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2987 {
2988 	unsigned long a[AUDITSC_ARGS];
2989 	unsigned long a0, a1;
2990 	int err;
2991 	unsigned int len;
2992 
2993 	if (call < 1 || call > SYS_SENDMMSG)
2994 		return -EINVAL;
2995 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2996 
2997 	len = nargs[call];
2998 	if (len > sizeof(a))
2999 		return -EINVAL;
3000 
3001 	/* copy_from_user should be SMP safe. */
3002 	if (copy_from_user(a, args, len))
3003 		return -EFAULT;
3004 
3005 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3006 	if (err)
3007 		return err;
3008 
3009 	a0 = a[0];
3010 	a1 = a[1];
3011 
3012 	switch (call) {
3013 	case SYS_SOCKET:
3014 		err = __sys_socket(a0, a1, a[2]);
3015 		break;
3016 	case SYS_BIND:
3017 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3018 		break;
3019 	case SYS_CONNECT:
3020 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3021 		break;
3022 	case SYS_LISTEN:
3023 		err = __sys_listen(a0, a1);
3024 		break;
3025 	case SYS_ACCEPT:
3026 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3027 				    (int __user *)a[2], 0);
3028 		break;
3029 	case SYS_GETSOCKNAME:
3030 		err =
3031 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3032 				      (int __user *)a[2]);
3033 		break;
3034 	case SYS_GETPEERNAME:
3035 		err =
3036 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3037 				      (int __user *)a[2]);
3038 		break;
3039 	case SYS_SOCKETPAIR:
3040 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3041 		break;
3042 	case SYS_SEND:
3043 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3044 				   NULL, 0);
3045 		break;
3046 	case SYS_SENDTO:
3047 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3048 				   (struct sockaddr __user *)a[4], a[5]);
3049 		break;
3050 	case SYS_RECV:
3051 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3052 				     NULL, NULL);
3053 		break;
3054 	case SYS_RECVFROM:
3055 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3056 				     (struct sockaddr __user *)a[4],
3057 				     (int __user *)a[5]);
3058 		break;
3059 	case SYS_SHUTDOWN:
3060 		err = __sys_shutdown(a0, a1);
3061 		break;
3062 	case SYS_SETSOCKOPT:
3063 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3064 				       a[4]);
3065 		break;
3066 	case SYS_GETSOCKOPT:
3067 		err =
3068 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3069 				     (int __user *)a[4]);
3070 		break;
3071 	case SYS_SENDMSG:
3072 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3073 				    a[2], true);
3074 		break;
3075 	case SYS_SENDMMSG:
3076 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3077 				     a[3], true);
3078 		break;
3079 	case SYS_RECVMSG:
3080 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3081 				    a[2], true);
3082 		break;
3083 	case SYS_RECVMMSG:
3084 		if (IS_ENABLED(CONFIG_64BIT))
3085 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3086 					     a[2], a[3],
3087 					     (struct __kernel_timespec __user *)a[4],
3088 					     NULL);
3089 		else
3090 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3091 					     a[2], a[3], NULL,
3092 					     (struct old_timespec32 __user *)a[4]);
3093 		break;
3094 	case SYS_ACCEPT4:
3095 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3096 				    (int __user *)a[2], a[3]);
3097 		break;
3098 	default:
3099 		err = -EINVAL;
3100 		break;
3101 	}
3102 	return err;
3103 }
3104 
3105 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3106 
3107 /**
3108  *	sock_register - add a socket protocol handler
3109  *	@ops: description of protocol
3110  *
3111  *	This function is called by a protocol handler that wants to
3112  *	advertise its address family, and have it linked into the
3113  *	socket interface. The value ops->family corresponds to the
3114  *	socket system call protocol family.
3115  */
3116 int sock_register(const struct net_proto_family *ops)
3117 {
3118 	int err;
3119 
3120 	if (ops->family >= NPROTO) {
3121 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3122 		return -ENOBUFS;
3123 	}
3124 
3125 	spin_lock(&net_family_lock);
3126 	if (rcu_dereference_protected(net_families[ops->family],
3127 				      lockdep_is_held(&net_family_lock)))
3128 		err = -EEXIST;
3129 	else {
3130 		rcu_assign_pointer(net_families[ops->family], ops);
3131 		err = 0;
3132 	}
3133 	spin_unlock(&net_family_lock);
3134 
3135 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3136 	return err;
3137 }
3138 EXPORT_SYMBOL(sock_register);
3139 
3140 /**
3141  *	sock_unregister - remove a protocol handler
3142  *	@family: protocol family to remove
3143  *
3144  *	This function is called by a protocol handler that wants to
3145  *	remove its address family, and have it unlinked from the
3146  *	new socket creation.
3147  *
3148  *	If protocol handler is a module, then it can use module reference
3149  *	counts to protect against new references. If protocol handler is not
3150  *	a module then it needs to provide its own protection in
3151  *	the ops->create routine.
3152  */
3153 void sock_unregister(int family)
3154 {
3155 	BUG_ON(family < 0 || family >= NPROTO);
3156 
3157 	spin_lock(&net_family_lock);
3158 	RCU_INIT_POINTER(net_families[family], NULL);
3159 	spin_unlock(&net_family_lock);
3160 
3161 	synchronize_rcu();
3162 
3163 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3164 }
3165 EXPORT_SYMBOL(sock_unregister);
3166 
3167 bool sock_is_registered(int family)
3168 {
3169 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3170 }
3171 
3172 static int __init sock_init(void)
3173 {
3174 	int err;
3175 	/*
3176 	 *      Initialize the network sysctl infrastructure.
3177 	 */
3178 	err = net_sysctl_init();
3179 	if (err)
3180 		goto out;
3181 
3182 	/*
3183 	 *      Initialize skbuff SLAB cache
3184 	 */
3185 	skb_init();
3186 
3187 	/*
3188 	 *      Initialize the protocols module.
3189 	 */
3190 
3191 	init_inodecache();
3192 
3193 	err = register_filesystem(&sock_fs_type);
3194 	if (err)
3195 		goto out;
3196 	sock_mnt = kern_mount(&sock_fs_type);
3197 	if (IS_ERR(sock_mnt)) {
3198 		err = PTR_ERR(sock_mnt);
3199 		goto out_mount;
3200 	}
3201 
3202 	/* The real protocol initialization is performed in later initcalls.
3203 	 */
3204 
3205 #ifdef CONFIG_NETFILTER
3206 	err = netfilter_init();
3207 	if (err)
3208 		goto out;
3209 #endif
3210 
3211 	ptp_classifier_init();
3212 
3213 out:
3214 	return err;
3215 
3216 out_mount:
3217 	unregister_filesystem(&sock_fs_type);
3218 	goto out;
3219 }
3220 
3221 core_initcall(sock_init);	/* early initcall */
3222 
3223 #ifdef CONFIG_PROC_FS
3224 void socket_seq_show(struct seq_file *seq)
3225 {
3226 	seq_printf(seq, "sockets: used %d\n",
3227 		   sock_inuse_get(seq->private));
3228 }
3229 #endif				/* CONFIG_PROC_FS */
3230 
3231 /* Handle the fact that while struct ifreq has the same *layout* on
3232  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3233  * which are handled elsewhere, it still has different *size* due to
3234  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3235  * resulting in struct ifreq being 32 and 40 bytes respectively).
3236  * As a result, if the struct happens to be at the end of a page and
3237  * the next page isn't readable/writable, we get a fault. To prevent
3238  * that, copy back and forth to the full size.
3239  */
3240 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3241 {
3242 	if (in_compat_syscall()) {
3243 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3244 
3245 		memset(ifr, 0, sizeof(*ifr));
3246 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3247 			return -EFAULT;
3248 
3249 		if (ifrdata)
3250 			*ifrdata = compat_ptr(ifr32->ifr_data);
3251 
3252 		return 0;
3253 	}
3254 
3255 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3256 		return -EFAULT;
3257 
3258 	if (ifrdata)
3259 		*ifrdata = ifr->ifr_data;
3260 
3261 	return 0;
3262 }
3263 EXPORT_SYMBOL(get_user_ifreq);
3264 
3265 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3266 {
3267 	size_t size = sizeof(*ifr);
3268 
3269 	if (in_compat_syscall())
3270 		size = sizeof(struct compat_ifreq);
3271 
3272 	if (copy_to_user(arg, ifr, size))
3273 		return -EFAULT;
3274 
3275 	return 0;
3276 }
3277 EXPORT_SYMBOL(put_user_ifreq);
3278 
3279 #ifdef CONFIG_COMPAT
3280 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3281 {
3282 	compat_uptr_t uptr32;
3283 	struct ifreq ifr;
3284 	void __user *saved;
3285 	int err;
3286 
3287 	if (get_user_ifreq(&ifr, NULL, uifr32))
3288 		return -EFAULT;
3289 
3290 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3291 		return -EFAULT;
3292 
3293 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3294 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3295 
3296 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3297 	if (!err) {
3298 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3299 		if (put_user_ifreq(&ifr, uifr32))
3300 			err = -EFAULT;
3301 	}
3302 	return err;
3303 }
3304 
3305 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3306 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3307 				 struct compat_ifreq __user *u_ifreq32)
3308 {
3309 	struct ifreq ifreq;
3310 	void __user *data;
3311 
3312 	if (!is_socket_ioctl_cmd(cmd))
3313 		return -ENOTTY;
3314 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3315 		return -EFAULT;
3316 	ifreq.ifr_data = data;
3317 
3318 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3319 }
3320 
3321 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3322 			 unsigned int cmd, unsigned long arg)
3323 {
3324 	void __user *argp = compat_ptr(arg);
3325 	struct sock *sk = sock->sk;
3326 	struct net *net = sock_net(sk);
3327 
3328 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3329 		return sock_ioctl(file, cmd, (unsigned long)argp);
3330 
3331 	switch (cmd) {
3332 	case SIOCWANDEV:
3333 		return compat_siocwandev(net, argp);
3334 	case SIOCGSTAMP_OLD:
3335 	case SIOCGSTAMPNS_OLD:
3336 		if (!sock->ops->gettstamp)
3337 			return -ENOIOCTLCMD;
3338 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3339 					    !COMPAT_USE_64BIT_TIME);
3340 
3341 	case SIOCETHTOOL:
3342 	case SIOCBONDSLAVEINFOQUERY:
3343 	case SIOCBONDINFOQUERY:
3344 	case SIOCSHWTSTAMP:
3345 	case SIOCGHWTSTAMP:
3346 		return compat_ifr_data_ioctl(net, cmd, argp);
3347 
3348 	case FIOSETOWN:
3349 	case SIOCSPGRP:
3350 	case FIOGETOWN:
3351 	case SIOCGPGRP:
3352 	case SIOCBRADDBR:
3353 	case SIOCBRDELBR:
3354 	case SIOCGIFVLAN:
3355 	case SIOCSIFVLAN:
3356 	case SIOCGSKNS:
3357 	case SIOCGSTAMP_NEW:
3358 	case SIOCGSTAMPNS_NEW:
3359 	case SIOCGIFCONF:
3360 	case SIOCSIFBR:
3361 	case SIOCGIFBR:
3362 		return sock_ioctl(file, cmd, arg);
3363 
3364 	case SIOCGIFFLAGS:
3365 	case SIOCSIFFLAGS:
3366 	case SIOCGIFMAP:
3367 	case SIOCSIFMAP:
3368 	case SIOCGIFMETRIC:
3369 	case SIOCSIFMETRIC:
3370 	case SIOCGIFMTU:
3371 	case SIOCSIFMTU:
3372 	case SIOCGIFMEM:
3373 	case SIOCSIFMEM:
3374 	case SIOCGIFHWADDR:
3375 	case SIOCSIFHWADDR:
3376 	case SIOCADDMULTI:
3377 	case SIOCDELMULTI:
3378 	case SIOCGIFINDEX:
3379 	case SIOCGIFADDR:
3380 	case SIOCSIFADDR:
3381 	case SIOCSIFHWBROADCAST:
3382 	case SIOCDIFADDR:
3383 	case SIOCGIFBRDADDR:
3384 	case SIOCSIFBRDADDR:
3385 	case SIOCGIFDSTADDR:
3386 	case SIOCSIFDSTADDR:
3387 	case SIOCGIFNETMASK:
3388 	case SIOCSIFNETMASK:
3389 	case SIOCSIFPFLAGS:
3390 	case SIOCGIFPFLAGS:
3391 	case SIOCGIFTXQLEN:
3392 	case SIOCSIFTXQLEN:
3393 	case SIOCBRADDIF:
3394 	case SIOCBRDELIF:
3395 	case SIOCGIFNAME:
3396 	case SIOCSIFNAME:
3397 	case SIOCGMIIPHY:
3398 	case SIOCGMIIREG:
3399 	case SIOCSMIIREG:
3400 	case SIOCBONDENSLAVE:
3401 	case SIOCBONDRELEASE:
3402 	case SIOCBONDSETHWADDR:
3403 	case SIOCBONDCHANGEACTIVE:
3404 	case SIOCSARP:
3405 	case SIOCGARP:
3406 	case SIOCDARP:
3407 	case SIOCOUTQ:
3408 	case SIOCOUTQNSD:
3409 	case SIOCATMARK:
3410 		return sock_do_ioctl(net, sock, cmd, arg);
3411 	}
3412 
3413 	return -ENOIOCTLCMD;
3414 }
3415 
3416 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3417 			      unsigned long arg)
3418 {
3419 	struct socket *sock = file->private_data;
3420 	int ret = -ENOIOCTLCMD;
3421 	struct sock *sk;
3422 	struct net *net;
3423 
3424 	sk = sock->sk;
3425 	net = sock_net(sk);
3426 
3427 	if (sock->ops->compat_ioctl)
3428 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3429 
3430 	if (ret == -ENOIOCTLCMD &&
3431 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3432 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3433 
3434 	if (ret == -ENOIOCTLCMD)
3435 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3436 
3437 	return ret;
3438 }
3439 #endif
3440 
3441 /**
3442  *	kernel_bind - bind an address to a socket (kernel space)
3443  *	@sock: socket
3444  *	@addr: address
3445  *	@addrlen: length of address
3446  *
3447  *	Returns 0 or an error.
3448  */
3449 
3450 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3451 {
3452 	return sock->ops->bind(sock, addr, addrlen);
3453 }
3454 EXPORT_SYMBOL(kernel_bind);
3455 
3456 /**
3457  *	kernel_listen - move socket to listening state (kernel space)
3458  *	@sock: socket
3459  *	@backlog: pending connections queue size
3460  *
3461  *	Returns 0 or an error.
3462  */
3463 
3464 int kernel_listen(struct socket *sock, int backlog)
3465 {
3466 	return sock->ops->listen(sock, backlog);
3467 }
3468 EXPORT_SYMBOL(kernel_listen);
3469 
3470 /**
3471  *	kernel_accept - accept a connection (kernel space)
3472  *	@sock: listening socket
3473  *	@newsock: new connected socket
3474  *	@flags: flags
3475  *
3476  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3477  *	If it fails, @newsock is guaranteed to be %NULL.
3478  *	Returns 0 or an error.
3479  */
3480 
3481 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3482 {
3483 	struct sock *sk = sock->sk;
3484 	int err;
3485 
3486 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3487 			       newsock);
3488 	if (err < 0)
3489 		goto done;
3490 
3491 	err = sock->ops->accept(sock, *newsock, flags, true);
3492 	if (err < 0) {
3493 		sock_release(*newsock);
3494 		*newsock = NULL;
3495 		goto done;
3496 	}
3497 
3498 	(*newsock)->ops = sock->ops;
3499 	__module_get((*newsock)->ops->owner);
3500 
3501 done:
3502 	return err;
3503 }
3504 EXPORT_SYMBOL(kernel_accept);
3505 
3506 /**
3507  *	kernel_connect - connect a socket (kernel space)
3508  *	@sock: socket
3509  *	@addr: address
3510  *	@addrlen: address length
3511  *	@flags: flags (O_NONBLOCK, ...)
3512  *
3513  *	For datagram sockets, @addr is the address to which datagrams are sent
3514  *	by default, and the only address from which datagrams are received.
3515  *	For stream sockets, attempts to connect to @addr.
3516  *	Returns 0 or an error code.
3517  */
3518 
3519 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3520 		   int flags)
3521 {
3522 	return sock->ops->connect(sock, addr, addrlen, flags);
3523 }
3524 EXPORT_SYMBOL(kernel_connect);
3525 
3526 /**
3527  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3528  *	@sock: socket
3529  *	@addr: address holder
3530  *
3531  * 	Fills the @addr pointer with the address which the socket is bound.
3532  *	Returns the length of the address in bytes or an error code.
3533  */
3534 
3535 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3536 {
3537 	return sock->ops->getname(sock, addr, 0);
3538 }
3539 EXPORT_SYMBOL(kernel_getsockname);
3540 
3541 /**
3542  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3543  *	@sock: socket
3544  *	@addr: address holder
3545  *
3546  * 	Fills the @addr pointer with the address which the socket is connected.
3547  *	Returns the length of the address in bytes or an error code.
3548  */
3549 
3550 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3551 {
3552 	return sock->ops->getname(sock, addr, 1);
3553 }
3554 EXPORT_SYMBOL(kernel_getpeername);
3555 
3556 /**
3557  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3558  *	@sock: socket
3559  *	@how: connection part
3560  *
3561  *	Returns 0 or an error.
3562  */
3563 
3564 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3565 {
3566 	return sock->ops->shutdown(sock, how);
3567 }
3568 EXPORT_SYMBOL(kernel_sock_shutdown);
3569 
3570 /**
3571  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3572  *	@sk: socket
3573  *
3574  *	This routine returns the IP overhead imposed by a socket i.e.
3575  *	the length of the underlying IP header, depending on whether
3576  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3577  *	on at the socket. Assumes that the caller has a lock on the socket.
3578  */
3579 
3580 u32 kernel_sock_ip_overhead(struct sock *sk)
3581 {
3582 	struct inet_sock *inet;
3583 	struct ip_options_rcu *opt;
3584 	u32 overhead = 0;
3585 #if IS_ENABLED(CONFIG_IPV6)
3586 	struct ipv6_pinfo *np;
3587 	struct ipv6_txoptions *optv6 = NULL;
3588 #endif /* IS_ENABLED(CONFIG_IPV6) */
3589 
3590 	if (!sk)
3591 		return overhead;
3592 
3593 	switch (sk->sk_family) {
3594 	case AF_INET:
3595 		inet = inet_sk(sk);
3596 		overhead += sizeof(struct iphdr);
3597 		opt = rcu_dereference_protected(inet->inet_opt,
3598 						sock_owned_by_user(sk));
3599 		if (opt)
3600 			overhead += opt->opt.optlen;
3601 		return overhead;
3602 #if IS_ENABLED(CONFIG_IPV6)
3603 	case AF_INET6:
3604 		np = inet6_sk(sk);
3605 		overhead += sizeof(struct ipv6hdr);
3606 		if (np)
3607 			optv6 = rcu_dereference_protected(np->opt,
3608 							  sock_owned_by_user(sk));
3609 		if (optv6)
3610 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3611 		return overhead;
3612 #endif /* IS_ENABLED(CONFIG_IPV6) */
3613 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3614 		return overhead;
3615 	}
3616 }
3617 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3618