1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring/net.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #ifdef CONFIG_NET_RX_BUSY_POLL 114 unsigned int sysctl_net_busy_read __read_mostly; 115 unsigned int sysctl_net_busy_poll __read_mostly; 116 #endif 117 118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 120 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 121 122 static int sock_close(struct inode *inode, struct file *file); 123 static __poll_t sock_poll(struct file *file, 124 struct poll_table_struct *wait); 125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 126 #ifdef CONFIG_COMPAT 127 static long compat_sock_ioctl(struct file *file, 128 unsigned int cmd, unsigned long arg); 129 #endif 130 static int sock_fasync(int fd, struct file *filp, int on); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 static void sock_splice_eof(struct file *file); 135 136 #ifdef CONFIG_PROC_FS 137 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 138 { 139 struct socket *sock = f->private_data; 140 const struct proto_ops *ops = READ_ONCE(sock->ops); 141 142 if (ops->show_fdinfo) 143 ops->show_fdinfo(m, sock); 144 } 145 #else 146 #define sock_show_fdinfo NULL 147 #endif 148 149 /* 150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 151 * in the operation structures but are done directly via the socketcall() multiplexor. 152 */ 153 154 static const struct file_operations socket_file_ops = { 155 .owner = THIS_MODULE, 156 .llseek = no_llseek, 157 .read_iter = sock_read_iter, 158 .write_iter = sock_write_iter, 159 .poll = sock_poll, 160 .unlocked_ioctl = sock_ioctl, 161 #ifdef CONFIG_COMPAT 162 .compat_ioctl = compat_sock_ioctl, 163 #endif 164 .uring_cmd = io_uring_cmd_sock, 165 .mmap = sock_mmap, 166 .release = sock_close, 167 .fasync = sock_fasync, 168 .splice_write = splice_to_socket, 169 .splice_read = sock_splice_read, 170 .splice_eof = sock_splice_eof, 171 .show_fdinfo = sock_show_fdinfo, 172 }; 173 174 static const char * const pf_family_names[] = { 175 [PF_UNSPEC] = "PF_UNSPEC", 176 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 177 [PF_INET] = "PF_INET", 178 [PF_AX25] = "PF_AX25", 179 [PF_IPX] = "PF_IPX", 180 [PF_APPLETALK] = "PF_APPLETALK", 181 [PF_NETROM] = "PF_NETROM", 182 [PF_BRIDGE] = "PF_BRIDGE", 183 [PF_ATMPVC] = "PF_ATMPVC", 184 [PF_X25] = "PF_X25", 185 [PF_INET6] = "PF_INET6", 186 [PF_ROSE] = "PF_ROSE", 187 [PF_DECnet] = "PF_DECnet", 188 [PF_NETBEUI] = "PF_NETBEUI", 189 [PF_SECURITY] = "PF_SECURITY", 190 [PF_KEY] = "PF_KEY", 191 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 192 [PF_PACKET] = "PF_PACKET", 193 [PF_ASH] = "PF_ASH", 194 [PF_ECONET] = "PF_ECONET", 195 [PF_ATMSVC] = "PF_ATMSVC", 196 [PF_RDS] = "PF_RDS", 197 [PF_SNA] = "PF_SNA", 198 [PF_IRDA] = "PF_IRDA", 199 [PF_PPPOX] = "PF_PPPOX", 200 [PF_WANPIPE] = "PF_WANPIPE", 201 [PF_LLC] = "PF_LLC", 202 [PF_IB] = "PF_IB", 203 [PF_MPLS] = "PF_MPLS", 204 [PF_CAN] = "PF_CAN", 205 [PF_TIPC] = "PF_TIPC", 206 [PF_BLUETOOTH] = "PF_BLUETOOTH", 207 [PF_IUCV] = "PF_IUCV", 208 [PF_RXRPC] = "PF_RXRPC", 209 [PF_ISDN] = "PF_ISDN", 210 [PF_PHONET] = "PF_PHONET", 211 [PF_IEEE802154] = "PF_IEEE802154", 212 [PF_CAIF] = "PF_CAIF", 213 [PF_ALG] = "PF_ALG", 214 [PF_NFC] = "PF_NFC", 215 [PF_VSOCK] = "PF_VSOCK", 216 [PF_KCM] = "PF_KCM", 217 [PF_QIPCRTR] = "PF_QIPCRTR", 218 [PF_SMC] = "PF_SMC", 219 [PF_XDP] = "PF_XDP", 220 [PF_MCTP] = "PF_MCTP", 221 }; 222 223 /* 224 * The protocol list. Each protocol is registered in here. 225 */ 226 227 static DEFINE_SPINLOCK(net_family_lock); 228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 229 230 /* 231 * Support routines. 232 * Move socket addresses back and forth across the kernel/user 233 * divide and look after the messy bits. 234 */ 235 236 /** 237 * move_addr_to_kernel - copy a socket address into kernel space 238 * @uaddr: Address in user space 239 * @kaddr: Address in kernel space 240 * @ulen: Length in user space 241 * 242 * The address is copied into kernel space. If the provided address is 243 * too long an error code of -EINVAL is returned. If the copy gives 244 * invalid addresses -EFAULT is returned. On a success 0 is returned. 245 */ 246 247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 248 { 249 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 250 return -EINVAL; 251 if (ulen == 0) 252 return 0; 253 if (copy_from_user(kaddr, uaddr, ulen)) 254 return -EFAULT; 255 return audit_sockaddr(ulen, kaddr); 256 } 257 258 /** 259 * move_addr_to_user - copy an address to user space 260 * @kaddr: kernel space address 261 * @klen: length of address in kernel 262 * @uaddr: user space address 263 * @ulen: pointer to user length field 264 * 265 * The value pointed to by ulen on entry is the buffer length available. 266 * This is overwritten with the buffer space used. -EINVAL is returned 267 * if an overlong buffer is specified or a negative buffer size. -EFAULT 268 * is returned if either the buffer or the length field are not 269 * accessible. 270 * After copying the data up to the limit the user specifies, the true 271 * length of the data is written over the length limit the user 272 * specified. Zero is returned for a success. 273 */ 274 275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 276 void __user *uaddr, int __user *ulen) 277 { 278 int err; 279 int len; 280 281 BUG_ON(klen > sizeof(struct sockaddr_storage)); 282 err = get_user(len, ulen); 283 if (err) 284 return err; 285 if (len > klen) 286 len = klen; 287 if (len < 0) 288 return -EINVAL; 289 if (len) { 290 if (audit_sockaddr(klen, kaddr)) 291 return -ENOMEM; 292 if (copy_to_user(uaddr, kaddr, len)) 293 return -EFAULT; 294 } 295 /* 296 * "fromlen shall refer to the value before truncation.." 297 * 1003.1g 298 */ 299 return __put_user(klen, ulen); 300 } 301 302 static struct kmem_cache *sock_inode_cachep __ro_after_init; 303 304 static struct inode *sock_alloc_inode(struct super_block *sb) 305 { 306 struct socket_alloc *ei; 307 308 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 309 if (!ei) 310 return NULL; 311 init_waitqueue_head(&ei->socket.wq.wait); 312 ei->socket.wq.fasync_list = NULL; 313 ei->socket.wq.flags = 0; 314 315 ei->socket.state = SS_UNCONNECTED; 316 ei->socket.flags = 0; 317 ei->socket.ops = NULL; 318 ei->socket.sk = NULL; 319 ei->socket.file = NULL; 320 321 return &ei->vfs_inode; 322 } 323 324 static void sock_free_inode(struct inode *inode) 325 { 326 struct socket_alloc *ei; 327 328 ei = container_of(inode, struct socket_alloc, vfs_inode); 329 kmem_cache_free(sock_inode_cachep, ei); 330 } 331 332 static void init_once(void *foo) 333 { 334 struct socket_alloc *ei = (struct socket_alloc *)foo; 335 336 inode_init_once(&ei->vfs_inode); 337 } 338 339 static void init_inodecache(void) 340 { 341 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 342 sizeof(struct socket_alloc), 343 0, 344 (SLAB_HWCACHE_ALIGN | 345 SLAB_RECLAIM_ACCOUNT | 346 SLAB_ACCOUNT), 347 init_once); 348 BUG_ON(sock_inode_cachep == NULL); 349 } 350 351 static const struct super_operations sockfs_ops = { 352 .alloc_inode = sock_alloc_inode, 353 .free_inode = sock_free_inode, 354 .statfs = simple_statfs, 355 }; 356 357 /* 358 * sockfs_dname() is called from d_path(). 359 */ 360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 361 { 362 return dynamic_dname(buffer, buflen, "socket:[%lu]", 363 d_inode(dentry)->i_ino); 364 } 365 366 static const struct dentry_operations sockfs_dentry_operations = { 367 .d_dname = sockfs_dname, 368 }; 369 370 static int sockfs_xattr_get(const struct xattr_handler *handler, 371 struct dentry *dentry, struct inode *inode, 372 const char *suffix, void *value, size_t size) 373 { 374 if (value) { 375 if (dentry->d_name.len + 1 > size) 376 return -ERANGE; 377 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 378 } 379 return dentry->d_name.len + 1; 380 } 381 382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 385 386 static const struct xattr_handler sockfs_xattr_handler = { 387 .name = XATTR_NAME_SOCKPROTONAME, 388 .get = sockfs_xattr_get, 389 }; 390 391 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 392 struct mnt_idmap *idmap, 393 struct dentry *dentry, struct inode *inode, 394 const char *suffix, const void *value, 395 size_t size, int flags) 396 { 397 /* Handled by LSM. */ 398 return -EAGAIN; 399 } 400 401 static const struct xattr_handler sockfs_security_xattr_handler = { 402 .prefix = XATTR_SECURITY_PREFIX, 403 .set = sockfs_security_xattr_set, 404 }; 405 406 static const struct xattr_handler * const sockfs_xattr_handlers[] = { 407 &sockfs_xattr_handler, 408 &sockfs_security_xattr_handler, 409 NULL 410 }; 411 412 static int sockfs_init_fs_context(struct fs_context *fc) 413 { 414 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 415 if (!ctx) 416 return -ENOMEM; 417 ctx->ops = &sockfs_ops; 418 ctx->dops = &sockfs_dentry_operations; 419 ctx->xattr = sockfs_xattr_handlers; 420 return 0; 421 } 422 423 static struct vfsmount *sock_mnt __read_mostly; 424 425 static struct file_system_type sock_fs_type = { 426 .name = "sockfs", 427 .init_fs_context = sockfs_init_fs_context, 428 .kill_sb = kill_anon_super, 429 }; 430 431 /* 432 * Obtains the first available file descriptor and sets it up for use. 433 * 434 * These functions create file structures and maps them to fd space 435 * of the current process. On success it returns file descriptor 436 * and file struct implicitly stored in sock->file. 437 * Note that another thread may close file descriptor before we return 438 * from this function. We use the fact that now we do not refer 439 * to socket after mapping. If one day we will need it, this 440 * function will increment ref. count on file by 1. 441 * 442 * In any case returned fd MAY BE not valid! 443 * This race condition is unavoidable 444 * with shared fd spaces, we cannot solve it inside kernel, 445 * but we take care of internal coherence yet. 446 */ 447 448 /** 449 * sock_alloc_file - Bind a &socket to a &file 450 * @sock: socket 451 * @flags: file status flags 452 * @dname: protocol name 453 * 454 * Returns the &file bound with @sock, implicitly storing it 455 * in sock->file. If dname is %NULL, sets to "". 456 * 457 * On failure @sock is released, and an ERR pointer is returned. 458 * 459 * This function uses GFP_KERNEL internally. 460 */ 461 462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 463 { 464 struct file *file; 465 466 if (!dname) 467 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 468 469 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 470 O_RDWR | (flags & O_NONBLOCK), 471 &socket_file_ops); 472 if (IS_ERR(file)) { 473 sock_release(sock); 474 return file; 475 } 476 477 file->f_mode |= FMODE_NOWAIT; 478 sock->file = file; 479 file->private_data = sock; 480 stream_open(SOCK_INODE(sock), file); 481 return file; 482 } 483 EXPORT_SYMBOL(sock_alloc_file); 484 485 static int sock_map_fd(struct socket *sock, int flags) 486 { 487 struct file *newfile; 488 int fd = get_unused_fd_flags(flags); 489 if (unlikely(fd < 0)) { 490 sock_release(sock); 491 return fd; 492 } 493 494 newfile = sock_alloc_file(sock, flags, NULL); 495 if (!IS_ERR(newfile)) { 496 fd_install(fd, newfile); 497 return fd; 498 } 499 500 put_unused_fd(fd); 501 return PTR_ERR(newfile); 502 } 503 504 /** 505 * sock_from_file - Return the &socket bounded to @file. 506 * @file: file 507 * 508 * On failure returns %NULL. 509 */ 510 511 struct socket *sock_from_file(struct file *file) 512 { 513 if (file->f_op == &socket_file_ops) 514 return file->private_data; /* set in sock_alloc_file */ 515 516 return NULL; 517 } 518 EXPORT_SYMBOL(sock_from_file); 519 520 /** 521 * sockfd_lookup - Go from a file number to its socket slot 522 * @fd: file handle 523 * @err: pointer to an error code return 524 * 525 * The file handle passed in is locked and the socket it is bound 526 * to is returned. If an error occurs the err pointer is overwritten 527 * with a negative errno code and NULL is returned. The function checks 528 * for both invalid handles and passing a handle which is not a socket. 529 * 530 * On a success the socket object pointer is returned. 531 */ 532 533 struct socket *sockfd_lookup(int fd, int *err) 534 { 535 struct file *file; 536 struct socket *sock; 537 538 file = fget(fd); 539 if (!file) { 540 *err = -EBADF; 541 return NULL; 542 } 543 544 sock = sock_from_file(file); 545 if (!sock) { 546 *err = -ENOTSOCK; 547 fput(file); 548 } 549 return sock; 550 } 551 EXPORT_SYMBOL(sockfd_lookup); 552 553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 554 { 555 struct fd f = fdget(fd); 556 struct socket *sock; 557 558 *err = -EBADF; 559 if (f.file) { 560 sock = sock_from_file(f.file); 561 if (likely(sock)) { 562 *fput_needed = f.flags & FDPUT_FPUT; 563 return sock; 564 } 565 *err = -ENOTSOCK; 566 fdput(f); 567 } 568 return NULL; 569 } 570 571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 572 size_t size) 573 { 574 ssize_t len; 575 ssize_t used = 0; 576 577 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 578 if (len < 0) 579 return len; 580 used += len; 581 if (buffer) { 582 if (size < used) 583 return -ERANGE; 584 buffer += len; 585 } 586 587 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 588 used += len; 589 if (buffer) { 590 if (size < used) 591 return -ERANGE; 592 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 593 buffer += len; 594 } 595 596 return used; 597 } 598 599 static int sockfs_setattr(struct mnt_idmap *idmap, 600 struct dentry *dentry, struct iattr *iattr) 601 { 602 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 603 604 if (!err && (iattr->ia_valid & ATTR_UID)) { 605 struct socket *sock = SOCKET_I(d_inode(dentry)); 606 607 if (sock->sk) 608 sock->sk->sk_uid = iattr->ia_uid; 609 else 610 err = -ENOENT; 611 } 612 613 return err; 614 } 615 616 static const struct inode_operations sockfs_inode_ops = { 617 .listxattr = sockfs_listxattr, 618 .setattr = sockfs_setattr, 619 }; 620 621 /** 622 * sock_alloc - allocate a socket 623 * 624 * Allocate a new inode and socket object. The two are bound together 625 * and initialised. The socket is then returned. If we are out of inodes 626 * NULL is returned. This functions uses GFP_KERNEL internally. 627 */ 628 629 struct socket *sock_alloc(void) 630 { 631 struct inode *inode; 632 struct socket *sock; 633 634 inode = new_inode_pseudo(sock_mnt->mnt_sb); 635 if (!inode) 636 return NULL; 637 638 sock = SOCKET_I(inode); 639 640 inode->i_ino = get_next_ino(); 641 inode->i_mode = S_IFSOCK | S_IRWXUGO; 642 inode->i_uid = current_fsuid(); 643 inode->i_gid = current_fsgid(); 644 inode->i_op = &sockfs_inode_ops; 645 646 return sock; 647 } 648 EXPORT_SYMBOL(sock_alloc); 649 650 static void __sock_release(struct socket *sock, struct inode *inode) 651 { 652 const struct proto_ops *ops = READ_ONCE(sock->ops); 653 654 if (ops) { 655 struct module *owner = ops->owner; 656 657 if (inode) 658 inode_lock(inode); 659 ops->release(sock); 660 sock->sk = NULL; 661 if (inode) 662 inode_unlock(inode); 663 sock->ops = NULL; 664 module_put(owner); 665 } 666 667 if (sock->wq.fasync_list) 668 pr_err("%s: fasync list not empty!\n", __func__); 669 670 if (!sock->file) { 671 iput(SOCK_INODE(sock)); 672 return; 673 } 674 sock->file = NULL; 675 } 676 677 /** 678 * sock_release - close a socket 679 * @sock: socket to close 680 * 681 * The socket is released from the protocol stack if it has a release 682 * callback, and the inode is then released if the socket is bound to 683 * an inode not a file. 684 */ 685 void sock_release(struct socket *sock) 686 { 687 __sock_release(sock, NULL); 688 } 689 EXPORT_SYMBOL(sock_release); 690 691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 692 { 693 u8 flags = *tx_flags; 694 695 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 696 flags |= SKBTX_HW_TSTAMP; 697 698 /* PTP hardware clocks can provide a free running cycle counter 699 * as a time base for virtual clocks. Tell driver to use the 700 * free running cycle counter for timestamp if socket is bound 701 * to virtual clock. 702 */ 703 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 704 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 705 } 706 707 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 708 flags |= SKBTX_SW_TSTAMP; 709 710 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 711 flags |= SKBTX_SCHED_TSTAMP; 712 713 *tx_flags = flags; 714 } 715 EXPORT_SYMBOL(__sock_tx_timestamp); 716 717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 718 size_t)); 719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 720 size_t)); 721 722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 723 int flags) 724 { 725 trace_sock_send_length(sk, ret, 0); 726 } 727 728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 729 { 730 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 731 inet_sendmsg, sock, msg, 732 msg_data_left(msg)); 733 BUG_ON(ret == -EIOCBQUEUED); 734 735 if (trace_sock_send_length_enabled()) 736 call_trace_sock_send_length(sock->sk, ret, 0); 737 return ret; 738 } 739 740 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) 741 { 742 int err = security_socket_sendmsg(sock, msg, 743 msg_data_left(msg)); 744 745 return err ?: sock_sendmsg_nosec(sock, msg); 746 } 747 748 /** 749 * sock_sendmsg - send a message through @sock 750 * @sock: socket 751 * @msg: message to send 752 * 753 * Sends @msg through @sock, passing through LSM. 754 * Returns the number of bytes sent, or an error code. 755 */ 756 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 757 { 758 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; 759 struct sockaddr_storage address; 760 int save_len = msg->msg_namelen; 761 int ret; 762 763 if (msg->msg_name) { 764 memcpy(&address, msg->msg_name, msg->msg_namelen); 765 msg->msg_name = &address; 766 } 767 768 ret = __sock_sendmsg(sock, msg); 769 msg->msg_name = save_addr; 770 msg->msg_namelen = save_len; 771 772 return ret; 773 } 774 EXPORT_SYMBOL(sock_sendmsg); 775 776 /** 777 * kernel_sendmsg - send a message through @sock (kernel-space) 778 * @sock: socket 779 * @msg: message header 780 * @vec: kernel vec 781 * @num: vec array length 782 * @size: total message data size 783 * 784 * Builds the message data with @vec and sends it through @sock. 785 * Returns the number of bytes sent, or an error code. 786 */ 787 788 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 789 struct kvec *vec, size_t num, size_t size) 790 { 791 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 792 return sock_sendmsg(sock, msg); 793 } 794 EXPORT_SYMBOL(kernel_sendmsg); 795 796 /** 797 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 798 * @sk: sock 799 * @msg: message header 800 * @vec: output s/g array 801 * @num: output s/g array length 802 * @size: total message data size 803 * 804 * Builds the message data with @vec and sends it through @sock. 805 * Returns the number of bytes sent, or an error code. 806 * Caller must hold @sk. 807 */ 808 809 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 810 struct kvec *vec, size_t num, size_t size) 811 { 812 struct socket *sock = sk->sk_socket; 813 const struct proto_ops *ops = READ_ONCE(sock->ops); 814 815 if (!ops->sendmsg_locked) 816 return sock_no_sendmsg_locked(sk, msg, size); 817 818 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 819 820 return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 821 } 822 EXPORT_SYMBOL(kernel_sendmsg_locked); 823 824 static bool skb_is_err_queue(const struct sk_buff *skb) 825 { 826 /* pkt_type of skbs enqueued on the error queue are set to 827 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 828 * in recvmsg, since skbs received on a local socket will never 829 * have a pkt_type of PACKET_OUTGOING. 830 */ 831 return skb->pkt_type == PACKET_OUTGOING; 832 } 833 834 /* On transmit, software and hardware timestamps are returned independently. 835 * As the two skb clones share the hardware timestamp, which may be updated 836 * before the software timestamp is received, a hardware TX timestamp may be 837 * returned only if there is no software TX timestamp. Ignore false software 838 * timestamps, which may be made in the __sock_recv_timestamp() call when the 839 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 840 * hardware timestamp. 841 */ 842 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 843 { 844 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 845 } 846 847 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 848 { 849 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 850 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 851 struct net_device *orig_dev; 852 ktime_t hwtstamp; 853 854 rcu_read_lock(); 855 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 856 if (orig_dev) { 857 *if_index = orig_dev->ifindex; 858 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 859 } else { 860 hwtstamp = shhwtstamps->hwtstamp; 861 } 862 rcu_read_unlock(); 863 864 return hwtstamp; 865 } 866 867 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 868 int if_index) 869 { 870 struct scm_ts_pktinfo ts_pktinfo; 871 struct net_device *orig_dev; 872 873 if (!skb_mac_header_was_set(skb)) 874 return; 875 876 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 877 878 if (!if_index) { 879 rcu_read_lock(); 880 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 881 if (orig_dev) 882 if_index = orig_dev->ifindex; 883 rcu_read_unlock(); 884 } 885 ts_pktinfo.if_index = if_index; 886 887 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 888 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 889 sizeof(ts_pktinfo), &ts_pktinfo); 890 } 891 892 /* 893 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 894 */ 895 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 896 struct sk_buff *skb) 897 { 898 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 899 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 900 struct scm_timestamping_internal tss; 901 int empty = 1, false_tstamp = 0; 902 struct skb_shared_hwtstamps *shhwtstamps = 903 skb_hwtstamps(skb); 904 int if_index; 905 ktime_t hwtstamp; 906 u32 tsflags; 907 908 /* Race occurred between timestamp enabling and packet 909 receiving. Fill in the current time for now. */ 910 if (need_software_tstamp && skb->tstamp == 0) { 911 __net_timestamp(skb); 912 false_tstamp = 1; 913 } 914 915 if (need_software_tstamp) { 916 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 917 if (new_tstamp) { 918 struct __kernel_sock_timeval tv; 919 920 skb_get_new_timestamp(skb, &tv); 921 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 922 sizeof(tv), &tv); 923 } else { 924 struct __kernel_old_timeval tv; 925 926 skb_get_timestamp(skb, &tv); 927 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 928 sizeof(tv), &tv); 929 } 930 } else { 931 if (new_tstamp) { 932 struct __kernel_timespec ts; 933 934 skb_get_new_timestampns(skb, &ts); 935 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 936 sizeof(ts), &ts); 937 } else { 938 struct __kernel_old_timespec ts; 939 940 skb_get_timestampns(skb, &ts); 941 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 942 sizeof(ts), &ts); 943 } 944 } 945 } 946 947 memset(&tss, 0, sizeof(tss)); 948 tsflags = READ_ONCE(sk->sk_tsflags); 949 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && 950 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 951 skb_is_err_queue(skb) || 952 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 953 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 954 empty = 0; 955 if (shhwtstamps && 956 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 957 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 958 skb_is_err_queue(skb) || 959 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 960 !skb_is_swtx_tstamp(skb, false_tstamp)) { 961 if_index = 0; 962 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 963 hwtstamp = get_timestamp(sk, skb, &if_index); 964 else 965 hwtstamp = shhwtstamps->hwtstamp; 966 967 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 968 hwtstamp = ptp_convert_timestamp(&hwtstamp, 969 READ_ONCE(sk->sk_bind_phc)); 970 971 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 972 empty = 0; 973 974 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 975 !skb_is_err_queue(skb)) 976 put_ts_pktinfo(msg, skb, if_index); 977 } 978 } 979 if (!empty) { 980 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 981 put_cmsg_scm_timestamping64(msg, &tss); 982 else 983 put_cmsg_scm_timestamping(msg, &tss); 984 985 if (skb_is_err_queue(skb) && skb->len && 986 SKB_EXT_ERR(skb)->opt_stats) 987 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 988 skb->len, skb->data); 989 } 990 } 991 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 992 993 #ifdef CONFIG_WIRELESS 994 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 995 struct sk_buff *skb) 996 { 997 int ack; 998 999 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 1000 return; 1001 if (!skb->wifi_acked_valid) 1002 return; 1003 1004 ack = skb->wifi_acked; 1005 1006 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 1007 } 1008 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 1009 #endif 1010 1011 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 1012 struct sk_buff *skb) 1013 { 1014 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 1015 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 1016 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 1017 } 1018 1019 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 1020 struct sk_buff *skb) 1021 { 1022 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 1023 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 1024 __u32 mark = skb->mark; 1025 1026 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1027 } 1028 } 1029 1030 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1031 struct sk_buff *skb) 1032 { 1033 sock_recv_timestamp(msg, sk, skb); 1034 sock_recv_drops(msg, sk, skb); 1035 sock_recv_mark(msg, sk, skb); 1036 } 1037 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1038 1039 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1040 size_t, int)); 1041 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1042 size_t, int)); 1043 1044 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1045 { 1046 trace_sock_recv_length(sk, ret, flags); 1047 } 1048 1049 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1050 int flags) 1051 { 1052 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1053 inet6_recvmsg, 1054 inet_recvmsg, sock, msg, 1055 msg_data_left(msg), flags); 1056 if (trace_sock_recv_length_enabled()) 1057 call_trace_sock_recv_length(sock->sk, ret, flags); 1058 return ret; 1059 } 1060 1061 /** 1062 * sock_recvmsg - receive a message from @sock 1063 * @sock: socket 1064 * @msg: message to receive 1065 * @flags: message flags 1066 * 1067 * Receives @msg from @sock, passing through LSM. Returns the total number 1068 * of bytes received, or an error. 1069 */ 1070 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1071 { 1072 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1073 1074 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1075 } 1076 EXPORT_SYMBOL(sock_recvmsg); 1077 1078 /** 1079 * kernel_recvmsg - Receive a message from a socket (kernel space) 1080 * @sock: The socket to receive the message from 1081 * @msg: Received message 1082 * @vec: Input s/g array for message data 1083 * @num: Size of input s/g array 1084 * @size: Number of bytes to read 1085 * @flags: Message flags (MSG_DONTWAIT, etc...) 1086 * 1087 * On return the msg structure contains the scatter/gather array passed in the 1088 * vec argument. The array is modified so that it consists of the unfilled 1089 * portion of the original array. 1090 * 1091 * The returned value is the total number of bytes received, or an error. 1092 */ 1093 1094 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1095 struct kvec *vec, size_t num, size_t size, int flags) 1096 { 1097 msg->msg_control_is_user = false; 1098 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1099 return sock_recvmsg(sock, msg, flags); 1100 } 1101 EXPORT_SYMBOL(kernel_recvmsg); 1102 1103 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1104 struct pipe_inode_info *pipe, size_t len, 1105 unsigned int flags) 1106 { 1107 struct socket *sock = file->private_data; 1108 const struct proto_ops *ops; 1109 1110 ops = READ_ONCE(sock->ops); 1111 if (unlikely(!ops->splice_read)) 1112 return copy_splice_read(file, ppos, pipe, len, flags); 1113 1114 return ops->splice_read(sock, ppos, pipe, len, flags); 1115 } 1116 1117 static void sock_splice_eof(struct file *file) 1118 { 1119 struct socket *sock = file->private_data; 1120 const struct proto_ops *ops; 1121 1122 ops = READ_ONCE(sock->ops); 1123 if (ops->splice_eof) 1124 ops->splice_eof(sock); 1125 } 1126 1127 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1128 { 1129 struct file *file = iocb->ki_filp; 1130 struct socket *sock = file->private_data; 1131 struct msghdr msg = {.msg_iter = *to, 1132 .msg_iocb = iocb}; 1133 ssize_t res; 1134 1135 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1136 msg.msg_flags = MSG_DONTWAIT; 1137 1138 if (iocb->ki_pos != 0) 1139 return -ESPIPE; 1140 1141 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1142 return 0; 1143 1144 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1145 *to = msg.msg_iter; 1146 return res; 1147 } 1148 1149 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1150 { 1151 struct file *file = iocb->ki_filp; 1152 struct socket *sock = file->private_data; 1153 struct msghdr msg = {.msg_iter = *from, 1154 .msg_iocb = iocb}; 1155 ssize_t res; 1156 1157 if (iocb->ki_pos != 0) 1158 return -ESPIPE; 1159 1160 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1161 msg.msg_flags = MSG_DONTWAIT; 1162 1163 if (sock->type == SOCK_SEQPACKET) 1164 msg.msg_flags |= MSG_EOR; 1165 1166 res = __sock_sendmsg(sock, &msg); 1167 *from = msg.msg_iter; 1168 return res; 1169 } 1170 1171 /* 1172 * Atomic setting of ioctl hooks to avoid race 1173 * with module unload. 1174 */ 1175 1176 static DEFINE_MUTEX(br_ioctl_mutex); 1177 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1178 unsigned int cmd, struct ifreq *ifr, 1179 void __user *uarg); 1180 1181 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1182 unsigned int cmd, struct ifreq *ifr, 1183 void __user *uarg)) 1184 { 1185 mutex_lock(&br_ioctl_mutex); 1186 br_ioctl_hook = hook; 1187 mutex_unlock(&br_ioctl_mutex); 1188 } 1189 EXPORT_SYMBOL(brioctl_set); 1190 1191 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1192 struct ifreq *ifr, void __user *uarg) 1193 { 1194 int err = -ENOPKG; 1195 1196 if (!br_ioctl_hook) 1197 request_module("bridge"); 1198 1199 mutex_lock(&br_ioctl_mutex); 1200 if (br_ioctl_hook) 1201 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1202 mutex_unlock(&br_ioctl_mutex); 1203 1204 return err; 1205 } 1206 1207 static DEFINE_MUTEX(vlan_ioctl_mutex); 1208 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1209 1210 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1211 { 1212 mutex_lock(&vlan_ioctl_mutex); 1213 vlan_ioctl_hook = hook; 1214 mutex_unlock(&vlan_ioctl_mutex); 1215 } 1216 EXPORT_SYMBOL(vlan_ioctl_set); 1217 1218 static long sock_do_ioctl(struct net *net, struct socket *sock, 1219 unsigned int cmd, unsigned long arg) 1220 { 1221 const struct proto_ops *ops = READ_ONCE(sock->ops); 1222 struct ifreq ifr; 1223 bool need_copyout; 1224 int err; 1225 void __user *argp = (void __user *)arg; 1226 void __user *data; 1227 1228 err = ops->ioctl(sock, cmd, arg); 1229 1230 /* 1231 * If this ioctl is unknown try to hand it down 1232 * to the NIC driver. 1233 */ 1234 if (err != -ENOIOCTLCMD) 1235 return err; 1236 1237 if (!is_socket_ioctl_cmd(cmd)) 1238 return -ENOTTY; 1239 1240 if (get_user_ifreq(&ifr, &data, argp)) 1241 return -EFAULT; 1242 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1243 if (!err && need_copyout) 1244 if (put_user_ifreq(&ifr, argp)) 1245 return -EFAULT; 1246 1247 return err; 1248 } 1249 1250 /* 1251 * With an ioctl, arg may well be a user mode pointer, but we don't know 1252 * what to do with it - that's up to the protocol still. 1253 */ 1254 1255 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1256 { 1257 const struct proto_ops *ops; 1258 struct socket *sock; 1259 struct sock *sk; 1260 void __user *argp = (void __user *)arg; 1261 int pid, err; 1262 struct net *net; 1263 1264 sock = file->private_data; 1265 ops = READ_ONCE(sock->ops); 1266 sk = sock->sk; 1267 net = sock_net(sk); 1268 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1269 struct ifreq ifr; 1270 void __user *data; 1271 bool need_copyout; 1272 if (get_user_ifreq(&ifr, &data, argp)) 1273 return -EFAULT; 1274 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1275 if (!err && need_copyout) 1276 if (put_user_ifreq(&ifr, argp)) 1277 return -EFAULT; 1278 } else 1279 #ifdef CONFIG_WEXT_CORE 1280 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1281 err = wext_handle_ioctl(net, cmd, argp); 1282 } else 1283 #endif 1284 switch (cmd) { 1285 case FIOSETOWN: 1286 case SIOCSPGRP: 1287 err = -EFAULT; 1288 if (get_user(pid, (int __user *)argp)) 1289 break; 1290 err = f_setown(sock->file, pid, 1); 1291 break; 1292 case FIOGETOWN: 1293 case SIOCGPGRP: 1294 err = put_user(f_getown(sock->file), 1295 (int __user *)argp); 1296 break; 1297 case SIOCGIFBR: 1298 case SIOCSIFBR: 1299 case SIOCBRADDBR: 1300 case SIOCBRDELBR: 1301 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1302 break; 1303 case SIOCGIFVLAN: 1304 case SIOCSIFVLAN: 1305 err = -ENOPKG; 1306 if (!vlan_ioctl_hook) 1307 request_module("8021q"); 1308 1309 mutex_lock(&vlan_ioctl_mutex); 1310 if (vlan_ioctl_hook) 1311 err = vlan_ioctl_hook(net, argp); 1312 mutex_unlock(&vlan_ioctl_mutex); 1313 break; 1314 case SIOCGSKNS: 1315 err = -EPERM; 1316 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1317 break; 1318 1319 err = open_related_ns(&net->ns, get_net_ns); 1320 break; 1321 case SIOCGSTAMP_OLD: 1322 case SIOCGSTAMPNS_OLD: 1323 if (!ops->gettstamp) { 1324 err = -ENOIOCTLCMD; 1325 break; 1326 } 1327 err = ops->gettstamp(sock, argp, 1328 cmd == SIOCGSTAMP_OLD, 1329 !IS_ENABLED(CONFIG_64BIT)); 1330 break; 1331 case SIOCGSTAMP_NEW: 1332 case SIOCGSTAMPNS_NEW: 1333 if (!ops->gettstamp) { 1334 err = -ENOIOCTLCMD; 1335 break; 1336 } 1337 err = ops->gettstamp(sock, argp, 1338 cmd == SIOCGSTAMP_NEW, 1339 false); 1340 break; 1341 1342 case SIOCGIFCONF: 1343 err = dev_ifconf(net, argp); 1344 break; 1345 1346 default: 1347 err = sock_do_ioctl(net, sock, cmd, arg); 1348 break; 1349 } 1350 return err; 1351 } 1352 1353 /** 1354 * sock_create_lite - creates a socket 1355 * @family: protocol family (AF_INET, ...) 1356 * @type: communication type (SOCK_STREAM, ...) 1357 * @protocol: protocol (0, ...) 1358 * @res: new socket 1359 * 1360 * Creates a new socket and assigns it to @res, passing through LSM. 1361 * The new socket initialization is not complete, see kernel_accept(). 1362 * Returns 0 or an error. On failure @res is set to %NULL. 1363 * This function internally uses GFP_KERNEL. 1364 */ 1365 1366 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1367 { 1368 int err; 1369 struct socket *sock = NULL; 1370 1371 err = security_socket_create(family, type, protocol, 1); 1372 if (err) 1373 goto out; 1374 1375 sock = sock_alloc(); 1376 if (!sock) { 1377 err = -ENOMEM; 1378 goto out; 1379 } 1380 1381 sock->type = type; 1382 err = security_socket_post_create(sock, family, type, protocol, 1); 1383 if (err) 1384 goto out_release; 1385 1386 out: 1387 *res = sock; 1388 return err; 1389 out_release: 1390 sock_release(sock); 1391 sock = NULL; 1392 goto out; 1393 } 1394 EXPORT_SYMBOL(sock_create_lite); 1395 1396 /* No kernel lock held - perfect */ 1397 static __poll_t sock_poll(struct file *file, poll_table *wait) 1398 { 1399 struct socket *sock = file->private_data; 1400 const struct proto_ops *ops = READ_ONCE(sock->ops); 1401 __poll_t events = poll_requested_events(wait), flag = 0; 1402 1403 if (!ops->poll) 1404 return 0; 1405 1406 if (sk_can_busy_loop(sock->sk)) { 1407 /* poll once if requested by the syscall */ 1408 if (events & POLL_BUSY_LOOP) 1409 sk_busy_loop(sock->sk, 1); 1410 1411 /* if this socket can poll_ll, tell the system call */ 1412 flag = POLL_BUSY_LOOP; 1413 } 1414 1415 return ops->poll(file, sock, wait) | flag; 1416 } 1417 1418 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1419 { 1420 struct socket *sock = file->private_data; 1421 1422 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1423 } 1424 1425 static int sock_close(struct inode *inode, struct file *filp) 1426 { 1427 __sock_release(SOCKET_I(inode), inode); 1428 return 0; 1429 } 1430 1431 /* 1432 * Update the socket async list 1433 * 1434 * Fasync_list locking strategy. 1435 * 1436 * 1. fasync_list is modified only under process context socket lock 1437 * i.e. under semaphore. 1438 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1439 * or under socket lock 1440 */ 1441 1442 static int sock_fasync(int fd, struct file *filp, int on) 1443 { 1444 struct socket *sock = filp->private_data; 1445 struct sock *sk = sock->sk; 1446 struct socket_wq *wq = &sock->wq; 1447 1448 if (sk == NULL) 1449 return -EINVAL; 1450 1451 lock_sock(sk); 1452 fasync_helper(fd, filp, on, &wq->fasync_list); 1453 1454 if (!wq->fasync_list) 1455 sock_reset_flag(sk, SOCK_FASYNC); 1456 else 1457 sock_set_flag(sk, SOCK_FASYNC); 1458 1459 release_sock(sk); 1460 return 0; 1461 } 1462 1463 /* This function may be called only under rcu_lock */ 1464 1465 int sock_wake_async(struct socket_wq *wq, int how, int band) 1466 { 1467 if (!wq || !wq->fasync_list) 1468 return -1; 1469 1470 switch (how) { 1471 case SOCK_WAKE_WAITD: 1472 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1473 break; 1474 goto call_kill; 1475 case SOCK_WAKE_SPACE: 1476 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1477 break; 1478 fallthrough; 1479 case SOCK_WAKE_IO: 1480 call_kill: 1481 kill_fasync(&wq->fasync_list, SIGIO, band); 1482 break; 1483 case SOCK_WAKE_URG: 1484 kill_fasync(&wq->fasync_list, SIGURG, band); 1485 } 1486 1487 return 0; 1488 } 1489 EXPORT_SYMBOL(sock_wake_async); 1490 1491 /** 1492 * __sock_create - creates a socket 1493 * @net: net namespace 1494 * @family: protocol family (AF_INET, ...) 1495 * @type: communication type (SOCK_STREAM, ...) 1496 * @protocol: protocol (0, ...) 1497 * @res: new socket 1498 * @kern: boolean for kernel space sockets 1499 * 1500 * Creates a new socket and assigns it to @res, passing through LSM. 1501 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1502 * be set to true if the socket resides in kernel space. 1503 * This function internally uses GFP_KERNEL. 1504 */ 1505 1506 int __sock_create(struct net *net, int family, int type, int protocol, 1507 struct socket **res, int kern) 1508 { 1509 int err; 1510 struct socket *sock; 1511 const struct net_proto_family *pf; 1512 1513 /* 1514 * Check protocol is in range 1515 */ 1516 if (family < 0 || family >= NPROTO) 1517 return -EAFNOSUPPORT; 1518 if (type < 0 || type >= SOCK_MAX) 1519 return -EINVAL; 1520 1521 /* Compatibility. 1522 1523 This uglymoron is moved from INET layer to here to avoid 1524 deadlock in module load. 1525 */ 1526 if (family == PF_INET && type == SOCK_PACKET) { 1527 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1528 current->comm); 1529 family = PF_PACKET; 1530 } 1531 1532 err = security_socket_create(family, type, protocol, kern); 1533 if (err) 1534 return err; 1535 1536 /* 1537 * Allocate the socket and allow the family to set things up. if 1538 * the protocol is 0, the family is instructed to select an appropriate 1539 * default. 1540 */ 1541 sock = sock_alloc(); 1542 if (!sock) { 1543 net_warn_ratelimited("socket: no more sockets\n"); 1544 return -ENFILE; /* Not exactly a match, but its the 1545 closest posix thing */ 1546 } 1547 1548 sock->type = type; 1549 1550 #ifdef CONFIG_MODULES 1551 /* Attempt to load a protocol module if the find failed. 1552 * 1553 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1554 * requested real, full-featured networking support upon configuration. 1555 * Otherwise module support will break! 1556 */ 1557 if (rcu_access_pointer(net_families[family]) == NULL) 1558 request_module("net-pf-%d", family); 1559 #endif 1560 1561 rcu_read_lock(); 1562 pf = rcu_dereference(net_families[family]); 1563 err = -EAFNOSUPPORT; 1564 if (!pf) 1565 goto out_release; 1566 1567 /* 1568 * We will call the ->create function, that possibly is in a loadable 1569 * module, so we have to bump that loadable module refcnt first. 1570 */ 1571 if (!try_module_get(pf->owner)) 1572 goto out_release; 1573 1574 /* Now protected by module ref count */ 1575 rcu_read_unlock(); 1576 1577 err = pf->create(net, sock, protocol, kern); 1578 if (err < 0) 1579 goto out_module_put; 1580 1581 /* 1582 * Now to bump the refcnt of the [loadable] module that owns this 1583 * socket at sock_release time we decrement its refcnt. 1584 */ 1585 if (!try_module_get(sock->ops->owner)) 1586 goto out_module_busy; 1587 1588 /* 1589 * Now that we're done with the ->create function, the [loadable] 1590 * module can have its refcnt decremented 1591 */ 1592 module_put(pf->owner); 1593 err = security_socket_post_create(sock, family, type, protocol, kern); 1594 if (err) 1595 goto out_sock_release; 1596 *res = sock; 1597 1598 return 0; 1599 1600 out_module_busy: 1601 err = -EAFNOSUPPORT; 1602 out_module_put: 1603 sock->ops = NULL; 1604 module_put(pf->owner); 1605 out_sock_release: 1606 sock_release(sock); 1607 return err; 1608 1609 out_release: 1610 rcu_read_unlock(); 1611 goto out_sock_release; 1612 } 1613 EXPORT_SYMBOL(__sock_create); 1614 1615 /** 1616 * sock_create - creates a socket 1617 * @family: protocol family (AF_INET, ...) 1618 * @type: communication type (SOCK_STREAM, ...) 1619 * @protocol: protocol (0, ...) 1620 * @res: new socket 1621 * 1622 * A wrapper around __sock_create(). 1623 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1624 */ 1625 1626 int sock_create(int family, int type, int protocol, struct socket **res) 1627 { 1628 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1629 } 1630 EXPORT_SYMBOL(sock_create); 1631 1632 /** 1633 * sock_create_kern - creates a socket (kernel space) 1634 * @net: net namespace 1635 * @family: protocol family (AF_INET, ...) 1636 * @type: communication type (SOCK_STREAM, ...) 1637 * @protocol: protocol (0, ...) 1638 * @res: new socket 1639 * 1640 * A wrapper around __sock_create(). 1641 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1642 */ 1643 1644 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1645 { 1646 return __sock_create(net, family, type, protocol, res, 1); 1647 } 1648 EXPORT_SYMBOL(sock_create_kern); 1649 1650 static struct socket *__sys_socket_create(int family, int type, int protocol) 1651 { 1652 struct socket *sock; 1653 int retval; 1654 1655 /* Check the SOCK_* constants for consistency. */ 1656 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1657 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1658 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1659 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1660 1661 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1662 return ERR_PTR(-EINVAL); 1663 type &= SOCK_TYPE_MASK; 1664 1665 retval = sock_create(family, type, protocol, &sock); 1666 if (retval < 0) 1667 return ERR_PTR(retval); 1668 1669 return sock; 1670 } 1671 1672 struct file *__sys_socket_file(int family, int type, int protocol) 1673 { 1674 struct socket *sock; 1675 int flags; 1676 1677 sock = __sys_socket_create(family, type, protocol); 1678 if (IS_ERR(sock)) 1679 return ERR_CAST(sock); 1680 1681 flags = type & ~SOCK_TYPE_MASK; 1682 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1683 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1684 1685 return sock_alloc_file(sock, flags, NULL); 1686 } 1687 1688 /* A hook for bpf progs to attach to and update socket protocol. 1689 * 1690 * A static noinline declaration here could cause the compiler to 1691 * optimize away the function. A global noinline declaration will 1692 * keep the definition, but may optimize away the callsite. 1693 * Therefore, __weak is needed to ensure that the call is still 1694 * emitted, by telling the compiler that we don't know what the 1695 * function might eventually be. 1696 */ 1697 1698 __bpf_hook_start(); 1699 1700 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1701 { 1702 return protocol; 1703 } 1704 1705 __bpf_hook_end(); 1706 1707 int __sys_socket(int family, int type, int protocol) 1708 { 1709 struct socket *sock; 1710 int flags; 1711 1712 sock = __sys_socket_create(family, type, 1713 update_socket_protocol(family, type, protocol)); 1714 if (IS_ERR(sock)) 1715 return PTR_ERR(sock); 1716 1717 flags = type & ~SOCK_TYPE_MASK; 1718 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1719 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1720 1721 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1722 } 1723 1724 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1725 { 1726 return __sys_socket(family, type, protocol); 1727 } 1728 1729 /* 1730 * Create a pair of connected sockets. 1731 */ 1732 1733 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1734 { 1735 struct socket *sock1, *sock2; 1736 int fd1, fd2, err; 1737 struct file *newfile1, *newfile2; 1738 int flags; 1739 1740 flags = type & ~SOCK_TYPE_MASK; 1741 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1742 return -EINVAL; 1743 type &= SOCK_TYPE_MASK; 1744 1745 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1746 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1747 1748 /* 1749 * reserve descriptors and make sure we won't fail 1750 * to return them to userland. 1751 */ 1752 fd1 = get_unused_fd_flags(flags); 1753 if (unlikely(fd1 < 0)) 1754 return fd1; 1755 1756 fd2 = get_unused_fd_flags(flags); 1757 if (unlikely(fd2 < 0)) { 1758 put_unused_fd(fd1); 1759 return fd2; 1760 } 1761 1762 err = put_user(fd1, &usockvec[0]); 1763 if (err) 1764 goto out; 1765 1766 err = put_user(fd2, &usockvec[1]); 1767 if (err) 1768 goto out; 1769 1770 /* 1771 * Obtain the first socket and check if the underlying protocol 1772 * supports the socketpair call. 1773 */ 1774 1775 err = sock_create(family, type, protocol, &sock1); 1776 if (unlikely(err < 0)) 1777 goto out; 1778 1779 err = sock_create(family, type, protocol, &sock2); 1780 if (unlikely(err < 0)) { 1781 sock_release(sock1); 1782 goto out; 1783 } 1784 1785 err = security_socket_socketpair(sock1, sock2); 1786 if (unlikely(err)) { 1787 sock_release(sock2); 1788 sock_release(sock1); 1789 goto out; 1790 } 1791 1792 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1793 if (unlikely(err < 0)) { 1794 sock_release(sock2); 1795 sock_release(sock1); 1796 goto out; 1797 } 1798 1799 newfile1 = sock_alloc_file(sock1, flags, NULL); 1800 if (IS_ERR(newfile1)) { 1801 err = PTR_ERR(newfile1); 1802 sock_release(sock2); 1803 goto out; 1804 } 1805 1806 newfile2 = sock_alloc_file(sock2, flags, NULL); 1807 if (IS_ERR(newfile2)) { 1808 err = PTR_ERR(newfile2); 1809 fput(newfile1); 1810 goto out; 1811 } 1812 1813 audit_fd_pair(fd1, fd2); 1814 1815 fd_install(fd1, newfile1); 1816 fd_install(fd2, newfile2); 1817 return 0; 1818 1819 out: 1820 put_unused_fd(fd2); 1821 put_unused_fd(fd1); 1822 return err; 1823 } 1824 1825 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1826 int __user *, usockvec) 1827 { 1828 return __sys_socketpair(family, type, protocol, usockvec); 1829 } 1830 1831 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, 1832 int addrlen) 1833 { 1834 int err; 1835 1836 err = security_socket_bind(sock, (struct sockaddr *)address, 1837 addrlen); 1838 if (!err) 1839 err = READ_ONCE(sock->ops)->bind(sock, 1840 (struct sockaddr *)address, 1841 addrlen); 1842 return err; 1843 } 1844 1845 /* 1846 * Bind a name to a socket. Nothing much to do here since it's 1847 * the protocol's responsibility to handle the local address. 1848 * 1849 * We move the socket address to kernel space before we call 1850 * the protocol layer (having also checked the address is ok). 1851 */ 1852 1853 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1854 { 1855 struct socket *sock; 1856 struct sockaddr_storage address; 1857 int err, fput_needed; 1858 1859 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1860 if (sock) { 1861 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1862 if (!err) 1863 err = __sys_bind_socket(sock, &address, addrlen); 1864 fput_light(sock->file, fput_needed); 1865 } 1866 return err; 1867 } 1868 1869 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1870 { 1871 return __sys_bind(fd, umyaddr, addrlen); 1872 } 1873 1874 /* 1875 * Perform a listen. Basically, we allow the protocol to do anything 1876 * necessary for a listen, and if that works, we mark the socket as 1877 * ready for listening. 1878 */ 1879 int __sys_listen_socket(struct socket *sock, int backlog) 1880 { 1881 int somaxconn, err; 1882 1883 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1884 if ((unsigned int)backlog > somaxconn) 1885 backlog = somaxconn; 1886 1887 err = security_socket_listen(sock, backlog); 1888 if (!err) 1889 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1890 return err; 1891 } 1892 1893 int __sys_listen(int fd, int backlog) 1894 { 1895 struct socket *sock; 1896 int err, fput_needed; 1897 1898 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1899 if (sock) { 1900 err = __sys_listen_socket(sock, backlog); 1901 fput_light(sock->file, fput_needed); 1902 } 1903 return err; 1904 } 1905 1906 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1907 { 1908 return __sys_listen(fd, backlog); 1909 } 1910 1911 struct file *do_accept(struct file *file, struct proto_accept_arg *arg, 1912 struct sockaddr __user *upeer_sockaddr, 1913 int __user *upeer_addrlen, int flags) 1914 { 1915 struct socket *sock, *newsock; 1916 struct file *newfile; 1917 int err, len; 1918 struct sockaddr_storage address; 1919 const struct proto_ops *ops; 1920 1921 sock = sock_from_file(file); 1922 if (!sock) 1923 return ERR_PTR(-ENOTSOCK); 1924 1925 newsock = sock_alloc(); 1926 if (!newsock) 1927 return ERR_PTR(-ENFILE); 1928 ops = READ_ONCE(sock->ops); 1929 1930 newsock->type = sock->type; 1931 newsock->ops = ops; 1932 1933 /* 1934 * We don't need try_module_get here, as the listening socket (sock) 1935 * has the protocol module (sock->ops->owner) held. 1936 */ 1937 __module_get(ops->owner); 1938 1939 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1940 if (IS_ERR(newfile)) 1941 return newfile; 1942 1943 err = security_socket_accept(sock, newsock); 1944 if (err) 1945 goto out_fd; 1946 1947 arg->flags |= sock->file->f_flags; 1948 err = ops->accept(sock, newsock, arg); 1949 if (err < 0) 1950 goto out_fd; 1951 1952 if (upeer_sockaddr) { 1953 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1954 if (len < 0) { 1955 err = -ECONNABORTED; 1956 goto out_fd; 1957 } 1958 err = move_addr_to_user(&address, 1959 len, upeer_sockaddr, upeer_addrlen); 1960 if (err < 0) 1961 goto out_fd; 1962 } 1963 1964 /* File flags are not inherited via accept() unlike another OSes. */ 1965 return newfile; 1966 out_fd: 1967 fput(newfile); 1968 return ERR_PTR(err); 1969 } 1970 1971 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1972 int __user *upeer_addrlen, int flags) 1973 { 1974 struct proto_accept_arg arg = { }; 1975 struct file *newfile; 1976 int newfd; 1977 1978 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1979 return -EINVAL; 1980 1981 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1982 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1983 1984 newfd = get_unused_fd_flags(flags); 1985 if (unlikely(newfd < 0)) 1986 return newfd; 1987 1988 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, 1989 flags); 1990 if (IS_ERR(newfile)) { 1991 put_unused_fd(newfd); 1992 return PTR_ERR(newfile); 1993 } 1994 fd_install(newfd, newfile); 1995 return newfd; 1996 } 1997 1998 /* 1999 * For accept, we attempt to create a new socket, set up the link 2000 * with the client, wake up the client, then return the new 2001 * connected fd. We collect the address of the connector in kernel 2002 * space and move it to user at the very end. This is unclean because 2003 * we open the socket then return an error. 2004 * 2005 * 1003.1g adds the ability to recvmsg() to query connection pending 2006 * status to recvmsg. We need to add that support in a way thats 2007 * clean when we restructure accept also. 2008 */ 2009 2010 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 2011 int __user *upeer_addrlen, int flags) 2012 { 2013 int ret = -EBADF; 2014 struct fd f; 2015 2016 f = fdget(fd); 2017 if (f.file) { 2018 ret = __sys_accept4_file(f.file, upeer_sockaddr, 2019 upeer_addrlen, flags); 2020 fdput(f); 2021 } 2022 2023 return ret; 2024 } 2025 2026 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 2027 int __user *, upeer_addrlen, int, flags) 2028 { 2029 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 2030 } 2031 2032 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 2033 int __user *, upeer_addrlen) 2034 { 2035 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2036 } 2037 2038 /* 2039 * Attempt to connect to a socket with the server address. The address 2040 * is in user space so we verify it is OK and move it to kernel space. 2041 * 2042 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2043 * break bindings 2044 * 2045 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2046 * other SEQPACKET protocols that take time to connect() as it doesn't 2047 * include the -EINPROGRESS status for such sockets. 2048 */ 2049 2050 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2051 int addrlen, int file_flags) 2052 { 2053 struct socket *sock; 2054 int err; 2055 2056 sock = sock_from_file(file); 2057 if (!sock) { 2058 err = -ENOTSOCK; 2059 goto out; 2060 } 2061 2062 err = 2063 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2064 if (err) 2065 goto out; 2066 2067 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2068 addrlen, sock->file->f_flags | file_flags); 2069 out: 2070 return err; 2071 } 2072 2073 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2074 { 2075 int ret = -EBADF; 2076 struct fd f; 2077 2078 f = fdget(fd); 2079 if (f.file) { 2080 struct sockaddr_storage address; 2081 2082 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2083 if (!ret) 2084 ret = __sys_connect_file(f.file, &address, addrlen, 0); 2085 fdput(f); 2086 } 2087 2088 return ret; 2089 } 2090 2091 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2092 int, addrlen) 2093 { 2094 return __sys_connect(fd, uservaddr, addrlen); 2095 } 2096 2097 /* 2098 * Get the local address ('name') of a socket object. Move the obtained 2099 * name to user space. 2100 */ 2101 2102 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2103 int __user *usockaddr_len) 2104 { 2105 struct socket *sock; 2106 struct sockaddr_storage address; 2107 int err, fput_needed; 2108 2109 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2110 if (!sock) 2111 goto out; 2112 2113 err = security_socket_getsockname(sock); 2114 if (err) 2115 goto out_put; 2116 2117 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2118 if (err < 0) 2119 goto out_put; 2120 /* "err" is actually length in this case */ 2121 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2122 2123 out_put: 2124 fput_light(sock->file, fput_needed); 2125 out: 2126 return err; 2127 } 2128 2129 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2130 int __user *, usockaddr_len) 2131 { 2132 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2133 } 2134 2135 /* 2136 * Get the remote address ('name') of a socket object. Move the obtained 2137 * name to user space. 2138 */ 2139 2140 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2141 int __user *usockaddr_len) 2142 { 2143 struct socket *sock; 2144 struct sockaddr_storage address; 2145 int err, fput_needed; 2146 2147 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2148 if (sock != NULL) { 2149 const struct proto_ops *ops = READ_ONCE(sock->ops); 2150 2151 err = security_socket_getpeername(sock); 2152 if (err) { 2153 fput_light(sock->file, fput_needed); 2154 return err; 2155 } 2156 2157 err = ops->getname(sock, (struct sockaddr *)&address, 1); 2158 if (err >= 0) 2159 /* "err" is actually length in this case */ 2160 err = move_addr_to_user(&address, err, usockaddr, 2161 usockaddr_len); 2162 fput_light(sock->file, fput_needed); 2163 } 2164 return err; 2165 } 2166 2167 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2168 int __user *, usockaddr_len) 2169 { 2170 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2171 } 2172 2173 /* 2174 * Send a datagram to a given address. We move the address into kernel 2175 * space and check the user space data area is readable before invoking 2176 * the protocol. 2177 */ 2178 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2179 struct sockaddr __user *addr, int addr_len) 2180 { 2181 struct socket *sock; 2182 struct sockaddr_storage address; 2183 int err; 2184 struct msghdr msg; 2185 int fput_needed; 2186 2187 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); 2188 if (unlikely(err)) 2189 return err; 2190 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2191 if (!sock) 2192 goto out; 2193 2194 msg.msg_name = NULL; 2195 msg.msg_control = NULL; 2196 msg.msg_controllen = 0; 2197 msg.msg_namelen = 0; 2198 msg.msg_ubuf = NULL; 2199 if (addr) { 2200 err = move_addr_to_kernel(addr, addr_len, &address); 2201 if (err < 0) 2202 goto out_put; 2203 msg.msg_name = (struct sockaddr *)&address; 2204 msg.msg_namelen = addr_len; 2205 } 2206 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2207 if (sock->file->f_flags & O_NONBLOCK) 2208 flags |= MSG_DONTWAIT; 2209 msg.msg_flags = flags; 2210 err = __sock_sendmsg(sock, &msg); 2211 2212 out_put: 2213 fput_light(sock->file, fput_needed); 2214 out: 2215 return err; 2216 } 2217 2218 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2219 unsigned int, flags, struct sockaddr __user *, addr, 2220 int, addr_len) 2221 { 2222 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2223 } 2224 2225 /* 2226 * Send a datagram down a socket. 2227 */ 2228 2229 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2230 unsigned int, flags) 2231 { 2232 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2233 } 2234 2235 /* 2236 * Receive a frame from the socket and optionally record the address of the 2237 * sender. We verify the buffers are writable and if needed move the 2238 * sender address from kernel to user space. 2239 */ 2240 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2241 struct sockaddr __user *addr, int __user *addr_len) 2242 { 2243 struct sockaddr_storage address; 2244 struct msghdr msg = { 2245 /* Save some cycles and don't copy the address if not needed */ 2246 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2247 }; 2248 struct socket *sock; 2249 int err, err2; 2250 int fput_needed; 2251 2252 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); 2253 if (unlikely(err)) 2254 return err; 2255 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2256 if (!sock) 2257 goto out; 2258 2259 if (sock->file->f_flags & O_NONBLOCK) 2260 flags |= MSG_DONTWAIT; 2261 err = sock_recvmsg(sock, &msg, flags); 2262 2263 if (err >= 0 && addr != NULL) { 2264 err2 = move_addr_to_user(&address, 2265 msg.msg_namelen, addr, addr_len); 2266 if (err2 < 0) 2267 err = err2; 2268 } 2269 2270 fput_light(sock->file, fput_needed); 2271 out: 2272 return err; 2273 } 2274 2275 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2276 unsigned int, flags, struct sockaddr __user *, addr, 2277 int __user *, addr_len) 2278 { 2279 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2280 } 2281 2282 /* 2283 * Receive a datagram from a socket. 2284 */ 2285 2286 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2287 unsigned int, flags) 2288 { 2289 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2290 } 2291 2292 static bool sock_use_custom_sol_socket(const struct socket *sock) 2293 { 2294 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2295 } 2296 2297 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 2298 int optname, sockptr_t optval, int optlen) 2299 { 2300 const struct proto_ops *ops; 2301 char *kernel_optval = NULL; 2302 int err; 2303 2304 if (optlen < 0) 2305 return -EINVAL; 2306 2307 err = security_socket_setsockopt(sock, level, optname); 2308 if (err) 2309 goto out_put; 2310 2311 if (!compat) 2312 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2313 optval, &optlen, 2314 &kernel_optval); 2315 if (err < 0) 2316 goto out_put; 2317 if (err > 0) { 2318 err = 0; 2319 goto out_put; 2320 } 2321 2322 if (kernel_optval) 2323 optval = KERNEL_SOCKPTR(kernel_optval); 2324 ops = READ_ONCE(sock->ops); 2325 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2326 err = sock_setsockopt(sock, level, optname, optval, optlen); 2327 else if (unlikely(!ops->setsockopt)) 2328 err = -EOPNOTSUPP; 2329 else 2330 err = ops->setsockopt(sock, level, optname, optval, 2331 optlen); 2332 kfree(kernel_optval); 2333 out_put: 2334 return err; 2335 } 2336 EXPORT_SYMBOL(do_sock_setsockopt); 2337 2338 /* Set a socket option. Because we don't know the option lengths we have 2339 * to pass the user mode parameter for the protocols to sort out. 2340 */ 2341 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2342 int optlen) 2343 { 2344 sockptr_t optval = USER_SOCKPTR(user_optval); 2345 bool compat = in_compat_syscall(); 2346 int err, fput_needed; 2347 struct socket *sock; 2348 2349 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2350 if (!sock) 2351 return err; 2352 2353 err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen); 2354 2355 fput_light(sock->file, fput_needed); 2356 return err; 2357 } 2358 2359 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2360 char __user *, optval, int, optlen) 2361 { 2362 return __sys_setsockopt(fd, level, optname, optval, optlen); 2363 } 2364 2365 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2366 int optname)); 2367 2368 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 2369 int optname, sockptr_t optval, sockptr_t optlen) 2370 { 2371 int max_optlen __maybe_unused = 0; 2372 const struct proto_ops *ops; 2373 int err; 2374 2375 err = security_socket_getsockopt(sock, level, optname); 2376 if (err) 2377 return err; 2378 2379 if (!compat) 2380 copy_from_sockptr(&max_optlen, optlen, sizeof(int)); 2381 2382 ops = READ_ONCE(sock->ops); 2383 if (level == SOL_SOCKET) { 2384 err = sk_getsockopt(sock->sk, level, optname, optval, optlen); 2385 } else if (unlikely(!ops->getsockopt)) { 2386 err = -EOPNOTSUPP; 2387 } else { 2388 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, 2389 "Invalid argument type")) 2390 return -EOPNOTSUPP; 2391 2392 err = ops->getsockopt(sock, level, optname, optval.user, 2393 optlen.user); 2394 } 2395 2396 if (!compat) 2397 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2398 optval, optlen, max_optlen, 2399 err); 2400 2401 return err; 2402 } 2403 EXPORT_SYMBOL(do_sock_getsockopt); 2404 2405 /* 2406 * Get a socket option. Because we don't know the option lengths we have 2407 * to pass a user mode parameter for the protocols to sort out. 2408 */ 2409 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2410 int __user *optlen) 2411 { 2412 int err, fput_needed; 2413 struct socket *sock; 2414 bool compat; 2415 2416 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2417 if (!sock) 2418 return err; 2419 2420 compat = in_compat_syscall(); 2421 err = do_sock_getsockopt(sock, compat, level, optname, 2422 USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); 2423 2424 fput_light(sock->file, fput_needed); 2425 return err; 2426 } 2427 2428 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2429 char __user *, optval, int __user *, optlen) 2430 { 2431 return __sys_getsockopt(fd, level, optname, optval, optlen); 2432 } 2433 2434 /* 2435 * Shutdown a socket. 2436 */ 2437 2438 int __sys_shutdown_sock(struct socket *sock, int how) 2439 { 2440 int err; 2441 2442 err = security_socket_shutdown(sock, how); 2443 if (!err) 2444 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2445 2446 return err; 2447 } 2448 2449 int __sys_shutdown(int fd, int how) 2450 { 2451 int err, fput_needed; 2452 struct socket *sock; 2453 2454 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2455 if (sock != NULL) { 2456 err = __sys_shutdown_sock(sock, how); 2457 fput_light(sock->file, fput_needed); 2458 } 2459 return err; 2460 } 2461 2462 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2463 { 2464 return __sys_shutdown(fd, how); 2465 } 2466 2467 /* A couple of helpful macros for getting the address of the 32/64 bit 2468 * fields which are the same type (int / unsigned) on our platforms. 2469 */ 2470 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2471 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2472 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2473 2474 struct used_address { 2475 struct sockaddr_storage name; 2476 unsigned int name_len; 2477 }; 2478 2479 int __copy_msghdr(struct msghdr *kmsg, 2480 struct user_msghdr *msg, 2481 struct sockaddr __user **save_addr) 2482 { 2483 ssize_t err; 2484 2485 kmsg->msg_control_is_user = true; 2486 kmsg->msg_get_inq = 0; 2487 kmsg->msg_control_user = msg->msg_control; 2488 kmsg->msg_controllen = msg->msg_controllen; 2489 kmsg->msg_flags = msg->msg_flags; 2490 2491 kmsg->msg_namelen = msg->msg_namelen; 2492 if (!msg->msg_name) 2493 kmsg->msg_namelen = 0; 2494 2495 if (kmsg->msg_namelen < 0) 2496 return -EINVAL; 2497 2498 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2499 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2500 2501 if (save_addr) 2502 *save_addr = msg->msg_name; 2503 2504 if (msg->msg_name && kmsg->msg_namelen) { 2505 if (!save_addr) { 2506 err = move_addr_to_kernel(msg->msg_name, 2507 kmsg->msg_namelen, 2508 kmsg->msg_name); 2509 if (err < 0) 2510 return err; 2511 } 2512 } else { 2513 kmsg->msg_name = NULL; 2514 kmsg->msg_namelen = 0; 2515 } 2516 2517 if (msg->msg_iovlen > UIO_MAXIOV) 2518 return -EMSGSIZE; 2519 2520 kmsg->msg_iocb = NULL; 2521 kmsg->msg_ubuf = NULL; 2522 return 0; 2523 } 2524 2525 static int copy_msghdr_from_user(struct msghdr *kmsg, 2526 struct user_msghdr __user *umsg, 2527 struct sockaddr __user **save_addr, 2528 struct iovec **iov) 2529 { 2530 struct user_msghdr msg; 2531 ssize_t err; 2532 2533 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2534 return -EFAULT; 2535 2536 err = __copy_msghdr(kmsg, &msg, save_addr); 2537 if (err) 2538 return err; 2539 2540 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2541 msg.msg_iov, msg.msg_iovlen, 2542 UIO_FASTIOV, iov, &kmsg->msg_iter); 2543 return err < 0 ? err : 0; 2544 } 2545 2546 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2547 unsigned int flags, struct used_address *used_address, 2548 unsigned int allowed_msghdr_flags) 2549 { 2550 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2551 __aligned(sizeof(__kernel_size_t)); 2552 /* 20 is size of ipv6_pktinfo */ 2553 unsigned char *ctl_buf = ctl; 2554 int ctl_len; 2555 ssize_t err; 2556 2557 err = -ENOBUFS; 2558 2559 if (msg_sys->msg_controllen > INT_MAX) 2560 goto out; 2561 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2562 ctl_len = msg_sys->msg_controllen; 2563 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2564 err = 2565 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2566 sizeof(ctl)); 2567 if (err) 2568 goto out; 2569 ctl_buf = msg_sys->msg_control; 2570 ctl_len = msg_sys->msg_controllen; 2571 } else if (ctl_len) { 2572 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2573 CMSG_ALIGN(sizeof(struct cmsghdr))); 2574 if (ctl_len > sizeof(ctl)) { 2575 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2576 if (ctl_buf == NULL) 2577 goto out; 2578 } 2579 err = -EFAULT; 2580 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2581 goto out_freectl; 2582 msg_sys->msg_control = ctl_buf; 2583 msg_sys->msg_control_is_user = false; 2584 } 2585 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2586 msg_sys->msg_flags = flags; 2587 2588 if (sock->file->f_flags & O_NONBLOCK) 2589 msg_sys->msg_flags |= MSG_DONTWAIT; 2590 /* 2591 * If this is sendmmsg() and current destination address is same as 2592 * previously succeeded address, omit asking LSM's decision. 2593 * used_address->name_len is initialized to UINT_MAX so that the first 2594 * destination address never matches. 2595 */ 2596 if (used_address && msg_sys->msg_name && 2597 used_address->name_len == msg_sys->msg_namelen && 2598 !memcmp(&used_address->name, msg_sys->msg_name, 2599 used_address->name_len)) { 2600 err = sock_sendmsg_nosec(sock, msg_sys); 2601 goto out_freectl; 2602 } 2603 err = __sock_sendmsg(sock, msg_sys); 2604 /* 2605 * If this is sendmmsg() and sending to current destination address was 2606 * successful, remember it. 2607 */ 2608 if (used_address && err >= 0) { 2609 used_address->name_len = msg_sys->msg_namelen; 2610 if (msg_sys->msg_name) 2611 memcpy(&used_address->name, msg_sys->msg_name, 2612 used_address->name_len); 2613 } 2614 2615 out_freectl: 2616 if (ctl_buf != ctl) 2617 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2618 out: 2619 return err; 2620 } 2621 2622 static int sendmsg_copy_msghdr(struct msghdr *msg, 2623 struct user_msghdr __user *umsg, unsigned flags, 2624 struct iovec **iov) 2625 { 2626 int err; 2627 2628 if (flags & MSG_CMSG_COMPAT) { 2629 struct compat_msghdr __user *msg_compat; 2630 2631 msg_compat = (struct compat_msghdr __user *) umsg; 2632 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2633 } else { 2634 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2635 } 2636 if (err < 0) 2637 return err; 2638 2639 return 0; 2640 } 2641 2642 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2643 struct msghdr *msg_sys, unsigned int flags, 2644 struct used_address *used_address, 2645 unsigned int allowed_msghdr_flags) 2646 { 2647 struct sockaddr_storage address; 2648 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2649 ssize_t err; 2650 2651 msg_sys->msg_name = &address; 2652 2653 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2654 if (err < 0) 2655 return err; 2656 2657 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2658 allowed_msghdr_flags); 2659 kfree(iov); 2660 return err; 2661 } 2662 2663 /* 2664 * BSD sendmsg interface 2665 */ 2666 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2667 unsigned int flags) 2668 { 2669 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2670 } 2671 2672 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2673 bool forbid_cmsg_compat) 2674 { 2675 int fput_needed, err; 2676 struct msghdr msg_sys; 2677 struct socket *sock; 2678 2679 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2680 return -EINVAL; 2681 2682 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2683 if (!sock) 2684 goto out; 2685 2686 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2687 2688 fput_light(sock->file, fput_needed); 2689 out: 2690 return err; 2691 } 2692 2693 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2694 { 2695 return __sys_sendmsg(fd, msg, flags, true); 2696 } 2697 2698 /* 2699 * Linux sendmmsg interface 2700 */ 2701 2702 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2703 unsigned int flags, bool forbid_cmsg_compat) 2704 { 2705 int fput_needed, err, datagrams; 2706 struct socket *sock; 2707 struct mmsghdr __user *entry; 2708 struct compat_mmsghdr __user *compat_entry; 2709 struct msghdr msg_sys; 2710 struct used_address used_address; 2711 unsigned int oflags = flags; 2712 2713 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2714 return -EINVAL; 2715 2716 if (vlen > UIO_MAXIOV) 2717 vlen = UIO_MAXIOV; 2718 2719 datagrams = 0; 2720 2721 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2722 if (!sock) 2723 return err; 2724 2725 used_address.name_len = UINT_MAX; 2726 entry = mmsg; 2727 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2728 err = 0; 2729 flags |= MSG_BATCH; 2730 2731 while (datagrams < vlen) { 2732 if (datagrams == vlen - 1) 2733 flags = oflags; 2734 2735 if (MSG_CMSG_COMPAT & flags) { 2736 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2737 &msg_sys, flags, &used_address, MSG_EOR); 2738 if (err < 0) 2739 break; 2740 err = __put_user(err, &compat_entry->msg_len); 2741 ++compat_entry; 2742 } else { 2743 err = ___sys_sendmsg(sock, 2744 (struct user_msghdr __user *)entry, 2745 &msg_sys, flags, &used_address, MSG_EOR); 2746 if (err < 0) 2747 break; 2748 err = put_user(err, &entry->msg_len); 2749 ++entry; 2750 } 2751 2752 if (err) 2753 break; 2754 ++datagrams; 2755 if (msg_data_left(&msg_sys)) 2756 break; 2757 cond_resched(); 2758 } 2759 2760 fput_light(sock->file, fput_needed); 2761 2762 /* We only return an error if no datagrams were able to be sent */ 2763 if (datagrams != 0) 2764 return datagrams; 2765 2766 return err; 2767 } 2768 2769 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2770 unsigned int, vlen, unsigned int, flags) 2771 { 2772 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2773 } 2774 2775 static int recvmsg_copy_msghdr(struct msghdr *msg, 2776 struct user_msghdr __user *umsg, unsigned flags, 2777 struct sockaddr __user **uaddr, 2778 struct iovec **iov) 2779 { 2780 ssize_t err; 2781 2782 if (MSG_CMSG_COMPAT & flags) { 2783 struct compat_msghdr __user *msg_compat; 2784 2785 msg_compat = (struct compat_msghdr __user *) umsg; 2786 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2787 } else { 2788 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2789 } 2790 if (err < 0) 2791 return err; 2792 2793 return 0; 2794 } 2795 2796 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2797 struct user_msghdr __user *msg, 2798 struct sockaddr __user *uaddr, 2799 unsigned int flags, int nosec) 2800 { 2801 struct compat_msghdr __user *msg_compat = 2802 (struct compat_msghdr __user *) msg; 2803 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2804 struct sockaddr_storage addr; 2805 unsigned long cmsg_ptr; 2806 int len; 2807 ssize_t err; 2808 2809 msg_sys->msg_name = &addr; 2810 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2811 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2812 2813 /* We assume all kernel code knows the size of sockaddr_storage */ 2814 msg_sys->msg_namelen = 0; 2815 2816 if (sock->file->f_flags & O_NONBLOCK) 2817 flags |= MSG_DONTWAIT; 2818 2819 if (unlikely(nosec)) 2820 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2821 else 2822 err = sock_recvmsg(sock, msg_sys, flags); 2823 2824 if (err < 0) 2825 goto out; 2826 len = err; 2827 2828 if (uaddr != NULL) { 2829 err = move_addr_to_user(&addr, 2830 msg_sys->msg_namelen, uaddr, 2831 uaddr_len); 2832 if (err < 0) 2833 goto out; 2834 } 2835 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2836 COMPAT_FLAGS(msg)); 2837 if (err) 2838 goto out; 2839 if (MSG_CMSG_COMPAT & flags) 2840 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2841 &msg_compat->msg_controllen); 2842 else 2843 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2844 &msg->msg_controllen); 2845 if (err) 2846 goto out; 2847 err = len; 2848 out: 2849 return err; 2850 } 2851 2852 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2853 struct msghdr *msg_sys, unsigned int flags, int nosec) 2854 { 2855 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2856 /* user mode address pointers */ 2857 struct sockaddr __user *uaddr; 2858 ssize_t err; 2859 2860 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2861 if (err < 0) 2862 return err; 2863 2864 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2865 kfree(iov); 2866 return err; 2867 } 2868 2869 /* 2870 * BSD recvmsg interface 2871 */ 2872 2873 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2874 struct user_msghdr __user *umsg, 2875 struct sockaddr __user *uaddr, unsigned int flags) 2876 { 2877 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2878 } 2879 2880 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2881 bool forbid_cmsg_compat) 2882 { 2883 int fput_needed, err; 2884 struct msghdr msg_sys; 2885 struct socket *sock; 2886 2887 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2888 return -EINVAL; 2889 2890 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2891 if (!sock) 2892 goto out; 2893 2894 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2895 2896 fput_light(sock->file, fput_needed); 2897 out: 2898 return err; 2899 } 2900 2901 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2902 unsigned int, flags) 2903 { 2904 return __sys_recvmsg(fd, msg, flags, true); 2905 } 2906 2907 /* 2908 * Linux recvmmsg interface 2909 */ 2910 2911 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2912 unsigned int vlen, unsigned int flags, 2913 struct timespec64 *timeout) 2914 { 2915 int fput_needed, err, datagrams; 2916 struct socket *sock; 2917 struct mmsghdr __user *entry; 2918 struct compat_mmsghdr __user *compat_entry; 2919 struct msghdr msg_sys; 2920 struct timespec64 end_time; 2921 struct timespec64 timeout64; 2922 2923 if (timeout && 2924 poll_select_set_timeout(&end_time, timeout->tv_sec, 2925 timeout->tv_nsec)) 2926 return -EINVAL; 2927 2928 datagrams = 0; 2929 2930 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2931 if (!sock) 2932 return err; 2933 2934 if (likely(!(flags & MSG_ERRQUEUE))) { 2935 err = sock_error(sock->sk); 2936 if (err) { 2937 datagrams = err; 2938 goto out_put; 2939 } 2940 } 2941 2942 entry = mmsg; 2943 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2944 2945 while (datagrams < vlen) { 2946 /* 2947 * No need to ask LSM for more than the first datagram. 2948 */ 2949 if (MSG_CMSG_COMPAT & flags) { 2950 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2951 &msg_sys, flags & ~MSG_WAITFORONE, 2952 datagrams); 2953 if (err < 0) 2954 break; 2955 err = __put_user(err, &compat_entry->msg_len); 2956 ++compat_entry; 2957 } else { 2958 err = ___sys_recvmsg(sock, 2959 (struct user_msghdr __user *)entry, 2960 &msg_sys, flags & ~MSG_WAITFORONE, 2961 datagrams); 2962 if (err < 0) 2963 break; 2964 err = put_user(err, &entry->msg_len); 2965 ++entry; 2966 } 2967 2968 if (err) 2969 break; 2970 ++datagrams; 2971 2972 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2973 if (flags & MSG_WAITFORONE) 2974 flags |= MSG_DONTWAIT; 2975 2976 if (timeout) { 2977 ktime_get_ts64(&timeout64); 2978 *timeout = timespec64_sub(end_time, timeout64); 2979 if (timeout->tv_sec < 0) { 2980 timeout->tv_sec = timeout->tv_nsec = 0; 2981 break; 2982 } 2983 2984 /* Timeout, return less than vlen datagrams */ 2985 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2986 break; 2987 } 2988 2989 /* Out of band data, return right away */ 2990 if (msg_sys.msg_flags & MSG_OOB) 2991 break; 2992 cond_resched(); 2993 } 2994 2995 if (err == 0) 2996 goto out_put; 2997 2998 if (datagrams == 0) { 2999 datagrams = err; 3000 goto out_put; 3001 } 3002 3003 /* 3004 * We may return less entries than requested (vlen) if the 3005 * sock is non block and there aren't enough datagrams... 3006 */ 3007 if (err != -EAGAIN) { 3008 /* 3009 * ... or if recvmsg returns an error after we 3010 * received some datagrams, where we record the 3011 * error to return on the next call or if the 3012 * app asks about it using getsockopt(SO_ERROR). 3013 */ 3014 WRITE_ONCE(sock->sk->sk_err, -err); 3015 } 3016 out_put: 3017 fput_light(sock->file, fput_needed); 3018 3019 return datagrams; 3020 } 3021 3022 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 3023 unsigned int vlen, unsigned int flags, 3024 struct __kernel_timespec __user *timeout, 3025 struct old_timespec32 __user *timeout32) 3026 { 3027 int datagrams; 3028 struct timespec64 timeout_sys; 3029 3030 if (timeout && get_timespec64(&timeout_sys, timeout)) 3031 return -EFAULT; 3032 3033 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 3034 return -EFAULT; 3035 3036 if (!timeout && !timeout32) 3037 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 3038 3039 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 3040 3041 if (datagrams <= 0) 3042 return datagrams; 3043 3044 if (timeout && put_timespec64(&timeout_sys, timeout)) 3045 datagrams = -EFAULT; 3046 3047 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 3048 datagrams = -EFAULT; 3049 3050 return datagrams; 3051 } 3052 3053 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 3054 unsigned int, vlen, unsigned int, flags, 3055 struct __kernel_timespec __user *, timeout) 3056 { 3057 if (flags & MSG_CMSG_COMPAT) 3058 return -EINVAL; 3059 3060 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 3061 } 3062 3063 #ifdef CONFIG_COMPAT_32BIT_TIME 3064 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3065 unsigned int, vlen, unsigned int, flags, 3066 struct old_timespec32 __user *, timeout) 3067 { 3068 if (flags & MSG_CMSG_COMPAT) 3069 return -EINVAL; 3070 3071 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3072 } 3073 #endif 3074 3075 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3076 /* Argument list sizes for sys_socketcall */ 3077 #define AL(x) ((x) * sizeof(unsigned long)) 3078 static const unsigned char nargs[21] = { 3079 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3080 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3081 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3082 AL(4), AL(5), AL(4) 3083 }; 3084 3085 #undef AL 3086 3087 /* 3088 * System call vectors. 3089 * 3090 * Argument checking cleaned up. Saved 20% in size. 3091 * This function doesn't need to set the kernel lock because 3092 * it is set by the callees. 3093 */ 3094 3095 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3096 { 3097 unsigned long a[AUDITSC_ARGS]; 3098 unsigned long a0, a1; 3099 int err; 3100 unsigned int len; 3101 3102 if (call < 1 || call > SYS_SENDMMSG) 3103 return -EINVAL; 3104 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3105 3106 len = nargs[call]; 3107 if (len > sizeof(a)) 3108 return -EINVAL; 3109 3110 /* copy_from_user should be SMP safe. */ 3111 if (copy_from_user(a, args, len)) 3112 return -EFAULT; 3113 3114 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3115 if (err) 3116 return err; 3117 3118 a0 = a[0]; 3119 a1 = a[1]; 3120 3121 switch (call) { 3122 case SYS_SOCKET: 3123 err = __sys_socket(a0, a1, a[2]); 3124 break; 3125 case SYS_BIND: 3126 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3127 break; 3128 case SYS_CONNECT: 3129 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3130 break; 3131 case SYS_LISTEN: 3132 err = __sys_listen(a0, a1); 3133 break; 3134 case SYS_ACCEPT: 3135 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3136 (int __user *)a[2], 0); 3137 break; 3138 case SYS_GETSOCKNAME: 3139 err = 3140 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3141 (int __user *)a[2]); 3142 break; 3143 case SYS_GETPEERNAME: 3144 err = 3145 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3146 (int __user *)a[2]); 3147 break; 3148 case SYS_SOCKETPAIR: 3149 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3150 break; 3151 case SYS_SEND: 3152 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3153 NULL, 0); 3154 break; 3155 case SYS_SENDTO: 3156 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3157 (struct sockaddr __user *)a[4], a[5]); 3158 break; 3159 case SYS_RECV: 3160 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3161 NULL, NULL); 3162 break; 3163 case SYS_RECVFROM: 3164 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3165 (struct sockaddr __user *)a[4], 3166 (int __user *)a[5]); 3167 break; 3168 case SYS_SHUTDOWN: 3169 err = __sys_shutdown(a0, a1); 3170 break; 3171 case SYS_SETSOCKOPT: 3172 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3173 a[4]); 3174 break; 3175 case SYS_GETSOCKOPT: 3176 err = 3177 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3178 (int __user *)a[4]); 3179 break; 3180 case SYS_SENDMSG: 3181 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3182 a[2], true); 3183 break; 3184 case SYS_SENDMMSG: 3185 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3186 a[3], true); 3187 break; 3188 case SYS_RECVMSG: 3189 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3190 a[2], true); 3191 break; 3192 case SYS_RECVMMSG: 3193 if (IS_ENABLED(CONFIG_64BIT)) 3194 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3195 a[2], a[3], 3196 (struct __kernel_timespec __user *)a[4], 3197 NULL); 3198 else 3199 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3200 a[2], a[3], NULL, 3201 (struct old_timespec32 __user *)a[4]); 3202 break; 3203 case SYS_ACCEPT4: 3204 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3205 (int __user *)a[2], a[3]); 3206 break; 3207 default: 3208 err = -EINVAL; 3209 break; 3210 } 3211 return err; 3212 } 3213 3214 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3215 3216 /** 3217 * sock_register - add a socket protocol handler 3218 * @ops: description of protocol 3219 * 3220 * This function is called by a protocol handler that wants to 3221 * advertise its address family, and have it linked into the 3222 * socket interface. The value ops->family corresponds to the 3223 * socket system call protocol family. 3224 */ 3225 int sock_register(const struct net_proto_family *ops) 3226 { 3227 int err; 3228 3229 if (ops->family >= NPROTO) { 3230 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3231 return -ENOBUFS; 3232 } 3233 3234 spin_lock(&net_family_lock); 3235 if (rcu_dereference_protected(net_families[ops->family], 3236 lockdep_is_held(&net_family_lock))) 3237 err = -EEXIST; 3238 else { 3239 rcu_assign_pointer(net_families[ops->family], ops); 3240 err = 0; 3241 } 3242 spin_unlock(&net_family_lock); 3243 3244 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3245 return err; 3246 } 3247 EXPORT_SYMBOL(sock_register); 3248 3249 /** 3250 * sock_unregister - remove a protocol handler 3251 * @family: protocol family to remove 3252 * 3253 * This function is called by a protocol handler that wants to 3254 * remove its address family, and have it unlinked from the 3255 * new socket creation. 3256 * 3257 * If protocol handler is a module, then it can use module reference 3258 * counts to protect against new references. If protocol handler is not 3259 * a module then it needs to provide its own protection in 3260 * the ops->create routine. 3261 */ 3262 void sock_unregister(int family) 3263 { 3264 BUG_ON(family < 0 || family >= NPROTO); 3265 3266 spin_lock(&net_family_lock); 3267 RCU_INIT_POINTER(net_families[family], NULL); 3268 spin_unlock(&net_family_lock); 3269 3270 synchronize_rcu(); 3271 3272 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3273 } 3274 EXPORT_SYMBOL(sock_unregister); 3275 3276 bool sock_is_registered(int family) 3277 { 3278 return family < NPROTO && rcu_access_pointer(net_families[family]); 3279 } 3280 3281 static int __init sock_init(void) 3282 { 3283 int err; 3284 /* 3285 * Initialize the network sysctl infrastructure. 3286 */ 3287 err = net_sysctl_init(); 3288 if (err) 3289 goto out; 3290 3291 /* 3292 * Initialize skbuff SLAB cache 3293 */ 3294 skb_init(); 3295 3296 /* 3297 * Initialize the protocols module. 3298 */ 3299 3300 init_inodecache(); 3301 3302 err = register_filesystem(&sock_fs_type); 3303 if (err) 3304 goto out; 3305 sock_mnt = kern_mount(&sock_fs_type); 3306 if (IS_ERR(sock_mnt)) { 3307 err = PTR_ERR(sock_mnt); 3308 goto out_mount; 3309 } 3310 3311 /* The real protocol initialization is performed in later initcalls. 3312 */ 3313 3314 #ifdef CONFIG_NETFILTER 3315 err = netfilter_init(); 3316 if (err) 3317 goto out; 3318 #endif 3319 3320 ptp_classifier_init(); 3321 3322 out: 3323 return err; 3324 3325 out_mount: 3326 unregister_filesystem(&sock_fs_type); 3327 goto out; 3328 } 3329 3330 core_initcall(sock_init); /* early initcall */ 3331 3332 #ifdef CONFIG_PROC_FS 3333 void socket_seq_show(struct seq_file *seq) 3334 { 3335 seq_printf(seq, "sockets: used %d\n", 3336 sock_inuse_get(seq->private)); 3337 } 3338 #endif /* CONFIG_PROC_FS */ 3339 3340 /* Handle the fact that while struct ifreq has the same *layout* on 3341 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3342 * which are handled elsewhere, it still has different *size* due to 3343 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3344 * resulting in struct ifreq being 32 and 40 bytes respectively). 3345 * As a result, if the struct happens to be at the end of a page and 3346 * the next page isn't readable/writable, we get a fault. To prevent 3347 * that, copy back and forth to the full size. 3348 */ 3349 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3350 { 3351 if (in_compat_syscall()) { 3352 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3353 3354 memset(ifr, 0, sizeof(*ifr)); 3355 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3356 return -EFAULT; 3357 3358 if (ifrdata) 3359 *ifrdata = compat_ptr(ifr32->ifr_data); 3360 3361 return 0; 3362 } 3363 3364 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3365 return -EFAULT; 3366 3367 if (ifrdata) 3368 *ifrdata = ifr->ifr_data; 3369 3370 return 0; 3371 } 3372 EXPORT_SYMBOL(get_user_ifreq); 3373 3374 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3375 { 3376 size_t size = sizeof(*ifr); 3377 3378 if (in_compat_syscall()) 3379 size = sizeof(struct compat_ifreq); 3380 3381 if (copy_to_user(arg, ifr, size)) 3382 return -EFAULT; 3383 3384 return 0; 3385 } 3386 EXPORT_SYMBOL(put_user_ifreq); 3387 3388 #ifdef CONFIG_COMPAT 3389 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3390 { 3391 compat_uptr_t uptr32; 3392 struct ifreq ifr; 3393 void __user *saved; 3394 int err; 3395 3396 if (get_user_ifreq(&ifr, NULL, uifr32)) 3397 return -EFAULT; 3398 3399 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3400 return -EFAULT; 3401 3402 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3403 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3404 3405 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3406 if (!err) { 3407 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3408 if (put_user_ifreq(&ifr, uifr32)) 3409 err = -EFAULT; 3410 } 3411 return err; 3412 } 3413 3414 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3415 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3416 struct compat_ifreq __user *u_ifreq32) 3417 { 3418 struct ifreq ifreq; 3419 void __user *data; 3420 3421 if (!is_socket_ioctl_cmd(cmd)) 3422 return -ENOTTY; 3423 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3424 return -EFAULT; 3425 ifreq.ifr_data = data; 3426 3427 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3428 } 3429 3430 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3431 unsigned int cmd, unsigned long arg) 3432 { 3433 void __user *argp = compat_ptr(arg); 3434 struct sock *sk = sock->sk; 3435 struct net *net = sock_net(sk); 3436 const struct proto_ops *ops; 3437 3438 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3439 return sock_ioctl(file, cmd, (unsigned long)argp); 3440 3441 switch (cmd) { 3442 case SIOCWANDEV: 3443 return compat_siocwandev(net, argp); 3444 case SIOCGSTAMP_OLD: 3445 case SIOCGSTAMPNS_OLD: 3446 ops = READ_ONCE(sock->ops); 3447 if (!ops->gettstamp) 3448 return -ENOIOCTLCMD; 3449 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3450 !COMPAT_USE_64BIT_TIME); 3451 3452 case SIOCETHTOOL: 3453 case SIOCBONDSLAVEINFOQUERY: 3454 case SIOCBONDINFOQUERY: 3455 case SIOCSHWTSTAMP: 3456 case SIOCGHWTSTAMP: 3457 return compat_ifr_data_ioctl(net, cmd, argp); 3458 3459 case FIOSETOWN: 3460 case SIOCSPGRP: 3461 case FIOGETOWN: 3462 case SIOCGPGRP: 3463 case SIOCBRADDBR: 3464 case SIOCBRDELBR: 3465 case SIOCGIFVLAN: 3466 case SIOCSIFVLAN: 3467 case SIOCGSKNS: 3468 case SIOCGSTAMP_NEW: 3469 case SIOCGSTAMPNS_NEW: 3470 case SIOCGIFCONF: 3471 case SIOCSIFBR: 3472 case SIOCGIFBR: 3473 return sock_ioctl(file, cmd, arg); 3474 3475 case SIOCGIFFLAGS: 3476 case SIOCSIFFLAGS: 3477 case SIOCGIFMAP: 3478 case SIOCSIFMAP: 3479 case SIOCGIFMETRIC: 3480 case SIOCSIFMETRIC: 3481 case SIOCGIFMTU: 3482 case SIOCSIFMTU: 3483 case SIOCGIFMEM: 3484 case SIOCSIFMEM: 3485 case SIOCGIFHWADDR: 3486 case SIOCSIFHWADDR: 3487 case SIOCADDMULTI: 3488 case SIOCDELMULTI: 3489 case SIOCGIFINDEX: 3490 case SIOCGIFADDR: 3491 case SIOCSIFADDR: 3492 case SIOCSIFHWBROADCAST: 3493 case SIOCDIFADDR: 3494 case SIOCGIFBRDADDR: 3495 case SIOCSIFBRDADDR: 3496 case SIOCGIFDSTADDR: 3497 case SIOCSIFDSTADDR: 3498 case SIOCGIFNETMASK: 3499 case SIOCSIFNETMASK: 3500 case SIOCSIFPFLAGS: 3501 case SIOCGIFPFLAGS: 3502 case SIOCGIFTXQLEN: 3503 case SIOCSIFTXQLEN: 3504 case SIOCBRADDIF: 3505 case SIOCBRDELIF: 3506 case SIOCGIFNAME: 3507 case SIOCSIFNAME: 3508 case SIOCGMIIPHY: 3509 case SIOCGMIIREG: 3510 case SIOCSMIIREG: 3511 case SIOCBONDENSLAVE: 3512 case SIOCBONDRELEASE: 3513 case SIOCBONDSETHWADDR: 3514 case SIOCBONDCHANGEACTIVE: 3515 case SIOCSARP: 3516 case SIOCGARP: 3517 case SIOCDARP: 3518 case SIOCOUTQ: 3519 case SIOCOUTQNSD: 3520 case SIOCATMARK: 3521 return sock_do_ioctl(net, sock, cmd, arg); 3522 } 3523 3524 return -ENOIOCTLCMD; 3525 } 3526 3527 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3528 unsigned long arg) 3529 { 3530 struct socket *sock = file->private_data; 3531 const struct proto_ops *ops = READ_ONCE(sock->ops); 3532 int ret = -ENOIOCTLCMD; 3533 struct sock *sk; 3534 struct net *net; 3535 3536 sk = sock->sk; 3537 net = sock_net(sk); 3538 3539 if (ops->compat_ioctl) 3540 ret = ops->compat_ioctl(sock, cmd, arg); 3541 3542 if (ret == -ENOIOCTLCMD && 3543 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3544 ret = compat_wext_handle_ioctl(net, cmd, arg); 3545 3546 if (ret == -ENOIOCTLCMD) 3547 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3548 3549 return ret; 3550 } 3551 #endif 3552 3553 /** 3554 * kernel_bind - bind an address to a socket (kernel space) 3555 * @sock: socket 3556 * @addr: address 3557 * @addrlen: length of address 3558 * 3559 * Returns 0 or an error. 3560 */ 3561 3562 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3563 { 3564 struct sockaddr_storage address; 3565 3566 memcpy(&address, addr, addrlen); 3567 3568 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, 3569 addrlen); 3570 } 3571 EXPORT_SYMBOL(kernel_bind); 3572 3573 /** 3574 * kernel_listen - move socket to listening state (kernel space) 3575 * @sock: socket 3576 * @backlog: pending connections queue size 3577 * 3578 * Returns 0 or an error. 3579 */ 3580 3581 int kernel_listen(struct socket *sock, int backlog) 3582 { 3583 return READ_ONCE(sock->ops)->listen(sock, backlog); 3584 } 3585 EXPORT_SYMBOL(kernel_listen); 3586 3587 /** 3588 * kernel_accept - accept a connection (kernel space) 3589 * @sock: listening socket 3590 * @newsock: new connected socket 3591 * @flags: flags 3592 * 3593 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3594 * If it fails, @newsock is guaranteed to be %NULL. 3595 * Returns 0 or an error. 3596 */ 3597 3598 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3599 { 3600 struct sock *sk = sock->sk; 3601 const struct proto_ops *ops = READ_ONCE(sock->ops); 3602 struct proto_accept_arg arg = { 3603 .flags = flags, 3604 .kern = true, 3605 }; 3606 int err; 3607 3608 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3609 newsock); 3610 if (err < 0) 3611 goto done; 3612 3613 err = ops->accept(sock, *newsock, &arg); 3614 if (err < 0) { 3615 sock_release(*newsock); 3616 *newsock = NULL; 3617 goto done; 3618 } 3619 3620 (*newsock)->ops = ops; 3621 __module_get(ops->owner); 3622 3623 done: 3624 return err; 3625 } 3626 EXPORT_SYMBOL(kernel_accept); 3627 3628 /** 3629 * kernel_connect - connect a socket (kernel space) 3630 * @sock: socket 3631 * @addr: address 3632 * @addrlen: address length 3633 * @flags: flags (O_NONBLOCK, ...) 3634 * 3635 * For datagram sockets, @addr is the address to which datagrams are sent 3636 * by default, and the only address from which datagrams are received. 3637 * For stream sockets, attempts to connect to @addr. 3638 * Returns 0 or an error code. 3639 */ 3640 3641 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3642 int flags) 3643 { 3644 struct sockaddr_storage address; 3645 3646 memcpy(&address, addr, addrlen); 3647 3648 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3649 addrlen, flags); 3650 } 3651 EXPORT_SYMBOL(kernel_connect); 3652 3653 /** 3654 * kernel_getsockname - get the address which the socket is bound (kernel space) 3655 * @sock: socket 3656 * @addr: address holder 3657 * 3658 * Fills the @addr pointer with the address which the socket is bound. 3659 * Returns the length of the address in bytes or an error code. 3660 */ 3661 3662 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3663 { 3664 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3665 } 3666 EXPORT_SYMBOL(kernel_getsockname); 3667 3668 /** 3669 * kernel_getpeername - get the address which the socket is connected (kernel space) 3670 * @sock: socket 3671 * @addr: address holder 3672 * 3673 * Fills the @addr pointer with the address which the socket is connected. 3674 * Returns the length of the address in bytes or an error code. 3675 */ 3676 3677 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3678 { 3679 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3680 } 3681 EXPORT_SYMBOL(kernel_getpeername); 3682 3683 /** 3684 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3685 * @sock: socket 3686 * @how: connection part 3687 * 3688 * Returns 0 or an error. 3689 */ 3690 3691 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3692 { 3693 return READ_ONCE(sock->ops)->shutdown(sock, how); 3694 } 3695 EXPORT_SYMBOL(kernel_sock_shutdown); 3696 3697 /** 3698 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3699 * @sk: socket 3700 * 3701 * This routine returns the IP overhead imposed by a socket i.e. 3702 * the length of the underlying IP header, depending on whether 3703 * this is an IPv4 or IPv6 socket and the length from IP options turned 3704 * on at the socket. Assumes that the caller has a lock on the socket. 3705 */ 3706 3707 u32 kernel_sock_ip_overhead(struct sock *sk) 3708 { 3709 struct inet_sock *inet; 3710 struct ip_options_rcu *opt; 3711 u32 overhead = 0; 3712 #if IS_ENABLED(CONFIG_IPV6) 3713 struct ipv6_pinfo *np; 3714 struct ipv6_txoptions *optv6 = NULL; 3715 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3716 3717 if (!sk) 3718 return overhead; 3719 3720 switch (sk->sk_family) { 3721 case AF_INET: 3722 inet = inet_sk(sk); 3723 overhead += sizeof(struct iphdr); 3724 opt = rcu_dereference_protected(inet->inet_opt, 3725 sock_owned_by_user(sk)); 3726 if (opt) 3727 overhead += opt->opt.optlen; 3728 return overhead; 3729 #if IS_ENABLED(CONFIG_IPV6) 3730 case AF_INET6: 3731 np = inet6_sk(sk); 3732 overhead += sizeof(struct ipv6hdr); 3733 if (np) 3734 optv6 = rcu_dereference_protected(np->opt, 3735 sock_owned_by_user(sk)); 3736 if (optv6) 3737 overhead += (optv6->opt_flen + optv6->opt_nflen); 3738 return overhead; 3739 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3740 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3741 return overhead; 3742 } 3743 } 3744 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3745