xref: /linux/net/socket.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
91 
92 #include <net/compat.h>
93 
94 #include <net/sock.h>
95 #include <linux/netfilter.h>
96 
97 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
98 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
99 			 unsigned long nr_segs, loff_t pos);
100 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
101 			  unsigned long nr_segs, loff_t pos);
102 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
103 
104 static int sock_close(struct inode *inode, struct file *file);
105 static unsigned int sock_poll(struct file *file,
106 			      struct poll_table_struct *wait);
107 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
108 #ifdef CONFIG_COMPAT
109 static long compat_sock_ioctl(struct file *file,
110 			      unsigned int cmd, unsigned long arg);
111 #endif
112 static int sock_fasync(int fd, struct file *filp, int on);
113 static ssize_t sock_sendpage(struct file *file, struct page *page,
114 			     int offset, size_t size, loff_t *ppos, int more);
115 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
116 			        struct pipe_inode_info *pipe, size_t len,
117 				unsigned int flags);
118 
119 /*
120  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
121  *	in the operation structures but are done directly via the socketcall() multiplexor.
122  */
123 
124 static const struct file_operations socket_file_ops = {
125 	.owner =	THIS_MODULE,
126 	.llseek =	no_llseek,
127 	.aio_read =	sock_aio_read,
128 	.aio_write =	sock_aio_write,
129 	.poll =		sock_poll,
130 	.unlocked_ioctl = sock_ioctl,
131 #ifdef CONFIG_COMPAT
132 	.compat_ioctl = compat_sock_ioctl,
133 #endif
134 	.mmap =		sock_mmap,
135 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
136 	.release =	sock_close,
137 	.fasync =	sock_fasync,
138 	.sendpage =	sock_sendpage,
139 	.splice_write = generic_splice_sendpage,
140 	.splice_read =	sock_splice_read,
141 };
142 
143 /*
144  *	The protocol list. Each protocol is registered in here.
145  */
146 
147 static DEFINE_SPINLOCK(net_family_lock);
148 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
149 
150 /*
151  *	Statistics counters of the socket lists
152  */
153 
154 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
155 
156 /*
157  * Support routines.
158  * Move socket addresses back and forth across the kernel/user
159  * divide and look after the messy bits.
160  */
161 
162 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
163 					   16 for IP, 16 for IPX,
164 					   24 for IPv6,
165 					   about 80 for AX.25
166 					   must be at least one bigger than
167 					   the AF_UNIX size (see net/unix/af_unix.c
168 					   :unix_mkname()).
169 					 */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
183 {
184 	if (ulen < 0 || ulen > MAX_SOCK_ADDR)
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
210 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
211 		      int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	err = get_user(len, ulen);
217 	if (err)
218 		return err;
219 	if (len > klen)
220 		len = klen;
221 	if (len < 0 || len > MAX_SOCK_ADDR)
222 		return -EINVAL;
223 	if (len) {
224 		if (audit_sockaddr(klen, kaddr))
225 			return -ENOMEM;
226 		if (copy_to_user(uaddr, kaddr, len))
227 			return -EFAULT;
228 	}
229 	/*
230 	 *      "fromlen shall refer to the value before truncation.."
231 	 *                      1003.1g
232 	 */
233 	return __put_user(klen, ulen);
234 }
235 
236 #define SOCKFS_MAGIC 0x534F434B
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	init_waitqueue_head(&ei->socket.wait);
248 
249 	ei->socket.fasync_list = NULL;
250 	ei->socket.state = SS_UNCONNECTED;
251 	ei->socket.flags = 0;
252 	ei->socket.ops = NULL;
253 	ei->socket.sk = NULL;
254 	ei->socket.file = NULL;
255 
256 	return &ei->vfs_inode;
257 }
258 
259 static void sock_destroy_inode(struct inode *inode)
260 {
261 	kmem_cache_free(sock_inode_cachep,
262 			container_of(inode, struct socket_alloc, vfs_inode));
263 }
264 
265 static void init_once(struct kmem_cache *cachep, void *foo)
266 {
267 	struct socket_alloc *ei = (struct socket_alloc *)foo;
268 
269 	inode_init_once(&ei->vfs_inode);
270 }
271 
272 static int init_inodecache(void)
273 {
274 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
275 					      sizeof(struct socket_alloc),
276 					      0,
277 					      (SLAB_HWCACHE_ALIGN |
278 					       SLAB_RECLAIM_ACCOUNT |
279 					       SLAB_MEM_SPREAD),
280 					      init_once);
281 	if (sock_inode_cachep == NULL)
282 		return -ENOMEM;
283 	return 0;
284 }
285 
286 static struct super_operations sockfs_ops = {
287 	.alloc_inode =	sock_alloc_inode,
288 	.destroy_inode =sock_destroy_inode,
289 	.statfs =	simple_statfs,
290 };
291 
292 static int sockfs_get_sb(struct file_system_type *fs_type,
293 			 int flags, const char *dev_name, void *data,
294 			 struct vfsmount *mnt)
295 {
296 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
297 			     mnt);
298 }
299 
300 static struct vfsmount *sock_mnt __read_mostly;
301 
302 static struct file_system_type sock_fs_type = {
303 	.name =		"sockfs",
304 	.get_sb =	sockfs_get_sb,
305 	.kill_sb =	kill_anon_super,
306 };
307 
308 static int sockfs_delete_dentry(struct dentry *dentry)
309 {
310 	/*
311 	 * At creation time, we pretended this dentry was hashed
312 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
313 	 * At delete time, we restore the truth : not hashed.
314 	 * (so that dput() can proceed correctly)
315 	 */
316 	dentry->d_flags |= DCACHE_UNHASHED;
317 	return 0;
318 }
319 
320 /*
321  * sockfs_dname() is called from d_path().
322  */
323 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
324 {
325 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
326 				dentry->d_inode->i_ino);
327 }
328 
329 static struct dentry_operations sockfs_dentry_operations = {
330 	.d_delete = sockfs_delete_dentry,
331 	.d_dname  = sockfs_dname,
332 };
333 
334 /*
335  *	Obtains the first available file descriptor and sets it up for use.
336  *
337  *	These functions create file structures and maps them to fd space
338  *	of the current process. On success it returns file descriptor
339  *	and file struct implicitly stored in sock->file.
340  *	Note that another thread may close file descriptor before we return
341  *	from this function. We use the fact that now we do not refer
342  *	to socket after mapping. If one day we will need it, this
343  *	function will increment ref. count on file by 1.
344  *
345  *	In any case returned fd MAY BE not valid!
346  *	This race condition is unavoidable
347  *	with shared fd spaces, we cannot solve it inside kernel,
348  *	but we take care of internal coherence yet.
349  */
350 
351 static int sock_alloc_fd(struct file **filep)
352 {
353 	int fd;
354 
355 	fd = get_unused_fd();
356 	if (likely(fd >= 0)) {
357 		struct file *file = get_empty_filp();
358 
359 		*filep = file;
360 		if (unlikely(!file)) {
361 			put_unused_fd(fd);
362 			return -ENFILE;
363 		}
364 	} else
365 		*filep = NULL;
366 	return fd;
367 }
368 
369 static int sock_attach_fd(struct socket *sock, struct file *file)
370 {
371 	struct dentry *dentry;
372 	struct qstr name = { .name = "" };
373 
374 	dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
375 	if (unlikely(!dentry))
376 		return -ENOMEM;
377 
378 	dentry->d_op = &sockfs_dentry_operations;
379 	/*
380 	 * We dont want to push this dentry into global dentry hash table.
381 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
382 	 * This permits a working /proc/$pid/fd/XXX on sockets
383 	 */
384 	dentry->d_flags &= ~DCACHE_UNHASHED;
385 	d_instantiate(dentry, SOCK_INODE(sock));
386 
387 	sock->file = file;
388 	init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
389 		  &socket_file_ops);
390 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
391 	file->f_flags = O_RDWR;
392 	file->f_pos = 0;
393 	file->private_data = sock;
394 
395 	return 0;
396 }
397 
398 int sock_map_fd(struct socket *sock)
399 {
400 	struct file *newfile;
401 	int fd = sock_alloc_fd(&newfile);
402 
403 	if (likely(fd >= 0)) {
404 		int err = sock_attach_fd(sock, newfile);
405 
406 		if (unlikely(err < 0)) {
407 			put_filp(newfile);
408 			put_unused_fd(fd);
409 			return err;
410 		}
411 		fd_install(fd, newfile);
412 	}
413 	return fd;
414 }
415 
416 static struct socket *sock_from_file(struct file *file, int *err)
417 {
418 	if (file->f_op == &socket_file_ops)
419 		return file->private_data;	/* set in sock_map_fd */
420 
421 	*err = -ENOTSOCK;
422 	return NULL;
423 }
424 
425 /**
426  *	sockfd_lookup	- 	Go from a file number to its socket slot
427  *	@fd: file handle
428  *	@err: pointer to an error code return
429  *
430  *	The file handle passed in is locked and the socket it is bound
431  *	too is returned. If an error occurs the err pointer is overwritten
432  *	with a negative errno code and NULL is returned. The function checks
433  *	for both invalid handles and passing a handle which is not a socket.
434  *
435  *	On a success the socket object pointer is returned.
436  */
437 
438 struct socket *sockfd_lookup(int fd, int *err)
439 {
440 	struct file *file;
441 	struct socket *sock;
442 
443 	file = fget(fd);
444 	if (!file) {
445 		*err = -EBADF;
446 		return NULL;
447 	}
448 
449 	sock = sock_from_file(file, err);
450 	if (!sock)
451 		fput(file);
452 	return sock;
453 }
454 
455 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
456 {
457 	struct file *file;
458 	struct socket *sock;
459 
460 	*err = -EBADF;
461 	file = fget_light(fd, fput_needed);
462 	if (file) {
463 		sock = sock_from_file(file, err);
464 		if (sock)
465 			return sock;
466 		fput_light(file, *fput_needed);
467 	}
468 	return NULL;
469 }
470 
471 /**
472  *	sock_alloc	-	allocate a socket
473  *
474  *	Allocate a new inode and socket object. The two are bound together
475  *	and initialised. The socket is then returned. If we are out of inodes
476  *	NULL is returned.
477  */
478 
479 static struct socket *sock_alloc(void)
480 {
481 	struct inode *inode;
482 	struct socket *sock;
483 
484 	inode = new_inode(sock_mnt->mnt_sb);
485 	if (!inode)
486 		return NULL;
487 
488 	sock = SOCKET_I(inode);
489 
490 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
491 	inode->i_uid = current->fsuid;
492 	inode->i_gid = current->fsgid;
493 
494 	get_cpu_var(sockets_in_use)++;
495 	put_cpu_var(sockets_in_use);
496 	return sock;
497 }
498 
499 /*
500  *	In theory you can't get an open on this inode, but /proc provides
501  *	a back door. Remember to keep it shut otherwise you'll let the
502  *	creepy crawlies in.
503  */
504 
505 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
506 {
507 	return -ENXIO;
508 }
509 
510 const struct file_operations bad_sock_fops = {
511 	.owner = THIS_MODULE,
512 	.open = sock_no_open,
513 };
514 
515 /**
516  *	sock_release	-	close a socket
517  *	@sock: socket to close
518  *
519  *	The socket is released from the protocol stack if it has a release
520  *	callback, and the inode is then released if the socket is bound to
521  *	an inode not a file.
522  */
523 
524 void sock_release(struct socket *sock)
525 {
526 	if (sock->ops) {
527 		struct module *owner = sock->ops->owner;
528 
529 		sock->ops->release(sock);
530 		sock->ops = NULL;
531 		module_put(owner);
532 	}
533 
534 	if (sock->fasync_list)
535 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
536 
537 	get_cpu_var(sockets_in_use)--;
538 	put_cpu_var(sockets_in_use);
539 	if (!sock->file) {
540 		iput(SOCK_INODE(sock));
541 		return;
542 	}
543 	sock->file = NULL;
544 }
545 
546 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
547 				 struct msghdr *msg, size_t size)
548 {
549 	struct sock_iocb *si = kiocb_to_siocb(iocb);
550 	int err;
551 
552 	si->sock = sock;
553 	si->scm = NULL;
554 	si->msg = msg;
555 	si->size = size;
556 
557 	err = security_socket_sendmsg(sock, msg, size);
558 	if (err)
559 		return err;
560 
561 	return sock->ops->sendmsg(iocb, sock, msg, size);
562 }
563 
564 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
565 {
566 	struct kiocb iocb;
567 	struct sock_iocb siocb;
568 	int ret;
569 
570 	init_sync_kiocb(&iocb, NULL);
571 	iocb.private = &siocb;
572 	ret = __sock_sendmsg(&iocb, sock, msg, size);
573 	if (-EIOCBQUEUED == ret)
574 		ret = wait_on_sync_kiocb(&iocb);
575 	return ret;
576 }
577 
578 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
579 		   struct kvec *vec, size_t num, size_t size)
580 {
581 	mm_segment_t oldfs = get_fs();
582 	int result;
583 
584 	set_fs(KERNEL_DS);
585 	/*
586 	 * the following is safe, since for compiler definitions of kvec and
587 	 * iovec are identical, yielding the same in-core layout and alignment
588 	 */
589 	msg->msg_iov = (struct iovec *)vec;
590 	msg->msg_iovlen = num;
591 	result = sock_sendmsg(sock, msg, size);
592 	set_fs(oldfs);
593 	return result;
594 }
595 
596 /*
597  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
598  */
599 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
600 	struct sk_buff *skb)
601 {
602 	ktime_t kt = skb->tstamp;
603 
604 	if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
605 		struct timeval tv;
606 		/* Race occurred between timestamp enabling and packet
607 		   receiving.  Fill in the current time for now. */
608 		if (kt.tv64 == 0)
609 			kt = ktime_get_real();
610 		skb->tstamp = kt;
611 		tv = ktime_to_timeval(kt);
612 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
613 	} else {
614 		struct timespec ts;
615 		/* Race occurred between timestamp enabling and packet
616 		   receiving.  Fill in the current time for now. */
617 		if (kt.tv64 == 0)
618 			kt = ktime_get_real();
619 		skb->tstamp = kt;
620 		ts = ktime_to_timespec(kt);
621 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
622 	}
623 }
624 
625 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
626 
627 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
628 				 struct msghdr *msg, size_t size, int flags)
629 {
630 	int err;
631 	struct sock_iocb *si = kiocb_to_siocb(iocb);
632 
633 	si->sock = sock;
634 	si->scm = NULL;
635 	si->msg = msg;
636 	si->size = size;
637 	si->flags = flags;
638 
639 	err = security_socket_recvmsg(sock, msg, size, flags);
640 	if (err)
641 		return err;
642 
643 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
644 }
645 
646 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
647 		 size_t size, int flags)
648 {
649 	struct kiocb iocb;
650 	struct sock_iocb siocb;
651 	int ret;
652 
653 	init_sync_kiocb(&iocb, NULL);
654 	iocb.private = &siocb;
655 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
656 	if (-EIOCBQUEUED == ret)
657 		ret = wait_on_sync_kiocb(&iocb);
658 	return ret;
659 }
660 
661 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
662 		   struct kvec *vec, size_t num, size_t size, int flags)
663 {
664 	mm_segment_t oldfs = get_fs();
665 	int result;
666 
667 	set_fs(KERNEL_DS);
668 	/*
669 	 * the following is safe, since for compiler definitions of kvec and
670 	 * iovec are identical, yielding the same in-core layout and alignment
671 	 */
672 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
673 	result = sock_recvmsg(sock, msg, size, flags);
674 	set_fs(oldfs);
675 	return result;
676 }
677 
678 static void sock_aio_dtor(struct kiocb *iocb)
679 {
680 	kfree(iocb->private);
681 }
682 
683 static ssize_t sock_sendpage(struct file *file, struct page *page,
684 			     int offset, size_t size, loff_t *ppos, int more)
685 {
686 	struct socket *sock;
687 	int flags;
688 
689 	sock = file->private_data;
690 
691 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
692 	if (more)
693 		flags |= MSG_MORE;
694 
695 	return sock->ops->sendpage(sock, page, offset, size, flags);
696 }
697 
698 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
699 			        struct pipe_inode_info *pipe, size_t len,
700 				unsigned int flags)
701 {
702 	struct socket *sock = file->private_data;
703 
704 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
705 }
706 
707 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
708 					 struct sock_iocb *siocb)
709 {
710 	if (!is_sync_kiocb(iocb)) {
711 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
712 		if (!siocb)
713 			return NULL;
714 		iocb->ki_dtor = sock_aio_dtor;
715 	}
716 
717 	siocb->kiocb = iocb;
718 	iocb->private = siocb;
719 	return siocb;
720 }
721 
722 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
723 		struct file *file, const struct iovec *iov,
724 		unsigned long nr_segs)
725 {
726 	struct socket *sock = file->private_data;
727 	size_t size = 0;
728 	int i;
729 
730 	for (i = 0; i < nr_segs; i++)
731 		size += iov[i].iov_len;
732 
733 	msg->msg_name = NULL;
734 	msg->msg_namelen = 0;
735 	msg->msg_control = NULL;
736 	msg->msg_controllen = 0;
737 	msg->msg_iov = (struct iovec *)iov;
738 	msg->msg_iovlen = nr_segs;
739 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
740 
741 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
742 }
743 
744 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
745 				unsigned long nr_segs, loff_t pos)
746 {
747 	struct sock_iocb siocb, *x;
748 
749 	if (pos != 0)
750 		return -ESPIPE;
751 
752 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
753 		return 0;
754 
755 
756 	x = alloc_sock_iocb(iocb, &siocb);
757 	if (!x)
758 		return -ENOMEM;
759 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
760 }
761 
762 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
763 			struct file *file, const struct iovec *iov,
764 			unsigned long nr_segs)
765 {
766 	struct socket *sock = file->private_data;
767 	size_t size = 0;
768 	int i;
769 
770 	for (i = 0; i < nr_segs; i++)
771 		size += iov[i].iov_len;
772 
773 	msg->msg_name = NULL;
774 	msg->msg_namelen = 0;
775 	msg->msg_control = NULL;
776 	msg->msg_controllen = 0;
777 	msg->msg_iov = (struct iovec *)iov;
778 	msg->msg_iovlen = nr_segs;
779 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
780 	if (sock->type == SOCK_SEQPACKET)
781 		msg->msg_flags |= MSG_EOR;
782 
783 	return __sock_sendmsg(iocb, sock, msg, size);
784 }
785 
786 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
787 			  unsigned long nr_segs, loff_t pos)
788 {
789 	struct sock_iocb siocb, *x;
790 
791 	if (pos != 0)
792 		return -ESPIPE;
793 
794 	x = alloc_sock_iocb(iocb, &siocb);
795 	if (!x)
796 		return -ENOMEM;
797 
798 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
799 }
800 
801 /*
802  * Atomic setting of ioctl hooks to avoid race
803  * with module unload.
804  */
805 
806 static DEFINE_MUTEX(br_ioctl_mutex);
807 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
808 
809 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
810 {
811 	mutex_lock(&br_ioctl_mutex);
812 	br_ioctl_hook = hook;
813 	mutex_unlock(&br_ioctl_mutex);
814 }
815 
816 EXPORT_SYMBOL(brioctl_set);
817 
818 static DEFINE_MUTEX(vlan_ioctl_mutex);
819 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
820 
821 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
822 {
823 	mutex_lock(&vlan_ioctl_mutex);
824 	vlan_ioctl_hook = hook;
825 	mutex_unlock(&vlan_ioctl_mutex);
826 }
827 
828 EXPORT_SYMBOL(vlan_ioctl_set);
829 
830 static DEFINE_MUTEX(dlci_ioctl_mutex);
831 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
832 
833 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
834 {
835 	mutex_lock(&dlci_ioctl_mutex);
836 	dlci_ioctl_hook = hook;
837 	mutex_unlock(&dlci_ioctl_mutex);
838 }
839 
840 EXPORT_SYMBOL(dlci_ioctl_set);
841 
842 /*
843  *	With an ioctl, arg may well be a user mode pointer, but we don't know
844  *	what to do with it - that's up to the protocol still.
845  */
846 
847 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
848 {
849 	struct socket *sock;
850 	struct sock *sk;
851 	void __user *argp = (void __user *)arg;
852 	int pid, err;
853 	struct net *net;
854 
855 	sock = file->private_data;
856 	sk = sock->sk;
857 	net = sk->sk_net;
858 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
859 		err = dev_ioctl(net, cmd, argp);
860 	} else
861 #ifdef CONFIG_WIRELESS_EXT
862 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
863 		err = dev_ioctl(net, cmd, argp);
864 	} else
865 #endif				/* CONFIG_WIRELESS_EXT */
866 		switch (cmd) {
867 		case FIOSETOWN:
868 		case SIOCSPGRP:
869 			err = -EFAULT;
870 			if (get_user(pid, (int __user *)argp))
871 				break;
872 			err = f_setown(sock->file, pid, 1);
873 			break;
874 		case FIOGETOWN:
875 		case SIOCGPGRP:
876 			err = put_user(f_getown(sock->file),
877 				       (int __user *)argp);
878 			break;
879 		case SIOCGIFBR:
880 		case SIOCSIFBR:
881 		case SIOCBRADDBR:
882 		case SIOCBRDELBR:
883 			err = -ENOPKG;
884 			if (!br_ioctl_hook)
885 				request_module("bridge");
886 
887 			mutex_lock(&br_ioctl_mutex);
888 			if (br_ioctl_hook)
889 				err = br_ioctl_hook(net, cmd, argp);
890 			mutex_unlock(&br_ioctl_mutex);
891 			break;
892 		case SIOCGIFVLAN:
893 		case SIOCSIFVLAN:
894 			err = -ENOPKG;
895 			if (!vlan_ioctl_hook)
896 				request_module("8021q");
897 
898 			mutex_lock(&vlan_ioctl_mutex);
899 			if (vlan_ioctl_hook)
900 				err = vlan_ioctl_hook(net, argp);
901 			mutex_unlock(&vlan_ioctl_mutex);
902 			break;
903 		case SIOCADDDLCI:
904 		case SIOCDELDLCI:
905 			err = -ENOPKG;
906 			if (!dlci_ioctl_hook)
907 				request_module("dlci");
908 
909 			if (dlci_ioctl_hook) {
910 				mutex_lock(&dlci_ioctl_mutex);
911 				err = dlci_ioctl_hook(cmd, argp);
912 				mutex_unlock(&dlci_ioctl_mutex);
913 			}
914 			break;
915 		default:
916 			err = sock->ops->ioctl(sock, cmd, arg);
917 
918 			/*
919 			 * If this ioctl is unknown try to hand it down
920 			 * to the NIC driver.
921 			 */
922 			if (err == -ENOIOCTLCMD)
923 				err = dev_ioctl(net, cmd, argp);
924 			break;
925 		}
926 	return err;
927 }
928 
929 int sock_create_lite(int family, int type, int protocol, struct socket **res)
930 {
931 	int err;
932 	struct socket *sock = NULL;
933 
934 	err = security_socket_create(family, type, protocol, 1);
935 	if (err)
936 		goto out;
937 
938 	sock = sock_alloc();
939 	if (!sock) {
940 		err = -ENOMEM;
941 		goto out;
942 	}
943 
944 	sock->type = type;
945 	err = security_socket_post_create(sock, family, type, protocol, 1);
946 	if (err)
947 		goto out_release;
948 
949 out:
950 	*res = sock;
951 	return err;
952 out_release:
953 	sock_release(sock);
954 	sock = NULL;
955 	goto out;
956 }
957 
958 /* No kernel lock held - perfect */
959 static unsigned int sock_poll(struct file *file, poll_table *wait)
960 {
961 	struct socket *sock;
962 
963 	/*
964 	 *      We can't return errors to poll, so it's either yes or no.
965 	 */
966 	sock = file->private_data;
967 	return sock->ops->poll(file, sock, wait);
968 }
969 
970 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
971 {
972 	struct socket *sock = file->private_data;
973 
974 	return sock->ops->mmap(file, sock, vma);
975 }
976 
977 static int sock_close(struct inode *inode, struct file *filp)
978 {
979 	/*
980 	 *      It was possible the inode is NULL we were
981 	 *      closing an unfinished socket.
982 	 */
983 
984 	if (!inode) {
985 		printk(KERN_DEBUG "sock_close: NULL inode\n");
986 		return 0;
987 	}
988 	sock_fasync(-1, filp, 0);
989 	sock_release(SOCKET_I(inode));
990 	return 0;
991 }
992 
993 /*
994  *	Update the socket async list
995  *
996  *	Fasync_list locking strategy.
997  *
998  *	1. fasync_list is modified only under process context socket lock
999  *	   i.e. under semaphore.
1000  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1001  *	   or under socket lock.
1002  *	3. fasync_list can be used from softirq context, so that
1003  *	   modification under socket lock have to be enhanced with
1004  *	   write_lock_bh(&sk->sk_callback_lock).
1005  *							--ANK (990710)
1006  */
1007 
1008 static int sock_fasync(int fd, struct file *filp, int on)
1009 {
1010 	struct fasync_struct *fa, *fna = NULL, **prev;
1011 	struct socket *sock;
1012 	struct sock *sk;
1013 
1014 	if (on) {
1015 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1016 		if (fna == NULL)
1017 			return -ENOMEM;
1018 	}
1019 
1020 	sock = filp->private_data;
1021 
1022 	sk = sock->sk;
1023 	if (sk == NULL) {
1024 		kfree(fna);
1025 		return -EINVAL;
1026 	}
1027 
1028 	lock_sock(sk);
1029 
1030 	prev = &(sock->fasync_list);
1031 
1032 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1033 		if (fa->fa_file == filp)
1034 			break;
1035 
1036 	if (on) {
1037 		if (fa != NULL) {
1038 			write_lock_bh(&sk->sk_callback_lock);
1039 			fa->fa_fd = fd;
1040 			write_unlock_bh(&sk->sk_callback_lock);
1041 
1042 			kfree(fna);
1043 			goto out;
1044 		}
1045 		fna->fa_file = filp;
1046 		fna->fa_fd = fd;
1047 		fna->magic = FASYNC_MAGIC;
1048 		fna->fa_next = sock->fasync_list;
1049 		write_lock_bh(&sk->sk_callback_lock);
1050 		sock->fasync_list = fna;
1051 		write_unlock_bh(&sk->sk_callback_lock);
1052 	} else {
1053 		if (fa != NULL) {
1054 			write_lock_bh(&sk->sk_callback_lock);
1055 			*prev = fa->fa_next;
1056 			write_unlock_bh(&sk->sk_callback_lock);
1057 			kfree(fa);
1058 		}
1059 	}
1060 
1061 out:
1062 	release_sock(sock->sk);
1063 	return 0;
1064 }
1065 
1066 /* This function may be called only under socket lock or callback_lock */
1067 
1068 int sock_wake_async(struct socket *sock, int how, int band)
1069 {
1070 	if (!sock || !sock->fasync_list)
1071 		return -1;
1072 	switch (how) {
1073 	case SOCK_WAKE_WAITD:
1074 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1075 			break;
1076 		goto call_kill;
1077 	case SOCK_WAKE_SPACE:
1078 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1079 			break;
1080 		/* fall through */
1081 	case SOCK_WAKE_IO:
1082 call_kill:
1083 		__kill_fasync(sock->fasync_list, SIGIO, band);
1084 		break;
1085 	case SOCK_WAKE_URG:
1086 		__kill_fasync(sock->fasync_list, SIGURG, band);
1087 	}
1088 	return 0;
1089 }
1090 
1091 static int __sock_create(struct net *net, int family, int type, int protocol,
1092 			 struct socket **res, int kern)
1093 {
1094 	int err;
1095 	struct socket *sock;
1096 	const struct net_proto_family *pf;
1097 
1098 	/*
1099 	 *      Check protocol is in range
1100 	 */
1101 	if (family < 0 || family >= NPROTO)
1102 		return -EAFNOSUPPORT;
1103 	if (type < 0 || type >= SOCK_MAX)
1104 		return -EINVAL;
1105 
1106 	/* Compatibility.
1107 
1108 	   This uglymoron is moved from INET layer to here to avoid
1109 	   deadlock in module load.
1110 	 */
1111 	if (family == PF_INET && type == SOCK_PACKET) {
1112 		static int warned;
1113 		if (!warned) {
1114 			warned = 1;
1115 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1116 			       current->comm);
1117 		}
1118 		family = PF_PACKET;
1119 	}
1120 
1121 	err = security_socket_create(family, type, protocol, kern);
1122 	if (err)
1123 		return err;
1124 
1125 	/*
1126 	 *	Allocate the socket and allow the family to set things up. if
1127 	 *	the protocol is 0, the family is instructed to select an appropriate
1128 	 *	default.
1129 	 */
1130 	sock = sock_alloc();
1131 	if (!sock) {
1132 		if (net_ratelimit())
1133 			printk(KERN_WARNING "socket: no more sockets\n");
1134 		return -ENFILE;	/* Not exactly a match, but its the
1135 				   closest posix thing */
1136 	}
1137 
1138 	sock->type = type;
1139 
1140 #if defined(CONFIG_KMOD)
1141 	/* Attempt to load a protocol module if the find failed.
1142 	 *
1143 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1144 	 * requested real, full-featured networking support upon configuration.
1145 	 * Otherwise module support will break!
1146 	 */
1147 	if (net_families[family] == NULL)
1148 		request_module("net-pf-%d", family);
1149 #endif
1150 
1151 	rcu_read_lock();
1152 	pf = rcu_dereference(net_families[family]);
1153 	err = -EAFNOSUPPORT;
1154 	if (!pf)
1155 		goto out_release;
1156 
1157 	/*
1158 	 * We will call the ->create function, that possibly is in a loadable
1159 	 * module, so we have to bump that loadable module refcnt first.
1160 	 */
1161 	if (!try_module_get(pf->owner))
1162 		goto out_release;
1163 
1164 	/* Now protected by module ref count */
1165 	rcu_read_unlock();
1166 
1167 	err = pf->create(net, sock, protocol);
1168 	if (err < 0)
1169 		goto out_module_put;
1170 
1171 	/*
1172 	 * Now to bump the refcnt of the [loadable] module that owns this
1173 	 * socket at sock_release time we decrement its refcnt.
1174 	 */
1175 	if (!try_module_get(sock->ops->owner))
1176 		goto out_module_busy;
1177 
1178 	/*
1179 	 * Now that we're done with the ->create function, the [loadable]
1180 	 * module can have its refcnt decremented
1181 	 */
1182 	module_put(pf->owner);
1183 	err = security_socket_post_create(sock, family, type, protocol, kern);
1184 	if (err)
1185 		goto out_sock_release;
1186 	*res = sock;
1187 
1188 	return 0;
1189 
1190 out_module_busy:
1191 	err = -EAFNOSUPPORT;
1192 out_module_put:
1193 	sock->ops = NULL;
1194 	module_put(pf->owner);
1195 out_sock_release:
1196 	sock_release(sock);
1197 	return err;
1198 
1199 out_release:
1200 	rcu_read_unlock();
1201 	goto out_sock_release;
1202 }
1203 
1204 int sock_create(int family, int type, int protocol, struct socket **res)
1205 {
1206 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1207 }
1208 
1209 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1210 {
1211 	return __sock_create(&init_net, family, type, protocol, res, 1);
1212 }
1213 
1214 asmlinkage long sys_socket(int family, int type, int protocol)
1215 {
1216 	int retval;
1217 	struct socket *sock;
1218 
1219 	retval = sock_create(family, type, protocol, &sock);
1220 	if (retval < 0)
1221 		goto out;
1222 
1223 	retval = sock_map_fd(sock);
1224 	if (retval < 0)
1225 		goto out_release;
1226 
1227 out:
1228 	/* It may be already another descriptor 8) Not kernel problem. */
1229 	return retval;
1230 
1231 out_release:
1232 	sock_release(sock);
1233 	return retval;
1234 }
1235 
1236 /*
1237  *	Create a pair of connected sockets.
1238  */
1239 
1240 asmlinkage long sys_socketpair(int family, int type, int protocol,
1241 			       int __user *usockvec)
1242 {
1243 	struct socket *sock1, *sock2;
1244 	int fd1, fd2, err;
1245 	struct file *newfile1, *newfile2;
1246 
1247 	/*
1248 	 * Obtain the first socket and check if the underlying protocol
1249 	 * supports the socketpair call.
1250 	 */
1251 
1252 	err = sock_create(family, type, protocol, &sock1);
1253 	if (err < 0)
1254 		goto out;
1255 
1256 	err = sock_create(family, type, protocol, &sock2);
1257 	if (err < 0)
1258 		goto out_release_1;
1259 
1260 	err = sock1->ops->socketpair(sock1, sock2);
1261 	if (err < 0)
1262 		goto out_release_both;
1263 
1264 	fd1 = sock_alloc_fd(&newfile1);
1265 	if (unlikely(fd1 < 0)) {
1266 		err = fd1;
1267 		goto out_release_both;
1268 	}
1269 
1270 	fd2 = sock_alloc_fd(&newfile2);
1271 	if (unlikely(fd2 < 0)) {
1272 		err = fd2;
1273 		put_filp(newfile1);
1274 		put_unused_fd(fd1);
1275 		goto out_release_both;
1276 	}
1277 
1278 	err = sock_attach_fd(sock1, newfile1);
1279 	if (unlikely(err < 0)) {
1280 		goto out_fd2;
1281 	}
1282 
1283 	err = sock_attach_fd(sock2, newfile2);
1284 	if (unlikely(err < 0)) {
1285 		fput(newfile1);
1286 		goto out_fd1;
1287 	}
1288 
1289 	err = audit_fd_pair(fd1, fd2);
1290 	if (err < 0) {
1291 		fput(newfile1);
1292 		fput(newfile2);
1293 		goto out_fd;
1294 	}
1295 
1296 	fd_install(fd1, newfile1);
1297 	fd_install(fd2, newfile2);
1298 	/* fd1 and fd2 may be already another descriptors.
1299 	 * Not kernel problem.
1300 	 */
1301 
1302 	err = put_user(fd1, &usockvec[0]);
1303 	if (!err)
1304 		err = put_user(fd2, &usockvec[1]);
1305 	if (!err)
1306 		return 0;
1307 
1308 	sys_close(fd2);
1309 	sys_close(fd1);
1310 	return err;
1311 
1312 out_release_both:
1313 	sock_release(sock2);
1314 out_release_1:
1315 	sock_release(sock1);
1316 out:
1317 	return err;
1318 
1319 out_fd2:
1320 	put_filp(newfile1);
1321 	sock_release(sock1);
1322 out_fd1:
1323 	put_filp(newfile2);
1324 	sock_release(sock2);
1325 out_fd:
1326 	put_unused_fd(fd1);
1327 	put_unused_fd(fd2);
1328 	goto out;
1329 }
1330 
1331 /*
1332  *	Bind a name to a socket. Nothing much to do here since it's
1333  *	the protocol's responsibility to handle the local address.
1334  *
1335  *	We move the socket address to kernel space before we call
1336  *	the protocol layer (having also checked the address is ok).
1337  */
1338 
1339 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1340 {
1341 	struct socket *sock;
1342 	char address[MAX_SOCK_ADDR];
1343 	int err, fput_needed;
1344 
1345 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1346 	if (sock) {
1347 		err = move_addr_to_kernel(umyaddr, addrlen, address);
1348 		if (err >= 0) {
1349 			err = security_socket_bind(sock,
1350 						   (struct sockaddr *)address,
1351 						   addrlen);
1352 			if (!err)
1353 				err = sock->ops->bind(sock,
1354 						      (struct sockaddr *)
1355 						      address, addrlen);
1356 		}
1357 		fput_light(sock->file, fput_needed);
1358 	}
1359 	return err;
1360 }
1361 
1362 /*
1363  *	Perform a listen. Basically, we allow the protocol to do anything
1364  *	necessary for a listen, and if that works, we mark the socket as
1365  *	ready for listening.
1366  */
1367 
1368 asmlinkage long sys_listen(int fd, int backlog)
1369 {
1370 	struct socket *sock;
1371 	int err, fput_needed;
1372 	int somaxconn;
1373 
1374 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1375 	if (sock) {
1376 		somaxconn = sock->sk->sk_net->sysctl_somaxconn;
1377 		if ((unsigned)backlog > somaxconn)
1378 			backlog = somaxconn;
1379 
1380 		err = security_socket_listen(sock, backlog);
1381 		if (!err)
1382 			err = sock->ops->listen(sock, backlog);
1383 
1384 		fput_light(sock->file, fput_needed);
1385 	}
1386 	return err;
1387 }
1388 
1389 /*
1390  *	For accept, we attempt to create a new socket, set up the link
1391  *	with the client, wake up the client, then return the new
1392  *	connected fd. We collect the address of the connector in kernel
1393  *	space and move it to user at the very end. This is unclean because
1394  *	we open the socket then return an error.
1395  *
1396  *	1003.1g adds the ability to recvmsg() to query connection pending
1397  *	status to recvmsg. We need to add that support in a way thats
1398  *	clean when we restucture accept also.
1399  */
1400 
1401 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1402 			   int __user *upeer_addrlen)
1403 {
1404 	struct socket *sock, *newsock;
1405 	struct file *newfile;
1406 	int err, len, newfd, fput_needed;
1407 	char address[MAX_SOCK_ADDR];
1408 
1409 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1410 	if (!sock)
1411 		goto out;
1412 
1413 	err = -ENFILE;
1414 	if (!(newsock = sock_alloc()))
1415 		goto out_put;
1416 
1417 	newsock->type = sock->type;
1418 	newsock->ops = sock->ops;
1419 
1420 	/*
1421 	 * We don't need try_module_get here, as the listening socket (sock)
1422 	 * has the protocol module (sock->ops->owner) held.
1423 	 */
1424 	__module_get(newsock->ops->owner);
1425 
1426 	newfd = sock_alloc_fd(&newfile);
1427 	if (unlikely(newfd < 0)) {
1428 		err = newfd;
1429 		sock_release(newsock);
1430 		goto out_put;
1431 	}
1432 
1433 	err = sock_attach_fd(newsock, newfile);
1434 	if (err < 0)
1435 		goto out_fd_simple;
1436 
1437 	err = security_socket_accept(sock, newsock);
1438 	if (err)
1439 		goto out_fd;
1440 
1441 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1442 	if (err < 0)
1443 		goto out_fd;
1444 
1445 	if (upeer_sockaddr) {
1446 		if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1447 					  &len, 2) < 0) {
1448 			err = -ECONNABORTED;
1449 			goto out_fd;
1450 		}
1451 		err = move_addr_to_user(address, len, upeer_sockaddr,
1452 					upeer_addrlen);
1453 		if (err < 0)
1454 			goto out_fd;
1455 	}
1456 
1457 	/* File flags are not inherited via accept() unlike another OSes. */
1458 
1459 	fd_install(newfd, newfile);
1460 	err = newfd;
1461 
1462 	security_socket_post_accept(sock, newsock);
1463 
1464 out_put:
1465 	fput_light(sock->file, fput_needed);
1466 out:
1467 	return err;
1468 out_fd_simple:
1469 	sock_release(newsock);
1470 	put_filp(newfile);
1471 	put_unused_fd(newfd);
1472 	goto out_put;
1473 out_fd:
1474 	fput(newfile);
1475 	put_unused_fd(newfd);
1476 	goto out_put;
1477 }
1478 
1479 /*
1480  *	Attempt to connect to a socket with the server address.  The address
1481  *	is in user space so we verify it is OK and move it to kernel space.
1482  *
1483  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1484  *	break bindings
1485  *
1486  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1487  *	other SEQPACKET protocols that take time to connect() as it doesn't
1488  *	include the -EINPROGRESS status for such sockets.
1489  */
1490 
1491 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1492 			    int addrlen)
1493 {
1494 	struct socket *sock;
1495 	char address[MAX_SOCK_ADDR];
1496 	int err, fput_needed;
1497 
1498 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1499 	if (!sock)
1500 		goto out;
1501 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1502 	if (err < 0)
1503 		goto out_put;
1504 
1505 	err =
1506 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1507 	if (err)
1508 		goto out_put;
1509 
1510 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1511 				 sock->file->f_flags);
1512 out_put:
1513 	fput_light(sock->file, fput_needed);
1514 out:
1515 	return err;
1516 }
1517 
1518 /*
1519  *	Get the local address ('name') of a socket object. Move the obtained
1520  *	name to user space.
1521  */
1522 
1523 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1524 				int __user *usockaddr_len)
1525 {
1526 	struct socket *sock;
1527 	char address[MAX_SOCK_ADDR];
1528 	int len, err, fput_needed;
1529 
1530 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1531 	if (!sock)
1532 		goto out;
1533 
1534 	err = security_socket_getsockname(sock);
1535 	if (err)
1536 		goto out_put;
1537 
1538 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1539 	if (err)
1540 		goto out_put;
1541 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1542 
1543 out_put:
1544 	fput_light(sock->file, fput_needed);
1545 out:
1546 	return err;
1547 }
1548 
1549 /*
1550  *	Get the remote address ('name') of a socket object. Move the obtained
1551  *	name to user space.
1552  */
1553 
1554 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1555 				int __user *usockaddr_len)
1556 {
1557 	struct socket *sock;
1558 	char address[MAX_SOCK_ADDR];
1559 	int len, err, fput_needed;
1560 
1561 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1562 	if (sock != NULL) {
1563 		err = security_socket_getpeername(sock);
1564 		if (err) {
1565 			fput_light(sock->file, fput_needed);
1566 			return err;
1567 		}
1568 
1569 		err =
1570 		    sock->ops->getname(sock, (struct sockaddr *)address, &len,
1571 				       1);
1572 		if (!err)
1573 			err = move_addr_to_user(address, len, usockaddr,
1574 						usockaddr_len);
1575 		fput_light(sock->file, fput_needed);
1576 	}
1577 	return err;
1578 }
1579 
1580 /*
1581  *	Send a datagram to a given address. We move the address into kernel
1582  *	space and check the user space data area is readable before invoking
1583  *	the protocol.
1584  */
1585 
1586 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1587 			   unsigned flags, struct sockaddr __user *addr,
1588 			   int addr_len)
1589 {
1590 	struct socket *sock;
1591 	char address[MAX_SOCK_ADDR];
1592 	int err;
1593 	struct msghdr msg;
1594 	struct iovec iov;
1595 	int fput_needed;
1596 
1597 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1598 	if (!sock)
1599 		goto out;
1600 
1601 	iov.iov_base = buff;
1602 	iov.iov_len = len;
1603 	msg.msg_name = NULL;
1604 	msg.msg_iov = &iov;
1605 	msg.msg_iovlen = 1;
1606 	msg.msg_control = NULL;
1607 	msg.msg_controllen = 0;
1608 	msg.msg_namelen = 0;
1609 	if (addr) {
1610 		err = move_addr_to_kernel(addr, addr_len, address);
1611 		if (err < 0)
1612 			goto out_put;
1613 		msg.msg_name = address;
1614 		msg.msg_namelen = addr_len;
1615 	}
1616 	if (sock->file->f_flags & O_NONBLOCK)
1617 		flags |= MSG_DONTWAIT;
1618 	msg.msg_flags = flags;
1619 	err = sock_sendmsg(sock, &msg, len);
1620 
1621 out_put:
1622 	fput_light(sock->file, fput_needed);
1623 out:
1624 	return err;
1625 }
1626 
1627 /*
1628  *	Send a datagram down a socket.
1629  */
1630 
1631 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1632 {
1633 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1634 }
1635 
1636 /*
1637  *	Receive a frame from the socket and optionally record the address of the
1638  *	sender. We verify the buffers are writable and if needed move the
1639  *	sender address from kernel to user space.
1640  */
1641 
1642 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1643 			     unsigned flags, struct sockaddr __user *addr,
1644 			     int __user *addr_len)
1645 {
1646 	struct socket *sock;
1647 	struct iovec iov;
1648 	struct msghdr msg;
1649 	char address[MAX_SOCK_ADDR];
1650 	int err, err2;
1651 	int fput_needed;
1652 
1653 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1654 	if (!sock)
1655 		goto out;
1656 
1657 	msg.msg_control = NULL;
1658 	msg.msg_controllen = 0;
1659 	msg.msg_iovlen = 1;
1660 	msg.msg_iov = &iov;
1661 	iov.iov_len = size;
1662 	iov.iov_base = ubuf;
1663 	msg.msg_name = address;
1664 	msg.msg_namelen = MAX_SOCK_ADDR;
1665 	if (sock->file->f_flags & O_NONBLOCK)
1666 		flags |= MSG_DONTWAIT;
1667 	err = sock_recvmsg(sock, &msg, size, flags);
1668 
1669 	if (err >= 0 && addr != NULL) {
1670 		err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1671 		if (err2 < 0)
1672 			err = err2;
1673 	}
1674 
1675 	fput_light(sock->file, fput_needed);
1676 out:
1677 	return err;
1678 }
1679 
1680 /*
1681  *	Receive a datagram from a socket.
1682  */
1683 
1684 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1685 			 unsigned flags)
1686 {
1687 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1688 }
1689 
1690 /*
1691  *	Set a socket option. Because we don't know the option lengths we have
1692  *	to pass the user mode parameter for the protocols to sort out.
1693  */
1694 
1695 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1696 			       char __user *optval, int optlen)
1697 {
1698 	int err, fput_needed;
1699 	struct socket *sock;
1700 
1701 	if (optlen < 0)
1702 		return -EINVAL;
1703 
1704 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1705 	if (sock != NULL) {
1706 		err = security_socket_setsockopt(sock, level, optname);
1707 		if (err)
1708 			goto out_put;
1709 
1710 		if (level == SOL_SOCKET)
1711 			err =
1712 			    sock_setsockopt(sock, level, optname, optval,
1713 					    optlen);
1714 		else
1715 			err =
1716 			    sock->ops->setsockopt(sock, level, optname, optval,
1717 						  optlen);
1718 out_put:
1719 		fput_light(sock->file, fput_needed);
1720 	}
1721 	return err;
1722 }
1723 
1724 /*
1725  *	Get a socket option. Because we don't know the option lengths we have
1726  *	to pass a user mode parameter for the protocols to sort out.
1727  */
1728 
1729 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1730 			       char __user *optval, int __user *optlen)
1731 {
1732 	int err, fput_needed;
1733 	struct socket *sock;
1734 
1735 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1736 	if (sock != NULL) {
1737 		err = security_socket_getsockopt(sock, level, optname);
1738 		if (err)
1739 			goto out_put;
1740 
1741 		if (level == SOL_SOCKET)
1742 			err =
1743 			    sock_getsockopt(sock, level, optname, optval,
1744 					    optlen);
1745 		else
1746 			err =
1747 			    sock->ops->getsockopt(sock, level, optname, optval,
1748 						  optlen);
1749 out_put:
1750 		fput_light(sock->file, fput_needed);
1751 	}
1752 	return err;
1753 }
1754 
1755 /*
1756  *	Shutdown a socket.
1757  */
1758 
1759 asmlinkage long sys_shutdown(int fd, int how)
1760 {
1761 	int err, fput_needed;
1762 	struct socket *sock;
1763 
1764 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1765 	if (sock != NULL) {
1766 		err = security_socket_shutdown(sock, how);
1767 		if (!err)
1768 			err = sock->ops->shutdown(sock, how);
1769 		fput_light(sock->file, fput_needed);
1770 	}
1771 	return err;
1772 }
1773 
1774 /* A couple of helpful macros for getting the address of the 32/64 bit
1775  * fields which are the same type (int / unsigned) on our platforms.
1776  */
1777 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1778 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1779 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1780 
1781 /*
1782  *	BSD sendmsg interface
1783  */
1784 
1785 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1786 {
1787 	struct compat_msghdr __user *msg_compat =
1788 	    (struct compat_msghdr __user *)msg;
1789 	struct socket *sock;
1790 	char address[MAX_SOCK_ADDR];
1791 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1792 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1793 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1794 	/* 20 is size of ipv6_pktinfo */
1795 	unsigned char *ctl_buf = ctl;
1796 	struct msghdr msg_sys;
1797 	int err, ctl_len, iov_size, total_len;
1798 	int fput_needed;
1799 
1800 	err = -EFAULT;
1801 	if (MSG_CMSG_COMPAT & flags) {
1802 		if (get_compat_msghdr(&msg_sys, msg_compat))
1803 			return -EFAULT;
1804 	}
1805 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1806 		return -EFAULT;
1807 
1808 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1809 	if (!sock)
1810 		goto out;
1811 
1812 	/* do not move before msg_sys is valid */
1813 	err = -EMSGSIZE;
1814 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1815 		goto out_put;
1816 
1817 	/* Check whether to allocate the iovec area */
1818 	err = -ENOMEM;
1819 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1820 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1821 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1822 		if (!iov)
1823 			goto out_put;
1824 	}
1825 
1826 	/* This will also move the address data into kernel space */
1827 	if (MSG_CMSG_COMPAT & flags) {
1828 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1829 	} else
1830 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1831 	if (err < 0)
1832 		goto out_freeiov;
1833 	total_len = err;
1834 
1835 	err = -ENOBUFS;
1836 
1837 	if (msg_sys.msg_controllen > INT_MAX)
1838 		goto out_freeiov;
1839 	ctl_len = msg_sys.msg_controllen;
1840 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1841 		err =
1842 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1843 						     sizeof(ctl));
1844 		if (err)
1845 			goto out_freeiov;
1846 		ctl_buf = msg_sys.msg_control;
1847 		ctl_len = msg_sys.msg_controllen;
1848 	} else if (ctl_len) {
1849 		if (ctl_len > sizeof(ctl)) {
1850 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1851 			if (ctl_buf == NULL)
1852 				goto out_freeiov;
1853 		}
1854 		err = -EFAULT;
1855 		/*
1856 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1857 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1858 		 * checking falls down on this.
1859 		 */
1860 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1861 				   ctl_len))
1862 			goto out_freectl;
1863 		msg_sys.msg_control = ctl_buf;
1864 	}
1865 	msg_sys.msg_flags = flags;
1866 
1867 	if (sock->file->f_flags & O_NONBLOCK)
1868 		msg_sys.msg_flags |= MSG_DONTWAIT;
1869 	err = sock_sendmsg(sock, &msg_sys, total_len);
1870 
1871 out_freectl:
1872 	if (ctl_buf != ctl)
1873 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1874 out_freeiov:
1875 	if (iov != iovstack)
1876 		sock_kfree_s(sock->sk, iov, iov_size);
1877 out_put:
1878 	fput_light(sock->file, fput_needed);
1879 out:
1880 	return err;
1881 }
1882 
1883 /*
1884  *	BSD recvmsg interface
1885  */
1886 
1887 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1888 			    unsigned int flags)
1889 {
1890 	struct compat_msghdr __user *msg_compat =
1891 	    (struct compat_msghdr __user *)msg;
1892 	struct socket *sock;
1893 	struct iovec iovstack[UIO_FASTIOV];
1894 	struct iovec *iov = iovstack;
1895 	struct msghdr msg_sys;
1896 	unsigned long cmsg_ptr;
1897 	int err, iov_size, total_len, len;
1898 	int fput_needed;
1899 
1900 	/* kernel mode address */
1901 	char addr[MAX_SOCK_ADDR];
1902 
1903 	/* user mode address pointers */
1904 	struct sockaddr __user *uaddr;
1905 	int __user *uaddr_len;
1906 
1907 	if (MSG_CMSG_COMPAT & flags) {
1908 		if (get_compat_msghdr(&msg_sys, msg_compat))
1909 			return -EFAULT;
1910 	}
1911 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1912 		return -EFAULT;
1913 
1914 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1915 	if (!sock)
1916 		goto out;
1917 
1918 	err = -EMSGSIZE;
1919 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1920 		goto out_put;
1921 
1922 	/* Check whether to allocate the iovec area */
1923 	err = -ENOMEM;
1924 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1925 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1926 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1927 		if (!iov)
1928 			goto out_put;
1929 	}
1930 
1931 	/*
1932 	 *      Save the user-mode address (verify_iovec will change the
1933 	 *      kernel msghdr to use the kernel address space)
1934 	 */
1935 
1936 	uaddr = (__force void __user *)msg_sys.msg_name;
1937 	uaddr_len = COMPAT_NAMELEN(msg);
1938 	if (MSG_CMSG_COMPAT & flags) {
1939 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1940 	} else
1941 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1942 	if (err < 0)
1943 		goto out_freeiov;
1944 	total_len = err;
1945 
1946 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1947 	msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1948 
1949 	if (sock->file->f_flags & O_NONBLOCK)
1950 		flags |= MSG_DONTWAIT;
1951 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1952 	if (err < 0)
1953 		goto out_freeiov;
1954 	len = err;
1955 
1956 	if (uaddr != NULL) {
1957 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1958 					uaddr_len);
1959 		if (err < 0)
1960 			goto out_freeiov;
1961 	}
1962 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1963 			 COMPAT_FLAGS(msg));
1964 	if (err)
1965 		goto out_freeiov;
1966 	if (MSG_CMSG_COMPAT & flags)
1967 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1968 				 &msg_compat->msg_controllen);
1969 	else
1970 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1971 				 &msg->msg_controllen);
1972 	if (err)
1973 		goto out_freeiov;
1974 	err = len;
1975 
1976 out_freeiov:
1977 	if (iov != iovstack)
1978 		sock_kfree_s(sock->sk, iov, iov_size);
1979 out_put:
1980 	fput_light(sock->file, fput_needed);
1981 out:
1982 	return err;
1983 }
1984 
1985 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1986 
1987 /* Argument list sizes for sys_socketcall */
1988 #define AL(x) ((x) * sizeof(unsigned long))
1989 static const unsigned char nargs[18]={
1990 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1991 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1992 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1993 };
1994 
1995 #undef AL
1996 
1997 /*
1998  *	System call vectors.
1999  *
2000  *	Argument checking cleaned up. Saved 20% in size.
2001  *  This function doesn't need to set the kernel lock because
2002  *  it is set by the callees.
2003  */
2004 
2005 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2006 {
2007 	unsigned long a[6];
2008 	unsigned long a0, a1;
2009 	int err;
2010 
2011 	if (call < 1 || call > SYS_RECVMSG)
2012 		return -EINVAL;
2013 
2014 	/* copy_from_user should be SMP safe. */
2015 	if (copy_from_user(a, args, nargs[call]))
2016 		return -EFAULT;
2017 
2018 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2019 	if (err)
2020 		return err;
2021 
2022 	a0 = a[0];
2023 	a1 = a[1];
2024 
2025 	switch (call) {
2026 	case SYS_SOCKET:
2027 		err = sys_socket(a0, a1, a[2]);
2028 		break;
2029 	case SYS_BIND:
2030 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2031 		break;
2032 	case SYS_CONNECT:
2033 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2034 		break;
2035 	case SYS_LISTEN:
2036 		err = sys_listen(a0, a1);
2037 		break;
2038 	case SYS_ACCEPT:
2039 		err =
2040 		    sys_accept(a0, (struct sockaddr __user *)a1,
2041 			       (int __user *)a[2]);
2042 		break;
2043 	case SYS_GETSOCKNAME:
2044 		err =
2045 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2046 				    (int __user *)a[2]);
2047 		break;
2048 	case SYS_GETPEERNAME:
2049 		err =
2050 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2051 				    (int __user *)a[2]);
2052 		break;
2053 	case SYS_SOCKETPAIR:
2054 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2055 		break;
2056 	case SYS_SEND:
2057 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2058 		break;
2059 	case SYS_SENDTO:
2060 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2061 				 (struct sockaddr __user *)a[4], a[5]);
2062 		break;
2063 	case SYS_RECV:
2064 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2065 		break;
2066 	case SYS_RECVFROM:
2067 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2068 				   (struct sockaddr __user *)a[4],
2069 				   (int __user *)a[5]);
2070 		break;
2071 	case SYS_SHUTDOWN:
2072 		err = sys_shutdown(a0, a1);
2073 		break;
2074 	case SYS_SETSOCKOPT:
2075 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2076 		break;
2077 	case SYS_GETSOCKOPT:
2078 		err =
2079 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2080 				   (int __user *)a[4]);
2081 		break;
2082 	case SYS_SENDMSG:
2083 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2084 		break;
2085 	case SYS_RECVMSG:
2086 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2087 		break;
2088 	default:
2089 		err = -EINVAL;
2090 		break;
2091 	}
2092 	return err;
2093 }
2094 
2095 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2096 
2097 /**
2098  *	sock_register - add a socket protocol handler
2099  *	@ops: description of protocol
2100  *
2101  *	This function is called by a protocol handler that wants to
2102  *	advertise its address family, and have it linked into the
2103  *	socket interface. The value ops->family coresponds to the
2104  *	socket system call protocol family.
2105  */
2106 int sock_register(const struct net_proto_family *ops)
2107 {
2108 	int err;
2109 
2110 	if (ops->family >= NPROTO) {
2111 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2112 		       NPROTO);
2113 		return -ENOBUFS;
2114 	}
2115 
2116 	spin_lock(&net_family_lock);
2117 	if (net_families[ops->family])
2118 		err = -EEXIST;
2119 	else {
2120 		net_families[ops->family] = ops;
2121 		err = 0;
2122 	}
2123 	spin_unlock(&net_family_lock);
2124 
2125 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2126 	return err;
2127 }
2128 
2129 /**
2130  *	sock_unregister - remove a protocol handler
2131  *	@family: protocol family to remove
2132  *
2133  *	This function is called by a protocol handler that wants to
2134  *	remove its address family, and have it unlinked from the
2135  *	new socket creation.
2136  *
2137  *	If protocol handler is a module, then it can use module reference
2138  *	counts to protect against new references. If protocol handler is not
2139  *	a module then it needs to provide its own protection in
2140  *	the ops->create routine.
2141  */
2142 void sock_unregister(int family)
2143 {
2144 	BUG_ON(family < 0 || family >= NPROTO);
2145 
2146 	spin_lock(&net_family_lock);
2147 	net_families[family] = NULL;
2148 	spin_unlock(&net_family_lock);
2149 
2150 	synchronize_rcu();
2151 
2152 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2153 }
2154 
2155 static int __init sock_init(void)
2156 {
2157 	/*
2158 	 *      Initialize sock SLAB cache.
2159 	 */
2160 
2161 	sk_init();
2162 
2163 	/*
2164 	 *      Initialize skbuff SLAB cache
2165 	 */
2166 	skb_init();
2167 
2168 	/*
2169 	 *      Initialize the protocols module.
2170 	 */
2171 
2172 	init_inodecache();
2173 	register_filesystem(&sock_fs_type);
2174 	sock_mnt = kern_mount(&sock_fs_type);
2175 
2176 	/* The real protocol initialization is performed in later initcalls.
2177 	 */
2178 
2179 #ifdef CONFIG_NETFILTER
2180 	netfilter_init();
2181 #endif
2182 
2183 	return 0;
2184 }
2185 
2186 core_initcall(sock_init);	/* early initcall */
2187 
2188 #ifdef CONFIG_PROC_FS
2189 void socket_seq_show(struct seq_file *seq)
2190 {
2191 	int cpu;
2192 	int counter = 0;
2193 
2194 	for_each_possible_cpu(cpu)
2195 	    counter += per_cpu(sockets_in_use, cpu);
2196 
2197 	/* It can be negative, by the way. 8) */
2198 	if (counter < 0)
2199 		counter = 0;
2200 
2201 	seq_printf(seq, "sockets: used %d\n", counter);
2202 }
2203 #endif				/* CONFIG_PROC_FS */
2204 
2205 #ifdef CONFIG_COMPAT
2206 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2207 			      unsigned long arg)
2208 {
2209 	struct socket *sock = file->private_data;
2210 	int ret = -ENOIOCTLCMD;
2211 
2212 	if (sock->ops->compat_ioctl)
2213 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2214 
2215 	return ret;
2216 }
2217 #endif
2218 
2219 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2220 {
2221 	return sock->ops->bind(sock, addr, addrlen);
2222 }
2223 
2224 int kernel_listen(struct socket *sock, int backlog)
2225 {
2226 	return sock->ops->listen(sock, backlog);
2227 }
2228 
2229 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2230 {
2231 	struct sock *sk = sock->sk;
2232 	int err;
2233 
2234 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2235 			       newsock);
2236 	if (err < 0)
2237 		goto done;
2238 
2239 	err = sock->ops->accept(sock, *newsock, flags);
2240 	if (err < 0) {
2241 		sock_release(*newsock);
2242 		*newsock = NULL;
2243 		goto done;
2244 	}
2245 
2246 	(*newsock)->ops = sock->ops;
2247 
2248 done:
2249 	return err;
2250 }
2251 
2252 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2253 		   int flags)
2254 {
2255 	return sock->ops->connect(sock, addr, addrlen, flags);
2256 }
2257 
2258 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2259 			 int *addrlen)
2260 {
2261 	return sock->ops->getname(sock, addr, addrlen, 0);
2262 }
2263 
2264 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2265 			 int *addrlen)
2266 {
2267 	return sock->ops->getname(sock, addr, addrlen, 1);
2268 }
2269 
2270 int kernel_getsockopt(struct socket *sock, int level, int optname,
2271 			char *optval, int *optlen)
2272 {
2273 	mm_segment_t oldfs = get_fs();
2274 	int err;
2275 
2276 	set_fs(KERNEL_DS);
2277 	if (level == SOL_SOCKET)
2278 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2279 	else
2280 		err = sock->ops->getsockopt(sock, level, optname, optval,
2281 					    optlen);
2282 	set_fs(oldfs);
2283 	return err;
2284 }
2285 
2286 int kernel_setsockopt(struct socket *sock, int level, int optname,
2287 			char *optval, int optlen)
2288 {
2289 	mm_segment_t oldfs = get_fs();
2290 	int err;
2291 
2292 	set_fs(KERNEL_DS);
2293 	if (level == SOL_SOCKET)
2294 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2295 	else
2296 		err = sock->ops->setsockopt(sock, level, optname, optval,
2297 					    optlen);
2298 	set_fs(oldfs);
2299 	return err;
2300 }
2301 
2302 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2303 		    size_t size, int flags)
2304 {
2305 	if (sock->ops->sendpage)
2306 		return sock->ops->sendpage(sock, page, offset, size, flags);
2307 
2308 	return sock_no_sendpage(sock, page, offset, size, flags);
2309 }
2310 
2311 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2312 {
2313 	mm_segment_t oldfs = get_fs();
2314 	int err;
2315 
2316 	set_fs(KERNEL_DS);
2317 	err = sock->ops->ioctl(sock, cmd, arg);
2318 	set_fs(oldfs);
2319 
2320 	return err;
2321 }
2322 
2323 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2324 {
2325 	return sock->ops->shutdown(sock, how);
2326 }
2327 
2328 /* ABI emulation layers need these two */
2329 EXPORT_SYMBOL(move_addr_to_kernel);
2330 EXPORT_SYMBOL(move_addr_to_user);
2331 EXPORT_SYMBOL(sock_create);
2332 EXPORT_SYMBOL(sock_create_kern);
2333 EXPORT_SYMBOL(sock_create_lite);
2334 EXPORT_SYMBOL(sock_map_fd);
2335 EXPORT_SYMBOL(sock_recvmsg);
2336 EXPORT_SYMBOL(sock_register);
2337 EXPORT_SYMBOL(sock_release);
2338 EXPORT_SYMBOL(sock_sendmsg);
2339 EXPORT_SYMBOL(sock_unregister);
2340 EXPORT_SYMBOL(sock_wake_async);
2341 EXPORT_SYMBOL(sockfd_lookup);
2342 EXPORT_SYMBOL(kernel_sendmsg);
2343 EXPORT_SYMBOL(kernel_recvmsg);
2344 EXPORT_SYMBOL(kernel_bind);
2345 EXPORT_SYMBOL(kernel_listen);
2346 EXPORT_SYMBOL(kernel_accept);
2347 EXPORT_SYMBOL(kernel_connect);
2348 EXPORT_SYMBOL(kernel_getsockname);
2349 EXPORT_SYMBOL(kernel_getpeername);
2350 EXPORT_SYMBOL(kernel_getsockopt);
2351 EXPORT_SYMBOL(kernel_setsockopt);
2352 EXPORT_SYMBOL(kernel_sendpage);
2353 EXPORT_SYMBOL(kernel_sock_ioctl);
2354 EXPORT_SYMBOL(kernel_sock_shutdown);
2355