xref: /linux/net/socket.c (revision eb2bce7f5e7ac1ca6da434461217fadf3c688d2c)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
90 
91 #include <net/compat.h>
92 
93 #include <net/sock.h>
94 #include <linux/netfilter.h>
95 
96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
98 			 unsigned long nr_segs, loff_t pos);
99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
100 			  unsigned long nr_segs, loff_t pos);
101 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
102 
103 static int sock_close(struct inode *inode, struct file *file);
104 static unsigned int sock_poll(struct file *file,
105 			      struct poll_table_struct *wait);
106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
107 #ifdef CONFIG_COMPAT
108 static long compat_sock_ioctl(struct file *file,
109 			      unsigned int cmd, unsigned long arg);
110 #endif
111 static int sock_fasync(int fd, struct file *filp, int on);
112 static ssize_t sock_sendpage(struct file *file, struct page *page,
113 			     int offset, size_t size, loff_t *ppos, int more);
114 
115 /*
116  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117  *	in the operation structures but are done directly via the socketcall() multiplexor.
118  */
119 
120 static const struct file_operations socket_file_ops = {
121 	.owner =	THIS_MODULE,
122 	.llseek =	no_llseek,
123 	.aio_read =	sock_aio_read,
124 	.aio_write =	sock_aio_write,
125 	.poll =		sock_poll,
126 	.unlocked_ioctl = sock_ioctl,
127 #ifdef CONFIG_COMPAT
128 	.compat_ioctl = compat_sock_ioctl,
129 #endif
130 	.mmap =		sock_mmap,
131 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
132 	.release =	sock_close,
133 	.fasync =	sock_fasync,
134 	.sendpage =	sock_sendpage,
135 	.splice_write = generic_splice_sendpage,
136 };
137 
138 /*
139  *	The protocol list. Each protocol is registered in here.
140  */
141 
142 static DEFINE_SPINLOCK(net_family_lock);
143 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
144 
145 /*
146  *	Statistics counters of the socket lists
147  */
148 
149 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
150 
151 /*
152  * Support routines.
153  * Move socket addresses back and forth across the kernel/user
154  * divide and look after the messy bits.
155  */
156 
157 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
158 					   16 for IP, 16 for IPX,
159 					   24 for IPv6,
160 					   about 80 for AX.25
161 					   must be at least one bigger than
162 					   the AF_UNIX size (see net/unix/af_unix.c
163 					   :unix_mkname()).
164 					 */
165 
166 /**
167  *	move_addr_to_kernel	-	copy a socket address into kernel space
168  *	@uaddr: Address in user space
169  *	@kaddr: Address in kernel space
170  *	@ulen: Length in user space
171  *
172  *	The address is copied into kernel space. If the provided address is
173  *	too long an error code of -EINVAL is returned. If the copy gives
174  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
175  */
176 
177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
178 {
179 	if (ulen < 0 || ulen > MAX_SOCK_ADDR)
180 		return -EINVAL;
181 	if (ulen == 0)
182 		return 0;
183 	if (copy_from_user(kaddr, uaddr, ulen))
184 		return -EFAULT;
185 	return audit_sockaddr(ulen, kaddr);
186 }
187 
188 /**
189  *	move_addr_to_user	-	copy an address to user space
190  *	@kaddr: kernel space address
191  *	@klen: length of address in kernel
192  *	@uaddr: user space address
193  *	@ulen: pointer to user length field
194  *
195  *	The value pointed to by ulen on entry is the buffer length available.
196  *	This is overwritten with the buffer space used. -EINVAL is returned
197  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
198  *	is returned if either the buffer or the length field are not
199  *	accessible.
200  *	After copying the data up to the limit the user specifies, the true
201  *	length of the data is written over the length limit the user
202  *	specified. Zero is returned for a success.
203  */
204 
205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
206 		      int __user *ulen)
207 {
208 	int err;
209 	int len;
210 
211 	err = get_user(len, ulen);
212 	if (err)
213 		return err;
214 	if (len > klen)
215 		len = klen;
216 	if (len < 0 || len > MAX_SOCK_ADDR)
217 		return -EINVAL;
218 	if (len) {
219 		if (audit_sockaddr(klen, kaddr))
220 			return -ENOMEM;
221 		if (copy_to_user(uaddr, kaddr, len))
222 			return -EFAULT;
223 	}
224 	/*
225 	 *      "fromlen shall refer to the value before truncation.."
226 	 *                      1003.1g
227 	 */
228 	return __put_user(klen, ulen);
229 }
230 
231 #define SOCKFS_MAGIC 0x534F434B
232 
233 static struct kmem_cache *sock_inode_cachep __read_mostly;
234 
235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 	struct socket_alloc *ei;
238 
239 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 	if (!ei)
241 		return NULL;
242 	init_waitqueue_head(&ei->socket.wait);
243 
244 	ei->socket.fasync_list = NULL;
245 	ei->socket.state = SS_UNCONNECTED;
246 	ei->socket.flags = 0;
247 	ei->socket.ops = NULL;
248 	ei->socket.sk = NULL;
249 	ei->socket.file = NULL;
250 
251 	return &ei->vfs_inode;
252 }
253 
254 static void sock_destroy_inode(struct inode *inode)
255 {
256 	kmem_cache_free(sock_inode_cachep,
257 			container_of(inode, struct socket_alloc, vfs_inode));
258 }
259 
260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
261 {
262 	struct socket_alloc *ei = (struct socket_alloc *)foo;
263 
264 	if (flags & SLAB_CTOR_CONSTRUCTOR)
265 		inode_init_once(&ei->vfs_inode);
266 }
267 
268 static int init_inodecache(void)
269 {
270 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
271 					      sizeof(struct socket_alloc),
272 					      0,
273 					      (SLAB_HWCACHE_ALIGN |
274 					       SLAB_RECLAIM_ACCOUNT |
275 					       SLAB_MEM_SPREAD),
276 					      init_once,
277 					      NULL);
278 	if (sock_inode_cachep == NULL)
279 		return -ENOMEM;
280 	return 0;
281 }
282 
283 static struct super_operations sockfs_ops = {
284 	.alloc_inode =	sock_alloc_inode,
285 	.destroy_inode =sock_destroy_inode,
286 	.statfs =	simple_statfs,
287 };
288 
289 static int sockfs_get_sb(struct file_system_type *fs_type,
290 			 int flags, const char *dev_name, void *data,
291 			 struct vfsmount *mnt)
292 {
293 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
294 			     mnt);
295 }
296 
297 static struct vfsmount *sock_mnt __read_mostly;
298 
299 static struct file_system_type sock_fs_type = {
300 	.name =		"sockfs",
301 	.get_sb =	sockfs_get_sb,
302 	.kill_sb =	kill_anon_super,
303 };
304 
305 static int sockfs_delete_dentry(struct dentry *dentry)
306 {
307 	/*
308 	 * At creation time, we pretended this dentry was hashed
309 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
310 	 * At delete time, we restore the truth : not hashed.
311 	 * (so that dput() can proceed correctly)
312 	 */
313 	dentry->d_flags |= DCACHE_UNHASHED;
314 	return 0;
315 }
316 static struct dentry_operations sockfs_dentry_operations = {
317 	.d_delete = sockfs_delete_dentry,
318 };
319 
320 /*
321  *	Obtains the first available file descriptor and sets it up for use.
322  *
323  *	These functions create file structures and maps them to fd space
324  *	of the current process. On success it returns file descriptor
325  *	and file struct implicitly stored in sock->file.
326  *	Note that another thread may close file descriptor before we return
327  *	from this function. We use the fact that now we do not refer
328  *	to socket after mapping. If one day we will need it, this
329  *	function will increment ref. count on file by 1.
330  *
331  *	In any case returned fd MAY BE not valid!
332  *	This race condition is unavoidable
333  *	with shared fd spaces, we cannot solve it inside kernel,
334  *	but we take care of internal coherence yet.
335  */
336 
337 static int sock_alloc_fd(struct file **filep)
338 {
339 	int fd;
340 
341 	fd = get_unused_fd();
342 	if (likely(fd >= 0)) {
343 		struct file *file = get_empty_filp();
344 
345 		*filep = file;
346 		if (unlikely(!file)) {
347 			put_unused_fd(fd);
348 			return -ENFILE;
349 		}
350 	} else
351 		*filep = NULL;
352 	return fd;
353 }
354 
355 static int sock_attach_fd(struct socket *sock, struct file *file)
356 {
357 	struct qstr this;
358 	char name[32];
359 
360 	this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
361 	this.name = name;
362 	this.hash = 0;
363 
364 	file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
365 	if (unlikely(!file->f_path.dentry))
366 		return -ENOMEM;
367 
368 	file->f_path.dentry->d_op = &sockfs_dentry_operations;
369 	/*
370 	 * We dont want to push this dentry into global dentry hash table.
371 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
372 	 * This permits a working /proc/$pid/fd/XXX on sockets
373 	 */
374 	file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED;
375 	d_instantiate(file->f_path.dentry, SOCK_INODE(sock));
376 	file->f_path.mnt = mntget(sock_mnt);
377 	file->f_mapping = file->f_path.dentry->d_inode->i_mapping;
378 
379 	sock->file = file;
380 	file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
381 	file->f_mode = FMODE_READ | FMODE_WRITE;
382 	file->f_flags = O_RDWR;
383 	file->f_pos = 0;
384 	file->private_data = sock;
385 
386 	return 0;
387 }
388 
389 int sock_map_fd(struct socket *sock)
390 {
391 	struct file *newfile;
392 	int fd = sock_alloc_fd(&newfile);
393 
394 	if (likely(fd >= 0)) {
395 		int err = sock_attach_fd(sock, newfile);
396 
397 		if (unlikely(err < 0)) {
398 			put_filp(newfile);
399 			put_unused_fd(fd);
400 			return err;
401 		}
402 		fd_install(fd, newfile);
403 	}
404 	return fd;
405 }
406 
407 static struct socket *sock_from_file(struct file *file, int *err)
408 {
409 	if (file->f_op == &socket_file_ops)
410 		return file->private_data;	/* set in sock_map_fd */
411 
412 	*err = -ENOTSOCK;
413 	return NULL;
414 }
415 
416 /**
417  *	sockfd_lookup	- 	Go from a file number to its socket slot
418  *	@fd: file handle
419  *	@err: pointer to an error code return
420  *
421  *	The file handle passed in is locked and the socket it is bound
422  *	too is returned. If an error occurs the err pointer is overwritten
423  *	with a negative errno code and NULL is returned. The function checks
424  *	for both invalid handles and passing a handle which is not a socket.
425  *
426  *	On a success the socket object pointer is returned.
427  */
428 
429 struct socket *sockfd_lookup(int fd, int *err)
430 {
431 	struct file *file;
432 	struct socket *sock;
433 
434 	file = fget(fd);
435 	if (!file) {
436 		*err = -EBADF;
437 		return NULL;
438 	}
439 
440 	sock = sock_from_file(file, err);
441 	if (!sock)
442 		fput(file);
443 	return sock;
444 }
445 
446 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
447 {
448 	struct file *file;
449 	struct socket *sock;
450 
451 	*err = -EBADF;
452 	file = fget_light(fd, fput_needed);
453 	if (file) {
454 		sock = sock_from_file(file, err);
455 		if (sock)
456 			return sock;
457 		fput_light(file, *fput_needed);
458 	}
459 	return NULL;
460 }
461 
462 /**
463  *	sock_alloc	-	allocate a socket
464  *
465  *	Allocate a new inode and socket object. The two are bound together
466  *	and initialised. The socket is then returned. If we are out of inodes
467  *	NULL is returned.
468  */
469 
470 static struct socket *sock_alloc(void)
471 {
472 	struct inode *inode;
473 	struct socket *sock;
474 
475 	inode = new_inode(sock_mnt->mnt_sb);
476 	if (!inode)
477 		return NULL;
478 
479 	sock = SOCKET_I(inode);
480 
481 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
482 	inode->i_uid = current->fsuid;
483 	inode->i_gid = current->fsgid;
484 
485 	get_cpu_var(sockets_in_use)++;
486 	put_cpu_var(sockets_in_use);
487 	return sock;
488 }
489 
490 /*
491  *	In theory you can't get an open on this inode, but /proc provides
492  *	a back door. Remember to keep it shut otherwise you'll let the
493  *	creepy crawlies in.
494  */
495 
496 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
497 {
498 	return -ENXIO;
499 }
500 
501 const struct file_operations bad_sock_fops = {
502 	.owner = THIS_MODULE,
503 	.open = sock_no_open,
504 };
505 
506 /**
507  *	sock_release	-	close a socket
508  *	@sock: socket to close
509  *
510  *	The socket is released from the protocol stack if it has a release
511  *	callback, and the inode is then released if the socket is bound to
512  *	an inode not a file.
513  */
514 
515 void sock_release(struct socket *sock)
516 {
517 	if (sock->ops) {
518 		struct module *owner = sock->ops->owner;
519 
520 		sock->ops->release(sock);
521 		sock->ops = NULL;
522 		module_put(owner);
523 	}
524 
525 	if (sock->fasync_list)
526 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
527 
528 	get_cpu_var(sockets_in_use)--;
529 	put_cpu_var(sockets_in_use);
530 	if (!sock->file) {
531 		iput(SOCK_INODE(sock));
532 		return;
533 	}
534 	sock->file = NULL;
535 }
536 
537 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
538 				 struct msghdr *msg, size_t size)
539 {
540 	struct sock_iocb *si = kiocb_to_siocb(iocb);
541 	int err;
542 
543 	si->sock = sock;
544 	si->scm = NULL;
545 	si->msg = msg;
546 	si->size = size;
547 
548 	err = security_socket_sendmsg(sock, msg, size);
549 	if (err)
550 		return err;
551 
552 	return sock->ops->sendmsg(iocb, sock, msg, size);
553 }
554 
555 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
556 {
557 	struct kiocb iocb;
558 	struct sock_iocb siocb;
559 	int ret;
560 
561 	init_sync_kiocb(&iocb, NULL);
562 	iocb.private = &siocb;
563 	ret = __sock_sendmsg(&iocb, sock, msg, size);
564 	if (-EIOCBQUEUED == ret)
565 		ret = wait_on_sync_kiocb(&iocb);
566 	return ret;
567 }
568 
569 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
570 		   struct kvec *vec, size_t num, size_t size)
571 {
572 	mm_segment_t oldfs = get_fs();
573 	int result;
574 
575 	set_fs(KERNEL_DS);
576 	/*
577 	 * the following is safe, since for compiler definitions of kvec and
578 	 * iovec are identical, yielding the same in-core layout and alignment
579 	 */
580 	msg->msg_iov = (struct iovec *)vec;
581 	msg->msg_iovlen = num;
582 	result = sock_sendmsg(sock, msg, size);
583 	set_fs(oldfs);
584 	return result;
585 }
586 
587 /*
588  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
589  */
590 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
591 	struct sk_buff *skb)
592 {
593 	ktime_t kt = skb->tstamp;
594 
595 	if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
596 		struct timeval tv;
597 		/* Race occurred between timestamp enabling and packet
598 		   receiving.  Fill in the current time for now. */
599 		if (kt.tv64 == 0)
600 			kt = ktime_get_real();
601 		skb->tstamp = kt;
602 		tv = ktime_to_timeval(kt);
603 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
604 	} else {
605 		struct timespec ts;
606 		/* Race occurred between timestamp enabling and packet
607 		   receiving.  Fill in the current time for now. */
608 		if (kt.tv64 == 0)
609 			kt = ktime_get_real();
610 		skb->tstamp = kt;
611 		ts = ktime_to_timespec(kt);
612 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
613 	}
614 }
615 
616 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
617 
618 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
619 				 struct msghdr *msg, size_t size, int flags)
620 {
621 	int err;
622 	struct sock_iocb *si = kiocb_to_siocb(iocb);
623 
624 	si->sock = sock;
625 	si->scm = NULL;
626 	si->msg = msg;
627 	si->size = size;
628 	si->flags = flags;
629 
630 	err = security_socket_recvmsg(sock, msg, size, flags);
631 	if (err)
632 		return err;
633 
634 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
635 }
636 
637 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
638 		 size_t size, int flags)
639 {
640 	struct kiocb iocb;
641 	struct sock_iocb siocb;
642 	int ret;
643 
644 	init_sync_kiocb(&iocb, NULL);
645 	iocb.private = &siocb;
646 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
647 	if (-EIOCBQUEUED == ret)
648 		ret = wait_on_sync_kiocb(&iocb);
649 	return ret;
650 }
651 
652 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
653 		   struct kvec *vec, size_t num, size_t size, int flags)
654 {
655 	mm_segment_t oldfs = get_fs();
656 	int result;
657 
658 	set_fs(KERNEL_DS);
659 	/*
660 	 * the following is safe, since for compiler definitions of kvec and
661 	 * iovec are identical, yielding the same in-core layout and alignment
662 	 */
663 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
664 	result = sock_recvmsg(sock, msg, size, flags);
665 	set_fs(oldfs);
666 	return result;
667 }
668 
669 static void sock_aio_dtor(struct kiocb *iocb)
670 {
671 	kfree(iocb->private);
672 }
673 
674 static ssize_t sock_sendpage(struct file *file, struct page *page,
675 			     int offset, size_t size, loff_t *ppos, int more)
676 {
677 	struct socket *sock;
678 	int flags;
679 
680 	sock = file->private_data;
681 
682 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
683 	if (more)
684 		flags |= MSG_MORE;
685 
686 	return sock->ops->sendpage(sock, page, offset, size, flags);
687 }
688 
689 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
690 					 struct sock_iocb *siocb)
691 {
692 	if (!is_sync_kiocb(iocb)) {
693 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
694 		if (!siocb)
695 			return NULL;
696 		iocb->ki_dtor = sock_aio_dtor;
697 	}
698 
699 	siocb->kiocb = iocb;
700 	iocb->private = siocb;
701 	return siocb;
702 }
703 
704 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
705 		struct file *file, const struct iovec *iov,
706 		unsigned long nr_segs)
707 {
708 	struct socket *sock = file->private_data;
709 	size_t size = 0;
710 	int i;
711 
712 	for (i = 0; i < nr_segs; i++)
713 		size += iov[i].iov_len;
714 
715 	msg->msg_name = NULL;
716 	msg->msg_namelen = 0;
717 	msg->msg_control = NULL;
718 	msg->msg_controllen = 0;
719 	msg->msg_iov = (struct iovec *)iov;
720 	msg->msg_iovlen = nr_segs;
721 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
722 
723 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
724 }
725 
726 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
727 				unsigned long nr_segs, loff_t pos)
728 {
729 	struct sock_iocb siocb, *x;
730 
731 	if (pos != 0)
732 		return -ESPIPE;
733 
734 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
735 		return 0;
736 
737 
738 	x = alloc_sock_iocb(iocb, &siocb);
739 	if (!x)
740 		return -ENOMEM;
741 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
742 }
743 
744 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
745 			struct file *file, const struct iovec *iov,
746 			unsigned long nr_segs)
747 {
748 	struct socket *sock = file->private_data;
749 	size_t size = 0;
750 	int i;
751 
752 	for (i = 0; i < nr_segs; i++)
753 		size += iov[i].iov_len;
754 
755 	msg->msg_name = NULL;
756 	msg->msg_namelen = 0;
757 	msg->msg_control = NULL;
758 	msg->msg_controllen = 0;
759 	msg->msg_iov = (struct iovec *)iov;
760 	msg->msg_iovlen = nr_segs;
761 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
762 	if (sock->type == SOCK_SEQPACKET)
763 		msg->msg_flags |= MSG_EOR;
764 
765 	return __sock_sendmsg(iocb, sock, msg, size);
766 }
767 
768 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
769 			  unsigned long nr_segs, loff_t pos)
770 {
771 	struct sock_iocb siocb, *x;
772 
773 	if (pos != 0)
774 		return -ESPIPE;
775 
776 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
777 		return 0;
778 
779 	x = alloc_sock_iocb(iocb, &siocb);
780 	if (!x)
781 		return -ENOMEM;
782 
783 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
784 }
785 
786 /*
787  * Atomic setting of ioctl hooks to avoid race
788  * with module unload.
789  */
790 
791 static DEFINE_MUTEX(br_ioctl_mutex);
792 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
793 
794 void brioctl_set(int (*hook) (unsigned int, void __user *))
795 {
796 	mutex_lock(&br_ioctl_mutex);
797 	br_ioctl_hook = hook;
798 	mutex_unlock(&br_ioctl_mutex);
799 }
800 
801 EXPORT_SYMBOL(brioctl_set);
802 
803 static DEFINE_MUTEX(vlan_ioctl_mutex);
804 static int (*vlan_ioctl_hook) (void __user *arg);
805 
806 void vlan_ioctl_set(int (*hook) (void __user *))
807 {
808 	mutex_lock(&vlan_ioctl_mutex);
809 	vlan_ioctl_hook = hook;
810 	mutex_unlock(&vlan_ioctl_mutex);
811 }
812 
813 EXPORT_SYMBOL(vlan_ioctl_set);
814 
815 static DEFINE_MUTEX(dlci_ioctl_mutex);
816 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
817 
818 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
819 {
820 	mutex_lock(&dlci_ioctl_mutex);
821 	dlci_ioctl_hook = hook;
822 	mutex_unlock(&dlci_ioctl_mutex);
823 }
824 
825 EXPORT_SYMBOL(dlci_ioctl_set);
826 
827 /*
828  *	With an ioctl, arg may well be a user mode pointer, but we don't know
829  *	what to do with it - that's up to the protocol still.
830  */
831 
832 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
833 {
834 	struct socket *sock;
835 	void __user *argp = (void __user *)arg;
836 	int pid, err;
837 
838 	sock = file->private_data;
839 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
840 		err = dev_ioctl(cmd, argp);
841 	} else
842 #ifdef CONFIG_WIRELESS_EXT
843 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
844 		err = dev_ioctl(cmd, argp);
845 	} else
846 #endif				/* CONFIG_WIRELESS_EXT */
847 		switch (cmd) {
848 		case FIOSETOWN:
849 		case SIOCSPGRP:
850 			err = -EFAULT;
851 			if (get_user(pid, (int __user *)argp))
852 				break;
853 			err = f_setown(sock->file, pid, 1);
854 			break;
855 		case FIOGETOWN:
856 		case SIOCGPGRP:
857 			err = put_user(f_getown(sock->file),
858 				       (int __user *)argp);
859 			break;
860 		case SIOCGIFBR:
861 		case SIOCSIFBR:
862 		case SIOCBRADDBR:
863 		case SIOCBRDELBR:
864 			err = -ENOPKG;
865 			if (!br_ioctl_hook)
866 				request_module("bridge");
867 
868 			mutex_lock(&br_ioctl_mutex);
869 			if (br_ioctl_hook)
870 				err = br_ioctl_hook(cmd, argp);
871 			mutex_unlock(&br_ioctl_mutex);
872 			break;
873 		case SIOCGIFVLAN:
874 		case SIOCSIFVLAN:
875 			err = -ENOPKG;
876 			if (!vlan_ioctl_hook)
877 				request_module("8021q");
878 
879 			mutex_lock(&vlan_ioctl_mutex);
880 			if (vlan_ioctl_hook)
881 				err = vlan_ioctl_hook(argp);
882 			mutex_unlock(&vlan_ioctl_mutex);
883 			break;
884 		case SIOCADDDLCI:
885 		case SIOCDELDLCI:
886 			err = -ENOPKG;
887 			if (!dlci_ioctl_hook)
888 				request_module("dlci");
889 
890 			if (dlci_ioctl_hook) {
891 				mutex_lock(&dlci_ioctl_mutex);
892 				err = dlci_ioctl_hook(cmd, argp);
893 				mutex_unlock(&dlci_ioctl_mutex);
894 			}
895 			break;
896 		default:
897 			err = sock->ops->ioctl(sock, cmd, arg);
898 
899 			/*
900 			 * If this ioctl is unknown try to hand it down
901 			 * to the NIC driver.
902 			 */
903 			if (err == -ENOIOCTLCMD)
904 				err = dev_ioctl(cmd, argp);
905 			break;
906 		}
907 	return err;
908 }
909 
910 int sock_create_lite(int family, int type, int protocol, struct socket **res)
911 {
912 	int err;
913 	struct socket *sock = NULL;
914 
915 	err = security_socket_create(family, type, protocol, 1);
916 	if (err)
917 		goto out;
918 
919 	sock = sock_alloc();
920 	if (!sock) {
921 		err = -ENOMEM;
922 		goto out;
923 	}
924 
925 	sock->type = type;
926 	err = security_socket_post_create(sock, family, type, protocol, 1);
927 	if (err)
928 		goto out_release;
929 
930 out:
931 	*res = sock;
932 	return err;
933 out_release:
934 	sock_release(sock);
935 	sock = NULL;
936 	goto out;
937 }
938 
939 /* No kernel lock held - perfect */
940 static unsigned int sock_poll(struct file *file, poll_table *wait)
941 {
942 	struct socket *sock;
943 
944 	/*
945 	 *      We can't return errors to poll, so it's either yes or no.
946 	 */
947 	sock = file->private_data;
948 	return sock->ops->poll(file, sock, wait);
949 }
950 
951 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
952 {
953 	struct socket *sock = file->private_data;
954 
955 	return sock->ops->mmap(file, sock, vma);
956 }
957 
958 static int sock_close(struct inode *inode, struct file *filp)
959 {
960 	/*
961 	 *      It was possible the inode is NULL we were
962 	 *      closing an unfinished socket.
963 	 */
964 
965 	if (!inode) {
966 		printk(KERN_DEBUG "sock_close: NULL inode\n");
967 		return 0;
968 	}
969 	sock_fasync(-1, filp, 0);
970 	sock_release(SOCKET_I(inode));
971 	return 0;
972 }
973 
974 /*
975  *	Update the socket async list
976  *
977  *	Fasync_list locking strategy.
978  *
979  *	1. fasync_list is modified only under process context socket lock
980  *	   i.e. under semaphore.
981  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
982  *	   or under socket lock.
983  *	3. fasync_list can be used from softirq context, so that
984  *	   modification under socket lock have to be enhanced with
985  *	   write_lock_bh(&sk->sk_callback_lock).
986  *							--ANK (990710)
987  */
988 
989 static int sock_fasync(int fd, struct file *filp, int on)
990 {
991 	struct fasync_struct *fa, *fna = NULL, **prev;
992 	struct socket *sock;
993 	struct sock *sk;
994 
995 	if (on) {
996 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
997 		if (fna == NULL)
998 			return -ENOMEM;
999 	}
1000 
1001 	sock = filp->private_data;
1002 
1003 	sk = sock->sk;
1004 	if (sk == NULL) {
1005 		kfree(fna);
1006 		return -EINVAL;
1007 	}
1008 
1009 	lock_sock(sk);
1010 
1011 	prev = &(sock->fasync_list);
1012 
1013 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1014 		if (fa->fa_file == filp)
1015 			break;
1016 
1017 	if (on) {
1018 		if (fa != NULL) {
1019 			write_lock_bh(&sk->sk_callback_lock);
1020 			fa->fa_fd = fd;
1021 			write_unlock_bh(&sk->sk_callback_lock);
1022 
1023 			kfree(fna);
1024 			goto out;
1025 		}
1026 		fna->fa_file = filp;
1027 		fna->fa_fd = fd;
1028 		fna->magic = FASYNC_MAGIC;
1029 		fna->fa_next = sock->fasync_list;
1030 		write_lock_bh(&sk->sk_callback_lock);
1031 		sock->fasync_list = fna;
1032 		write_unlock_bh(&sk->sk_callback_lock);
1033 	} else {
1034 		if (fa != NULL) {
1035 			write_lock_bh(&sk->sk_callback_lock);
1036 			*prev = fa->fa_next;
1037 			write_unlock_bh(&sk->sk_callback_lock);
1038 			kfree(fa);
1039 		}
1040 	}
1041 
1042 out:
1043 	release_sock(sock->sk);
1044 	return 0;
1045 }
1046 
1047 /* This function may be called only under socket lock or callback_lock */
1048 
1049 int sock_wake_async(struct socket *sock, int how, int band)
1050 {
1051 	if (!sock || !sock->fasync_list)
1052 		return -1;
1053 	switch (how) {
1054 	case 1:
1055 
1056 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1057 			break;
1058 		goto call_kill;
1059 	case 2:
1060 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1061 			break;
1062 		/* fall through */
1063 	case 0:
1064 call_kill:
1065 		__kill_fasync(sock->fasync_list, SIGIO, band);
1066 		break;
1067 	case 3:
1068 		__kill_fasync(sock->fasync_list, SIGURG, band);
1069 	}
1070 	return 0;
1071 }
1072 
1073 static int __sock_create(int family, int type, int protocol,
1074 			 struct socket **res, int kern)
1075 {
1076 	int err;
1077 	struct socket *sock;
1078 	const struct net_proto_family *pf;
1079 
1080 	/*
1081 	 *      Check protocol is in range
1082 	 */
1083 	if (family < 0 || family >= NPROTO)
1084 		return -EAFNOSUPPORT;
1085 	if (type < 0 || type >= SOCK_MAX)
1086 		return -EINVAL;
1087 
1088 	/* Compatibility.
1089 
1090 	   This uglymoron is moved from INET layer to here to avoid
1091 	   deadlock in module load.
1092 	 */
1093 	if (family == PF_INET && type == SOCK_PACKET) {
1094 		static int warned;
1095 		if (!warned) {
1096 			warned = 1;
1097 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1098 			       current->comm);
1099 		}
1100 		family = PF_PACKET;
1101 	}
1102 
1103 	err = security_socket_create(family, type, protocol, kern);
1104 	if (err)
1105 		return err;
1106 
1107 	/*
1108 	 *	Allocate the socket and allow the family to set things up. if
1109 	 *	the protocol is 0, the family is instructed to select an appropriate
1110 	 *	default.
1111 	 */
1112 	sock = sock_alloc();
1113 	if (!sock) {
1114 		if (net_ratelimit())
1115 			printk(KERN_WARNING "socket: no more sockets\n");
1116 		return -ENFILE;	/* Not exactly a match, but its the
1117 				   closest posix thing */
1118 	}
1119 
1120 	sock->type = type;
1121 
1122 #if defined(CONFIG_KMOD)
1123 	/* Attempt to load a protocol module if the find failed.
1124 	 *
1125 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1126 	 * requested real, full-featured networking support upon configuration.
1127 	 * Otherwise module support will break!
1128 	 */
1129 	if (net_families[family] == NULL)
1130 		request_module("net-pf-%d", family);
1131 #endif
1132 
1133 	rcu_read_lock();
1134 	pf = rcu_dereference(net_families[family]);
1135 	err = -EAFNOSUPPORT;
1136 	if (!pf)
1137 		goto out_release;
1138 
1139 	/*
1140 	 * We will call the ->create function, that possibly is in a loadable
1141 	 * module, so we have to bump that loadable module refcnt first.
1142 	 */
1143 	if (!try_module_get(pf->owner))
1144 		goto out_release;
1145 
1146 	/* Now protected by module ref count */
1147 	rcu_read_unlock();
1148 
1149 	err = pf->create(sock, protocol);
1150 	if (err < 0)
1151 		goto out_module_put;
1152 
1153 	/*
1154 	 * Now to bump the refcnt of the [loadable] module that owns this
1155 	 * socket at sock_release time we decrement its refcnt.
1156 	 */
1157 	if (!try_module_get(sock->ops->owner))
1158 		goto out_module_busy;
1159 
1160 	/*
1161 	 * Now that we're done with the ->create function, the [loadable]
1162 	 * module can have its refcnt decremented
1163 	 */
1164 	module_put(pf->owner);
1165 	err = security_socket_post_create(sock, family, type, protocol, kern);
1166 	if (err)
1167 		goto out_release;
1168 	*res = sock;
1169 
1170 	return 0;
1171 
1172 out_module_busy:
1173 	err = -EAFNOSUPPORT;
1174 out_module_put:
1175 	sock->ops = NULL;
1176 	module_put(pf->owner);
1177 out_sock_release:
1178 	sock_release(sock);
1179 	return err;
1180 
1181 out_release:
1182 	rcu_read_unlock();
1183 	goto out_sock_release;
1184 }
1185 
1186 int sock_create(int family, int type, int protocol, struct socket **res)
1187 {
1188 	return __sock_create(family, type, protocol, res, 0);
1189 }
1190 
1191 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1192 {
1193 	return __sock_create(family, type, protocol, res, 1);
1194 }
1195 
1196 asmlinkage long sys_socket(int family, int type, int protocol)
1197 {
1198 	int retval;
1199 	struct socket *sock;
1200 
1201 	retval = sock_create(family, type, protocol, &sock);
1202 	if (retval < 0)
1203 		goto out;
1204 
1205 	retval = sock_map_fd(sock);
1206 	if (retval < 0)
1207 		goto out_release;
1208 
1209 out:
1210 	/* It may be already another descriptor 8) Not kernel problem. */
1211 	return retval;
1212 
1213 out_release:
1214 	sock_release(sock);
1215 	return retval;
1216 }
1217 
1218 /*
1219  *	Create a pair of connected sockets.
1220  */
1221 
1222 asmlinkage long sys_socketpair(int family, int type, int protocol,
1223 			       int __user *usockvec)
1224 {
1225 	struct socket *sock1, *sock2;
1226 	int fd1, fd2, err;
1227 	struct file *newfile1, *newfile2;
1228 
1229 	/*
1230 	 * Obtain the first socket and check if the underlying protocol
1231 	 * supports the socketpair call.
1232 	 */
1233 
1234 	err = sock_create(family, type, protocol, &sock1);
1235 	if (err < 0)
1236 		goto out;
1237 
1238 	err = sock_create(family, type, protocol, &sock2);
1239 	if (err < 0)
1240 		goto out_release_1;
1241 
1242 	err = sock1->ops->socketpair(sock1, sock2);
1243 	if (err < 0)
1244 		goto out_release_both;
1245 
1246 	fd1 = sock_alloc_fd(&newfile1);
1247 	if (unlikely(fd1 < 0))
1248 		goto out_release_both;
1249 
1250 	fd2 = sock_alloc_fd(&newfile2);
1251 	if (unlikely(fd2 < 0)) {
1252 		put_filp(newfile1);
1253 		put_unused_fd(fd1);
1254 		goto out_release_both;
1255 	}
1256 
1257 	err = sock_attach_fd(sock1, newfile1);
1258 	if (unlikely(err < 0)) {
1259 		goto out_fd2;
1260 	}
1261 
1262 	err = sock_attach_fd(sock2, newfile2);
1263 	if (unlikely(err < 0)) {
1264 		fput(newfile1);
1265 		goto out_fd1;
1266 	}
1267 
1268 	err = audit_fd_pair(fd1, fd2);
1269 	if (err < 0) {
1270 		fput(newfile1);
1271 		fput(newfile2);
1272 		goto out_fd;
1273 	}
1274 
1275 	fd_install(fd1, newfile1);
1276 	fd_install(fd2, newfile2);
1277 	/* fd1 and fd2 may be already another descriptors.
1278 	 * Not kernel problem.
1279 	 */
1280 
1281 	err = put_user(fd1, &usockvec[0]);
1282 	if (!err)
1283 		err = put_user(fd2, &usockvec[1]);
1284 	if (!err)
1285 		return 0;
1286 
1287 	sys_close(fd2);
1288 	sys_close(fd1);
1289 	return err;
1290 
1291 out_release_both:
1292 	sock_release(sock2);
1293 out_release_1:
1294 	sock_release(sock1);
1295 out:
1296 	return err;
1297 
1298 out_fd2:
1299 	put_filp(newfile1);
1300 	sock_release(sock1);
1301 out_fd1:
1302 	put_filp(newfile2);
1303 	sock_release(sock2);
1304 out_fd:
1305 	put_unused_fd(fd1);
1306 	put_unused_fd(fd2);
1307 	goto out;
1308 }
1309 
1310 /*
1311  *	Bind a name to a socket. Nothing much to do here since it's
1312  *	the protocol's responsibility to handle the local address.
1313  *
1314  *	We move the socket address to kernel space before we call
1315  *	the protocol layer (having also checked the address is ok).
1316  */
1317 
1318 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1319 {
1320 	struct socket *sock;
1321 	char address[MAX_SOCK_ADDR];
1322 	int err, fput_needed;
1323 
1324 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1325 	if (sock) {
1326 		err = move_addr_to_kernel(umyaddr, addrlen, address);
1327 		if (err >= 0) {
1328 			err = security_socket_bind(sock,
1329 						   (struct sockaddr *)address,
1330 						   addrlen);
1331 			if (!err)
1332 				err = sock->ops->bind(sock,
1333 						      (struct sockaddr *)
1334 						      address, addrlen);
1335 		}
1336 		fput_light(sock->file, fput_needed);
1337 	}
1338 	return err;
1339 }
1340 
1341 /*
1342  *	Perform a listen. Basically, we allow the protocol to do anything
1343  *	necessary for a listen, and if that works, we mark the socket as
1344  *	ready for listening.
1345  */
1346 
1347 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1348 
1349 asmlinkage long sys_listen(int fd, int backlog)
1350 {
1351 	struct socket *sock;
1352 	int err, fput_needed;
1353 
1354 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1355 	if (sock) {
1356 		if ((unsigned)backlog > sysctl_somaxconn)
1357 			backlog = sysctl_somaxconn;
1358 
1359 		err = security_socket_listen(sock, backlog);
1360 		if (!err)
1361 			err = sock->ops->listen(sock, backlog);
1362 
1363 		fput_light(sock->file, fput_needed);
1364 	}
1365 	return err;
1366 }
1367 
1368 /*
1369  *	For accept, we attempt to create a new socket, set up the link
1370  *	with the client, wake up the client, then return the new
1371  *	connected fd. We collect the address of the connector in kernel
1372  *	space and move it to user at the very end. This is unclean because
1373  *	we open the socket then return an error.
1374  *
1375  *	1003.1g adds the ability to recvmsg() to query connection pending
1376  *	status to recvmsg. We need to add that support in a way thats
1377  *	clean when we restucture accept also.
1378  */
1379 
1380 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1381 			   int __user *upeer_addrlen)
1382 {
1383 	struct socket *sock, *newsock;
1384 	struct file *newfile;
1385 	int err, len, newfd, fput_needed;
1386 	char address[MAX_SOCK_ADDR];
1387 
1388 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1389 	if (!sock)
1390 		goto out;
1391 
1392 	err = -ENFILE;
1393 	if (!(newsock = sock_alloc()))
1394 		goto out_put;
1395 
1396 	newsock->type = sock->type;
1397 	newsock->ops = sock->ops;
1398 
1399 	/*
1400 	 * We don't need try_module_get here, as the listening socket (sock)
1401 	 * has the protocol module (sock->ops->owner) held.
1402 	 */
1403 	__module_get(newsock->ops->owner);
1404 
1405 	newfd = sock_alloc_fd(&newfile);
1406 	if (unlikely(newfd < 0)) {
1407 		err = newfd;
1408 		sock_release(newsock);
1409 		goto out_put;
1410 	}
1411 
1412 	err = sock_attach_fd(newsock, newfile);
1413 	if (err < 0)
1414 		goto out_fd_simple;
1415 
1416 	err = security_socket_accept(sock, newsock);
1417 	if (err)
1418 		goto out_fd;
1419 
1420 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1421 	if (err < 0)
1422 		goto out_fd;
1423 
1424 	if (upeer_sockaddr) {
1425 		if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1426 					  &len, 2) < 0) {
1427 			err = -ECONNABORTED;
1428 			goto out_fd;
1429 		}
1430 		err = move_addr_to_user(address, len, upeer_sockaddr,
1431 					upeer_addrlen);
1432 		if (err < 0)
1433 			goto out_fd;
1434 	}
1435 
1436 	/* File flags are not inherited via accept() unlike another OSes. */
1437 
1438 	fd_install(newfd, newfile);
1439 	err = newfd;
1440 
1441 	security_socket_post_accept(sock, newsock);
1442 
1443 out_put:
1444 	fput_light(sock->file, fput_needed);
1445 out:
1446 	return err;
1447 out_fd_simple:
1448 	sock_release(newsock);
1449 	put_filp(newfile);
1450 	put_unused_fd(newfd);
1451 	goto out_put;
1452 out_fd:
1453 	fput(newfile);
1454 	put_unused_fd(newfd);
1455 	goto out_put;
1456 }
1457 
1458 /*
1459  *	Attempt to connect to a socket with the server address.  The address
1460  *	is in user space so we verify it is OK and move it to kernel space.
1461  *
1462  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1463  *	break bindings
1464  *
1465  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1466  *	other SEQPACKET protocols that take time to connect() as it doesn't
1467  *	include the -EINPROGRESS status for such sockets.
1468  */
1469 
1470 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1471 			    int addrlen)
1472 {
1473 	struct socket *sock;
1474 	char address[MAX_SOCK_ADDR];
1475 	int err, fput_needed;
1476 
1477 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1478 	if (!sock)
1479 		goto out;
1480 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1481 	if (err < 0)
1482 		goto out_put;
1483 
1484 	err =
1485 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1486 	if (err)
1487 		goto out_put;
1488 
1489 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1490 				 sock->file->f_flags);
1491 out_put:
1492 	fput_light(sock->file, fput_needed);
1493 out:
1494 	return err;
1495 }
1496 
1497 /*
1498  *	Get the local address ('name') of a socket object. Move the obtained
1499  *	name to user space.
1500  */
1501 
1502 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1503 				int __user *usockaddr_len)
1504 {
1505 	struct socket *sock;
1506 	char address[MAX_SOCK_ADDR];
1507 	int len, err, fput_needed;
1508 
1509 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1510 	if (!sock)
1511 		goto out;
1512 
1513 	err = security_socket_getsockname(sock);
1514 	if (err)
1515 		goto out_put;
1516 
1517 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1518 	if (err)
1519 		goto out_put;
1520 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1521 
1522 out_put:
1523 	fput_light(sock->file, fput_needed);
1524 out:
1525 	return err;
1526 }
1527 
1528 /*
1529  *	Get the remote address ('name') of a socket object. Move the obtained
1530  *	name to user space.
1531  */
1532 
1533 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1534 				int __user *usockaddr_len)
1535 {
1536 	struct socket *sock;
1537 	char address[MAX_SOCK_ADDR];
1538 	int len, err, fput_needed;
1539 
1540 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1541 	if (sock != NULL) {
1542 		err = security_socket_getpeername(sock);
1543 		if (err) {
1544 			fput_light(sock->file, fput_needed);
1545 			return err;
1546 		}
1547 
1548 		err =
1549 		    sock->ops->getname(sock, (struct sockaddr *)address, &len,
1550 				       1);
1551 		if (!err)
1552 			err = move_addr_to_user(address, len, usockaddr,
1553 						usockaddr_len);
1554 		fput_light(sock->file, fput_needed);
1555 	}
1556 	return err;
1557 }
1558 
1559 /*
1560  *	Send a datagram to a given address. We move the address into kernel
1561  *	space and check the user space data area is readable before invoking
1562  *	the protocol.
1563  */
1564 
1565 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1566 			   unsigned flags, struct sockaddr __user *addr,
1567 			   int addr_len)
1568 {
1569 	struct socket *sock;
1570 	char address[MAX_SOCK_ADDR];
1571 	int err;
1572 	struct msghdr msg;
1573 	struct iovec iov;
1574 	int fput_needed;
1575 	struct file *sock_file;
1576 
1577 	sock_file = fget_light(fd, &fput_needed);
1578 	err = -EBADF;
1579 	if (!sock_file)
1580 		goto out;
1581 
1582 	sock = sock_from_file(sock_file, &err);
1583 	if (!sock)
1584 		goto out_put;
1585 	iov.iov_base = buff;
1586 	iov.iov_len = len;
1587 	msg.msg_name = NULL;
1588 	msg.msg_iov = &iov;
1589 	msg.msg_iovlen = 1;
1590 	msg.msg_control = NULL;
1591 	msg.msg_controllen = 0;
1592 	msg.msg_namelen = 0;
1593 	if (addr) {
1594 		err = move_addr_to_kernel(addr, addr_len, address);
1595 		if (err < 0)
1596 			goto out_put;
1597 		msg.msg_name = address;
1598 		msg.msg_namelen = addr_len;
1599 	}
1600 	if (sock->file->f_flags & O_NONBLOCK)
1601 		flags |= MSG_DONTWAIT;
1602 	msg.msg_flags = flags;
1603 	err = sock_sendmsg(sock, &msg, len);
1604 
1605 out_put:
1606 	fput_light(sock_file, fput_needed);
1607 out:
1608 	return err;
1609 }
1610 
1611 /*
1612  *	Send a datagram down a socket.
1613  */
1614 
1615 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1616 {
1617 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1618 }
1619 
1620 /*
1621  *	Receive a frame from the socket and optionally record the address of the
1622  *	sender. We verify the buffers are writable and if needed move the
1623  *	sender address from kernel to user space.
1624  */
1625 
1626 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1627 			     unsigned flags, struct sockaddr __user *addr,
1628 			     int __user *addr_len)
1629 {
1630 	struct socket *sock;
1631 	struct iovec iov;
1632 	struct msghdr msg;
1633 	char address[MAX_SOCK_ADDR];
1634 	int err, err2;
1635 	struct file *sock_file;
1636 	int fput_needed;
1637 
1638 	sock_file = fget_light(fd, &fput_needed);
1639 	err = -EBADF;
1640 	if (!sock_file)
1641 		goto out;
1642 
1643 	sock = sock_from_file(sock_file, &err);
1644 	if (!sock)
1645 		goto out_put;
1646 
1647 	msg.msg_control = NULL;
1648 	msg.msg_controllen = 0;
1649 	msg.msg_iovlen = 1;
1650 	msg.msg_iov = &iov;
1651 	iov.iov_len = size;
1652 	iov.iov_base = ubuf;
1653 	msg.msg_name = address;
1654 	msg.msg_namelen = MAX_SOCK_ADDR;
1655 	if (sock->file->f_flags & O_NONBLOCK)
1656 		flags |= MSG_DONTWAIT;
1657 	err = sock_recvmsg(sock, &msg, size, flags);
1658 
1659 	if (err >= 0 && addr != NULL) {
1660 		err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1661 		if (err2 < 0)
1662 			err = err2;
1663 	}
1664 out_put:
1665 	fput_light(sock_file, fput_needed);
1666 out:
1667 	return err;
1668 }
1669 
1670 /*
1671  *	Receive a datagram from a socket.
1672  */
1673 
1674 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1675 			 unsigned flags)
1676 {
1677 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1678 }
1679 
1680 /*
1681  *	Set a socket option. Because we don't know the option lengths we have
1682  *	to pass the user mode parameter for the protocols to sort out.
1683  */
1684 
1685 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1686 			       char __user *optval, int optlen)
1687 {
1688 	int err, fput_needed;
1689 	struct socket *sock;
1690 
1691 	if (optlen < 0)
1692 		return -EINVAL;
1693 
1694 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1695 	if (sock != NULL) {
1696 		err = security_socket_setsockopt(sock, level, optname);
1697 		if (err)
1698 			goto out_put;
1699 
1700 		if (level == SOL_SOCKET)
1701 			err =
1702 			    sock_setsockopt(sock, level, optname, optval,
1703 					    optlen);
1704 		else
1705 			err =
1706 			    sock->ops->setsockopt(sock, level, optname, optval,
1707 						  optlen);
1708 out_put:
1709 		fput_light(sock->file, fput_needed);
1710 	}
1711 	return err;
1712 }
1713 
1714 /*
1715  *	Get a socket option. Because we don't know the option lengths we have
1716  *	to pass a user mode parameter for the protocols to sort out.
1717  */
1718 
1719 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1720 			       char __user *optval, int __user *optlen)
1721 {
1722 	int err, fput_needed;
1723 	struct socket *sock;
1724 
1725 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1726 	if (sock != NULL) {
1727 		err = security_socket_getsockopt(sock, level, optname);
1728 		if (err)
1729 			goto out_put;
1730 
1731 		if (level == SOL_SOCKET)
1732 			err =
1733 			    sock_getsockopt(sock, level, optname, optval,
1734 					    optlen);
1735 		else
1736 			err =
1737 			    sock->ops->getsockopt(sock, level, optname, optval,
1738 						  optlen);
1739 out_put:
1740 		fput_light(sock->file, fput_needed);
1741 	}
1742 	return err;
1743 }
1744 
1745 /*
1746  *	Shutdown a socket.
1747  */
1748 
1749 asmlinkage long sys_shutdown(int fd, int how)
1750 {
1751 	int err, fput_needed;
1752 	struct socket *sock;
1753 
1754 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1755 	if (sock != NULL) {
1756 		err = security_socket_shutdown(sock, how);
1757 		if (!err)
1758 			err = sock->ops->shutdown(sock, how);
1759 		fput_light(sock->file, fput_needed);
1760 	}
1761 	return err;
1762 }
1763 
1764 /* A couple of helpful macros for getting the address of the 32/64 bit
1765  * fields which are the same type (int / unsigned) on our platforms.
1766  */
1767 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1768 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1769 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1770 
1771 /*
1772  *	BSD sendmsg interface
1773  */
1774 
1775 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1776 {
1777 	struct compat_msghdr __user *msg_compat =
1778 	    (struct compat_msghdr __user *)msg;
1779 	struct socket *sock;
1780 	char address[MAX_SOCK_ADDR];
1781 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1782 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1783 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1784 	/* 20 is size of ipv6_pktinfo */
1785 	unsigned char *ctl_buf = ctl;
1786 	struct msghdr msg_sys;
1787 	int err, ctl_len, iov_size, total_len;
1788 	int fput_needed;
1789 
1790 	err = -EFAULT;
1791 	if (MSG_CMSG_COMPAT & flags) {
1792 		if (get_compat_msghdr(&msg_sys, msg_compat))
1793 			return -EFAULT;
1794 	}
1795 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1796 		return -EFAULT;
1797 
1798 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1799 	if (!sock)
1800 		goto out;
1801 
1802 	/* do not move before msg_sys is valid */
1803 	err = -EMSGSIZE;
1804 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1805 		goto out_put;
1806 
1807 	/* Check whether to allocate the iovec area */
1808 	err = -ENOMEM;
1809 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1810 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1811 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1812 		if (!iov)
1813 			goto out_put;
1814 	}
1815 
1816 	/* This will also move the address data into kernel space */
1817 	if (MSG_CMSG_COMPAT & flags) {
1818 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1819 	} else
1820 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1821 	if (err < 0)
1822 		goto out_freeiov;
1823 	total_len = err;
1824 
1825 	err = -ENOBUFS;
1826 
1827 	if (msg_sys.msg_controllen > INT_MAX)
1828 		goto out_freeiov;
1829 	ctl_len = msg_sys.msg_controllen;
1830 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1831 		err =
1832 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1833 						     sizeof(ctl));
1834 		if (err)
1835 			goto out_freeiov;
1836 		ctl_buf = msg_sys.msg_control;
1837 		ctl_len = msg_sys.msg_controllen;
1838 	} else if (ctl_len) {
1839 		if (ctl_len > sizeof(ctl)) {
1840 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1841 			if (ctl_buf == NULL)
1842 				goto out_freeiov;
1843 		}
1844 		err = -EFAULT;
1845 		/*
1846 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1847 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1848 		 * checking falls down on this.
1849 		 */
1850 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1851 				   ctl_len))
1852 			goto out_freectl;
1853 		msg_sys.msg_control = ctl_buf;
1854 	}
1855 	msg_sys.msg_flags = flags;
1856 
1857 	if (sock->file->f_flags & O_NONBLOCK)
1858 		msg_sys.msg_flags |= MSG_DONTWAIT;
1859 	err = sock_sendmsg(sock, &msg_sys, total_len);
1860 
1861 out_freectl:
1862 	if (ctl_buf != ctl)
1863 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1864 out_freeiov:
1865 	if (iov != iovstack)
1866 		sock_kfree_s(sock->sk, iov, iov_size);
1867 out_put:
1868 	fput_light(sock->file, fput_needed);
1869 out:
1870 	return err;
1871 }
1872 
1873 /*
1874  *	BSD recvmsg interface
1875  */
1876 
1877 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1878 			    unsigned int flags)
1879 {
1880 	struct compat_msghdr __user *msg_compat =
1881 	    (struct compat_msghdr __user *)msg;
1882 	struct socket *sock;
1883 	struct iovec iovstack[UIO_FASTIOV];
1884 	struct iovec *iov = iovstack;
1885 	struct msghdr msg_sys;
1886 	unsigned long cmsg_ptr;
1887 	int err, iov_size, total_len, len;
1888 	int fput_needed;
1889 
1890 	/* kernel mode address */
1891 	char addr[MAX_SOCK_ADDR];
1892 
1893 	/* user mode address pointers */
1894 	struct sockaddr __user *uaddr;
1895 	int __user *uaddr_len;
1896 
1897 	if (MSG_CMSG_COMPAT & flags) {
1898 		if (get_compat_msghdr(&msg_sys, msg_compat))
1899 			return -EFAULT;
1900 	}
1901 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1902 		return -EFAULT;
1903 
1904 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1905 	if (!sock)
1906 		goto out;
1907 
1908 	err = -EMSGSIZE;
1909 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1910 		goto out_put;
1911 
1912 	/* Check whether to allocate the iovec area */
1913 	err = -ENOMEM;
1914 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1915 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1916 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1917 		if (!iov)
1918 			goto out_put;
1919 	}
1920 
1921 	/*
1922 	 *      Save the user-mode address (verify_iovec will change the
1923 	 *      kernel msghdr to use the kernel address space)
1924 	 */
1925 
1926 	uaddr = (void __user *)msg_sys.msg_name;
1927 	uaddr_len = COMPAT_NAMELEN(msg);
1928 	if (MSG_CMSG_COMPAT & flags) {
1929 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1930 	} else
1931 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1932 	if (err < 0)
1933 		goto out_freeiov;
1934 	total_len = err;
1935 
1936 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1937 	msg_sys.msg_flags = 0;
1938 	if (MSG_CMSG_COMPAT & flags)
1939 		msg_sys.msg_flags = MSG_CMSG_COMPAT;
1940 
1941 	if (sock->file->f_flags & O_NONBLOCK)
1942 		flags |= MSG_DONTWAIT;
1943 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1944 	if (err < 0)
1945 		goto out_freeiov;
1946 	len = err;
1947 
1948 	if (uaddr != NULL) {
1949 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1950 					uaddr_len);
1951 		if (err < 0)
1952 			goto out_freeiov;
1953 	}
1954 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1955 			 COMPAT_FLAGS(msg));
1956 	if (err)
1957 		goto out_freeiov;
1958 	if (MSG_CMSG_COMPAT & flags)
1959 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1960 				 &msg_compat->msg_controllen);
1961 	else
1962 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1963 				 &msg->msg_controllen);
1964 	if (err)
1965 		goto out_freeiov;
1966 	err = len;
1967 
1968 out_freeiov:
1969 	if (iov != iovstack)
1970 		sock_kfree_s(sock->sk, iov, iov_size);
1971 out_put:
1972 	fput_light(sock->file, fput_needed);
1973 out:
1974 	return err;
1975 }
1976 
1977 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1978 
1979 /* Argument list sizes for sys_socketcall */
1980 #define AL(x) ((x) * sizeof(unsigned long))
1981 static const unsigned char nargs[18]={
1982 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1983 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1984 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1985 };
1986 
1987 #undef AL
1988 
1989 /*
1990  *	System call vectors.
1991  *
1992  *	Argument checking cleaned up. Saved 20% in size.
1993  *  This function doesn't need to set the kernel lock because
1994  *  it is set by the callees.
1995  */
1996 
1997 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1998 {
1999 	unsigned long a[6];
2000 	unsigned long a0, a1;
2001 	int err;
2002 
2003 	if (call < 1 || call > SYS_RECVMSG)
2004 		return -EINVAL;
2005 
2006 	/* copy_from_user should be SMP safe. */
2007 	if (copy_from_user(a, args, nargs[call]))
2008 		return -EFAULT;
2009 
2010 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2011 	if (err)
2012 		return err;
2013 
2014 	a0 = a[0];
2015 	a1 = a[1];
2016 
2017 	switch (call) {
2018 	case SYS_SOCKET:
2019 		err = sys_socket(a0, a1, a[2]);
2020 		break;
2021 	case SYS_BIND:
2022 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2023 		break;
2024 	case SYS_CONNECT:
2025 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2026 		break;
2027 	case SYS_LISTEN:
2028 		err = sys_listen(a0, a1);
2029 		break;
2030 	case SYS_ACCEPT:
2031 		err =
2032 		    sys_accept(a0, (struct sockaddr __user *)a1,
2033 			       (int __user *)a[2]);
2034 		break;
2035 	case SYS_GETSOCKNAME:
2036 		err =
2037 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2038 				    (int __user *)a[2]);
2039 		break;
2040 	case SYS_GETPEERNAME:
2041 		err =
2042 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2043 				    (int __user *)a[2]);
2044 		break;
2045 	case SYS_SOCKETPAIR:
2046 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2047 		break;
2048 	case SYS_SEND:
2049 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2050 		break;
2051 	case SYS_SENDTO:
2052 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2053 				 (struct sockaddr __user *)a[4], a[5]);
2054 		break;
2055 	case SYS_RECV:
2056 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2057 		break;
2058 	case SYS_RECVFROM:
2059 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2060 				   (struct sockaddr __user *)a[4],
2061 				   (int __user *)a[5]);
2062 		break;
2063 	case SYS_SHUTDOWN:
2064 		err = sys_shutdown(a0, a1);
2065 		break;
2066 	case SYS_SETSOCKOPT:
2067 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2068 		break;
2069 	case SYS_GETSOCKOPT:
2070 		err =
2071 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2072 				   (int __user *)a[4]);
2073 		break;
2074 	case SYS_SENDMSG:
2075 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2076 		break;
2077 	case SYS_RECVMSG:
2078 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2079 		break;
2080 	default:
2081 		err = -EINVAL;
2082 		break;
2083 	}
2084 	return err;
2085 }
2086 
2087 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2088 
2089 /**
2090  *	sock_register - add a socket protocol handler
2091  *	@ops: description of protocol
2092  *
2093  *	This function is called by a protocol handler that wants to
2094  *	advertise its address family, and have it linked into the
2095  *	socket interface. The value ops->family coresponds to the
2096  *	socket system call protocol family.
2097  */
2098 int sock_register(const struct net_proto_family *ops)
2099 {
2100 	int err;
2101 
2102 	if (ops->family >= NPROTO) {
2103 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2104 		       NPROTO);
2105 		return -ENOBUFS;
2106 	}
2107 
2108 	spin_lock(&net_family_lock);
2109 	if (net_families[ops->family])
2110 		err = -EEXIST;
2111 	else {
2112 		net_families[ops->family] = ops;
2113 		err = 0;
2114 	}
2115 	spin_unlock(&net_family_lock);
2116 
2117 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2118 	return err;
2119 }
2120 
2121 /**
2122  *	sock_unregister - remove a protocol handler
2123  *	@family: protocol family to remove
2124  *
2125  *	This function is called by a protocol handler that wants to
2126  *	remove its address family, and have it unlinked from the
2127  *	new socket creation.
2128  *
2129  *	If protocol handler is a module, then it can use module reference
2130  *	counts to protect against new references. If protocol handler is not
2131  *	a module then it needs to provide its own protection in
2132  *	the ops->create routine.
2133  */
2134 void sock_unregister(int family)
2135 {
2136 	BUG_ON(family < 0 || family >= NPROTO);
2137 
2138 	spin_lock(&net_family_lock);
2139 	net_families[family] = NULL;
2140 	spin_unlock(&net_family_lock);
2141 
2142 	synchronize_rcu();
2143 
2144 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2145 }
2146 
2147 static int __init sock_init(void)
2148 {
2149 	/*
2150 	 *      Initialize sock SLAB cache.
2151 	 */
2152 
2153 	sk_init();
2154 
2155 	/*
2156 	 *      Initialize skbuff SLAB cache
2157 	 */
2158 	skb_init();
2159 
2160 	/*
2161 	 *      Initialize the protocols module.
2162 	 */
2163 
2164 	init_inodecache();
2165 	register_filesystem(&sock_fs_type);
2166 	sock_mnt = kern_mount(&sock_fs_type);
2167 
2168 	/* The real protocol initialization is performed in later initcalls.
2169 	 */
2170 
2171 #ifdef CONFIG_NETFILTER
2172 	netfilter_init();
2173 #endif
2174 
2175 	return 0;
2176 }
2177 
2178 core_initcall(sock_init);	/* early initcall */
2179 
2180 #ifdef CONFIG_PROC_FS
2181 void socket_seq_show(struct seq_file *seq)
2182 {
2183 	int cpu;
2184 	int counter = 0;
2185 
2186 	for_each_possible_cpu(cpu)
2187 	    counter += per_cpu(sockets_in_use, cpu);
2188 
2189 	/* It can be negative, by the way. 8) */
2190 	if (counter < 0)
2191 		counter = 0;
2192 
2193 	seq_printf(seq, "sockets: used %d\n", counter);
2194 }
2195 #endif				/* CONFIG_PROC_FS */
2196 
2197 #ifdef CONFIG_COMPAT
2198 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2199 			      unsigned long arg)
2200 {
2201 	struct socket *sock = file->private_data;
2202 	int ret = -ENOIOCTLCMD;
2203 
2204 	if (sock->ops->compat_ioctl)
2205 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2206 
2207 	return ret;
2208 }
2209 #endif
2210 
2211 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2212 {
2213 	return sock->ops->bind(sock, addr, addrlen);
2214 }
2215 
2216 int kernel_listen(struct socket *sock, int backlog)
2217 {
2218 	return sock->ops->listen(sock, backlog);
2219 }
2220 
2221 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2222 {
2223 	struct sock *sk = sock->sk;
2224 	int err;
2225 
2226 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2227 			       newsock);
2228 	if (err < 0)
2229 		goto done;
2230 
2231 	err = sock->ops->accept(sock, *newsock, flags);
2232 	if (err < 0) {
2233 		sock_release(*newsock);
2234 		goto done;
2235 	}
2236 
2237 	(*newsock)->ops = sock->ops;
2238 
2239 done:
2240 	return err;
2241 }
2242 
2243 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2244 		   int flags)
2245 {
2246 	return sock->ops->connect(sock, addr, addrlen, flags);
2247 }
2248 
2249 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2250 			 int *addrlen)
2251 {
2252 	return sock->ops->getname(sock, addr, addrlen, 0);
2253 }
2254 
2255 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2256 			 int *addrlen)
2257 {
2258 	return sock->ops->getname(sock, addr, addrlen, 1);
2259 }
2260 
2261 int kernel_getsockopt(struct socket *sock, int level, int optname,
2262 			char *optval, int *optlen)
2263 {
2264 	mm_segment_t oldfs = get_fs();
2265 	int err;
2266 
2267 	set_fs(KERNEL_DS);
2268 	if (level == SOL_SOCKET)
2269 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2270 	else
2271 		err = sock->ops->getsockopt(sock, level, optname, optval,
2272 					    optlen);
2273 	set_fs(oldfs);
2274 	return err;
2275 }
2276 
2277 int kernel_setsockopt(struct socket *sock, int level, int optname,
2278 			char *optval, int optlen)
2279 {
2280 	mm_segment_t oldfs = get_fs();
2281 	int err;
2282 
2283 	set_fs(KERNEL_DS);
2284 	if (level == SOL_SOCKET)
2285 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2286 	else
2287 		err = sock->ops->setsockopt(sock, level, optname, optval,
2288 					    optlen);
2289 	set_fs(oldfs);
2290 	return err;
2291 }
2292 
2293 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2294 		    size_t size, int flags)
2295 {
2296 	if (sock->ops->sendpage)
2297 		return sock->ops->sendpage(sock, page, offset, size, flags);
2298 
2299 	return sock_no_sendpage(sock, page, offset, size, flags);
2300 }
2301 
2302 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2303 {
2304 	mm_segment_t oldfs = get_fs();
2305 	int err;
2306 
2307 	set_fs(KERNEL_DS);
2308 	err = sock->ops->ioctl(sock, cmd, arg);
2309 	set_fs(oldfs);
2310 
2311 	return err;
2312 }
2313 
2314 /* ABI emulation layers need these two */
2315 EXPORT_SYMBOL(move_addr_to_kernel);
2316 EXPORT_SYMBOL(move_addr_to_user);
2317 EXPORT_SYMBOL(sock_create);
2318 EXPORT_SYMBOL(sock_create_kern);
2319 EXPORT_SYMBOL(sock_create_lite);
2320 EXPORT_SYMBOL(sock_map_fd);
2321 EXPORT_SYMBOL(sock_recvmsg);
2322 EXPORT_SYMBOL(sock_register);
2323 EXPORT_SYMBOL(sock_release);
2324 EXPORT_SYMBOL(sock_sendmsg);
2325 EXPORT_SYMBOL(sock_unregister);
2326 EXPORT_SYMBOL(sock_wake_async);
2327 EXPORT_SYMBOL(sockfd_lookup);
2328 EXPORT_SYMBOL(kernel_sendmsg);
2329 EXPORT_SYMBOL(kernel_recvmsg);
2330 EXPORT_SYMBOL(kernel_bind);
2331 EXPORT_SYMBOL(kernel_listen);
2332 EXPORT_SYMBOL(kernel_accept);
2333 EXPORT_SYMBOL(kernel_connect);
2334 EXPORT_SYMBOL(kernel_getsockname);
2335 EXPORT_SYMBOL(kernel_getpeername);
2336 EXPORT_SYMBOL(kernel_getsockopt);
2337 EXPORT_SYMBOL(kernel_setsockopt);
2338 EXPORT_SYMBOL(kernel_sendpage);
2339 EXPORT_SYMBOL(kernel_sock_ioctl);
2340