xref: /linux/net/socket.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/config.h>
62 #include <linux/mm.h>
63 #include <linux/smp_lock.h>
64 #include <linux/socket.h>
65 #include <linux/file.h>
66 #include <linux/net.h>
67 #include <linux/interrupt.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/divert.h>
82 #include <linux/mount.h>
83 #include <linux/security.h>
84 #include <linux/syscalls.h>
85 #include <linux/compat.h>
86 #include <linux/kmod.h>
87 #include <linux/audit.h>
88 #include <linux/wireless.h>
89 
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 
95 #include <net/sock.h>
96 #include <linux/netfilter.h>
97 
98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
99 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
100 			 size_t size, loff_t pos);
101 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
102 			  size_t size, loff_t pos);
103 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
104 
105 static int sock_close(struct inode *inode, struct file *file);
106 static unsigned int sock_poll(struct file *file,
107 			      struct poll_table_struct *wait);
108 static long sock_ioctl(struct file *file,
109 		      unsigned int cmd, unsigned long arg);
110 #ifdef CONFIG_COMPAT
111 static long compat_sock_ioctl(struct file *file,
112 		      unsigned int cmd, unsigned long arg);
113 #endif
114 static int sock_fasync(int fd, struct file *filp, int on);
115 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
116 			  unsigned long count, loff_t *ppos);
117 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
118 			  unsigned long count, loff_t *ppos);
119 static ssize_t sock_sendpage(struct file *file, struct page *page,
120 			     int offset, size_t size, loff_t *ppos, int more);
121 
122 extern ssize_t generic_splice_sendpage(struct inode *inode, struct file *out,
123 				size_t len, unsigned int flags);
124 
125 
126 /*
127  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
128  *	in the operation structures but are done directly via the socketcall() multiplexor.
129  */
130 
131 static struct file_operations socket_file_ops = {
132 	.owner =	THIS_MODULE,
133 	.llseek =	no_llseek,
134 	.aio_read =	sock_aio_read,
135 	.aio_write =	sock_aio_write,
136 	.poll =		sock_poll,
137 	.unlocked_ioctl = sock_ioctl,
138 #ifdef CONFIG_COMPAT
139 	.compat_ioctl = compat_sock_ioctl,
140 #endif
141 	.mmap =		sock_mmap,
142 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
143 	.release =	sock_close,
144 	.fasync =	sock_fasync,
145 	.readv =	sock_readv,
146 	.writev =	sock_writev,
147 	.sendpage =	sock_sendpage,
148 	.splice_write = generic_splice_sendpage,
149 };
150 
151 /*
152  *	The protocol list. Each protocol is registered in here.
153  */
154 
155 static struct net_proto_family *net_families[NPROTO];
156 
157 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
158 static atomic_t net_family_lockct = ATOMIC_INIT(0);
159 static DEFINE_SPINLOCK(net_family_lock);
160 
161 /* The strategy is: modifications net_family vector are short, do not
162    sleep and veeery rare, but read access should be free of any exclusive
163    locks.
164  */
165 
166 static void net_family_write_lock(void)
167 {
168 	spin_lock(&net_family_lock);
169 	while (atomic_read(&net_family_lockct) != 0) {
170 		spin_unlock(&net_family_lock);
171 
172 		yield();
173 
174 		spin_lock(&net_family_lock);
175 	}
176 }
177 
178 static __inline__ void net_family_write_unlock(void)
179 {
180 	spin_unlock(&net_family_lock);
181 }
182 
183 static __inline__ void net_family_read_lock(void)
184 {
185 	atomic_inc(&net_family_lockct);
186 	spin_unlock_wait(&net_family_lock);
187 }
188 
189 static __inline__ void net_family_read_unlock(void)
190 {
191 	atomic_dec(&net_family_lockct);
192 }
193 
194 #else
195 #define net_family_write_lock() do { } while(0)
196 #define net_family_write_unlock() do { } while(0)
197 #define net_family_read_lock() do { } while(0)
198 #define net_family_read_unlock() do { } while(0)
199 #endif
200 
201 
202 /*
203  *	Statistics counters of the socket lists
204  */
205 
206 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
207 
208 /*
209  *	Support routines. Move socket addresses back and forth across the kernel/user
210  *	divide and look after the messy bits.
211  */
212 
213 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
214 					   16 for IP, 16 for IPX,
215 					   24 for IPv6,
216 					   about 80 for AX.25
217 					   must be at least one bigger than
218 					   the AF_UNIX size (see net/unix/af_unix.c
219 					   :unix_mkname()).
220 					 */
221 
222 /**
223  *	move_addr_to_kernel	-	copy a socket address into kernel space
224  *	@uaddr: Address in user space
225  *	@kaddr: Address in kernel space
226  *	@ulen: Length in user space
227  *
228  *	The address is copied into kernel space. If the provided address is
229  *	too long an error code of -EINVAL is returned. If the copy gives
230  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
231  */
232 
233 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
234 {
235 	if(ulen<0||ulen>MAX_SOCK_ADDR)
236 		return -EINVAL;
237 	if(ulen==0)
238 		return 0;
239 	if(copy_from_user(kaddr,uaddr,ulen))
240 		return -EFAULT;
241 	return audit_sockaddr(ulen, kaddr);
242 }
243 
244 /**
245  *	move_addr_to_user	-	copy an address to user space
246  *	@kaddr: kernel space address
247  *	@klen: length of address in kernel
248  *	@uaddr: user space address
249  *	@ulen: pointer to user length field
250  *
251  *	The value pointed to by ulen on entry is the buffer length available.
252  *	This is overwritten with the buffer space used. -EINVAL is returned
253  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
254  *	is returned if either the buffer or the length field are not
255  *	accessible.
256  *	After copying the data up to the limit the user specifies, the true
257  *	length of the data is written over the length limit the user
258  *	specified. Zero is returned for a success.
259  */
260 
261 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen)
262 {
263 	int err;
264 	int len;
265 
266 	if((err=get_user(len, ulen)))
267 		return err;
268 	if(len>klen)
269 		len=klen;
270 	if(len<0 || len> MAX_SOCK_ADDR)
271 		return -EINVAL;
272 	if(len)
273 	{
274 		if(copy_to_user(uaddr,kaddr,len))
275 			return -EFAULT;
276 	}
277 	/*
278 	 *	"fromlen shall refer to the value before truncation.."
279 	 *			1003.1g
280 	 */
281 	return __put_user(klen, ulen);
282 }
283 
284 #define SOCKFS_MAGIC 0x534F434B
285 
286 static kmem_cache_t * sock_inode_cachep __read_mostly;
287 
288 static struct inode *sock_alloc_inode(struct super_block *sb)
289 {
290 	struct socket_alloc *ei;
291 	ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
292 	if (!ei)
293 		return NULL;
294 	init_waitqueue_head(&ei->socket.wait);
295 
296 	ei->socket.fasync_list = NULL;
297 	ei->socket.state = SS_UNCONNECTED;
298 	ei->socket.flags = 0;
299 	ei->socket.ops = NULL;
300 	ei->socket.sk = NULL;
301 	ei->socket.file = NULL;
302 	ei->socket.flags = 0;
303 
304 	return &ei->vfs_inode;
305 }
306 
307 static void sock_destroy_inode(struct inode *inode)
308 {
309 	kmem_cache_free(sock_inode_cachep,
310 			container_of(inode, struct socket_alloc, vfs_inode));
311 }
312 
313 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
314 {
315 	struct socket_alloc *ei = (struct socket_alloc *) foo;
316 
317 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
318 	    SLAB_CTOR_CONSTRUCTOR)
319 		inode_init_once(&ei->vfs_inode);
320 }
321 
322 static int init_inodecache(void)
323 {
324 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
325 				sizeof(struct socket_alloc),
326 				0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
327 					SLAB_MEM_SPREAD),
328 				init_once, NULL);
329 	if (sock_inode_cachep == NULL)
330 		return -ENOMEM;
331 	return 0;
332 }
333 
334 static struct super_operations sockfs_ops = {
335 	.alloc_inode =	sock_alloc_inode,
336 	.destroy_inode =sock_destroy_inode,
337 	.statfs =	simple_statfs,
338 };
339 
340 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type,
341 	int flags, const char *dev_name, void *data)
342 {
343 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
344 }
345 
346 static struct vfsmount *sock_mnt __read_mostly;
347 
348 static struct file_system_type sock_fs_type = {
349 	.name =		"sockfs",
350 	.get_sb =	sockfs_get_sb,
351 	.kill_sb =	kill_anon_super,
352 };
353 static int sockfs_delete_dentry(struct dentry *dentry)
354 {
355 	return 1;
356 }
357 static struct dentry_operations sockfs_dentry_operations = {
358 	.d_delete =	sockfs_delete_dentry,
359 };
360 
361 /*
362  *	Obtains the first available file descriptor and sets it up for use.
363  *
364  *	These functions create file structures and maps them to fd space
365  *	of the current process. On success it returns file descriptor
366  *	and file struct implicitly stored in sock->file.
367  *	Note that another thread may close file descriptor before we return
368  *	from this function. We use the fact that now we do not refer
369  *	to socket after mapping. If one day we will need it, this
370  *	function will increment ref. count on file by 1.
371  *
372  *	In any case returned fd MAY BE not valid!
373  *	This race condition is unavoidable
374  *	with shared fd spaces, we cannot solve it inside kernel,
375  *	but we take care of internal coherence yet.
376  */
377 
378 static int sock_alloc_fd(struct file **filep)
379 {
380 	int fd;
381 
382 	fd = get_unused_fd();
383 	if (likely(fd >= 0)) {
384 		struct file *file = get_empty_filp();
385 
386 		*filep = file;
387 		if (unlikely(!file)) {
388 			put_unused_fd(fd);
389 			return -ENFILE;
390 		}
391 	} else
392 		*filep = NULL;
393 	return fd;
394 }
395 
396 static int sock_attach_fd(struct socket *sock, struct file *file)
397 {
398 	struct qstr this;
399 	char name[32];
400 
401 	this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
402 	this.name = name;
403 	this.hash = SOCK_INODE(sock)->i_ino;
404 
405 	file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
406 	if (unlikely(!file->f_dentry))
407 		return -ENOMEM;
408 
409 	file->f_dentry->d_op = &sockfs_dentry_operations;
410 	d_add(file->f_dentry, SOCK_INODE(sock));
411 	file->f_vfsmnt = mntget(sock_mnt);
412 	file->f_mapping = file->f_dentry->d_inode->i_mapping;
413 
414 	sock->file = file;
415 	file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
416 	file->f_mode = FMODE_READ | FMODE_WRITE;
417 	file->f_flags = O_RDWR;
418 	file->f_pos = 0;
419 	file->private_data = sock;
420 
421 	return 0;
422 }
423 
424 int sock_map_fd(struct socket *sock)
425 {
426 	struct file *newfile;
427 	int fd = sock_alloc_fd(&newfile);
428 
429 	if (likely(fd >= 0)) {
430 		int err = sock_attach_fd(sock, newfile);
431 
432 		if (unlikely(err < 0)) {
433 			put_filp(newfile);
434 			put_unused_fd(fd);
435 			return err;
436 		}
437 		fd_install(fd, newfile);
438 	}
439 	return fd;
440 }
441 
442 static struct socket *sock_from_file(struct file *file, int *err)
443 {
444 	struct inode *inode;
445 	struct socket *sock;
446 
447 	if (file->f_op == &socket_file_ops)
448 		return file->private_data;	/* set in sock_map_fd */
449 
450 	inode = file->f_dentry->d_inode;
451 	if (!S_ISSOCK(inode->i_mode)) {
452 		*err = -ENOTSOCK;
453 		return NULL;
454 	}
455 
456 	sock = SOCKET_I(inode);
457 	if (sock->file != file) {
458 		printk(KERN_ERR "socki_lookup: socket file changed!\n");
459 		sock->file = file;
460 	}
461 	return sock;
462 }
463 
464 /**
465  *	sockfd_lookup	- 	Go from a file number to its socket slot
466  *	@fd: file handle
467  *	@err: pointer to an error code return
468  *
469  *	The file handle passed in is locked and the socket it is bound
470  *	too is returned. If an error occurs the err pointer is overwritten
471  *	with a negative errno code and NULL is returned. The function checks
472  *	for both invalid handles and passing a handle which is not a socket.
473  *
474  *	On a success the socket object pointer is returned.
475  */
476 
477 struct socket *sockfd_lookup(int fd, int *err)
478 {
479 	struct file *file;
480 	struct socket *sock;
481 
482 	if (!(file = fget(fd))) {
483 		*err = -EBADF;
484 		return NULL;
485 	}
486 	sock = sock_from_file(file, err);
487 	if (!sock)
488 		fput(file);
489 	return sock;
490 }
491 
492 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
493 {
494 	struct file *file;
495 	struct socket *sock;
496 
497 	file = fget_light(fd, fput_needed);
498 	if (file) {
499 		sock = sock_from_file(file, err);
500 		if (sock)
501 			return sock;
502 		fput_light(file, *fput_needed);
503 	}
504 	return NULL;
505 }
506 
507 /**
508  *	sock_alloc	-	allocate a socket
509  *
510  *	Allocate a new inode and socket object. The two are bound together
511  *	and initialised. The socket is then returned. If we are out of inodes
512  *	NULL is returned.
513  */
514 
515 static struct socket *sock_alloc(void)
516 {
517 	struct inode * inode;
518 	struct socket * sock;
519 
520 	inode = new_inode(sock_mnt->mnt_sb);
521 	if (!inode)
522 		return NULL;
523 
524 	sock = SOCKET_I(inode);
525 
526 	inode->i_mode = S_IFSOCK|S_IRWXUGO;
527 	inode->i_uid = current->fsuid;
528 	inode->i_gid = current->fsgid;
529 
530 	get_cpu_var(sockets_in_use)++;
531 	put_cpu_var(sockets_in_use);
532 	return sock;
533 }
534 
535 /*
536  *	In theory you can't get an open on this inode, but /proc provides
537  *	a back door. Remember to keep it shut otherwise you'll let the
538  *	creepy crawlies in.
539  */
540 
541 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
542 {
543 	return -ENXIO;
544 }
545 
546 const struct file_operations bad_sock_fops = {
547 	.owner = THIS_MODULE,
548 	.open = sock_no_open,
549 };
550 
551 /**
552  *	sock_release	-	close a socket
553  *	@sock: socket to close
554  *
555  *	The socket is released from the protocol stack if it has a release
556  *	callback, and the inode is then released if the socket is bound to
557  *	an inode not a file.
558  */
559 
560 void sock_release(struct socket *sock)
561 {
562 	if (sock->ops) {
563 		struct module *owner = sock->ops->owner;
564 
565 		sock->ops->release(sock);
566 		sock->ops = NULL;
567 		module_put(owner);
568 	}
569 
570 	if (sock->fasync_list)
571 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
572 
573 	get_cpu_var(sockets_in_use)--;
574 	put_cpu_var(sockets_in_use);
575 	if (!sock->file) {
576 		iput(SOCK_INODE(sock));
577 		return;
578 	}
579 	sock->file=NULL;
580 }
581 
582 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
583 				 struct msghdr *msg, size_t size)
584 {
585 	struct sock_iocb *si = kiocb_to_siocb(iocb);
586 	int err;
587 
588 	si->sock = sock;
589 	si->scm = NULL;
590 	si->msg = msg;
591 	si->size = size;
592 
593 	err = security_socket_sendmsg(sock, msg, size);
594 	if (err)
595 		return err;
596 
597 	return sock->ops->sendmsg(iocb, sock, msg, size);
598 }
599 
600 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
601 {
602 	struct kiocb iocb;
603 	struct sock_iocb siocb;
604 	int ret;
605 
606 	init_sync_kiocb(&iocb, NULL);
607 	iocb.private = &siocb;
608 	ret = __sock_sendmsg(&iocb, sock, msg, size);
609 	if (-EIOCBQUEUED == ret)
610 		ret = wait_on_sync_kiocb(&iocb);
611 	return ret;
612 }
613 
614 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
615 		   struct kvec *vec, size_t num, size_t size)
616 {
617 	mm_segment_t oldfs = get_fs();
618 	int result;
619 
620 	set_fs(KERNEL_DS);
621 	/*
622 	 * the following is safe, since for compiler definitions of kvec and
623 	 * iovec are identical, yielding the same in-core layout and alignment
624 	 */
625 	msg->msg_iov = (struct iovec *)vec,
626 	msg->msg_iovlen = num;
627 	result = sock_sendmsg(sock, msg, size);
628 	set_fs(oldfs);
629 	return result;
630 }
631 
632 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
633 				 struct msghdr *msg, size_t size, int flags)
634 {
635 	int err;
636 	struct sock_iocb *si = kiocb_to_siocb(iocb);
637 
638 	si->sock = sock;
639 	si->scm = NULL;
640 	si->msg = msg;
641 	si->size = size;
642 	si->flags = flags;
643 
644 	err = security_socket_recvmsg(sock, msg, size, flags);
645 	if (err)
646 		return err;
647 
648 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
649 }
650 
651 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
652 		 size_t size, int flags)
653 {
654 	struct kiocb iocb;
655 	struct sock_iocb siocb;
656 	int ret;
657 
658         init_sync_kiocb(&iocb, NULL);
659 	iocb.private = &siocb;
660 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
661 	if (-EIOCBQUEUED == ret)
662 		ret = wait_on_sync_kiocb(&iocb);
663 	return ret;
664 }
665 
666 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
667 		   struct kvec *vec, size_t num,
668 		   size_t size, int flags)
669 {
670 	mm_segment_t oldfs = get_fs();
671 	int result;
672 
673 	set_fs(KERNEL_DS);
674 	/*
675 	 * the following is safe, since for compiler definitions of kvec and
676 	 * iovec are identical, yielding the same in-core layout and alignment
677 	 */
678 	msg->msg_iov = (struct iovec *)vec,
679 	msg->msg_iovlen = num;
680 	result = sock_recvmsg(sock, msg, size, flags);
681 	set_fs(oldfs);
682 	return result;
683 }
684 
685 static void sock_aio_dtor(struct kiocb *iocb)
686 {
687 	kfree(iocb->private);
688 }
689 
690 static ssize_t sock_sendpage(struct file *file, struct page *page,
691 			     int offset, size_t size, loff_t *ppos, int more)
692 {
693 	struct socket *sock;
694 	int flags;
695 
696 	sock = file->private_data;
697 
698 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
699 	if (more)
700 		flags |= MSG_MORE;
701 
702 	return sock->ops->sendpage(sock, page, offset, size, flags);
703 }
704 
705 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
706 		char __user *ubuf, size_t size, struct sock_iocb *siocb)
707 {
708 	if (!is_sync_kiocb(iocb)) {
709 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
710 		if (!siocb)
711 			return NULL;
712 		iocb->ki_dtor = sock_aio_dtor;
713 	}
714 
715 	siocb->kiocb = iocb;
716 	siocb->async_iov.iov_base = ubuf;
717 	siocb->async_iov.iov_len = size;
718 
719 	iocb->private = siocb;
720 	return siocb;
721 }
722 
723 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
724 		struct file *file, struct iovec *iov, unsigned long nr_segs)
725 {
726 	struct socket *sock = file->private_data;
727 	size_t size = 0;
728 	int i;
729 
730         for (i = 0 ; i < nr_segs ; i++)
731                 size += iov[i].iov_len;
732 
733 	msg->msg_name = NULL;
734 	msg->msg_namelen = 0;
735 	msg->msg_control = NULL;
736 	msg->msg_controllen = 0;
737 	msg->msg_iov = (struct iovec *) iov;
738 	msg->msg_iovlen = nr_segs;
739 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
740 
741 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
742 }
743 
744 static ssize_t sock_readv(struct file *file, const struct iovec *iov,
745 			  unsigned long nr_segs, loff_t *ppos)
746 {
747 	struct kiocb iocb;
748 	struct sock_iocb siocb;
749 	struct msghdr msg;
750 	int ret;
751 
752         init_sync_kiocb(&iocb, NULL);
753 	iocb.private = &siocb;
754 
755 	ret = do_sock_read(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
756 	if (-EIOCBQUEUED == ret)
757 		ret = wait_on_sync_kiocb(&iocb);
758 	return ret;
759 }
760 
761 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
762 			 size_t count, loff_t pos)
763 {
764 	struct sock_iocb siocb, *x;
765 
766 	if (pos != 0)
767 		return -ESPIPE;
768 	if (count == 0)		/* Match SYS5 behaviour */
769 		return 0;
770 
771 	x = alloc_sock_iocb(iocb, ubuf, count, &siocb);
772 	if (!x)
773 		return -ENOMEM;
774 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp,
775 			&x->async_iov, 1);
776 }
777 
778 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
779 		struct file *file, struct iovec *iov, unsigned long nr_segs)
780 {
781 	struct socket *sock = file->private_data;
782 	size_t size = 0;
783 	int i;
784 
785         for (i = 0 ; i < nr_segs ; i++)
786                 size += iov[i].iov_len;
787 
788 	msg->msg_name = NULL;
789 	msg->msg_namelen = 0;
790 	msg->msg_control = NULL;
791 	msg->msg_controllen = 0;
792 	msg->msg_iov = (struct iovec *) iov;
793 	msg->msg_iovlen = nr_segs;
794 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
795 	if (sock->type == SOCK_SEQPACKET)
796 		msg->msg_flags |= MSG_EOR;
797 
798 	return __sock_sendmsg(iocb, sock, msg, size);
799 }
800 
801 static ssize_t sock_writev(struct file *file, const struct iovec *iov,
802 			   unsigned long nr_segs, loff_t *ppos)
803 {
804 	struct msghdr msg;
805 	struct kiocb iocb;
806 	struct sock_iocb siocb;
807 	int ret;
808 
809 	init_sync_kiocb(&iocb, NULL);
810 	iocb.private = &siocb;
811 
812 	ret = do_sock_write(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
813 	if (-EIOCBQUEUED == ret)
814 		ret = wait_on_sync_kiocb(&iocb);
815 	return ret;
816 }
817 
818 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
819 			  size_t count, loff_t pos)
820 {
821 	struct sock_iocb siocb, *x;
822 
823 	if (pos != 0)
824 		return -ESPIPE;
825 	if (count == 0)		/* Match SYS5 behaviour */
826 		return 0;
827 
828 	x = alloc_sock_iocb(iocb, (void __user *)ubuf, count, &siocb);
829 	if (!x)
830 		return -ENOMEM;
831 
832 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp,
833 			&x->async_iov, 1);
834 }
835 
836 
837 /*
838  * Atomic setting of ioctl hooks to avoid race
839  * with module unload.
840  */
841 
842 static DEFINE_MUTEX(br_ioctl_mutex);
843 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL;
844 
845 void brioctl_set(int (*hook)(unsigned int, void __user *))
846 {
847 	mutex_lock(&br_ioctl_mutex);
848 	br_ioctl_hook = hook;
849 	mutex_unlock(&br_ioctl_mutex);
850 }
851 EXPORT_SYMBOL(brioctl_set);
852 
853 static DEFINE_MUTEX(vlan_ioctl_mutex);
854 static int (*vlan_ioctl_hook)(void __user *arg);
855 
856 void vlan_ioctl_set(int (*hook)(void __user *))
857 {
858 	mutex_lock(&vlan_ioctl_mutex);
859 	vlan_ioctl_hook = hook;
860 	mutex_unlock(&vlan_ioctl_mutex);
861 }
862 EXPORT_SYMBOL(vlan_ioctl_set);
863 
864 static DEFINE_MUTEX(dlci_ioctl_mutex);
865 static int (*dlci_ioctl_hook)(unsigned int, void __user *);
866 
867 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *))
868 {
869 	mutex_lock(&dlci_ioctl_mutex);
870 	dlci_ioctl_hook = hook;
871 	mutex_unlock(&dlci_ioctl_mutex);
872 }
873 EXPORT_SYMBOL(dlci_ioctl_set);
874 
875 /*
876  *	With an ioctl, arg may well be a user mode pointer, but we don't know
877  *	what to do with it - that's up to the protocol still.
878  */
879 
880 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
881 {
882 	struct socket *sock;
883 	void __user *argp = (void __user *)arg;
884 	int pid, err;
885 
886 	sock = file->private_data;
887 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
888 		err = dev_ioctl(cmd, argp);
889 	} else
890 #ifdef CONFIG_WIRELESS_EXT
891 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
892 		err = dev_ioctl(cmd, argp);
893 	} else
894 #endif	/* CONFIG_WIRELESS_EXT */
895 	switch (cmd) {
896 		case FIOSETOWN:
897 		case SIOCSPGRP:
898 			err = -EFAULT;
899 			if (get_user(pid, (int __user *)argp))
900 				break;
901 			err = f_setown(sock->file, pid, 1);
902 			break;
903 		case FIOGETOWN:
904 		case SIOCGPGRP:
905 			err = put_user(sock->file->f_owner.pid, (int __user *)argp);
906 			break;
907 		case SIOCGIFBR:
908 		case SIOCSIFBR:
909 		case SIOCBRADDBR:
910 		case SIOCBRDELBR:
911 			err = -ENOPKG;
912 			if (!br_ioctl_hook)
913 				request_module("bridge");
914 
915 			mutex_lock(&br_ioctl_mutex);
916 			if (br_ioctl_hook)
917 				err = br_ioctl_hook(cmd, argp);
918 			mutex_unlock(&br_ioctl_mutex);
919 			break;
920 		case SIOCGIFVLAN:
921 		case SIOCSIFVLAN:
922 			err = -ENOPKG;
923 			if (!vlan_ioctl_hook)
924 				request_module("8021q");
925 
926 			mutex_lock(&vlan_ioctl_mutex);
927 			if (vlan_ioctl_hook)
928 				err = vlan_ioctl_hook(argp);
929 			mutex_unlock(&vlan_ioctl_mutex);
930 			break;
931 		case SIOCGIFDIVERT:
932 		case SIOCSIFDIVERT:
933 		/* Convert this to call through a hook */
934 			err = divert_ioctl(cmd, argp);
935 			break;
936 		case SIOCADDDLCI:
937 		case SIOCDELDLCI:
938 			err = -ENOPKG;
939 			if (!dlci_ioctl_hook)
940 				request_module("dlci");
941 
942 			if (dlci_ioctl_hook) {
943 				mutex_lock(&dlci_ioctl_mutex);
944 				err = dlci_ioctl_hook(cmd, argp);
945 				mutex_unlock(&dlci_ioctl_mutex);
946 			}
947 			break;
948 		default:
949 			err = sock->ops->ioctl(sock, cmd, arg);
950 
951 			/*
952 			 * If this ioctl is unknown try to hand it down
953 			 * to the NIC driver.
954 			 */
955 			if (err == -ENOIOCTLCMD)
956 				err = dev_ioctl(cmd, argp);
957 			break;
958 	}
959 	return err;
960 }
961 
962 int sock_create_lite(int family, int type, int protocol, struct socket **res)
963 {
964 	int err;
965 	struct socket *sock = NULL;
966 
967 	err = security_socket_create(family, type, protocol, 1);
968 	if (err)
969 		goto out;
970 
971 	sock = sock_alloc();
972 	if (!sock) {
973 		err = -ENOMEM;
974 		goto out;
975 	}
976 
977 	security_socket_post_create(sock, family, type, protocol, 1);
978 	sock->type = type;
979 out:
980 	*res = sock;
981 	return err;
982 }
983 
984 /* No kernel lock held - perfect */
985 static unsigned int sock_poll(struct file *file, poll_table * wait)
986 {
987 	struct socket *sock;
988 
989 	/*
990 	 *	We can't return errors to poll, so it's either yes or no.
991 	 */
992 	sock = file->private_data;
993 	return sock->ops->poll(file, sock, wait);
994 }
995 
996 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
997 {
998 	struct socket *sock = file->private_data;
999 
1000 	return sock->ops->mmap(file, sock, vma);
1001 }
1002 
1003 static int sock_close(struct inode *inode, struct file *filp)
1004 {
1005 	/*
1006 	 *	It was possible the inode is NULL we were
1007 	 *	closing an unfinished socket.
1008 	 */
1009 
1010 	if (!inode)
1011 	{
1012 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1013 		return 0;
1014 	}
1015 	sock_fasync(-1, filp, 0);
1016 	sock_release(SOCKET_I(inode));
1017 	return 0;
1018 }
1019 
1020 /*
1021  *	Update the socket async list
1022  *
1023  *	Fasync_list locking strategy.
1024  *
1025  *	1. fasync_list is modified only under process context socket lock
1026  *	   i.e. under semaphore.
1027  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1028  *	   or under socket lock.
1029  *	3. fasync_list can be used from softirq context, so that
1030  *	   modification under socket lock have to be enhanced with
1031  *	   write_lock_bh(&sk->sk_callback_lock).
1032  *							--ANK (990710)
1033  */
1034 
1035 static int sock_fasync(int fd, struct file *filp, int on)
1036 {
1037 	struct fasync_struct *fa, *fna=NULL, **prev;
1038 	struct socket *sock;
1039 	struct sock *sk;
1040 
1041 	if (on)
1042 	{
1043 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1044 		if(fna==NULL)
1045 			return -ENOMEM;
1046 	}
1047 
1048 	sock = filp->private_data;
1049 
1050 	if ((sk=sock->sk) == NULL) {
1051 		kfree(fna);
1052 		return -EINVAL;
1053 	}
1054 
1055 	lock_sock(sk);
1056 
1057 	prev=&(sock->fasync_list);
1058 
1059 	for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
1060 		if (fa->fa_file==filp)
1061 			break;
1062 
1063 	if(on)
1064 	{
1065 		if(fa!=NULL)
1066 		{
1067 			write_lock_bh(&sk->sk_callback_lock);
1068 			fa->fa_fd=fd;
1069 			write_unlock_bh(&sk->sk_callback_lock);
1070 
1071 			kfree(fna);
1072 			goto out;
1073 		}
1074 		fna->fa_file=filp;
1075 		fna->fa_fd=fd;
1076 		fna->magic=FASYNC_MAGIC;
1077 		fna->fa_next=sock->fasync_list;
1078 		write_lock_bh(&sk->sk_callback_lock);
1079 		sock->fasync_list=fna;
1080 		write_unlock_bh(&sk->sk_callback_lock);
1081 	}
1082 	else
1083 	{
1084 		if (fa!=NULL)
1085 		{
1086 			write_lock_bh(&sk->sk_callback_lock);
1087 			*prev=fa->fa_next;
1088 			write_unlock_bh(&sk->sk_callback_lock);
1089 			kfree(fa);
1090 		}
1091 	}
1092 
1093 out:
1094 	release_sock(sock->sk);
1095 	return 0;
1096 }
1097 
1098 /* This function may be called only under socket lock or callback_lock */
1099 
1100 int sock_wake_async(struct socket *sock, int how, int band)
1101 {
1102 	if (!sock || !sock->fasync_list)
1103 		return -1;
1104 	switch (how)
1105 	{
1106 	case 1:
1107 
1108 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1109 			break;
1110 		goto call_kill;
1111 	case 2:
1112 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1113 			break;
1114 		/* fall through */
1115 	case 0:
1116 	call_kill:
1117 		__kill_fasync(sock->fasync_list, SIGIO, band);
1118 		break;
1119 	case 3:
1120 		__kill_fasync(sock->fasync_list, SIGURG, band);
1121 	}
1122 	return 0;
1123 }
1124 
1125 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
1126 {
1127 	int err;
1128 	struct socket *sock;
1129 
1130 	/*
1131 	 *	Check protocol is in range
1132 	 */
1133 	if (family < 0 || family >= NPROTO)
1134 		return -EAFNOSUPPORT;
1135 	if (type < 0 || type >= SOCK_MAX)
1136 		return -EINVAL;
1137 
1138 	/* Compatibility.
1139 
1140 	   This uglymoron is moved from INET layer to here to avoid
1141 	   deadlock in module load.
1142 	 */
1143 	if (family == PF_INET && type == SOCK_PACKET) {
1144 		static int warned;
1145 		if (!warned) {
1146 			warned = 1;
1147 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
1148 		}
1149 		family = PF_PACKET;
1150 	}
1151 
1152 	err = security_socket_create(family, type, protocol, kern);
1153 	if (err)
1154 		return err;
1155 
1156 #if defined(CONFIG_KMOD)
1157 	/* Attempt to load a protocol module if the find failed.
1158 	 *
1159 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1160 	 * requested real, full-featured networking support upon configuration.
1161 	 * Otherwise module support will break!
1162 	 */
1163 	if (net_families[family]==NULL)
1164 	{
1165 		request_module("net-pf-%d",family);
1166 	}
1167 #endif
1168 
1169 	net_family_read_lock();
1170 	if (net_families[family] == NULL) {
1171 		err = -EAFNOSUPPORT;
1172 		goto out;
1173 	}
1174 
1175 /*
1176  *	Allocate the socket and allow the family to set things up. if
1177  *	the protocol is 0, the family is instructed to select an appropriate
1178  *	default.
1179  */
1180 
1181 	if (!(sock = sock_alloc())) {
1182 		printk(KERN_WARNING "socket: no more sockets\n");
1183 		err = -ENFILE;		/* Not exactly a match, but its the
1184 					   closest posix thing */
1185 		goto out;
1186 	}
1187 
1188 	sock->type  = type;
1189 
1190 	/*
1191 	 * We will call the ->create function, that possibly is in a loadable
1192 	 * module, so we have to bump that loadable module refcnt first.
1193 	 */
1194 	err = -EAFNOSUPPORT;
1195 	if (!try_module_get(net_families[family]->owner))
1196 		goto out_release;
1197 
1198 	if ((err = net_families[family]->create(sock, protocol)) < 0) {
1199 		sock->ops = NULL;
1200 		goto out_module_put;
1201 	}
1202 
1203 	/*
1204 	 * Now to bump the refcnt of the [loadable] module that owns this
1205 	 * socket at sock_release time we decrement its refcnt.
1206 	 */
1207 	if (!try_module_get(sock->ops->owner)) {
1208 		sock->ops = NULL;
1209 		goto out_module_put;
1210 	}
1211 	/*
1212 	 * Now that we're done with the ->create function, the [loadable]
1213 	 * module can have its refcnt decremented
1214 	 */
1215 	module_put(net_families[family]->owner);
1216 	*res = sock;
1217 	security_socket_post_create(sock, family, type, protocol, kern);
1218 
1219 out:
1220 	net_family_read_unlock();
1221 	return err;
1222 out_module_put:
1223 	module_put(net_families[family]->owner);
1224 out_release:
1225 	sock_release(sock);
1226 	goto out;
1227 }
1228 
1229 int sock_create(int family, int type, int protocol, struct socket **res)
1230 {
1231 	return __sock_create(family, type, protocol, res, 0);
1232 }
1233 
1234 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1235 {
1236 	return __sock_create(family, type, protocol, res, 1);
1237 }
1238 
1239 asmlinkage long sys_socket(int family, int type, int protocol)
1240 {
1241 	int retval;
1242 	struct socket *sock;
1243 
1244 	retval = sock_create(family, type, protocol, &sock);
1245 	if (retval < 0)
1246 		goto out;
1247 
1248 	retval = sock_map_fd(sock);
1249 	if (retval < 0)
1250 		goto out_release;
1251 
1252 out:
1253 	/* It may be already another descriptor 8) Not kernel problem. */
1254 	return retval;
1255 
1256 out_release:
1257 	sock_release(sock);
1258 	return retval;
1259 }
1260 
1261 /*
1262  *	Create a pair of connected sockets.
1263  */
1264 
1265 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1266 {
1267 	struct socket *sock1, *sock2;
1268 	int fd1, fd2, err;
1269 
1270 	/*
1271 	 * Obtain the first socket and check if the underlying protocol
1272 	 * supports the socketpair call.
1273 	 */
1274 
1275 	err = sock_create(family, type, protocol, &sock1);
1276 	if (err < 0)
1277 		goto out;
1278 
1279 	err = sock_create(family, type, protocol, &sock2);
1280 	if (err < 0)
1281 		goto out_release_1;
1282 
1283 	err = sock1->ops->socketpair(sock1, sock2);
1284 	if (err < 0)
1285 		goto out_release_both;
1286 
1287 	fd1 = fd2 = -1;
1288 
1289 	err = sock_map_fd(sock1);
1290 	if (err < 0)
1291 		goto out_release_both;
1292 	fd1 = err;
1293 
1294 	err = sock_map_fd(sock2);
1295 	if (err < 0)
1296 		goto out_close_1;
1297 	fd2 = err;
1298 
1299 	/* fd1 and fd2 may be already another descriptors.
1300 	 * Not kernel problem.
1301 	 */
1302 
1303 	err = put_user(fd1, &usockvec[0]);
1304 	if (!err)
1305 		err = put_user(fd2, &usockvec[1]);
1306 	if (!err)
1307 		return 0;
1308 
1309 	sys_close(fd2);
1310 	sys_close(fd1);
1311 	return err;
1312 
1313 out_close_1:
1314         sock_release(sock2);
1315 	sys_close(fd1);
1316 	return err;
1317 
1318 out_release_both:
1319         sock_release(sock2);
1320 out_release_1:
1321         sock_release(sock1);
1322 out:
1323 	return err;
1324 }
1325 
1326 
1327 /*
1328  *	Bind a name to a socket. Nothing much to do here since it's
1329  *	the protocol's responsibility to handle the local address.
1330  *
1331  *	We move the socket address to kernel space before we call
1332  *	the protocol layer (having also checked the address is ok).
1333  */
1334 
1335 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1336 {
1337 	struct socket *sock;
1338 	char address[MAX_SOCK_ADDR];
1339 	int err, fput_needed;
1340 
1341 	if((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL)
1342 	{
1343 		if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) {
1344 			err = security_socket_bind(sock, (struct sockaddr *)address, addrlen);
1345 			if (!err)
1346 				err = sock->ops->bind(sock,
1347 					(struct sockaddr *)address, addrlen);
1348 		}
1349 		fput_light(sock->file, fput_needed);
1350 	}
1351 	return err;
1352 }
1353 
1354 
1355 /*
1356  *	Perform a listen. Basically, we allow the protocol to do anything
1357  *	necessary for a listen, and if that works, we mark the socket as
1358  *	ready for listening.
1359  */
1360 
1361 int sysctl_somaxconn = SOMAXCONN;
1362 
1363 asmlinkage long sys_listen(int fd, int backlog)
1364 {
1365 	struct socket *sock;
1366 	int err, fput_needed;
1367 
1368 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1369 		if ((unsigned) backlog > sysctl_somaxconn)
1370 			backlog = sysctl_somaxconn;
1371 
1372 		err = security_socket_listen(sock, backlog);
1373 		if (!err)
1374 			err = sock->ops->listen(sock, backlog);
1375 
1376 		fput_light(sock->file, fput_needed);
1377 	}
1378 	return err;
1379 }
1380 
1381 
1382 /*
1383  *	For accept, we attempt to create a new socket, set up the link
1384  *	with the client, wake up the client, then return the new
1385  *	connected fd. We collect the address of the connector in kernel
1386  *	space and move it to user at the very end. This is unclean because
1387  *	we open the socket then return an error.
1388  *
1389  *	1003.1g adds the ability to recvmsg() to query connection pending
1390  *	status to recvmsg. We need to add that support in a way thats
1391  *	clean when we restucture accept also.
1392  */
1393 
1394 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen)
1395 {
1396 	struct socket *sock, *newsock;
1397 	struct file *newfile;
1398 	int err, len, newfd, fput_needed;
1399 	char address[MAX_SOCK_ADDR];
1400 
1401 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1402 	if (!sock)
1403 		goto out;
1404 
1405 	err = -ENFILE;
1406 	if (!(newsock = sock_alloc()))
1407 		goto out_put;
1408 
1409 	newsock->type = sock->type;
1410 	newsock->ops = sock->ops;
1411 
1412 	/*
1413 	 * We don't need try_module_get here, as the listening socket (sock)
1414 	 * has the protocol module (sock->ops->owner) held.
1415 	 */
1416 	__module_get(newsock->ops->owner);
1417 
1418 	newfd = sock_alloc_fd(&newfile);
1419 	if (unlikely(newfd < 0)) {
1420 		err = newfd;
1421 		goto out_release;
1422 	}
1423 
1424 	err = sock_attach_fd(newsock, newfile);
1425 	if (err < 0)
1426 		goto out_fd;
1427 
1428 	err = security_socket_accept(sock, newsock);
1429 	if (err)
1430 		goto out_fd;
1431 
1432 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1433 	if (err < 0)
1434 		goto out_fd;
1435 
1436 	if (upeer_sockaddr) {
1437 		if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1438 			err = -ECONNABORTED;
1439 			goto out_fd;
1440 		}
1441 		err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1442 		if (err < 0)
1443 			goto out_fd;
1444 	}
1445 
1446 	/* File flags are not inherited via accept() unlike another OSes. */
1447 
1448 	fd_install(newfd, newfile);
1449 	err = newfd;
1450 
1451 	security_socket_post_accept(sock, newsock);
1452 
1453 out_put:
1454 	fput_light(sock->file, fput_needed);
1455 out:
1456 	return err;
1457 out_fd:
1458 	put_filp(newfile);
1459 	put_unused_fd(newfd);
1460 out_release:
1461 	sock_release(newsock);
1462 	goto out_put;
1463 }
1464 
1465 
1466 /*
1467  *	Attempt to connect to a socket with the server address.  The address
1468  *	is in user space so we verify it is OK and move it to kernel space.
1469  *
1470  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1471  *	break bindings
1472  *
1473  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1474  *	other SEQPACKET protocols that take time to connect() as it doesn't
1475  *	include the -EINPROGRESS status for such sockets.
1476  */
1477 
1478 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1479 {
1480 	struct socket *sock;
1481 	char address[MAX_SOCK_ADDR];
1482 	int err, fput_needed;
1483 
1484 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1485 	if (!sock)
1486 		goto out;
1487 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1488 	if (err < 0)
1489 		goto out_put;
1490 
1491 	err = security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1492 	if (err)
1493 		goto out_put;
1494 
1495 	err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1496 				 sock->file->f_flags);
1497 out_put:
1498 	fput_light(sock->file, fput_needed);
1499 out:
1500 	return err;
1501 }
1502 
1503 /*
1504  *	Get the local address ('name') of a socket object. Move the obtained
1505  *	name to user space.
1506  */
1507 
1508 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1509 {
1510 	struct socket *sock;
1511 	char address[MAX_SOCK_ADDR];
1512 	int len, err, fput_needed;
1513 
1514 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1515 	if (!sock)
1516 		goto out;
1517 
1518 	err = security_socket_getsockname(sock);
1519 	if (err)
1520 		goto out_put;
1521 
1522 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1523 	if (err)
1524 		goto out_put;
1525 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1526 
1527 out_put:
1528 	fput_light(sock->file, fput_needed);
1529 out:
1530 	return err;
1531 }
1532 
1533 /*
1534  *	Get the remote address ('name') of a socket object. Move the obtained
1535  *	name to user space.
1536  */
1537 
1538 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1539 {
1540 	struct socket *sock;
1541 	char address[MAX_SOCK_ADDR];
1542 	int len, err, fput_needed;
1543 
1544 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1545 		err = security_socket_getpeername(sock);
1546 		if (err) {
1547 			fput_light(sock->file, fput_needed);
1548 			return err;
1549 		}
1550 
1551 		err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1552 		if (!err)
1553 			err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1554 		fput_light(sock->file, fput_needed);
1555 	}
1556 	return err;
1557 }
1558 
1559 /*
1560  *	Send a datagram to a given address. We move the address into kernel
1561  *	space and check the user space data area is readable before invoking
1562  *	the protocol.
1563  */
1564 
1565 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
1566 			   struct sockaddr __user *addr, int addr_len)
1567 {
1568 	struct socket *sock;
1569 	char address[MAX_SOCK_ADDR];
1570 	int err;
1571 	struct msghdr msg;
1572 	struct iovec iov;
1573 	int fput_needed;
1574 	struct file *sock_file;
1575 
1576 	sock_file = fget_light(fd, &fput_needed);
1577 	if (!sock_file)
1578 		return -EBADF;
1579 
1580 	sock = sock_from_file(sock_file, &err);
1581 	if (!sock)
1582 		goto out_put;
1583 	iov.iov_base=buff;
1584 	iov.iov_len=len;
1585 	msg.msg_name=NULL;
1586 	msg.msg_iov=&iov;
1587 	msg.msg_iovlen=1;
1588 	msg.msg_control=NULL;
1589 	msg.msg_controllen=0;
1590 	msg.msg_namelen=0;
1591 	if (addr) {
1592 		err = move_addr_to_kernel(addr, addr_len, address);
1593 		if (err < 0)
1594 			goto out_put;
1595 		msg.msg_name=address;
1596 		msg.msg_namelen=addr_len;
1597 	}
1598 	if (sock->file->f_flags & O_NONBLOCK)
1599 		flags |= MSG_DONTWAIT;
1600 	msg.msg_flags = flags;
1601 	err = sock_sendmsg(sock, &msg, len);
1602 
1603 out_put:
1604 	fput_light(sock_file, fput_needed);
1605 	return err;
1606 }
1607 
1608 /*
1609  *	Send a datagram down a socket.
1610  */
1611 
1612 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags)
1613 {
1614 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1615 }
1616 
1617 /*
1618  *	Receive a frame from the socket and optionally record the address of the
1619  *	sender. We verify the buffers are writable and if needed move the
1620  *	sender address from kernel to user space.
1621  */
1622 
1623 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags,
1624 			     struct sockaddr __user *addr, int __user *addr_len)
1625 {
1626 	struct socket *sock;
1627 	struct iovec iov;
1628 	struct msghdr msg;
1629 	char address[MAX_SOCK_ADDR];
1630 	int err,err2;
1631 	struct file *sock_file;
1632 	int fput_needed;
1633 
1634 	sock_file = fget_light(fd, &fput_needed);
1635 	if (!sock_file)
1636 		return -EBADF;
1637 
1638 	sock = sock_from_file(sock_file, &err);
1639 	if (!sock)
1640 		goto out;
1641 
1642 	msg.msg_control=NULL;
1643 	msg.msg_controllen=0;
1644 	msg.msg_iovlen=1;
1645 	msg.msg_iov=&iov;
1646 	iov.iov_len=size;
1647 	iov.iov_base=ubuf;
1648 	msg.msg_name=address;
1649 	msg.msg_namelen=MAX_SOCK_ADDR;
1650 	if (sock->file->f_flags & O_NONBLOCK)
1651 		flags |= MSG_DONTWAIT;
1652 	err=sock_recvmsg(sock, &msg, size, flags);
1653 
1654 	if(err >= 0 && addr != NULL)
1655 	{
1656 		err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1657 		if(err2<0)
1658 			err=err2;
1659 	}
1660 out:
1661 	fput_light(sock_file, fput_needed);
1662 	return err;
1663 }
1664 
1665 /*
1666  *	Receive a datagram from a socket.
1667  */
1668 
1669 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags)
1670 {
1671 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1672 }
1673 
1674 /*
1675  *	Set a socket option. Because we don't know the option lengths we have
1676  *	to pass the user mode parameter for the protocols to sort out.
1677  */
1678 
1679 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen)
1680 {
1681 	int err, fput_needed;
1682 	struct socket *sock;
1683 
1684 	if (optlen < 0)
1685 		return -EINVAL;
1686 
1687 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL)
1688 	{
1689 		err = security_socket_setsockopt(sock,level,optname);
1690 		if (err)
1691 			goto out_put;
1692 
1693 		if (level == SOL_SOCKET)
1694 			err=sock_setsockopt(sock,level,optname,optval,optlen);
1695 		else
1696 			err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1697 out_put:
1698 		fput_light(sock->file, fput_needed);
1699 	}
1700 	return err;
1701 }
1702 
1703 /*
1704  *	Get a socket option. Because we don't know the option lengths we have
1705  *	to pass a user mode parameter for the protocols to sort out.
1706  */
1707 
1708 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)
1709 {
1710 	int err, fput_needed;
1711 	struct socket *sock;
1712 
1713 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) {
1714 		err = security_socket_getsockopt(sock, level, optname);
1715 		if (err)
1716 			goto out_put;
1717 
1718 		if (level == SOL_SOCKET)
1719 			err=sock_getsockopt(sock,level,optname,optval,optlen);
1720 		else
1721 			err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1722 out_put:
1723 		fput_light(sock->file, fput_needed);
1724 	}
1725 	return err;
1726 }
1727 
1728 
1729 /*
1730  *	Shutdown a socket.
1731  */
1732 
1733 asmlinkage long sys_shutdown(int fd, int how)
1734 {
1735 	int err, fput_needed;
1736 	struct socket *sock;
1737 
1738 	if ((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL)
1739 	{
1740 		err = security_socket_shutdown(sock, how);
1741 		if (!err)
1742 			err = sock->ops->shutdown(sock, how);
1743 		fput_light(sock->file, fput_needed);
1744 	}
1745 	return err;
1746 }
1747 
1748 /* A couple of helpful macros for getting the address of the 32/64 bit
1749  * fields which are the same type (int / unsigned) on our platforms.
1750  */
1751 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1752 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1753 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1754 
1755 
1756 /*
1757  *	BSD sendmsg interface
1758  */
1759 
1760 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1761 {
1762 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1763 	struct socket *sock;
1764 	char address[MAX_SOCK_ADDR];
1765 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1766 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1767 			__attribute__ ((aligned (sizeof(__kernel_size_t))));
1768 			/* 20 is size of ipv6_pktinfo */
1769 	unsigned char *ctl_buf = ctl;
1770 	struct msghdr msg_sys;
1771 	int err, ctl_len, iov_size, total_len;
1772 	int fput_needed;
1773 
1774 	err = -EFAULT;
1775 	if (MSG_CMSG_COMPAT & flags) {
1776 		if (get_compat_msghdr(&msg_sys, msg_compat))
1777 			return -EFAULT;
1778 	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1779 		return -EFAULT;
1780 
1781 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1782 	if (!sock)
1783 		goto out;
1784 
1785 	/* do not move before msg_sys is valid */
1786 	err = -EMSGSIZE;
1787 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1788 		goto out_put;
1789 
1790 	/* Check whether to allocate the iovec area*/
1791 	err = -ENOMEM;
1792 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1793 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1794 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1795 		if (!iov)
1796 			goto out_put;
1797 	}
1798 
1799 	/* This will also move the address data into kernel space */
1800 	if (MSG_CMSG_COMPAT & flags) {
1801 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1802 	} else
1803 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1804 	if (err < 0)
1805 		goto out_freeiov;
1806 	total_len = err;
1807 
1808 	err = -ENOBUFS;
1809 
1810 	if (msg_sys.msg_controllen > INT_MAX)
1811 		goto out_freeiov;
1812 	ctl_len = msg_sys.msg_controllen;
1813 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1814 		err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl));
1815 		if (err)
1816 			goto out_freeiov;
1817 		ctl_buf = msg_sys.msg_control;
1818 		ctl_len = msg_sys.msg_controllen;
1819 	} else if (ctl_len) {
1820 		if (ctl_len > sizeof(ctl))
1821 		{
1822 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1823 			if (ctl_buf == NULL)
1824 				goto out_freeiov;
1825 		}
1826 		err = -EFAULT;
1827 		/*
1828 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1829 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1830 		 * checking falls down on this.
1831 		 */
1832 		if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len))
1833 			goto out_freectl;
1834 		msg_sys.msg_control = ctl_buf;
1835 	}
1836 	msg_sys.msg_flags = flags;
1837 
1838 	if (sock->file->f_flags & O_NONBLOCK)
1839 		msg_sys.msg_flags |= MSG_DONTWAIT;
1840 	err = sock_sendmsg(sock, &msg_sys, total_len);
1841 
1842 out_freectl:
1843 	if (ctl_buf != ctl)
1844 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1845 out_freeiov:
1846 	if (iov != iovstack)
1847 		sock_kfree_s(sock->sk, iov, iov_size);
1848 out_put:
1849 	fput_light(sock->file, fput_needed);
1850 out:
1851 	return err;
1852 }
1853 
1854 /*
1855  *	BSD recvmsg interface
1856  */
1857 
1858 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags)
1859 {
1860 	struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1861 	struct socket *sock;
1862 	struct iovec iovstack[UIO_FASTIOV];
1863 	struct iovec *iov=iovstack;
1864 	struct msghdr msg_sys;
1865 	unsigned long cmsg_ptr;
1866 	int err, iov_size, total_len, len;
1867 	int fput_needed;
1868 
1869 	/* kernel mode address */
1870 	char addr[MAX_SOCK_ADDR];
1871 
1872 	/* user mode address pointers */
1873 	struct sockaddr __user *uaddr;
1874 	int __user *uaddr_len;
1875 
1876 	if (MSG_CMSG_COMPAT & flags) {
1877 		if (get_compat_msghdr(&msg_sys, msg_compat))
1878 			return -EFAULT;
1879 	} else
1880 		if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1881 			return -EFAULT;
1882 
1883 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1884 	if (!sock)
1885 		goto out;
1886 
1887 	err = -EMSGSIZE;
1888 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1889 		goto out_put;
1890 
1891 	/* Check whether to allocate the iovec area*/
1892 	err = -ENOMEM;
1893 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1894 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1895 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1896 		if (!iov)
1897 			goto out_put;
1898 	}
1899 
1900 	/*
1901 	 *	Save the user-mode address (verify_iovec will change the
1902 	 *	kernel msghdr to use the kernel address space)
1903 	 */
1904 
1905 	uaddr = (void __user *) msg_sys.msg_name;
1906 	uaddr_len = COMPAT_NAMELEN(msg);
1907 	if (MSG_CMSG_COMPAT & flags) {
1908 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1909 	} else
1910 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1911 	if (err < 0)
1912 		goto out_freeiov;
1913 	total_len=err;
1914 
1915 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1916 	msg_sys.msg_flags = 0;
1917 	if (MSG_CMSG_COMPAT & flags)
1918 		msg_sys.msg_flags = MSG_CMSG_COMPAT;
1919 
1920 	if (sock->file->f_flags & O_NONBLOCK)
1921 		flags |= MSG_DONTWAIT;
1922 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1923 	if (err < 0)
1924 		goto out_freeiov;
1925 	len = err;
1926 
1927 	if (uaddr != NULL) {
1928 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1929 		if (err < 0)
1930 			goto out_freeiov;
1931 	}
1932 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1933 			 COMPAT_FLAGS(msg));
1934 	if (err)
1935 		goto out_freeiov;
1936 	if (MSG_CMSG_COMPAT & flags)
1937 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1938 				 &msg_compat->msg_controllen);
1939 	else
1940 		err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1941 				 &msg->msg_controllen);
1942 	if (err)
1943 		goto out_freeiov;
1944 	err = len;
1945 
1946 out_freeiov:
1947 	if (iov != iovstack)
1948 		sock_kfree_s(sock->sk, iov, iov_size);
1949 out_put:
1950 	fput_light(sock->file, fput_needed);
1951 out:
1952 	return err;
1953 }
1954 
1955 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1956 
1957 /* Argument list sizes for sys_socketcall */
1958 #define AL(x) ((x) * sizeof(unsigned long))
1959 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1960 				AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1961 				AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1962 #undef AL
1963 
1964 /*
1965  *	System call vectors.
1966  *
1967  *	Argument checking cleaned up. Saved 20% in size.
1968  *  This function doesn't need to set the kernel lock because
1969  *  it is set by the callees.
1970  */
1971 
1972 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1973 {
1974 	unsigned long a[6];
1975 	unsigned long a0,a1;
1976 	int err;
1977 
1978 	if(call<1||call>SYS_RECVMSG)
1979 		return -EINVAL;
1980 
1981 	/* copy_from_user should be SMP safe. */
1982 	if (copy_from_user(a, args, nargs[call]))
1983 		return -EFAULT;
1984 
1985 	err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
1986 	if (err)
1987 		return err;
1988 
1989 	a0=a[0];
1990 	a1=a[1];
1991 
1992 	switch(call)
1993 	{
1994 		case SYS_SOCKET:
1995 			err = sys_socket(a0,a1,a[2]);
1996 			break;
1997 		case SYS_BIND:
1998 			err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
1999 			break;
2000 		case SYS_CONNECT:
2001 			err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2002 			break;
2003 		case SYS_LISTEN:
2004 			err = sys_listen(a0,a1);
2005 			break;
2006 		case SYS_ACCEPT:
2007 			err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
2008 			break;
2009 		case SYS_GETSOCKNAME:
2010 			err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
2011 			break;
2012 		case SYS_GETPEERNAME:
2013 			err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
2014 			break;
2015 		case SYS_SOCKETPAIR:
2016 			err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
2017 			break;
2018 		case SYS_SEND:
2019 			err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2020 			break;
2021 		case SYS_SENDTO:
2022 			err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
2023 					 (struct sockaddr __user *)a[4], a[5]);
2024 			break;
2025 		case SYS_RECV:
2026 			err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2027 			break;
2028 		case SYS_RECVFROM:
2029 			err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2030 					   (struct sockaddr __user *)a[4], (int __user *)a[5]);
2031 			break;
2032 		case SYS_SHUTDOWN:
2033 			err = sys_shutdown(a0,a1);
2034 			break;
2035 		case SYS_SETSOCKOPT:
2036 			err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2037 			break;
2038 		case SYS_GETSOCKOPT:
2039 			err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
2040 			break;
2041 		case SYS_SENDMSG:
2042 			err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
2043 			break;
2044 		case SYS_RECVMSG:
2045 			err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
2046 			break;
2047 		default:
2048 			err = -EINVAL;
2049 			break;
2050 	}
2051 	return err;
2052 }
2053 
2054 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2055 
2056 /*
2057  *	This function is called by a protocol handler that wants to
2058  *	advertise its address family, and have it linked into the
2059  *	SOCKET module.
2060  */
2061 
2062 int sock_register(struct net_proto_family *ops)
2063 {
2064 	int err;
2065 
2066 	if (ops->family >= NPROTO) {
2067 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2068 		return -ENOBUFS;
2069 	}
2070 	net_family_write_lock();
2071 	err = -EEXIST;
2072 	if (net_families[ops->family] == NULL) {
2073 		net_families[ops->family]=ops;
2074 		err = 0;
2075 	}
2076 	net_family_write_unlock();
2077 	printk(KERN_INFO "NET: Registered protocol family %d\n",
2078 	       ops->family);
2079 	return err;
2080 }
2081 
2082 /*
2083  *	This function is called by a protocol handler that wants to
2084  *	remove its address family, and have it unlinked from the
2085  *	SOCKET module.
2086  */
2087 
2088 int sock_unregister(int family)
2089 {
2090 	if (family < 0 || family >= NPROTO)
2091 		return -1;
2092 
2093 	net_family_write_lock();
2094 	net_families[family]=NULL;
2095 	net_family_write_unlock();
2096 	printk(KERN_INFO "NET: Unregistered protocol family %d\n",
2097 	       family);
2098 	return 0;
2099 }
2100 
2101 static int __init sock_init(void)
2102 {
2103 	/*
2104 	 *	Initialize sock SLAB cache.
2105 	 */
2106 
2107 	sk_init();
2108 
2109 	/*
2110 	 *	Initialize skbuff SLAB cache
2111 	 */
2112 	skb_init();
2113 
2114 	/*
2115 	 *	Initialize the protocols module.
2116 	 */
2117 
2118 	init_inodecache();
2119 	register_filesystem(&sock_fs_type);
2120 	sock_mnt = kern_mount(&sock_fs_type);
2121 
2122 	/* The real protocol initialization is performed in later initcalls.
2123 	 */
2124 
2125 #ifdef CONFIG_NETFILTER
2126 	netfilter_init();
2127 #endif
2128 
2129 	return 0;
2130 }
2131 
2132 core_initcall(sock_init);	/* early initcall */
2133 
2134 #ifdef CONFIG_PROC_FS
2135 void socket_seq_show(struct seq_file *seq)
2136 {
2137 	int cpu;
2138 	int counter = 0;
2139 
2140 	for_each_cpu(cpu)
2141 		counter += per_cpu(sockets_in_use, cpu);
2142 
2143 	/* It can be negative, by the way. 8) */
2144 	if (counter < 0)
2145 		counter = 0;
2146 
2147 	seq_printf(seq, "sockets: used %d\n", counter);
2148 }
2149 #endif /* CONFIG_PROC_FS */
2150 
2151 #ifdef CONFIG_COMPAT
2152 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2153 				unsigned long arg)
2154 {
2155 	struct socket *sock = file->private_data;
2156 	int ret = -ENOIOCTLCMD;
2157 
2158 	if (sock->ops->compat_ioctl)
2159 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2160 
2161 	return ret;
2162 }
2163 #endif
2164 
2165 /* ABI emulation layers need these two */
2166 EXPORT_SYMBOL(move_addr_to_kernel);
2167 EXPORT_SYMBOL(move_addr_to_user);
2168 EXPORT_SYMBOL(sock_create);
2169 EXPORT_SYMBOL(sock_create_kern);
2170 EXPORT_SYMBOL(sock_create_lite);
2171 EXPORT_SYMBOL(sock_map_fd);
2172 EXPORT_SYMBOL(sock_recvmsg);
2173 EXPORT_SYMBOL(sock_register);
2174 EXPORT_SYMBOL(sock_release);
2175 EXPORT_SYMBOL(sock_sendmsg);
2176 EXPORT_SYMBOL(sock_unregister);
2177 EXPORT_SYMBOL(sock_wake_async);
2178 EXPORT_SYMBOL(sockfd_lookup);
2179 EXPORT_SYMBOL(kernel_sendmsg);
2180 EXPORT_SYMBOL(kernel_recvmsg);
2181