1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/rcupdate.h> 67 #include <linux/netdevice.h> 68 #include <linux/proc_fs.h> 69 #include <linux/seq_file.h> 70 #include <linux/mutex.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 88 #include <asm/uaccess.h> 89 #include <asm/unistd.h> 90 91 #include <net/compat.h> 92 93 #include <net/sock.h> 94 #include <linux/netfilter.h> 95 96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 98 unsigned long nr_segs, loff_t pos); 99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 100 unsigned long nr_segs, loff_t pos); 101 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 102 103 static int sock_close(struct inode *inode, struct file *file); 104 static unsigned int sock_poll(struct file *file, 105 struct poll_table_struct *wait); 106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 107 #ifdef CONFIG_COMPAT 108 static long compat_sock_ioctl(struct file *file, 109 unsigned int cmd, unsigned long arg); 110 #endif 111 static int sock_fasync(int fd, struct file *filp, int on); 112 static ssize_t sock_sendpage(struct file *file, struct page *page, 113 int offset, size_t size, loff_t *ppos, int more); 114 115 /* 116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 117 * in the operation structures but are done directly via the socketcall() multiplexor. 118 */ 119 120 static const struct file_operations socket_file_ops = { 121 .owner = THIS_MODULE, 122 .llseek = no_llseek, 123 .aio_read = sock_aio_read, 124 .aio_write = sock_aio_write, 125 .poll = sock_poll, 126 .unlocked_ioctl = sock_ioctl, 127 #ifdef CONFIG_COMPAT 128 .compat_ioctl = compat_sock_ioctl, 129 #endif 130 .mmap = sock_mmap, 131 .open = sock_no_open, /* special open code to disallow open via /proc */ 132 .release = sock_close, 133 .fasync = sock_fasync, 134 .sendpage = sock_sendpage, 135 .splice_write = generic_splice_sendpage, 136 }; 137 138 /* 139 * The protocol list. Each protocol is registered in here. 140 */ 141 142 static DEFINE_SPINLOCK(net_family_lock); 143 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 144 145 /* 146 * Statistics counters of the socket lists 147 */ 148 149 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 150 151 /* 152 * Support routines. 153 * Move socket addresses back and forth across the kernel/user 154 * divide and look after the messy bits. 155 */ 156 157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 158 16 for IP, 16 for IPX, 159 24 for IPv6, 160 about 80 for AX.25 161 must be at least one bigger than 162 the AF_UNIX size (see net/unix/af_unix.c 163 :unix_mkname()). 164 */ 165 166 /** 167 * move_addr_to_kernel - copy a socket address into kernel space 168 * @uaddr: Address in user space 169 * @kaddr: Address in kernel space 170 * @ulen: Length in user space 171 * 172 * The address is copied into kernel space. If the provided address is 173 * too long an error code of -EINVAL is returned. If the copy gives 174 * invalid addresses -EFAULT is returned. On a success 0 is returned. 175 */ 176 177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 178 { 179 if (ulen < 0 || ulen > MAX_SOCK_ADDR) 180 return -EINVAL; 181 if (ulen == 0) 182 return 0; 183 if (copy_from_user(kaddr, uaddr, ulen)) 184 return -EFAULT; 185 return audit_sockaddr(ulen, kaddr); 186 } 187 188 /** 189 * move_addr_to_user - copy an address to user space 190 * @kaddr: kernel space address 191 * @klen: length of address in kernel 192 * @uaddr: user space address 193 * @ulen: pointer to user length field 194 * 195 * The value pointed to by ulen on entry is the buffer length available. 196 * This is overwritten with the buffer space used. -EINVAL is returned 197 * if an overlong buffer is specified or a negative buffer size. -EFAULT 198 * is returned if either the buffer or the length field are not 199 * accessible. 200 * After copying the data up to the limit the user specifies, the true 201 * length of the data is written over the length limit the user 202 * specified. Zero is returned for a success. 203 */ 204 205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, 206 int __user *ulen) 207 { 208 int err; 209 int len; 210 211 err = get_user(len, ulen); 212 if (err) 213 return err; 214 if (len > klen) 215 len = klen; 216 if (len < 0 || len > MAX_SOCK_ADDR) 217 return -EINVAL; 218 if (len) { 219 if (audit_sockaddr(klen, kaddr)) 220 return -ENOMEM; 221 if (copy_to_user(uaddr, kaddr, len)) 222 return -EFAULT; 223 } 224 /* 225 * "fromlen shall refer to the value before truncation.." 226 * 1003.1g 227 */ 228 return __put_user(klen, ulen); 229 } 230 231 #define SOCKFS_MAGIC 0x534F434B 232 233 static struct kmem_cache *sock_inode_cachep __read_mostly; 234 235 static struct inode *sock_alloc_inode(struct super_block *sb) 236 { 237 struct socket_alloc *ei; 238 239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 240 if (!ei) 241 return NULL; 242 init_waitqueue_head(&ei->socket.wait); 243 244 ei->socket.fasync_list = NULL; 245 ei->socket.state = SS_UNCONNECTED; 246 ei->socket.flags = 0; 247 ei->socket.ops = NULL; 248 ei->socket.sk = NULL; 249 ei->socket.file = NULL; 250 251 return &ei->vfs_inode; 252 } 253 254 static void sock_destroy_inode(struct inode *inode) 255 { 256 kmem_cache_free(sock_inode_cachep, 257 container_of(inode, struct socket_alloc, vfs_inode)); 258 } 259 260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags) 261 { 262 struct socket_alloc *ei = (struct socket_alloc *)foo; 263 264 if (flags & SLAB_CTOR_CONSTRUCTOR) 265 inode_init_once(&ei->vfs_inode); 266 } 267 268 static int init_inodecache(void) 269 { 270 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 271 sizeof(struct socket_alloc), 272 0, 273 (SLAB_HWCACHE_ALIGN | 274 SLAB_RECLAIM_ACCOUNT | 275 SLAB_MEM_SPREAD), 276 init_once, 277 NULL); 278 if (sock_inode_cachep == NULL) 279 return -ENOMEM; 280 return 0; 281 } 282 283 static struct super_operations sockfs_ops = { 284 .alloc_inode = sock_alloc_inode, 285 .destroy_inode =sock_destroy_inode, 286 .statfs = simple_statfs, 287 }; 288 289 static int sockfs_get_sb(struct file_system_type *fs_type, 290 int flags, const char *dev_name, void *data, 291 struct vfsmount *mnt) 292 { 293 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 294 mnt); 295 } 296 297 static struct vfsmount *sock_mnt __read_mostly; 298 299 static struct file_system_type sock_fs_type = { 300 .name = "sockfs", 301 .get_sb = sockfs_get_sb, 302 .kill_sb = kill_anon_super, 303 }; 304 305 static int sockfs_delete_dentry(struct dentry *dentry) 306 { 307 /* 308 * At creation time, we pretended this dentry was hashed 309 * (by clearing DCACHE_UNHASHED bit in d_flags) 310 * At delete time, we restore the truth : not hashed. 311 * (so that dput() can proceed correctly) 312 */ 313 dentry->d_flags |= DCACHE_UNHASHED; 314 return 0; 315 } 316 static struct dentry_operations sockfs_dentry_operations = { 317 .d_delete = sockfs_delete_dentry, 318 }; 319 320 /* 321 * Obtains the first available file descriptor and sets it up for use. 322 * 323 * These functions create file structures and maps them to fd space 324 * of the current process. On success it returns file descriptor 325 * and file struct implicitly stored in sock->file. 326 * Note that another thread may close file descriptor before we return 327 * from this function. We use the fact that now we do not refer 328 * to socket after mapping. If one day we will need it, this 329 * function will increment ref. count on file by 1. 330 * 331 * In any case returned fd MAY BE not valid! 332 * This race condition is unavoidable 333 * with shared fd spaces, we cannot solve it inside kernel, 334 * but we take care of internal coherence yet. 335 */ 336 337 static int sock_alloc_fd(struct file **filep) 338 { 339 int fd; 340 341 fd = get_unused_fd(); 342 if (likely(fd >= 0)) { 343 struct file *file = get_empty_filp(); 344 345 *filep = file; 346 if (unlikely(!file)) { 347 put_unused_fd(fd); 348 return -ENFILE; 349 } 350 } else 351 *filep = NULL; 352 return fd; 353 } 354 355 static int sock_attach_fd(struct socket *sock, struct file *file) 356 { 357 struct qstr this; 358 char name[32]; 359 360 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino); 361 this.name = name; 362 this.hash = 0; 363 364 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); 365 if (unlikely(!file->f_path.dentry)) 366 return -ENOMEM; 367 368 file->f_path.dentry->d_op = &sockfs_dentry_operations; 369 /* 370 * We dont want to push this dentry into global dentry hash table. 371 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 372 * This permits a working /proc/$pid/fd/XXX on sockets 373 */ 374 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED; 375 d_instantiate(file->f_path.dentry, SOCK_INODE(sock)); 376 file->f_path.mnt = mntget(sock_mnt); 377 file->f_mapping = file->f_path.dentry->d_inode->i_mapping; 378 379 sock->file = file; 380 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 381 file->f_mode = FMODE_READ | FMODE_WRITE; 382 file->f_flags = O_RDWR; 383 file->f_pos = 0; 384 file->private_data = sock; 385 386 return 0; 387 } 388 389 int sock_map_fd(struct socket *sock) 390 { 391 struct file *newfile; 392 int fd = sock_alloc_fd(&newfile); 393 394 if (likely(fd >= 0)) { 395 int err = sock_attach_fd(sock, newfile); 396 397 if (unlikely(err < 0)) { 398 put_filp(newfile); 399 put_unused_fd(fd); 400 return err; 401 } 402 fd_install(fd, newfile); 403 } 404 return fd; 405 } 406 407 static struct socket *sock_from_file(struct file *file, int *err) 408 { 409 if (file->f_op == &socket_file_ops) 410 return file->private_data; /* set in sock_map_fd */ 411 412 *err = -ENOTSOCK; 413 return NULL; 414 } 415 416 /** 417 * sockfd_lookup - Go from a file number to its socket slot 418 * @fd: file handle 419 * @err: pointer to an error code return 420 * 421 * The file handle passed in is locked and the socket it is bound 422 * too is returned. If an error occurs the err pointer is overwritten 423 * with a negative errno code and NULL is returned. The function checks 424 * for both invalid handles and passing a handle which is not a socket. 425 * 426 * On a success the socket object pointer is returned. 427 */ 428 429 struct socket *sockfd_lookup(int fd, int *err) 430 { 431 struct file *file; 432 struct socket *sock; 433 434 file = fget(fd); 435 if (!file) { 436 *err = -EBADF; 437 return NULL; 438 } 439 440 sock = sock_from_file(file, err); 441 if (!sock) 442 fput(file); 443 return sock; 444 } 445 446 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 447 { 448 struct file *file; 449 struct socket *sock; 450 451 *err = -EBADF; 452 file = fget_light(fd, fput_needed); 453 if (file) { 454 sock = sock_from_file(file, err); 455 if (sock) 456 return sock; 457 fput_light(file, *fput_needed); 458 } 459 return NULL; 460 } 461 462 /** 463 * sock_alloc - allocate a socket 464 * 465 * Allocate a new inode and socket object. The two are bound together 466 * and initialised. The socket is then returned. If we are out of inodes 467 * NULL is returned. 468 */ 469 470 static struct socket *sock_alloc(void) 471 { 472 struct inode *inode; 473 struct socket *sock; 474 475 inode = new_inode(sock_mnt->mnt_sb); 476 if (!inode) 477 return NULL; 478 479 sock = SOCKET_I(inode); 480 481 inode->i_mode = S_IFSOCK | S_IRWXUGO; 482 inode->i_uid = current->fsuid; 483 inode->i_gid = current->fsgid; 484 485 get_cpu_var(sockets_in_use)++; 486 put_cpu_var(sockets_in_use); 487 return sock; 488 } 489 490 /* 491 * In theory you can't get an open on this inode, but /proc provides 492 * a back door. Remember to keep it shut otherwise you'll let the 493 * creepy crawlies in. 494 */ 495 496 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 497 { 498 return -ENXIO; 499 } 500 501 const struct file_operations bad_sock_fops = { 502 .owner = THIS_MODULE, 503 .open = sock_no_open, 504 }; 505 506 /** 507 * sock_release - close a socket 508 * @sock: socket to close 509 * 510 * The socket is released from the protocol stack if it has a release 511 * callback, and the inode is then released if the socket is bound to 512 * an inode not a file. 513 */ 514 515 void sock_release(struct socket *sock) 516 { 517 if (sock->ops) { 518 struct module *owner = sock->ops->owner; 519 520 sock->ops->release(sock); 521 sock->ops = NULL; 522 module_put(owner); 523 } 524 525 if (sock->fasync_list) 526 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 527 528 get_cpu_var(sockets_in_use)--; 529 put_cpu_var(sockets_in_use); 530 if (!sock->file) { 531 iput(SOCK_INODE(sock)); 532 return; 533 } 534 sock->file = NULL; 535 } 536 537 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 538 struct msghdr *msg, size_t size) 539 { 540 struct sock_iocb *si = kiocb_to_siocb(iocb); 541 int err; 542 543 si->sock = sock; 544 si->scm = NULL; 545 si->msg = msg; 546 si->size = size; 547 548 err = security_socket_sendmsg(sock, msg, size); 549 if (err) 550 return err; 551 552 return sock->ops->sendmsg(iocb, sock, msg, size); 553 } 554 555 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 556 { 557 struct kiocb iocb; 558 struct sock_iocb siocb; 559 int ret; 560 561 init_sync_kiocb(&iocb, NULL); 562 iocb.private = &siocb; 563 ret = __sock_sendmsg(&iocb, sock, msg, size); 564 if (-EIOCBQUEUED == ret) 565 ret = wait_on_sync_kiocb(&iocb); 566 return ret; 567 } 568 569 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 570 struct kvec *vec, size_t num, size_t size) 571 { 572 mm_segment_t oldfs = get_fs(); 573 int result; 574 575 set_fs(KERNEL_DS); 576 /* 577 * the following is safe, since for compiler definitions of kvec and 578 * iovec are identical, yielding the same in-core layout and alignment 579 */ 580 msg->msg_iov = (struct iovec *)vec; 581 msg->msg_iovlen = num; 582 result = sock_sendmsg(sock, msg, size); 583 set_fs(oldfs); 584 return result; 585 } 586 587 /* 588 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 589 */ 590 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 591 struct sk_buff *skb) 592 { 593 ktime_t kt = skb->tstamp; 594 595 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 596 struct timeval tv; 597 /* Race occurred between timestamp enabling and packet 598 receiving. Fill in the current time for now. */ 599 if (kt.tv64 == 0) 600 kt = ktime_get_real(); 601 skb->tstamp = kt; 602 tv = ktime_to_timeval(kt); 603 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv); 604 } else { 605 struct timespec ts; 606 /* Race occurred between timestamp enabling and packet 607 receiving. Fill in the current time for now. */ 608 if (kt.tv64 == 0) 609 kt = ktime_get_real(); 610 skb->tstamp = kt; 611 ts = ktime_to_timespec(kt); 612 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts); 613 } 614 } 615 616 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 617 618 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 619 struct msghdr *msg, size_t size, int flags) 620 { 621 int err; 622 struct sock_iocb *si = kiocb_to_siocb(iocb); 623 624 si->sock = sock; 625 si->scm = NULL; 626 si->msg = msg; 627 si->size = size; 628 si->flags = flags; 629 630 err = security_socket_recvmsg(sock, msg, size, flags); 631 if (err) 632 return err; 633 634 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 635 } 636 637 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 638 size_t size, int flags) 639 { 640 struct kiocb iocb; 641 struct sock_iocb siocb; 642 int ret; 643 644 init_sync_kiocb(&iocb, NULL); 645 iocb.private = &siocb; 646 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 647 if (-EIOCBQUEUED == ret) 648 ret = wait_on_sync_kiocb(&iocb); 649 return ret; 650 } 651 652 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 653 struct kvec *vec, size_t num, size_t size, int flags) 654 { 655 mm_segment_t oldfs = get_fs(); 656 int result; 657 658 set_fs(KERNEL_DS); 659 /* 660 * the following is safe, since for compiler definitions of kvec and 661 * iovec are identical, yielding the same in-core layout and alignment 662 */ 663 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 664 result = sock_recvmsg(sock, msg, size, flags); 665 set_fs(oldfs); 666 return result; 667 } 668 669 static void sock_aio_dtor(struct kiocb *iocb) 670 { 671 kfree(iocb->private); 672 } 673 674 static ssize_t sock_sendpage(struct file *file, struct page *page, 675 int offset, size_t size, loff_t *ppos, int more) 676 { 677 struct socket *sock; 678 int flags; 679 680 sock = file->private_data; 681 682 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 683 if (more) 684 flags |= MSG_MORE; 685 686 return sock->ops->sendpage(sock, page, offset, size, flags); 687 } 688 689 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 690 struct sock_iocb *siocb) 691 { 692 if (!is_sync_kiocb(iocb)) { 693 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 694 if (!siocb) 695 return NULL; 696 iocb->ki_dtor = sock_aio_dtor; 697 } 698 699 siocb->kiocb = iocb; 700 iocb->private = siocb; 701 return siocb; 702 } 703 704 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 705 struct file *file, const struct iovec *iov, 706 unsigned long nr_segs) 707 { 708 struct socket *sock = file->private_data; 709 size_t size = 0; 710 int i; 711 712 for (i = 0; i < nr_segs; i++) 713 size += iov[i].iov_len; 714 715 msg->msg_name = NULL; 716 msg->msg_namelen = 0; 717 msg->msg_control = NULL; 718 msg->msg_controllen = 0; 719 msg->msg_iov = (struct iovec *)iov; 720 msg->msg_iovlen = nr_segs; 721 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 722 723 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 724 } 725 726 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 727 unsigned long nr_segs, loff_t pos) 728 { 729 struct sock_iocb siocb, *x; 730 731 if (pos != 0) 732 return -ESPIPE; 733 734 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 735 return 0; 736 737 738 x = alloc_sock_iocb(iocb, &siocb); 739 if (!x) 740 return -ENOMEM; 741 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 742 } 743 744 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 745 struct file *file, const struct iovec *iov, 746 unsigned long nr_segs) 747 { 748 struct socket *sock = file->private_data; 749 size_t size = 0; 750 int i; 751 752 for (i = 0; i < nr_segs; i++) 753 size += iov[i].iov_len; 754 755 msg->msg_name = NULL; 756 msg->msg_namelen = 0; 757 msg->msg_control = NULL; 758 msg->msg_controllen = 0; 759 msg->msg_iov = (struct iovec *)iov; 760 msg->msg_iovlen = nr_segs; 761 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 762 if (sock->type == SOCK_SEQPACKET) 763 msg->msg_flags |= MSG_EOR; 764 765 return __sock_sendmsg(iocb, sock, msg, size); 766 } 767 768 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 769 unsigned long nr_segs, loff_t pos) 770 { 771 struct sock_iocb siocb, *x; 772 773 if (pos != 0) 774 return -ESPIPE; 775 776 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 777 return 0; 778 779 x = alloc_sock_iocb(iocb, &siocb); 780 if (!x) 781 return -ENOMEM; 782 783 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 784 } 785 786 /* 787 * Atomic setting of ioctl hooks to avoid race 788 * with module unload. 789 */ 790 791 static DEFINE_MUTEX(br_ioctl_mutex); 792 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL; 793 794 void brioctl_set(int (*hook) (unsigned int, void __user *)) 795 { 796 mutex_lock(&br_ioctl_mutex); 797 br_ioctl_hook = hook; 798 mutex_unlock(&br_ioctl_mutex); 799 } 800 801 EXPORT_SYMBOL(brioctl_set); 802 803 static DEFINE_MUTEX(vlan_ioctl_mutex); 804 static int (*vlan_ioctl_hook) (void __user *arg); 805 806 void vlan_ioctl_set(int (*hook) (void __user *)) 807 { 808 mutex_lock(&vlan_ioctl_mutex); 809 vlan_ioctl_hook = hook; 810 mutex_unlock(&vlan_ioctl_mutex); 811 } 812 813 EXPORT_SYMBOL(vlan_ioctl_set); 814 815 static DEFINE_MUTEX(dlci_ioctl_mutex); 816 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 817 818 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 819 { 820 mutex_lock(&dlci_ioctl_mutex); 821 dlci_ioctl_hook = hook; 822 mutex_unlock(&dlci_ioctl_mutex); 823 } 824 825 EXPORT_SYMBOL(dlci_ioctl_set); 826 827 /* 828 * With an ioctl, arg may well be a user mode pointer, but we don't know 829 * what to do with it - that's up to the protocol still. 830 */ 831 832 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 833 { 834 struct socket *sock; 835 void __user *argp = (void __user *)arg; 836 int pid, err; 837 838 sock = file->private_data; 839 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 840 err = dev_ioctl(cmd, argp); 841 } else 842 #ifdef CONFIG_WIRELESS_EXT 843 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 844 err = dev_ioctl(cmd, argp); 845 } else 846 #endif /* CONFIG_WIRELESS_EXT */ 847 switch (cmd) { 848 case FIOSETOWN: 849 case SIOCSPGRP: 850 err = -EFAULT; 851 if (get_user(pid, (int __user *)argp)) 852 break; 853 err = f_setown(sock->file, pid, 1); 854 break; 855 case FIOGETOWN: 856 case SIOCGPGRP: 857 err = put_user(f_getown(sock->file), 858 (int __user *)argp); 859 break; 860 case SIOCGIFBR: 861 case SIOCSIFBR: 862 case SIOCBRADDBR: 863 case SIOCBRDELBR: 864 err = -ENOPKG; 865 if (!br_ioctl_hook) 866 request_module("bridge"); 867 868 mutex_lock(&br_ioctl_mutex); 869 if (br_ioctl_hook) 870 err = br_ioctl_hook(cmd, argp); 871 mutex_unlock(&br_ioctl_mutex); 872 break; 873 case SIOCGIFVLAN: 874 case SIOCSIFVLAN: 875 err = -ENOPKG; 876 if (!vlan_ioctl_hook) 877 request_module("8021q"); 878 879 mutex_lock(&vlan_ioctl_mutex); 880 if (vlan_ioctl_hook) 881 err = vlan_ioctl_hook(argp); 882 mutex_unlock(&vlan_ioctl_mutex); 883 break; 884 case SIOCADDDLCI: 885 case SIOCDELDLCI: 886 err = -ENOPKG; 887 if (!dlci_ioctl_hook) 888 request_module("dlci"); 889 890 if (dlci_ioctl_hook) { 891 mutex_lock(&dlci_ioctl_mutex); 892 err = dlci_ioctl_hook(cmd, argp); 893 mutex_unlock(&dlci_ioctl_mutex); 894 } 895 break; 896 default: 897 err = sock->ops->ioctl(sock, cmd, arg); 898 899 /* 900 * If this ioctl is unknown try to hand it down 901 * to the NIC driver. 902 */ 903 if (err == -ENOIOCTLCMD) 904 err = dev_ioctl(cmd, argp); 905 break; 906 } 907 return err; 908 } 909 910 int sock_create_lite(int family, int type, int protocol, struct socket **res) 911 { 912 int err; 913 struct socket *sock = NULL; 914 915 err = security_socket_create(family, type, protocol, 1); 916 if (err) 917 goto out; 918 919 sock = sock_alloc(); 920 if (!sock) { 921 err = -ENOMEM; 922 goto out; 923 } 924 925 sock->type = type; 926 err = security_socket_post_create(sock, family, type, protocol, 1); 927 if (err) 928 goto out_release; 929 930 out: 931 *res = sock; 932 return err; 933 out_release: 934 sock_release(sock); 935 sock = NULL; 936 goto out; 937 } 938 939 /* No kernel lock held - perfect */ 940 static unsigned int sock_poll(struct file *file, poll_table *wait) 941 { 942 struct socket *sock; 943 944 /* 945 * We can't return errors to poll, so it's either yes or no. 946 */ 947 sock = file->private_data; 948 return sock->ops->poll(file, sock, wait); 949 } 950 951 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 952 { 953 struct socket *sock = file->private_data; 954 955 return sock->ops->mmap(file, sock, vma); 956 } 957 958 static int sock_close(struct inode *inode, struct file *filp) 959 { 960 /* 961 * It was possible the inode is NULL we were 962 * closing an unfinished socket. 963 */ 964 965 if (!inode) { 966 printk(KERN_DEBUG "sock_close: NULL inode\n"); 967 return 0; 968 } 969 sock_fasync(-1, filp, 0); 970 sock_release(SOCKET_I(inode)); 971 return 0; 972 } 973 974 /* 975 * Update the socket async list 976 * 977 * Fasync_list locking strategy. 978 * 979 * 1. fasync_list is modified only under process context socket lock 980 * i.e. under semaphore. 981 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 982 * or under socket lock. 983 * 3. fasync_list can be used from softirq context, so that 984 * modification under socket lock have to be enhanced with 985 * write_lock_bh(&sk->sk_callback_lock). 986 * --ANK (990710) 987 */ 988 989 static int sock_fasync(int fd, struct file *filp, int on) 990 { 991 struct fasync_struct *fa, *fna = NULL, **prev; 992 struct socket *sock; 993 struct sock *sk; 994 995 if (on) { 996 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 997 if (fna == NULL) 998 return -ENOMEM; 999 } 1000 1001 sock = filp->private_data; 1002 1003 sk = sock->sk; 1004 if (sk == NULL) { 1005 kfree(fna); 1006 return -EINVAL; 1007 } 1008 1009 lock_sock(sk); 1010 1011 prev = &(sock->fasync_list); 1012 1013 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 1014 if (fa->fa_file == filp) 1015 break; 1016 1017 if (on) { 1018 if (fa != NULL) { 1019 write_lock_bh(&sk->sk_callback_lock); 1020 fa->fa_fd = fd; 1021 write_unlock_bh(&sk->sk_callback_lock); 1022 1023 kfree(fna); 1024 goto out; 1025 } 1026 fna->fa_file = filp; 1027 fna->fa_fd = fd; 1028 fna->magic = FASYNC_MAGIC; 1029 fna->fa_next = sock->fasync_list; 1030 write_lock_bh(&sk->sk_callback_lock); 1031 sock->fasync_list = fna; 1032 write_unlock_bh(&sk->sk_callback_lock); 1033 } else { 1034 if (fa != NULL) { 1035 write_lock_bh(&sk->sk_callback_lock); 1036 *prev = fa->fa_next; 1037 write_unlock_bh(&sk->sk_callback_lock); 1038 kfree(fa); 1039 } 1040 } 1041 1042 out: 1043 release_sock(sock->sk); 1044 return 0; 1045 } 1046 1047 /* This function may be called only under socket lock or callback_lock */ 1048 1049 int sock_wake_async(struct socket *sock, int how, int band) 1050 { 1051 if (!sock || !sock->fasync_list) 1052 return -1; 1053 switch (how) { 1054 case 1: 1055 1056 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1057 break; 1058 goto call_kill; 1059 case 2: 1060 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1061 break; 1062 /* fall through */ 1063 case 0: 1064 call_kill: 1065 __kill_fasync(sock->fasync_list, SIGIO, band); 1066 break; 1067 case 3: 1068 __kill_fasync(sock->fasync_list, SIGURG, band); 1069 } 1070 return 0; 1071 } 1072 1073 static int __sock_create(int family, int type, int protocol, 1074 struct socket **res, int kern) 1075 { 1076 int err; 1077 struct socket *sock; 1078 const struct net_proto_family *pf; 1079 1080 /* 1081 * Check protocol is in range 1082 */ 1083 if (family < 0 || family >= NPROTO) 1084 return -EAFNOSUPPORT; 1085 if (type < 0 || type >= SOCK_MAX) 1086 return -EINVAL; 1087 1088 /* Compatibility. 1089 1090 This uglymoron is moved from INET layer to here to avoid 1091 deadlock in module load. 1092 */ 1093 if (family == PF_INET && type == SOCK_PACKET) { 1094 static int warned; 1095 if (!warned) { 1096 warned = 1; 1097 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1098 current->comm); 1099 } 1100 family = PF_PACKET; 1101 } 1102 1103 err = security_socket_create(family, type, protocol, kern); 1104 if (err) 1105 return err; 1106 1107 /* 1108 * Allocate the socket and allow the family to set things up. if 1109 * the protocol is 0, the family is instructed to select an appropriate 1110 * default. 1111 */ 1112 sock = sock_alloc(); 1113 if (!sock) { 1114 if (net_ratelimit()) 1115 printk(KERN_WARNING "socket: no more sockets\n"); 1116 return -ENFILE; /* Not exactly a match, but its the 1117 closest posix thing */ 1118 } 1119 1120 sock->type = type; 1121 1122 #if defined(CONFIG_KMOD) 1123 /* Attempt to load a protocol module if the find failed. 1124 * 1125 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1126 * requested real, full-featured networking support upon configuration. 1127 * Otherwise module support will break! 1128 */ 1129 if (net_families[family] == NULL) 1130 request_module("net-pf-%d", family); 1131 #endif 1132 1133 rcu_read_lock(); 1134 pf = rcu_dereference(net_families[family]); 1135 err = -EAFNOSUPPORT; 1136 if (!pf) 1137 goto out_release; 1138 1139 /* 1140 * We will call the ->create function, that possibly is in a loadable 1141 * module, so we have to bump that loadable module refcnt first. 1142 */ 1143 if (!try_module_get(pf->owner)) 1144 goto out_release; 1145 1146 /* Now protected by module ref count */ 1147 rcu_read_unlock(); 1148 1149 err = pf->create(sock, protocol); 1150 if (err < 0) 1151 goto out_module_put; 1152 1153 /* 1154 * Now to bump the refcnt of the [loadable] module that owns this 1155 * socket at sock_release time we decrement its refcnt. 1156 */ 1157 if (!try_module_get(sock->ops->owner)) 1158 goto out_module_busy; 1159 1160 /* 1161 * Now that we're done with the ->create function, the [loadable] 1162 * module can have its refcnt decremented 1163 */ 1164 module_put(pf->owner); 1165 err = security_socket_post_create(sock, family, type, protocol, kern); 1166 if (err) 1167 goto out_release; 1168 *res = sock; 1169 1170 return 0; 1171 1172 out_module_busy: 1173 err = -EAFNOSUPPORT; 1174 out_module_put: 1175 sock->ops = NULL; 1176 module_put(pf->owner); 1177 out_sock_release: 1178 sock_release(sock); 1179 return err; 1180 1181 out_release: 1182 rcu_read_unlock(); 1183 goto out_sock_release; 1184 } 1185 1186 int sock_create(int family, int type, int protocol, struct socket **res) 1187 { 1188 return __sock_create(family, type, protocol, res, 0); 1189 } 1190 1191 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1192 { 1193 return __sock_create(family, type, protocol, res, 1); 1194 } 1195 1196 asmlinkage long sys_socket(int family, int type, int protocol) 1197 { 1198 int retval; 1199 struct socket *sock; 1200 1201 retval = sock_create(family, type, protocol, &sock); 1202 if (retval < 0) 1203 goto out; 1204 1205 retval = sock_map_fd(sock); 1206 if (retval < 0) 1207 goto out_release; 1208 1209 out: 1210 /* It may be already another descriptor 8) Not kernel problem. */ 1211 return retval; 1212 1213 out_release: 1214 sock_release(sock); 1215 return retval; 1216 } 1217 1218 /* 1219 * Create a pair of connected sockets. 1220 */ 1221 1222 asmlinkage long sys_socketpair(int family, int type, int protocol, 1223 int __user *usockvec) 1224 { 1225 struct socket *sock1, *sock2; 1226 int fd1, fd2, err; 1227 struct file *newfile1, *newfile2; 1228 1229 /* 1230 * Obtain the first socket and check if the underlying protocol 1231 * supports the socketpair call. 1232 */ 1233 1234 err = sock_create(family, type, protocol, &sock1); 1235 if (err < 0) 1236 goto out; 1237 1238 err = sock_create(family, type, protocol, &sock2); 1239 if (err < 0) 1240 goto out_release_1; 1241 1242 err = sock1->ops->socketpair(sock1, sock2); 1243 if (err < 0) 1244 goto out_release_both; 1245 1246 fd1 = sock_alloc_fd(&newfile1); 1247 if (unlikely(fd1 < 0)) 1248 goto out_release_both; 1249 1250 fd2 = sock_alloc_fd(&newfile2); 1251 if (unlikely(fd2 < 0)) { 1252 put_filp(newfile1); 1253 put_unused_fd(fd1); 1254 goto out_release_both; 1255 } 1256 1257 err = sock_attach_fd(sock1, newfile1); 1258 if (unlikely(err < 0)) { 1259 goto out_fd2; 1260 } 1261 1262 err = sock_attach_fd(sock2, newfile2); 1263 if (unlikely(err < 0)) { 1264 fput(newfile1); 1265 goto out_fd1; 1266 } 1267 1268 err = audit_fd_pair(fd1, fd2); 1269 if (err < 0) { 1270 fput(newfile1); 1271 fput(newfile2); 1272 goto out_fd; 1273 } 1274 1275 fd_install(fd1, newfile1); 1276 fd_install(fd2, newfile2); 1277 /* fd1 and fd2 may be already another descriptors. 1278 * Not kernel problem. 1279 */ 1280 1281 err = put_user(fd1, &usockvec[0]); 1282 if (!err) 1283 err = put_user(fd2, &usockvec[1]); 1284 if (!err) 1285 return 0; 1286 1287 sys_close(fd2); 1288 sys_close(fd1); 1289 return err; 1290 1291 out_release_both: 1292 sock_release(sock2); 1293 out_release_1: 1294 sock_release(sock1); 1295 out: 1296 return err; 1297 1298 out_fd2: 1299 put_filp(newfile1); 1300 sock_release(sock1); 1301 out_fd1: 1302 put_filp(newfile2); 1303 sock_release(sock2); 1304 out_fd: 1305 put_unused_fd(fd1); 1306 put_unused_fd(fd2); 1307 goto out; 1308 } 1309 1310 /* 1311 * Bind a name to a socket. Nothing much to do here since it's 1312 * the protocol's responsibility to handle the local address. 1313 * 1314 * We move the socket address to kernel space before we call 1315 * the protocol layer (having also checked the address is ok). 1316 */ 1317 1318 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1319 { 1320 struct socket *sock; 1321 char address[MAX_SOCK_ADDR]; 1322 int err, fput_needed; 1323 1324 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1325 if (sock) { 1326 err = move_addr_to_kernel(umyaddr, addrlen, address); 1327 if (err >= 0) { 1328 err = security_socket_bind(sock, 1329 (struct sockaddr *)address, 1330 addrlen); 1331 if (!err) 1332 err = sock->ops->bind(sock, 1333 (struct sockaddr *) 1334 address, addrlen); 1335 } 1336 fput_light(sock->file, fput_needed); 1337 } 1338 return err; 1339 } 1340 1341 /* 1342 * Perform a listen. Basically, we allow the protocol to do anything 1343 * necessary for a listen, and if that works, we mark the socket as 1344 * ready for listening. 1345 */ 1346 1347 int sysctl_somaxconn __read_mostly = SOMAXCONN; 1348 1349 asmlinkage long sys_listen(int fd, int backlog) 1350 { 1351 struct socket *sock; 1352 int err, fput_needed; 1353 1354 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1355 if (sock) { 1356 if ((unsigned)backlog > sysctl_somaxconn) 1357 backlog = sysctl_somaxconn; 1358 1359 err = security_socket_listen(sock, backlog); 1360 if (!err) 1361 err = sock->ops->listen(sock, backlog); 1362 1363 fput_light(sock->file, fput_needed); 1364 } 1365 return err; 1366 } 1367 1368 /* 1369 * For accept, we attempt to create a new socket, set up the link 1370 * with the client, wake up the client, then return the new 1371 * connected fd. We collect the address of the connector in kernel 1372 * space and move it to user at the very end. This is unclean because 1373 * we open the socket then return an error. 1374 * 1375 * 1003.1g adds the ability to recvmsg() to query connection pending 1376 * status to recvmsg. We need to add that support in a way thats 1377 * clean when we restucture accept also. 1378 */ 1379 1380 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1381 int __user *upeer_addrlen) 1382 { 1383 struct socket *sock, *newsock; 1384 struct file *newfile; 1385 int err, len, newfd, fput_needed; 1386 char address[MAX_SOCK_ADDR]; 1387 1388 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1389 if (!sock) 1390 goto out; 1391 1392 err = -ENFILE; 1393 if (!(newsock = sock_alloc())) 1394 goto out_put; 1395 1396 newsock->type = sock->type; 1397 newsock->ops = sock->ops; 1398 1399 /* 1400 * We don't need try_module_get here, as the listening socket (sock) 1401 * has the protocol module (sock->ops->owner) held. 1402 */ 1403 __module_get(newsock->ops->owner); 1404 1405 newfd = sock_alloc_fd(&newfile); 1406 if (unlikely(newfd < 0)) { 1407 err = newfd; 1408 sock_release(newsock); 1409 goto out_put; 1410 } 1411 1412 err = sock_attach_fd(newsock, newfile); 1413 if (err < 0) 1414 goto out_fd_simple; 1415 1416 err = security_socket_accept(sock, newsock); 1417 if (err) 1418 goto out_fd; 1419 1420 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1421 if (err < 0) 1422 goto out_fd; 1423 1424 if (upeer_sockaddr) { 1425 if (newsock->ops->getname(newsock, (struct sockaddr *)address, 1426 &len, 2) < 0) { 1427 err = -ECONNABORTED; 1428 goto out_fd; 1429 } 1430 err = move_addr_to_user(address, len, upeer_sockaddr, 1431 upeer_addrlen); 1432 if (err < 0) 1433 goto out_fd; 1434 } 1435 1436 /* File flags are not inherited via accept() unlike another OSes. */ 1437 1438 fd_install(newfd, newfile); 1439 err = newfd; 1440 1441 security_socket_post_accept(sock, newsock); 1442 1443 out_put: 1444 fput_light(sock->file, fput_needed); 1445 out: 1446 return err; 1447 out_fd_simple: 1448 sock_release(newsock); 1449 put_filp(newfile); 1450 put_unused_fd(newfd); 1451 goto out_put; 1452 out_fd: 1453 fput(newfile); 1454 put_unused_fd(newfd); 1455 goto out_put; 1456 } 1457 1458 /* 1459 * Attempt to connect to a socket with the server address. The address 1460 * is in user space so we verify it is OK and move it to kernel space. 1461 * 1462 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1463 * break bindings 1464 * 1465 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1466 * other SEQPACKET protocols that take time to connect() as it doesn't 1467 * include the -EINPROGRESS status for such sockets. 1468 */ 1469 1470 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, 1471 int addrlen) 1472 { 1473 struct socket *sock; 1474 char address[MAX_SOCK_ADDR]; 1475 int err, fput_needed; 1476 1477 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1478 if (!sock) 1479 goto out; 1480 err = move_addr_to_kernel(uservaddr, addrlen, address); 1481 if (err < 0) 1482 goto out_put; 1483 1484 err = 1485 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1486 if (err) 1487 goto out_put; 1488 1489 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1490 sock->file->f_flags); 1491 out_put: 1492 fput_light(sock->file, fput_needed); 1493 out: 1494 return err; 1495 } 1496 1497 /* 1498 * Get the local address ('name') of a socket object. Move the obtained 1499 * name to user space. 1500 */ 1501 1502 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1503 int __user *usockaddr_len) 1504 { 1505 struct socket *sock; 1506 char address[MAX_SOCK_ADDR]; 1507 int len, err, fput_needed; 1508 1509 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1510 if (!sock) 1511 goto out; 1512 1513 err = security_socket_getsockname(sock); 1514 if (err) 1515 goto out_put; 1516 1517 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1518 if (err) 1519 goto out_put; 1520 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1521 1522 out_put: 1523 fput_light(sock->file, fput_needed); 1524 out: 1525 return err; 1526 } 1527 1528 /* 1529 * Get the remote address ('name') of a socket object. Move the obtained 1530 * name to user space. 1531 */ 1532 1533 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1534 int __user *usockaddr_len) 1535 { 1536 struct socket *sock; 1537 char address[MAX_SOCK_ADDR]; 1538 int len, err, fput_needed; 1539 1540 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1541 if (sock != NULL) { 1542 err = security_socket_getpeername(sock); 1543 if (err) { 1544 fput_light(sock->file, fput_needed); 1545 return err; 1546 } 1547 1548 err = 1549 sock->ops->getname(sock, (struct sockaddr *)address, &len, 1550 1); 1551 if (!err) 1552 err = move_addr_to_user(address, len, usockaddr, 1553 usockaddr_len); 1554 fput_light(sock->file, fput_needed); 1555 } 1556 return err; 1557 } 1558 1559 /* 1560 * Send a datagram to a given address. We move the address into kernel 1561 * space and check the user space data area is readable before invoking 1562 * the protocol. 1563 */ 1564 1565 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len, 1566 unsigned flags, struct sockaddr __user *addr, 1567 int addr_len) 1568 { 1569 struct socket *sock; 1570 char address[MAX_SOCK_ADDR]; 1571 int err; 1572 struct msghdr msg; 1573 struct iovec iov; 1574 int fput_needed; 1575 struct file *sock_file; 1576 1577 sock_file = fget_light(fd, &fput_needed); 1578 err = -EBADF; 1579 if (!sock_file) 1580 goto out; 1581 1582 sock = sock_from_file(sock_file, &err); 1583 if (!sock) 1584 goto out_put; 1585 iov.iov_base = buff; 1586 iov.iov_len = len; 1587 msg.msg_name = NULL; 1588 msg.msg_iov = &iov; 1589 msg.msg_iovlen = 1; 1590 msg.msg_control = NULL; 1591 msg.msg_controllen = 0; 1592 msg.msg_namelen = 0; 1593 if (addr) { 1594 err = move_addr_to_kernel(addr, addr_len, address); 1595 if (err < 0) 1596 goto out_put; 1597 msg.msg_name = address; 1598 msg.msg_namelen = addr_len; 1599 } 1600 if (sock->file->f_flags & O_NONBLOCK) 1601 flags |= MSG_DONTWAIT; 1602 msg.msg_flags = flags; 1603 err = sock_sendmsg(sock, &msg, len); 1604 1605 out_put: 1606 fput_light(sock_file, fput_needed); 1607 out: 1608 return err; 1609 } 1610 1611 /* 1612 * Send a datagram down a socket. 1613 */ 1614 1615 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags) 1616 { 1617 return sys_sendto(fd, buff, len, flags, NULL, 0); 1618 } 1619 1620 /* 1621 * Receive a frame from the socket and optionally record the address of the 1622 * sender. We verify the buffers are writable and if needed move the 1623 * sender address from kernel to user space. 1624 */ 1625 1626 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size, 1627 unsigned flags, struct sockaddr __user *addr, 1628 int __user *addr_len) 1629 { 1630 struct socket *sock; 1631 struct iovec iov; 1632 struct msghdr msg; 1633 char address[MAX_SOCK_ADDR]; 1634 int err, err2; 1635 struct file *sock_file; 1636 int fput_needed; 1637 1638 sock_file = fget_light(fd, &fput_needed); 1639 err = -EBADF; 1640 if (!sock_file) 1641 goto out; 1642 1643 sock = sock_from_file(sock_file, &err); 1644 if (!sock) 1645 goto out_put; 1646 1647 msg.msg_control = NULL; 1648 msg.msg_controllen = 0; 1649 msg.msg_iovlen = 1; 1650 msg.msg_iov = &iov; 1651 iov.iov_len = size; 1652 iov.iov_base = ubuf; 1653 msg.msg_name = address; 1654 msg.msg_namelen = MAX_SOCK_ADDR; 1655 if (sock->file->f_flags & O_NONBLOCK) 1656 flags |= MSG_DONTWAIT; 1657 err = sock_recvmsg(sock, &msg, size, flags); 1658 1659 if (err >= 0 && addr != NULL) { 1660 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1661 if (err2 < 0) 1662 err = err2; 1663 } 1664 out_put: 1665 fput_light(sock_file, fput_needed); 1666 out: 1667 return err; 1668 } 1669 1670 /* 1671 * Receive a datagram from a socket. 1672 */ 1673 1674 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1675 unsigned flags) 1676 { 1677 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1678 } 1679 1680 /* 1681 * Set a socket option. Because we don't know the option lengths we have 1682 * to pass the user mode parameter for the protocols to sort out. 1683 */ 1684 1685 asmlinkage long sys_setsockopt(int fd, int level, int optname, 1686 char __user *optval, int optlen) 1687 { 1688 int err, fput_needed; 1689 struct socket *sock; 1690 1691 if (optlen < 0) 1692 return -EINVAL; 1693 1694 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1695 if (sock != NULL) { 1696 err = security_socket_setsockopt(sock, level, optname); 1697 if (err) 1698 goto out_put; 1699 1700 if (level == SOL_SOCKET) 1701 err = 1702 sock_setsockopt(sock, level, optname, optval, 1703 optlen); 1704 else 1705 err = 1706 sock->ops->setsockopt(sock, level, optname, optval, 1707 optlen); 1708 out_put: 1709 fput_light(sock->file, fput_needed); 1710 } 1711 return err; 1712 } 1713 1714 /* 1715 * Get a socket option. Because we don't know the option lengths we have 1716 * to pass a user mode parameter for the protocols to sort out. 1717 */ 1718 1719 asmlinkage long sys_getsockopt(int fd, int level, int optname, 1720 char __user *optval, int __user *optlen) 1721 { 1722 int err, fput_needed; 1723 struct socket *sock; 1724 1725 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1726 if (sock != NULL) { 1727 err = security_socket_getsockopt(sock, level, optname); 1728 if (err) 1729 goto out_put; 1730 1731 if (level == SOL_SOCKET) 1732 err = 1733 sock_getsockopt(sock, level, optname, optval, 1734 optlen); 1735 else 1736 err = 1737 sock->ops->getsockopt(sock, level, optname, optval, 1738 optlen); 1739 out_put: 1740 fput_light(sock->file, fput_needed); 1741 } 1742 return err; 1743 } 1744 1745 /* 1746 * Shutdown a socket. 1747 */ 1748 1749 asmlinkage long sys_shutdown(int fd, int how) 1750 { 1751 int err, fput_needed; 1752 struct socket *sock; 1753 1754 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1755 if (sock != NULL) { 1756 err = security_socket_shutdown(sock, how); 1757 if (!err) 1758 err = sock->ops->shutdown(sock, how); 1759 fput_light(sock->file, fput_needed); 1760 } 1761 return err; 1762 } 1763 1764 /* A couple of helpful macros for getting the address of the 32/64 bit 1765 * fields which are the same type (int / unsigned) on our platforms. 1766 */ 1767 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1768 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1769 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1770 1771 /* 1772 * BSD sendmsg interface 1773 */ 1774 1775 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1776 { 1777 struct compat_msghdr __user *msg_compat = 1778 (struct compat_msghdr __user *)msg; 1779 struct socket *sock; 1780 char address[MAX_SOCK_ADDR]; 1781 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1782 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1783 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1784 /* 20 is size of ipv6_pktinfo */ 1785 unsigned char *ctl_buf = ctl; 1786 struct msghdr msg_sys; 1787 int err, ctl_len, iov_size, total_len; 1788 int fput_needed; 1789 1790 err = -EFAULT; 1791 if (MSG_CMSG_COMPAT & flags) { 1792 if (get_compat_msghdr(&msg_sys, msg_compat)) 1793 return -EFAULT; 1794 } 1795 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1796 return -EFAULT; 1797 1798 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1799 if (!sock) 1800 goto out; 1801 1802 /* do not move before msg_sys is valid */ 1803 err = -EMSGSIZE; 1804 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1805 goto out_put; 1806 1807 /* Check whether to allocate the iovec area */ 1808 err = -ENOMEM; 1809 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1810 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1811 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1812 if (!iov) 1813 goto out_put; 1814 } 1815 1816 /* This will also move the address data into kernel space */ 1817 if (MSG_CMSG_COMPAT & flags) { 1818 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1819 } else 1820 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1821 if (err < 0) 1822 goto out_freeiov; 1823 total_len = err; 1824 1825 err = -ENOBUFS; 1826 1827 if (msg_sys.msg_controllen > INT_MAX) 1828 goto out_freeiov; 1829 ctl_len = msg_sys.msg_controllen; 1830 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1831 err = 1832 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1833 sizeof(ctl)); 1834 if (err) 1835 goto out_freeiov; 1836 ctl_buf = msg_sys.msg_control; 1837 ctl_len = msg_sys.msg_controllen; 1838 } else if (ctl_len) { 1839 if (ctl_len > sizeof(ctl)) { 1840 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1841 if (ctl_buf == NULL) 1842 goto out_freeiov; 1843 } 1844 err = -EFAULT; 1845 /* 1846 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1847 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1848 * checking falls down on this. 1849 */ 1850 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1851 ctl_len)) 1852 goto out_freectl; 1853 msg_sys.msg_control = ctl_buf; 1854 } 1855 msg_sys.msg_flags = flags; 1856 1857 if (sock->file->f_flags & O_NONBLOCK) 1858 msg_sys.msg_flags |= MSG_DONTWAIT; 1859 err = sock_sendmsg(sock, &msg_sys, total_len); 1860 1861 out_freectl: 1862 if (ctl_buf != ctl) 1863 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1864 out_freeiov: 1865 if (iov != iovstack) 1866 sock_kfree_s(sock->sk, iov, iov_size); 1867 out_put: 1868 fput_light(sock->file, fput_needed); 1869 out: 1870 return err; 1871 } 1872 1873 /* 1874 * BSD recvmsg interface 1875 */ 1876 1877 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, 1878 unsigned int flags) 1879 { 1880 struct compat_msghdr __user *msg_compat = 1881 (struct compat_msghdr __user *)msg; 1882 struct socket *sock; 1883 struct iovec iovstack[UIO_FASTIOV]; 1884 struct iovec *iov = iovstack; 1885 struct msghdr msg_sys; 1886 unsigned long cmsg_ptr; 1887 int err, iov_size, total_len, len; 1888 int fput_needed; 1889 1890 /* kernel mode address */ 1891 char addr[MAX_SOCK_ADDR]; 1892 1893 /* user mode address pointers */ 1894 struct sockaddr __user *uaddr; 1895 int __user *uaddr_len; 1896 1897 if (MSG_CMSG_COMPAT & flags) { 1898 if (get_compat_msghdr(&msg_sys, msg_compat)) 1899 return -EFAULT; 1900 } 1901 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1902 return -EFAULT; 1903 1904 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1905 if (!sock) 1906 goto out; 1907 1908 err = -EMSGSIZE; 1909 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1910 goto out_put; 1911 1912 /* Check whether to allocate the iovec area */ 1913 err = -ENOMEM; 1914 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1915 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1916 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1917 if (!iov) 1918 goto out_put; 1919 } 1920 1921 /* 1922 * Save the user-mode address (verify_iovec will change the 1923 * kernel msghdr to use the kernel address space) 1924 */ 1925 1926 uaddr = (void __user *)msg_sys.msg_name; 1927 uaddr_len = COMPAT_NAMELEN(msg); 1928 if (MSG_CMSG_COMPAT & flags) { 1929 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1930 } else 1931 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1932 if (err < 0) 1933 goto out_freeiov; 1934 total_len = err; 1935 1936 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1937 msg_sys.msg_flags = 0; 1938 if (MSG_CMSG_COMPAT & flags) 1939 msg_sys.msg_flags = MSG_CMSG_COMPAT; 1940 1941 if (sock->file->f_flags & O_NONBLOCK) 1942 flags |= MSG_DONTWAIT; 1943 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1944 if (err < 0) 1945 goto out_freeiov; 1946 len = err; 1947 1948 if (uaddr != NULL) { 1949 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, 1950 uaddr_len); 1951 if (err < 0) 1952 goto out_freeiov; 1953 } 1954 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1955 COMPAT_FLAGS(msg)); 1956 if (err) 1957 goto out_freeiov; 1958 if (MSG_CMSG_COMPAT & flags) 1959 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1960 &msg_compat->msg_controllen); 1961 else 1962 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1963 &msg->msg_controllen); 1964 if (err) 1965 goto out_freeiov; 1966 err = len; 1967 1968 out_freeiov: 1969 if (iov != iovstack) 1970 sock_kfree_s(sock->sk, iov, iov_size); 1971 out_put: 1972 fput_light(sock->file, fput_needed); 1973 out: 1974 return err; 1975 } 1976 1977 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1978 1979 /* Argument list sizes for sys_socketcall */ 1980 #define AL(x) ((x) * sizeof(unsigned long)) 1981 static const unsigned char nargs[18]={ 1982 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1983 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1984 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3) 1985 }; 1986 1987 #undef AL 1988 1989 /* 1990 * System call vectors. 1991 * 1992 * Argument checking cleaned up. Saved 20% in size. 1993 * This function doesn't need to set the kernel lock because 1994 * it is set by the callees. 1995 */ 1996 1997 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1998 { 1999 unsigned long a[6]; 2000 unsigned long a0, a1; 2001 int err; 2002 2003 if (call < 1 || call > SYS_RECVMSG) 2004 return -EINVAL; 2005 2006 /* copy_from_user should be SMP safe. */ 2007 if (copy_from_user(a, args, nargs[call])) 2008 return -EFAULT; 2009 2010 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2011 if (err) 2012 return err; 2013 2014 a0 = a[0]; 2015 a1 = a[1]; 2016 2017 switch (call) { 2018 case SYS_SOCKET: 2019 err = sys_socket(a0, a1, a[2]); 2020 break; 2021 case SYS_BIND: 2022 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2023 break; 2024 case SYS_CONNECT: 2025 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2026 break; 2027 case SYS_LISTEN: 2028 err = sys_listen(a0, a1); 2029 break; 2030 case SYS_ACCEPT: 2031 err = 2032 sys_accept(a0, (struct sockaddr __user *)a1, 2033 (int __user *)a[2]); 2034 break; 2035 case SYS_GETSOCKNAME: 2036 err = 2037 sys_getsockname(a0, (struct sockaddr __user *)a1, 2038 (int __user *)a[2]); 2039 break; 2040 case SYS_GETPEERNAME: 2041 err = 2042 sys_getpeername(a0, (struct sockaddr __user *)a1, 2043 (int __user *)a[2]); 2044 break; 2045 case SYS_SOCKETPAIR: 2046 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2047 break; 2048 case SYS_SEND: 2049 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2050 break; 2051 case SYS_SENDTO: 2052 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2053 (struct sockaddr __user *)a[4], a[5]); 2054 break; 2055 case SYS_RECV: 2056 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2057 break; 2058 case SYS_RECVFROM: 2059 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2060 (struct sockaddr __user *)a[4], 2061 (int __user *)a[5]); 2062 break; 2063 case SYS_SHUTDOWN: 2064 err = sys_shutdown(a0, a1); 2065 break; 2066 case SYS_SETSOCKOPT: 2067 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2068 break; 2069 case SYS_GETSOCKOPT: 2070 err = 2071 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2072 (int __user *)a[4]); 2073 break; 2074 case SYS_SENDMSG: 2075 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2076 break; 2077 case SYS_RECVMSG: 2078 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2079 break; 2080 default: 2081 err = -EINVAL; 2082 break; 2083 } 2084 return err; 2085 } 2086 2087 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2088 2089 /** 2090 * sock_register - add a socket protocol handler 2091 * @ops: description of protocol 2092 * 2093 * This function is called by a protocol handler that wants to 2094 * advertise its address family, and have it linked into the 2095 * socket interface. The value ops->family coresponds to the 2096 * socket system call protocol family. 2097 */ 2098 int sock_register(const struct net_proto_family *ops) 2099 { 2100 int err; 2101 2102 if (ops->family >= NPROTO) { 2103 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2104 NPROTO); 2105 return -ENOBUFS; 2106 } 2107 2108 spin_lock(&net_family_lock); 2109 if (net_families[ops->family]) 2110 err = -EEXIST; 2111 else { 2112 net_families[ops->family] = ops; 2113 err = 0; 2114 } 2115 spin_unlock(&net_family_lock); 2116 2117 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2118 return err; 2119 } 2120 2121 /** 2122 * sock_unregister - remove a protocol handler 2123 * @family: protocol family to remove 2124 * 2125 * This function is called by a protocol handler that wants to 2126 * remove its address family, and have it unlinked from the 2127 * new socket creation. 2128 * 2129 * If protocol handler is a module, then it can use module reference 2130 * counts to protect against new references. If protocol handler is not 2131 * a module then it needs to provide its own protection in 2132 * the ops->create routine. 2133 */ 2134 void sock_unregister(int family) 2135 { 2136 BUG_ON(family < 0 || family >= NPROTO); 2137 2138 spin_lock(&net_family_lock); 2139 net_families[family] = NULL; 2140 spin_unlock(&net_family_lock); 2141 2142 synchronize_rcu(); 2143 2144 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2145 } 2146 2147 static int __init sock_init(void) 2148 { 2149 /* 2150 * Initialize sock SLAB cache. 2151 */ 2152 2153 sk_init(); 2154 2155 /* 2156 * Initialize skbuff SLAB cache 2157 */ 2158 skb_init(); 2159 2160 /* 2161 * Initialize the protocols module. 2162 */ 2163 2164 init_inodecache(); 2165 register_filesystem(&sock_fs_type); 2166 sock_mnt = kern_mount(&sock_fs_type); 2167 2168 /* The real protocol initialization is performed in later initcalls. 2169 */ 2170 2171 #ifdef CONFIG_NETFILTER 2172 netfilter_init(); 2173 #endif 2174 2175 return 0; 2176 } 2177 2178 core_initcall(sock_init); /* early initcall */ 2179 2180 #ifdef CONFIG_PROC_FS 2181 void socket_seq_show(struct seq_file *seq) 2182 { 2183 int cpu; 2184 int counter = 0; 2185 2186 for_each_possible_cpu(cpu) 2187 counter += per_cpu(sockets_in_use, cpu); 2188 2189 /* It can be negative, by the way. 8) */ 2190 if (counter < 0) 2191 counter = 0; 2192 2193 seq_printf(seq, "sockets: used %d\n", counter); 2194 } 2195 #endif /* CONFIG_PROC_FS */ 2196 2197 #ifdef CONFIG_COMPAT 2198 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2199 unsigned long arg) 2200 { 2201 struct socket *sock = file->private_data; 2202 int ret = -ENOIOCTLCMD; 2203 2204 if (sock->ops->compat_ioctl) 2205 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2206 2207 return ret; 2208 } 2209 #endif 2210 2211 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2212 { 2213 return sock->ops->bind(sock, addr, addrlen); 2214 } 2215 2216 int kernel_listen(struct socket *sock, int backlog) 2217 { 2218 return sock->ops->listen(sock, backlog); 2219 } 2220 2221 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2222 { 2223 struct sock *sk = sock->sk; 2224 int err; 2225 2226 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 2227 newsock); 2228 if (err < 0) 2229 goto done; 2230 2231 err = sock->ops->accept(sock, *newsock, flags); 2232 if (err < 0) { 2233 sock_release(*newsock); 2234 goto done; 2235 } 2236 2237 (*newsock)->ops = sock->ops; 2238 2239 done: 2240 return err; 2241 } 2242 2243 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 2244 int flags) 2245 { 2246 return sock->ops->connect(sock, addr, addrlen, flags); 2247 } 2248 2249 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 2250 int *addrlen) 2251 { 2252 return sock->ops->getname(sock, addr, addrlen, 0); 2253 } 2254 2255 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 2256 int *addrlen) 2257 { 2258 return sock->ops->getname(sock, addr, addrlen, 1); 2259 } 2260 2261 int kernel_getsockopt(struct socket *sock, int level, int optname, 2262 char *optval, int *optlen) 2263 { 2264 mm_segment_t oldfs = get_fs(); 2265 int err; 2266 2267 set_fs(KERNEL_DS); 2268 if (level == SOL_SOCKET) 2269 err = sock_getsockopt(sock, level, optname, optval, optlen); 2270 else 2271 err = sock->ops->getsockopt(sock, level, optname, optval, 2272 optlen); 2273 set_fs(oldfs); 2274 return err; 2275 } 2276 2277 int kernel_setsockopt(struct socket *sock, int level, int optname, 2278 char *optval, int optlen) 2279 { 2280 mm_segment_t oldfs = get_fs(); 2281 int err; 2282 2283 set_fs(KERNEL_DS); 2284 if (level == SOL_SOCKET) 2285 err = sock_setsockopt(sock, level, optname, optval, optlen); 2286 else 2287 err = sock->ops->setsockopt(sock, level, optname, optval, 2288 optlen); 2289 set_fs(oldfs); 2290 return err; 2291 } 2292 2293 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 2294 size_t size, int flags) 2295 { 2296 if (sock->ops->sendpage) 2297 return sock->ops->sendpage(sock, page, offset, size, flags); 2298 2299 return sock_no_sendpage(sock, page, offset, size, flags); 2300 } 2301 2302 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 2303 { 2304 mm_segment_t oldfs = get_fs(); 2305 int err; 2306 2307 set_fs(KERNEL_DS); 2308 err = sock->ops->ioctl(sock, cmd, arg); 2309 set_fs(oldfs); 2310 2311 return err; 2312 } 2313 2314 /* ABI emulation layers need these two */ 2315 EXPORT_SYMBOL(move_addr_to_kernel); 2316 EXPORT_SYMBOL(move_addr_to_user); 2317 EXPORT_SYMBOL(sock_create); 2318 EXPORT_SYMBOL(sock_create_kern); 2319 EXPORT_SYMBOL(sock_create_lite); 2320 EXPORT_SYMBOL(sock_map_fd); 2321 EXPORT_SYMBOL(sock_recvmsg); 2322 EXPORT_SYMBOL(sock_register); 2323 EXPORT_SYMBOL(sock_release); 2324 EXPORT_SYMBOL(sock_sendmsg); 2325 EXPORT_SYMBOL(sock_unregister); 2326 EXPORT_SYMBOL(sock_wake_async); 2327 EXPORT_SYMBOL(sockfd_lookup); 2328 EXPORT_SYMBOL(kernel_sendmsg); 2329 EXPORT_SYMBOL(kernel_recvmsg); 2330 EXPORT_SYMBOL(kernel_bind); 2331 EXPORT_SYMBOL(kernel_listen); 2332 EXPORT_SYMBOL(kernel_accept); 2333 EXPORT_SYMBOL(kernel_connect); 2334 EXPORT_SYMBOL(kernel_getsockname); 2335 EXPORT_SYMBOL(kernel_getpeername); 2336 EXPORT_SYMBOL(kernel_getsockopt); 2337 EXPORT_SYMBOL(kernel_setsockopt); 2338 EXPORT_SYMBOL(kernel_sendpage); 2339 EXPORT_SYMBOL(kernel_sock_ioctl); 2340