1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/config.h> 62 #include <linux/mm.h> 63 #include <linux/smp_lock.h> 64 #include <linux/socket.h> 65 #include <linux/file.h> 66 #include <linux/net.h> 67 #include <linux/interrupt.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/divert.h> 82 #include <linux/mount.h> 83 #include <linux/security.h> 84 #include <linux/syscalls.h> 85 #include <linux/compat.h> 86 #include <linux/kmod.h> 87 #include <linux/audit.h> 88 #include <linux/wireless.h> 89 90 #include <asm/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 95 #include <net/sock.h> 96 #include <linux/netfilter.h> 97 98 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 99 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf, 100 size_t size, loff_t pos); 101 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf, 102 size_t size, loff_t pos); 103 static int sock_mmap(struct file *file, struct vm_area_struct * vma); 104 105 static int sock_close(struct inode *inode, struct file *file); 106 static unsigned int sock_poll(struct file *file, 107 struct poll_table_struct *wait); 108 static long sock_ioctl(struct file *file, 109 unsigned int cmd, unsigned long arg); 110 #ifdef CONFIG_COMPAT 111 static long compat_sock_ioctl(struct file *file, 112 unsigned int cmd, unsigned long arg); 113 #endif 114 static int sock_fasync(int fd, struct file *filp, int on); 115 static ssize_t sock_readv(struct file *file, const struct iovec *vector, 116 unsigned long count, loff_t *ppos); 117 static ssize_t sock_writev(struct file *file, const struct iovec *vector, 118 unsigned long count, loff_t *ppos); 119 static ssize_t sock_sendpage(struct file *file, struct page *page, 120 int offset, size_t size, loff_t *ppos, int more); 121 122 extern ssize_t generic_splice_sendpage(struct inode *inode, struct file *out, 123 size_t len, unsigned int flags); 124 125 126 /* 127 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 128 * in the operation structures but are done directly via the socketcall() multiplexor. 129 */ 130 131 static struct file_operations socket_file_ops = { 132 .owner = THIS_MODULE, 133 .llseek = no_llseek, 134 .aio_read = sock_aio_read, 135 .aio_write = sock_aio_write, 136 .poll = sock_poll, 137 .unlocked_ioctl = sock_ioctl, 138 #ifdef CONFIG_COMPAT 139 .compat_ioctl = compat_sock_ioctl, 140 #endif 141 .mmap = sock_mmap, 142 .open = sock_no_open, /* special open code to disallow open via /proc */ 143 .release = sock_close, 144 .fasync = sock_fasync, 145 .readv = sock_readv, 146 .writev = sock_writev, 147 .sendpage = sock_sendpage, 148 .splice_write = generic_splice_sendpage, 149 }; 150 151 /* 152 * The protocol list. Each protocol is registered in here. 153 */ 154 155 static struct net_proto_family *net_families[NPROTO]; 156 157 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 158 static atomic_t net_family_lockct = ATOMIC_INIT(0); 159 static DEFINE_SPINLOCK(net_family_lock); 160 161 /* The strategy is: modifications net_family vector are short, do not 162 sleep and veeery rare, but read access should be free of any exclusive 163 locks. 164 */ 165 166 static void net_family_write_lock(void) 167 { 168 spin_lock(&net_family_lock); 169 while (atomic_read(&net_family_lockct) != 0) { 170 spin_unlock(&net_family_lock); 171 172 yield(); 173 174 spin_lock(&net_family_lock); 175 } 176 } 177 178 static __inline__ void net_family_write_unlock(void) 179 { 180 spin_unlock(&net_family_lock); 181 } 182 183 static __inline__ void net_family_read_lock(void) 184 { 185 atomic_inc(&net_family_lockct); 186 spin_unlock_wait(&net_family_lock); 187 } 188 189 static __inline__ void net_family_read_unlock(void) 190 { 191 atomic_dec(&net_family_lockct); 192 } 193 194 #else 195 #define net_family_write_lock() do { } while(0) 196 #define net_family_write_unlock() do { } while(0) 197 #define net_family_read_lock() do { } while(0) 198 #define net_family_read_unlock() do { } while(0) 199 #endif 200 201 202 /* 203 * Statistics counters of the socket lists 204 */ 205 206 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 207 208 /* 209 * Support routines. Move socket addresses back and forth across the kernel/user 210 * divide and look after the messy bits. 211 */ 212 213 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 214 16 for IP, 16 for IPX, 215 24 for IPv6, 216 about 80 for AX.25 217 must be at least one bigger than 218 the AF_UNIX size (see net/unix/af_unix.c 219 :unix_mkname()). 220 */ 221 222 /** 223 * move_addr_to_kernel - copy a socket address into kernel space 224 * @uaddr: Address in user space 225 * @kaddr: Address in kernel space 226 * @ulen: Length in user space 227 * 228 * The address is copied into kernel space. If the provided address is 229 * too long an error code of -EINVAL is returned. If the copy gives 230 * invalid addresses -EFAULT is returned. On a success 0 is returned. 231 */ 232 233 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 234 { 235 if(ulen<0||ulen>MAX_SOCK_ADDR) 236 return -EINVAL; 237 if(ulen==0) 238 return 0; 239 if(copy_from_user(kaddr,uaddr,ulen)) 240 return -EFAULT; 241 return audit_sockaddr(ulen, kaddr); 242 } 243 244 /** 245 * move_addr_to_user - copy an address to user space 246 * @kaddr: kernel space address 247 * @klen: length of address in kernel 248 * @uaddr: user space address 249 * @ulen: pointer to user length field 250 * 251 * The value pointed to by ulen on entry is the buffer length available. 252 * This is overwritten with the buffer space used. -EINVAL is returned 253 * if an overlong buffer is specified or a negative buffer size. -EFAULT 254 * is returned if either the buffer or the length field are not 255 * accessible. 256 * After copying the data up to the limit the user specifies, the true 257 * length of the data is written over the length limit the user 258 * specified. Zero is returned for a success. 259 */ 260 261 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen) 262 { 263 int err; 264 int len; 265 266 if((err=get_user(len, ulen))) 267 return err; 268 if(len>klen) 269 len=klen; 270 if(len<0 || len> MAX_SOCK_ADDR) 271 return -EINVAL; 272 if(len) 273 { 274 if(copy_to_user(uaddr,kaddr,len)) 275 return -EFAULT; 276 } 277 /* 278 * "fromlen shall refer to the value before truncation.." 279 * 1003.1g 280 */ 281 return __put_user(klen, ulen); 282 } 283 284 #define SOCKFS_MAGIC 0x534F434B 285 286 static kmem_cache_t * sock_inode_cachep __read_mostly; 287 288 static struct inode *sock_alloc_inode(struct super_block *sb) 289 { 290 struct socket_alloc *ei; 291 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL); 292 if (!ei) 293 return NULL; 294 init_waitqueue_head(&ei->socket.wait); 295 296 ei->socket.fasync_list = NULL; 297 ei->socket.state = SS_UNCONNECTED; 298 ei->socket.flags = 0; 299 ei->socket.ops = NULL; 300 ei->socket.sk = NULL; 301 ei->socket.file = NULL; 302 ei->socket.flags = 0; 303 304 return &ei->vfs_inode; 305 } 306 307 static void sock_destroy_inode(struct inode *inode) 308 { 309 kmem_cache_free(sock_inode_cachep, 310 container_of(inode, struct socket_alloc, vfs_inode)); 311 } 312 313 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 314 { 315 struct socket_alloc *ei = (struct socket_alloc *) foo; 316 317 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 318 SLAB_CTOR_CONSTRUCTOR) 319 inode_init_once(&ei->vfs_inode); 320 } 321 322 static int init_inodecache(void) 323 { 324 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 325 sizeof(struct socket_alloc), 326 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 327 SLAB_MEM_SPREAD), 328 init_once, NULL); 329 if (sock_inode_cachep == NULL) 330 return -ENOMEM; 331 return 0; 332 } 333 334 static struct super_operations sockfs_ops = { 335 .alloc_inode = sock_alloc_inode, 336 .destroy_inode =sock_destroy_inode, 337 .statfs = simple_statfs, 338 }; 339 340 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type, 341 int flags, const char *dev_name, void *data) 342 { 343 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC); 344 } 345 346 static struct vfsmount *sock_mnt __read_mostly; 347 348 static struct file_system_type sock_fs_type = { 349 .name = "sockfs", 350 .get_sb = sockfs_get_sb, 351 .kill_sb = kill_anon_super, 352 }; 353 static int sockfs_delete_dentry(struct dentry *dentry) 354 { 355 return 1; 356 } 357 static struct dentry_operations sockfs_dentry_operations = { 358 .d_delete = sockfs_delete_dentry, 359 }; 360 361 /* 362 * Obtains the first available file descriptor and sets it up for use. 363 * 364 * These functions create file structures and maps them to fd space 365 * of the current process. On success it returns file descriptor 366 * and file struct implicitly stored in sock->file. 367 * Note that another thread may close file descriptor before we return 368 * from this function. We use the fact that now we do not refer 369 * to socket after mapping. If one day we will need it, this 370 * function will increment ref. count on file by 1. 371 * 372 * In any case returned fd MAY BE not valid! 373 * This race condition is unavoidable 374 * with shared fd spaces, we cannot solve it inside kernel, 375 * but we take care of internal coherence yet. 376 */ 377 378 static int sock_alloc_fd(struct file **filep) 379 { 380 int fd; 381 382 fd = get_unused_fd(); 383 if (likely(fd >= 0)) { 384 struct file *file = get_empty_filp(); 385 386 *filep = file; 387 if (unlikely(!file)) { 388 put_unused_fd(fd); 389 return -ENFILE; 390 } 391 } else 392 *filep = NULL; 393 return fd; 394 } 395 396 static int sock_attach_fd(struct socket *sock, struct file *file) 397 { 398 struct qstr this; 399 char name[32]; 400 401 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino); 402 this.name = name; 403 this.hash = SOCK_INODE(sock)->i_ino; 404 405 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); 406 if (unlikely(!file->f_dentry)) 407 return -ENOMEM; 408 409 file->f_dentry->d_op = &sockfs_dentry_operations; 410 d_add(file->f_dentry, SOCK_INODE(sock)); 411 file->f_vfsmnt = mntget(sock_mnt); 412 file->f_mapping = file->f_dentry->d_inode->i_mapping; 413 414 sock->file = file; 415 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 416 file->f_mode = FMODE_READ | FMODE_WRITE; 417 file->f_flags = O_RDWR; 418 file->f_pos = 0; 419 file->private_data = sock; 420 421 return 0; 422 } 423 424 int sock_map_fd(struct socket *sock) 425 { 426 struct file *newfile; 427 int fd = sock_alloc_fd(&newfile); 428 429 if (likely(fd >= 0)) { 430 int err = sock_attach_fd(sock, newfile); 431 432 if (unlikely(err < 0)) { 433 put_filp(newfile); 434 put_unused_fd(fd); 435 return err; 436 } 437 fd_install(fd, newfile); 438 } 439 return fd; 440 } 441 442 static struct socket *sock_from_file(struct file *file, int *err) 443 { 444 struct inode *inode; 445 struct socket *sock; 446 447 if (file->f_op == &socket_file_ops) 448 return file->private_data; /* set in sock_map_fd */ 449 450 inode = file->f_dentry->d_inode; 451 if (!S_ISSOCK(inode->i_mode)) { 452 *err = -ENOTSOCK; 453 return NULL; 454 } 455 456 sock = SOCKET_I(inode); 457 if (sock->file != file) { 458 printk(KERN_ERR "socki_lookup: socket file changed!\n"); 459 sock->file = file; 460 } 461 return sock; 462 } 463 464 /** 465 * sockfd_lookup - Go from a file number to its socket slot 466 * @fd: file handle 467 * @err: pointer to an error code return 468 * 469 * The file handle passed in is locked and the socket it is bound 470 * too is returned. If an error occurs the err pointer is overwritten 471 * with a negative errno code and NULL is returned. The function checks 472 * for both invalid handles and passing a handle which is not a socket. 473 * 474 * On a success the socket object pointer is returned. 475 */ 476 477 struct socket *sockfd_lookup(int fd, int *err) 478 { 479 struct file *file; 480 struct socket *sock; 481 482 if (!(file = fget(fd))) { 483 *err = -EBADF; 484 return NULL; 485 } 486 sock = sock_from_file(file, err); 487 if (!sock) 488 fput(file); 489 return sock; 490 } 491 492 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 493 { 494 struct file *file; 495 struct socket *sock; 496 497 file = fget_light(fd, fput_needed); 498 if (file) { 499 sock = sock_from_file(file, err); 500 if (sock) 501 return sock; 502 fput_light(file, *fput_needed); 503 } 504 return NULL; 505 } 506 507 /** 508 * sock_alloc - allocate a socket 509 * 510 * Allocate a new inode and socket object. The two are bound together 511 * and initialised. The socket is then returned. If we are out of inodes 512 * NULL is returned. 513 */ 514 515 static struct socket *sock_alloc(void) 516 { 517 struct inode * inode; 518 struct socket * sock; 519 520 inode = new_inode(sock_mnt->mnt_sb); 521 if (!inode) 522 return NULL; 523 524 sock = SOCKET_I(inode); 525 526 inode->i_mode = S_IFSOCK|S_IRWXUGO; 527 inode->i_uid = current->fsuid; 528 inode->i_gid = current->fsgid; 529 530 get_cpu_var(sockets_in_use)++; 531 put_cpu_var(sockets_in_use); 532 return sock; 533 } 534 535 /* 536 * In theory you can't get an open on this inode, but /proc provides 537 * a back door. Remember to keep it shut otherwise you'll let the 538 * creepy crawlies in. 539 */ 540 541 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 542 { 543 return -ENXIO; 544 } 545 546 const struct file_operations bad_sock_fops = { 547 .owner = THIS_MODULE, 548 .open = sock_no_open, 549 }; 550 551 /** 552 * sock_release - close a socket 553 * @sock: socket to close 554 * 555 * The socket is released from the protocol stack if it has a release 556 * callback, and the inode is then released if the socket is bound to 557 * an inode not a file. 558 */ 559 560 void sock_release(struct socket *sock) 561 { 562 if (sock->ops) { 563 struct module *owner = sock->ops->owner; 564 565 sock->ops->release(sock); 566 sock->ops = NULL; 567 module_put(owner); 568 } 569 570 if (sock->fasync_list) 571 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 572 573 get_cpu_var(sockets_in_use)--; 574 put_cpu_var(sockets_in_use); 575 if (!sock->file) { 576 iput(SOCK_INODE(sock)); 577 return; 578 } 579 sock->file=NULL; 580 } 581 582 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 583 struct msghdr *msg, size_t size) 584 { 585 struct sock_iocb *si = kiocb_to_siocb(iocb); 586 int err; 587 588 si->sock = sock; 589 si->scm = NULL; 590 si->msg = msg; 591 si->size = size; 592 593 err = security_socket_sendmsg(sock, msg, size); 594 if (err) 595 return err; 596 597 return sock->ops->sendmsg(iocb, sock, msg, size); 598 } 599 600 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 601 { 602 struct kiocb iocb; 603 struct sock_iocb siocb; 604 int ret; 605 606 init_sync_kiocb(&iocb, NULL); 607 iocb.private = &siocb; 608 ret = __sock_sendmsg(&iocb, sock, msg, size); 609 if (-EIOCBQUEUED == ret) 610 ret = wait_on_sync_kiocb(&iocb); 611 return ret; 612 } 613 614 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 615 struct kvec *vec, size_t num, size_t size) 616 { 617 mm_segment_t oldfs = get_fs(); 618 int result; 619 620 set_fs(KERNEL_DS); 621 /* 622 * the following is safe, since for compiler definitions of kvec and 623 * iovec are identical, yielding the same in-core layout and alignment 624 */ 625 msg->msg_iov = (struct iovec *)vec, 626 msg->msg_iovlen = num; 627 result = sock_sendmsg(sock, msg, size); 628 set_fs(oldfs); 629 return result; 630 } 631 632 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 633 struct msghdr *msg, size_t size, int flags) 634 { 635 int err; 636 struct sock_iocb *si = kiocb_to_siocb(iocb); 637 638 si->sock = sock; 639 si->scm = NULL; 640 si->msg = msg; 641 si->size = size; 642 si->flags = flags; 643 644 err = security_socket_recvmsg(sock, msg, size, flags); 645 if (err) 646 return err; 647 648 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 649 } 650 651 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 652 size_t size, int flags) 653 { 654 struct kiocb iocb; 655 struct sock_iocb siocb; 656 int ret; 657 658 init_sync_kiocb(&iocb, NULL); 659 iocb.private = &siocb; 660 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 661 if (-EIOCBQUEUED == ret) 662 ret = wait_on_sync_kiocb(&iocb); 663 return ret; 664 } 665 666 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 667 struct kvec *vec, size_t num, 668 size_t size, int flags) 669 { 670 mm_segment_t oldfs = get_fs(); 671 int result; 672 673 set_fs(KERNEL_DS); 674 /* 675 * the following is safe, since for compiler definitions of kvec and 676 * iovec are identical, yielding the same in-core layout and alignment 677 */ 678 msg->msg_iov = (struct iovec *)vec, 679 msg->msg_iovlen = num; 680 result = sock_recvmsg(sock, msg, size, flags); 681 set_fs(oldfs); 682 return result; 683 } 684 685 static void sock_aio_dtor(struct kiocb *iocb) 686 { 687 kfree(iocb->private); 688 } 689 690 static ssize_t sock_sendpage(struct file *file, struct page *page, 691 int offset, size_t size, loff_t *ppos, int more) 692 { 693 struct socket *sock; 694 int flags; 695 696 sock = file->private_data; 697 698 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 699 if (more) 700 flags |= MSG_MORE; 701 702 return sock->ops->sendpage(sock, page, offset, size, flags); 703 } 704 705 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 706 char __user *ubuf, size_t size, struct sock_iocb *siocb) 707 { 708 if (!is_sync_kiocb(iocb)) { 709 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 710 if (!siocb) 711 return NULL; 712 iocb->ki_dtor = sock_aio_dtor; 713 } 714 715 siocb->kiocb = iocb; 716 siocb->async_iov.iov_base = ubuf; 717 siocb->async_iov.iov_len = size; 718 719 iocb->private = siocb; 720 return siocb; 721 } 722 723 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 724 struct file *file, struct iovec *iov, unsigned long nr_segs) 725 { 726 struct socket *sock = file->private_data; 727 size_t size = 0; 728 int i; 729 730 for (i = 0 ; i < nr_segs ; i++) 731 size += iov[i].iov_len; 732 733 msg->msg_name = NULL; 734 msg->msg_namelen = 0; 735 msg->msg_control = NULL; 736 msg->msg_controllen = 0; 737 msg->msg_iov = (struct iovec *) iov; 738 msg->msg_iovlen = nr_segs; 739 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 740 741 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 742 } 743 744 static ssize_t sock_readv(struct file *file, const struct iovec *iov, 745 unsigned long nr_segs, loff_t *ppos) 746 { 747 struct kiocb iocb; 748 struct sock_iocb siocb; 749 struct msghdr msg; 750 int ret; 751 752 init_sync_kiocb(&iocb, NULL); 753 iocb.private = &siocb; 754 755 ret = do_sock_read(&msg, &iocb, file, (struct iovec *)iov, nr_segs); 756 if (-EIOCBQUEUED == ret) 757 ret = wait_on_sync_kiocb(&iocb); 758 return ret; 759 } 760 761 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf, 762 size_t count, loff_t pos) 763 { 764 struct sock_iocb siocb, *x; 765 766 if (pos != 0) 767 return -ESPIPE; 768 if (count == 0) /* Match SYS5 behaviour */ 769 return 0; 770 771 x = alloc_sock_iocb(iocb, ubuf, count, &siocb); 772 if (!x) 773 return -ENOMEM; 774 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, 775 &x->async_iov, 1); 776 } 777 778 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 779 struct file *file, struct iovec *iov, unsigned long nr_segs) 780 { 781 struct socket *sock = file->private_data; 782 size_t size = 0; 783 int i; 784 785 for (i = 0 ; i < nr_segs ; i++) 786 size += iov[i].iov_len; 787 788 msg->msg_name = NULL; 789 msg->msg_namelen = 0; 790 msg->msg_control = NULL; 791 msg->msg_controllen = 0; 792 msg->msg_iov = (struct iovec *) iov; 793 msg->msg_iovlen = nr_segs; 794 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 795 if (sock->type == SOCK_SEQPACKET) 796 msg->msg_flags |= MSG_EOR; 797 798 return __sock_sendmsg(iocb, sock, msg, size); 799 } 800 801 static ssize_t sock_writev(struct file *file, const struct iovec *iov, 802 unsigned long nr_segs, loff_t *ppos) 803 { 804 struct msghdr msg; 805 struct kiocb iocb; 806 struct sock_iocb siocb; 807 int ret; 808 809 init_sync_kiocb(&iocb, NULL); 810 iocb.private = &siocb; 811 812 ret = do_sock_write(&msg, &iocb, file, (struct iovec *)iov, nr_segs); 813 if (-EIOCBQUEUED == ret) 814 ret = wait_on_sync_kiocb(&iocb); 815 return ret; 816 } 817 818 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf, 819 size_t count, loff_t pos) 820 { 821 struct sock_iocb siocb, *x; 822 823 if (pos != 0) 824 return -ESPIPE; 825 if (count == 0) /* Match SYS5 behaviour */ 826 return 0; 827 828 x = alloc_sock_iocb(iocb, (void __user *)ubuf, count, &siocb); 829 if (!x) 830 return -ENOMEM; 831 832 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, 833 &x->async_iov, 1); 834 } 835 836 837 /* 838 * Atomic setting of ioctl hooks to avoid race 839 * with module unload. 840 */ 841 842 static DEFINE_MUTEX(br_ioctl_mutex); 843 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL; 844 845 void brioctl_set(int (*hook)(unsigned int, void __user *)) 846 { 847 mutex_lock(&br_ioctl_mutex); 848 br_ioctl_hook = hook; 849 mutex_unlock(&br_ioctl_mutex); 850 } 851 EXPORT_SYMBOL(brioctl_set); 852 853 static DEFINE_MUTEX(vlan_ioctl_mutex); 854 static int (*vlan_ioctl_hook)(void __user *arg); 855 856 void vlan_ioctl_set(int (*hook)(void __user *)) 857 { 858 mutex_lock(&vlan_ioctl_mutex); 859 vlan_ioctl_hook = hook; 860 mutex_unlock(&vlan_ioctl_mutex); 861 } 862 EXPORT_SYMBOL(vlan_ioctl_set); 863 864 static DEFINE_MUTEX(dlci_ioctl_mutex); 865 static int (*dlci_ioctl_hook)(unsigned int, void __user *); 866 867 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *)) 868 { 869 mutex_lock(&dlci_ioctl_mutex); 870 dlci_ioctl_hook = hook; 871 mutex_unlock(&dlci_ioctl_mutex); 872 } 873 EXPORT_SYMBOL(dlci_ioctl_set); 874 875 /* 876 * With an ioctl, arg may well be a user mode pointer, but we don't know 877 * what to do with it - that's up to the protocol still. 878 */ 879 880 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 881 { 882 struct socket *sock; 883 void __user *argp = (void __user *)arg; 884 int pid, err; 885 886 sock = file->private_data; 887 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 888 err = dev_ioctl(cmd, argp); 889 } else 890 #ifdef CONFIG_WIRELESS_EXT 891 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 892 err = dev_ioctl(cmd, argp); 893 } else 894 #endif /* CONFIG_WIRELESS_EXT */ 895 switch (cmd) { 896 case FIOSETOWN: 897 case SIOCSPGRP: 898 err = -EFAULT; 899 if (get_user(pid, (int __user *)argp)) 900 break; 901 err = f_setown(sock->file, pid, 1); 902 break; 903 case FIOGETOWN: 904 case SIOCGPGRP: 905 err = put_user(sock->file->f_owner.pid, (int __user *)argp); 906 break; 907 case SIOCGIFBR: 908 case SIOCSIFBR: 909 case SIOCBRADDBR: 910 case SIOCBRDELBR: 911 err = -ENOPKG; 912 if (!br_ioctl_hook) 913 request_module("bridge"); 914 915 mutex_lock(&br_ioctl_mutex); 916 if (br_ioctl_hook) 917 err = br_ioctl_hook(cmd, argp); 918 mutex_unlock(&br_ioctl_mutex); 919 break; 920 case SIOCGIFVLAN: 921 case SIOCSIFVLAN: 922 err = -ENOPKG; 923 if (!vlan_ioctl_hook) 924 request_module("8021q"); 925 926 mutex_lock(&vlan_ioctl_mutex); 927 if (vlan_ioctl_hook) 928 err = vlan_ioctl_hook(argp); 929 mutex_unlock(&vlan_ioctl_mutex); 930 break; 931 case SIOCGIFDIVERT: 932 case SIOCSIFDIVERT: 933 /* Convert this to call through a hook */ 934 err = divert_ioctl(cmd, argp); 935 break; 936 case SIOCADDDLCI: 937 case SIOCDELDLCI: 938 err = -ENOPKG; 939 if (!dlci_ioctl_hook) 940 request_module("dlci"); 941 942 if (dlci_ioctl_hook) { 943 mutex_lock(&dlci_ioctl_mutex); 944 err = dlci_ioctl_hook(cmd, argp); 945 mutex_unlock(&dlci_ioctl_mutex); 946 } 947 break; 948 default: 949 err = sock->ops->ioctl(sock, cmd, arg); 950 951 /* 952 * If this ioctl is unknown try to hand it down 953 * to the NIC driver. 954 */ 955 if (err == -ENOIOCTLCMD) 956 err = dev_ioctl(cmd, argp); 957 break; 958 } 959 return err; 960 } 961 962 int sock_create_lite(int family, int type, int protocol, struct socket **res) 963 { 964 int err; 965 struct socket *sock = NULL; 966 967 err = security_socket_create(family, type, protocol, 1); 968 if (err) 969 goto out; 970 971 sock = sock_alloc(); 972 if (!sock) { 973 err = -ENOMEM; 974 goto out; 975 } 976 977 security_socket_post_create(sock, family, type, protocol, 1); 978 sock->type = type; 979 out: 980 *res = sock; 981 return err; 982 } 983 984 /* No kernel lock held - perfect */ 985 static unsigned int sock_poll(struct file *file, poll_table * wait) 986 { 987 struct socket *sock; 988 989 /* 990 * We can't return errors to poll, so it's either yes or no. 991 */ 992 sock = file->private_data; 993 return sock->ops->poll(file, sock, wait); 994 } 995 996 static int sock_mmap(struct file * file, struct vm_area_struct * vma) 997 { 998 struct socket *sock = file->private_data; 999 1000 return sock->ops->mmap(file, sock, vma); 1001 } 1002 1003 static int sock_close(struct inode *inode, struct file *filp) 1004 { 1005 /* 1006 * It was possible the inode is NULL we were 1007 * closing an unfinished socket. 1008 */ 1009 1010 if (!inode) 1011 { 1012 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1013 return 0; 1014 } 1015 sock_fasync(-1, filp, 0); 1016 sock_release(SOCKET_I(inode)); 1017 return 0; 1018 } 1019 1020 /* 1021 * Update the socket async list 1022 * 1023 * Fasync_list locking strategy. 1024 * 1025 * 1. fasync_list is modified only under process context socket lock 1026 * i.e. under semaphore. 1027 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1028 * or under socket lock. 1029 * 3. fasync_list can be used from softirq context, so that 1030 * modification under socket lock have to be enhanced with 1031 * write_lock_bh(&sk->sk_callback_lock). 1032 * --ANK (990710) 1033 */ 1034 1035 static int sock_fasync(int fd, struct file *filp, int on) 1036 { 1037 struct fasync_struct *fa, *fna=NULL, **prev; 1038 struct socket *sock; 1039 struct sock *sk; 1040 1041 if (on) 1042 { 1043 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1044 if(fna==NULL) 1045 return -ENOMEM; 1046 } 1047 1048 sock = filp->private_data; 1049 1050 if ((sk=sock->sk) == NULL) { 1051 kfree(fna); 1052 return -EINVAL; 1053 } 1054 1055 lock_sock(sk); 1056 1057 prev=&(sock->fasync_list); 1058 1059 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev) 1060 if (fa->fa_file==filp) 1061 break; 1062 1063 if(on) 1064 { 1065 if(fa!=NULL) 1066 { 1067 write_lock_bh(&sk->sk_callback_lock); 1068 fa->fa_fd=fd; 1069 write_unlock_bh(&sk->sk_callback_lock); 1070 1071 kfree(fna); 1072 goto out; 1073 } 1074 fna->fa_file=filp; 1075 fna->fa_fd=fd; 1076 fna->magic=FASYNC_MAGIC; 1077 fna->fa_next=sock->fasync_list; 1078 write_lock_bh(&sk->sk_callback_lock); 1079 sock->fasync_list=fna; 1080 write_unlock_bh(&sk->sk_callback_lock); 1081 } 1082 else 1083 { 1084 if (fa!=NULL) 1085 { 1086 write_lock_bh(&sk->sk_callback_lock); 1087 *prev=fa->fa_next; 1088 write_unlock_bh(&sk->sk_callback_lock); 1089 kfree(fa); 1090 } 1091 } 1092 1093 out: 1094 release_sock(sock->sk); 1095 return 0; 1096 } 1097 1098 /* This function may be called only under socket lock or callback_lock */ 1099 1100 int sock_wake_async(struct socket *sock, int how, int band) 1101 { 1102 if (!sock || !sock->fasync_list) 1103 return -1; 1104 switch (how) 1105 { 1106 case 1: 1107 1108 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1109 break; 1110 goto call_kill; 1111 case 2: 1112 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1113 break; 1114 /* fall through */ 1115 case 0: 1116 call_kill: 1117 __kill_fasync(sock->fasync_list, SIGIO, band); 1118 break; 1119 case 3: 1120 __kill_fasync(sock->fasync_list, SIGURG, band); 1121 } 1122 return 0; 1123 } 1124 1125 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern) 1126 { 1127 int err; 1128 struct socket *sock; 1129 1130 /* 1131 * Check protocol is in range 1132 */ 1133 if (family < 0 || family >= NPROTO) 1134 return -EAFNOSUPPORT; 1135 if (type < 0 || type >= SOCK_MAX) 1136 return -EINVAL; 1137 1138 /* Compatibility. 1139 1140 This uglymoron is moved from INET layer to here to avoid 1141 deadlock in module load. 1142 */ 1143 if (family == PF_INET && type == SOCK_PACKET) { 1144 static int warned; 1145 if (!warned) { 1146 warned = 1; 1147 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); 1148 } 1149 family = PF_PACKET; 1150 } 1151 1152 err = security_socket_create(family, type, protocol, kern); 1153 if (err) 1154 return err; 1155 1156 #if defined(CONFIG_KMOD) 1157 /* Attempt to load a protocol module if the find failed. 1158 * 1159 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1160 * requested real, full-featured networking support upon configuration. 1161 * Otherwise module support will break! 1162 */ 1163 if (net_families[family]==NULL) 1164 { 1165 request_module("net-pf-%d",family); 1166 } 1167 #endif 1168 1169 net_family_read_lock(); 1170 if (net_families[family] == NULL) { 1171 err = -EAFNOSUPPORT; 1172 goto out; 1173 } 1174 1175 /* 1176 * Allocate the socket and allow the family to set things up. if 1177 * the protocol is 0, the family is instructed to select an appropriate 1178 * default. 1179 */ 1180 1181 if (!(sock = sock_alloc())) { 1182 printk(KERN_WARNING "socket: no more sockets\n"); 1183 err = -ENFILE; /* Not exactly a match, but its the 1184 closest posix thing */ 1185 goto out; 1186 } 1187 1188 sock->type = type; 1189 1190 /* 1191 * We will call the ->create function, that possibly is in a loadable 1192 * module, so we have to bump that loadable module refcnt first. 1193 */ 1194 err = -EAFNOSUPPORT; 1195 if (!try_module_get(net_families[family]->owner)) 1196 goto out_release; 1197 1198 if ((err = net_families[family]->create(sock, protocol)) < 0) { 1199 sock->ops = NULL; 1200 goto out_module_put; 1201 } 1202 1203 /* 1204 * Now to bump the refcnt of the [loadable] module that owns this 1205 * socket at sock_release time we decrement its refcnt. 1206 */ 1207 if (!try_module_get(sock->ops->owner)) { 1208 sock->ops = NULL; 1209 goto out_module_put; 1210 } 1211 /* 1212 * Now that we're done with the ->create function, the [loadable] 1213 * module can have its refcnt decremented 1214 */ 1215 module_put(net_families[family]->owner); 1216 *res = sock; 1217 security_socket_post_create(sock, family, type, protocol, kern); 1218 1219 out: 1220 net_family_read_unlock(); 1221 return err; 1222 out_module_put: 1223 module_put(net_families[family]->owner); 1224 out_release: 1225 sock_release(sock); 1226 goto out; 1227 } 1228 1229 int sock_create(int family, int type, int protocol, struct socket **res) 1230 { 1231 return __sock_create(family, type, protocol, res, 0); 1232 } 1233 1234 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1235 { 1236 return __sock_create(family, type, protocol, res, 1); 1237 } 1238 1239 asmlinkage long sys_socket(int family, int type, int protocol) 1240 { 1241 int retval; 1242 struct socket *sock; 1243 1244 retval = sock_create(family, type, protocol, &sock); 1245 if (retval < 0) 1246 goto out; 1247 1248 retval = sock_map_fd(sock); 1249 if (retval < 0) 1250 goto out_release; 1251 1252 out: 1253 /* It may be already another descriptor 8) Not kernel problem. */ 1254 return retval; 1255 1256 out_release: 1257 sock_release(sock); 1258 return retval; 1259 } 1260 1261 /* 1262 * Create a pair of connected sockets. 1263 */ 1264 1265 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1266 { 1267 struct socket *sock1, *sock2; 1268 int fd1, fd2, err; 1269 1270 /* 1271 * Obtain the first socket and check if the underlying protocol 1272 * supports the socketpair call. 1273 */ 1274 1275 err = sock_create(family, type, protocol, &sock1); 1276 if (err < 0) 1277 goto out; 1278 1279 err = sock_create(family, type, protocol, &sock2); 1280 if (err < 0) 1281 goto out_release_1; 1282 1283 err = sock1->ops->socketpair(sock1, sock2); 1284 if (err < 0) 1285 goto out_release_both; 1286 1287 fd1 = fd2 = -1; 1288 1289 err = sock_map_fd(sock1); 1290 if (err < 0) 1291 goto out_release_both; 1292 fd1 = err; 1293 1294 err = sock_map_fd(sock2); 1295 if (err < 0) 1296 goto out_close_1; 1297 fd2 = err; 1298 1299 /* fd1 and fd2 may be already another descriptors. 1300 * Not kernel problem. 1301 */ 1302 1303 err = put_user(fd1, &usockvec[0]); 1304 if (!err) 1305 err = put_user(fd2, &usockvec[1]); 1306 if (!err) 1307 return 0; 1308 1309 sys_close(fd2); 1310 sys_close(fd1); 1311 return err; 1312 1313 out_close_1: 1314 sock_release(sock2); 1315 sys_close(fd1); 1316 return err; 1317 1318 out_release_both: 1319 sock_release(sock2); 1320 out_release_1: 1321 sock_release(sock1); 1322 out: 1323 return err; 1324 } 1325 1326 1327 /* 1328 * Bind a name to a socket. Nothing much to do here since it's 1329 * the protocol's responsibility to handle the local address. 1330 * 1331 * We move the socket address to kernel space before we call 1332 * the protocol layer (having also checked the address is ok). 1333 */ 1334 1335 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1336 { 1337 struct socket *sock; 1338 char address[MAX_SOCK_ADDR]; 1339 int err, fput_needed; 1340 1341 if((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL) 1342 { 1343 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) { 1344 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen); 1345 if (!err) 1346 err = sock->ops->bind(sock, 1347 (struct sockaddr *)address, addrlen); 1348 } 1349 fput_light(sock->file, fput_needed); 1350 } 1351 return err; 1352 } 1353 1354 1355 /* 1356 * Perform a listen. Basically, we allow the protocol to do anything 1357 * necessary for a listen, and if that works, we mark the socket as 1358 * ready for listening. 1359 */ 1360 1361 int sysctl_somaxconn = SOMAXCONN; 1362 1363 asmlinkage long sys_listen(int fd, int backlog) 1364 { 1365 struct socket *sock; 1366 int err, fput_needed; 1367 1368 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) { 1369 if ((unsigned) backlog > sysctl_somaxconn) 1370 backlog = sysctl_somaxconn; 1371 1372 err = security_socket_listen(sock, backlog); 1373 if (!err) 1374 err = sock->ops->listen(sock, backlog); 1375 1376 fput_light(sock->file, fput_needed); 1377 } 1378 return err; 1379 } 1380 1381 1382 /* 1383 * For accept, we attempt to create a new socket, set up the link 1384 * with the client, wake up the client, then return the new 1385 * connected fd. We collect the address of the connector in kernel 1386 * space and move it to user at the very end. This is unclean because 1387 * we open the socket then return an error. 1388 * 1389 * 1003.1g adds the ability to recvmsg() to query connection pending 1390 * status to recvmsg. We need to add that support in a way thats 1391 * clean when we restucture accept also. 1392 */ 1393 1394 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen) 1395 { 1396 struct socket *sock, *newsock; 1397 struct file *newfile; 1398 int err, len, newfd, fput_needed; 1399 char address[MAX_SOCK_ADDR]; 1400 1401 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1402 if (!sock) 1403 goto out; 1404 1405 err = -ENFILE; 1406 if (!(newsock = sock_alloc())) 1407 goto out_put; 1408 1409 newsock->type = sock->type; 1410 newsock->ops = sock->ops; 1411 1412 /* 1413 * We don't need try_module_get here, as the listening socket (sock) 1414 * has the protocol module (sock->ops->owner) held. 1415 */ 1416 __module_get(newsock->ops->owner); 1417 1418 newfd = sock_alloc_fd(&newfile); 1419 if (unlikely(newfd < 0)) { 1420 err = newfd; 1421 goto out_release; 1422 } 1423 1424 err = sock_attach_fd(newsock, newfile); 1425 if (err < 0) 1426 goto out_fd; 1427 1428 err = security_socket_accept(sock, newsock); 1429 if (err) 1430 goto out_fd; 1431 1432 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1433 if (err < 0) 1434 goto out_fd; 1435 1436 if (upeer_sockaddr) { 1437 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) { 1438 err = -ECONNABORTED; 1439 goto out_fd; 1440 } 1441 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen); 1442 if (err < 0) 1443 goto out_fd; 1444 } 1445 1446 /* File flags are not inherited via accept() unlike another OSes. */ 1447 1448 fd_install(newfd, newfile); 1449 err = newfd; 1450 1451 security_socket_post_accept(sock, newsock); 1452 1453 out_put: 1454 fput_light(sock->file, fput_needed); 1455 out: 1456 return err; 1457 out_fd: 1458 put_filp(newfile); 1459 put_unused_fd(newfd); 1460 out_release: 1461 sock_release(newsock); 1462 goto out_put; 1463 } 1464 1465 1466 /* 1467 * Attempt to connect to a socket with the server address. The address 1468 * is in user space so we verify it is OK and move it to kernel space. 1469 * 1470 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1471 * break bindings 1472 * 1473 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1474 * other SEQPACKET protocols that take time to connect() as it doesn't 1475 * include the -EINPROGRESS status for such sockets. 1476 */ 1477 1478 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1479 { 1480 struct socket *sock; 1481 char address[MAX_SOCK_ADDR]; 1482 int err, fput_needed; 1483 1484 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1485 if (!sock) 1486 goto out; 1487 err = move_addr_to_kernel(uservaddr, addrlen, address); 1488 if (err < 0) 1489 goto out_put; 1490 1491 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1492 if (err) 1493 goto out_put; 1494 1495 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen, 1496 sock->file->f_flags); 1497 out_put: 1498 fput_light(sock->file, fput_needed); 1499 out: 1500 return err; 1501 } 1502 1503 /* 1504 * Get the local address ('name') of a socket object. Move the obtained 1505 * name to user space. 1506 */ 1507 1508 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1509 { 1510 struct socket *sock; 1511 char address[MAX_SOCK_ADDR]; 1512 int len, err, fput_needed; 1513 1514 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1515 if (!sock) 1516 goto out; 1517 1518 err = security_socket_getsockname(sock); 1519 if (err) 1520 goto out_put; 1521 1522 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1523 if (err) 1524 goto out_put; 1525 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1526 1527 out_put: 1528 fput_light(sock->file, fput_needed); 1529 out: 1530 return err; 1531 } 1532 1533 /* 1534 * Get the remote address ('name') of a socket object. Move the obtained 1535 * name to user space. 1536 */ 1537 1538 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1539 { 1540 struct socket *sock; 1541 char address[MAX_SOCK_ADDR]; 1542 int len, err, fput_needed; 1543 1544 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) { 1545 err = security_socket_getpeername(sock); 1546 if (err) { 1547 fput_light(sock->file, fput_needed); 1548 return err; 1549 } 1550 1551 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1); 1552 if (!err) 1553 err=move_addr_to_user(address,len, usockaddr, usockaddr_len); 1554 fput_light(sock->file, fput_needed); 1555 } 1556 return err; 1557 } 1558 1559 /* 1560 * Send a datagram to a given address. We move the address into kernel 1561 * space and check the user space data area is readable before invoking 1562 * the protocol. 1563 */ 1564 1565 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags, 1566 struct sockaddr __user *addr, int addr_len) 1567 { 1568 struct socket *sock; 1569 char address[MAX_SOCK_ADDR]; 1570 int err; 1571 struct msghdr msg; 1572 struct iovec iov; 1573 int fput_needed; 1574 struct file *sock_file; 1575 1576 sock_file = fget_light(fd, &fput_needed); 1577 if (!sock_file) 1578 return -EBADF; 1579 1580 sock = sock_from_file(sock_file, &err); 1581 if (!sock) 1582 goto out_put; 1583 iov.iov_base=buff; 1584 iov.iov_len=len; 1585 msg.msg_name=NULL; 1586 msg.msg_iov=&iov; 1587 msg.msg_iovlen=1; 1588 msg.msg_control=NULL; 1589 msg.msg_controllen=0; 1590 msg.msg_namelen=0; 1591 if (addr) { 1592 err = move_addr_to_kernel(addr, addr_len, address); 1593 if (err < 0) 1594 goto out_put; 1595 msg.msg_name=address; 1596 msg.msg_namelen=addr_len; 1597 } 1598 if (sock->file->f_flags & O_NONBLOCK) 1599 flags |= MSG_DONTWAIT; 1600 msg.msg_flags = flags; 1601 err = sock_sendmsg(sock, &msg, len); 1602 1603 out_put: 1604 fput_light(sock_file, fput_needed); 1605 return err; 1606 } 1607 1608 /* 1609 * Send a datagram down a socket. 1610 */ 1611 1612 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags) 1613 { 1614 return sys_sendto(fd, buff, len, flags, NULL, 0); 1615 } 1616 1617 /* 1618 * Receive a frame from the socket and optionally record the address of the 1619 * sender. We verify the buffers are writable and if needed move the 1620 * sender address from kernel to user space. 1621 */ 1622 1623 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags, 1624 struct sockaddr __user *addr, int __user *addr_len) 1625 { 1626 struct socket *sock; 1627 struct iovec iov; 1628 struct msghdr msg; 1629 char address[MAX_SOCK_ADDR]; 1630 int err,err2; 1631 struct file *sock_file; 1632 int fput_needed; 1633 1634 sock_file = fget_light(fd, &fput_needed); 1635 if (!sock_file) 1636 return -EBADF; 1637 1638 sock = sock_from_file(sock_file, &err); 1639 if (!sock) 1640 goto out; 1641 1642 msg.msg_control=NULL; 1643 msg.msg_controllen=0; 1644 msg.msg_iovlen=1; 1645 msg.msg_iov=&iov; 1646 iov.iov_len=size; 1647 iov.iov_base=ubuf; 1648 msg.msg_name=address; 1649 msg.msg_namelen=MAX_SOCK_ADDR; 1650 if (sock->file->f_flags & O_NONBLOCK) 1651 flags |= MSG_DONTWAIT; 1652 err=sock_recvmsg(sock, &msg, size, flags); 1653 1654 if(err >= 0 && addr != NULL) 1655 { 1656 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1657 if(err2<0) 1658 err=err2; 1659 } 1660 out: 1661 fput_light(sock_file, fput_needed); 1662 return err; 1663 } 1664 1665 /* 1666 * Receive a datagram from a socket. 1667 */ 1668 1669 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags) 1670 { 1671 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1672 } 1673 1674 /* 1675 * Set a socket option. Because we don't know the option lengths we have 1676 * to pass the user mode parameter for the protocols to sort out. 1677 */ 1678 1679 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen) 1680 { 1681 int err, fput_needed; 1682 struct socket *sock; 1683 1684 if (optlen < 0) 1685 return -EINVAL; 1686 1687 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) 1688 { 1689 err = security_socket_setsockopt(sock,level,optname); 1690 if (err) 1691 goto out_put; 1692 1693 if (level == SOL_SOCKET) 1694 err=sock_setsockopt(sock,level,optname,optval,optlen); 1695 else 1696 err=sock->ops->setsockopt(sock, level, optname, optval, optlen); 1697 out_put: 1698 fput_light(sock->file, fput_needed); 1699 } 1700 return err; 1701 } 1702 1703 /* 1704 * Get a socket option. Because we don't know the option lengths we have 1705 * to pass a user mode parameter for the protocols to sort out. 1706 */ 1707 1708 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen) 1709 { 1710 int err, fput_needed; 1711 struct socket *sock; 1712 1713 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) { 1714 err = security_socket_getsockopt(sock, level, optname); 1715 if (err) 1716 goto out_put; 1717 1718 if (level == SOL_SOCKET) 1719 err=sock_getsockopt(sock,level,optname,optval,optlen); 1720 else 1721 err=sock->ops->getsockopt(sock, level, optname, optval, optlen); 1722 out_put: 1723 fput_light(sock->file, fput_needed); 1724 } 1725 return err; 1726 } 1727 1728 1729 /* 1730 * Shutdown a socket. 1731 */ 1732 1733 asmlinkage long sys_shutdown(int fd, int how) 1734 { 1735 int err, fput_needed; 1736 struct socket *sock; 1737 1738 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL) 1739 { 1740 err = security_socket_shutdown(sock, how); 1741 if (!err) 1742 err = sock->ops->shutdown(sock, how); 1743 fput_light(sock->file, fput_needed); 1744 } 1745 return err; 1746 } 1747 1748 /* A couple of helpful macros for getting the address of the 32/64 bit 1749 * fields which are the same type (int / unsigned) on our platforms. 1750 */ 1751 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1752 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1753 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1754 1755 1756 /* 1757 * BSD sendmsg interface 1758 */ 1759 1760 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1761 { 1762 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1763 struct socket *sock; 1764 char address[MAX_SOCK_ADDR]; 1765 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1766 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1767 __attribute__ ((aligned (sizeof(__kernel_size_t)))); 1768 /* 20 is size of ipv6_pktinfo */ 1769 unsigned char *ctl_buf = ctl; 1770 struct msghdr msg_sys; 1771 int err, ctl_len, iov_size, total_len; 1772 int fput_needed; 1773 1774 err = -EFAULT; 1775 if (MSG_CMSG_COMPAT & flags) { 1776 if (get_compat_msghdr(&msg_sys, msg_compat)) 1777 return -EFAULT; 1778 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1779 return -EFAULT; 1780 1781 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1782 if (!sock) 1783 goto out; 1784 1785 /* do not move before msg_sys is valid */ 1786 err = -EMSGSIZE; 1787 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1788 goto out_put; 1789 1790 /* Check whether to allocate the iovec area*/ 1791 err = -ENOMEM; 1792 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1793 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1794 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1795 if (!iov) 1796 goto out_put; 1797 } 1798 1799 /* This will also move the address data into kernel space */ 1800 if (MSG_CMSG_COMPAT & flags) { 1801 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1802 } else 1803 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1804 if (err < 0) 1805 goto out_freeiov; 1806 total_len = err; 1807 1808 err = -ENOBUFS; 1809 1810 if (msg_sys.msg_controllen > INT_MAX) 1811 goto out_freeiov; 1812 ctl_len = msg_sys.msg_controllen; 1813 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1814 err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl)); 1815 if (err) 1816 goto out_freeiov; 1817 ctl_buf = msg_sys.msg_control; 1818 ctl_len = msg_sys.msg_controllen; 1819 } else if (ctl_len) { 1820 if (ctl_len > sizeof(ctl)) 1821 { 1822 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1823 if (ctl_buf == NULL) 1824 goto out_freeiov; 1825 } 1826 err = -EFAULT; 1827 /* 1828 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1829 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1830 * checking falls down on this. 1831 */ 1832 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len)) 1833 goto out_freectl; 1834 msg_sys.msg_control = ctl_buf; 1835 } 1836 msg_sys.msg_flags = flags; 1837 1838 if (sock->file->f_flags & O_NONBLOCK) 1839 msg_sys.msg_flags |= MSG_DONTWAIT; 1840 err = sock_sendmsg(sock, &msg_sys, total_len); 1841 1842 out_freectl: 1843 if (ctl_buf != ctl) 1844 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1845 out_freeiov: 1846 if (iov != iovstack) 1847 sock_kfree_s(sock->sk, iov, iov_size); 1848 out_put: 1849 fput_light(sock->file, fput_needed); 1850 out: 1851 return err; 1852 } 1853 1854 /* 1855 * BSD recvmsg interface 1856 */ 1857 1858 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags) 1859 { 1860 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1861 struct socket *sock; 1862 struct iovec iovstack[UIO_FASTIOV]; 1863 struct iovec *iov=iovstack; 1864 struct msghdr msg_sys; 1865 unsigned long cmsg_ptr; 1866 int err, iov_size, total_len, len; 1867 int fput_needed; 1868 1869 /* kernel mode address */ 1870 char addr[MAX_SOCK_ADDR]; 1871 1872 /* user mode address pointers */ 1873 struct sockaddr __user *uaddr; 1874 int __user *uaddr_len; 1875 1876 if (MSG_CMSG_COMPAT & flags) { 1877 if (get_compat_msghdr(&msg_sys, msg_compat)) 1878 return -EFAULT; 1879 } else 1880 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr))) 1881 return -EFAULT; 1882 1883 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1884 if (!sock) 1885 goto out; 1886 1887 err = -EMSGSIZE; 1888 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1889 goto out_put; 1890 1891 /* Check whether to allocate the iovec area*/ 1892 err = -ENOMEM; 1893 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1894 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1895 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1896 if (!iov) 1897 goto out_put; 1898 } 1899 1900 /* 1901 * Save the user-mode address (verify_iovec will change the 1902 * kernel msghdr to use the kernel address space) 1903 */ 1904 1905 uaddr = (void __user *) msg_sys.msg_name; 1906 uaddr_len = COMPAT_NAMELEN(msg); 1907 if (MSG_CMSG_COMPAT & flags) { 1908 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1909 } else 1910 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1911 if (err < 0) 1912 goto out_freeiov; 1913 total_len=err; 1914 1915 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1916 msg_sys.msg_flags = 0; 1917 if (MSG_CMSG_COMPAT & flags) 1918 msg_sys.msg_flags = MSG_CMSG_COMPAT; 1919 1920 if (sock->file->f_flags & O_NONBLOCK) 1921 flags |= MSG_DONTWAIT; 1922 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1923 if (err < 0) 1924 goto out_freeiov; 1925 len = err; 1926 1927 if (uaddr != NULL) { 1928 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); 1929 if (err < 0) 1930 goto out_freeiov; 1931 } 1932 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1933 COMPAT_FLAGS(msg)); 1934 if (err) 1935 goto out_freeiov; 1936 if (MSG_CMSG_COMPAT & flags) 1937 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1938 &msg_compat->msg_controllen); 1939 else 1940 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1941 &msg->msg_controllen); 1942 if (err) 1943 goto out_freeiov; 1944 err = len; 1945 1946 out_freeiov: 1947 if (iov != iovstack) 1948 sock_kfree_s(sock->sk, iov, iov_size); 1949 out_put: 1950 fput_light(sock->file, fput_needed); 1951 out: 1952 return err; 1953 } 1954 1955 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1956 1957 /* Argument list sizes for sys_socketcall */ 1958 #define AL(x) ((x) * sizeof(unsigned long)) 1959 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1960 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1961 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; 1962 #undef AL 1963 1964 /* 1965 * System call vectors. 1966 * 1967 * Argument checking cleaned up. Saved 20% in size. 1968 * This function doesn't need to set the kernel lock because 1969 * it is set by the callees. 1970 */ 1971 1972 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1973 { 1974 unsigned long a[6]; 1975 unsigned long a0,a1; 1976 int err; 1977 1978 if(call<1||call>SYS_RECVMSG) 1979 return -EINVAL; 1980 1981 /* copy_from_user should be SMP safe. */ 1982 if (copy_from_user(a, args, nargs[call])) 1983 return -EFAULT; 1984 1985 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a); 1986 if (err) 1987 return err; 1988 1989 a0=a[0]; 1990 a1=a[1]; 1991 1992 switch(call) 1993 { 1994 case SYS_SOCKET: 1995 err = sys_socket(a0,a1,a[2]); 1996 break; 1997 case SYS_BIND: 1998 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]); 1999 break; 2000 case SYS_CONNECT: 2001 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2002 break; 2003 case SYS_LISTEN: 2004 err = sys_listen(a0,a1); 2005 break; 2006 case SYS_ACCEPT: 2007 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 2008 break; 2009 case SYS_GETSOCKNAME: 2010 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 2011 break; 2012 case SYS_GETPEERNAME: 2013 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); 2014 break; 2015 case SYS_SOCKETPAIR: 2016 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]); 2017 break; 2018 case SYS_SEND: 2019 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2020 break; 2021 case SYS_SENDTO: 2022 err = sys_sendto(a0,(void __user *)a1, a[2], a[3], 2023 (struct sockaddr __user *)a[4], a[5]); 2024 break; 2025 case SYS_RECV: 2026 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2027 break; 2028 case SYS_RECVFROM: 2029 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2030 (struct sockaddr __user *)a[4], (int __user *)a[5]); 2031 break; 2032 case SYS_SHUTDOWN: 2033 err = sys_shutdown(a0,a1); 2034 break; 2035 case SYS_SETSOCKOPT: 2036 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2037 break; 2038 case SYS_GETSOCKOPT: 2039 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]); 2040 break; 2041 case SYS_SENDMSG: 2042 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]); 2043 break; 2044 case SYS_RECVMSG: 2045 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]); 2046 break; 2047 default: 2048 err = -EINVAL; 2049 break; 2050 } 2051 return err; 2052 } 2053 2054 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2055 2056 /* 2057 * This function is called by a protocol handler that wants to 2058 * advertise its address family, and have it linked into the 2059 * SOCKET module. 2060 */ 2061 2062 int sock_register(struct net_proto_family *ops) 2063 { 2064 int err; 2065 2066 if (ops->family >= NPROTO) { 2067 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2068 return -ENOBUFS; 2069 } 2070 net_family_write_lock(); 2071 err = -EEXIST; 2072 if (net_families[ops->family] == NULL) { 2073 net_families[ops->family]=ops; 2074 err = 0; 2075 } 2076 net_family_write_unlock(); 2077 printk(KERN_INFO "NET: Registered protocol family %d\n", 2078 ops->family); 2079 return err; 2080 } 2081 2082 /* 2083 * This function is called by a protocol handler that wants to 2084 * remove its address family, and have it unlinked from the 2085 * SOCKET module. 2086 */ 2087 2088 int sock_unregister(int family) 2089 { 2090 if (family < 0 || family >= NPROTO) 2091 return -1; 2092 2093 net_family_write_lock(); 2094 net_families[family]=NULL; 2095 net_family_write_unlock(); 2096 printk(KERN_INFO "NET: Unregistered protocol family %d\n", 2097 family); 2098 return 0; 2099 } 2100 2101 static int __init sock_init(void) 2102 { 2103 /* 2104 * Initialize sock SLAB cache. 2105 */ 2106 2107 sk_init(); 2108 2109 /* 2110 * Initialize skbuff SLAB cache 2111 */ 2112 skb_init(); 2113 2114 /* 2115 * Initialize the protocols module. 2116 */ 2117 2118 init_inodecache(); 2119 register_filesystem(&sock_fs_type); 2120 sock_mnt = kern_mount(&sock_fs_type); 2121 2122 /* The real protocol initialization is performed in later initcalls. 2123 */ 2124 2125 #ifdef CONFIG_NETFILTER 2126 netfilter_init(); 2127 #endif 2128 2129 return 0; 2130 } 2131 2132 core_initcall(sock_init); /* early initcall */ 2133 2134 #ifdef CONFIG_PROC_FS 2135 void socket_seq_show(struct seq_file *seq) 2136 { 2137 int cpu; 2138 int counter = 0; 2139 2140 for_each_cpu(cpu) 2141 counter += per_cpu(sockets_in_use, cpu); 2142 2143 /* It can be negative, by the way. 8) */ 2144 if (counter < 0) 2145 counter = 0; 2146 2147 seq_printf(seq, "sockets: used %d\n", counter); 2148 } 2149 #endif /* CONFIG_PROC_FS */ 2150 2151 #ifdef CONFIG_COMPAT 2152 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2153 unsigned long arg) 2154 { 2155 struct socket *sock = file->private_data; 2156 int ret = -ENOIOCTLCMD; 2157 2158 if (sock->ops->compat_ioctl) 2159 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2160 2161 return ret; 2162 } 2163 #endif 2164 2165 /* ABI emulation layers need these two */ 2166 EXPORT_SYMBOL(move_addr_to_kernel); 2167 EXPORT_SYMBOL(move_addr_to_user); 2168 EXPORT_SYMBOL(sock_create); 2169 EXPORT_SYMBOL(sock_create_kern); 2170 EXPORT_SYMBOL(sock_create_lite); 2171 EXPORT_SYMBOL(sock_map_fd); 2172 EXPORT_SYMBOL(sock_recvmsg); 2173 EXPORT_SYMBOL(sock_register); 2174 EXPORT_SYMBOL(sock_release); 2175 EXPORT_SYMBOL(sock_sendmsg); 2176 EXPORT_SYMBOL(sock_unregister); 2177 EXPORT_SYMBOL(sock_wake_async); 2178 EXPORT_SYMBOL(sockfd_lookup); 2179 EXPORT_SYMBOL(kernel_sendmsg); 2180 EXPORT_SYMBOL(kernel_recvmsg); 2181