xref: /linux/net/socket.c (revision ed30aef3c864f99111e16d4ea5cf29488d99a278)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_vlan.h>
68 #include <linux/ptp_classify.h>
69 #include <linux/init.h>
70 #include <linux/poll.h>
71 #include <linux/cache.h>
72 #include <linux/module.h>
73 #include <linux/highmem.h>
74 #include <linux/mount.h>
75 #include <linux/pseudo_fs.h>
76 #include <linux/security.h>
77 #include <linux/syscalls.h>
78 #include <linux/compat.h>
79 #include <linux/kmod.h>
80 #include <linux/audit.h>
81 #include <linux/wireless.h>
82 #include <linux/nsproxy.h>
83 #include <linux/magic.h>
84 #include <linux/slab.h>
85 #include <linux/xattr.h>
86 #include <linux/nospec.h>
87 #include <linux/indirect_call_wrapper.h>
88 
89 #include <linux/uaccess.h>
90 #include <asm/unistd.h>
91 
92 #include <net/compat.h>
93 #include <net/wext.h>
94 #include <net/cls_cgroup.h>
95 
96 #include <net/sock.h>
97 #include <linux/netfilter.h>
98 
99 #include <linux/if_tun.h>
100 #include <linux/ipv6_route.h>
101 #include <linux/route.h>
102 #include <linux/termios.h>
103 #include <linux/sockios.h>
104 #include <net/busy_poll.h>
105 #include <linux/errqueue.h>
106 
107 #ifdef CONFIG_NET_RX_BUSY_POLL
108 unsigned int sysctl_net_busy_read __read_mostly;
109 unsigned int sysctl_net_busy_poll __read_mostly;
110 #endif
111 
112 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
113 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115 
116 static int sock_close(struct inode *inode, struct file *file);
117 static __poll_t sock_poll(struct file *file,
118 			      struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 			      unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 			     int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 				struct pipe_inode_info *pipe, size_t len,
129 				unsigned int flags);
130 
131 #ifdef CONFIG_PROC_FS
132 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
133 {
134 	struct socket *sock = f->private_data;
135 
136 	if (sock->ops->show_fdinfo)
137 		sock->ops->show_fdinfo(m, sock);
138 }
139 #else
140 #define sock_show_fdinfo NULL
141 #endif
142 
143 /*
144  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
145  *	in the operation structures but are done directly via the socketcall() multiplexor.
146  */
147 
148 static const struct file_operations socket_file_ops = {
149 	.owner =	THIS_MODULE,
150 	.llseek =	no_llseek,
151 	.read_iter =	sock_read_iter,
152 	.write_iter =	sock_write_iter,
153 	.poll =		sock_poll,
154 	.unlocked_ioctl = sock_ioctl,
155 #ifdef CONFIG_COMPAT
156 	.compat_ioctl = compat_sock_ioctl,
157 #endif
158 	.mmap =		sock_mmap,
159 	.release =	sock_close,
160 	.fasync =	sock_fasync,
161 	.sendpage =	sock_sendpage,
162 	.splice_write = generic_splice_sendpage,
163 	.splice_read =	sock_splice_read,
164 	.show_fdinfo =	sock_show_fdinfo,
165 };
166 
167 /*
168  *	The protocol list. Each protocol is registered in here.
169  */
170 
171 static DEFINE_SPINLOCK(net_family_lock);
172 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
173 
174 /*
175  * Support routines.
176  * Move socket addresses back and forth across the kernel/user
177  * divide and look after the messy bits.
178  */
179 
180 /**
181  *	move_addr_to_kernel	-	copy a socket address into kernel space
182  *	@uaddr: Address in user space
183  *	@kaddr: Address in kernel space
184  *	@ulen: Length in user space
185  *
186  *	The address is copied into kernel space. If the provided address is
187  *	too long an error code of -EINVAL is returned. If the copy gives
188  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
189  */
190 
191 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
192 {
193 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 		return -EINVAL;
195 	if (ulen == 0)
196 		return 0;
197 	if (copy_from_user(kaddr, uaddr, ulen))
198 		return -EFAULT;
199 	return audit_sockaddr(ulen, kaddr);
200 }
201 
202 /**
203  *	move_addr_to_user	-	copy an address to user space
204  *	@kaddr: kernel space address
205  *	@klen: length of address in kernel
206  *	@uaddr: user space address
207  *	@ulen: pointer to user length field
208  *
209  *	The value pointed to by ulen on entry is the buffer length available.
210  *	This is overwritten with the buffer space used. -EINVAL is returned
211  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
212  *	is returned if either the buffer or the length field are not
213  *	accessible.
214  *	After copying the data up to the limit the user specifies, the true
215  *	length of the data is written over the length limit the user
216  *	specified. Zero is returned for a success.
217  */
218 
219 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
220 			     void __user *uaddr, int __user *ulen)
221 {
222 	int err;
223 	int len;
224 
225 	BUG_ON(klen > sizeof(struct sockaddr_storage));
226 	err = get_user(len, ulen);
227 	if (err)
228 		return err;
229 	if (len > klen)
230 		len = klen;
231 	if (len < 0)
232 		return -EINVAL;
233 	if (len) {
234 		if (audit_sockaddr(klen, kaddr))
235 			return -ENOMEM;
236 		if (copy_to_user(uaddr, kaddr, len))
237 			return -EFAULT;
238 	}
239 	/*
240 	 *      "fromlen shall refer to the value before truncation.."
241 	 *                      1003.1g
242 	 */
243 	return __put_user(klen, ulen);
244 }
245 
246 static struct kmem_cache *sock_inode_cachep __ro_after_init;
247 
248 static struct inode *sock_alloc_inode(struct super_block *sb)
249 {
250 	struct socket_alloc *ei;
251 
252 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 	if (!ei)
254 		return NULL;
255 	init_waitqueue_head(&ei->socket.wq.wait);
256 	ei->socket.wq.fasync_list = NULL;
257 	ei->socket.wq.flags = 0;
258 
259 	ei->socket.state = SS_UNCONNECTED;
260 	ei->socket.flags = 0;
261 	ei->socket.ops = NULL;
262 	ei->socket.sk = NULL;
263 	ei->socket.file = NULL;
264 
265 	return &ei->vfs_inode;
266 }
267 
268 static void sock_free_inode(struct inode *inode)
269 {
270 	struct socket_alloc *ei;
271 
272 	ei = container_of(inode, struct socket_alloc, vfs_inode);
273 	kmem_cache_free(sock_inode_cachep, ei);
274 }
275 
276 static void init_once(void *foo)
277 {
278 	struct socket_alloc *ei = (struct socket_alloc *)foo;
279 
280 	inode_init_once(&ei->vfs_inode);
281 }
282 
283 static void init_inodecache(void)
284 {
285 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
286 					      sizeof(struct socket_alloc),
287 					      0,
288 					      (SLAB_HWCACHE_ALIGN |
289 					       SLAB_RECLAIM_ACCOUNT |
290 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
291 					      init_once);
292 	BUG_ON(sock_inode_cachep == NULL);
293 }
294 
295 static const struct super_operations sockfs_ops = {
296 	.alloc_inode	= sock_alloc_inode,
297 	.free_inode	= sock_free_inode,
298 	.statfs		= simple_statfs,
299 };
300 
301 /*
302  * sockfs_dname() is called from d_path().
303  */
304 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
305 {
306 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
307 				d_inode(dentry)->i_ino);
308 }
309 
310 static const struct dentry_operations sockfs_dentry_operations = {
311 	.d_dname  = sockfs_dname,
312 };
313 
314 static int sockfs_xattr_get(const struct xattr_handler *handler,
315 			    struct dentry *dentry, struct inode *inode,
316 			    const char *suffix, void *value, size_t size)
317 {
318 	if (value) {
319 		if (dentry->d_name.len + 1 > size)
320 			return -ERANGE;
321 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
322 	}
323 	return dentry->d_name.len + 1;
324 }
325 
326 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
327 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
328 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
329 
330 static const struct xattr_handler sockfs_xattr_handler = {
331 	.name = XATTR_NAME_SOCKPROTONAME,
332 	.get = sockfs_xattr_get,
333 };
334 
335 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
336 				     struct dentry *dentry, struct inode *inode,
337 				     const char *suffix, const void *value,
338 				     size_t size, int flags)
339 {
340 	/* Handled by LSM. */
341 	return -EAGAIN;
342 }
343 
344 static const struct xattr_handler sockfs_security_xattr_handler = {
345 	.prefix = XATTR_SECURITY_PREFIX,
346 	.set = sockfs_security_xattr_set,
347 };
348 
349 static const struct xattr_handler *sockfs_xattr_handlers[] = {
350 	&sockfs_xattr_handler,
351 	&sockfs_security_xattr_handler,
352 	NULL
353 };
354 
355 static int sockfs_init_fs_context(struct fs_context *fc)
356 {
357 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
358 	if (!ctx)
359 		return -ENOMEM;
360 	ctx->ops = &sockfs_ops;
361 	ctx->dops = &sockfs_dentry_operations;
362 	ctx->xattr = sockfs_xattr_handlers;
363 	return 0;
364 }
365 
366 static struct vfsmount *sock_mnt __read_mostly;
367 
368 static struct file_system_type sock_fs_type = {
369 	.name =		"sockfs",
370 	.init_fs_context = sockfs_init_fs_context,
371 	.kill_sb =	kill_anon_super,
372 };
373 
374 /*
375  *	Obtains the first available file descriptor and sets it up for use.
376  *
377  *	These functions create file structures and maps them to fd space
378  *	of the current process. On success it returns file descriptor
379  *	and file struct implicitly stored in sock->file.
380  *	Note that another thread may close file descriptor before we return
381  *	from this function. We use the fact that now we do not refer
382  *	to socket after mapping. If one day we will need it, this
383  *	function will increment ref. count on file by 1.
384  *
385  *	In any case returned fd MAY BE not valid!
386  *	This race condition is unavoidable
387  *	with shared fd spaces, we cannot solve it inside kernel,
388  *	but we take care of internal coherence yet.
389  */
390 
391 /**
392  *	sock_alloc_file - Bind a &socket to a &file
393  *	@sock: socket
394  *	@flags: file status flags
395  *	@dname: protocol name
396  *
397  *	Returns the &file bound with @sock, implicitly storing it
398  *	in sock->file. If dname is %NULL, sets to "".
399  *	On failure the return is a ERR pointer (see linux/err.h).
400  *	This function uses GFP_KERNEL internally.
401  */
402 
403 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
404 {
405 	struct file *file;
406 
407 	if (!dname)
408 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
409 
410 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
411 				O_RDWR | (flags & O_NONBLOCK),
412 				&socket_file_ops);
413 	if (IS_ERR(file)) {
414 		sock_release(sock);
415 		return file;
416 	}
417 
418 	sock->file = file;
419 	file->private_data = sock;
420 	stream_open(SOCK_INODE(sock), file);
421 	return file;
422 }
423 EXPORT_SYMBOL(sock_alloc_file);
424 
425 static int sock_map_fd(struct socket *sock, int flags)
426 {
427 	struct file *newfile;
428 	int fd = get_unused_fd_flags(flags);
429 	if (unlikely(fd < 0)) {
430 		sock_release(sock);
431 		return fd;
432 	}
433 
434 	newfile = sock_alloc_file(sock, flags, NULL);
435 	if (!IS_ERR(newfile)) {
436 		fd_install(fd, newfile);
437 		return fd;
438 	}
439 
440 	put_unused_fd(fd);
441 	return PTR_ERR(newfile);
442 }
443 
444 /**
445  *	sock_from_file - Return the &socket bounded to @file.
446  *	@file: file
447  *	@err: pointer to an error code return
448  *
449  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
450  */
451 
452 struct socket *sock_from_file(struct file *file, int *err)
453 {
454 	if (file->f_op == &socket_file_ops)
455 		return file->private_data;	/* set in sock_map_fd */
456 
457 	*err = -ENOTSOCK;
458 	return NULL;
459 }
460 EXPORT_SYMBOL(sock_from_file);
461 
462 /**
463  *	sockfd_lookup - Go from a file number to its socket slot
464  *	@fd: file handle
465  *	@err: pointer to an error code return
466  *
467  *	The file handle passed in is locked and the socket it is bound
468  *	to is returned. If an error occurs the err pointer is overwritten
469  *	with a negative errno code and NULL is returned. The function checks
470  *	for both invalid handles and passing a handle which is not a socket.
471  *
472  *	On a success the socket object pointer is returned.
473  */
474 
475 struct socket *sockfd_lookup(int fd, int *err)
476 {
477 	struct file *file;
478 	struct socket *sock;
479 
480 	file = fget(fd);
481 	if (!file) {
482 		*err = -EBADF;
483 		return NULL;
484 	}
485 
486 	sock = sock_from_file(file, err);
487 	if (!sock)
488 		fput(file);
489 	return sock;
490 }
491 EXPORT_SYMBOL(sockfd_lookup);
492 
493 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
494 {
495 	struct fd f = fdget(fd);
496 	struct socket *sock;
497 
498 	*err = -EBADF;
499 	if (f.file) {
500 		sock = sock_from_file(f.file, err);
501 		if (likely(sock)) {
502 			*fput_needed = f.flags & FDPUT_FPUT;
503 			return sock;
504 		}
505 		fdput(f);
506 	}
507 	return NULL;
508 }
509 
510 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
511 				size_t size)
512 {
513 	ssize_t len;
514 	ssize_t used = 0;
515 
516 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
517 	if (len < 0)
518 		return len;
519 	used += len;
520 	if (buffer) {
521 		if (size < used)
522 			return -ERANGE;
523 		buffer += len;
524 	}
525 
526 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
527 	used += len;
528 	if (buffer) {
529 		if (size < used)
530 			return -ERANGE;
531 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
532 		buffer += len;
533 	}
534 
535 	return used;
536 }
537 
538 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
539 {
540 	int err = simple_setattr(dentry, iattr);
541 
542 	if (!err && (iattr->ia_valid & ATTR_UID)) {
543 		struct socket *sock = SOCKET_I(d_inode(dentry));
544 
545 		if (sock->sk)
546 			sock->sk->sk_uid = iattr->ia_uid;
547 		else
548 			err = -ENOENT;
549 	}
550 
551 	return err;
552 }
553 
554 static const struct inode_operations sockfs_inode_ops = {
555 	.listxattr = sockfs_listxattr,
556 	.setattr = sockfs_setattr,
557 };
558 
559 /**
560  *	sock_alloc - allocate a socket
561  *
562  *	Allocate a new inode and socket object. The two are bound together
563  *	and initialised. The socket is then returned. If we are out of inodes
564  *	NULL is returned. This functions uses GFP_KERNEL internally.
565  */
566 
567 struct socket *sock_alloc(void)
568 {
569 	struct inode *inode;
570 	struct socket *sock;
571 
572 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
573 	if (!inode)
574 		return NULL;
575 
576 	sock = SOCKET_I(inode);
577 
578 	inode->i_ino = get_next_ino();
579 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
580 	inode->i_uid = current_fsuid();
581 	inode->i_gid = current_fsgid();
582 	inode->i_op = &sockfs_inode_ops;
583 
584 	return sock;
585 }
586 EXPORT_SYMBOL(sock_alloc);
587 
588 static void __sock_release(struct socket *sock, struct inode *inode)
589 {
590 	if (sock->ops) {
591 		struct module *owner = sock->ops->owner;
592 
593 		if (inode)
594 			inode_lock(inode);
595 		sock->ops->release(sock);
596 		sock->sk = NULL;
597 		if (inode)
598 			inode_unlock(inode);
599 		sock->ops = NULL;
600 		module_put(owner);
601 	}
602 
603 	if (sock->wq.fasync_list)
604 		pr_err("%s: fasync list not empty!\n", __func__);
605 
606 	if (!sock->file) {
607 		iput(SOCK_INODE(sock));
608 		return;
609 	}
610 	sock->file = NULL;
611 }
612 
613 /**
614  *	sock_release - close a socket
615  *	@sock: socket to close
616  *
617  *	The socket is released from the protocol stack if it has a release
618  *	callback, and the inode is then released if the socket is bound to
619  *	an inode not a file.
620  */
621 void sock_release(struct socket *sock)
622 {
623 	__sock_release(sock, NULL);
624 }
625 EXPORT_SYMBOL(sock_release);
626 
627 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
628 {
629 	u8 flags = *tx_flags;
630 
631 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
632 		flags |= SKBTX_HW_TSTAMP;
633 
634 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
635 		flags |= SKBTX_SW_TSTAMP;
636 
637 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
638 		flags |= SKBTX_SCHED_TSTAMP;
639 
640 	*tx_flags = flags;
641 }
642 EXPORT_SYMBOL(__sock_tx_timestamp);
643 
644 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
645 					   size_t));
646 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
647 					    size_t));
648 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
649 {
650 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
651 				     inet_sendmsg, sock, msg,
652 				     msg_data_left(msg));
653 	BUG_ON(ret == -EIOCBQUEUED);
654 	return ret;
655 }
656 
657 /**
658  *	sock_sendmsg - send a message through @sock
659  *	@sock: socket
660  *	@msg: message to send
661  *
662  *	Sends @msg through @sock, passing through LSM.
663  *	Returns the number of bytes sent, or an error code.
664  */
665 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
666 {
667 	int err = security_socket_sendmsg(sock, msg,
668 					  msg_data_left(msg));
669 
670 	return err ?: sock_sendmsg_nosec(sock, msg);
671 }
672 EXPORT_SYMBOL(sock_sendmsg);
673 
674 /**
675  *	kernel_sendmsg - send a message through @sock (kernel-space)
676  *	@sock: socket
677  *	@msg: message header
678  *	@vec: kernel vec
679  *	@num: vec array length
680  *	@size: total message data size
681  *
682  *	Builds the message data with @vec and sends it through @sock.
683  *	Returns the number of bytes sent, or an error code.
684  */
685 
686 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
687 		   struct kvec *vec, size_t num, size_t size)
688 {
689 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
690 	return sock_sendmsg(sock, msg);
691 }
692 EXPORT_SYMBOL(kernel_sendmsg);
693 
694 /**
695  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
696  *	@sk: sock
697  *	@msg: message header
698  *	@vec: output s/g array
699  *	@num: output s/g array length
700  *	@size: total message data size
701  *
702  *	Builds the message data with @vec and sends it through @sock.
703  *	Returns the number of bytes sent, or an error code.
704  *	Caller must hold @sk.
705  */
706 
707 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
708 			  struct kvec *vec, size_t num, size_t size)
709 {
710 	struct socket *sock = sk->sk_socket;
711 
712 	if (!sock->ops->sendmsg_locked)
713 		return sock_no_sendmsg_locked(sk, msg, size);
714 
715 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
716 
717 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
718 }
719 EXPORT_SYMBOL(kernel_sendmsg_locked);
720 
721 static bool skb_is_err_queue(const struct sk_buff *skb)
722 {
723 	/* pkt_type of skbs enqueued on the error queue are set to
724 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
725 	 * in recvmsg, since skbs received on a local socket will never
726 	 * have a pkt_type of PACKET_OUTGOING.
727 	 */
728 	return skb->pkt_type == PACKET_OUTGOING;
729 }
730 
731 /* On transmit, software and hardware timestamps are returned independently.
732  * As the two skb clones share the hardware timestamp, which may be updated
733  * before the software timestamp is received, a hardware TX timestamp may be
734  * returned only if there is no software TX timestamp. Ignore false software
735  * timestamps, which may be made in the __sock_recv_timestamp() call when the
736  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
737  * hardware timestamp.
738  */
739 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
740 {
741 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
742 }
743 
744 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
745 {
746 	struct scm_ts_pktinfo ts_pktinfo;
747 	struct net_device *orig_dev;
748 
749 	if (!skb_mac_header_was_set(skb))
750 		return;
751 
752 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
753 
754 	rcu_read_lock();
755 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
756 	if (orig_dev)
757 		ts_pktinfo.if_index = orig_dev->ifindex;
758 	rcu_read_unlock();
759 
760 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
761 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
762 		 sizeof(ts_pktinfo), &ts_pktinfo);
763 }
764 
765 /*
766  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
767  */
768 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
769 	struct sk_buff *skb)
770 {
771 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
772 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
773 	struct scm_timestamping_internal tss;
774 
775 	int empty = 1, false_tstamp = 0;
776 	struct skb_shared_hwtstamps *shhwtstamps =
777 		skb_hwtstamps(skb);
778 
779 	/* Race occurred between timestamp enabling and packet
780 	   receiving.  Fill in the current time for now. */
781 	if (need_software_tstamp && skb->tstamp == 0) {
782 		__net_timestamp(skb);
783 		false_tstamp = 1;
784 	}
785 
786 	if (need_software_tstamp) {
787 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
788 			if (new_tstamp) {
789 				struct __kernel_sock_timeval tv;
790 
791 				skb_get_new_timestamp(skb, &tv);
792 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
793 					 sizeof(tv), &tv);
794 			} else {
795 				struct __kernel_old_timeval tv;
796 
797 				skb_get_timestamp(skb, &tv);
798 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
799 					 sizeof(tv), &tv);
800 			}
801 		} else {
802 			if (new_tstamp) {
803 				struct __kernel_timespec ts;
804 
805 				skb_get_new_timestampns(skb, &ts);
806 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
807 					 sizeof(ts), &ts);
808 			} else {
809 				struct __kernel_old_timespec ts;
810 
811 				skb_get_timestampns(skb, &ts);
812 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
813 					 sizeof(ts), &ts);
814 			}
815 		}
816 	}
817 
818 	memset(&tss, 0, sizeof(tss));
819 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
820 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
821 		empty = 0;
822 	if (shhwtstamps &&
823 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
824 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
825 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
826 		empty = 0;
827 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
828 		    !skb_is_err_queue(skb))
829 			put_ts_pktinfo(msg, skb);
830 	}
831 	if (!empty) {
832 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
833 			put_cmsg_scm_timestamping64(msg, &tss);
834 		else
835 			put_cmsg_scm_timestamping(msg, &tss);
836 
837 		if (skb_is_err_queue(skb) && skb->len &&
838 		    SKB_EXT_ERR(skb)->opt_stats)
839 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
840 				 skb->len, skb->data);
841 	}
842 }
843 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
844 
845 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
846 	struct sk_buff *skb)
847 {
848 	int ack;
849 
850 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
851 		return;
852 	if (!skb->wifi_acked_valid)
853 		return;
854 
855 	ack = skb->wifi_acked;
856 
857 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
858 }
859 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
860 
861 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
862 				   struct sk_buff *skb)
863 {
864 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
865 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
866 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
867 }
868 
869 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
870 	struct sk_buff *skb)
871 {
872 	sock_recv_timestamp(msg, sk, skb);
873 	sock_recv_drops(msg, sk, skb);
874 }
875 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
876 
877 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
878 					   size_t, int));
879 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
880 					    size_t, int));
881 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
882 				     int flags)
883 {
884 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
885 				  inet_recvmsg, sock, msg, msg_data_left(msg),
886 				  flags);
887 }
888 
889 /**
890  *	sock_recvmsg - receive a message from @sock
891  *	@sock: socket
892  *	@msg: message to receive
893  *	@flags: message flags
894  *
895  *	Receives @msg from @sock, passing through LSM. Returns the total number
896  *	of bytes received, or an error.
897  */
898 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
899 {
900 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
901 
902 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
903 }
904 EXPORT_SYMBOL(sock_recvmsg);
905 
906 /**
907  *	kernel_recvmsg - Receive a message from a socket (kernel space)
908  *	@sock: The socket to receive the message from
909  *	@msg: Received message
910  *	@vec: Input s/g array for message data
911  *	@num: Size of input s/g array
912  *	@size: Number of bytes to read
913  *	@flags: Message flags (MSG_DONTWAIT, etc...)
914  *
915  *	On return the msg structure contains the scatter/gather array passed in the
916  *	vec argument. The array is modified so that it consists of the unfilled
917  *	portion of the original array.
918  *
919  *	The returned value is the total number of bytes received, or an error.
920  */
921 
922 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
923 		   struct kvec *vec, size_t num, size_t size, int flags)
924 {
925 	msg->msg_control_is_user = false;
926 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
927 	return sock_recvmsg(sock, msg, flags);
928 }
929 EXPORT_SYMBOL(kernel_recvmsg);
930 
931 static ssize_t sock_sendpage(struct file *file, struct page *page,
932 			     int offset, size_t size, loff_t *ppos, int more)
933 {
934 	struct socket *sock;
935 	int flags;
936 
937 	sock = file->private_data;
938 
939 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
940 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
941 	flags |= more;
942 
943 	return kernel_sendpage(sock, page, offset, size, flags);
944 }
945 
946 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
947 				struct pipe_inode_info *pipe, size_t len,
948 				unsigned int flags)
949 {
950 	struct socket *sock = file->private_data;
951 
952 	if (unlikely(!sock->ops->splice_read))
953 		return generic_file_splice_read(file, ppos, pipe, len, flags);
954 
955 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
956 }
957 
958 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
959 {
960 	struct file *file = iocb->ki_filp;
961 	struct socket *sock = file->private_data;
962 	struct msghdr msg = {.msg_iter = *to,
963 			     .msg_iocb = iocb};
964 	ssize_t res;
965 
966 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
967 		msg.msg_flags = MSG_DONTWAIT;
968 
969 	if (iocb->ki_pos != 0)
970 		return -ESPIPE;
971 
972 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
973 		return 0;
974 
975 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
976 	*to = msg.msg_iter;
977 	return res;
978 }
979 
980 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
981 {
982 	struct file *file = iocb->ki_filp;
983 	struct socket *sock = file->private_data;
984 	struct msghdr msg = {.msg_iter = *from,
985 			     .msg_iocb = iocb};
986 	ssize_t res;
987 
988 	if (iocb->ki_pos != 0)
989 		return -ESPIPE;
990 
991 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
992 		msg.msg_flags = MSG_DONTWAIT;
993 
994 	if (sock->type == SOCK_SEQPACKET)
995 		msg.msg_flags |= MSG_EOR;
996 
997 	res = sock_sendmsg(sock, &msg);
998 	*from = msg.msg_iter;
999 	return res;
1000 }
1001 
1002 /*
1003  * Atomic setting of ioctl hooks to avoid race
1004  * with module unload.
1005  */
1006 
1007 static DEFINE_MUTEX(br_ioctl_mutex);
1008 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1009 
1010 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1011 {
1012 	mutex_lock(&br_ioctl_mutex);
1013 	br_ioctl_hook = hook;
1014 	mutex_unlock(&br_ioctl_mutex);
1015 }
1016 EXPORT_SYMBOL(brioctl_set);
1017 
1018 static DEFINE_MUTEX(vlan_ioctl_mutex);
1019 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1020 
1021 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1022 {
1023 	mutex_lock(&vlan_ioctl_mutex);
1024 	vlan_ioctl_hook = hook;
1025 	mutex_unlock(&vlan_ioctl_mutex);
1026 }
1027 EXPORT_SYMBOL(vlan_ioctl_set);
1028 
1029 static long sock_do_ioctl(struct net *net, struct socket *sock,
1030 			  unsigned int cmd, unsigned long arg)
1031 {
1032 	int err;
1033 	void __user *argp = (void __user *)arg;
1034 
1035 	err = sock->ops->ioctl(sock, cmd, arg);
1036 
1037 	/*
1038 	 * If this ioctl is unknown try to hand it down
1039 	 * to the NIC driver.
1040 	 */
1041 	if (err != -ENOIOCTLCMD)
1042 		return err;
1043 
1044 	if (cmd == SIOCGIFCONF) {
1045 		struct ifconf ifc;
1046 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1047 			return -EFAULT;
1048 		rtnl_lock();
1049 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1050 		rtnl_unlock();
1051 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1052 			err = -EFAULT;
1053 	} else {
1054 		struct ifreq ifr;
1055 		bool need_copyout;
1056 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1057 			return -EFAULT;
1058 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1059 		if (!err && need_copyout)
1060 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1061 				return -EFAULT;
1062 	}
1063 	return err;
1064 }
1065 
1066 /*
1067  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1068  *	what to do with it - that's up to the protocol still.
1069  */
1070 
1071 /**
1072  *	get_net_ns - increment the refcount of the network namespace
1073  *	@ns: common namespace (net)
1074  *
1075  *	Returns the net's common namespace.
1076  */
1077 
1078 struct ns_common *get_net_ns(struct ns_common *ns)
1079 {
1080 	return &get_net(container_of(ns, struct net, ns))->ns;
1081 }
1082 EXPORT_SYMBOL_GPL(get_net_ns);
1083 
1084 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1085 {
1086 	struct socket *sock;
1087 	struct sock *sk;
1088 	void __user *argp = (void __user *)arg;
1089 	int pid, err;
1090 	struct net *net;
1091 
1092 	sock = file->private_data;
1093 	sk = sock->sk;
1094 	net = sock_net(sk);
1095 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1096 		struct ifreq ifr;
1097 		bool need_copyout;
1098 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1099 			return -EFAULT;
1100 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1101 		if (!err && need_copyout)
1102 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1103 				return -EFAULT;
1104 	} else
1105 #ifdef CONFIG_WEXT_CORE
1106 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1107 		err = wext_handle_ioctl(net, cmd, argp);
1108 	} else
1109 #endif
1110 		switch (cmd) {
1111 		case FIOSETOWN:
1112 		case SIOCSPGRP:
1113 			err = -EFAULT;
1114 			if (get_user(pid, (int __user *)argp))
1115 				break;
1116 			err = f_setown(sock->file, pid, 1);
1117 			break;
1118 		case FIOGETOWN:
1119 		case SIOCGPGRP:
1120 			err = put_user(f_getown(sock->file),
1121 				       (int __user *)argp);
1122 			break;
1123 		case SIOCGIFBR:
1124 		case SIOCSIFBR:
1125 		case SIOCBRADDBR:
1126 		case SIOCBRDELBR:
1127 			err = -ENOPKG;
1128 			if (!br_ioctl_hook)
1129 				request_module("bridge");
1130 
1131 			mutex_lock(&br_ioctl_mutex);
1132 			if (br_ioctl_hook)
1133 				err = br_ioctl_hook(net, cmd, argp);
1134 			mutex_unlock(&br_ioctl_mutex);
1135 			break;
1136 		case SIOCGIFVLAN:
1137 		case SIOCSIFVLAN:
1138 			err = -ENOPKG;
1139 			if (!vlan_ioctl_hook)
1140 				request_module("8021q");
1141 
1142 			mutex_lock(&vlan_ioctl_mutex);
1143 			if (vlan_ioctl_hook)
1144 				err = vlan_ioctl_hook(net, argp);
1145 			mutex_unlock(&vlan_ioctl_mutex);
1146 			break;
1147 		case SIOCGSKNS:
1148 			err = -EPERM;
1149 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1150 				break;
1151 
1152 			err = open_related_ns(&net->ns, get_net_ns);
1153 			break;
1154 		case SIOCGSTAMP_OLD:
1155 		case SIOCGSTAMPNS_OLD:
1156 			if (!sock->ops->gettstamp) {
1157 				err = -ENOIOCTLCMD;
1158 				break;
1159 			}
1160 			err = sock->ops->gettstamp(sock, argp,
1161 						   cmd == SIOCGSTAMP_OLD,
1162 						   !IS_ENABLED(CONFIG_64BIT));
1163 			break;
1164 		case SIOCGSTAMP_NEW:
1165 		case SIOCGSTAMPNS_NEW:
1166 			if (!sock->ops->gettstamp) {
1167 				err = -ENOIOCTLCMD;
1168 				break;
1169 			}
1170 			err = sock->ops->gettstamp(sock, argp,
1171 						   cmd == SIOCGSTAMP_NEW,
1172 						   false);
1173 			break;
1174 		default:
1175 			err = sock_do_ioctl(net, sock, cmd, arg);
1176 			break;
1177 		}
1178 	return err;
1179 }
1180 
1181 /**
1182  *	sock_create_lite - creates a socket
1183  *	@family: protocol family (AF_INET, ...)
1184  *	@type: communication type (SOCK_STREAM, ...)
1185  *	@protocol: protocol (0, ...)
1186  *	@res: new socket
1187  *
1188  *	Creates a new socket and assigns it to @res, passing through LSM.
1189  *	The new socket initialization is not complete, see kernel_accept().
1190  *	Returns 0 or an error. On failure @res is set to %NULL.
1191  *	This function internally uses GFP_KERNEL.
1192  */
1193 
1194 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1195 {
1196 	int err;
1197 	struct socket *sock = NULL;
1198 
1199 	err = security_socket_create(family, type, protocol, 1);
1200 	if (err)
1201 		goto out;
1202 
1203 	sock = sock_alloc();
1204 	if (!sock) {
1205 		err = -ENOMEM;
1206 		goto out;
1207 	}
1208 
1209 	sock->type = type;
1210 	err = security_socket_post_create(sock, family, type, protocol, 1);
1211 	if (err)
1212 		goto out_release;
1213 
1214 out:
1215 	*res = sock;
1216 	return err;
1217 out_release:
1218 	sock_release(sock);
1219 	sock = NULL;
1220 	goto out;
1221 }
1222 EXPORT_SYMBOL(sock_create_lite);
1223 
1224 /* No kernel lock held - perfect */
1225 static __poll_t sock_poll(struct file *file, poll_table *wait)
1226 {
1227 	struct socket *sock = file->private_data;
1228 	__poll_t events = poll_requested_events(wait), flag = 0;
1229 
1230 	if (!sock->ops->poll)
1231 		return 0;
1232 
1233 	if (sk_can_busy_loop(sock->sk)) {
1234 		/* poll once if requested by the syscall */
1235 		if (events & POLL_BUSY_LOOP)
1236 			sk_busy_loop(sock->sk, 1);
1237 
1238 		/* if this socket can poll_ll, tell the system call */
1239 		flag = POLL_BUSY_LOOP;
1240 	}
1241 
1242 	return sock->ops->poll(file, sock, wait) | flag;
1243 }
1244 
1245 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1246 {
1247 	struct socket *sock = file->private_data;
1248 
1249 	return sock->ops->mmap(file, sock, vma);
1250 }
1251 
1252 static int sock_close(struct inode *inode, struct file *filp)
1253 {
1254 	__sock_release(SOCKET_I(inode), inode);
1255 	return 0;
1256 }
1257 
1258 /*
1259  *	Update the socket async list
1260  *
1261  *	Fasync_list locking strategy.
1262  *
1263  *	1. fasync_list is modified only under process context socket lock
1264  *	   i.e. under semaphore.
1265  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1266  *	   or under socket lock
1267  */
1268 
1269 static int sock_fasync(int fd, struct file *filp, int on)
1270 {
1271 	struct socket *sock = filp->private_data;
1272 	struct sock *sk = sock->sk;
1273 	struct socket_wq *wq = &sock->wq;
1274 
1275 	if (sk == NULL)
1276 		return -EINVAL;
1277 
1278 	lock_sock(sk);
1279 	fasync_helper(fd, filp, on, &wq->fasync_list);
1280 
1281 	if (!wq->fasync_list)
1282 		sock_reset_flag(sk, SOCK_FASYNC);
1283 	else
1284 		sock_set_flag(sk, SOCK_FASYNC);
1285 
1286 	release_sock(sk);
1287 	return 0;
1288 }
1289 
1290 /* This function may be called only under rcu_lock */
1291 
1292 int sock_wake_async(struct socket_wq *wq, int how, int band)
1293 {
1294 	if (!wq || !wq->fasync_list)
1295 		return -1;
1296 
1297 	switch (how) {
1298 	case SOCK_WAKE_WAITD:
1299 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1300 			break;
1301 		goto call_kill;
1302 	case SOCK_WAKE_SPACE:
1303 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1304 			break;
1305 		fallthrough;
1306 	case SOCK_WAKE_IO:
1307 call_kill:
1308 		kill_fasync(&wq->fasync_list, SIGIO, band);
1309 		break;
1310 	case SOCK_WAKE_URG:
1311 		kill_fasync(&wq->fasync_list, SIGURG, band);
1312 	}
1313 
1314 	return 0;
1315 }
1316 EXPORT_SYMBOL(sock_wake_async);
1317 
1318 /**
1319  *	__sock_create - creates a socket
1320  *	@net: net namespace
1321  *	@family: protocol family (AF_INET, ...)
1322  *	@type: communication type (SOCK_STREAM, ...)
1323  *	@protocol: protocol (0, ...)
1324  *	@res: new socket
1325  *	@kern: boolean for kernel space sockets
1326  *
1327  *	Creates a new socket and assigns it to @res, passing through LSM.
1328  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1329  *	be set to true if the socket resides in kernel space.
1330  *	This function internally uses GFP_KERNEL.
1331  */
1332 
1333 int __sock_create(struct net *net, int family, int type, int protocol,
1334 			 struct socket **res, int kern)
1335 {
1336 	int err;
1337 	struct socket *sock;
1338 	const struct net_proto_family *pf;
1339 
1340 	/*
1341 	 *      Check protocol is in range
1342 	 */
1343 	if (family < 0 || family >= NPROTO)
1344 		return -EAFNOSUPPORT;
1345 	if (type < 0 || type >= SOCK_MAX)
1346 		return -EINVAL;
1347 
1348 	/* Compatibility.
1349 
1350 	   This uglymoron is moved from INET layer to here to avoid
1351 	   deadlock in module load.
1352 	 */
1353 	if (family == PF_INET && type == SOCK_PACKET) {
1354 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1355 			     current->comm);
1356 		family = PF_PACKET;
1357 	}
1358 
1359 	err = security_socket_create(family, type, protocol, kern);
1360 	if (err)
1361 		return err;
1362 
1363 	/*
1364 	 *	Allocate the socket and allow the family to set things up. if
1365 	 *	the protocol is 0, the family is instructed to select an appropriate
1366 	 *	default.
1367 	 */
1368 	sock = sock_alloc();
1369 	if (!sock) {
1370 		net_warn_ratelimited("socket: no more sockets\n");
1371 		return -ENFILE;	/* Not exactly a match, but its the
1372 				   closest posix thing */
1373 	}
1374 
1375 	sock->type = type;
1376 
1377 #ifdef CONFIG_MODULES
1378 	/* Attempt to load a protocol module if the find failed.
1379 	 *
1380 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1381 	 * requested real, full-featured networking support upon configuration.
1382 	 * Otherwise module support will break!
1383 	 */
1384 	if (rcu_access_pointer(net_families[family]) == NULL)
1385 		request_module("net-pf-%d", family);
1386 #endif
1387 
1388 	rcu_read_lock();
1389 	pf = rcu_dereference(net_families[family]);
1390 	err = -EAFNOSUPPORT;
1391 	if (!pf)
1392 		goto out_release;
1393 
1394 	/*
1395 	 * We will call the ->create function, that possibly is in a loadable
1396 	 * module, so we have to bump that loadable module refcnt first.
1397 	 */
1398 	if (!try_module_get(pf->owner))
1399 		goto out_release;
1400 
1401 	/* Now protected by module ref count */
1402 	rcu_read_unlock();
1403 
1404 	err = pf->create(net, sock, protocol, kern);
1405 	if (err < 0)
1406 		goto out_module_put;
1407 
1408 	/*
1409 	 * Now to bump the refcnt of the [loadable] module that owns this
1410 	 * socket at sock_release time we decrement its refcnt.
1411 	 */
1412 	if (!try_module_get(sock->ops->owner))
1413 		goto out_module_busy;
1414 
1415 	/*
1416 	 * Now that we're done with the ->create function, the [loadable]
1417 	 * module can have its refcnt decremented
1418 	 */
1419 	module_put(pf->owner);
1420 	err = security_socket_post_create(sock, family, type, protocol, kern);
1421 	if (err)
1422 		goto out_sock_release;
1423 	*res = sock;
1424 
1425 	return 0;
1426 
1427 out_module_busy:
1428 	err = -EAFNOSUPPORT;
1429 out_module_put:
1430 	sock->ops = NULL;
1431 	module_put(pf->owner);
1432 out_sock_release:
1433 	sock_release(sock);
1434 	return err;
1435 
1436 out_release:
1437 	rcu_read_unlock();
1438 	goto out_sock_release;
1439 }
1440 EXPORT_SYMBOL(__sock_create);
1441 
1442 /**
1443  *	sock_create - creates a socket
1444  *	@family: protocol family (AF_INET, ...)
1445  *	@type: communication type (SOCK_STREAM, ...)
1446  *	@protocol: protocol (0, ...)
1447  *	@res: new socket
1448  *
1449  *	A wrapper around __sock_create().
1450  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1451  */
1452 
1453 int sock_create(int family, int type, int protocol, struct socket **res)
1454 {
1455 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1456 }
1457 EXPORT_SYMBOL(sock_create);
1458 
1459 /**
1460  *	sock_create_kern - creates a socket (kernel space)
1461  *	@net: net namespace
1462  *	@family: protocol family (AF_INET, ...)
1463  *	@type: communication type (SOCK_STREAM, ...)
1464  *	@protocol: protocol (0, ...)
1465  *	@res: new socket
1466  *
1467  *	A wrapper around __sock_create().
1468  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1469  */
1470 
1471 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1472 {
1473 	return __sock_create(net, family, type, protocol, res, 1);
1474 }
1475 EXPORT_SYMBOL(sock_create_kern);
1476 
1477 int __sys_socket(int family, int type, int protocol)
1478 {
1479 	int retval;
1480 	struct socket *sock;
1481 	int flags;
1482 
1483 	/* Check the SOCK_* constants for consistency.  */
1484 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1485 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1486 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1487 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1488 
1489 	flags = type & ~SOCK_TYPE_MASK;
1490 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1491 		return -EINVAL;
1492 	type &= SOCK_TYPE_MASK;
1493 
1494 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1495 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1496 
1497 	retval = sock_create(family, type, protocol, &sock);
1498 	if (retval < 0)
1499 		return retval;
1500 
1501 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1502 }
1503 
1504 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1505 {
1506 	return __sys_socket(family, type, protocol);
1507 }
1508 
1509 /*
1510  *	Create a pair of connected sockets.
1511  */
1512 
1513 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1514 {
1515 	struct socket *sock1, *sock2;
1516 	int fd1, fd2, err;
1517 	struct file *newfile1, *newfile2;
1518 	int flags;
1519 
1520 	flags = type & ~SOCK_TYPE_MASK;
1521 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1522 		return -EINVAL;
1523 	type &= SOCK_TYPE_MASK;
1524 
1525 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1526 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1527 
1528 	/*
1529 	 * reserve descriptors and make sure we won't fail
1530 	 * to return them to userland.
1531 	 */
1532 	fd1 = get_unused_fd_flags(flags);
1533 	if (unlikely(fd1 < 0))
1534 		return fd1;
1535 
1536 	fd2 = get_unused_fd_flags(flags);
1537 	if (unlikely(fd2 < 0)) {
1538 		put_unused_fd(fd1);
1539 		return fd2;
1540 	}
1541 
1542 	err = put_user(fd1, &usockvec[0]);
1543 	if (err)
1544 		goto out;
1545 
1546 	err = put_user(fd2, &usockvec[1]);
1547 	if (err)
1548 		goto out;
1549 
1550 	/*
1551 	 * Obtain the first socket and check if the underlying protocol
1552 	 * supports the socketpair call.
1553 	 */
1554 
1555 	err = sock_create(family, type, protocol, &sock1);
1556 	if (unlikely(err < 0))
1557 		goto out;
1558 
1559 	err = sock_create(family, type, protocol, &sock2);
1560 	if (unlikely(err < 0)) {
1561 		sock_release(sock1);
1562 		goto out;
1563 	}
1564 
1565 	err = security_socket_socketpair(sock1, sock2);
1566 	if (unlikely(err)) {
1567 		sock_release(sock2);
1568 		sock_release(sock1);
1569 		goto out;
1570 	}
1571 
1572 	err = sock1->ops->socketpair(sock1, sock2);
1573 	if (unlikely(err < 0)) {
1574 		sock_release(sock2);
1575 		sock_release(sock1);
1576 		goto out;
1577 	}
1578 
1579 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1580 	if (IS_ERR(newfile1)) {
1581 		err = PTR_ERR(newfile1);
1582 		sock_release(sock2);
1583 		goto out;
1584 	}
1585 
1586 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1587 	if (IS_ERR(newfile2)) {
1588 		err = PTR_ERR(newfile2);
1589 		fput(newfile1);
1590 		goto out;
1591 	}
1592 
1593 	audit_fd_pair(fd1, fd2);
1594 
1595 	fd_install(fd1, newfile1);
1596 	fd_install(fd2, newfile2);
1597 	return 0;
1598 
1599 out:
1600 	put_unused_fd(fd2);
1601 	put_unused_fd(fd1);
1602 	return err;
1603 }
1604 
1605 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1606 		int __user *, usockvec)
1607 {
1608 	return __sys_socketpair(family, type, protocol, usockvec);
1609 }
1610 
1611 /*
1612  *	Bind a name to a socket. Nothing much to do here since it's
1613  *	the protocol's responsibility to handle the local address.
1614  *
1615  *	We move the socket address to kernel space before we call
1616  *	the protocol layer (having also checked the address is ok).
1617  */
1618 
1619 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1620 {
1621 	struct socket *sock;
1622 	struct sockaddr_storage address;
1623 	int err, fput_needed;
1624 
1625 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1626 	if (sock) {
1627 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1628 		if (!err) {
1629 			err = security_socket_bind(sock,
1630 						   (struct sockaddr *)&address,
1631 						   addrlen);
1632 			if (!err)
1633 				err = sock->ops->bind(sock,
1634 						      (struct sockaddr *)
1635 						      &address, addrlen);
1636 		}
1637 		fput_light(sock->file, fput_needed);
1638 	}
1639 	return err;
1640 }
1641 
1642 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1643 {
1644 	return __sys_bind(fd, umyaddr, addrlen);
1645 }
1646 
1647 /*
1648  *	Perform a listen. Basically, we allow the protocol to do anything
1649  *	necessary for a listen, and if that works, we mark the socket as
1650  *	ready for listening.
1651  */
1652 
1653 int __sys_listen(int fd, int backlog)
1654 {
1655 	struct socket *sock;
1656 	int err, fput_needed;
1657 	int somaxconn;
1658 
1659 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1660 	if (sock) {
1661 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1662 		if ((unsigned int)backlog > somaxconn)
1663 			backlog = somaxconn;
1664 
1665 		err = security_socket_listen(sock, backlog);
1666 		if (!err)
1667 			err = sock->ops->listen(sock, backlog);
1668 
1669 		fput_light(sock->file, fput_needed);
1670 	}
1671 	return err;
1672 }
1673 
1674 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1675 {
1676 	return __sys_listen(fd, backlog);
1677 }
1678 
1679 int __sys_accept4_file(struct file *file, unsigned file_flags,
1680 		       struct sockaddr __user *upeer_sockaddr,
1681 		       int __user *upeer_addrlen, int flags,
1682 		       unsigned long nofile)
1683 {
1684 	struct socket *sock, *newsock;
1685 	struct file *newfile;
1686 	int err, len, newfd;
1687 	struct sockaddr_storage address;
1688 
1689 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1690 		return -EINVAL;
1691 
1692 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1693 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1694 
1695 	sock = sock_from_file(file, &err);
1696 	if (!sock)
1697 		goto out;
1698 
1699 	err = -ENFILE;
1700 	newsock = sock_alloc();
1701 	if (!newsock)
1702 		goto out;
1703 
1704 	newsock->type = sock->type;
1705 	newsock->ops = sock->ops;
1706 
1707 	/*
1708 	 * We don't need try_module_get here, as the listening socket (sock)
1709 	 * has the protocol module (sock->ops->owner) held.
1710 	 */
1711 	__module_get(newsock->ops->owner);
1712 
1713 	newfd = __get_unused_fd_flags(flags, nofile);
1714 	if (unlikely(newfd < 0)) {
1715 		err = newfd;
1716 		sock_release(newsock);
1717 		goto out;
1718 	}
1719 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1720 	if (IS_ERR(newfile)) {
1721 		err = PTR_ERR(newfile);
1722 		put_unused_fd(newfd);
1723 		goto out;
1724 	}
1725 
1726 	err = security_socket_accept(sock, newsock);
1727 	if (err)
1728 		goto out_fd;
1729 
1730 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1731 					false);
1732 	if (err < 0)
1733 		goto out_fd;
1734 
1735 	if (upeer_sockaddr) {
1736 		len = newsock->ops->getname(newsock,
1737 					(struct sockaddr *)&address, 2);
1738 		if (len < 0) {
1739 			err = -ECONNABORTED;
1740 			goto out_fd;
1741 		}
1742 		err = move_addr_to_user(&address,
1743 					len, upeer_sockaddr, upeer_addrlen);
1744 		if (err < 0)
1745 			goto out_fd;
1746 	}
1747 
1748 	/* File flags are not inherited via accept() unlike another OSes. */
1749 
1750 	fd_install(newfd, newfile);
1751 	err = newfd;
1752 out:
1753 	return err;
1754 out_fd:
1755 	fput(newfile);
1756 	put_unused_fd(newfd);
1757 	goto out;
1758 
1759 }
1760 
1761 /*
1762  *	For accept, we attempt to create a new socket, set up the link
1763  *	with the client, wake up the client, then return the new
1764  *	connected fd. We collect the address of the connector in kernel
1765  *	space and move it to user at the very end. This is unclean because
1766  *	we open the socket then return an error.
1767  *
1768  *	1003.1g adds the ability to recvmsg() to query connection pending
1769  *	status to recvmsg. We need to add that support in a way thats
1770  *	clean when we restructure accept also.
1771  */
1772 
1773 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1774 		  int __user *upeer_addrlen, int flags)
1775 {
1776 	int ret = -EBADF;
1777 	struct fd f;
1778 
1779 	f = fdget(fd);
1780 	if (f.file) {
1781 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1782 						upeer_addrlen, flags,
1783 						rlimit(RLIMIT_NOFILE));
1784 		fdput(f);
1785 	}
1786 
1787 	return ret;
1788 }
1789 
1790 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1791 		int __user *, upeer_addrlen, int, flags)
1792 {
1793 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1794 }
1795 
1796 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1797 		int __user *, upeer_addrlen)
1798 {
1799 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1800 }
1801 
1802 /*
1803  *	Attempt to connect to a socket with the server address.  The address
1804  *	is in user space so we verify it is OK and move it to kernel space.
1805  *
1806  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1807  *	break bindings
1808  *
1809  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1810  *	other SEQPACKET protocols that take time to connect() as it doesn't
1811  *	include the -EINPROGRESS status for such sockets.
1812  */
1813 
1814 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1815 		       int addrlen, int file_flags)
1816 {
1817 	struct socket *sock;
1818 	int err;
1819 
1820 	sock = sock_from_file(file, &err);
1821 	if (!sock)
1822 		goto out;
1823 
1824 	err =
1825 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1826 	if (err)
1827 		goto out;
1828 
1829 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1830 				 sock->file->f_flags | file_flags);
1831 out:
1832 	return err;
1833 }
1834 
1835 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1836 {
1837 	int ret = -EBADF;
1838 	struct fd f;
1839 
1840 	f = fdget(fd);
1841 	if (f.file) {
1842 		struct sockaddr_storage address;
1843 
1844 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1845 		if (!ret)
1846 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1847 		fdput(f);
1848 	}
1849 
1850 	return ret;
1851 }
1852 
1853 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1854 		int, addrlen)
1855 {
1856 	return __sys_connect(fd, uservaddr, addrlen);
1857 }
1858 
1859 /*
1860  *	Get the local address ('name') of a socket object. Move the obtained
1861  *	name to user space.
1862  */
1863 
1864 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1865 		      int __user *usockaddr_len)
1866 {
1867 	struct socket *sock;
1868 	struct sockaddr_storage address;
1869 	int err, fput_needed;
1870 
1871 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1872 	if (!sock)
1873 		goto out;
1874 
1875 	err = security_socket_getsockname(sock);
1876 	if (err)
1877 		goto out_put;
1878 
1879 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1880 	if (err < 0)
1881 		goto out_put;
1882         /* "err" is actually length in this case */
1883 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1884 
1885 out_put:
1886 	fput_light(sock->file, fput_needed);
1887 out:
1888 	return err;
1889 }
1890 
1891 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1892 		int __user *, usockaddr_len)
1893 {
1894 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1895 }
1896 
1897 /*
1898  *	Get the remote address ('name') of a socket object. Move the obtained
1899  *	name to user space.
1900  */
1901 
1902 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1903 		      int __user *usockaddr_len)
1904 {
1905 	struct socket *sock;
1906 	struct sockaddr_storage address;
1907 	int err, fput_needed;
1908 
1909 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1910 	if (sock != NULL) {
1911 		err = security_socket_getpeername(sock);
1912 		if (err) {
1913 			fput_light(sock->file, fput_needed);
1914 			return err;
1915 		}
1916 
1917 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1918 		if (err >= 0)
1919 			/* "err" is actually length in this case */
1920 			err = move_addr_to_user(&address, err, usockaddr,
1921 						usockaddr_len);
1922 		fput_light(sock->file, fput_needed);
1923 	}
1924 	return err;
1925 }
1926 
1927 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1928 		int __user *, usockaddr_len)
1929 {
1930 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1931 }
1932 
1933 /*
1934  *	Send a datagram to a given address. We move the address into kernel
1935  *	space and check the user space data area is readable before invoking
1936  *	the protocol.
1937  */
1938 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1939 		 struct sockaddr __user *addr,  int addr_len)
1940 {
1941 	struct socket *sock;
1942 	struct sockaddr_storage address;
1943 	int err;
1944 	struct msghdr msg;
1945 	struct iovec iov;
1946 	int fput_needed;
1947 
1948 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1949 	if (unlikely(err))
1950 		return err;
1951 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1952 	if (!sock)
1953 		goto out;
1954 
1955 	msg.msg_name = NULL;
1956 	msg.msg_control = NULL;
1957 	msg.msg_controllen = 0;
1958 	msg.msg_namelen = 0;
1959 	if (addr) {
1960 		err = move_addr_to_kernel(addr, addr_len, &address);
1961 		if (err < 0)
1962 			goto out_put;
1963 		msg.msg_name = (struct sockaddr *)&address;
1964 		msg.msg_namelen = addr_len;
1965 	}
1966 	if (sock->file->f_flags & O_NONBLOCK)
1967 		flags |= MSG_DONTWAIT;
1968 	msg.msg_flags = flags;
1969 	err = sock_sendmsg(sock, &msg);
1970 
1971 out_put:
1972 	fput_light(sock->file, fput_needed);
1973 out:
1974 	return err;
1975 }
1976 
1977 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1978 		unsigned int, flags, struct sockaddr __user *, addr,
1979 		int, addr_len)
1980 {
1981 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1982 }
1983 
1984 /*
1985  *	Send a datagram down a socket.
1986  */
1987 
1988 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1989 		unsigned int, flags)
1990 {
1991 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1992 }
1993 
1994 /*
1995  *	Receive a frame from the socket and optionally record the address of the
1996  *	sender. We verify the buffers are writable and if needed move the
1997  *	sender address from kernel to user space.
1998  */
1999 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2000 		   struct sockaddr __user *addr, int __user *addr_len)
2001 {
2002 	struct socket *sock;
2003 	struct iovec iov;
2004 	struct msghdr msg;
2005 	struct sockaddr_storage address;
2006 	int err, err2;
2007 	int fput_needed;
2008 
2009 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2010 	if (unlikely(err))
2011 		return err;
2012 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2013 	if (!sock)
2014 		goto out;
2015 
2016 	msg.msg_control = NULL;
2017 	msg.msg_controllen = 0;
2018 	/* Save some cycles and don't copy the address if not needed */
2019 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2020 	/* We assume all kernel code knows the size of sockaddr_storage */
2021 	msg.msg_namelen = 0;
2022 	msg.msg_iocb = NULL;
2023 	msg.msg_flags = 0;
2024 	if (sock->file->f_flags & O_NONBLOCK)
2025 		flags |= MSG_DONTWAIT;
2026 	err = sock_recvmsg(sock, &msg, flags);
2027 
2028 	if (err >= 0 && addr != NULL) {
2029 		err2 = move_addr_to_user(&address,
2030 					 msg.msg_namelen, addr, addr_len);
2031 		if (err2 < 0)
2032 			err = err2;
2033 	}
2034 
2035 	fput_light(sock->file, fput_needed);
2036 out:
2037 	return err;
2038 }
2039 
2040 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2041 		unsigned int, flags, struct sockaddr __user *, addr,
2042 		int __user *, addr_len)
2043 {
2044 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2045 }
2046 
2047 /*
2048  *	Receive a datagram from a socket.
2049  */
2050 
2051 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2052 		unsigned int, flags)
2053 {
2054 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2055 }
2056 
2057 static bool sock_use_custom_sol_socket(const struct socket *sock)
2058 {
2059 	const struct sock *sk = sock->sk;
2060 
2061 	/* Use sock->ops->setsockopt() for MPTCP */
2062 	return IS_ENABLED(CONFIG_MPTCP) &&
2063 	       sk->sk_protocol == IPPROTO_MPTCP &&
2064 	       sk->sk_type == SOCK_STREAM &&
2065 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2066 }
2067 
2068 /*
2069  *	Set a socket option. Because we don't know the option lengths we have
2070  *	to pass the user mode parameter for the protocols to sort out.
2071  */
2072 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2073 		int optlen)
2074 {
2075 	sockptr_t optval = USER_SOCKPTR(user_optval);
2076 	char *kernel_optval = NULL;
2077 	int err, fput_needed;
2078 	struct socket *sock;
2079 
2080 	if (optlen < 0)
2081 		return -EINVAL;
2082 
2083 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2084 	if (!sock)
2085 		return err;
2086 
2087 	err = security_socket_setsockopt(sock, level, optname);
2088 	if (err)
2089 		goto out_put;
2090 
2091 	if (!in_compat_syscall())
2092 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2093 						     user_optval, &optlen,
2094 						     &kernel_optval);
2095 	if (err < 0)
2096 		goto out_put;
2097 	if (err > 0) {
2098 		err = 0;
2099 		goto out_put;
2100 	}
2101 
2102 	if (kernel_optval)
2103 		optval = KERNEL_SOCKPTR(kernel_optval);
2104 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2105 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2106 	else if (unlikely(!sock->ops->setsockopt))
2107 		err = -EOPNOTSUPP;
2108 	else
2109 		err = sock->ops->setsockopt(sock, level, optname, optval,
2110 					    optlen);
2111 	kfree(kernel_optval);
2112 out_put:
2113 	fput_light(sock->file, fput_needed);
2114 	return err;
2115 }
2116 
2117 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2118 		char __user *, optval, int, optlen)
2119 {
2120 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2121 }
2122 
2123 /*
2124  *	Get a socket option. Because we don't know the option lengths we have
2125  *	to pass a user mode parameter for the protocols to sort out.
2126  */
2127 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2128 		int __user *optlen)
2129 {
2130 	int err, fput_needed;
2131 	struct socket *sock;
2132 	int max_optlen;
2133 
2134 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2135 	if (!sock)
2136 		return err;
2137 
2138 	err = security_socket_getsockopt(sock, level, optname);
2139 	if (err)
2140 		goto out_put;
2141 
2142 	if (!in_compat_syscall())
2143 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2144 
2145 	if (level == SOL_SOCKET)
2146 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2147 	else if (unlikely(!sock->ops->getsockopt))
2148 		err = -EOPNOTSUPP;
2149 	else
2150 		err = sock->ops->getsockopt(sock, level, optname, optval,
2151 					    optlen);
2152 
2153 	if (!in_compat_syscall())
2154 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2155 						     optval, optlen, max_optlen,
2156 						     err);
2157 out_put:
2158 	fput_light(sock->file, fput_needed);
2159 	return err;
2160 }
2161 
2162 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2163 		char __user *, optval, int __user *, optlen)
2164 {
2165 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2166 }
2167 
2168 /*
2169  *	Shutdown a socket.
2170  */
2171 
2172 int __sys_shutdown(int fd, int how)
2173 {
2174 	int err, fput_needed;
2175 	struct socket *sock;
2176 
2177 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2178 	if (sock != NULL) {
2179 		err = security_socket_shutdown(sock, how);
2180 		if (!err)
2181 			err = sock->ops->shutdown(sock, how);
2182 		fput_light(sock->file, fput_needed);
2183 	}
2184 	return err;
2185 }
2186 
2187 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2188 {
2189 	return __sys_shutdown(fd, how);
2190 }
2191 
2192 /* A couple of helpful macros for getting the address of the 32/64 bit
2193  * fields which are the same type (int / unsigned) on our platforms.
2194  */
2195 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2196 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2197 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2198 
2199 struct used_address {
2200 	struct sockaddr_storage name;
2201 	unsigned int name_len;
2202 };
2203 
2204 int __copy_msghdr_from_user(struct msghdr *kmsg,
2205 			    struct user_msghdr __user *umsg,
2206 			    struct sockaddr __user **save_addr,
2207 			    struct iovec __user **uiov, size_t *nsegs)
2208 {
2209 	struct user_msghdr msg;
2210 	ssize_t err;
2211 
2212 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2213 		return -EFAULT;
2214 
2215 	kmsg->msg_control_is_user = true;
2216 	kmsg->msg_control_user = msg.msg_control;
2217 	kmsg->msg_controllen = msg.msg_controllen;
2218 	kmsg->msg_flags = msg.msg_flags;
2219 
2220 	kmsg->msg_namelen = msg.msg_namelen;
2221 	if (!msg.msg_name)
2222 		kmsg->msg_namelen = 0;
2223 
2224 	if (kmsg->msg_namelen < 0)
2225 		return -EINVAL;
2226 
2227 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2228 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2229 
2230 	if (save_addr)
2231 		*save_addr = msg.msg_name;
2232 
2233 	if (msg.msg_name && kmsg->msg_namelen) {
2234 		if (!save_addr) {
2235 			err = move_addr_to_kernel(msg.msg_name,
2236 						  kmsg->msg_namelen,
2237 						  kmsg->msg_name);
2238 			if (err < 0)
2239 				return err;
2240 		}
2241 	} else {
2242 		kmsg->msg_name = NULL;
2243 		kmsg->msg_namelen = 0;
2244 	}
2245 
2246 	if (msg.msg_iovlen > UIO_MAXIOV)
2247 		return -EMSGSIZE;
2248 
2249 	kmsg->msg_iocb = NULL;
2250 	*uiov = msg.msg_iov;
2251 	*nsegs = msg.msg_iovlen;
2252 	return 0;
2253 }
2254 
2255 static int copy_msghdr_from_user(struct msghdr *kmsg,
2256 				 struct user_msghdr __user *umsg,
2257 				 struct sockaddr __user **save_addr,
2258 				 struct iovec **iov)
2259 {
2260 	struct user_msghdr msg;
2261 	ssize_t err;
2262 
2263 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2264 					&msg.msg_iovlen);
2265 	if (err)
2266 		return err;
2267 
2268 	err = import_iovec(save_addr ? READ : WRITE,
2269 			    msg.msg_iov, msg.msg_iovlen,
2270 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2271 	return err < 0 ? err : 0;
2272 }
2273 
2274 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2275 			   unsigned int flags, struct used_address *used_address,
2276 			   unsigned int allowed_msghdr_flags)
2277 {
2278 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2279 				__aligned(sizeof(__kernel_size_t));
2280 	/* 20 is size of ipv6_pktinfo */
2281 	unsigned char *ctl_buf = ctl;
2282 	int ctl_len;
2283 	ssize_t err;
2284 
2285 	err = -ENOBUFS;
2286 
2287 	if (msg_sys->msg_controllen > INT_MAX)
2288 		goto out;
2289 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2290 	ctl_len = msg_sys->msg_controllen;
2291 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2292 		err =
2293 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2294 						     sizeof(ctl));
2295 		if (err)
2296 			goto out;
2297 		ctl_buf = msg_sys->msg_control;
2298 		ctl_len = msg_sys->msg_controllen;
2299 	} else if (ctl_len) {
2300 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2301 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2302 		if (ctl_len > sizeof(ctl)) {
2303 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2304 			if (ctl_buf == NULL)
2305 				goto out;
2306 		}
2307 		err = -EFAULT;
2308 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2309 			goto out_freectl;
2310 		msg_sys->msg_control = ctl_buf;
2311 		msg_sys->msg_control_is_user = false;
2312 	}
2313 	msg_sys->msg_flags = flags;
2314 
2315 	if (sock->file->f_flags & O_NONBLOCK)
2316 		msg_sys->msg_flags |= MSG_DONTWAIT;
2317 	/*
2318 	 * If this is sendmmsg() and current destination address is same as
2319 	 * previously succeeded address, omit asking LSM's decision.
2320 	 * used_address->name_len is initialized to UINT_MAX so that the first
2321 	 * destination address never matches.
2322 	 */
2323 	if (used_address && msg_sys->msg_name &&
2324 	    used_address->name_len == msg_sys->msg_namelen &&
2325 	    !memcmp(&used_address->name, msg_sys->msg_name,
2326 		    used_address->name_len)) {
2327 		err = sock_sendmsg_nosec(sock, msg_sys);
2328 		goto out_freectl;
2329 	}
2330 	err = sock_sendmsg(sock, msg_sys);
2331 	/*
2332 	 * If this is sendmmsg() and sending to current destination address was
2333 	 * successful, remember it.
2334 	 */
2335 	if (used_address && err >= 0) {
2336 		used_address->name_len = msg_sys->msg_namelen;
2337 		if (msg_sys->msg_name)
2338 			memcpy(&used_address->name, msg_sys->msg_name,
2339 			       used_address->name_len);
2340 	}
2341 
2342 out_freectl:
2343 	if (ctl_buf != ctl)
2344 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2345 out:
2346 	return err;
2347 }
2348 
2349 int sendmsg_copy_msghdr(struct msghdr *msg,
2350 			struct user_msghdr __user *umsg, unsigned flags,
2351 			struct iovec **iov)
2352 {
2353 	int err;
2354 
2355 	if (flags & MSG_CMSG_COMPAT) {
2356 		struct compat_msghdr __user *msg_compat;
2357 
2358 		msg_compat = (struct compat_msghdr __user *) umsg;
2359 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2360 	} else {
2361 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2362 	}
2363 	if (err < 0)
2364 		return err;
2365 
2366 	return 0;
2367 }
2368 
2369 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2370 			 struct msghdr *msg_sys, unsigned int flags,
2371 			 struct used_address *used_address,
2372 			 unsigned int allowed_msghdr_flags)
2373 {
2374 	struct sockaddr_storage address;
2375 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2376 	ssize_t err;
2377 
2378 	msg_sys->msg_name = &address;
2379 
2380 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2381 	if (err < 0)
2382 		return err;
2383 
2384 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2385 				allowed_msghdr_flags);
2386 	kfree(iov);
2387 	return err;
2388 }
2389 
2390 /*
2391  *	BSD sendmsg interface
2392  */
2393 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2394 			unsigned int flags)
2395 {
2396 	/* disallow ancillary data requests from this path */
2397 	if (msg->msg_control || msg->msg_controllen)
2398 		return -EINVAL;
2399 
2400 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2401 }
2402 
2403 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2404 		   bool forbid_cmsg_compat)
2405 {
2406 	int fput_needed, err;
2407 	struct msghdr msg_sys;
2408 	struct socket *sock;
2409 
2410 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2411 		return -EINVAL;
2412 
2413 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2414 	if (!sock)
2415 		goto out;
2416 
2417 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2418 
2419 	fput_light(sock->file, fput_needed);
2420 out:
2421 	return err;
2422 }
2423 
2424 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2425 {
2426 	return __sys_sendmsg(fd, msg, flags, true);
2427 }
2428 
2429 /*
2430  *	Linux sendmmsg interface
2431  */
2432 
2433 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2434 		   unsigned int flags, bool forbid_cmsg_compat)
2435 {
2436 	int fput_needed, err, datagrams;
2437 	struct socket *sock;
2438 	struct mmsghdr __user *entry;
2439 	struct compat_mmsghdr __user *compat_entry;
2440 	struct msghdr msg_sys;
2441 	struct used_address used_address;
2442 	unsigned int oflags = flags;
2443 
2444 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2445 		return -EINVAL;
2446 
2447 	if (vlen > UIO_MAXIOV)
2448 		vlen = UIO_MAXIOV;
2449 
2450 	datagrams = 0;
2451 
2452 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2453 	if (!sock)
2454 		return err;
2455 
2456 	used_address.name_len = UINT_MAX;
2457 	entry = mmsg;
2458 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2459 	err = 0;
2460 	flags |= MSG_BATCH;
2461 
2462 	while (datagrams < vlen) {
2463 		if (datagrams == vlen - 1)
2464 			flags = oflags;
2465 
2466 		if (MSG_CMSG_COMPAT & flags) {
2467 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2468 					     &msg_sys, flags, &used_address, MSG_EOR);
2469 			if (err < 0)
2470 				break;
2471 			err = __put_user(err, &compat_entry->msg_len);
2472 			++compat_entry;
2473 		} else {
2474 			err = ___sys_sendmsg(sock,
2475 					     (struct user_msghdr __user *)entry,
2476 					     &msg_sys, flags, &used_address, MSG_EOR);
2477 			if (err < 0)
2478 				break;
2479 			err = put_user(err, &entry->msg_len);
2480 			++entry;
2481 		}
2482 
2483 		if (err)
2484 			break;
2485 		++datagrams;
2486 		if (msg_data_left(&msg_sys))
2487 			break;
2488 		cond_resched();
2489 	}
2490 
2491 	fput_light(sock->file, fput_needed);
2492 
2493 	/* We only return an error if no datagrams were able to be sent */
2494 	if (datagrams != 0)
2495 		return datagrams;
2496 
2497 	return err;
2498 }
2499 
2500 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2501 		unsigned int, vlen, unsigned int, flags)
2502 {
2503 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2504 }
2505 
2506 int recvmsg_copy_msghdr(struct msghdr *msg,
2507 			struct user_msghdr __user *umsg, unsigned flags,
2508 			struct sockaddr __user **uaddr,
2509 			struct iovec **iov)
2510 {
2511 	ssize_t err;
2512 
2513 	if (MSG_CMSG_COMPAT & flags) {
2514 		struct compat_msghdr __user *msg_compat;
2515 
2516 		msg_compat = (struct compat_msghdr __user *) umsg;
2517 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2518 	} else {
2519 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2520 	}
2521 	if (err < 0)
2522 		return err;
2523 
2524 	return 0;
2525 }
2526 
2527 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2528 			   struct user_msghdr __user *msg,
2529 			   struct sockaddr __user *uaddr,
2530 			   unsigned int flags, int nosec)
2531 {
2532 	struct compat_msghdr __user *msg_compat =
2533 					(struct compat_msghdr __user *) msg;
2534 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2535 	struct sockaddr_storage addr;
2536 	unsigned long cmsg_ptr;
2537 	int len;
2538 	ssize_t err;
2539 
2540 	msg_sys->msg_name = &addr;
2541 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2542 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2543 
2544 	/* We assume all kernel code knows the size of sockaddr_storage */
2545 	msg_sys->msg_namelen = 0;
2546 
2547 	if (sock->file->f_flags & O_NONBLOCK)
2548 		flags |= MSG_DONTWAIT;
2549 
2550 	if (unlikely(nosec))
2551 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2552 	else
2553 		err = sock_recvmsg(sock, msg_sys, flags);
2554 
2555 	if (err < 0)
2556 		goto out;
2557 	len = err;
2558 
2559 	if (uaddr != NULL) {
2560 		err = move_addr_to_user(&addr,
2561 					msg_sys->msg_namelen, uaddr,
2562 					uaddr_len);
2563 		if (err < 0)
2564 			goto out;
2565 	}
2566 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2567 			 COMPAT_FLAGS(msg));
2568 	if (err)
2569 		goto out;
2570 	if (MSG_CMSG_COMPAT & flags)
2571 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2572 				 &msg_compat->msg_controllen);
2573 	else
2574 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2575 				 &msg->msg_controllen);
2576 	if (err)
2577 		goto out;
2578 	err = len;
2579 out:
2580 	return err;
2581 }
2582 
2583 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2584 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2585 {
2586 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2587 	/* user mode address pointers */
2588 	struct sockaddr __user *uaddr;
2589 	ssize_t err;
2590 
2591 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2592 	if (err < 0)
2593 		return err;
2594 
2595 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2596 	kfree(iov);
2597 	return err;
2598 }
2599 
2600 /*
2601  *	BSD recvmsg interface
2602  */
2603 
2604 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2605 			struct user_msghdr __user *umsg,
2606 			struct sockaddr __user *uaddr, unsigned int flags)
2607 {
2608 	if (msg->msg_control || msg->msg_controllen) {
2609 		/* disallow ancillary data reqs unless cmsg is plain data */
2610 		if (!(sock->ops->flags & PROTO_CMSG_DATA_ONLY))
2611 			return -EINVAL;
2612 	}
2613 
2614 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2615 }
2616 
2617 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2618 		   bool forbid_cmsg_compat)
2619 {
2620 	int fput_needed, err;
2621 	struct msghdr msg_sys;
2622 	struct socket *sock;
2623 
2624 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2625 		return -EINVAL;
2626 
2627 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2628 	if (!sock)
2629 		goto out;
2630 
2631 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2632 
2633 	fput_light(sock->file, fput_needed);
2634 out:
2635 	return err;
2636 }
2637 
2638 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2639 		unsigned int, flags)
2640 {
2641 	return __sys_recvmsg(fd, msg, flags, true);
2642 }
2643 
2644 /*
2645  *     Linux recvmmsg interface
2646  */
2647 
2648 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2649 			  unsigned int vlen, unsigned int flags,
2650 			  struct timespec64 *timeout)
2651 {
2652 	int fput_needed, err, datagrams;
2653 	struct socket *sock;
2654 	struct mmsghdr __user *entry;
2655 	struct compat_mmsghdr __user *compat_entry;
2656 	struct msghdr msg_sys;
2657 	struct timespec64 end_time;
2658 	struct timespec64 timeout64;
2659 
2660 	if (timeout &&
2661 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2662 				    timeout->tv_nsec))
2663 		return -EINVAL;
2664 
2665 	datagrams = 0;
2666 
2667 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2668 	if (!sock)
2669 		return err;
2670 
2671 	if (likely(!(flags & MSG_ERRQUEUE))) {
2672 		err = sock_error(sock->sk);
2673 		if (err) {
2674 			datagrams = err;
2675 			goto out_put;
2676 		}
2677 	}
2678 
2679 	entry = mmsg;
2680 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2681 
2682 	while (datagrams < vlen) {
2683 		/*
2684 		 * No need to ask LSM for more than the first datagram.
2685 		 */
2686 		if (MSG_CMSG_COMPAT & flags) {
2687 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2688 					     &msg_sys, flags & ~MSG_WAITFORONE,
2689 					     datagrams);
2690 			if (err < 0)
2691 				break;
2692 			err = __put_user(err, &compat_entry->msg_len);
2693 			++compat_entry;
2694 		} else {
2695 			err = ___sys_recvmsg(sock,
2696 					     (struct user_msghdr __user *)entry,
2697 					     &msg_sys, flags & ~MSG_WAITFORONE,
2698 					     datagrams);
2699 			if (err < 0)
2700 				break;
2701 			err = put_user(err, &entry->msg_len);
2702 			++entry;
2703 		}
2704 
2705 		if (err)
2706 			break;
2707 		++datagrams;
2708 
2709 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2710 		if (flags & MSG_WAITFORONE)
2711 			flags |= MSG_DONTWAIT;
2712 
2713 		if (timeout) {
2714 			ktime_get_ts64(&timeout64);
2715 			*timeout = timespec64_sub(end_time, timeout64);
2716 			if (timeout->tv_sec < 0) {
2717 				timeout->tv_sec = timeout->tv_nsec = 0;
2718 				break;
2719 			}
2720 
2721 			/* Timeout, return less than vlen datagrams */
2722 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2723 				break;
2724 		}
2725 
2726 		/* Out of band data, return right away */
2727 		if (msg_sys.msg_flags & MSG_OOB)
2728 			break;
2729 		cond_resched();
2730 	}
2731 
2732 	if (err == 0)
2733 		goto out_put;
2734 
2735 	if (datagrams == 0) {
2736 		datagrams = err;
2737 		goto out_put;
2738 	}
2739 
2740 	/*
2741 	 * We may return less entries than requested (vlen) if the
2742 	 * sock is non block and there aren't enough datagrams...
2743 	 */
2744 	if (err != -EAGAIN) {
2745 		/*
2746 		 * ... or  if recvmsg returns an error after we
2747 		 * received some datagrams, where we record the
2748 		 * error to return on the next call or if the
2749 		 * app asks about it using getsockopt(SO_ERROR).
2750 		 */
2751 		sock->sk->sk_err = -err;
2752 	}
2753 out_put:
2754 	fput_light(sock->file, fput_needed);
2755 
2756 	return datagrams;
2757 }
2758 
2759 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2760 		   unsigned int vlen, unsigned int flags,
2761 		   struct __kernel_timespec __user *timeout,
2762 		   struct old_timespec32 __user *timeout32)
2763 {
2764 	int datagrams;
2765 	struct timespec64 timeout_sys;
2766 
2767 	if (timeout && get_timespec64(&timeout_sys, timeout))
2768 		return -EFAULT;
2769 
2770 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2771 		return -EFAULT;
2772 
2773 	if (!timeout && !timeout32)
2774 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2775 
2776 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2777 
2778 	if (datagrams <= 0)
2779 		return datagrams;
2780 
2781 	if (timeout && put_timespec64(&timeout_sys, timeout))
2782 		datagrams = -EFAULT;
2783 
2784 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2785 		datagrams = -EFAULT;
2786 
2787 	return datagrams;
2788 }
2789 
2790 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2791 		unsigned int, vlen, unsigned int, flags,
2792 		struct __kernel_timespec __user *, timeout)
2793 {
2794 	if (flags & MSG_CMSG_COMPAT)
2795 		return -EINVAL;
2796 
2797 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2798 }
2799 
2800 #ifdef CONFIG_COMPAT_32BIT_TIME
2801 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2802 		unsigned int, vlen, unsigned int, flags,
2803 		struct old_timespec32 __user *, timeout)
2804 {
2805 	if (flags & MSG_CMSG_COMPAT)
2806 		return -EINVAL;
2807 
2808 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2809 }
2810 #endif
2811 
2812 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2813 /* Argument list sizes for sys_socketcall */
2814 #define AL(x) ((x) * sizeof(unsigned long))
2815 static const unsigned char nargs[21] = {
2816 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2817 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2818 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2819 	AL(4), AL(5), AL(4)
2820 };
2821 
2822 #undef AL
2823 
2824 /*
2825  *	System call vectors.
2826  *
2827  *	Argument checking cleaned up. Saved 20% in size.
2828  *  This function doesn't need to set the kernel lock because
2829  *  it is set by the callees.
2830  */
2831 
2832 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2833 {
2834 	unsigned long a[AUDITSC_ARGS];
2835 	unsigned long a0, a1;
2836 	int err;
2837 	unsigned int len;
2838 
2839 	if (call < 1 || call > SYS_SENDMMSG)
2840 		return -EINVAL;
2841 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2842 
2843 	len = nargs[call];
2844 	if (len > sizeof(a))
2845 		return -EINVAL;
2846 
2847 	/* copy_from_user should be SMP safe. */
2848 	if (copy_from_user(a, args, len))
2849 		return -EFAULT;
2850 
2851 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2852 	if (err)
2853 		return err;
2854 
2855 	a0 = a[0];
2856 	a1 = a[1];
2857 
2858 	switch (call) {
2859 	case SYS_SOCKET:
2860 		err = __sys_socket(a0, a1, a[2]);
2861 		break;
2862 	case SYS_BIND:
2863 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2864 		break;
2865 	case SYS_CONNECT:
2866 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2867 		break;
2868 	case SYS_LISTEN:
2869 		err = __sys_listen(a0, a1);
2870 		break;
2871 	case SYS_ACCEPT:
2872 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2873 				    (int __user *)a[2], 0);
2874 		break;
2875 	case SYS_GETSOCKNAME:
2876 		err =
2877 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2878 				      (int __user *)a[2]);
2879 		break;
2880 	case SYS_GETPEERNAME:
2881 		err =
2882 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2883 				      (int __user *)a[2]);
2884 		break;
2885 	case SYS_SOCKETPAIR:
2886 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2887 		break;
2888 	case SYS_SEND:
2889 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2890 				   NULL, 0);
2891 		break;
2892 	case SYS_SENDTO:
2893 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2894 				   (struct sockaddr __user *)a[4], a[5]);
2895 		break;
2896 	case SYS_RECV:
2897 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2898 				     NULL, NULL);
2899 		break;
2900 	case SYS_RECVFROM:
2901 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2902 				     (struct sockaddr __user *)a[4],
2903 				     (int __user *)a[5]);
2904 		break;
2905 	case SYS_SHUTDOWN:
2906 		err = __sys_shutdown(a0, a1);
2907 		break;
2908 	case SYS_SETSOCKOPT:
2909 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2910 				       a[4]);
2911 		break;
2912 	case SYS_GETSOCKOPT:
2913 		err =
2914 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2915 				     (int __user *)a[4]);
2916 		break;
2917 	case SYS_SENDMSG:
2918 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2919 				    a[2], true);
2920 		break;
2921 	case SYS_SENDMMSG:
2922 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2923 				     a[3], true);
2924 		break;
2925 	case SYS_RECVMSG:
2926 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2927 				    a[2], true);
2928 		break;
2929 	case SYS_RECVMMSG:
2930 		if (IS_ENABLED(CONFIG_64BIT))
2931 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2932 					     a[2], a[3],
2933 					     (struct __kernel_timespec __user *)a[4],
2934 					     NULL);
2935 		else
2936 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2937 					     a[2], a[3], NULL,
2938 					     (struct old_timespec32 __user *)a[4]);
2939 		break;
2940 	case SYS_ACCEPT4:
2941 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2942 				    (int __user *)a[2], a[3]);
2943 		break;
2944 	default:
2945 		err = -EINVAL;
2946 		break;
2947 	}
2948 	return err;
2949 }
2950 
2951 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2952 
2953 /**
2954  *	sock_register - add a socket protocol handler
2955  *	@ops: description of protocol
2956  *
2957  *	This function is called by a protocol handler that wants to
2958  *	advertise its address family, and have it linked into the
2959  *	socket interface. The value ops->family corresponds to the
2960  *	socket system call protocol family.
2961  */
2962 int sock_register(const struct net_proto_family *ops)
2963 {
2964 	int err;
2965 
2966 	if (ops->family >= NPROTO) {
2967 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2968 		return -ENOBUFS;
2969 	}
2970 
2971 	spin_lock(&net_family_lock);
2972 	if (rcu_dereference_protected(net_families[ops->family],
2973 				      lockdep_is_held(&net_family_lock)))
2974 		err = -EEXIST;
2975 	else {
2976 		rcu_assign_pointer(net_families[ops->family], ops);
2977 		err = 0;
2978 	}
2979 	spin_unlock(&net_family_lock);
2980 
2981 	pr_info("NET: Registered protocol family %d\n", ops->family);
2982 	return err;
2983 }
2984 EXPORT_SYMBOL(sock_register);
2985 
2986 /**
2987  *	sock_unregister - remove a protocol handler
2988  *	@family: protocol family to remove
2989  *
2990  *	This function is called by a protocol handler that wants to
2991  *	remove its address family, and have it unlinked from the
2992  *	new socket creation.
2993  *
2994  *	If protocol handler is a module, then it can use module reference
2995  *	counts to protect against new references. If protocol handler is not
2996  *	a module then it needs to provide its own protection in
2997  *	the ops->create routine.
2998  */
2999 void sock_unregister(int family)
3000 {
3001 	BUG_ON(family < 0 || family >= NPROTO);
3002 
3003 	spin_lock(&net_family_lock);
3004 	RCU_INIT_POINTER(net_families[family], NULL);
3005 	spin_unlock(&net_family_lock);
3006 
3007 	synchronize_rcu();
3008 
3009 	pr_info("NET: Unregistered protocol family %d\n", family);
3010 }
3011 EXPORT_SYMBOL(sock_unregister);
3012 
3013 bool sock_is_registered(int family)
3014 {
3015 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3016 }
3017 
3018 static int __init sock_init(void)
3019 {
3020 	int err;
3021 	/*
3022 	 *      Initialize the network sysctl infrastructure.
3023 	 */
3024 	err = net_sysctl_init();
3025 	if (err)
3026 		goto out;
3027 
3028 	/*
3029 	 *      Initialize skbuff SLAB cache
3030 	 */
3031 	skb_init();
3032 
3033 	/*
3034 	 *      Initialize the protocols module.
3035 	 */
3036 
3037 	init_inodecache();
3038 
3039 	err = register_filesystem(&sock_fs_type);
3040 	if (err)
3041 		goto out;
3042 	sock_mnt = kern_mount(&sock_fs_type);
3043 	if (IS_ERR(sock_mnt)) {
3044 		err = PTR_ERR(sock_mnt);
3045 		goto out_mount;
3046 	}
3047 
3048 	/* The real protocol initialization is performed in later initcalls.
3049 	 */
3050 
3051 #ifdef CONFIG_NETFILTER
3052 	err = netfilter_init();
3053 	if (err)
3054 		goto out;
3055 #endif
3056 
3057 	ptp_classifier_init();
3058 
3059 out:
3060 	return err;
3061 
3062 out_mount:
3063 	unregister_filesystem(&sock_fs_type);
3064 	goto out;
3065 }
3066 
3067 core_initcall(sock_init);	/* early initcall */
3068 
3069 #ifdef CONFIG_PROC_FS
3070 void socket_seq_show(struct seq_file *seq)
3071 {
3072 	seq_printf(seq, "sockets: used %d\n",
3073 		   sock_inuse_get(seq->private));
3074 }
3075 #endif				/* CONFIG_PROC_FS */
3076 
3077 #ifdef CONFIG_COMPAT
3078 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3079 {
3080 	struct compat_ifconf ifc32;
3081 	struct ifconf ifc;
3082 	int err;
3083 
3084 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3085 		return -EFAULT;
3086 
3087 	ifc.ifc_len = ifc32.ifc_len;
3088 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3089 
3090 	rtnl_lock();
3091 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3092 	rtnl_unlock();
3093 	if (err)
3094 		return err;
3095 
3096 	ifc32.ifc_len = ifc.ifc_len;
3097 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3098 		return -EFAULT;
3099 
3100 	return 0;
3101 }
3102 
3103 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3104 {
3105 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3106 	bool convert_in = false, convert_out = false;
3107 	size_t buf_size = 0;
3108 	struct ethtool_rxnfc __user *rxnfc = NULL;
3109 	struct ifreq ifr;
3110 	u32 rule_cnt = 0, actual_rule_cnt;
3111 	u32 ethcmd;
3112 	u32 data;
3113 	int ret;
3114 
3115 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3116 		return -EFAULT;
3117 
3118 	compat_rxnfc = compat_ptr(data);
3119 
3120 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3121 		return -EFAULT;
3122 
3123 	/* Most ethtool structures are defined without padding.
3124 	 * Unfortunately struct ethtool_rxnfc is an exception.
3125 	 */
3126 	switch (ethcmd) {
3127 	default:
3128 		break;
3129 	case ETHTOOL_GRXCLSRLALL:
3130 		/* Buffer size is variable */
3131 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3132 			return -EFAULT;
3133 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3134 			return -ENOMEM;
3135 		buf_size += rule_cnt * sizeof(u32);
3136 		fallthrough;
3137 	case ETHTOOL_GRXRINGS:
3138 	case ETHTOOL_GRXCLSRLCNT:
3139 	case ETHTOOL_GRXCLSRULE:
3140 	case ETHTOOL_SRXCLSRLINS:
3141 		convert_out = true;
3142 		fallthrough;
3143 	case ETHTOOL_SRXCLSRLDEL:
3144 		buf_size += sizeof(struct ethtool_rxnfc);
3145 		convert_in = true;
3146 		rxnfc = compat_alloc_user_space(buf_size);
3147 		break;
3148 	}
3149 
3150 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3151 		return -EFAULT;
3152 
3153 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3154 
3155 	if (convert_in) {
3156 		/* We expect there to be holes between fs.m_ext and
3157 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3158 		 */
3159 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3160 			     sizeof(compat_rxnfc->fs.m_ext) !=
3161 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3162 			     sizeof(rxnfc->fs.m_ext));
3163 		BUILD_BUG_ON(
3164 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3165 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3166 			offsetof(struct ethtool_rxnfc, fs.location) -
3167 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3168 
3169 		if (copy_in_user(rxnfc, compat_rxnfc,
3170 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3171 				 (void __user *)rxnfc) ||
3172 		    copy_in_user(&rxnfc->fs.ring_cookie,
3173 				 &compat_rxnfc->fs.ring_cookie,
3174 				 (void __user *)(&rxnfc->fs.location + 1) -
3175 				 (void __user *)&rxnfc->fs.ring_cookie))
3176 			return -EFAULT;
3177 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3178 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3179 				return -EFAULT;
3180 		} else if (copy_in_user(&rxnfc->rule_cnt,
3181 					&compat_rxnfc->rule_cnt,
3182 					sizeof(rxnfc->rule_cnt)))
3183 			return -EFAULT;
3184 	}
3185 
3186 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3187 	if (ret)
3188 		return ret;
3189 
3190 	if (convert_out) {
3191 		if (copy_in_user(compat_rxnfc, rxnfc,
3192 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3193 				 (const void __user *)rxnfc) ||
3194 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3195 				 &rxnfc->fs.ring_cookie,
3196 				 (const void __user *)(&rxnfc->fs.location + 1) -
3197 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3198 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3199 				 sizeof(rxnfc->rule_cnt)))
3200 			return -EFAULT;
3201 
3202 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3203 			/* As an optimisation, we only copy the actual
3204 			 * number of rules that the underlying
3205 			 * function returned.  Since Mallory might
3206 			 * change the rule count in user memory, we
3207 			 * check that it is less than the rule count
3208 			 * originally given (as the user buffer size),
3209 			 * which has been range-checked.
3210 			 */
3211 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3212 				return -EFAULT;
3213 			if (actual_rule_cnt < rule_cnt)
3214 				rule_cnt = actual_rule_cnt;
3215 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3216 					 &rxnfc->rule_locs[0],
3217 					 rule_cnt * sizeof(u32)))
3218 				return -EFAULT;
3219 		}
3220 	}
3221 
3222 	return 0;
3223 }
3224 
3225 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3226 {
3227 	compat_uptr_t uptr32;
3228 	struct ifreq ifr;
3229 	void __user *saved;
3230 	int err;
3231 
3232 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3233 		return -EFAULT;
3234 
3235 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3236 		return -EFAULT;
3237 
3238 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3239 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3240 
3241 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3242 	if (!err) {
3243 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3244 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3245 			err = -EFAULT;
3246 	}
3247 	return err;
3248 }
3249 
3250 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3251 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3252 				 struct compat_ifreq __user *u_ifreq32)
3253 {
3254 	struct ifreq ifreq;
3255 	u32 data32;
3256 
3257 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3258 		return -EFAULT;
3259 	if (get_user(data32, &u_ifreq32->ifr_data))
3260 		return -EFAULT;
3261 	ifreq.ifr_data = compat_ptr(data32);
3262 
3263 	return dev_ioctl(net, cmd, &ifreq, NULL);
3264 }
3265 
3266 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3267 			      unsigned int cmd,
3268 			      struct compat_ifreq __user *uifr32)
3269 {
3270 	struct ifreq __user *uifr;
3271 	int err;
3272 
3273 	/* Handle the fact that while struct ifreq has the same *layout* on
3274 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3275 	 * which are handled elsewhere, it still has different *size* due to
3276 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3277 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3278 	 * As a result, if the struct happens to be at the end of a page and
3279 	 * the next page isn't readable/writable, we get a fault. To prevent
3280 	 * that, copy back and forth to the full size.
3281 	 */
3282 
3283 	uifr = compat_alloc_user_space(sizeof(*uifr));
3284 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3285 		return -EFAULT;
3286 
3287 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3288 
3289 	if (!err) {
3290 		switch (cmd) {
3291 		case SIOCGIFFLAGS:
3292 		case SIOCGIFMETRIC:
3293 		case SIOCGIFMTU:
3294 		case SIOCGIFMEM:
3295 		case SIOCGIFHWADDR:
3296 		case SIOCGIFINDEX:
3297 		case SIOCGIFADDR:
3298 		case SIOCGIFBRDADDR:
3299 		case SIOCGIFDSTADDR:
3300 		case SIOCGIFNETMASK:
3301 		case SIOCGIFPFLAGS:
3302 		case SIOCGIFTXQLEN:
3303 		case SIOCGMIIPHY:
3304 		case SIOCGMIIREG:
3305 		case SIOCGIFNAME:
3306 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3307 				err = -EFAULT;
3308 			break;
3309 		}
3310 	}
3311 	return err;
3312 }
3313 
3314 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3315 			struct compat_ifreq __user *uifr32)
3316 {
3317 	struct ifreq ifr;
3318 	struct compat_ifmap __user *uifmap32;
3319 	int err;
3320 
3321 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3322 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3323 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3324 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3325 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3326 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3327 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3328 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3329 	if (err)
3330 		return -EFAULT;
3331 
3332 	err = dev_ioctl(net, cmd, &ifr, NULL);
3333 
3334 	if (cmd == SIOCGIFMAP && !err) {
3335 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3336 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3337 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3338 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3339 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3340 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3341 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3342 		if (err)
3343 			err = -EFAULT;
3344 	}
3345 	return err;
3346 }
3347 
3348 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3349  * for some operations; this forces use of the newer bridge-utils that
3350  * use compatible ioctls
3351  */
3352 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3353 {
3354 	compat_ulong_t tmp;
3355 
3356 	if (get_user(tmp, argp))
3357 		return -EFAULT;
3358 	if (tmp == BRCTL_GET_VERSION)
3359 		return BRCTL_VERSION + 1;
3360 	return -EINVAL;
3361 }
3362 
3363 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3364 			 unsigned int cmd, unsigned long arg)
3365 {
3366 	void __user *argp = compat_ptr(arg);
3367 	struct sock *sk = sock->sk;
3368 	struct net *net = sock_net(sk);
3369 
3370 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3371 		return compat_ifr_data_ioctl(net, cmd, argp);
3372 
3373 	switch (cmd) {
3374 	case SIOCSIFBR:
3375 	case SIOCGIFBR:
3376 		return old_bridge_ioctl(argp);
3377 	case SIOCGIFCONF:
3378 		return compat_dev_ifconf(net, argp);
3379 	case SIOCETHTOOL:
3380 		return ethtool_ioctl(net, argp);
3381 	case SIOCWANDEV:
3382 		return compat_siocwandev(net, argp);
3383 	case SIOCGIFMAP:
3384 	case SIOCSIFMAP:
3385 		return compat_sioc_ifmap(net, cmd, argp);
3386 	case SIOCGSTAMP_OLD:
3387 	case SIOCGSTAMPNS_OLD:
3388 		if (!sock->ops->gettstamp)
3389 			return -ENOIOCTLCMD;
3390 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3391 					    !COMPAT_USE_64BIT_TIME);
3392 
3393 	case SIOCBONDSLAVEINFOQUERY:
3394 	case SIOCBONDINFOQUERY:
3395 	case SIOCSHWTSTAMP:
3396 	case SIOCGHWTSTAMP:
3397 		return compat_ifr_data_ioctl(net, cmd, argp);
3398 
3399 	case FIOSETOWN:
3400 	case SIOCSPGRP:
3401 	case FIOGETOWN:
3402 	case SIOCGPGRP:
3403 	case SIOCBRADDBR:
3404 	case SIOCBRDELBR:
3405 	case SIOCGIFVLAN:
3406 	case SIOCSIFVLAN:
3407 	case SIOCGSKNS:
3408 	case SIOCGSTAMP_NEW:
3409 	case SIOCGSTAMPNS_NEW:
3410 		return sock_ioctl(file, cmd, arg);
3411 
3412 	case SIOCGIFFLAGS:
3413 	case SIOCSIFFLAGS:
3414 	case SIOCGIFMETRIC:
3415 	case SIOCSIFMETRIC:
3416 	case SIOCGIFMTU:
3417 	case SIOCSIFMTU:
3418 	case SIOCGIFMEM:
3419 	case SIOCSIFMEM:
3420 	case SIOCGIFHWADDR:
3421 	case SIOCSIFHWADDR:
3422 	case SIOCADDMULTI:
3423 	case SIOCDELMULTI:
3424 	case SIOCGIFINDEX:
3425 	case SIOCGIFADDR:
3426 	case SIOCSIFADDR:
3427 	case SIOCSIFHWBROADCAST:
3428 	case SIOCDIFADDR:
3429 	case SIOCGIFBRDADDR:
3430 	case SIOCSIFBRDADDR:
3431 	case SIOCGIFDSTADDR:
3432 	case SIOCSIFDSTADDR:
3433 	case SIOCGIFNETMASK:
3434 	case SIOCSIFNETMASK:
3435 	case SIOCSIFPFLAGS:
3436 	case SIOCGIFPFLAGS:
3437 	case SIOCGIFTXQLEN:
3438 	case SIOCSIFTXQLEN:
3439 	case SIOCBRADDIF:
3440 	case SIOCBRDELIF:
3441 	case SIOCGIFNAME:
3442 	case SIOCSIFNAME:
3443 	case SIOCGMIIPHY:
3444 	case SIOCGMIIREG:
3445 	case SIOCSMIIREG:
3446 	case SIOCBONDENSLAVE:
3447 	case SIOCBONDRELEASE:
3448 	case SIOCBONDSETHWADDR:
3449 	case SIOCBONDCHANGEACTIVE:
3450 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3451 
3452 	case SIOCSARP:
3453 	case SIOCGARP:
3454 	case SIOCDARP:
3455 	case SIOCOUTQ:
3456 	case SIOCOUTQNSD:
3457 	case SIOCATMARK:
3458 		return sock_do_ioctl(net, sock, cmd, arg);
3459 	}
3460 
3461 	return -ENOIOCTLCMD;
3462 }
3463 
3464 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3465 			      unsigned long arg)
3466 {
3467 	struct socket *sock = file->private_data;
3468 	int ret = -ENOIOCTLCMD;
3469 	struct sock *sk;
3470 	struct net *net;
3471 
3472 	sk = sock->sk;
3473 	net = sock_net(sk);
3474 
3475 	if (sock->ops->compat_ioctl)
3476 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3477 
3478 	if (ret == -ENOIOCTLCMD &&
3479 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3480 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3481 
3482 	if (ret == -ENOIOCTLCMD)
3483 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3484 
3485 	return ret;
3486 }
3487 #endif
3488 
3489 /**
3490  *	kernel_bind - bind an address to a socket (kernel space)
3491  *	@sock: socket
3492  *	@addr: address
3493  *	@addrlen: length of address
3494  *
3495  *	Returns 0 or an error.
3496  */
3497 
3498 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3499 {
3500 	return sock->ops->bind(sock, addr, addrlen);
3501 }
3502 EXPORT_SYMBOL(kernel_bind);
3503 
3504 /**
3505  *	kernel_listen - move socket to listening state (kernel space)
3506  *	@sock: socket
3507  *	@backlog: pending connections queue size
3508  *
3509  *	Returns 0 or an error.
3510  */
3511 
3512 int kernel_listen(struct socket *sock, int backlog)
3513 {
3514 	return sock->ops->listen(sock, backlog);
3515 }
3516 EXPORT_SYMBOL(kernel_listen);
3517 
3518 /**
3519  *	kernel_accept - accept a connection (kernel space)
3520  *	@sock: listening socket
3521  *	@newsock: new connected socket
3522  *	@flags: flags
3523  *
3524  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3525  *	If it fails, @newsock is guaranteed to be %NULL.
3526  *	Returns 0 or an error.
3527  */
3528 
3529 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3530 {
3531 	struct sock *sk = sock->sk;
3532 	int err;
3533 
3534 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3535 			       newsock);
3536 	if (err < 0)
3537 		goto done;
3538 
3539 	err = sock->ops->accept(sock, *newsock, flags, true);
3540 	if (err < 0) {
3541 		sock_release(*newsock);
3542 		*newsock = NULL;
3543 		goto done;
3544 	}
3545 
3546 	(*newsock)->ops = sock->ops;
3547 	__module_get((*newsock)->ops->owner);
3548 
3549 done:
3550 	return err;
3551 }
3552 EXPORT_SYMBOL(kernel_accept);
3553 
3554 /**
3555  *	kernel_connect - connect a socket (kernel space)
3556  *	@sock: socket
3557  *	@addr: address
3558  *	@addrlen: address length
3559  *	@flags: flags (O_NONBLOCK, ...)
3560  *
3561  *	For datagram sockets, @addr is the addres to which datagrams are sent
3562  *	by default, and the only address from which datagrams are received.
3563  *	For stream sockets, attempts to connect to @addr.
3564  *	Returns 0 or an error code.
3565  */
3566 
3567 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3568 		   int flags)
3569 {
3570 	return sock->ops->connect(sock, addr, addrlen, flags);
3571 }
3572 EXPORT_SYMBOL(kernel_connect);
3573 
3574 /**
3575  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3576  *	@sock: socket
3577  *	@addr: address holder
3578  *
3579  * 	Fills the @addr pointer with the address which the socket is bound.
3580  *	Returns 0 or an error code.
3581  */
3582 
3583 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3584 {
3585 	return sock->ops->getname(sock, addr, 0);
3586 }
3587 EXPORT_SYMBOL(kernel_getsockname);
3588 
3589 /**
3590  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3591  *	@sock: socket
3592  *	@addr: address holder
3593  *
3594  * 	Fills the @addr pointer with the address which the socket is connected.
3595  *	Returns 0 or an error code.
3596  */
3597 
3598 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3599 {
3600 	return sock->ops->getname(sock, addr, 1);
3601 }
3602 EXPORT_SYMBOL(kernel_getpeername);
3603 
3604 /**
3605  *	kernel_sendpage - send a &page through a socket (kernel space)
3606  *	@sock: socket
3607  *	@page: page
3608  *	@offset: page offset
3609  *	@size: total size in bytes
3610  *	@flags: flags (MSG_DONTWAIT, ...)
3611  *
3612  *	Returns the total amount sent in bytes or an error.
3613  */
3614 
3615 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3616 		    size_t size, int flags)
3617 {
3618 	if (sock->ops->sendpage) {
3619 		/* Warn in case the improper page to zero-copy send */
3620 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3621 		return sock->ops->sendpage(sock, page, offset, size, flags);
3622 	}
3623 	return sock_no_sendpage(sock, page, offset, size, flags);
3624 }
3625 EXPORT_SYMBOL(kernel_sendpage);
3626 
3627 /**
3628  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3629  *	@sk: sock
3630  *	@page: page
3631  *	@offset: page offset
3632  *	@size: total size in bytes
3633  *	@flags: flags (MSG_DONTWAIT, ...)
3634  *
3635  *	Returns the total amount sent in bytes or an error.
3636  *	Caller must hold @sk.
3637  */
3638 
3639 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3640 			   size_t size, int flags)
3641 {
3642 	struct socket *sock = sk->sk_socket;
3643 
3644 	if (sock->ops->sendpage_locked)
3645 		return sock->ops->sendpage_locked(sk, page, offset, size,
3646 						  flags);
3647 
3648 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3649 }
3650 EXPORT_SYMBOL(kernel_sendpage_locked);
3651 
3652 /**
3653  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3654  *	@sock: socket
3655  *	@how: connection part
3656  *
3657  *	Returns 0 or an error.
3658  */
3659 
3660 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3661 {
3662 	return sock->ops->shutdown(sock, how);
3663 }
3664 EXPORT_SYMBOL(kernel_sock_shutdown);
3665 
3666 /**
3667  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3668  *	@sk: socket
3669  *
3670  *	This routine returns the IP overhead imposed by a socket i.e.
3671  *	the length of the underlying IP header, depending on whether
3672  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3673  *	on at the socket. Assumes that the caller has a lock on the socket.
3674  */
3675 
3676 u32 kernel_sock_ip_overhead(struct sock *sk)
3677 {
3678 	struct inet_sock *inet;
3679 	struct ip_options_rcu *opt;
3680 	u32 overhead = 0;
3681 #if IS_ENABLED(CONFIG_IPV6)
3682 	struct ipv6_pinfo *np;
3683 	struct ipv6_txoptions *optv6 = NULL;
3684 #endif /* IS_ENABLED(CONFIG_IPV6) */
3685 
3686 	if (!sk)
3687 		return overhead;
3688 
3689 	switch (sk->sk_family) {
3690 	case AF_INET:
3691 		inet = inet_sk(sk);
3692 		overhead += sizeof(struct iphdr);
3693 		opt = rcu_dereference_protected(inet->inet_opt,
3694 						sock_owned_by_user(sk));
3695 		if (opt)
3696 			overhead += opt->opt.optlen;
3697 		return overhead;
3698 #if IS_ENABLED(CONFIG_IPV6)
3699 	case AF_INET6:
3700 		np = inet6_sk(sk);
3701 		overhead += sizeof(struct ipv6hdr);
3702 		if (np)
3703 			optv6 = rcu_dereference_protected(np->opt,
3704 							  sock_owned_by_user(sk));
3705 		if (optv6)
3706 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3707 		return overhead;
3708 #endif /* IS_ENABLED(CONFIG_IPV6) */
3709 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3710 		return overhead;
3711 	}
3712 }
3713 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3714