1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring/net.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #include "core/dev.h" 114 115 #ifdef CONFIG_NET_RX_BUSY_POLL 116 unsigned int sysctl_net_busy_read __read_mostly; 117 unsigned int sysctl_net_busy_poll __read_mostly; 118 #endif 119 120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 122 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 123 124 static int sock_close(struct inode *inode, struct file *file); 125 static __poll_t sock_poll(struct file *file, 126 struct poll_table_struct *wait); 127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 128 #ifdef CONFIG_COMPAT 129 static long compat_sock_ioctl(struct file *file, 130 unsigned int cmd, unsigned long arg); 131 #endif 132 static int sock_fasync(int fd, struct file *filp, int on); 133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 134 struct pipe_inode_info *pipe, size_t len, 135 unsigned int flags); 136 static void sock_splice_eof(struct file *file); 137 138 #ifdef CONFIG_PROC_FS 139 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 140 { 141 struct socket *sock = f->private_data; 142 const struct proto_ops *ops = READ_ONCE(sock->ops); 143 144 if (ops->show_fdinfo) 145 ops->show_fdinfo(m, sock); 146 } 147 #else 148 #define sock_show_fdinfo NULL 149 #endif 150 151 /* 152 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 153 * in the operation structures but are done directly via the socketcall() multiplexor. 154 */ 155 156 static const struct file_operations socket_file_ops = { 157 .owner = THIS_MODULE, 158 .read_iter = sock_read_iter, 159 .write_iter = sock_write_iter, 160 .poll = sock_poll, 161 .unlocked_ioctl = sock_ioctl, 162 #ifdef CONFIG_COMPAT 163 .compat_ioctl = compat_sock_ioctl, 164 #endif 165 .uring_cmd = io_uring_cmd_sock, 166 .mmap = sock_mmap, 167 .release = sock_close, 168 .fasync = sock_fasync, 169 .splice_write = splice_to_socket, 170 .splice_read = sock_splice_read, 171 .splice_eof = sock_splice_eof, 172 .show_fdinfo = sock_show_fdinfo, 173 }; 174 175 static const char * const pf_family_names[] = { 176 [PF_UNSPEC] = "PF_UNSPEC", 177 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 178 [PF_INET] = "PF_INET", 179 [PF_AX25] = "PF_AX25", 180 [PF_IPX] = "PF_IPX", 181 [PF_APPLETALK] = "PF_APPLETALK", 182 [PF_NETROM] = "PF_NETROM", 183 [PF_BRIDGE] = "PF_BRIDGE", 184 [PF_ATMPVC] = "PF_ATMPVC", 185 [PF_X25] = "PF_X25", 186 [PF_INET6] = "PF_INET6", 187 [PF_ROSE] = "PF_ROSE", 188 [PF_DECnet] = "PF_DECnet", 189 [PF_NETBEUI] = "PF_NETBEUI", 190 [PF_SECURITY] = "PF_SECURITY", 191 [PF_KEY] = "PF_KEY", 192 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 193 [PF_PACKET] = "PF_PACKET", 194 [PF_ASH] = "PF_ASH", 195 [PF_ECONET] = "PF_ECONET", 196 [PF_ATMSVC] = "PF_ATMSVC", 197 [PF_RDS] = "PF_RDS", 198 [PF_SNA] = "PF_SNA", 199 [PF_IRDA] = "PF_IRDA", 200 [PF_PPPOX] = "PF_PPPOX", 201 [PF_WANPIPE] = "PF_WANPIPE", 202 [PF_LLC] = "PF_LLC", 203 [PF_IB] = "PF_IB", 204 [PF_MPLS] = "PF_MPLS", 205 [PF_CAN] = "PF_CAN", 206 [PF_TIPC] = "PF_TIPC", 207 [PF_BLUETOOTH] = "PF_BLUETOOTH", 208 [PF_IUCV] = "PF_IUCV", 209 [PF_RXRPC] = "PF_RXRPC", 210 [PF_ISDN] = "PF_ISDN", 211 [PF_PHONET] = "PF_PHONET", 212 [PF_IEEE802154] = "PF_IEEE802154", 213 [PF_CAIF] = "PF_CAIF", 214 [PF_ALG] = "PF_ALG", 215 [PF_NFC] = "PF_NFC", 216 [PF_VSOCK] = "PF_VSOCK", 217 [PF_KCM] = "PF_KCM", 218 [PF_QIPCRTR] = "PF_QIPCRTR", 219 [PF_SMC] = "PF_SMC", 220 [PF_XDP] = "PF_XDP", 221 [PF_MCTP] = "PF_MCTP", 222 }; 223 224 /* 225 * The protocol list. Each protocol is registered in here. 226 */ 227 228 static DEFINE_SPINLOCK(net_family_lock); 229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 230 231 /* 232 * Support routines. 233 * Move socket addresses back and forth across the kernel/user 234 * divide and look after the messy bits. 235 */ 236 237 /** 238 * move_addr_to_kernel - copy a socket address into kernel space 239 * @uaddr: Address in user space 240 * @kaddr: Address in kernel space 241 * @ulen: Length in user space 242 * 243 * The address is copied into kernel space. If the provided address is 244 * too long an error code of -EINVAL is returned. If the copy gives 245 * invalid addresses -EFAULT is returned. On a success 0 is returned. 246 */ 247 248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 249 { 250 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 251 return -EINVAL; 252 if (ulen == 0) 253 return 0; 254 if (copy_from_user(kaddr, uaddr, ulen)) 255 return -EFAULT; 256 return audit_sockaddr(ulen, kaddr); 257 } 258 259 /** 260 * move_addr_to_user - copy an address to user space 261 * @kaddr: kernel space address 262 * @klen: length of address in kernel 263 * @uaddr: user space address 264 * @ulen: pointer to user length field 265 * 266 * The value pointed to by ulen on entry is the buffer length available. 267 * This is overwritten with the buffer space used. -EINVAL is returned 268 * if an overlong buffer is specified or a negative buffer size. -EFAULT 269 * is returned if either the buffer or the length field are not 270 * accessible. 271 * After copying the data up to the limit the user specifies, the true 272 * length of the data is written over the length limit the user 273 * specified. Zero is returned for a success. 274 */ 275 276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 277 void __user *uaddr, int __user *ulen) 278 { 279 int len; 280 281 BUG_ON(klen > sizeof(struct sockaddr_storage)); 282 283 if (can_do_masked_user_access()) 284 ulen = masked_user_access_begin(ulen); 285 else if (!user_access_begin(ulen, 4)) 286 return -EFAULT; 287 288 unsafe_get_user(len, ulen, efault_end); 289 290 if (len > klen) 291 len = klen; 292 /* 293 * "fromlen shall refer to the value before truncation.." 294 * 1003.1g 295 */ 296 if (len >= 0) 297 unsafe_put_user(klen, ulen, efault_end); 298 299 user_access_end(); 300 301 if (len) { 302 if (len < 0) 303 return -EINVAL; 304 if (audit_sockaddr(klen, kaddr)) 305 return -ENOMEM; 306 if (copy_to_user(uaddr, kaddr, len)) 307 return -EFAULT; 308 } 309 return 0; 310 311 efault_end: 312 user_access_end(); 313 return -EFAULT; 314 } 315 316 static struct kmem_cache *sock_inode_cachep __ro_after_init; 317 318 static struct inode *sock_alloc_inode(struct super_block *sb) 319 { 320 struct socket_alloc *ei; 321 322 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 323 if (!ei) 324 return NULL; 325 init_waitqueue_head(&ei->socket.wq.wait); 326 ei->socket.wq.fasync_list = NULL; 327 ei->socket.wq.flags = 0; 328 329 ei->socket.state = SS_UNCONNECTED; 330 ei->socket.flags = 0; 331 ei->socket.ops = NULL; 332 ei->socket.sk = NULL; 333 ei->socket.file = NULL; 334 335 return &ei->vfs_inode; 336 } 337 338 static void sock_free_inode(struct inode *inode) 339 { 340 struct socket_alloc *ei; 341 342 ei = container_of(inode, struct socket_alloc, vfs_inode); 343 kmem_cache_free(sock_inode_cachep, ei); 344 } 345 346 static void init_once(void *foo) 347 { 348 struct socket_alloc *ei = (struct socket_alloc *)foo; 349 350 inode_init_once(&ei->vfs_inode); 351 } 352 353 static void init_inodecache(void) 354 { 355 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 356 sizeof(struct socket_alloc), 357 0, 358 (SLAB_HWCACHE_ALIGN | 359 SLAB_RECLAIM_ACCOUNT | 360 SLAB_ACCOUNT), 361 init_once); 362 BUG_ON(sock_inode_cachep == NULL); 363 } 364 365 static const struct super_operations sockfs_ops = { 366 .alloc_inode = sock_alloc_inode, 367 .free_inode = sock_free_inode, 368 .statfs = simple_statfs, 369 }; 370 371 /* 372 * sockfs_dname() is called from d_path(). 373 */ 374 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 375 { 376 return dynamic_dname(buffer, buflen, "socket:[%lu]", 377 d_inode(dentry)->i_ino); 378 } 379 380 static const struct dentry_operations sockfs_dentry_operations = { 381 .d_dname = sockfs_dname, 382 }; 383 384 static int sockfs_xattr_get(const struct xattr_handler *handler, 385 struct dentry *dentry, struct inode *inode, 386 const char *suffix, void *value, size_t size) 387 { 388 if (value) { 389 if (dentry->d_name.len + 1 > size) 390 return -ERANGE; 391 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 392 } 393 return dentry->d_name.len + 1; 394 } 395 396 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 397 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 398 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 399 400 static const struct xattr_handler sockfs_xattr_handler = { 401 .name = XATTR_NAME_SOCKPROTONAME, 402 .get = sockfs_xattr_get, 403 }; 404 405 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 406 struct mnt_idmap *idmap, 407 struct dentry *dentry, struct inode *inode, 408 const char *suffix, const void *value, 409 size_t size, int flags) 410 { 411 /* Handled by LSM. */ 412 return -EAGAIN; 413 } 414 415 static const struct xattr_handler sockfs_security_xattr_handler = { 416 .prefix = XATTR_SECURITY_PREFIX, 417 .set = sockfs_security_xattr_set, 418 }; 419 420 static const struct xattr_handler * const sockfs_xattr_handlers[] = { 421 &sockfs_xattr_handler, 422 &sockfs_security_xattr_handler, 423 NULL 424 }; 425 426 static int sockfs_init_fs_context(struct fs_context *fc) 427 { 428 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 429 if (!ctx) 430 return -ENOMEM; 431 ctx->ops = &sockfs_ops; 432 ctx->dops = &sockfs_dentry_operations; 433 ctx->xattr = sockfs_xattr_handlers; 434 return 0; 435 } 436 437 static struct vfsmount *sock_mnt __read_mostly; 438 439 static struct file_system_type sock_fs_type = { 440 .name = "sockfs", 441 .init_fs_context = sockfs_init_fs_context, 442 .kill_sb = kill_anon_super, 443 }; 444 445 /* 446 * Obtains the first available file descriptor and sets it up for use. 447 * 448 * These functions create file structures and maps them to fd space 449 * of the current process. On success it returns file descriptor 450 * and file struct implicitly stored in sock->file. 451 * Note that another thread may close file descriptor before we return 452 * from this function. We use the fact that now we do not refer 453 * to socket after mapping. If one day we will need it, this 454 * function will increment ref. count on file by 1. 455 * 456 * In any case returned fd MAY BE not valid! 457 * This race condition is unavoidable 458 * with shared fd spaces, we cannot solve it inside kernel, 459 * but we take care of internal coherence yet. 460 */ 461 462 /** 463 * sock_alloc_file - Bind a &socket to a &file 464 * @sock: socket 465 * @flags: file status flags 466 * @dname: protocol name 467 * 468 * Returns the &file bound with @sock, implicitly storing it 469 * in sock->file. If dname is %NULL, sets to "". 470 * 471 * On failure @sock is released, and an ERR pointer is returned. 472 * 473 * This function uses GFP_KERNEL internally. 474 */ 475 476 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 477 { 478 struct file *file; 479 480 if (!dname) 481 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 482 483 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 484 O_RDWR | (flags & O_NONBLOCK), 485 &socket_file_ops); 486 if (IS_ERR(file)) { 487 sock_release(sock); 488 return file; 489 } 490 491 file->f_mode |= FMODE_NOWAIT; 492 sock->file = file; 493 file->private_data = sock; 494 stream_open(SOCK_INODE(sock), file); 495 /* 496 * Disable permission and pre-content events, but enable legacy 497 * inotify events for legacy users. 498 */ 499 file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM); 500 return file; 501 } 502 EXPORT_SYMBOL(sock_alloc_file); 503 504 static int sock_map_fd(struct socket *sock, int flags) 505 { 506 struct file *newfile; 507 int fd = get_unused_fd_flags(flags); 508 if (unlikely(fd < 0)) { 509 sock_release(sock); 510 return fd; 511 } 512 513 newfile = sock_alloc_file(sock, flags, NULL); 514 if (!IS_ERR(newfile)) { 515 fd_install(fd, newfile); 516 return fd; 517 } 518 519 put_unused_fd(fd); 520 return PTR_ERR(newfile); 521 } 522 523 /** 524 * sock_from_file - Return the &socket bounded to @file. 525 * @file: file 526 * 527 * On failure returns %NULL. 528 */ 529 530 struct socket *sock_from_file(struct file *file) 531 { 532 if (likely(file->f_op == &socket_file_ops)) 533 return file->private_data; /* set in sock_alloc_file */ 534 535 return NULL; 536 } 537 EXPORT_SYMBOL(sock_from_file); 538 539 /** 540 * sockfd_lookup - Go from a file number to its socket slot 541 * @fd: file handle 542 * @err: pointer to an error code return 543 * 544 * The file handle passed in is locked and the socket it is bound 545 * to is returned. If an error occurs the err pointer is overwritten 546 * with a negative errno code and NULL is returned. The function checks 547 * for both invalid handles and passing a handle which is not a socket. 548 * 549 * On a success the socket object pointer is returned. 550 */ 551 552 struct socket *sockfd_lookup(int fd, int *err) 553 { 554 struct file *file; 555 struct socket *sock; 556 557 file = fget(fd); 558 if (!file) { 559 *err = -EBADF; 560 return NULL; 561 } 562 563 sock = sock_from_file(file); 564 if (!sock) { 565 *err = -ENOTSOCK; 566 fput(file); 567 } 568 return sock; 569 } 570 EXPORT_SYMBOL(sockfd_lookup); 571 572 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 573 size_t size) 574 { 575 ssize_t len; 576 ssize_t used = 0; 577 578 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 579 if (len < 0) 580 return len; 581 used += len; 582 if (buffer) { 583 if (size < used) 584 return -ERANGE; 585 buffer += len; 586 } 587 588 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 589 used += len; 590 if (buffer) { 591 if (size < used) 592 return -ERANGE; 593 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 594 buffer += len; 595 } 596 597 return used; 598 } 599 600 static int sockfs_setattr(struct mnt_idmap *idmap, 601 struct dentry *dentry, struct iattr *iattr) 602 { 603 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 604 605 if (!err && (iattr->ia_valid & ATTR_UID)) { 606 struct socket *sock = SOCKET_I(d_inode(dentry)); 607 608 if (sock->sk) { 609 /* Paired with READ_ONCE() in sk_uid() */ 610 WRITE_ONCE(sock->sk->sk_uid, iattr->ia_uid); 611 } else { 612 err = -ENOENT; 613 } 614 } 615 616 return err; 617 } 618 619 static const struct inode_operations sockfs_inode_ops = { 620 .listxattr = sockfs_listxattr, 621 .setattr = sockfs_setattr, 622 }; 623 624 /** 625 * sock_alloc - allocate a socket 626 * 627 * Allocate a new inode and socket object. The two are bound together 628 * and initialised. The socket is then returned. If we are out of inodes 629 * NULL is returned. This functions uses GFP_KERNEL internally. 630 */ 631 632 struct socket *sock_alloc(void) 633 { 634 struct inode *inode; 635 struct socket *sock; 636 637 inode = new_inode_pseudo(sock_mnt->mnt_sb); 638 if (!inode) 639 return NULL; 640 641 sock = SOCKET_I(inode); 642 643 inode->i_ino = get_next_ino(); 644 inode->i_mode = S_IFSOCK | S_IRWXUGO; 645 inode->i_uid = current_fsuid(); 646 inode->i_gid = current_fsgid(); 647 inode->i_op = &sockfs_inode_ops; 648 649 return sock; 650 } 651 EXPORT_SYMBOL(sock_alloc); 652 653 static void __sock_release(struct socket *sock, struct inode *inode) 654 { 655 const struct proto_ops *ops = READ_ONCE(sock->ops); 656 657 if (ops) { 658 struct module *owner = ops->owner; 659 660 if (inode) 661 inode_lock(inode); 662 ops->release(sock); 663 sock->sk = NULL; 664 if (inode) 665 inode_unlock(inode); 666 sock->ops = NULL; 667 module_put(owner); 668 } 669 670 if (sock->wq.fasync_list) 671 pr_err("%s: fasync list not empty!\n", __func__); 672 673 if (!sock->file) { 674 iput(SOCK_INODE(sock)); 675 return; 676 } 677 sock->file = NULL; 678 } 679 680 /** 681 * sock_release - close a socket 682 * @sock: socket to close 683 * 684 * The socket is released from the protocol stack if it has a release 685 * callback, and the inode is then released if the socket is bound to 686 * an inode not a file. 687 */ 688 void sock_release(struct socket *sock) 689 { 690 __sock_release(sock, NULL); 691 } 692 EXPORT_SYMBOL(sock_release); 693 694 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags) 695 { 696 u8 flags = *tx_flags; 697 698 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 699 flags |= SKBTX_HW_TSTAMP_NOBPF; 700 701 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 702 flags |= SKBTX_SW_TSTAMP; 703 704 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 705 flags |= SKBTX_SCHED_TSTAMP; 706 707 if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION) 708 flags |= SKBTX_COMPLETION_TSTAMP; 709 710 *tx_flags = flags; 711 } 712 EXPORT_SYMBOL(__sock_tx_timestamp); 713 714 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 715 size_t)); 716 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 717 size_t)); 718 719 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 720 int flags) 721 { 722 trace_sock_send_length(sk, ret, 0); 723 } 724 725 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 726 { 727 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 728 inet_sendmsg, sock, msg, 729 msg_data_left(msg)); 730 BUG_ON(ret == -EIOCBQUEUED); 731 732 if (trace_sock_send_length_enabled()) 733 call_trace_sock_send_length(sock->sk, ret, 0); 734 return ret; 735 } 736 737 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) 738 { 739 int err = security_socket_sendmsg(sock, msg, 740 msg_data_left(msg)); 741 742 return err ?: sock_sendmsg_nosec(sock, msg); 743 } 744 745 /** 746 * sock_sendmsg - send a message through @sock 747 * @sock: socket 748 * @msg: message to send 749 * 750 * Sends @msg through @sock, passing through LSM. 751 * Returns the number of bytes sent, or an error code. 752 */ 753 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 754 { 755 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; 756 struct sockaddr_storage address; 757 int save_len = msg->msg_namelen; 758 int ret; 759 760 if (msg->msg_name) { 761 memcpy(&address, msg->msg_name, msg->msg_namelen); 762 msg->msg_name = &address; 763 } 764 765 ret = __sock_sendmsg(sock, msg); 766 msg->msg_name = save_addr; 767 msg->msg_namelen = save_len; 768 769 return ret; 770 } 771 EXPORT_SYMBOL(sock_sendmsg); 772 773 /** 774 * kernel_sendmsg - send a message through @sock (kernel-space) 775 * @sock: socket 776 * @msg: message header 777 * @vec: kernel vec 778 * @num: vec array length 779 * @size: total message data size 780 * 781 * Builds the message data with @vec and sends it through @sock. 782 * Returns the number of bytes sent, or an error code. 783 */ 784 785 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 786 struct kvec *vec, size_t num, size_t size) 787 { 788 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 789 return sock_sendmsg(sock, msg); 790 } 791 EXPORT_SYMBOL(kernel_sendmsg); 792 793 static bool skb_is_err_queue(const struct sk_buff *skb) 794 { 795 /* pkt_type of skbs enqueued on the error queue are set to 796 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 797 * in recvmsg, since skbs received on a local socket will never 798 * have a pkt_type of PACKET_OUTGOING. 799 */ 800 return skb->pkt_type == PACKET_OUTGOING; 801 } 802 803 /* On transmit, software and hardware timestamps are returned independently. 804 * As the two skb clones share the hardware timestamp, which may be updated 805 * before the software timestamp is received, a hardware TX timestamp may be 806 * returned only if there is no software TX timestamp. Ignore false software 807 * timestamps, which may be made in the __sock_recv_timestamp() call when the 808 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 809 * hardware timestamp. 810 */ 811 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 812 { 813 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 814 } 815 816 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 817 { 818 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 819 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 820 struct net_device *orig_dev; 821 ktime_t hwtstamp; 822 823 rcu_read_lock(); 824 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 825 if (orig_dev) { 826 *if_index = orig_dev->ifindex; 827 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 828 } else { 829 hwtstamp = shhwtstamps->hwtstamp; 830 } 831 rcu_read_unlock(); 832 833 return hwtstamp; 834 } 835 836 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 837 int if_index) 838 { 839 struct scm_ts_pktinfo ts_pktinfo; 840 struct net_device *orig_dev; 841 842 if (!skb_mac_header_was_set(skb)) 843 return; 844 845 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 846 847 if (!if_index) { 848 rcu_read_lock(); 849 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 850 if (orig_dev) 851 if_index = orig_dev->ifindex; 852 rcu_read_unlock(); 853 } 854 ts_pktinfo.if_index = if_index; 855 856 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 857 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 858 sizeof(ts_pktinfo), &ts_pktinfo); 859 } 860 861 bool skb_has_tx_timestamp(struct sk_buff *skb, const struct sock *sk) 862 { 863 const struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 864 u32 tsflags = READ_ONCE(sk->sk_tsflags); 865 866 if (serr->ee.ee_errno != ENOMSG || 867 serr->ee.ee_origin != SO_EE_ORIGIN_TIMESTAMPING) 868 return false; 869 870 /* software time stamp available and wanted */ 871 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && skb->tstamp) 872 return true; 873 /* hardware time stamps available and wanted */ 874 return (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 875 skb_hwtstamps(skb)->hwtstamp; 876 } 877 878 int skb_get_tx_timestamp(struct sk_buff *skb, struct sock *sk, 879 struct timespec64 *ts) 880 { 881 u32 tsflags = READ_ONCE(sk->sk_tsflags); 882 ktime_t hwtstamp; 883 int if_index = 0; 884 885 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && 886 ktime_to_timespec64_cond(skb->tstamp, ts)) 887 return SOF_TIMESTAMPING_TX_SOFTWARE; 888 889 if (!(tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) || 890 skb_is_swtx_tstamp(skb, false)) 891 return -ENOENT; 892 893 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 894 hwtstamp = get_timestamp(sk, skb, &if_index); 895 else 896 hwtstamp = skb_hwtstamps(skb)->hwtstamp; 897 898 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 899 hwtstamp = ptp_convert_timestamp(&hwtstamp, 900 READ_ONCE(sk->sk_bind_phc)); 901 if (!ktime_to_timespec64_cond(hwtstamp, ts)) 902 return -ENOENT; 903 904 return SOF_TIMESTAMPING_TX_HARDWARE; 905 } 906 907 /* 908 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 909 */ 910 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 911 struct sk_buff *skb) 912 { 913 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 914 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 915 struct scm_timestamping_internal tss; 916 int empty = 1, false_tstamp = 0; 917 struct skb_shared_hwtstamps *shhwtstamps = 918 skb_hwtstamps(skb); 919 int if_index; 920 ktime_t hwtstamp; 921 u32 tsflags; 922 923 /* Race occurred between timestamp enabling and packet 924 receiving. Fill in the current time for now. */ 925 if (need_software_tstamp && skb->tstamp == 0) { 926 __net_timestamp(skb); 927 false_tstamp = 1; 928 } 929 930 if (need_software_tstamp) { 931 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 932 if (new_tstamp) { 933 struct __kernel_sock_timeval tv; 934 935 skb_get_new_timestamp(skb, &tv); 936 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 937 sizeof(tv), &tv); 938 } else { 939 struct __kernel_old_timeval tv; 940 941 skb_get_timestamp(skb, &tv); 942 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 943 sizeof(tv), &tv); 944 } 945 } else { 946 if (new_tstamp) { 947 struct __kernel_timespec ts; 948 949 skb_get_new_timestampns(skb, &ts); 950 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 951 sizeof(ts), &ts); 952 } else { 953 struct __kernel_old_timespec ts; 954 955 skb_get_timestampns(skb, &ts); 956 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 957 sizeof(ts), &ts); 958 } 959 } 960 } 961 962 memset(&tss, 0, sizeof(tss)); 963 tsflags = READ_ONCE(sk->sk_tsflags); 964 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && 965 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 966 skb_is_err_queue(skb) || 967 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 968 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 969 empty = 0; 970 if (shhwtstamps && 971 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 972 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 973 skb_is_err_queue(skb) || 974 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 975 !skb_is_swtx_tstamp(skb, false_tstamp)) { 976 if_index = 0; 977 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 978 hwtstamp = get_timestamp(sk, skb, &if_index); 979 else 980 hwtstamp = shhwtstamps->hwtstamp; 981 982 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 983 hwtstamp = ptp_convert_timestamp(&hwtstamp, 984 READ_ONCE(sk->sk_bind_phc)); 985 986 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 987 empty = 0; 988 989 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 990 !skb_is_err_queue(skb)) 991 put_ts_pktinfo(msg, skb, if_index); 992 } 993 } 994 if (!empty) { 995 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 996 put_cmsg_scm_timestamping64(msg, &tss); 997 else 998 put_cmsg_scm_timestamping(msg, &tss); 999 1000 if (skb_is_err_queue(skb) && skb->len && 1001 SKB_EXT_ERR(skb)->opt_stats) 1002 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 1003 skb->len, skb->data); 1004 } 1005 } 1006 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 1007 1008 #ifdef CONFIG_WIRELESS 1009 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 1010 struct sk_buff *skb) 1011 { 1012 int ack; 1013 1014 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 1015 return; 1016 if (!skb->wifi_acked_valid) 1017 return; 1018 1019 ack = skb->wifi_acked; 1020 1021 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 1022 } 1023 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 1024 #endif 1025 1026 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 1027 struct sk_buff *skb) 1028 { 1029 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 1030 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 1031 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 1032 } 1033 1034 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 1035 struct sk_buff *skb) 1036 { 1037 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 1038 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 1039 __u32 mark = skb->mark; 1040 1041 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1042 } 1043 } 1044 1045 static void sock_recv_priority(struct msghdr *msg, struct sock *sk, 1046 struct sk_buff *skb) 1047 { 1048 if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) { 1049 __u32 priority = skb->priority; 1050 1051 put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority); 1052 } 1053 } 1054 1055 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1056 struct sk_buff *skb) 1057 { 1058 sock_recv_timestamp(msg, sk, skb); 1059 sock_recv_drops(msg, sk, skb); 1060 sock_recv_mark(msg, sk, skb); 1061 sock_recv_priority(msg, sk, skb); 1062 } 1063 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1064 1065 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1066 size_t, int)); 1067 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1068 size_t, int)); 1069 1070 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1071 { 1072 trace_sock_recv_length(sk, ret, flags); 1073 } 1074 1075 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1076 int flags) 1077 { 1078 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1079 inet6_recvmsg, 1080 inet_recvmsg, sock, msg, 1081 msg_data_left(msg), flags); 1082 if (trace_sock_recv_length_enabled()) 1083 call_trace_sock_recv_length(sock->sk, ret, flags); 1084 return ret; 1085 } 1086 1087 /** 1088 * sock_recvmsg - receive a message from @sock 1089 * @sock: socket 1090 * @msg: message to receive 1091 * @flags: message flags 1092 * 1093 * Receives @msg from @sock, passing through LSM. Returns the total number 1094 * of bytes received, or an error. 1095 */ 1096 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1097 { 1098 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1099 1100 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1101 } 1102 EXPORT_SYMBOL(sock_recvmsg); 1103 1104 /** 1105 * kernel_recvmsg - Receive a message from a socket (kernel space) 1106 * @sock: The socket to receive the message from 1107 * @msg: Received message 1108 * @vec: Input s/g array for message data 1109 * @num: Size of input s/g array 1110 * @size: Number of bytes to read 1111 * @flags: Message flags (MSG_DONTWAIT, etc...) 1112 * 1113 * On return the msg structure contains the scatter/gather array passed in the 1114 * vec argument. The array is modified so that it consists of the unfilled 1115 * portion of the original array. 1116 * 1117 * The returned value is the total number of bytes received, or an error. 1118 */ 1119 1120 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1121 struct kvec *vec, size_t num, size_t size, int flags) 1122 { 1123 msg->msg_control_is_user = false; 1124 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1125 return sock_recvmsg(sock, msg, flags); 1126 } 1127 EXPORT_SYMBOL(kernel_recvmsg); 1128 1129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1130 struct pipe_inode_info *pipe, size_t len, 1131 unsigned int flags) 1132 { 1133 struct socket *sock = file->private_data; 1134 const struct proto_ops *ops; 1135 1136 ops = READ_ONCE(sock->ops); 1137 if (unlikely(!ops->splice_read)) 1138 return copy_splice_read(file, ppos, pipe, len, flags); 1139 1140 return ops->splice_read(sock, ppos, pipe, len, flags); 1141 } 1142 1143 static void sock_splice_eof(struct file *file) 1144 { 1145 struct socket *sock = file->private_data; 1146 const struct proto_ops *ops; 1147 1148 ops = READ_ONCE(sock->ops); 1149 if (ops->splice_eof) 1150 ops->splice_eof(sock); 1151 } 1152 1153 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1154 { 1155 struct file *file = iocb->ki_filp; 1156 struct socket *sock = file->private_data; 1157 struct msghdr msg = {.msg_iter = *to, 1158 .msg_iocb = iocb}; 1159 ssize_t res; 1160 1161 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1162 msg.msg_flags = MSG_DONTWAIT; 1163 1164 if (iocb->ki_pos != 0) 1165 return -ESPIPE; 1166 1167 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1168 return 0; 1169 1170 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1171 *to = msg.msg_iter; 1172 return res; 1173 } 1174 1175 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1176 { 1177 struct file *file = iocb->ki_filp; 1178 struct socket *sock = file->private_data; 1179 struct msghdr msg = {.msg_iter = *from, 1180 .msg_iocb = iocb}; 1181 ssize_t res; 1182 1183 if (iocb->ki_pos != 0) 1184 return -ESPIPE; 1185 1186 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1187 msg.msg_flags = MSG_DONTWAIT; 1188 1189 if (sock->type == SOCK_SEQPACKET) 1190 msg.msg_flags |= MSG_EOR; 1191 1192 if (iocb->ki_flags & IOCB_NOSIGNAL) 1193 msg.msg_flags |= MSG_NOSIGNAL; 1194 1195 res = __sock_sendmsg(sock, &msg); 1196 *from = msg.msg_iter; 1197 return res; 1198 } 1199 1200 /* 1201 * Atomic setting of ioctl hooks to avoid race 1202 * with module unload. 1203 */ 1204 1205 static DEFINE_MUTEX(br_ioctl_mutex); 1206 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd, 1207 void __user *uarg); 1208 1209 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd, 1210 void __user *uarg)) 1211 { 1212 mutex_lock(&br_ioctl_mutex); 1213 br_ioctl_hook = hook; 1214 mutex_unlock(&br_ioctl_mutex); 1215 } 1216 EXPORT_SYMBOL(brioctl_set); 1217 1218 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg) 1219 { 1220 int err = -ENOPKG; 1221 1222 if (!br_ioctl_hook) 1223 request_module("bridge"); 1224 1225 mutex_lock(&br_ioctl_mutex); 1226 if (br_ioctl_hook) 1227 err = br_ioctl_hook(net, cmd, uarg); 1228 mutex_unlock(&br_ioctl_mutex); 1229 1230 return err; 1231 } 1232 1233 static DEFINE_MUTEX(vlan_ioctl_mutex); 1234 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1235 1236 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1237 { 1238 mutex_lock(&vlan_ioctl_mutex); 1239 vlan_ioctl_hook = hook; 1240 mutex_unlock(&vlan_ioctl_mutex); 1241 } 1242 EXPORT_SYMBOL(vlan_ioctl_set); 1243 1244 static long sock_do_ioctl(struct net *net, struct socket *sock, 1245 unsigned int cmd, unsigned long arg) 1246 { 1247 const struct proto_ops *ops = READ_ONCE(sock->ops); 1248 struct ifreq ifr; 1249 bool need_copyout; 1250 int err; 1251 void __user *argp = (void __user *)arg; 1252 void __user *data; 1253 1254 err = ops->ioctl(sock, cmd, arg); 1255 1256 /* 1257 * If this ioctl is unknown try to hand it down 1258 * to the NIC driver. 1259 */ 1260 if (err != -ENOIOCTLCMD) 1261 return err; 1262 1263 if (!is_socket_ioctl_cmd(cmd)) 1264 return -ENOTTY; 1265 1266 if (get_user_ifreq(&ifr, &data, argp)) 1267 return -EFAULT; 1268 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1269 if (!err && need_copyout) 1270 if (put_user_ifreq(&ifr, argp)) 1271 return -EFAULT; 1272 1273 return err; 1274 } 1275 1276 /* 1277 * With an ioctl, arg may well be a user mode pointer, but we don't know 1278 * what to do with it - that's up to the protocol still. 1279 */ 1280 1281 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1282 { 1283 const struct proto_ops *ops; 1284 struct socket *sock; 1285 struct sock *sk; 1286 void __user *argp = (void __user *)arg; 1287 int pid, err; 1288 struct net *net; 1289 1290 sock = file->private_data; 1291 ops = READ_ONCE(sock->ops); 1292 sk = sock->sk; 1293 net = sock_net(sk); 1294 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1295 struct ifreq ifr; 1296 void __user *data; 1297 bool need_copyout; 1298 if (get_user_ifreq(&ifr, &data, argp)) 1299 return -EFAULT; 1300 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1301 if (!err && need_copyout) 1302 if (put_user_ifreq(&ifr, argp)) 1303 return -EFAULT; 1304 } else 1305 #ifdef CONFIG_WEXT_CORE 1306 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1307 err = wext_handle_ioctl(net, cmd, argp); 1308 } else 1309 #endif 1310 switch (cmd) { 1311 case FIOSETOWN: 1312 case SIOCSPGRP: 1313 err = -EFAULT; 1314 if (get_user(pid, (int __user *)argp)) 1315 break; 1316 err = f_setown(sock->file, pid, 1); 1317 break; 1318 case FIOGETOWN: 1319 case SIOCGPGRP: 1320 err = put_user(f_getown(sock->file), 1321 (int __user *)argp); 1322 break; 1323 case SIOCGIFBR: 1324 case SIOCSIFBR: 1325 case SIOCBRADDBR: 1326 case SIOCBRDELBR: 1327 case SIOCBRADDIF: 1328 case SIOCBRDELIF: 1329 err = br_ioctl_call(net, cmd, argp); 1330 break; 1331 case SIOCGIFVLAN: 1332 case SIOCSIFVLAN: 1333 err = -ENOPKG; 1334 if (!vlan_ioctl_hook) 1335 request_module("8021q"); 1336 1337 mutex_lock(&vlan_ioctl_mutex); 1338 if (vlan_ioctl_hook) 1339 err = vlan_ioctl_hook(net, argp); 1340 mutex_unlock(&vlan_ioctl_mutex); 1341 break; 1342 case SIOCGSKNS: 1343 err = -EPERM; 1344 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1345 break; 1346 1347 err = open_related_ns(&net->ns, get_net_ns); 1348 break; 1349 case SIOCGSTAMP_OLD: 1350 case SIOCGSTAMPNS_OLD: 1351 if (!ops->gettstamp) { 1352 err = -ENOIOCTLCMD; 1353 break; 1354 } 1355 err = ops->gettstamp(sock, argp, 1356 cmd == SIOCGSTAMP_OLD, 1357 !IS_ENABLED(CONFIG_64BIT)); 1358 break; 1359 case SIOCGSTAMP_NEW: 1360 case SIOCGSTAMPNS_NEW: 1361 if (!ops->gettstamp) { 1362 err = -ENOIOCTLCMD; 1363 break; 1364 } 1365 err = ops->gettstamp(sock, argp, 1366 cmd == SIOCGSTAMP_NEW, 1367 false); 1368 break; 1369 1370 case SIOCGIFCONF: 1371 err = dev_ifconf(net, argp); 1372 break; 1373 1374 default: 1375 err = sock_do_ioctl(net, sock, cmd, arg); 1376 break; 1377 } 1378 return err; 1379 } 1380 1381 /** 1382 * sock_create_lite - creates a socket 1383 * @family: protocol family (AF_INET, ...) 1384 * @type: communication type (SOCK_STREAM, ...) 1385 * @protocol: protocol (0, ...) 1386 * @res: new socket 1387 * 1388 * Creates a new socket and assigns it to @res, passing through LSM. 1389 * The new socket initialization is not complete, see kernel_accept(). 1390 * Returns 0 or an error. On failure @res is set to %NULL. 1391 * This function internally uses GFP_KERNEL. 1392 */ 1393 1394 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1395 { 1396 int err; 1397 struct socket *sock = NULL; 1398 1399 err = security_socket_create(family, type, protocol, 1); 1400 if (err) 1401 goto out; 1402 1403 sock = sock_alloc(); 1404 if (!sock) { 1405 err = -ENOMEM; 1406 goto out; 1407 } 1408 1409 sock->type = type; 1410 err = security_socket_post_create(sock, family, type, protocol, 1); 1411 if (err) 1412 goto out_release; 1413 1414 out: 1415 *res = sock; 1416 return err; 1417 out_release: 1418 sock_release(sock); 1419 sock = NULL; 1420 goto out; 1421 } 1422 EXPORT_SYMBOL(sock_create_lite); 1423 1424 /* No kernel lock held - perfect */ 1425 static __poll_t sock_poll(struct file *file, poll_table *wait) 1426 { 1427 struct socket *sock = file->private_data; 1428 const struct proto_ops *ops = READ_ONCE(sock->ops); 1429 __poll_t events = poll_requested_events(wait), flag = 0; 1430 1431 if (!ops->poll) 1432 return 0; 1433 1434 if (sk_can_busy_loop(sock->sk)) { 1435 /* poll once if requested by the syscall */ 1436 if (events & POLL_BUSY_LOOP) 1437 sk_busy_loop(sock->sk, 1); 1438 1439 /* if this socket can poll_ll, tell the system call */ 1440 flag = POLL_BUSY_LOOP; 1441 } 1442 1443 return ops->poll(file, sock, wait) | flag; 1444 } 1445 1446 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1447 { 1448 struct socket *sock = file->private_data; 1449 1450 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1451 } 1452 1453 static int sock_close(struct inode *inode, struct file *filp) 1454 { 1455 __sock_release(SOCKET_I(inode), inode); 1456 return 0; 1457 } 1458 1459 /* 1460 * Update the socket async list 1461 * 1462 * Fasync_list locking strategy. 1463 * 1464 * 1. fasync_list is modified only under process context socket lock 1465 * i.e. under semaphore. 1466 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1467 * or under socket lock 1468 */ 1469 1470 static int sock_fasync(int fd, struct file *filp, int on) 1471 { 1472 struct socket *sock = filp->private_data; 1473 struct sock *sk = sock->sk; 1474 struct socket_wq *wq = &sock->wq; 1475 1476 if (sk == NULL) 1477 return -EINVAL; 1478 1479 lock_sock(sk); 1480 fasync_helper(fd, filp, on, &wq->fasync_list); 1481 1482 if (!wq->fasync_list) 1483 sock_reset_flag(sk, SOCK_FASYNC); 1484 else 1485 sock_set_flag(sk, SOCK_FASYNC); 1486 1487 release_sock(sk); 1488 return 0; 1489 } 1490 1491 /* This function may be called only under rcu_lock */ 1492 1493 int sock_wake_async(struct socket_wq *wq, int how, int band) 1494 { 1495 if (!wq || !wq->fasync_list) 1496 return -1; 1497 1498 switch (how) { 1499 case SOCK_WAKE_WAITD: 1500 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1501 break; 1502 goto call_kill; 1503 case SOCK_WAKE_SPACE: 1504 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1505 break; 1506 fallthrough; 1507 case SOCK_WAKE_IO: 1508 call_kill: 1509 kill_fasync(&wq->fasync_list, SIGIO, band); 1510 break; 1511 case SOCK_WAKE_URG: 1512 kill_fasync(&wq->fasync_list, SIGURG, band); 1513 } 1514 1515 return 0; 1516 } 1517 EXPORT_SYMBOL(sock_wake_async); 1518 1519 /** 1520 * __sock_create - creates a socket 1521 * @net: net namespace 1522 * @family: protocol family (AF_INET, ...) 1523 * @type: communication type (SOCK_STREAM, ...) 1524 * @protocol: protocol (0, ...) 1525 * @res: new socket 1526 * @kern: boolean for kernel space sockets 1527 * 1528 * Creates a new socket and assigns it to @res, passing through LSM. 1529 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1530 * be set to true if the socket resides in kernel space. 1531 * This function internally uses GFP_KERNEL. 1532 */ 1533 1534 int __sock_create(struct net *net, int family, int type, int protocol, 1535 struct socket **res, int kern) 1536 { 1537 int err; 1538 struct socket *sock; 1539 const struct net_proto_family *pf; 1540 1541 /* 1542 * Check protocol is in range 1543 */ 1544 if (family < 0 || family >= NPROTO) 1545 return -EAFNOSUPPORT; 1546 if (type < 0 || type >= SOCK_MAX) 1547 return -EINVAL; 1548 1549 /* Compatibility. 1550 1551 This uglymoron is moved from INET layer to here to avoid 1552 deadlock in module load. 1553 */ 1554 if (family == PF_INET && type == SOCK_PACKET) { 1555 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1556 current->comm); 1557 family = PF_PACKET; 1558 } 1559 1560 err = security_socket_create(family, type, protocol, kern); 1561 if (err) 1562 return err; 1563 1564 /* 1565 * Allocate the socket and allow the family to set things up. if 1566 * the protocol is 0, the family is instructed to select an appropriate 1567 * default. 1568 */ 1569 sock = sock_alloc(); 1570 if (!sock) { 1571 net_warn_ratelimited("socket: no more sockets\n"); 1572 return -ENFILE; /* Not exactly a match, but its the 1573 closest posix thing */ 1574 } 1575 1576 sock->type = type; 1577 1578 #ifdef CONFIG_MODULES 1579 /* Attempt to load a protocol module if the find failed. 1580 * 1581 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1582 * requested real, full-featured networking support upon configuration. 1583 * Otherwise module support will break! 1584 */ 1585 if (rcu_access_pointer(net_families[family]) == NULL) 1586 request_module("net-pf-%d", family); 1587 #endif 1588 1589 rcu_read_lock(); 1590 pf = rcu_dereference(net_families[family]); 1591 err = -EAFNOSUPPORT; 1592 if (!pf) 1593 goto out_release; 1594 1595 /* 1596 * We will call the ->create function, that possibly is in a loadable 1597 * module, so we have to bump that loadable module refcnt first. 1598 */ 1599 if (!try_module_get(pf->owner)) 1600 goto out_release; 1601 1602 /* Now protected by module ref count */ 1603 rcu_read_unlock(); 1604 1605 err = pf->create(net, sock, protocol, kern); 1606 if (err < 0) { 1607 /* ->create should release the allocated sock->sk object on error 1608 * and make sure sock->sk is set to NULL to avoid use-after-free 1609 */ 1610 DEBUG_NET_WARN_ONCE(sock->sk, 1611 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n", 1612 pf->create, family, type, protocol); 1613 goto out_module_put; 1614 } 1615 1616 /* 1617 * Now to bump the refcnt of the [loadable] module that owns this 1618 * socket at sock_release time we decrement its refcnt. 1619 */ 1620 if (!try_module_get(sock->ops->owner)) 1621 goto out_module_busy; 1622 1623 /* 1624 * Now that we're done with the ->create function, the [loadable] 1625 * module can have its refcnt decremented 1626 */ 1627 module_put(pf->owner); 1628 err = security_socket_post_create(sock, family, type, protocol, kern); 1629 if (err) 1630 goto out_sock_release; 1631 *res = sock; 1632 1633 return 0; 1634 1635 out_module_busy: 1636 err = -EAFNOSUPPORT; 1637 out_module_put: 1638 sock->ops = NULL; 1639 module_put(pf->owner); 1640 out_sock_release: 1641 sock_release(sock); 1642 return err; 1643 1644 out_release: 1645 rcu_read_unlock(); 1646 goto out_sock_release; 1647 } 1648 EXPORT_SYMBOL(__sock_create); 1649 1650 /** 1651 * sock_create - creates a socket 1652 * @family: protocol family (AF_INET, ...) 1653 * @type: communication type (SOCK_STREAM, ...) 1654 * @protocol: protocol (0, ...) 1655 * @res: new socket 1656 * 1657 * A wrapper around __sock_create(). 1658 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1659 */ 1660 1661 int sock_create(int family, int type, int protocol, struct socket **res) 1662 { 1663 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1664 } 1665 EXPORT_SYMBOL(sock_create); 1666 1667 /** 1668 * sock_create_kern - creates a socket (kernel space) 1669 * @net: net namespace 1670 * @family: protocol family (AF_INET, ...) 1671 * @type: communication type (SOCK_STREAM, ...) 1672 * @protocol: protocol (0, ...) 1673 * @res: new socket 1674 * 1675 * A wrapper around __sock_create(). 1676 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1677 */ 1678 1679 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1680 { 1681 return __sock_create(net, family, type, protocol, res, 1); 1682 } 1683 EXPORT_SYMBOL(sock_create_kern); 1684 1685 static struct socket *__sys_socket_create(int family, int type, int protocol) 1686 { 1687 struct socket *sock; 1688 int retval; 1689 1690 /* Check the SOCK_* constants for consistency. */ 1691 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1692 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1693 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1694 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1695 1696 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1697 return ERR_PTR(-EINVAL); 1698 type &= SOCK_TYPE_MASK; 1699 1700 retval = sock_create(family, type, protocol, &sock); 1701 if (retval < 0) 1702 return ERR_PTR(retval); 1703 1704 return sock; 1705 } 1706 1707 struct file *__sys_socket_file(int family, int type, int protocol) 1708 { 1709 struct socket *sock; 1710 int flags; 1711 1712 sock = __sys_socket_create(family, type, protocol); 1713 if (IS_ERR(sock)) 1714 return ERR_CAST(sock); 1715 1716 flags = type & ~SOCK_TYPE_MASK; 1717 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1718 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1719 1720 return sock_alloc_file(sock, flags, NULL); 1721 } 1722 1723 /* A hook for bpf progs to attach to and update socket protocol. 1724 * 1725 * A static noinline declaration here could cause the compiler to 1726 * optimize away the function. A global noinline declaration will 1727 * keep the definition, but may optimize away the callsite. 1728 * Therefore, __weak is needed to ensure that the call is still 1729 * emitted, by telling the compiler that we don't know what the 1730 * function might eventually be. 1731 */ 1732 1733 __bpf_hook_start(); 1734 1735 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1736 { 1737 return protocol; 1738 } 1739 1740 __bpf_hook_end(); 1741 1742 int __sys_socket(int family, int type, int protocol) 1743 { 1744 struct socket *sock; 1745 int flags; 1746 1747 sock = __sys_socket_create(family, type, 1748 update_socket_protocol(family, type, protocol)); 1749 if (IS_ERR(sock)) 1750 return PTR_ERR(sock); 1751 1752 flags = type & ~SOCK_TYPE_MASK; 1753 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1754 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1755 1756 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1757 } 1758 1759 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1760 { 1761 return __sys_socket(family, type, protocol); 1762 } 1763 1764 /* 1765 * Create a pair of connected sockets. 1766 */ 1767 1768 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1769 { 1770 struct socket *sock1, *sock2; 1771 int fd1, fd2, err; 1772 struct file *newfile1, *newfile2; 1773 int flags; 1774 1775 flags = type & ~SOCK_TYPE_MASK; 1776 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1777 return -EINVAL; 1778 type &= SOCK_TYPE_MASK; 1779 1780 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1781 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1782 1783 /* 1784 * reserve descriptors and make sure we won't fail 1785 * to return them to userland. 1786 */ 1787 fd1 = get_unused_fd_flags(flags); 1788 if (unlikely(fd1 < 0)) 1789 return fd1; 1790 1791 fd2 = get_unused_fd_flags(flags); 1792 if (unlikely(fd2 < 0)) { 1793 put_unused_fd(fd1); 1794 return fd2; 1795 } 1796 1797 err = put_user(fd1, &usockvec[0]); 1798 if (err) 1799 goto out; 1800 1801 err = put_user(fd2, &usockvec[1]); 1802 if (err) 1803 goto out; 1804 1805 /* 1806 * Obtain the first socket and check if the underlying protocol 1807 * supports the socketpair call. 1808 */ 1809 1810 err = sock_create(family, type, protocol, &sock1); 1811 if (unlikely(err < 0)) 1812 goto out; 1813 1814 err = sock_create(family, type, protocol, &sock2); 1815 if (unlikely(err < 0)) { 1816 sock_release(sock1); 1817 goto out; 1818 } 1819 1820 err = security_socket_socketpair(sock1, sock2); 1821 if (unlikely(err)) { 1822 sock_release(sock2); 1823 sock_release(sock1); 1824 goto out; 1825 } 1826 1827 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1828 if (unlikely(err < 0)) { 1829 sock_release(sock2); 1830 sock_release(sock1); 1831 goto out; 1832 } 1833 1834 newfile1 = sock_alloc_file(sock1, flags, NULL); 1835 if (IS_ERR(newfile1)) { 1836 err = PTR_ERR(newfile1); 1837 sock_release(sock2); 1838 goto out; 1839 } 1840 1841 newfile2 = sock_alloc_file(sock2, flags, NULL); 1842 if (IS_ERR(newfile2)) { 1843 err = PTR_ERR(newfile2); 1844 fput(newfile1); 1845 goto out; 1846 } 1847 1848 audit_fd_pair(fd1, fd2); 1849 1850 fd_install(fd1, newfile1); 1851 fd_install(fd2, newfile2); 1852 return 0; 1853 1854 out: 1855 put_unused_fd(fd2); 1856 put_unused_fd(fd1); 1857 return err; 1858 } 1859 1860 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1861 int __user *, usockvec) 1862 { 1863 return __sys_socketpair(family, type, protocol, usockvec); 1864 } 1865 1866 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, 1867 int addrlen) 1868 { 1869 int err; 1870 1871 err = security_socket_bind(sock, (struct sockaddr *)address, 1872 addrlen); 1873 if (!err) 1874 err = READ_ONCE(sock->ops)->bind(sock, 1875 (struct sockaddr_unsized *)address, 1876 addrlen); 1877 return err; 1878 } 1879 1880 /* 1881 * Bind a name to a socket. Nothing much to do here since it's 1882 * the protocol's responsibility to handle the local address. 1883 * 1884 * We move the socket address to kernel space before we call 1885 * the protocol layer (having also checked the address is ok). 1886 */ 1887 1888 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1889 { 1890 struct socket *sock; 1891 struct sockaddr_storage address; 1892 CLASS(fd, f)(fd); 1893 int err; 1894 1895 if (fd_empty(f)) 1896 return -EBADF; 1897 sock = sock_from_file(fd_file(f)); 1898 if (unlikely(!sock)) 1899 return -ENOTSOCK; 1900 1901 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1902 if (unlikely(err)) 1903 return err; 1904 1905 return __sys_bind_socket(sock, &address, addrlen); 1906 } 1907 1908 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1909 { 1910 return __sys_bind(fd, umyaddr, addrlen); 1911 } 1912 1913 /* 1914 * Perform a listen. Basically, we allow the protocol to do anything 1915 * necessary for a listen, and if that works, we mark the socket as 1916 * ready for listening. 1917 */ 1918 int __sys_listen_socket(struct socket *sock, int backlog) 1919 { 1920 int somaxconn, err; 1921 1922 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1923 if ((unsigned int)backlog > somaxconn) 1924 backlog = somaxconn; 1925 1926 err = security_socket_listen(sock, backlog); 1927 if (!err) 1928 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1929 return err; 1930 } 1931 1932 int __sys_listen(int fd, int backlog) 1933 { 1934 CLASS(fd, f)(fd); 1935 struct socket *sock; 1936 1937 if (fd_empty(f)) 1938 return -EBADF; 1939 sock = sock_from_file(fd_file(f)); 1940 if (unlikely(!sock)) 1941 return -ENOTSOCK; 1942 1943 return __sys_listen_socket(sock, backlog); 1944 } 1945 1946 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1947 { 1948 return __sys_listen(fd, backlog); 1949 } 1950 1951 struct file *do_accept(struct file *file, struct proto_accept_arg *arg, 1952 struct sockaddr __user *upeer_sockaddr, 1953 int __user *upeer_addrlen, int flags) 1954 { 1955 struct socket *sock, *newsock; 1956 struct file *newfile; 1957 int err, len; 1958 struct sockaddr_storage address; 1959 const struct proto_ops *ops; 1960 1961 sock = sock_from_file(file); 1962 if (!sock) 1963 return ERR_PTR(-ENOTSOCK); 1964 1965 newsock = sock_alloc(); 1966 if (!newsock) 1967 return ERR_PTR(-ENFILE); 1968 ops = READ_ONCE(sock->ops); 1969 1970 newsock->type = sock->type; 1971 newsock->ops = ops; 1972 1973 /* 1974 * We don't need try_module_get here, as the listening socket (sock) 1975 * has the protocol module (sock->ops->owner) held. 1976 */ 1977 __module_get(ops->owner); 1978 1979 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1980 if (IS_ERR(newfile)) 1981 return newfile; 1982 1983 err = security_socket_accept(sock, newsock); 1984 if (err) 1985 goto out_fd; 1986 1987 arg->flags |= sock->file->f_flags; 1988 err = ops->accept(sock, newsock, arg); 1989 if (err < 0) 1990 goto out_fd; 1991 1992 if (upeer_sockaddr) { 1993 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1994 if (len < 0) { 1995 err = -ECONNABORTED; 1996 goto out_fd; 1997 } 1998 err = move_addr_to_user(&address, 1999 len, upeer_sockaddr, upeer_addrlen); 2000 if (err < 0) 2001 goto out_fd; 2002 } 2003 2004 /* File flags are not inherited via accept() unlike another OSes. */ 2005 return newfile; 2006 out_fd: 2007 fput(newfile); 2008 return ERR_PTR(err); 2009 } 2010 2011 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 2012 int __user *upeer_addrlen, int flags) 2013 { 2014 struct proto_accept_arg arg = { }; 2015 2016 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 2017 return -EINVAL; 2018 2019 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 2020 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 2021 2022 return FD_ADD(flags, do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, flags)); 2023 } 2024 2025 /* 2026 * For accept, we attempt to create a new socket, set up the link 2027 * with the client, wake up the client, then return the new 2028 * connected fd. We collect the address of the connector in kernel 2029 * space and move it to user at the very end. This is unclean because 2030 * we open the socket then return an error. 2031 * 2032 * 1003.1g adds the ability to recvmsg() to query connection pending 2033 * status to recvmsg. We need to add that support in a way thats 2034 * clean when we restructure accept also. 2035 */ 2036 2037 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 2038 int __user *upeer_addrlen, int flags) 2039 { 2040 CLASS(fd, f)(fd); 2041 2042 if (fd_empty(f)) 2043 return -EBADF; 2044 return __sys_accept4_file(fd_file(f), upeer_sockaddr, 2045 upeer_addrlen, flags); 2046 } 2047 2048 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 2049 int __user *, upeer_addrlen, int, flags) 2050 { 2051 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 2052 } 2053 2054 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 2055 int __user *, upeer_addrlen) 2056 { 2057 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2058 } 2059 2060 /* 2061 * Attempt to connect to a socket with the server address. The address 2062 * is in user space so we verify it is OK and move it to kernel space. 2063 * 2064 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2065 * break bindings 2066 * 2067 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2068 * other SEQPACKET protocols that take time to connect() as it doesn't 2069 * include the -EINPROGRESS status for such sockets. 2070 */ 2071 2072 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2073 int addrlen, int file_flags) 2074 { 2075 struct socket *sock; 2076 int err; 2077 2078 sock = sock_from_file(file); 2079 if (!sock) { 2080 err = -ENOTSOCK; 2081 goto out; 2082 } 2083 2084 err = 2085 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2086 if (err) 2087 goto out; 2088 2089 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr_unsized *)address, 2090 addrlen, sock->file->f_flags | file_flags); 2091 out: 2092 return err; 2093 } 2094 2095 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2096 { 2097 struct sockaddr_storage address; 2098 CLASS(fd, f)(fd); 2099 int ret; 2100 2101 if (fd_empty(f)) 2102 return -EBADF; 2103 2104 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2105 if (ret) 2106 return ret; 2107 2108 return __sys_connect_file(fd_file(f), &address, addrlen, 0); 2109 } 2110 2111 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2112 int, addrlen) 2113 { 2114 return __sys_connect(fd, uservaddr, addrlen); 2115 } 2116 2117 int do_getsockname(struct socket *sock, int peer, 2118 struct sockaddr __user *usockaddr, int __user *usockaddr_len) 2119 { 2120 struct sockaddr_storage address; 2121 int err; 2122 2123 if (peer) 2124 err = security_socket_getpeername(sock); 2125 else 2126 err = security_socket_getsockname(sock); 2127 if (err) 2128 return err; 2129 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, peer); 2130 if (err < 0) 2131 return err; 2132 /* "err" is actually length in this case */ 2133 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2134 } 2135 2136 /* 2137 * Get the remote or local address ('name') of a socket object. Move the 2138 * obtained name to user space. 2139 */ 2140 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2141 int __user *usockaddr_len, int peer) 2142 { 2143 struct socket *sock; 2144 CLASS(fd, f)(fd); 2145 2146 if (fd_empty(f)) 2147 return -EBADF; 2148 sock = sock_from_file(fd_file(f)); 2149 if (unlikely(!sock)) 2150 return -ENOTSOCK; 2151 return do_getsockname(sock, peer, usockaddr, usockaddr_len); 2152 } 2153 2154 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2155 int __user *, usockaddr_len) 2156 { 2157 return __sys_getsockname(fd, usockaddr, usockaddr_len, 0); 2158 } 2159 2160 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2161 int __user *, usockaddr_len) 2162 { 2163 return __sys_getsockname(fd, usockaddr, usockaddr_len, 1); 2164 } 2165 2166 /* 2167 * Send a datagram to a given address. We move the address into kernel 2168 * space and check the user space data area is readable before invoking 2169 * the protocol. 2170 */ 2171 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2172 struct sockaddr __user *addr, int addr_len) 2173 { 2174 struct socket *sock; 2175 struct sockaddr_storage address; 2176 int err; 2177 struct msghdr msg; 2178 2179 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); 2180 if (unlikely(err)) 2181 return err; 2182 2183 CLASS(fd, f)(fd); 2184 if (fd_empty(f)) 2185 return -EBADF; 2186 sock = sock_from_file(fd_file(f)); 2187 if (unlikely(!sock)) 2188 return -ENOTSOCK; 2189 2190 msg.msg_name = NULL; 2191 msg.msg_control = NULL; 2192 msg.msg_controllen = 0; 2193 msg.msg_namelen = 0; 2194 msg.msg_ubuf = NULL; 2195 if (addr) { 2196 err = move_addr_to_kernel(addr, addr_len, &address); 2197 if (err < 0) 2198 return err; 2199 msg.msg_name = (struct sockaddr *)&address; 2200 msg.msg_namelen = addr_len; 2201 } 2202 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2203 if (sock->file->f_flags & O_NONBLOCK) 2204 flags |= MSG_DONTWAIT; 2205 msg.msg_flags = flags; 2206 return __sock_sendmsg(sock, &msg); 2207 } 2208 2209 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2210 unsigned int, flags, struct sockaddr __user *, addr, 2211 int, addr_len) 2212 { 2213 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2214 } 2215 2216 /* 2217 * Send a datagram down a socket. 2218 */ 2219 2220 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2221 unsigned int, flags) 2222 { 2223 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2224 } 2225 2226 /* 2227 * Receive a frame from the socket and optionally record the address of the 2228 * sender. We verify the buffers are writable and if needed move the 2229 * sender address from kernel to user space. 2230 */ 2231 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2232 struct sockaddr __user *addr, int __user *addr_len) 2233 { 2234 struct sockaddr_storage address; 2235 struct msghdr msg = { 2236 /* Save some cycles and don't copy the address if not needed */ 2237 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2238 }; 2239 struct socket *sock; 2240 int err, err2; 2241 2242 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); 2243 if (unlikely(err)) 2244 return err; 2245 2246 CLASS(fd, f)(fd); 2247 2248 if (fd_empty(f)) 2249 return -EBADF; 2250 sock = sock_from_file(fd_file(f)); 2251 if (unlikely(!sock)) 2252 return -ENOTSOCK; 2253 2254 if (sock->file->f_flags & O_NONBLOCK) 2255 flags |= MSG_DONTWAIT; 2256 err = sock_recvmsg(sock, &msg, flags); 2257 2258 if (err >= 0 && addr != NULL) { 2259 err2 = move_addr_to_user(&address, 2260 msg.msg_namelen, addr, addr_len); 2261 if (err2 < 0) 2262 err = err2; 2263 } 2264 return err; 2265 } 2266 2267 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2268 unsigned int, flags, struct sockaddr __user *, addr, 2269 int __user *, addr_len) 2270 { 2271 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2272 } 2273 2274 /* 2275 * Receive a datagram from a socket. 2276 */ 2277 2278 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2279 unsigned int, flags) 2280 { 2281 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2282 } 2283 2284 static bool sock_use_custom_sol_socket(const struct socket *sock) 2285 { 2286 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2287 } 2288 2289 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 2290 int optname, sockptr_t optval, int optlen) 2291 { 2292 const struct proto_ops *ops; 2293 char *kernel_optval = NULL; 2294 int err; 2295 2296 if (optlen < 0) 2297 return -EINVAL; 2298 2299 err = security_socket_setsockopt(sock, level, optname); 2300 if (err) 2301 goto out_put; 2302 2303 if (!compat) 2304 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2305 optval, &optlen, 2306 &kernel_optval); 2307 if (err < 0) 2308 goto out_put; 2309 if (err > 0) { 2310 err = 0; 2311 goto out_put; 2312 } 2313 2314 if (kernel_optval) 2315 optval = KERNEL_SOCKPTR(kernel_optval); 2316 ops = READ_ONCE(sock->ops); 2317 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2318 err = sock_setsockopt(sock, level, optname, optval, optlen); 2319 else if (unlikely(!ops->setsockopt)) 2320 err = -EOPNOTSUPP; 2321 else 2322 err = ops->setsockopt(sock, level, optname, optval, 2323 optlen); 2324 kfree(kernel_optval); 2325 out_put: 2326 return err; 2327 } 2328 EXPORT_SYMBOL(do_sock_setsockopt); 2329 2330 /* Set a socket option. Because we don't know the option lengths we have 2331 * to pass the user mode parameter for the protocols to sort out. 2332 */ 2333 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2334 int optlen) 2335 { 2336 sockptr_t optval = USER_SOCKPTR(user_optval); 2337 bool compat = in_compat_syscall(); 2338 struct socket *sock; 2339 CLASS(fd, f)(fd); 2340 2341 if (fd_empty(f)) 2342 return -EBADF; 2343 sock = sock_from_file(fd_file(f)); 2344 if (unlikely(!sock)) 2345 return -ENOTSOCK; 2346 2347 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen); 2348 } 2349 2350 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2351 char __user *, optval, int, optlen) 2352 { 2353 return __sys_setsockopt(fd, level, optname, optval, optlen); 2354 } 2355 2356 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2357 int optname)); 2358 2359 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 2360 int optname, sockptr_t optval, sockptr_t optlen) 2361 { 2362 int max_optlen __maybe_unused = 0; 2363 const struct proto_ops *ops; 2364 int err; 2365 2366 err = security_socket_getsockopt(sock, level, optname); 2367 if (err) 2368 return err; 2369 2370 if (!compat) 2371 copy_from_sockptr(&max_optlen, optlen, sizeof(int)); 2372 2373 ops = READ_ONCE(sock->ops); 2374 if (level == SOL_SOCKET) { 2375 err = sk_getsockopt(sock->sk, level, optname, optval, optlen); 2376 } else if (unlikely(!ops->getsockopt)) { 2377 err = -EOPNOTSUPP; 2378 } else { 2379 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, 2380 "Invalid argument type")) 2381 return -EOPNOTSUPP; 2382 2383 err = ops->getsockopt(sock, level, optname, optval.user, 2384 optlen.user); 2385 } 2386 2387 if (!compat) 2388 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2389 optval, optlen, max_optlen, 2390 err); 2391 2392 return err; 2393 } 2394 EXPORT_SYMBOL(do_sock_getsockopt); 2395 2396 /* 2397 * Get a socket option. Because we don't know the option lengths we have 2398 * to pass a user mode parameter for the protocols to sort out. 2399 */ 2400 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2401 int __user *optlen) 2402 { 2403 struct socket *sock; 2404 CLASS(fd, f)(fd); 2405 2406 if (fd_empty(f)) 2407 return -EBADF; 2408 sock = sock_from_file(fd_file(f)); 2409 if (unlikely(!sock)) 2410 return -ENOTSOCK; 2411 2412 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname, 2413 USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); 2414 } 2415 2416 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2417 char __user *, optval, int __user *, optlen) 2418 { 2419 return __sys_getsockopt(fd, level, optname, optval, optlen); 2420 } 2421 2422 /* 2423 * Shutdown a socket. 2424 */ 2425 2426 int __sys_shutdown_sock(struct socket *sock, int how) 2427 { 2428 int err; 2429 2430 err = security_socket_shutdown(sock, how); 2431 if (!err) 2432 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2433 2434 return err; 2435 } 2436 2437 int __sys_shutdown(int fd, int how) 2438 { 2439 struct socket *sock; 2440 CLASS(fd, f)(fd); 2441 2442 if (fd_empty(f)) 2443 return -EBADF; 2444 sock = sock_from_file(fd_file(f)); 2445 if (unlikely(!sock)) 2446 return -ENOTSOCK; 2447 2448 return __sys_shutdown_sock(sock, how); 2449 } 2450 2451 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2452 { 2453 return __sys_shutdown(fd, how); 2454 } 2455 2456 /* A couple of helpful macros for getting the address of the 32/64 bit 2457 * fields which are the same type (int / unsigned) on our platforms. 2458 */ 2459 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2460 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2461 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2462 2463 struct used_address { 2464 struct sockaddr_storage name; 2465 unsigned int name_len; 2466 }; 2467 2468 int __copy_msghdr(struct msghdr *kmsg, 2469 struct user_msghdr *msg, 2470 struct sockaddr __user **save_addr) 2471 { 2472 ssize_t err; 2473 2474 kmsg->msg_control_is_user = true; 2475 kmsg->msg_get_inq = 0; 2476 kmsg->msg_control_user = msg->msg_control; 2477 kmsg->msg_controllen = msg->msg_controllen; 2478 kmsg->msg_flags = msg->msg_flags; 2479 2480 kmsg->msg_namelen = msg->msg_namelen; 2481 if (!msg->msg_name) 2482 kmsg->msg_namelen = 0; 2483 2484 if (kmsg->msg_namelen < 0) 2485 return -EINVAL; 2486 2487 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2488 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2489 2490 if (save_addr) 2491 *save_addr = msg->msg_name; 2492 2493 if (msg->msg_name && kmsg->msg_namelen) { 2494 if (!save_addr) { 2495 err = move_addr_to_kernel(msg->msg_name, 2496 kmsg->msg_namelen, 2497 kmsg->msg_name); 2498 if (err < 0) 2499 return err; 2500 } 2501 } else { 2502 kmsg->msg_name = NULL; 2503 kmsg->msg_namelen = 0; 2504 } 2505 2506 if (msg->msg_iovlen > UIO_MAXIOV) 2507 return -EMSGSIZE; 2508 2509 kmsg->msg_iocb = NULL; 2510 kmsg->msg_ubuf = NULL; 2511 return 0; 2512 } 2513 2514 static int copy_msghdr_from_user(struct msghdr *kmsg, 2515 struct user_msghdr __user *umsg, 2516 struct sockaddr __user **save_addr, 2517 struct iovec **iov) 2518 { 2519 struct user_msghdr msg; 2520 ssize_t err; 2521 2522 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2523 return -EFAULT; 2524 2525 err = __copy_msghdr(kmsg, &msg, save_addr); 2526 if (err) 2527 return err; 2528 2529 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2530 msg.msg_iov, msg.msg_iovlen, 2531 UIO_FASTIOV, iov, &kmsg->msg_iter); 2532 return err < 0 ? err : 0; 2533 } 2534 2535 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2536 unsigned int flags, struct used_address *used_address, 2537 unsigned int allowed_msghdr_flags) 2538 { 2539 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2540 __aligned(sizeof(__kernel_size_t)); 2541 /* 20 is size of ipv6_pktinfo */ 2542 unsigned char *ctl_buf = ctl; 2543 int ctl_len; 2544 ssize_t err; 2545 2546 err = -ENOBUFS; 2547 2548 if (msg_sys->msg_controllen > INT_MAX) 2549 goto out; 2550 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2551 ctl_len = msg_sys->msg_controllen; 2552 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2553 err = 2554 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2555 sizeof(ctl)); 2556 if (err) 2557 goto out; 2558 ctl_buf = msg_sys->msg_control; 2559 ctl_len = msg_sys->msg_controllen; 2560 } else if (ctl_len) { 2561 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2562 CMSG_ALIGN(sizeof(struct cmsghdr))); 2563 if (ctl_len > sizeof(ctl)) { 2564 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2565 if (ctl_buf == NULL) 2566 goto out; 2567 } 2568 err = -EFAULT; 2569 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2570 goto out_freectl; 2571 msg_sys->msg_control = ctl_buf; 2572 msg_sys->msg_control_is_user = false; 2573 } 2574 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2575 msg_sys->msg_flags = flags; 2576 2577 if (sock->file->f_flags & O_NONBLOCK) 2578 msg_sys->msg_flags |= MSG_DONTWAIT; 2579 /* 2580 * If this is sendmmsg() and current destination address is same as 2581 * previously succeeded address, omit asking LSM's decision. 2582 * used_address->name_len is initialized to UINT_MAX so that the first 2583 * destination address never matches. 2584 */ 2585 if (used_address && msg_sys->msg_name && 2586 used_address->name_len == msg_sys->msg_namelen && 2587 !memcmp(&used_address->name, msg_sys->msg_name, 2588 used_address->name_len)) { 2589 err = sock_sendmsg_nosec(sock, msg_sys); 2590 goto out_freectl; 2591 } 2592 err = __sock_sendmsg(sock, msg_sys); 2593 /* 2594 * If this is sendmmsg() and sending to current destination address was 2595 * successful, remember it. 2596 */ 2597 if (used_address && err >= 0) { 2598 used_address->name_len = msg_sys->msg_namelen; 2599 if (msg_sys->msg_name) 2600 memcpy(&used_address->name, msg_sys->msg_name, 2601 used_address->name_len); 2602 } 2603 2604 out_freectl: 2605 if (ctl_buf != ctl) 2606 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2607 out: 2608 return err; 2609 } 2610 2611 static int sendmsg_copy_msghdr(struct msghdr *msg, 2612 struct user_msghdr __user *umsg, unsigned flags, 2613 struct iovec **iov) 2614 { 2615 int err; 2616 2617 if (flags & MSG_CMSG_COMPAT) { 2618 struct compat_msghdr __user *msg_compat; 2619 2620 msg_compat = (struct compat_msghdr __user *) umsg; 2621 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2622 } else { 2623 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2624 } 2625 if (err < 0) 2626 return err; 2627 2628 return 0; 2629 } 2630 2631 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2632 struct msghdr *msg_sys, unsigned int flags, 2633 struct used_address *used_address, 2634 unsigned int allowed_msghdr_flags) 2635 { 2636 struct sockaddr_storage address; 2637 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2638 ssize_t err; 2639 2640 msg_sys->msg_name = &address; 2641 2642 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2643 if (err < 0) 2644 return err; 2645 2646 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2647 allowed_msghdr_flags); 2648 kfree(iov); 2649 return err; 2650 } 2651 2652 /* 2653 * BSD sendmsg interface 2654 */ 2655 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2656 unsigned int flags) 2657 { 2658 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2659 } 2660 2661 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2662 bool forbid_cmsg_compat) 2663 { 2664 struct msghdr msg_sys; 2665 struct socket *sock; 2666 2667 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2668 return -EINVAL; 2669 2670 CLASS(fd, f)(fd); 2671 2672 if (fd_empty(f)) 2673 return -EBADF; 2674 sock = sock_from_file(fd_file(f)); 2675 if (unlikely(!sock)) 2676 return -ENOTSOCK; 2677 2678 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2679 } 2680 2681 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2682 { 2683 return __sys_sendmsg(fd, msg, flags, true); 2684 } 2685 2686 /* 2687 * Linux sendmmsg interface 2688 */ 2689 2690 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2691 unsigned int flags, bool forbid_cmsg_compat) 2692 { 2693 int err, datagrams; 2694 struct socket *sock; 2695 struct mmsghdr __user *entry; 2696 struct compat_mmsghdr __user *compat_entry; 2697 struct msghdr msg_sys; 2698 struct used_address used_address; 2699 unsigned int oflags = flags; 2700 2701 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2702 return -EINVAL; 2703 2704 if (vlen > UIO_MAXIOV) 2705 vlen = UIO_MAXIOV; 2706 2707 datagrams = 0; 2708 2709 CLASS(fd, f)(fd); 2710 2711 if (fd_empty(f)) 2712 return -EBADF; 2713 sock = sock_from_file(fd_file(f)); 2714 if (unlikely(!sock)) 2715 return -ENOTSOCK; 2716 2717 used_address.name_len = UINT_MAX; 2718 entry = mmsg; 2719 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2720 err = 0; 2721 flags |= MSG_BATCH; 2722 2723 while (datagrams < vlen) { 2724 if (datagrams == vlen - 1) 2725 flags = oflags; 2726 2727 if (MSG_CMSG_COMPAT & flags) { 2728 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2729 &msg_sys, flags, &used_address, MSG_EOR); 2730 if (err < 0) 2731 break; 2732 err = __put_user(err, &compat_entry->msg_len); 2733 ++compat_entry; 2734 } else { 2735 err = ___sys_sendmsg(sock, 2736 (struct user_msghdr __user *)entry, 2737 &msg_sys, flags, &used_address, MSG_EOR); 2738 if (err < 0) 2739 break; 2740 err = put_user(err, &entry->msg_len); 2741 ++entry; 2742 } 2743 2744 if (err) 2745 break; 2746 ++datagrams; 2747 if (msg_data_left(&msg_sys)) 2748 break; 2749 cond_resched(); 2750 } 2751 2752 /* We only return an error if no datagrams were able to be sent */ 2753 if (datagrams != 0) 2754 return datagrams; 2755 2756 return err; 2757 } 2758 2759 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2760 unsigned int, vlen, unsigned int, flags) 2761 { 2762 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2763 } 2764 2765 static int recvmsg_copy_msghdr(struct msghdr *msg, 2766 struct user_msghdr __user *umsg, unsigned flags, 2767 struct sockaddr __user **uaddr, 2768 struct iovec **iov) 2769 { 2770 ssize_t err; 2771 2772 if (MSG_CMSG_COMPAT & flags) { 2773 struct compat_msghdr __user *msg_compat; 2774 2775 msg_compat = (struct compat_msghdr __user *) umsg; 2776 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2777 } else { 2778 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2779 } 2780 if (err < 0) 2781 return err; 2782 2783 return 0; 2784 } 2785 2786 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2787 struct user_msghdr __user *msg, 2788 struct sockaddr __user *uaddr, 2789 unsigned int flags, int nosec) 2790 { 2791 struct compat_msghdr __user *msg_compat = 2792 (struct compat_msghdr __user *) msg; 2793 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2794 struct sockaddr_storage addr; 2795 unsigned long cmsg_ptr; 2796 int len; 2797 ssize_t err; 2798 2799 msg_sys->msg_name = &addr; 2800 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2801 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2802 2803 /* We assume all kernel code knows the size of sockaddr_storage */ 2804 msg_sys->msg_namelen = 0; 2805 2806 if (sock->file->f_flags & O_NONBLOCK) 2807 flags |= MSG_DONTWAIT; 2808 2809 if (unlikely(nosec)) 2810 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2811 else 2812 err = sock_recvmsg(sock, msg_sys, flags); 2813 2814 if (err < 0) 2815 goto out; 2816 len = err; 2817 2818 if (uaddr != NULL) { 2819 err = move_addr_to_user(&addr, 2820 msg_sys->msg_namelen, uaddr, 2821 uaddr_len); 2822 if (err < 0) 2823 goto out; 2824 } 2825 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2826 COMPAT_FLAGS(msg)); 2827 if (err) 2828 goto out; 2829 if (MSG_CMSG_COMPAT & flags) 2830 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2831 &msg_compat->msg_controllen); 2832 else 2833 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2834 &msg->msg_controllen); 2835 if (err) 2836 goto out; 2837 err = len; 2838 out: 2839 return err; 2840 } 2841 2842 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2843 struct msghdr *msg_sys, unsigned int flags, int nosec) 2844 { 2845 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2846 /* user mode address pointers */ 2847 struct sockaddr __user *uaddr; 2848 ssize_t err; 2849 2850 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2851 if (err < 0) 2852 return err; 2853 2854 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2855 kfree(iov); 2856 return err; 2857 } 2858 2859 /* 2860 * BSD recvmsg interface 2861 */ 2862 2863 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2864 struct user_msghdr __user *umsg, 2865 struct sockaddr __user *uaddr, unsigned int flags) 2866 { 2867 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2868 } 2869 2870 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2871 bool forbid_cmsg_compat) 2872 { 2873 struct msghdr msg_sys; 2874 struct socket *sock; 2875 2876 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2877 return -EINVAL; 2878 2879 CLASS(fd, f)(fd); 2880 2881 if (fd_empty(f)) 2882 return -EBADF; 2883 sock = sock_from_file(fd_file(f)); 2884 if (unlikely(!sock)) 2885 return -ENOTSOCK; 2886 2887 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2888 } 2889 2890 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2891 unsigned int, flags) 2892 { 2893 return __sys_recvmsg(fd, msg, flags, true); 2894 } 2895 2896 /* 2897 * Linux recvmmsg interface 2898 */ 2899 2900 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2901 unsigned int vlen, unsigned int flags, 2902 struct timespec64 *timeout) 2903 { 2904 int err = 0, datagrams; 2905 struct socket *sock; 2906 struct mmsghdr __user *entry; 2907 struct compat_mmsghdr __user *compat_entry; 2908 struct msghdr msg_sys; 2909 struct timespec64 end_time; 2910 struct timespec64 timeout64; 2911 2912 if (timeout && 2913 poll_select_set_timeout(&end_time, timeout->tv_sec, 2914 timeout->tv_nsec)) 2915 return -EINVAL; 2916 2917 datagrams = 0; 2918 2919 CLASS(fd, f)(fd); 2920 2921 if (fd_empty(f)) 2922 return -EBADF; 2923 sock = sock_from_file(fd_file(f)); 2924 if (unlikely(!sock)) 2925 return -ENOTSOCK; 2926 2927 if (likely(!(flags & MSG_ERRQUEUE))) { 2928 err = sock_error(sock->sk); 2929 if (err) 2930 return err; 2931 } 2932 2933 entry = mmsg; 2934 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2935 2936 while (datagrams < vlen) { 2937 /* 2938 * No need to ask LSM for more than the first datagram. 2939 */ 2940 if (MSG_CMSG_COMPAT & flags) { 2941 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2942 &msg_sys, flags & ~MSG_WAITFORONE, 2943 datagrams); 2944 if (err < 0) 2945 break; 2946 err = __put_user(err, &compat_entry->msg_len); 2947 ++compat_entry; 2948 } else { 2949 err = ___sys_recvmsg(sock, 2950 (struct user_msghdr __user *)entry, 2951 &msg_sys, flags & ~MSG_WAITFORONE, 2952 datagrams); 2953 if (err < 0) 2954 break; 2955 err = put_user(err, &entry->msg_len); 2956 ++entry; 2957 } 2958 2959 if (err) 2960 break; 2961 ++datagrams; 2962 2963 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2964 if (flags & MSG_WAITFORONE) 2965 flags |= MSG_DONTWAIT; 2966 2967 if (timeout) { 2968 ktime_get_ts64(&timeout64); 2969 *timeout = timespec64_sub(end_time, timeout64); 2970 if (timeout->tv_sec < 0) { 2971 timeout->tv_sec = timeout->tv_nsec = 0; 2972 break; 2973 } 2974 2975 /* Timeout, return less than vlen datagrams */ 2976 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2977 break; 2978 } 2979 2980 /* Out of band data, return right away */ 2981 if (msg_sys.msg_flags & MSG_OOB) 2982 break; 2983 cond_resched(); 2984 } 2985 2986 if (err == 0) 2987 return datagrams; 2988 2989 if (datagrams == 0) 2990 return err; 2991 2992 /* 2993 * We may return less entries than requested (vlen) if the 2994 * sock is non block and there aren't enough datagrams... 2995 */ 2996 if (err != -EAGAIN) { 2997 /* 2998 * ... or if recvmsg returns an error after we 2999 * received some datagrams, where we record the 3000 * error to return on the next call or if the 3001 * app asks about it using getsockopt(SO_ERROR). 3002 */ 3003 WRITE_ONCE(sock->sk->sk_err, -err); 3004 } 3005 return datagrams; 3006 } 3007 3008 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 3009 unsigned int vlen, unsigned int flags, 3010 struct __kernel_timespec __user *timeout, 3011 struct old_timespec32 __user *timeout32) 3012 { 3013 int datagrams; 3014 struct timespec64 timeout_sys; 3015 3016 if (timeout && get_timespec64(&timeout_sys, timeout)) 3017 return -EFAULT; 3018 3019 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 3020 return -EFAULT; 3021 3022 if (!timeout && !timeout32) 3023 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 3024 3025 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 3026 3027 if (datagrams <= 0) 3028 return datagrams; 3029 3030 if (timeout && put_timespec64(&timeout_sys, timeout)) 3031 datagrams = -EFAULT; 3032 3033 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 3034 datagrams = -EFAULT; 3035 3036 return datagrams; 3037 } 3038 3039 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 3040 unsigned int, vlen, unsigned int, flags, 3041 struct __kernel_timespec __user *, timeout) 3042 { 3043 if (flags & MSG_CMSG_COMPAT) 3044 return -EINVAL; 3045 3046 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 3047 } 3048 3049 #ifdef CONFIG_COMPAT_32BIT_TIME 3050 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3051 unsigned int, vlen, unsigned int, flags, 3052 struct old_timespec32 __user *, timeout) 3053 { 3054 if (flags & MSG_CMSG_COMPAT) 3055 return -EINVAL; 3056 3057 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3058 } 3059 #endif 3060 3061 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3062 /* Argument list sizes for sys_socketcall */ 3063 #define AL(x) ((x) * sizeof(unsigned long)) 3064 static const unsigned char nargs[21] = { 3065 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3066 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3067 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3068 AL(4), AL(5), AL(4) 3069 }; 3070 3071 #undef AL 3072 3073 /* 3074 * System call vectors. 3075 * 3076 * Argument checking cleaned up. Saved 20% in size. 3077 * This function doesn't need to set the kernel lock because 3078 * it is set by the callees. 3079 */ 3080 3081 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3082 { 3083 unsigned long a[AUDITSC_ARGS]; 3084 unsigned long a0, a1; 3085 int err; 3086 unsigned int len; 3087 3088 if (call < 1 || call > SYS_SENDMMSG) 3089 return -EINVAL; 3090 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3091 3092 len = nargs[call]; 3093 if (len > sizeof(a)) 3094 return -EINVAL; 3095 3096 /* copy_from_user should be SMP safe. */ 3097 if (copy_from_user(a, args, len)) 3098 return -EFAULT; 3099 3100 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3101 if (err) 3102 return err; 3103 3104 a0 = a[0]; 3105 a1 = a[1]; 3106 3107 switch (call) { 3108 case SYS_SOCKET: 3109 err = __sys_socket(a0, a1, a[2]); 3110 break; 3111 case SYS_BIND: 3112 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3113 break; 3114 case SYS_CONNECT: 3115 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3116 break; 3117 case SYS_LISTEN: 3118 err = __sys_listen(a0, a1); 3119 break; 3120 case SYS_ACCEPT: 3121 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3122 (int __user *)a[2], 0); 3123 break; 3124 case SYS_GETSOCKNAME: 3125 err = 3126 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3127 (int __user *)a[2], 0); 3128 break; 3129 case SYS_GETPEERNAME: 3130 err = 3131 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3132 (int __user *)a[2], 1); 3133 break; 3134 case SYS_SOCKETPAIR: 3135 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3136 break; 3137 case SYS_SEND: 3138 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3139 NULL, 0); 3140 break; 3141 case SYS_SENDTO: 3142 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3143 (struct sockaddr __user *)a[4], a[5]); 3144 break; 3145 case SYS_RECV: 3146 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3147 NULL, NULL); 3148 break; 3149 case SYS_RECVFROM: 3150 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3151 (struct sockaddr __user *)a[4], 3152 (int __user *)a[5]); 3153 break; 3154 case SYS_SHUTDOWN: 3155 err = __sys_shutdown(a0, a1); 3156 break; 3157 case SYS_SETSOCKOPT: 3158 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3159 a[4]); 3160 break; 3161 case SYS_GETSOCKOPT: 3162 err = 3163 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3164 (int __user *)a[4]); 3165 break; 3166 case SYS_SENDMSG: 3167 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3168 a[2], true); 3169 break; 3170 case SYS_SENDMMSG: 3171 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3172 a[3], true); 3173 break; 3174 case SYS_RECVMSG: 3175 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3176 a[2], true); 3177 break; 3178 case SYS_RECVMMSG: 3179 if (IS_ENABLED(CONFIG_64BIT)) 3180 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3181 a[2], a[3], 3182 (struct __kernel_timespec __user *)a[4], 3183 NULL); 3184 else 3185 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3186 a[2], a[3], NULL, 3187 (struct old_timespec32 __user *)a[4]); 3188 break; 3189 case SYS_ACCEPT4: 3190 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3191 (int __user *)a[2], a[3]); 3192 break; 3193 default: 3194 err = -EINVAL; 3195 break; 3196 } 3197 return err; 3198 } 3199 3200 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3201 3202 /** 3203 * sock_register - add a socket protocol handler 3204 * @ops: description of protocol 3205 * 3206 * This function is called by a protocol handler that wants to 3207 * advertise its address family, and have it linked into the 3208 * socket interface. The value ops->family corresponds to the 3209 * socket system call protocol family. 3210 */ 3211 int sock_register(const struct net_proto_family *ops) 3212 { 3213 int err; 3214 3215 if (ops->family >= NPROTO) { 3216 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3217 return -ENOBUFS; 3218 } 3219 3220 spin_lock(&net_family_lock); 3221 if (rcu_dereference_protected(net_families[ops->family], 3222 lockdep_is_held(&net_family_lock))) 3223 err = -EEXIST; 3224 else { 3225 rcu_assign_pointer(net_families[ops->family], ops); 3226 err = 0; 3227 } 3228 spin_unlock(&net_family_lock); 3229 3230 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3231 return err; 3232 } 3233 EXPORT_SYMBOL(sock_register); 3234 3235 /** 3236 * sock_unregister - remove a protocol handler 3237 * @family: protocol family to remove 3238 * 3239 * This function is called by a protocol handler that wants to 3240 * remove its address family, and have it unlinked from the 3241 * new socket creation. 3242 * 3243 * If protocol handler is a module, then it can use module reference 3244 * counts to protect against new references. If protocol handler is not 3245 * a module then it needs to provide its own protection in 3246 * the ops->create routine. 3247 */ 3248 void sock_unregister(int family) 3249 { 3250 BUG_ON(family < 0 || family >= NPROTO); 3251 3252 spin_lock(&net_family_lock); 3253 RCU_INIT_POINTER(net_families[family], NULL); 3254 spin_unlock(&net_family_lock); 3255 3256 synchronize_rcu(); 3257 3258 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3259 } 3260 EXPORT_SYMBOL(sock_unregister); 3261 3262 bool sock_is_registered(int family) 3263 { 3264 return family < NPROTO && rcu_access_pointer(net_families[family]); 3265 } 3266 3267 static int __init sock_init(void) 3268 { 3269 int err; 3270 /* 3271 * Initialize the network sysctl infrastructure. 3272 */ 3273 err = net_sysctl_init(); 3274 if (err) 3275 goto out; 3276 3277 /* 3278 * Initialize skbuff SLAB cache 3279 */ 3280 skb_init(); 3281 3282 /* 3283 * Initialize the protocols module. 3284 */ 3285 3286 init_inodecache(); 3287 3288 err = register_filesystem(&sock_fs_type); 3289 if (err) 3290 goto out; 3291 sock_mnt = kern_mount(&sock_fs_type); 3292 if (IS_ERR(sock_mnt)) { 3293 err = PTR_ERR(sock_mnt); 3294 goto out_mount; 3295 } 3296 3297 /* The real protocol initialization is performed in later initcalls. 3298 */ 3299 3300 #ifdef CONFIG_NETFILTER 3301 err = netfilter_init(); 3302 if (err) 3303 goto out; 3304 #endif 3305 3306 ptp_classifier_init(); 3307 3308 out: 3309 return err; 3310 3311 out_mount: 3312 unregister_filesystem(&sock_fs_type); 3313 goto out; 3314 } 3315 3316 core_initcall(sock_init); /* early initcall */ 3317 3318 #ifdef CONFIG_PROC_FS 3319 void socket_seq_show(struct seq_file *seq) 3320 { 3321 seq_printf(seq, "sockets: used %d\n", 3322 sock_inuse_get(seq->private)); 3323 } 3324 #endif /* CONFIG_PROC_FS */ 3325 3326 /* Handle the fact that while struct ifreq has the same *layout* on 3327 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3328 * which are handled elsewhere, it still has different *size* due to 3329 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3330 * resulting in struct ifreq being 32 and 40 bytes respectively). 3331 * As a result, if the struct happens to be at the end of a page and 3332 * the next page isn't readable/writable, we get a fault. To prevent 3333 * that, copy back and forth to the full size. 3334 */ 3335 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3336 { 3337 if (in_compat_syscall()) { 3338 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3339 3340 memset(ifr, 0, sizeof(*ifr)); 3341 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3342 return -EFAULT; 3343 3344 if (ifrdata) 3345 *ifrdata = compat_ptr(ifr32->ifr_data); 3346 3347 return 0; 3348 } 3349 3350 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3351 return -EFAULT; 3352 3353 if (ifrdata) 3354 *ifrdata = ifr->ifr_data; 3355 3356 return 0; 3357 } 3358 EXPORT_SYMBOL(get_user_ifreq); 3359 3360 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3361 { 3362 size_t size = sizeof(*ifr); 3363 3364 if (in_compat_syscall()) 3365 size = sizeof(struct compat_ifreq); 3366 3367 if (copy_to_user(arg, ifr, size)) 3368 return -EFAULT; 3369 3370 return 0; 3371 } 3372 EXPORT_SYMBOL(put_user_ifreq); 3373 3374 #ifdef CONFIG_COMPAT 3375 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3376 { 3377 compat_uptr_t uptr32; 3378 struct ifreq ifr; 3379 void __user *saved; 3380 int err; 3381 3382 if (get_user_ifreq(&ifr, NULL, uifr32)) 3383 return -EFAULT; 3384 3385 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3386 return -EFAULT; 3387 3388 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3389 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3390 3391 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3392 if (!err) { 3393 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3394 if (put_user_ifreq(&ifr, uifr32)) 3395 err = -EFAULT; 3396 } 3397 return err; 3398 } 3399 3400 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3401 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3402 struct compat_ifreq __user *u_ifreq32) 3403 { 3404 struct ifreq ifreq; 3405 void __user *data; 3406 3407 if (!is_socket_ioctl_cmd(cmd)) 3408 return -ENOTTY; 3409 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3410 return -EFAULT; 3411 ifreq.ifr_data = data; 3412 3413 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3414 } 3415 3416 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3417 unsigned int cmd, unsigned long arg) 3418 { 3419 void __user *argp = compat_ptr(arg); 3420 struct sock *sk = sock->sk; 3421 struct net *net = sock_net(sk); 3422 const struct proto_ops *ops; 3423 3424 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3425 return sock_ioctl(file, cmd, (unsigned long)argp); 3426 3427 switch (cmd) { 3428 case SIOCWANDEV: 3429 return compat_siocwandev(net, argp); 3430 case SIOCGSTAMP_OLD: 3431 case SIOCGSTAMPNS_OLD: 3432 ops = READ_ONCE(sock->ops); 3433 if (!ops->gettstamp) 3434 return -ENOIOCTLCMD; 3435 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3436 !COMPAT_USE_64BIT_TIME); 3437 3438 case SIOCETHTOOL: 3439 case SIOCBONDSLAVEINFOQUERY: 3440 case SIOCBONDINFOQUERY: 3441 case SIOCSHWTSTAMP: 3442 case SIOCGHWTSTAMP: 3443 return compat_ifr_data_ioctl(net, cmd, argp); 3444 3445 case FIOSETOWN: 3446 case SIOCSPGRP: 3447 case FIOGETOWN: 3448 case SIOCGPGRP: 3449 case SIOCBRADDBR: 3450 case SIOCBRDELBR: 3451 case SIOCBRADDIF: 3452 case SIOCBRDELIF: 3453 case SIOCGIFVLAN: 3454 case SIOCSIFVLAN: 3455 case SIOCGSKNS: 3456 case SIOCGSTAMP_NEW: 3457 case SIOCGSTAMPNS_NEW: 3458 case SIOCGIFCONF: 3459 case SIOCSIFBR: 3460 case SIOCGIFBR: 3461 return sock_ioctl(file, cmd, arg); 3462 3463 case SIOCGIFFLAGS: 3464 case SIOCSIFFLAGS: 3465 case SIOCGIFMAP: 3466 case SIOCSIFMAP: 3467 case SIOCGIFMETRIC: 3468 case SIOCSIFMETRIC: 3469 case SIOCGIFMTU: 3470 case SIOCSIFMTU: 3471 case SIOCGIFMEM: 3472 case SIOCSIFMEM: 3473 case SIOCGIFHWADDR: 3474 case SIOCSIFHWADDR: 3475 case SIOCADDMULTI: 3476 case SIOCDELMULTI: 3477 case SIOCGIFINDEX: 3478 case SIOCGIFADDR: 3479 case SIOCSIFADDR: 3480 case SIOCSIFHWBROADCAST: 3481 case SIOCDIFADDR: 3482 case SIOCGIFBRDADDR: 3483 case SIOCSIFBRDADDR: 3484 case SIOCGIFDSTADDR: 3485 case SIOCSIFDSTADDR: 3486 case SIOCGIFNETMASK: 3487 case SIOCSIFNETMASK: 3488 case SIOCSIFPFLAGS: 3489 case SIOCGIFPFLAGS: 3490 case SIOCGIFTXQLEN: 3491 case SIOCSIFTXQLEN: 3492 case SIOCGIFNAME: 3493 case SIOCSIFNAME: 3494 case SIOCGMIIPHY: 3495 case SIOCGMIIREG: 3496 case SIOCSMIIREG: 3497 case SIOCBONDENSLAVE: 3498 case SIOCBONDRELEASE: 3499 case SIOCBONDSETHWADDR: 3500 case SIOCBONDCHANGEACTIVE: 3501 case SIOCSARP: 3502 case SIOCGARP: 3503 case SIOCDARP: 3504 case SIOCOUTQ: 3505 case SIOCOUTQNSD: 3506 case SIOCATMARK: 3507 return sock_do_ioctl(net, sock, cmd, arg); 3508 } 3509 3510 return -ENOIOCTLCMD; 3511 } 3512 3513 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3514 unsigned long arg) 3515 { 3516 struct socket *sock = file->private_data; 3517 const struct proto_ops *ops = READ_ONCE(sock->ops); 3518 int ret = -ENOIOCTLCMD; 3519 struct sock *sk; 3520 struct net *net; 3521 3522 sk = sock->sk; 3523 net = sock_net(sk); 3524 3525 if (ops->compat_ioctl) 3526 ret = ops->compat_ioctl(sock, cmd, arg); 3527 3528 if (ret == -ENOIOCTLCMD && 3529 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3530 ret = compat_wext_handle_ioctl(net, cmd, arg); 3531 3532 if (ret == -ENOIOCTLCMD) 3533 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3534 3535 return ret; 3536 } 3537 #endif 3538 3539 /** 3540 * kernel_bind - bind an address to a socket (kernel space) 3541 * @sock: socket 3542 * @addr: address 3543 * @addrlen: length of address 3544 * 3545 * Returns 0 or an error. 3546 */ 3547 3548 int kernel_bind(struct socket *sock, struct sockaddr_unsized *addr, int addrlen) 3549 { 3550 struct sockaddr_storage address; 3551 3552 memcpy(&address, addr, addrlen); 3553 3554 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr_unsized *)&address, 3555 addrlen); 3556 } 3557 EXPORT_SYMBOL(kernel_bind); 3558 3559 /** 3560 * kernel_listen - move socket to listening state (kernel space) 3561 * @sock: socket 3562 * @backlog: pending connections queue size 3563 * 3564 * Returns 0 or an error. 3565 */ 3566 3567 int kernel_listen(struct socket *sock, int backlog) 3568 { 3569 return READ_ONCE(sock->ops)->listen(sock, backlog); 3570 } 3571 EXPORT_SYMBOL(kernel_listen); 3572 3573 /** 3574 * kernel_accept - accept a connection (kernel space) 3575 * @sock: listening socket 3576 * @newsock: new connected socket 3577 * @flags: flags 3578 * 3579 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3580 * If it fails, @newsock is guaranteed to be %NULL. 3581 * Returns 0 or an error. 3582 */ 3583 3584 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3585 { 3586 struct sock *sk = sock->sk; 3587 const struct proto_ops *ops = READ_ONCE(sock->ops); 3588 struct proto_accept_arg arg = { 3589 .flags = flags, 3590 .kern = true, 3591 }; 3592 int err; 3593 3594 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3595 newsock); 3596 if (err < 0) 3597 goto done; 3598 3599 err = ops->accept(sock, *newsock, &arg); 3600 if (err < 0) { 3601 sock_release(*newsock); 3602 *newsock = NULL; 3603 goto done; 3604 } 3605 3606 (*newsock)->ops = ops; 3607 __module_get(ops->owner); 3608 3609 done: 3610 return err; 3611 } 3612 EXPORT_SYMBOL(kernel_accept); 3613 3614 /** 3615 * kernel_connect - connect a socket (kernel space) 3616 * @sock: socket 3617 * @addr: address 3618 * @addrlen: address length 3619 * @flags: flags (O_NONBLOCK, ...) 3620 * 3621 * For datagram sockets, @addr is the address to which datagrams are sent 3622 * by default, and the only address from which datagrams are received. 3623 * For stream sockets, attempts to connect to @addr. 3624 * Returns 0 or an error code. 3625 */ 3626 3627 int kernel_connect(struct socket *sock, struct sockaddr_unsized *addr, int addrlen, 3628 int flags) 3629 { 3630 struct sockaddr_storage address; 3631 3632 memcpy(&address, addr, addrlen); 3633 3634 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr_unsized *)&address, 3635 addrlen, flags); 3636 } 3637 EXPORT_SYMBOL(kernel_connect); 3638 3639 /** 3640 * kernel_getsockname - get the address which the socket is bound (kernel space) 3641 * @sock: socket 3642 * @addr: address holder 3643 * 3644 * Fills the @addr pointer with the address which the socket is bound. 3645 * Returns the length of the address in bytes or an error code. 3646 */ 3647 3648 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3649 { 3650 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3651 } 3652 EXPORT_SYMBOL(kernel_getsockname); 3653 3654 /** 3655 * kernel_getpeername - get the address which the socket is connected (kernel space) 3656 * @sock: socket 3657 * @addr: address holder 3658 * 3659 * Fills the @addr pointer with the address which the socket is connected. 3660 * Returns the length of the address in bytes or an error code. 3661 */ 3662 3663 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3664 { 3665 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3666 } 3667 EXPORT_SYMBOL(kernel_getpeername); 3668 3669 /** 3670 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3671 * @sock: socket 3672 * @how: connection part 3673 * 3674 * Returns 0 or an error. 3675 */ 3676 3677 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3678 { 3679 return READ_ONCE(sock->ops)->shutdown(sock, how); 3680 } 3681 EXPORT_SYMBOL(kernel_sock_shutdown); 3682 3683 /** 3684 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3685 * @sk: socket 3686 * 3687 * This routine returns the IP overhead imposed by a socket i.e. 3688 * the length of the underlying IP header, depending on whether 3689 * this is an IPv4 or IPv6 socket and the length from IP options turned 3690 * on at the socket. Assumes that the caller has a lock on the socket. 3691 */ 3692 3693 u32 kernel_sock_ip_overhead(struct sock *sk) 3694 { 3695 struct inet_sock *inet; 3696 struct ip_options_rcu *opt; 3697 u32 overhead = 0; 3698 #if IS_ENABLED(CONFIG_IPV6) 3699 struct ipv6_pinfo *np; 3700 struct ipv6_txoptions *optv6 = NULL; 3701 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3702 3703 if (!sk) 3704 return overhead; 3705 3706 switch (sk->sk_family) { 3707 case AF_INET: 3708 inet = inet_sk(sk); 3709 overhead += sizeof(struct iphdr); 3710 opt = rcu_dereference_protected(inet->inet_opt, 3711 sock_owned_by_user(sk)); 3712 if (opt) 3713 overhead += opt->opt.optlen; 3714 return overhead; 3715 #if IS_ENABLED(CONFIG_IPV6) 3716 case AF_INET6: 3717 np = inet6_sk(sk); 3718 overhead += sizeof(struct ipv6hdr); 3719 if (np) 3720 optv6 = rcu_dereference_protected(np->opt, 3721 sock_owned_by_user(sk)); 3722 if (optv6) 3723 overhead += (optv6->opt_flen + optv6->opt_nflen); 3724 return overhead; 3725 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3726 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3727 return overhead; 3728 } 3729 } 3730 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3731