1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 112 unsigned long nr_segs, loff_t pos); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static unsigned int sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .aio_read = sock_aio_read, 139 .aio_write = sock_aio_write, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .open = sock_no_open, /* special open code to disallow open via /proc */ 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Statistics counters of the socket lists 163 */ 164 165 static DEFINE_PER_CPU(int, sockets_in_use); 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 static int move_addr_to_user(struct sockaddr *kaddr, int klen, 213 void __user *uaddr, int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL); 248 if (!ei->socket.wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&ei->socket.wq->wait); 253 ei->socket.wq->fasync_list = NULL; 254 255 ei->socket.state = SS_UNCONNECTED; 256 ei->socket.flags = 0; 257 ei->socket.ops = NULL; 258 ei->socket.sk = NULL; 259 ei->socket.file = NULL; 260 261 return &ei->vfs_inode; 262 } 263 264 265 266 static void wq_free_rcu(struct rcu_head *head) 267 { 268 struct socket_wq *wq = container_of(head, struct socket_wq, rcu); 269 270 kfree(wq); 271 } 272 273 static void sock_destroy_inode(struct inode *inode) 274 { 275 struct socket_alloc *ei; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 call_rcu(&ei->socket.wq->rcu, wq_free_rcu); 279 kmem_cache_free(sock_inode_cachep, ei); 280 } 281 282 static void init_once(void *foo) 283 { 284 struct socket_alloc *ei = (struct socket_alloc *)foo; 285 286 inode_init_once(&ei->vfs_inode); 287 } 288 289 static int init_inodecache(void) 290 { 291 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 292 sizeof(struct socket_alloc), 293 0, 294 (SLAB_HWCACHE_ALIGN | 295 SLAB_RECLAIM_ACCOUNT | 296 SLAB_MEM_SPREAD), 297 init_once); 298 if (sock_inode_cachep == NULL) 299 return -ENOMEM; 300 return 0; 301 } 302 303 static const struct super_operations sockfs_ops = { 304 .alloc_inode = sock_alloc_inode, 305 .destroy_inode = sock_destroy_inode, 306 .statfs = simple_statfs, 307 }; 308 309 /* 310 * sockfs_dname() is called from d_path(). 311 */ 312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 313 { 314 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 315 dentry->d_inode->i_ino); 316 } 317 318 static const struct dentry_operations sockfs_dentry_operations = { 319 .d_dname = sockfs_dname, 320 }; 321 322 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 323 int flags, const char *dev_name, void *data) 324 { 325 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 326 &sockfs_dentry_operations, SOCKFS_MAGIC); 327 } 328 329 static struct vfsmount *sock_mnt __read_mostly; 330 331 static struct file_system_type sock_fs_type = { 332 .name = "sockfs", 333 .mount = sockfs_mount, 334 .kill_sb = kill_anon_super, 335 }; 336 337 /* 338 * Obtains the first available file descriptor and sets it up for use. 339 * 340 * These functions create file structures and maps them to fd space 341 * of the current process. On success it returns file descriptor 342 * and file struct implicitly stored in sock->file. 343 * Note that another thread may close file descriptor before we return 344 * from this function. We use the fact that now we do not refer 345 * to socket after mapping. If one day we will need it, this 346 * function will increment ref. count on file by 1. 347 * 348 * In any case returned fd MAY BE not valid! 349 * This race condition is unavoidable 350 * with shared fd spaces, we cannot solve it inside kernel, 351 * but we take care of internal coherence yet. 352 */ 353 354 static int sock_alloc_file(struct socket *sock, struct file **f, int flags) 355 { 356 struct qstr name = { .name = "" }; 357 struct path path; 358 struct file *file; 359 int fd; 360 361 fd = get_unused_fd_flags(flags); 362 if (unlikely(fd < 0)) 363 return fd; 364 365 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 366 if (unlikely(!path.dentry)) { 367 put_unused_fd(fd); 368 return -ENOMEM; 369 } 370 path.mnt = mntget(sock_mnt); 371 372 d_instantiate(path.dentry, SOCK_INODE(sock)); 373 SOCK_INODE(sock)->i_fop = &socket_file_ops; 374 375 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 376 &socket_file_ops); 377 if (unlikely(!file)) { 378 /* drop dentry, keep inode */ 379 ihold(path.dentry->d_inode); 380 path_put(&path); 381 put_unused_fd(fd); 382 return -ENFILE; 383 } 384 385 sock->file = file; 386 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 387 file->f_pos = 0; 388 file->private_data = sock; 389 390 *f = file; 391 return fd; 392 } 393 394 int sock_map_fd(struct socket *sock, int flags) 395 { 396 struct file *newfile; 397 int fd = sock_alloc_file(sock, &newfile, flags); 398 399 if (likely(fd >= 0)) 400 fd_install(fd, newfile); 401 402 return fd; 403 } 404 EXPORT_SYMBOL(sock_map_fd); 405 406 static struct socket *sock_from_file(struct file *file, int *err) 407 { 408 if (file->f_op == &socket_file_ops) 409 return file->private_data; /* set in sock_map_fd */ 410 411 *err = -ENOTSOCK; 412 return NULL; 413 } 414 415 /** 416 * sockfd_lookup - Go from a file number to its socket slot 417 * @fd: file handle 418 * @err: pointer to an error code return 419 * 420 * The file handle passed in is locked and the socket it is bound 421 * too is returned. If an error occurs the err pointer is overwritten 422 * with a negative errno code and NULL is returned. The function checks 423 * for both invalid handles and passing a handle which is not a socket. 424 * 425 * On a success the socket object pointer is returned. 426 */ 427 428 struct socket *sockfd_lookup(int fd, int *err) 429 { 430 struct file *file; 431 struct socket *sock; 432 433 file = fget(fd); 434 if (!file) { 435 *err = -EBADF; 436 return NULL; 437 } 438 439 sock = sock_from_file(file, err); 440 if (!sock) 441 fput(file); 442 return sock; 443 } 444 EXPORT_SYMBOL(sockfd_lookup); 445 446 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 447 { 448 struct file *file; 449 struct socket *sock; 450 451 *err = -EBADF; 452 file = fget_light(fd, fput_needed); 453 if (file) { 454 sock = sock_from_file(file, err); 455 if (sock) 456 return sock; 457 fput_light(file, *fput_needed); 458 } 459 return NULL; 460 } 461 462 /** 463 * sock_alloc - allocate a socket 464 * 465 * Allocate a new inode and socket object. The two are bound together 466 * and initialised. The socket is then returned. If we are out of inodes 467 * NULL is returned. 468 */ 469 470 static struct socket *sock_alloc(void) 471 { 472 struct inode *inode; 473 struct socket *sock; 474 475 inode = new_inode(sock_mnt->mnt_sb); 476 if (!inode) 477 return NULL; 478 479 sock = SOCKET_I(inode); 480 481 kmemcheck_annotate_bitfield(sock, type); 482 inode->i_ino = get_next_ino(); 483 inode->i_mode = S_IFSOCK | S_IRWXUGO; 484 inode->i_uid = current_fsuid(); 485 inode->i_gid = current_fsgid(); 486 487 percpu_add(sockets_in_use, 1); 488 return sock; 489 } 490 491 /* 492 * In theory you can't get an open on this inode, but /proc provides 493 * a back door. Remember to keep it shut otherwise you'll let the 494 * creepy crawlies in. 495 */ 496 497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 498 { 499 return -ENXIO; 500 } 501 502 const struct file_operations bad_sock_fops = { 503 .owner = THIS_MODULE, 504 .open = sock_no_open, 505 .llseek = noop_llseek, 506 }; 507 508 /** 509 * sock_release - close a socket 510 * @sock: socket to close 511 * 512 * The socket is released from the protocol stack if it has a release 513 * callback, and the inode is then released if the socket is bound to 514 * an inode not a file. 515 */ 516 517 void sock_release(struct socket *sock) 518 { 519 if (sock->ops) { 520 struct module *owner = sock->ops->owner; 521 522 sock->ops->release(sock); 523 sock->ops = NULL; 524 module_put(owner); 525 } 526 527 if (sock->wq->fasync_list) 528 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 529 530 percpu_sub(sockets_in_use, 1); 531 if (!sock->file) { 532 iput(SOCK_INODE(sock)); 533 return; 534 } 535 sock->file = NULL; 536 } 537 EXPORT_SYMBOL(sock_release); 538 539 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 540 { 541 *tx_flags = 0; 542 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 543 *tx_flags |= SKBTX_HW_TSTAMP; 544 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 545 *tx_flags |= SKBTX_SW_TSTAMP; 546 return 0; 547 } 548 EXPORT_SYMBOL(sock_tx_timestamp); 549 550 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 551 struct msghdr *msg, size_t size) 552 { 553 struct sock_iocb *si = kiocb_to_siocb(iocb); 554 int err; 555 556 sock_update_classid(sock->sk); 557 558 si->sock = sock; 559 si->scm = NULL; 560 si->msg = msg; 561 si->size = size; 562 563 err = security_socket_sendmsg(sock, msg, size); 564 if (err) 565 return err; 566 567 return sock->ops->sendmsg(iocb, sock, msg, size); 568 } 569 570 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 571 { 572 struct kiocb iocb; 573 struct sock_iocb siocb; 574 int ret; 575 576 init_sync_kiocb(&iocb, NULL); 577 iocb.private = &siocb; 578 ret = __sock_sendmsg(&iocb, sock, msg, size); 579 if (-EIOCBQUEUED == ret) 580 ret = wait_on_sync_kiocb(&iocb); 581 return ret; 582 } 583 EXPORT_SYMBOL(sock_sendmsg); 584 585 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 586 struct kvec *vec, size_t num, size_t size) 587 { 588 mm_segment_t oldfs = get_fs(); 589 int result; 590 591 set_fs(KERNEL_DS); 592 /* 593 * the following is safe, since for compiler definitions of kvec and 594 * iovec are identical, yielding the same in-core layout and alignment 595 */ 596 msg->msg_iov = (struct iovec *)vec; 597 msg->msg_iovlen = num; 598 result = sock_sendmsg(sock, msg, size); 599 set_fs(oldfs); 600 return result; 601 } 602 EXPORT_SYMBOL(kernel_sendmsg); 603 604 static int ktime2ts(ktime_t kt, struct timespec *ts) 605 { 606 if (kt.tv64) { 607 *ts = ktime_to_timespec(kt); 608 return 1; 609 } else { 610 return 0; 611 } 612 } 613 614 /* 615 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 616 */ 617 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 618 struct sk_buff *skb) 619 { 620 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 621 struct timespec ts[3]; 622 int empty = 1; 623 struct skb_shared_hwtstamps *shhwtstamps = 624 skb_hwtstamps(skb); 625 626 /* Race occurred between timestamp enabling and packet 627 receiving. Fill in the current time for now. */ 628 if (need_software_tstamp && skb->tstamp.tv64 == 0) 629 __net_timestamp(skb); 630 631 if (need_software_tstamp) { 632 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 633 struct timeval tv; 634 skb_get_timestamp(skb, &tv); 635 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 636 sizeof(tv), &tv); 637 } else { 638 skb_get_timestampns(skb, &ts[0]); 639 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 640 sizeof(ts[0]), &ts[0]); 641 } 642 } 643 644 645 memset(ts, 0, sizeof(ts)); 646 if (skb->tstamp.tv64 && 647 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 648 skb_get_timestampns(skb, ts + 0); 649 empty = 0; 650 } 651 if (shhwtstamps) { 652 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 653 ktime2ts(shhwtstamps->syststamp, ts + 1)) 654 empty = 0; 655 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 656 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 657 empty = 0; 658 } 659 if (!empty) 660 put_cmsg(msg, SOL_SOCKET, 661 SCM_TIMESTAMPING, sizeof(ts), &ts); 662 } 663 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 664 665 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 666 struct sk_buff *skb) 667 { 668 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 669 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 670 sizeof(__u32), &skb->dropcount); 671 } 672 673 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 674 struct sk_buff *skb) 675 { 676 sock_recv_timestamp(msg, sk, skb); 677 sock_recv_drops(msg, sk, skb); 678 } 679 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 680 681 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 682 struct msghdr *msg, size_t size, int flags) 683 { 684 struct sock_iocb *si = kiocb_to_siocb(iocb); 685 686 sock_update_classid(sock->sk); 687 688 si->sock = sock; 689 si->scm = NULL; 690 si->msg = msg; 691 si->size = size; 692 si->flags = flags; 693 694 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 695 } 696 697 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 698 struct msghdr *msg, size_t size, int flags) 699 { 700 int err = security_socket_recvmsg(sock, msg, size, flags); 701 702 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 703 } 704 705 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 706 size_t size, int flags) 707 { 708 struct kiocb iocb; 709 struct sock_iocb siocb; 710 int ret; 711 712 init_sync_kiocb(&iocb, NULL); 713 iocb.private = &siocb; 714 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 715 if (-EIOCBQUEUED == ret) 716 ret = wait_on_sync_kiocb(&iocb); 717 return ret; 718 } 719 EXPORT_SYMBOL(sock_recvmsg); 720 721 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 722 size_t size, int flags) 723 { 724 struct kiocb iocb; 725 struct sock_iocb siocb; 726 int ret; 727 728 init_sync_kiocb(&iocb, NULL); 729 iocb.private = &siocb; 730 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 731 if (-EIOCBQUEUED == ret) 732 ret = wait_on_sync_kiocb(&iocb); 733 return ret; 734 } 735 736 /** 737 * kernel_recvmsg - Receive a message from a socket (kernel space) 738 * @sock: The socket to receive the message from 739 * @msg: Received message 740 * @vec: Input s/g array for message data 741 * @num: Size of input s/g array 742 * @size: Number of bytes to read 743 * @flags: Message flags (MSG_DONTWAIT, etc...) 744 * 745 * On return the msg structure contains the scatter/gather array passed in the 746 * vec argument. The array is modified so that it consists of the unfilled 747 * portion of the original array. 748 * 749 * The returned value is the total number of bytes received, or an error. 750 */ 751 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 752 struct kvec *vec, size_t num, size_t size, int flags) 753 { 754 mm_segment_t oldfs = get_fs(); 755 int result; 756 757 set_fs(KERNEL_DS); 758 /* 759 * the following is safe, since for compiler definitions of kvec and 760 * iovec are identical, yielding the same in-core layout and alignment 761 */ 762 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 763 result = sock_recvmsg(sock, msg, size, flags); 764 set_fs(oldfs); 765 return result; 766 } 767 EXPORT_SYMBOL(kernel_recvmsg); 768 769 static void sock_aio_dtor(struct kiocb *iocb) 770 { 771 kfree(iocb->private); 772 } 773 774 static ssize_t sock_sendpage(struct file *file, struct page *page, 775 int offset, size_t size, loff_t *ppos, int more) 776 { 777 struct socket *sock; 778 int flags; 779 780 sock = file->private_data; 781 782 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 783 if (more) 784 flags |= MSG_MORE; 785 786 return kernel_sendpage(sock, page, offset, size, flags); 787 } 788 789 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 790 struct pipe_inode_info *pipe, size_t len, 791 unsigned int flags) 792 { 793 struct socket *sock = file->private_data; 794 795 if (unlikely(!sock->ops->splice_read)) 796 return -EINVAL; 797 798 sock_update_classid(sock->sk); 799 800 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 801 } 802 803 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 804 struct sock_iocb *siocb) 805 { 806 if (!is_sync_kiocb(iocb)) { 807 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 808 if (!siocb) 809 return NULL; 810 iocb->ki_dtor = sock_aio_dtor; 811 } 812 813 siocb->kiocb = iocb; 814 iocb->private = siocb; 815 return siocb; 816 } 817 818 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 819 struct file *file, const struct iovec *iov, 820 unsigned long nr_segs) 821 { 822 struct socket *sock = file->private_data; 823 size_t size = 0; 824 int i; 825 826 for (i = 0; i < nr_segs; i++) 827 size += iov[i].iov_len; 828 829 msg->msg_name = NULL; 830 msg->msg_namelen = 0; 831 msg->msg_control = NULL; 832 msg->msg_controllen = 0; 833 msg->msg_iov = (struct iovec *)iov; 834 msg->msg_iovlen = nr_segs; 835 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 836 837 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 838 } 839 840 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 841 unsigned long nr_segs, loff_t pos) 842 { 843 struct sock_iocb siocb, *x; 844 845 if (pos != 0) 846 return -ESPIPE; 847 848 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 849 return 0; 850 851 852 x = alloc_sock_iocb(iocb, &siocb); 853 if (!x) 854 return -ENOMEM; 855 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 856 } 857 858 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 859 struct file *file, const struct iovec *iov, 860 unsigned long nr_segs) 861 { 862 struct socket *sock = file->private_data; 863 size_t size = 0; 864 int i; 865 866 for (i = 0; i < nr_segs; i++) 867 size += iov[i].iov_len; 868 869 msg->msg_name = NULL; 870 msg->msg_namelen = 0; 871 msg->msg_control = NULL; 872 msg->msg_controllen = 0; 873 msg->msg_iov = (struct iovec *)iov; 874 msg->msg_iovlen = nr_segs; 875 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 876 if (sock->type == SOCK_SEQPACKET) 877 msg->msg_flags |= MSG_EOR; 878 879 return __sock_sendmsg(iocb, sock, msg, size); 880 } 881 882 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 883 unsigned long nr_segs, loff_t pos) 884 { 885 struct sock_iocb siocb, *x; 886 887 if (pos != 0) 888 return -ESPIPE; 889 890 x = alloc_sock_iocb(iocb, &siocb); 891 if (!x) 892 return -ENOMEM; 893 894 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 895 } 896 897 /* 898 * Atomic setting of ioctl hooks to avoid race 899 * with module unload. 900 */ 901 902 static DEFINE_MUTEX(br_ioctl_mutex); 903 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 904 905 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 906 { 907 mutex_lock(&br_ioctl_mutex); 908 br_ioctl_hook = hook; 909 mutex_unlock(&br_ioctl_mutex); 910 } 911 EXPORT_SYMBOL(brioctl_set); 912 913 static DEFINE_MUTEX(vlan_ioctl_mutex); 914 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 915 916 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 917 { 918 mutex_lock(&vlan_ioctl_mutex); 919 vlan_ioctl_hook = hook; 920 mutex_unlock(&vlan_ioctl_mutex); 921 } 922 EXPORT_SYMBOL(vlan_ioctl_set); 923 924 static DEFINE_MUTEX(dlci_ioctl_mutex); 925 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 926 927 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 928 { 929 mutex_lock(&dlci_ioctl_mutex); 930 dlci_ioctl_hook = hook; 931 mutex_unlock(&dlci_ioctl_mutex); 932 } 933 EXPORT_SYMBOL(dlci_ioctl_set); 934 935 static long sock_do_ioctl(struct net *net, struct socket *sock, 936 unsigned int cmd, unsigned long arg) 937 { 938 int err; 939 void __user *argp = (void __user *)arg; 940 941 err = sock->ops->ioctl(sock, cmd, arg); 942 943 /* 944 * If this ioctl is unknown try to hand it down 945 * to the NIC driver. 946 */ 947 if (err == -ENOIOCTLCMD) 948 err = dev_ioctl(net, cmd, argp); 949 950 return err; 951 } 952 953 /* 954 * With an ioctl, arg may well be a user mode pointer, but we don't know 955 * what to do with it - that's up to the protocol still. 956 */ 957 958 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 959 { 960 struct socket *sock; 961 struct sock *sk; 962 void __user *argp = (void __user *)arg; 963 int pid, err; 964 struct net *net; 965 966 sock = file->private_data; 967 sk = sock->sk; 968 net = sock_net(sk); 969 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 970 err = dev_ioctl(net, cmd, argp); 971 } else 972 #ifdef CONFIG_WEXT_CORE 973 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 974 err = dev_ioctl(net, cmd, argp); 975 } else 976 #endif 977 switch (cmd) { 978 case FIOSETOWN: 979 case SIOCSPGRP: 980 err = -EFAULT; 981 if (get_user(pid, (int __user *)argp)) 982 break; 983 err = f_setown(sock->file, pid, 1); 984 break; 985 case FIOGETOWN: 986 case SIOCGPGRP: 987 err = put_user(f_getown(sock->file), 988 (int __user *)argp); 989 break; 990 case SIOCGIFBR: 991 case SIOCSIFBR: 992 case SIOCBRADDBR: 993 case SIOCBRDELBR: 994 err = -ENOPKG; 995 if (!br_ioctl_hook) 996 request_module("bridge"); 997 998 mutex_lock(&br_ioctl_mutex); 999 if (br_ioctl_hook) 1000 err = br_ioctl_hook(net, cmd, argp); 1001 mutex_unlock(&br_ioctl_mutex); 1002 break; 1003 case SIOCGIFVLAN: 1004 case SIOCSIFVLAN: 1005 err = -ENOPKG; 1006 if (!vlan_ioctl_hook) 1007 request_module("8021q"); 1008 1009 mutex_lock(&vlan_ioctl_mutex); 1010 if (vlan_ioctl_hook) 1011 err = vlan_ioctl_hook(net, argp); 1012 mutex_unlock(&vlan_ioctl_mutex); 1013 break; 1014 case SIOCADDDLCI: 1015 case SIOCDELDLCI: 1016 err = -ENOPKG; 1017 if (!dlci_ioctl_hook) 1018 request_module("dlci"); 1019 1020 mutex_lock(&dlci_ioctl_mutex); 1021 if (dlci_ioctl_hook) 1022 err = dlci_ioctl_hook(cmd, argp); 1023 mutex_unlock(&dlci_ioctl_mutex); 1024 break; 1025 default: 1026 err = sock_do_ioctl(net, sock, cmd, arg); 1027 break; 1028 } 1029 return err; 1030 } 1031 1032 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1033 { 1034 int err; 1035 struct socket *sock = NULL; 1036 1037 err = security_socket_create(family, type, protocol, 1); 1038 if (err) 1039 goto out; 1040 1041 sock = sock_alloc(); 1042 if (!sock) { 1043 err = -ENOMEM; 1044 goto out; 1045 } 1046 1047 sock->type = type; 1048 err = security_socket_post_create(sock, family, type, protocol, 1); 1049 if (err) 1050 goto out_release; 1051 1052 out: 1053 *res = sock; 1054 return err; 1055 out_release: 1056 sock_release(sock); 1057 sock = NULL; 1058 goto out; 1059 } 1060 EXPORT_SYMBOL(sock_create_lite); 1061 1062 /* No kernel lock held - perfect */ 1063 static unsigned int sock_poll(struct file *file, poll_table *wait) 1064 { 1065 struct socket *sock; 1066 1067 /* 1068 * We can't return errors to poll, so it's either yes or no. 1069 */ 1070 sock = file->private_data; 1071 return sock->ops->poll(file, sock, wait); 1072 } 1073 1074 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1075 { 1076 struct socket *sock = file->private_data; 1077 1078 return sock->ops->mmap(file, sock, vma); 1079 } 1080 1081 static int sock_close(struct inode *inode, struct file *filp) 1082 { 1083 /* 1084 * It was possible the inode is NULL we were 1085 * closing an unfinished socket. 1086 */ 1087 1088 if (!inode) { 1089 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1090 return 0; 1091 } 1092 sock_release(SOCKET_I(inode)); 1093 return 0; 1094 } 1095 1096 /* 1097 * Update the socket async list 1098 * 1099 * Fasync_list locking strategy. 1100 * 1101 * 1. fasync_list is modified only under process context socket lock 1102 * i.e. under semaphore. 1103 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1104 * or under socket lock 1105 */ 1106 1107 static int sock_fasync(int fd, struct file *filp, int on) 1108 { 1109 struct socket *sock = filp->private_data; 1110 struct sock *sk = sock->sk; 1111 1112 if (sk == NULL) 1113 return -EINVAL; 1114 1115 lock_sock(sk); 1116 1117 fasync_helper(fd, filp, on, &sock->wq->fasync_list); 1118 1119 if (!sock->wq->fasync_list) 1120 sock_reset_flag(sk, SOCK_FASYNC); 1121 else 1122 sock_set_flag(sk, SOCK_FASYNC); 1123 1124 release_sock(sk); 1125 return 0; 1126 } 1127 1128 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1129 1130 int sock_wake_async(struct socket *sock, int how, int band) 1131 { 1132 struct socket_wq *wq; 1133 1134 if (!sock) 1135 return -1; 1136 rcu_read_lock(); 1137 wq = rcu_dereference(sock->wq); 1138 if (!wq || !wq->fasync_list) { 1139 rcu_read_unlock(); 1140 return -1; 1141 } 1142 switch (how) { 1143 case SOCK_WAKE_WAITD: 1144 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1145 break; 1146 goto call_kill; 1147 case SOCK_WAKE_SPACE: 1148 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1149 break; 1150 /* fall through */ 1151 case SOCK_WAKE_IO: 1152 call_kill: 1153 kill_fasync(&wq->fasync_list, SIGIO, band); 1154 break; 1155 case SOCK_WAKE_URG: 1156 kill_fasync(&wq->fasync_list, SIGURG, band); 1157 } 1158 rcu_read_unlock(); 1159 return 0; 1160 } 1161 EXPORT_SYMBOL(sock_wake_async); 1162 1163 int __sock_create(struct net *net, int family, int type, int protocol, 1164 struct socket **res, int kern) 1165 { 1166 int err; 1167 struct socket *sock; 1168 const struct net_proto_family *pf; 1169 1170 /* 1171 * Check protocol is in range 1172 */ 1173 if (family < 0 || family >= NPROTO) 1174 return -EAFNOSUPPORT; 1175 if (type < 0 || type >= SOCK_MAX) 1176 return -EINVAL; 1177 1178 /* Compatibility. 1179 1180 This uglymoron is moved from INET layer to here to avoid 1181 deadlock in module load. 1182 */ 1183 if (family == PF_INET && type == SOCK_PACKET) { 1184 static int warned; 1185 if (!warned) { 1186 warned = 1; 1187 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1188 current->comm); 1189 } 1190 family = PF_PACKET; 1191 } 1192 1193 err = security_socket_create(family, type, protocol, kern); 1194 if (err) 1195 return err; 1196 1197 /* 1198 * Allocate the socket and allow the family to set things up. if 1199 * the protocol is 0, the family is instructed to select an appropriate 1200 * default. 1201 */ 1202 sock = sock_alloc(); 1203 if (!sock) { 1204 if (net_ratelimit()) 1205 printk(KERN_WARNING "socket: no more sockets\n"); 1206 return -ENFILE; /* Not exactly a match, but its the 1207 closest posix thing */ 1208 } 1209 1210 sock->type = type; 1211 1212 #ifdef CONFIG_MODULES 1213 /* Attempt to load a protocol module if the find failed. 1214 * 1215 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1216 * requested real, full-featured networking support upon configuration. 1217 * Otherwise module support will break! 1218 */ 1219 if (rcu_access_pointer(net_families[family]) == NULL) 1220 request_module("net-pf-%d", family); 1221 #endif 1222 1223 rcu_read_lock(); 1224 pf = rcu_dereference(net_families[family]); 1225 err = -EAFNOSUPPORT; 1226 if (!pf) 1227 goto out_release; 1228 1229 /* 1230 * We will call the ->create function, that possibly is in a loadable 1231 * module, so we have to bump that loadable module refcnt first. 1232 */ 1233 if (!try_module_get(pf->owner)) 1234 goto out_release; 1235 1236 /* Now protected by module ref count */ 1237 rcu_read_unlock(); 1238 1239 err = pf->create(net, sock, protocol, kern); 1240 if (err < 0) 1241 goto out_module_put; 1242 1243 /* 1244 * Now to bump the refcnt of the [loadable] module that owns this 1245 * socket at sock_release time we decrement its refcnt. 1246 */ 1247 if (!try_module_get(sock->ops->owner)) 1248 goto out_module_busy; 1249 1250 /* 1251 * Now that we're done with the ->create function, the [loadable] 1252 * module can have its refcnt decremented 1253 */ 1254 module_put(pf->owner); 1255 err = security_socket_post_create(sock, family, type, protocol, kern); 1256 if (err) 1257 goto out_sock_release; 1258 *res = sock; 1259 1260 return 0; 1261 1262 out_module_busy: 1263 err = -EAFNOSUPPORT; 1264 out_module_put: 1265 sock->ops = NULL; 1266 module_put(pf->owner); 1267 out_sock_release: 1268 sock_release(sock); 1269 return err; 1270 1271 out_release: 1272 rcu_read_unlock(); 1273 goto out_sock_release; 1274 } 1275 EXPORT_SYMBOL(__sock_create); 1276 1277 int sock_create(int family, int type, int protocol, struct socket **res) 1278 { 1279 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1280 } 1281 EXPORT_SYMBOL(sock_create); 1282 1283 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1284 { 1285 return __sock_create(&init_net, family, type, protocol, res, 1); 1286 } 1287 EXPORT_SYMBOL(sock_create_kern); 1288 1289 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1290 { 1291 int retval; 1292 struct socket *sock; 1293 int flags; 1294 1295 /* Check the SOCK_* constants for consistency. */ 1296 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1297 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1298 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1299 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1300 1301 flags = type & ~SOCK_TYPE_MASK; 1302 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1303 return -EINVAL; 1304 type &= SOCK_TYPE_MASK; 1305 1306 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1307 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1308 1309 retval = sock_create(family, type, protocol, &sock); 1310 if (retval < 0) 1311 goto out; 1312 1313 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1314 if (retval < 0) 1315 goto out_release; 1316 1317 out: 1318 /* It may be already another descriptor 8) Not kernel problem. */ 1319 return retval; 1320 1321 out_release: 1322 sock_release(sock); 1323 return retval; 1324 } 1325 1326 /* 1327 * Create a pair of connected sockets. 1328 */ 1329 1330 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1331 int __user *, usockvec) 1332 { 1333 struct socket *sock1, *sock2; 1334 int fd1, fd2, err; 1335 struct file *newfile1, *newfile2; 1336 int flags; 1337 1338 flags = type & ~SOCK_TYPE_MASK; 1339 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1340 return -EINVAL; 1341 type &= SOCK_TYPE_MASK; 1342 1343 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1344 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1345 1346 /* 1347 * Obtain the first socket and check if the underlying protocol 1348 * supports the socketpair call. 1349 */ 1350 1351 err = sock_create(family, type, protocol, &sock1); 1352 if (err < 0) 1353 goto out; 1354 1355 err = sock_create(family, type, protocol, &sock2); 1356 if (err < 0) 1357 goto out_release_1; 1358 1359 err = sock1->ops->socketpair(sock1, sock2); 1360 if (err < 0) 1361 goto out_release_both; 1362 1363 fd1 = sock_alloc_file(sock1, &newfile1, flags); 1364 if (unlikely(fd1 < 0)) { 1365 err = fd1; 1366 goto out_release_both; 1367 } 1368 1369 fd2 = sock_alloc_file(sock2, &newfile2, flags); 1370 if (unlikely(fd2 < 0)) { 1371 err = fd2; 1372 fput(newfile1); 1373 put_unused_fd(fd1); 1374 sock_release(sock2); 1375 goto out; 1376 } 1377 1378 audit_fd_pair(fd1, fd2); 1379 fd_install(fd1, newfile1); 1380 fd_install(fd2, newfile2); 1381 /* fd1 and fd2 may be already another descriptors. 1382 * Not kernel problem. 1383 */ 1384 1385 err = put_user(fd1, &usockvec[0]); 1386 if (!err) 1387 err = put_user(fd2, &usockvec[1]); 1388 if (!err) 1389 return 0; 1390 1391 sys_close(fd2); 1392 sys_close(fd1); 1393 return err; 1394 1395 out_release_both: 1396 sock_release(sock2); 1397 out_release_1: 1398 sock_release(sock1); 1399 out: 1400 return err; 1401 } 1402 1403 /* 1404 * Bind a name to a socket. Nothing much to do here since it's 1405 * the protocol's responsibility to handle the local address. 1406 * 1407 * We move the socket address to kernel space before we call 1408 * the protocol layer (having also checked the address is ok). 1409 */ 1410 1411 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1412 { 1413 struct socket *sock; 1414 struct sockaddr_storage address; 1415 int err, fput_needed; 1416 1417 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1418 if (sock) { 1419 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1420 if (err >= 0) { 1421 err = security_socket_bind(sock, 1422 (struct sockaddr *)&address, 1423 addrlen); 1424 if (!err) 1425 err = sock->ops->bind(sock, 1426 (struct sockaddr *) 1427 &address, addrlen); 1428 } 1429 fput_light(sock->file, fput_needed); 1430 } 1431 return err; 1432 } 1433 1434 /* 1435 * Perform a listen. Basically, we allow the protocol to do anything 1436 * necessary for a listen, and if that works, we mark the socket as 1437 * ready for listening. 1438 */ 1439 1440 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1441 { 1442 struct socket *sock; 1443 int err, fput_needed; 1444 int somaxconn; 1445 1446 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1447 if (sock) { 1448 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1449 if ((unsigned)backlog > somaxconn) 1450 backlog = somaxconn; 1451 1452 err = security_socket_listen(sock, backlog); 1453 if (!err) 1454 err = sock->ops->listen(sock, backlog); 1455 1456 fput_light(sock->file, fput_needed); 1457 } 1458 return err; 1459 } 1460 1461 /* 1462 * For accept, we attempt to create a new socket, set up the link 1463 * with the client, wake up the client, then return the new 1464 * connected fd. We collect the address of the connector in kernel 1465 * space and move it to user at the very end. This is unclean because 1466 * we open the socket then return an error. 1467 * 1468 * 1003.1g adds the ability to recvmsg() to query connection pending 1469 * status to recvmsg. We need to add that support in a way thats 1470 * clean when we restucture accept also. 1471 */ 1472 1473 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1474 int __user *, upeer_addrlen, int, flags) 1475 { 1476 struct socket *sock, *newsock; 1477 struct file *newfile; 1478 int err, len, newfd, fput_needed; 1479 struct sockaddr_storage address; 1480 1481 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1482 return -EINVAL; 1483 1484 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1485 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1486 1487 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1488 if (!sock) 1489 goto out; 1490 1491 err = -ENFILE; 1492 newsock = sock_alloc(); 1493 if (!newsock) 1494 goto out_put; 1495 1496 newsock->type = sock->type; 1497 newsock->ops = sock->ops; 1498 1499 /* 1500 * We don't need try_module_get here, as the listening socket (sock) 1501 * has the protocol module (sock->ops->owner) held. 1502 */ 1503 __module_get(newsock->ops->owner); 1504 1505 newfd = sock_alloc_file(newsock, &newfile, flags); 1506 if (unlikely(newfd < 0)) { 1507 err = newfd; 1508 sock_release(newsock); 1509 goto out_put; 1510 } 1511 1512 err = security_socket_accept(sock, newsock); 1513 if (err) 1514 goto out_fd; 1515 1516 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1517 if (err < 0) 1518 goto out_fd; 1519 1520 if (upeer_sockaddr) { 1521 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1522 &len, 2) < 0) { 1523 err = -ECONNABORTED; 1524 goto out_fd; 1525 } 1526 err = move_addr_to_user((struct sockaddr *)&address, 1527 len, upeer_sockaddr, upeer_addrlen); 1528 if (err < 0) 1529 goto out_fd; 1530 } 1531 1532 /* File flags are not inherited via accept() unlike another OSes. */ 1533 1534 fd_install(newfd, newfile); 1535 err = newfd; 1536 1537 out_put: 1538 fput_light(sock->file, fput_needed); 1539 out: 1540 return err; 1541 out_fd: 1542 fput(newfile); 1543 put_unused_fd(newfd); 1544 goto out_put; 1545 } 1546 1547 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1548 int __user *, upeer_addrlen) 1549 { 1550 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1551 } 1552 1553 /* 1554 * Attempt to connect to a socket with the server address. The address 1555 * is in user space so we verify it is OK and move it to kernel space. 1556 * 1557 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1558 * break bindings 1559 * 1560 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1561 * other SEQPACKET protocols that take time to connect() as it doesn't 1562 * include the -EINPROGRESS status for such sockets. 1563 */ 1564 1565 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1566 int, addrlen) 1567 { 1568 struct socket *sock; 1569 struct sockaddr_storage address; 1570 int err, fput_needed; 1571 1572 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1573 if (!sock) 1574 goto out; 1575 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1576 if (err < 0) 1577 goto out_put; 1578 1579 err = 1580 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1581 if (err) 1582 goto out_put; 1583 1584 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1585 sock->file->f_flags); 1586 out_put: 1587 fput_light(sock->file, fput_needed); 1588 out: 1589 return err; 1590 } 1591 1592 /* 1593 * Get the local address ('name') of a socket object. Move the obtained 1594 * name to user space. 1595 */ 1596 1597 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1598 int __user *, usockaddr_len) 1599 { 1600 struct socket *sock; 1601 struct sockaddr_storage address; 1602 int len, err, fput_needed; 1603 1604 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1605 if (!sock) 1606 goto out; 1607 1608 err = security_socket_getsockname(sock); 1609 if (err) 1610 goto out_put; 1611 1612 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1613 if (err) 1614 goto out_put; 1615 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1616 1617 out_put: 1618 fput_light(sock->file, fput_needed); 1619 out: 1620 return err; 1621 } 1622 1623 /* 1624 * Get the remote address ('name') of a socket object. Move the obtained 1625 * name to user space. 1626 */ 1627 1628 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1629 int __user *, usockaddr_len) 1630 { 1631 struct socket *sock; 1632 struct sockaddr_storage address; 1633 int len, err, fput_needed; 1634 1635 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1636 if (sock != NULL) { 1637 err = security_socket_getpeername(sock); 1638 if (err) { 1639 fput_light(sock->file, fput_needed); 1640 return err; 1641 } 1642 1643 err = 1644 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1645 1); 1646 if (!err) 1647 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1648 usockaddr_len); 1649 fput_light(sock->file, fput_needed); 1650 } 1651 return err; 1652 } 1653 1654 /* 1655 * Send a datagram to a given address. We move the address into kernel 1656 * space and check the user space data area is readable before invoking 1657 * the protocol. 1658 */ 1659 1660 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1661 unsigned, flags, struct sockaddr __user *, addr, 1662 int, addr_len) 1663 { 1664 struct socket *sock; 1665 struct sockaddr_storage address; 1666 int err; 1667 struct msghdr msg; 1668 struct iovec iov; 1669 int fput_needed; 1670 1671 if (len > INT_MAX) 1672 len = INT_MAX; 1673 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1674 if (!sock) 1675 goto out; 1676 1677 iov.iov_base = buff; 1678 iov.iov_len = len; 1679 msg.msg_name = NULL; 1680 msg.msg_iov = &iov; 1681 msg.msg_iovlen = 1; 1682 msg.msg_control = NULL; 1683 msg.msg_controllen = 0; 1684 msg.msg_namelen = 0; 1685 if (addr) { 1686 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1687 if (err < 0) 1688 goto out_put; 1689 msg.msg_name = (struct sockaddr *)&address; 1690 msg.msg_namelen = addr_len; 1691 } 1692 if (sock->file->f_flags & O_NONBLOCK) 1693 flags |= MSG_DONTWAIT; 1694 msg.msg_flags = flags; 1695 err = sock_sendmsg(sock, &msg, len); 1696 1697 out_put: 1698 fput_light(sock->file, fput_needed); 1699 out: 1700 return err; 1701 } 1702 1703 /* 1704 * Send a datagram down a socket. 1705 */ 1706 1707 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1708 unsigned, flags) 1709 { 1710 return sys_sendto(fd, buff, len, flags, NULL, 0); 1711 } 1712 1713 /* 1714 * Receive a frame from the socket and optionally record the address of the 1715 * sender. We verify the buffers are writable and if needed move the 1716 * sender address from kernel to user space. 1717 */ 1718 1719 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1720 unsigned, flags, struct sockaddr __user *, addr, 1721 int __user *, addr_len) 1722 { 1723 struct socket *sock; 1724 struct iovec iov; 1725 struct msghdr msg; 1726 struct sockaddr_storage address; 1727 int err, err2; 1728 int fput_needed; 1729 1730 if (size > INT_MAX) 1731 size = INT_MAX; 1732 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1733 if (!sock) 1734 goto out; 1735 1736 msg.msg_control = NULL; 1737 msg.msg_controllen = 0; 1738 msg.msg_iovlen = 1; 1739 msg.msg_iov = &iov; 1740 iov.iov_len = size; 1741 iov.iov_base = ubuf; 1742 msg.msg_name = (struct sockaddr *)&address; 1743 msg.msg_namelen = sizeof(address); 1744 if (sock->file->f_flags & O_NONBLOCK) 1745 flags |= MSG_DONTWAIT; 1746 err = sock_recvmsg(sock, &msg, size, flags); 1747 1748 if (err >= 0 && addr != NULL) { 1749 err2 = move_addr_to_user((struct sockaddr *)&address, 1750 msg.msg_namelen, addr, addr_len); 1751 if (err2 < 0) 1752 err = err2; 1753 } 1754 1755 fput_light(sock->file, fput_needed); 1756 out: 1757 return err; 1758 } 1759 1760 /* 1761 * Receive a datagram from a socket. 1762 */ 1763 1764 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1765 unsigned flags) 1766 { 1767 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1768 } 1769 1770 /* 1771 * Set a socket option. Because we don't know the option lengths we have 1772 * to pass the user mode parameter for the protocols to sort out. 1773 */ 1774 1775 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1776 char __user *, optval, int, optlen) 1777 { 1778 int err, fput_needed; 1779 struct socket *sock; 1780 1781 if (optlen < 0) 1782 return -EINVAL; 1783 1784 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1785 if (sock != NULL) { 1786 err = security_socket_setsockopt(sock, level, optname); 1787 if (err) 1788 goto out_put; 1789 1790 if (level == SOL_SOCKET) 1791 err = 1792 sock_setsockopt(sock, level, optname, optval, 1793 optlen); 1794 else 1795 err = 1796 sock->ops->setsockopt(sock, level, optname, optval, 1797 optlen); 1798 out_put: 1799 fput_light(sock->file, fput_needed); 1800 } 1801 return err; 1802 } 1803 1804 /* 1805 * Get a socket option. Because we don't know the option lengths we have 1806 * to pass a user mode parameter for the protocols to sort out. 1807 */ 1808 1809 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1810 char __user *, optval, int __user *, optlen) 1811 { 1812 int err, fput_needed; 1813 struct socket *sock; 1814 1815 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1816 if (sock != NULL) { 1817 err = security_socket_getsockopt(sock, level, optname); 1818 if (err) 1819 goto out_put; 1820 1821 if (level == SOL_SOCKET) 1822 err = 1823 sock_getsockopt(sock, level, optname, optval, 1824 optlen); 1825 else 1826 err = 1827 sock->ops->getsockopt(sock, level, optname, optval, 1828 optlen); 1829 out_put: 1830 fput_light(sock->file, fput_needed); 1831 } 1832 return err; 1833 } 1834 1835 /* 1836 * Shutdown a socket. 1837 */ 1838 1839 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1840 { 1841 int err, fput_needed; 1842 struct socket *sock; 1843 1844 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1845 if (sock != NULL) { 1846 err = security_socket_shutdown(sock, how); 1847 if (!err) 1848 err = sock->ops->shutdown(sock, how); 1849 fput_light(sock->file, fput_needed); 1850 } 1851 return err; 1852 } 1853 1854 /* A couple of helpful macros for getting the address of the 32/64 bit 1855 * fields which are the same type (int / unsigned) on our platforms. 1856 */ 1857 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1858 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1859 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1860 1861 /* 1862 * BSD sendmsg interface 1863 */ 1864 1865 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags) 1866 { 1867 struct compat_msghdr __user *msg_compat = 1868 (struct compat_msghdr __user *)msg; 1869 struct socket *sock; 1870 struct sockaddr_storage address; 1871 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1872 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1873 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1874 /* 20 is size of ipv6_pktinfo */ 1875 unsigned char *ctl_buf = ctl; 1876 struct msghdr msg_sys; 1877 int err, ctl_len, iov_size, total_len; 1878 int fput_needed; 1879 1880 err = -EFAULT; 1881 if (MSG_CMSG_COMPAT & flags) { 1882 if (get_compat_msghdr(&msg_sys, msg_compat)) 1883 return -EFAULT; 1884 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1885 return -EFAULT; 1886 1887 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1888 if (!sock) 1889 goto out; 1890 1891 /* do not move before msg_sys is valid */ 1892 err = -EMSGSIZE; 1893 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1894 goto out_put; 1895 1896 /* Check whether to allocate the iovec area */ 1897 err = -ENOMEM; 1898 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1899 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1900 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1901 if (!iov) 1902 goto out_put; 1903 } 1904 1905 /* This will also move the address data into kernel space */ 1906 if (MSG_CMSG_COMPAT & flags) { 1907 err = verify_compat_iovec(&msg_sys, iov, 1908 (struct sockaddr *)&address, 1909 VERIFY_READ); 1910 } else 1911 err = verify_iovec(&msg_sys, iov, 1912 (struct sockaddr *)&address, 1913 VERIFY_READ); 1914 if (err < 0) 1915 goto out_freeiov; 1916 total_len = err; 1917 1918 err = -ENOBUFS; 1919 1920 if (msg_sys.msg_controllen > INT_MAX) 1921 goto out_freeiov; 1922 ctl_len = msg_sys.msg_controllen; 1923 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1924 err = 1925 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1926 sizeof(ctl)); 1927 if (err) 1928 goto out_freeiov; 1929 ctl_buf = msg_sys.msg_control; 1930 ctl_len = msg_sys.msg_controllen; 1931 } else if (ctl_len) { 1932 if (ctl_len > sizeof(ctl)) { 1933 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1934 if (ctl_buf == NULL) 1935 goto out_freeiov; 1936 } 1937 err = -EFAULT; 1938 /* 1939 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1940 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1941 * checking falls down on this. 1942 */ 1943 if (copy_from_user(ctl_buf, 1944 (void __user __force *)msg_sys.msg_control, 1945 ctl_len)) 1946 goto out_freectl; 1947 msg_sys.msg_control = ctl_buf; 1948 } 1949 msg_sys.msg_flags = flags; 1950 1951 if (sock->file->f_flags & O_NONBLOCK) 1952 msg_sys.msg_flags |= MSG_DONTWAIT; 1953 err = sock_sendmsg(sock, &msg_sys, total_len); 1954 1955 out_freectl: 1956 if (ctl_buf != ctl) 1957 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1958 out_freeiov: 1959 if (iov != iovstack) 1960 sock_kfree_s(sock->sk, iov, iov_size); 1961 out_put: 1962 fput_light(sock->file, fput_needed); 1963 out: 1964 return err; 1965 } 1966 1967 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 1968 struct msghdr *msg_sys, unsigned flags, int nosec) 1969 { 1970 struct compat_msghdr __user *msg_compat = 1971 (struct compat_msghdr __user *)msg; 1972 struct iovec iovstack[UIO_FASTIOV]; 1973 struct iovec *iov = iovstack; 1974 unsigned long cmsg_ptr; 1975 int err, iov_size, total_len, len; 1976 1977 /* kernel mode address */ 1978 struct sockaddr_storage addr; 1979 1980 /* user mode address pointers */ 1981 struct sockaddr __user *uaddr; 1982 int __user *uaddr_len; 1983 1984 if (MSG_CMSG_COMPAT & flags) { 1985 if (get_compat_msghdr(msg_sys, msg_compat)) 1986 return -EFAULT; 1987 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1988 return -EFAULT; 1989 1990 err = -EMSGSIZE; 1991 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1992 goto out; 1993 1994 /* Check whether to allocate the iovec area */ 1995 err = -ENOMEM; 1996 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec); 1997 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 1998 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1999 if (!iov) 2000 goto out; 2001 } 2002 2003 /* 2004 * Save the user-mode address (verify_iovec will change the 2005 * kernel msghdr to use the kernel address space) 2006 */ 2007 2008 uaddr = (__force void __user *)msg_sys->msg_name; 2009 uaddr_len = COMPAT_NAMELEN(msg); 2010 if (MSG_CMSG_COMPAT & flags) { 2011 err = verify_compat_iovec(msg_sys, iov, 2012 (struct sockaddr *)&addr, 2013 VERIFY_WRITE); 2014 } else 2015 err = verify_iovec(msg_sys, iov, 2016 (struct sockaddr *)&addr, 2017 VERIFY_WRITE); 2018 if (err < 0) 2019 goto out_freeiov; 2020 total_len = err; 2021 2022 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2023 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2024 2025 if (sock->file->f_flags & O_NONBLOCK) 2026 flags |= MSG_DONTWAIT; 2027 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2028 total_len, flags); 2029 if (err < 0) 2030 goto out_freeiov; 2031 len = err; 2032 2033 if (uaddr != NULL) { 2034 err = move_addr_to_user((struct sockaddr *)&addr, 2035 msg_sys->msg_namelen, uaddr, 2036 uaddr_len); 2037 if (err < 0) 2038 goto out_freeiov; 2039 } 2040 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2041 COMPAT_FLAGS(msg)); 2042 if (err) 2043 goto out_freeiov; 2044 if (MSG_CMSG_COMPAT & flags) 2045 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2046 &msg_compat->msg_controllen); 2047 else 2048 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2049 &msg->msg_controllen); 2050 if (err) 2051 goto out_freeiov; 2052 err = len; 2053 2054 out_freeiov: 2055 if (iov != iovstack) 2056 sock_kfree_s(sock->sk, iov, iov_size); 2057 out: 2058 return err; 2059 } 2060 2061 /* 2062 * BSD recvmsg interface 2063 */ 2064 2065 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2066 unsigned int, flags) 2067 { 2068 int fput_needed, err; 2069 struct msghdr msg_sys; 2070 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2071 2072 if (!sock) 2073 goto out; 2074 2075 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2076 2077 fput_light(sock->file, fput_needed); 2078 out: 2079 return err; 2080 } 2081 2082 /* 2083 * Linux recvmmsg interface 2084 */ 2085 2086 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2087 unsigned int flags, struct timespec *timeout) 2088 { 2089 int fput_needed, err, datagrams; 2090 struct socket *sock; 2091 struct mmsghdr __user *entry; 2092 struct compat_mmsghdr __user *compat_entry; 2093 struct msghdr msg_sys; 2094 struct timespec end_time; 2095 2096 if (timeout && 2097 poll_select_set_timeout(&end_time, timeout->tv_sec, 2098 timeout->tv_nsec)) 2099 return -EINVAL; 2100 2101 datagrams = 0; 2102 2103 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2104 if (!sock) 2105 return err; 2106 2107 err = sock_error(sock->sk); 2108 if (err) 2109 goto out_put; 2110 2111 entry = mmsg; 2112 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2113 2114 while (datagrams < vlen) { 2115 /* 2116 * No need to ask LSM for more than the first datagram. 2117 */ 2118 if (MSG_CMSG_COMPAT & flags) { 2119 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2120 &msg_sys, flags, datagrams); 2121 if (err < 0) 2122 break; 2123 err = __put_user(err, &compat_entry->msg_len); 2124 ++compat_entry; 2125 } else { 2126 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2127 &msg_sys, flags, datagrams); 2128 if (err < 0) 2129 break; 2130 err = put_user(err, &entry->msg_len); 2131 ++entry; 2132 } 2133 2134 if (err) 2135 break; 2136 ++datagrams; 2137 2138 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2139 if (flags & MSG_WAITFORONE) 2140 flags |= MSG_DONTWAIT; 2141 2142 if (timeout) { 2143 ktime_get_ts(timeout); 2144 *timeout = timespec_sub(end_time, *timeout); 2145 if (timeout->tv_sec < 0) { 2146 timeout->tv_sec = timeout->tv_nsec = 0; 2147 break; 2148 } 2149 2150 /* Timeout, return less than vlen datagrams */ 2151 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2152 break; 2153 } 2154 2155 /* Out of band data, return right away */ 2156 if (msg_sys.msg_flags & MSG_OOB) 2157 break; 2158 } 2159 2160 out_put: 2161 fput_light(sock->file, fput_needed); 2162 2163 if (err == 0) 2164 return datagrams; 2165 2166 if (datagrams != 0) { 2167 /* 2168 * We may return less entries than requested (vlen) if the 2169 * sock is non block and there aren't enough datagrams... 2170 */ 2171 if (err != -EAGAIN) { 2172 /* 2173 * ... or if recvmsg returns an error after we 2174 * received some datagrams, where we record the 2175 * error to return on the next call or if the 2176 * app asks about it using getsockopt(SO_ERROR). 2177 */ 2178 sock->sk->sk_err = -err; 2179 } 2180 2181 return datagrams; 2182 } 2183 2184 return err; 2185 } 2186 2187 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2188 unsigned int, vlen, unsigned int, flags, 2189 struct timespec __user *, timeout) 2190 { 2191 int datagrams; 2192 struct timespec timeout_sys; 2193 2194 if (!timeout) 2195 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2196 2197 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2198 return -EFAULT; 2199 2200 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2201 2202 if (datagrams > 0 && 2203 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2204 datagrams = -EFAULT; 2205 2206 return datagrams; 2207 } 2208 2209 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2210 /* Argument list sizes for sys_socketcall */ 2211 #define AL(x) ((x) * sizeof(unsigned long)) 2212 static const unsigned char nargs[20] = { 2213 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2214 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2215 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2216 AL(4), AL(5) 2217 }; 2218 2219 #undef AL 2220 2221 /* 2222 * System call vectors. 2223 * 2224 * Argument checking cleaned up. Saved 20% in size. 2225 * This function doesn't need to set the kernel lock because 2226 * it is set by the callees. 2227 */ 2228 2229 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2230 { 2231 unsigned long a[6]; 2232 unsigned long a0, a1; 2233 int err; 2234 unsigned int len; 2235 2236 if (call < 1 || call > SYS_RECVMMSG) 2237 return -EINVAL; 2238 2239 len = nargs[call]; 2240 if (len > sizeof(a)) 2241 return -EINVAL; 2242 2243 /* copy_from_user should be SMP safe. */ 2244 if (copy_from_user(a, args, len)) 2245 return -EFAULT; 2246 2247 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2248 2249 a0 = a[0]; 2250 a1 = a[1]; 2251 2252 switch (call) { 2253 case SYS_SOCKET: 2254 err = sys_socket(a0, a1, a[2]); 2255 break; 2256 case SYS_BIND: 2257 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2258 break; 2259 case SYS_CONNECT: 2260 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2261 break; 2262 case SYS_LISTEN: 2263 err = sys_listen(a0, a1); 2264 break; 2265 case SYS_ACCEPT: 2266 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2267 (int __user *)a[2], 0); 2268 break; 2269 case SYS_GETSOCKNAME: 2270 err = 2271 sys_getsockname(a0, (struct sockaddr __user *)a1, 2272 (int __user *)a[2]); 2273 break; 2274 case SYS_GETPEERNAME: 2275 err = 2276 sys_getpeername(a0, (struct sockaddr __user *)a1, 2277 (int __user *)a[2]); 2278 break; 2279 case SYS_SOCKETPAIR: 2280 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2281 break; 2282 case SYS_SEND: 2283 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2284 break; 2285 case SYS_SENDTO: 2286 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2287 (struct sockaddr __user *)a[4], a[5]); 2288 break; 2289 case SYS_RECV: 2290 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2291 break; 2292 case SYS_RECVFROM: 2293 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2294 (struct sockaddr __user *)a[4], 2295 (int __user *)a[5]); 2296 break; 2297 case SYS_SHUTDOWN: 2298 err = sys_shutdown(a0, a1); 2299 break; 2300 case SYS_SETSOCKOPT: 2301 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2302 break; 2303 case SYS_GETSOCKOPT: 2304 err = 2305 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2306 (int __user *)a[4]); 2307 break; 2308 case SYS_SENDMSG: 2309 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2310 break; 2311 case SYS_RECVMSG: 2312 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2313 break; 2314 case SYS_RECVMMSG: 2315 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2316 (struct timespec __user *)a[4]); 2317 break; 2318 case SYS_ACCEPT4: 2319 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2320 (int __user *)a[2], a[3]); 2321 break; 2322 default: 2323 err = -EINVAL; 2324 break; 2325 } 2326 return err; 2327 } 2328 2329 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2330 2331 /** 2332 * sock_register - add a socket protocol handler 2333 * @ops: description of protocol 2334 * 2335 * This function is called by a protocol handler that wants to 2336 * advertise its address family, and have it linked into the 2337 * socket interface. The value ops->family coresponds to the 2338 * socket system call protocol family. 2339 */ 2340 int sock_register(const struct net_proto_family *ops) 2341 { 2342 int err; 2343 2344 if (ops->family >= NPROTO) { 2345 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2346 NPROTO); 2347 return -ENOBUFS; 2348 } 2349 2350 spin_lock(&net_family_lock); 2351 if (rcu_dereference_protected(net_families[ops->family], 2352 lockdep_is_held(&net_family_lock))) 2353 err = -EEXIST; 2354 else { 2355 rcu_assign_pointer(net_families[ops->family], ops); 2356 err = 0; 2357 } 2358 spin_unlock(&net_family_lock); 2359 2360 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2361 return err; 2362 } 2363 EXPORT_SYMBOL(sock_register); 2364 2365 /** 2366 * sock_unregister - remove a protocol handler 2367 * @family: protocol family to remove 2368 * 2369 * This function is called by a protocol handler that wants to 2370 * remove its address family, and have it unlinked from the 2371 * new socket creation. 2372 * 2373 * If protocol handler is a module, then it can use module reference 2374 * counts to protect against new references. If protocol handler is not 2375 * a module then it needs to provide its own protection in 2376 * the ops->create routine. 2377 */ 2378 void sock_unregister(int family) 2379 { 2380 BUG_ON(family < 0 || family >= NPROTO); 2381 2382 spin_lock(&net_family_lock); 2383 rcu_assign_pointer(net_families[family], NULL); 2384 spin_unlock(&net_family_lock); 2385 2386 synchronize_rcu(); 2387 2388 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2389 } 2390 EXPORT_SYMBOL(sock_unregister); 2391 2392 static int __init sock_init(void) 2393 { 2394 int err; 2395 2396 /* 2397 * Initialize sock SLAB cache. 2398 */ 2399 2400 sk_init(); 2401 2402 /* 2403 * Initialize skbuff SLAB cache 2404 */ 2405 skb_init(); 2406 2407 /* 2408 * Initialize the protocols module. 2409 */ 2410 2411 init_inodecache(); 2412 2413 err = register_filesystem(&sock_fs_type); 2414 if (err) 2415 goto out_fs; 2416 sock_mnt = kern_mount(&sock_fs_type); 2417 if (IS_ERR(sock_mnt)) { 2418 err = PTR_ERR(sock_mnt); 2419 goto out_mount; 2420 } 2421 2422 /* The real protocol initialization is performed in later initcalls. 2423 */ 2424 2425 #ifdef CONFIG_NETFILTER 2426 netfilter_init(); 2427 #endif 2428 2429 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2430 skb_timestamping_init(); 2431 #endif 2432 2433 out: 2434 return err; 2435 2436 out_mount: 2437 unregister_filesystem(&sock_fs_type); 2438 out_fs: 2439 goto out; 2440 } 2441 2442 core_initcall(sock_init); /* early initcall */ 2443 2444 #ifdef CONFIG_PROC_FS 2445 void socket_seq_show(struct seq_file *seq) 2446 { 2447 int cpu; 2448 int counter = 0; 2449 2450 for_each_possible_cpu(cpu) 2451 counter += per_cpu(sockets_in_use, cpu); 2452 2453 /* It can be negative, by the way. 8) */ 2454 if (counter < 0) 2455 counter = 0; 2456 2457 seq_printf(seq, "sockets: used %d\n", counter); 2458 } 2459 #endif /* CONFIG_PROC_FS */ 2460 2461 #ifdef CONFIG_COMPAT 2462 static int do_siocgstamp(struct net *net, struct socket *sock, 2463 unsigned int cmd, struct compat_timeval __user *up) 2464 { 2465 mm_segment_t old_fs = get_fs(); 2466 struct timeval ktv; 2467 int err; 2468 2469 set_fs(KERNEL_DS); 2470 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2471 set_fs(old_fs); 2472 if (!err) { 2473 err = put_user(ktv.tv_sec, &up->tv_sec); 2474 err |= __put_user(ktv.tv_usec, &up->tv_usec); 2475 } 2476 return err; 2477 } 2478 2479 static int do_siocgstampns(struct net *net, struct socket *sock, 2480 unsigned int cmd, struct compat_timespec __user *up) 2481 { 2482 mm_segment_t old_fs = get_fs(); 2483 struct timespec kts; 2484 int err; 2485 2486 set_fs(KERNEL_DS); 2487 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2488 set_fs(old_fs); 2489 if (!err) { 2490 err = put_user(kts.tv_sec, &up->tv_sec); 2491 err |= __put_user(kts.tv_nsec, &up->tv_nsec); 2492 } 2493 return err; 2494 } 2495 2496 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2497 { 2498 struct ifreq __user *uifr; 2499 int err; 2500 2501 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2502 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2503 return -EFAULT; 2504 2505 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2506 if (err) 2507 return err; 2508 2509 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2510 return -EFAULT; 2511 2512 return 0; 2513 } 2514 2515 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2516 { 2517 struct compat_ifconf ifc32; 2518 struct ifconf ifc; 2519 struct ifconf __user *uifc; 2520 struct compat_ifreq __user *ifr32; 2521 struct ifreq __user *ifr; 2522 unsigned int i, j; 2523 int err; 2524 2525 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2526 return -EFAULT; 2527 2528 if (ifc32.ifcbuf == 0) { 2529 ifc32.ifc_len = 0; 2530 ifc.ifc_len = 0; 2531 ifc.ifc_req = NULL; 2532 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2533 } else { 2534 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2535 sizeof(struct ifreq); 2536 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2537 ifc.ifc_len = len; 2538 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2539 ifr32 = compat_ptr(ifc32.ifcbuf); 2540 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2541 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2542 return -EFAULT; 2543 ifr++; 2544 ifr32++; 2545 } 2546 } 2547 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2548 return -EFAULT; 2549 2550 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2551 if (err) 2552 return err; 2553 2554 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2555 return -EFAULT; 2556 2557 ifr = ifc.ifc_req; 2558 ifr32 = compat_ptr(ifc32.ifcbuf); 2559 for (i = 0, j = 0; 2560 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2561 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2562 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2563 return -EFAULT; 2564 ifr32++; 2565 ifr++; 2566 } 2567 2568 if (ifc32.ifcbuf == 0) { 2569 /* Translate from 64-bit structure multiple to 2570 * a 32-bit one. 2571 */ 2572 i = ifc.ifc_len; 2573 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2574 ifc32.ifc_len = i; 2575 } else { 2576 ifc32.ifc_len = i; 2577 } 2578 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2579 return -EFAULT; 2580 2581 return 0; 2582 } 2583 2584 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2585 { 2586 struct ifreq __user *ifr; 2587 u32 data; 2588 void __user *datap; 2589 2590 ifr = compat_alloc_user_space(sizeof(*ifr)); 2591 2592 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2593 return -EFAULT; 2594 2595 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2596 return -EFAULT; 2597 2598 datap = compat_ptr(data); 2599 if (put_user(datap, &ifr->ifr_ifru.ifru_data)) 2600 return -EFAULT; 2601 2602 return dev_ioctl(net, SIOCETHTOOL, ifr); 2603 } 2604 2605 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2606 { 2607 void __user *uptr; 2608 compat_uptr_t uptr32; 2609 struct ifreq __user *uifr; 2610 2611 uifr = compat_alloc_user_space(sizeof(*uifr)); 2612 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2613 return -EFAULT; 2614 2615 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2616 return -EFAULT; 2617 2618 uptr = compat_ptr(uptr32); 2619 2620 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2621 return -EFAULT; 2622 2623 return dev_ioctl(net, SIOCWANDEV, uifr); 2624 } 2625 2626 static int bond_ioctl(struct net *net, unsigned int cmd, 2627 struct compat_ifreq __user *ifr32) 2628 { 2629 struct ifreq kifr; 2630 struct ifreq __user *uifr; 2631 mm_segment_t old_fs; 2632 int err; 2633 u32 data; 2634 void __user *datap; 2635 2636 switch (cmd) { 2637 case SIOCBONDENSLAVE: 2638 case SIOCBONDRELEASE: 2639 case SIOCBONDSETHWADDR: 2640 case SIOCBONDCHANGEACTIVE: 2641 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2642 return -EFAULT; 2643 2644 old_fs = get_fs(); 2645 set_fs(KERNEL_DS); 2646 err = dev_ioctl(net, cmd, &kifr); 2647 set_fs(old_fs); 2648 2649 return err; 2650 case SIOCBONDSLAVEINFOQUERY: 2651 case SIOCBONDINFOQUERY: 2652 uifr = compat_alloc_user_space(sizeof(*uifr)); 2653 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2654 return -EFAULT; 2655 2656 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2657 return -EFAULT; 2658 2659 datap = compat_ptr(data); 2660 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2661 return -EFAULT; 2662 2663 return dev_ioctl(net, cmd, uifr); 2664 default: 2665 return -EINVAL; 2666 } 2667 } 2668 2669 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2670 struct compat_ifreq __user *u_ifreq32) 2671 { 2672 struct ifreq __user *u_ifreq64; 2673 char tmp_buf[IFNAMSIZ]; 2674 void __user *data64; 2675 u32 data32; 2676 2677 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2678 IFNAMSIZ)) 2679 return -EFAULT; 2680 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2681 return -EFAULT; 2682 data64 = compat_ptr(data32); 2683 2684 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2685 2686 /* Don't check these user accesses, just let that get trapped 2687 * in the ioctl handler instead. 2688 */ 2689 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2690 IFNAMSIZ)) 2691 return -EFAULT; 2692 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2693 return -EFAULT; 2694 2695 return dev_ioctl(net, cmd, u_ifreq64); 2696 } 2697 2698 static int dev_ifsioc(struct net *net, struct socket *sock, 2699 unsigned int cmd, struct compat_ifreq __user *uifr32) 2700 { 2701 struct ifreq __user *uifr; 2702 int err; 2703 2704 uifr = compat_alloc_user_space(sizeof(*uifr)); 2705 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2706 return -EFAULT; 2707 2708 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2709 2710 if (!err) { 2711 switch (cmd) { 2712 case SIOCGIFFLAGS: 2713 case SIOCGIFMETRIC: 2714 case SIOCGIFMTU: 2715 case SIOCGIFMEM: 2716 case SIOCGIFHWADDR: 2717 case SIOCGIFINDEX: 2718 case SIOCGIFADDR: 2719 case SIOCGIFBRDADDR: 2720 case SIOCGIFDSTADDR: 2721 case SIOCGIFNETMASK: 2722 case SIOCGIFPFLAGS: 2723 case SIOCGIFTXQLEN: 2724 case SIOCGMIIPHY: 2725 case SIOCGMIIREG: 2726 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2727 err = -EFAULT; 2728 break; 2729 } 2730 } 2731 return err; 2732 } 2733 2734 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2735 struct compat_ifreq __user *uifr32) 2736 { 2737 struct ifreq ifr; 2738 struct compat_ifmap __user *uifmap32; 2739 mm_segment_t old_fs; 2740 int err; 2741 2742 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2743 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2744 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2745 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2746 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2747 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 2748 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 2749 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 2750 if (err) 2751 return -EFAULT; 2752 2753 old_fs = get_fs(); 2754 set_fs(KERNEL_DS); 2755 err = dev_ioctl(net, cmd, (void __user *)&ifr); 2756 set_fs(old_fs); 2757 2758 if (cmd == SIOCGIFMAP && !err) { 2759 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2760 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2761 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2762 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2763 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 2764 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 2765 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 2766 if (err) 2767 err = -EFAULT; 2768 } 2769 return err; 2770 } 2771 2772 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 2773 { 2774 void __user *uptr; 2775 compat_uptr_t uptr32; 2776 struct ifreq __user *uifr; 2777 2778 uifr = compat_alloc_user_space(sizeof(*uifr)); 2779 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2780 return -EFAULT; 2781 2782 if (get_user(uptr32, &uifr32->ifr_data)) 2783 return -EFAULT; 2784 2785 uptr = compat_ptr(uptr32); 2786 2787 if (put_user(uptr, &uifr->ifr_data)) 2788 return -EFAULT; 2789 2790 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 2791 } 2792 2793 struct rtentry32 { 2794 u32 rt_pad1; 2795 struct sockaddr rt_dst; /* target address */ 2796 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2797 struct sockaddr rt_genmask; /* target network mask (IP) */ 2798 unsigned short rt_flags; 2799 short rt_pad2; 2800 u32 rt_pad3; 2801 unsigned char rt_tos; 2802 unsigned char rt_class; 2803 short rt_pad4; 2804 short rt_metric; /* +1 for binary compatibility! */ 2805 /* char * */ u32 rt_dev; /* forcing the device at add */ 2806 u32 rt_mtu; /* per route MTU/Window */ 2807 u32 rt_window; /* Window clamping */ 2808 unsigned short rt_irtt; /* Initial RTT */ 2809 }; 2810 2811 struct in6_rtmsg32 { 2812 struct in6_addr rtmsg_dst; 2813 struct in6_addr rtmsg_src; 2814 struct in6_addr rtmsg_gateway; 2815 u32 rtmsg_type; 2816 u16 rtmsg_dst_len; 2817 u16 rtmsg_src_len; 2818 u32 rtmsg_metric; 2819 u32 rtmsg_info; 2820 u32 rtmsg_flags; 2821 s32 rtmsg_ifindex; 2822 }; 2823 2824 static int routing_ioctl(struct net *net, struct socket *sock, 2825 unsigned int cmd, void __user *argp) 2826 { 2827 int ret; 2828 void *r = NULL; 2829 struct in6_rtmsg r6; 2830 struct rtentry r4; 2831 char devname[16]; 2832 u32 rtdev; 2833 mm_segment_t old_fs = get_fs(); 2834 2835 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2836 struct in6_rtmsg32 __user *ur6 = argp; 2837 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2838 3 * sizeof(struct in6_addr)); 2839 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2840 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2841 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2842 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2843 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2844 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2845 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2846 2847 r = (void *) &r6; 2848 } else { /* ipv4 */ 2849 struct rtentry32 __user *ur4 = argp; 2850 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 2851 3 * sizeof(struct sockaddr)); 2852 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 2853 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 2854 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 2855 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 2856 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 2857 ret |= __get_user(rtdev, &(ur4->rt_dev)); 2858 if (rtdev) { 2859 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 2860 r4.rt_dev = devname; devname[15] = 0; 2861 } else 2862 r4.rt_dev = NULL; 2863 2864 r = (void *) &r4; 2865 } 2866 2867 if (ret) { 2868 ret = -EFAULT; 2869 goto out; 2870 } 2871 2872 set_fs(KERNEL_DS); 2873 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 2874 set_fs(old_fs); 2875 2876 out: 2877 return ret; 2878 } 2879 2880 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 2881 * for some operations; this forces use of the newer bridge-utils that 2882 * use compatiable ioctls 2883 */ 2884 static int old_bridge_ioctl(compat_ulong_t __user *argp) 2885 { 2886 compat_ulong_t tmp; 2887 2888 if (get_user(tmp, argp)) 2889 return -EFAULT; 2890 if (tmp == BRCTL_GET_VERSION) 2891 return BRCTL_VERSION + 1; 2892 return -EINVAL; 2893 } 2894 2895 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 2896 unsigned int cmd, unsigned long arg) 2897 { 2898 void __user *argp = compat_ptr(arg); 2899 struct sock *sk = sock->sk; 2900 struct net *net = sock_net(sk); 2901 2902 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 2903 return siocdevprivate_ioctl(net, cmd, argp); 2904 2905 switch (cmd) { 2906 case SIOCSIFBR: 2907 case SIOCGIFBR: 2908 return old_bridge_ioctl(argp); 2909 case SIOCGIFNAME: 2910 return dev_ifname32(net, argp); 2911 case SIOCGIFCONF: 2912 return dev_ifconf(net, argp); 2913 case SIOCETHTOOL: 2914 return ethtool_ioctl(net, argp); 2915 case SIOCWANDEV: 2916 return compat_siocwandev(net, argp); 2917 case SIOCGIFMAP: 2918 case SIOCSIFMAP: 2919 return compat_sioc_ifmap(net, cmd, argp); 2920 case SIOCBONDENSLAVE: 2921 case SIOCBONDRELEASE: 2922 case SIOCBONDSETHWADDR: 2923 case SIOCBONDSLAVEINFOQUERY: 2924 case SIOCBONDINFOQUERY: 2925 case SIOCBONDCHANGEACTIVE: 2926 return bond_ioctl(net, cmd, argp); 2927 case SIOCADDRT: 2928 case SIOCDELRT: 2929 return routing_ioctl(net, sock, cmd, argp); 2930 case SIOCGSTAMP: 2931 return do_siocgstamp(net, sock, cmd, argp); 2932 case SIOCGSTAMPNS: 2933 return do_siocgstampns(net, sock, cmd, argp); 2934 case SIOCSHWTSTAMP: 2935 return compat_siocshwtstamp(net, argp); 2936 2937 case FIOSETOWN: 2938 case SIOCSPGRP: 2939 case FIOGETOWN: 2940 case SIOCGPGRP: 2941 case SIOCBRADDBR: 2942 case SIOCBRDELBR: 2943 case SIOCGIFVLAN: 2944 case SIOCSIFVLAN: 2945 case SIOCADDDLCI: 2946 case SIOCDELDLCI: 2947 return sock_ioctl(file, cmd, arg); 2948 2949 case SIOCGIFFLAGS: 2950 case SIOCSIFFLAGS: 2951 case SIOCGIFMETRIC: 2952 case SIOCSIFMETRIC: 2953 case SIOCGIFMTU: 2954 case SIOCSIFMTU: 2955 case SIOCGIFMEM: 2956 case SIOCSIFMEM: 2957 case SIOCGIFHWADDR: 2958 case SIOCSIFHWADDR: 2959 case SIOCADDMULTI: 2960 case SIOCDELMULTI: 2961 case SIOCGIFINDEX: 2962 case SIOCGIFADDR: 2963 case SIOCSIFADDR: 2964 case SIOCSIFHWBROADCAST: 2965 case SIOCDIFADDR: 2966 case SIOCGIFBRDADDR: 2967 case SIOCSIFBRDADDR: 2968 case SIOCGIFDSTADDR: 2969 case SIOCSIFDSTADDR: 2970 case SIOCGIFNETMASK: 2971 case SIOCSIFNETMASK: 2972 case SIOCSIFPFLAGS: 2973 case SIOCGIFPFLAGS: 2974 case SIOCGIFTXQLEN: 2975 case SIOCSIFTXQLEN: 2976 case SIOCBRADDIF: 2977 case SIOCBRDELIF: 2978 case SIOCSIFNAME: 2979 case SIOCGMIIPHY: 2980 case SIOCGMIIREG: 2981 case SIOCSMIIREG: 2982 return dev_ifsioc(net, sock, cmd, argp); 2983 2984 case SIOCSARP: 2985 case SIOCGARP: 2986 case SIOCDARP: 2987 case SIOCATMARK: 2988 return sock_do_ioctl(net, sock, cmd, arg); 2989 } 2990 2991 /* Prevent warning from compat_sys_ioctl, these always 2992 * result in -EINVAL in the native case anyway. */ 2993 switch (cmd) { 2994 case SIOCRTMSG: 2995 case SIOCGIFCOUNT: 2996 case SIOCSRARP: 2997 case SIOCGRARP: 2998 case SIOCDRARP: 2999 case SIOCSIFLINK: 3000 case SIOCGIFSLAVE: 3001 case SIOCSIFSLAVE: 3002 return -EINVAL; 3003 } 3004 3005 return -ENOIOCTLCMD; 3006 } 3007 3008 static long compat_sock_ioctl(struct file *file, unsigned cmd, 3009 unsigned long arg) 3010 { 3011 struct socket *sock = file->private_data; 3012 int ret = -ENOIOCTLCMD; 3013 struct sock *sk; 3014 struct net *net; 3015 3016 sk = sock->sk; 3017 net = sock_net(sk); 3018 3019 if (sock->ops->compat_ioctl) 3020 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3021 3022 if (ret == -ENOIOCTLCMD && 3023 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3024 ret = compat_wext_handle_ioctl(net, cmd, arg); 3025 3026 if (ret == -ENOIOCTLCMD) 3027 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3028 3029 return ret; 3030 } 3031 #endif 3032 3033 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3034 { 3035 return sock->ops->bind(sock, addr, addrlen); 3036 } 3037 EXPORT_SYMBOL(kernel_bind); 3038 3039 int kernel_listen(struct socket *sock, int backlog) 3040 { 3041 return sock->ops->listen(sock, backlog); 3042 } 3043 EXPORT_SYMBOL(kernel_listen); 3044 3045 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3046 { 3047 struct sock *sk = sock->sk; 3048 int err; 3049 3050 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3051 newsock); 3052 if (err < 0) 3053 goto done; 3054 3055 err = sock->ops->accept(sock, *newsock, flags); 3056 if (err < 0) { 3057 sock_release(*newsock); 3058 *newsock = NULL; 3059 goto done; 3060 } 3061 3062 (*newsock)->ops = sock->ops; 3063 __module_get((*newsock)->ops->owner); 3064 3065 done: 3066 return err; 3067 } 3068 EXPORT_SYMBOL(kernel_accept); 3069 3070 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3071 int flags) 3072 { 3073 return sock->ops->connect(sock, addr, addrlen, flags); 3074 } 3075 EXPORT_SYMBOL(kernel_connect); 3076 3077 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3078 int *addrlen) 3079 { 3080 return sock->ops->getname(sock, addr, addrlen, 0); 3081 } 3082 EXPORT_SYMBOL(kernel_getsockname); 3083 3084 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3085 int *addrlen) 3086 { 3087 return sock->ops->getname(sock, addr, addrlen, 1); 3088 } 3089 EXPORT_SYMBOL(kernel_getpeername); 3090 3091 int kernel_getsockopt(struct socket *sock, int level, int optname, 3092 char *optval, int *optlen) 3093 { 3094 mm_segment_t oldfs = get_fs(); 3095 char __user *uoptval; 3096 int __user *uoptlen; 3097 int err; 3098 3099 uoptval = (char __user __force *) optval; 3100 uoptlen = (int __user __force *) optlen; 3101 3102 set_fs(KERNEL_DS); 3103 if (level == SOL_SOCKET) 3104 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3105 else 3106 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3107 uoptlen); 3108 set_fs(oldfs); 3109 return err; 3110 } 3111 EXPORT_SYMBOL(kernel_getsockopt); 3112 3113 int kernel_setsockopt(struct socket *sock, int level, int optname, 3114 char *optval, unsigned int optlen) 3115 { 3116 mm_segment_t oldfs = get_fs(); 3117 char __user *uoptval; 3118 int err; 3119 3120 uoptval = (char __user __force *) optval; 3121 3122 set_fs(KERNEL_DS); 3123 if (level == SOL_SOCKET) 3124 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3125 else 3126 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3127 optlen); 3128 set_fs(oldfs); 3129 return err; 3130 } 3131 EXPORT_SYMBOL(kernel_setsockopt); 3132 3133 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3134 size_t size, int flags) 3135 { 3136 sock_update_classid(sock->sk); 3137 3138 if (sock->ops->sendpage) 3139 return sock->ops->sendpage(sock, page, offset, size, flags); 3140 3141 return sock_no_sendpage(sock, page, offset, size, flags); 3142 } 3143 EXPORT_SYMBOL(kernel_sendpage); 3144 3145 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3146 { 3147 mm_segment_t oldfs = get_fs(); 3148 int err; 3149 3150 set_fs(KERNEL_DS); 3151 err = sock->ops->ioctl(sock, cmd, arg); 3152 set_fs(oldfs); 3153 3154 return err; 3155 } 3156 EXPORT_SYMBOL(kernel_sock_ioctl); 3157 3158 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3159 { 3160 return sock->ops->shutdown(sock, how); 3161 } 3162 EXPORT_SYMBOL(kernel_sock_shutdown); 3163