1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/ethtool.h> 56 #include <linux/mm.h> 57 #include <linux/socket.h> 58 #include <linux/file.h> 59 #include <linux/net.h> 60 #include <linux/interrupt.h> 61 #include <linux/thread_info.h> 62 #include <linux/rcupdate.h> 63 #include <linux/netdevice.h> 64 #include <linux/proc_fs.h> 65 #include <linux/seq_file.h> 66 #include <linux/mutex.h> 67 #include <linux/if_bridge.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/termios.h> 104 #include <linux/sockios.h> 105 #include <net/busy_poll.h> 106 #include <linux/errqueue.h> 107 108 #ifdef CONFIG_NET_RX_BUSY_POLL 109 unsigned int sysctl_net_busy_read __read_mostly; 110 unsigned int sysctl_net_busy_poll __read_mostly; 111 #endif 112 113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 115 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 116 117 static int sock_close(struct inode *inode, struct file *file); 118 static __poll_t sock_poll(struct file *file, 119 struct poll_table_struct *wait); 120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 121 #ifdef CONFIG_COMPAT 122 static long compat_sock_ioctl(struct file *file, 123 unsigned int cmd, unsigned long arg); 124 #endif 125 static int sock_fasync(int fd, struct file *filp, int on); 126 static ssize_t sock_sendpage(struct file *file, struct page *page, 127 int offset, size_t size, loff_t *ppos, int more); 128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 129 struct pipe_inode_info *pipe, size_t len, 130 unsigned int flags); 131 132 #ifdef CONFIG_PROC_FS 133 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 134 { 135 struct socket *sock = f->private_data; 136 137 if (sock->ops->show_fdinfo) 138 sock->ops->show_fdinfo(m, sock); 139 } 140 #else 141 #define sock_show_fdinfo NULL 142 #endif 143 144 /* 145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 146 * in the operation structures but are done directly via the socketcall() multiplexor. 147 */ 148 149 static const struct file_operations socket_file_ops = { 150 .owner = THIS_MODULE, 151 .llseek = no_llseek, 152 .read_iter = sock_read_iter, 153 .write_iter = sock_write_iter, 154 .poll = sock_poll, 155 .unlocked_ioctl = sock_ioctl, 156 #ifdef CONFIG_COMPAT 157 .compat_ioctl = compat_sock_ioctl, 158 #endif 159 .mmap = sock_mmap, 160 .release = sock_close, 161 .fasync = sock_fasync, 162 .sendpage = sock_sendpage, 163 .splice_write = generic_splice_sendpage, 164 .splice_read = sock_splice_read, 165 .show_fdinfo = sock_show_fdinfo, 166 }; 167 168 static const char * const pf_family_names[] = { 169 [PF_UNSPEC] = "PF_UNSPEC", 170 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 171 [PF_INET] = "PF_INET", 172 [PF_AX25] = "PF_AX25", 173 [PF_IPX] = "PF_IPX", 174 [PF_APPLETALK] = "PF_APPLETALK", 175 [PF_NETROM] = "PF_NETROM", 176 [PF_BRIDGE] = "PF_BRIDGE", 177 [PF_ATMPVC] = "PF_ATMPVC", 178 [PF_X25] = "PF_X25", 179 [PF_INET6] = "PF_INET6", 180 [PF_ROSE] = "PF_ROSE", 181 [PF_DECnet] = "PF_DECnet", 182 [PF_NETBEUI] = "PF_NETBEUI", 183 [PF_SECURITY] = "PF_SECURITY", 184 [PF_KEY] = "PF_KEY", 185 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 186 [PF_PACKET] = "PF_PACKET", 187 [PF_ASH] = "PF_ASH", 188 [PF_ECONET] = "PF_ECONET", 189 [PF_ATMSVC] = "PF_ATMSVC", 190 [PF_RDS] = "PF_RDS", 191 [PF_SNA] = "PF_SNA", 192 [PF_IRDA] = "PF_IRDA", 193 [PF_PPPOX] = "PF_PPPOX", 194 [PF_WANPIPE] = "PF_WANPIPE", 195 [PF_LLC] = "PF_LLC", 196 [PF_IB] = "PF_IB", 197 [PF_MPLS] = "PF_MPLS", 198 [PF_CAN] = "PF_CAN", 199 [PF_TIPC] = "PF_TIPC", 200 [PF_BLUETOOTH] = "PF_BLUETOOTH", 201 [PF_IUCV] = "PF_IUCV", 202 [PF_RXRPC] = "PF_RXRPC", 203 [PF_ISDN] = "PF_ISDN", 204 [PF_PHONET] = "PF_PHONET", 205 [PF_IEEE802154] = "PF_IEEE802154", 206 [PF_CAIF] = "PF_CAIF", 207 [PF_ALG] = "PF_ALG", 208 [PF_NFC] = "PF_NFC", 209 [PF_VSOCK] = "PF_VSOCK", 210 [PF_KCM] = "PF_KCM", 211 [PF_QIPCRTR] = "PF_QIPCRTR", 212 [PF_SMC] = "PF_SMC", 213 [PF_XDP] = "PF_XDP", 214 }; 215 216 /* 217 * The protocol list. Each protocol is registered in here. 218 */ 219 220 static DEFINE_SPINLOCK(net_family_lock); 221 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 222 223 /* 224 * Support routines. 225 * Move socket addresses back and forth across the kernel/user 226 * divide and look after the messy bits. 227 */ 228 229 /** 230 * move_addr_to_kernel - copy a socket address into kernel space 231 * @uaddr: Address in user space 232 * @kaddr: Address in kernel space 233 * @ulen: Length in user space 234 * 235 * The address is copied into kernel space. If the provided address is 236 * too long an error code of -EINVAL is returned. If the copy gives 237 * invalid addresses -EFAULT is returned. On a success 0 is returned. 238 */ 239 240 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 241 { 242 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 243 return -EINVAL; 244 if (ulen == 0) 245 return 0; 246 if (copy_from_user(kaddr, uaddr, ulen)) 247 return -EFAULT; 248 return audit_sockaddr(ulen, kaddr); 249 } 250 251 /** 252 * move_addr_to_user - copy an address to user space 253 * @kaddr: kernel space address 254 * @klen: length of address in kernel 255 * @uaddr: user space address 256 * @ulen: pointer to user length field 257 * 258 * The value pointed to by ulen on entry is the buffer length available. 259 * This is overwritten with the buffer space used. -EINVAL is returned 260 * if an overlong buffer is specified or a negative buffer size. -EFAULT 261 * is returned if either the buffer or the length field are not 262 * accessible. 263 * After copying the data up to the limit the user specifies, the true 264 * length of the data is written over the length limit the user 265 * specified. Zero is returned for a success. 266 */ 267 268 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 269 void __user *uaddr, int __user *ulen) 270 { 271 int err; 272 int len; 273 274 BUG_ON(klen > sizeof(struct sockaddr_storage)); 275 err = get_user(len, ulen); 276 if (err) 277 return err; 278 if (len > klen) 279 len = klen; 280 if (len < 0) 281 return -EINVAL; 282 if (len) { 283 if (audit_sockaddr(klen, kaddr)) 284 return -ENOMEM; 285 if (copy_to_user(uaddr, kaddr, len)) 286 return -EFAULT; 287 } 288 /* 289 * "fromlen shall refer to the value before truncation.." 290 * 1003.1g 291 */ 292 return __put_user(klen, ulen); 293 } 294 295 static struct kmem_cache *sock_inode_cachep __ro_after_init; 296 297 static struct inode *sock_alloc_inode(struct super_block *sb) 298 { 299 struct socket_alloc *ei; 300 301 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 302 if (!ei) 303 return NULL; 304 init_waitqueue_head(&ei->socket.wq.wait); 305 ei->socket.wq.fasync_list = NULL; 306 ei->socket.wq.flags = 0; 307 308 ei->socket.state = SS_UNCONNECTED; 309 ei->socket.flags = 0; 310 ei->socket.ops = NULL; 311 ei->socket.sk = NULL; 312 ei->socket.file = NULL; 313 314 return &ei->vfs_inode; 315 } 316 317 static void sock_free_inode(struct inode *inode) 318 { 319 struct socket_alloc *ei; 320 321 ei = container_of(inode, struct socket_alloc, vfs_inode); 322 kmem_cache_free(sock_inode_cachep, ei); 323 } 324 325 static void init_once(void *foo) 326 { 327 struct socket_alloc *ei = (struct socket_alloc *)foo; 328 329 inode_init_once(&ei->vfs_inode); 330 } 331 332 static void init_inodecache(void) 333 { 334 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 335 sizeof(struct socket_alloc), 336 0, 337 (SLAB_HWCACHE_ALIGN | 338 SLAB_RECLAIM_ACCOUNT | 339 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 340 init_once); 341 BUG_ON(sock_inode_cachep == NULL); 342 } 343 344 static const struct super_operations sockfs_ops = { 345 .alloc_inode = sock_alloc_inode, 346 .free_inode = sock_free_inode, 347 .statfs = simple_statfs, 348 }; 349 350 /* 351 * sockfs_dname() is called from d_path(). 352 */ 353 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 354 { 355 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 356 d_inode(dentry)->i_ino); 357 } 358 359 static const struct dentry_operations sockfs_dentry_operations = { 360 .d_dname = sockfs_dname, 361 }; 362 363 static int sockfs_xattr_get(const struct xattr_handler *handler, 364 struct dentry *dentry, struct inode *inode, 365 const char *suffix, void *value, size_t size) 366 { 367 if (value) { 368 if (dentry->d_name.len + 1 > size) 369 return -ERANGE; 370 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 371 } 372 return dentry->d_name.len + 1; 373 } 374 375 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 376 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 377 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 378 379 static const struct xattr_handler sockfs_xattr_handler = { 380 .name = XATTR_NAME_SOCKPROTONAME, 381 .get = sockfs_xattr_get, 382 }; 383 384 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 385 struct user_namespace *mnt_userns, 386 struct dentry *dentry, struct inode *inode, 387 const char *suffix, const void *value, 388 size_t size, int flags) 389 { 390 /* Handled by LSM. */ 391 return -EAGAIN; 392 } 393 394 static const struct xattr_handler sockfs_security_xattr_handler = { 395 .prefix = XATTR_SECURITY_PREFIX, 396 .set = sockfs_security_xattr_set, 397 }; 398 399 static const struct xattr_handler *sockfs_xattr_handlers[] = { 400 &sockfs_xattr_handler, 401 &sockfs_security_xattr_handler, 402 NULL 403 }; 404 405 static int sockfs_init_fs_context(struct fs_context *fc) 406 { 407 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 408 if (!ctx) 409 return -ENOMEM; 410 ctx->ops = &sockfs_ops; 411 ctx->dops = &sockfs_dentry_operations; 412 ctx->xattr = sockfs_xattr_handlers; 413 return 0; 414 } 415 416 static struct vfsmount *sock_mnt __read_mostly; 417 418 static struct file_system_type sock_fs_type = { 419 .name = "sockfs", 420 .init_fs_context = sockfs_init_fs_context, 421 .kill_sb = kill_anon_super, 422 }; 423 424 /* 425 * Obtains the first available file descriptor and sets it up for use. 426 * 427 * These functions create file structures and maps them to fd space 428 * of the current process. On success it returns file descriptor 429 * and file struct implicitly stored in sock->file. 430 * Note that another thread may close file descriptor before we return 431 * from this function. We use the fact that now we do not refer 432 * to socket after mapping. If one day we will need it, this 433 * function will increment ref. count on file by 1. 434 * 435 * In any case returned fd MAY BE not valid! 436 * This race condition is unavoidable 437 * with shared fd spaces, we cannot solve it inside kernel, 438 * but we take care of internal coherence yet. 439 */ 440 441 /** 442 * sock_alloc_file - Bind a &socket to a &file 443 * @sock: socket 444 * @flags: file status flags 445 * @dname: protocol name 446 * 447 * Returns the &file bound with @sock, implicitly storing it 448 * in sock->file. If dname is %NULL, sets to "". 449 * On failure the return is a ERR pointer (see linux/err.h). 450 * This function uses GFP_KERNEL internally. 451 */ 452 453 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 454 { 455 struct file *file; 456 457 if (!dname) 458 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 459 460 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 461 O_RDWR | (flags & O_NONBLOCK), 462 &socket_file_ops); 463 if (IS_ERR(file)) { 464 sock_release(sock); 465 return file; 466 } 467 468 sock->file = file; 469 file->private_data = sock; 470 stream_open(SOCK_INODE(sock), file); 471 return file; 472 } 473 EXPORT_SYMBOL(sock_alloc_file); 474 475 static int sock_map_fd(struct socket *sock, int flags) 476 { 477 struct file *newfile; 478 int fd = get_unused_fd_flags(flags); 479 if (unlikely(fd < 0)) { 480 sock_release(sock); 481 return fd; 482 } 483 484 newfile = sock_alloc_file(sock, flags, NULL); 485 if (!IS_ERR(newfile)) { 486 fd_install(fd, newfile); 487 return fd; 488 } 489 490 put_unused_fd(fd); 491 return PTR_ERR(newfile); 492 } 493 494 /** 495 * sock_from_file - Return the &socket bounded to @file. 496 * @file: file 497 * 498 * On failure returns %NULL. 499 */ 500 501 struct socket *sock_from_file(struct file *file) 502 { 503 if (file->f_op == &socket_file_ops) 504 return file->private_data; /* set in sock_map_fd */ 505 506 return NULL; 507 } 508 EXPORT_SYMBOL(sock_from_file); 509 510 /** 511 * sockfd_lookup - Go from a file number to its socket slot 512 * @fd: file handle 513 * @err: pointer to an error code return 514 * 515 * The file handle passed in is locked and the socket it is bound 516 * to is returned. If an error occurs the err pointer is overwritten 517 * with a negative errno code and NULL is returned. The function checks 518 * for both invalid handles and passing a handle which is not a socket. 519 * 520 * On a success the socket object pointer is returned. 521 */ 522 523 struct socket *sockfd_lookup(int fd, int *err) 524 { 525 struct file *file; 526 struct socket *sock; 527 528 file = fget(fd); 529 if (!file) { 530 *err = -EBADF; 531 return NULL; 532 } 533 534 sock = sock_from_file(file); 535 if (!sock) { 536 *err = -ENOTSOCK; 537 fput(file); 538 } 539 return sock; 540 } 541 EXPORT_SYMBOL(sockfd_lookup); 542 543 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 544 { 545 struct fd f = fdget(fd); 546 struct socket *sock; 547 548 *err = -EBADF; 549 if (f.file) { 550 sock = sock_from_file(f.file); 551 if (likely(sock)) { 552 *fput_needed = f.flags & FDPUT_FPUT; 553 return sock; 554 } 555 *err = -ENOTSOCK; 556 fdput(f); 557 } 558 return NULL; 559 } 560 561 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 562 size_t size) 563 { 564 ssize_t len; 565 ssize_t used = 0; 566 567 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 568 if (len < 0) 569 return len; 570 used += len; 571 if (buffer) { 572 if (size < used) 573 return -ERANGE; 574 buffer += len; 575 } 576 577 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 578 used += len; 579 if (buffer) { 580 if (size < used) 581 return -ERANGE; 582 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 583 buffer += len; 584 } 585 586 return used; 587 } 588 589 static int sockfs_setattr(struct user_namespace *mnt_userns, 590 struct dentry *dentry, struct iattr *iattr) 591 { 592 int err = simple_setattr(&init_user_ns, dentry, iattr); 593 594 if (!err && (iattr->ia_valid & ATTR_UID)) { 595 struct socket *sock = SOCKET_I(d_inode(dentry)); 596 597 if (sock->sk) 598 sock->sk->sk_uid = iattr->ia_uid; 599 else 600 err = -ENOENT; 601 } 602 603 return err; 604 } 605 606 static const struct inode_operations sockfs_inode_ops = { 607 .listxattr = sockfs_listxattr, 608 .setattr = sockfs_setattr, 609 }; 610 611 /** 612 * sock_alloc - allocate a socket 613 * 614 * Allocate a new inode and socket object. The two are bound together 615 * and initialised. The socket is then returned. If we are out of inodes 616 * NULL is returned. This functions uses GFP_KERNEL internally. 617 */ 618 619 struct socket *sock_alloc(void) 620 { 621 struct inode *inode; 622 struct socket *sock; 623 624 inode = new_inode_pseudo(sock_mnt->mnt_sb); 625 if (!inode) 626 return NULL; 627 628 sock = SOCKET_I(inode); 629 630 inode->i_ino = get_next_ino(); 631 inode->i_mode = S_IFSOCK | S_IRWXUGO; 632 inode->i_uid = current_fsuid(); 633 inode->i_gid = current_fsgid(); 634 inode->i_op = &sockfs_inode_ops; 635 636 return sock; 637 } 638 EXPORT_SYMBOL(sock_alloc); 639 640 static void __sock_release(struct socket *sock, struct inode *inode) 641 { 642 if (sock->ops) { 643 struct module *owner = sock->ops->owner; 644 645 if (inode) 646 inode_lock(inode); 647 sock->ops->release(sock); 648 sock->sk = NULL; 649 if (inode) 650 inode_unlock(inode); 651 sock->ops = NULL; 652 module_put(owner); 653 } 654 655 if (sock->wq.fasync_list) 656 pr_err("%s: fasync list not empty!\n", __func__); 657 658 if (!sock->file) { 659 iput(SOCK_INODE(sock)); 660 return; 661 } 662 sock->file = NULL; 663 } 664 665 /** 666 * sock_release - close a socket 667 * @sock: socket to close 668 * 669 * The socket is released from the protocol stack if it has a release 670 * callback, and the inode is then released if the socket is bound to 671 * an inode not a file. 672 */ 673 void sock_release(struct socket *sock) 674 { 675 __sock_release(sock, NULL); 676 } 677 EXPORT_SYMBOL(sock_release); 678 679 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 680 { 681 u8 flags = *tx_flags; 682 683 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 684 flags |= SKBTX_HW_TSTAMP; 685 686 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 687 flags |= SKBTX_SW_TSTAMP; 688 689 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 690 flags |= SKBTX_SCHED_TSTAMP; 691 692 *tx_flags = flags; 693 } 694 EXPORT_SYMBOL(__sock_tx_timestamp); 695 696 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 697 size_t)); 698 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 699 size_t)); 700 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 701 { 702 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 703 inet_sendmsg, sock, msg, 704 msg_data_left(msg)); 705 BUG_ON(ret == -EIOCBQUEUED); 706 return ret; 707 } 708 709 /** 710 * sock_sendmsg - send a message through @sock 711 * @sock: socket 712 * @msg: message to send 713 * 714 * Sends @msg through @sock, passing through LSM. 715 * Returns the number of bytes sent, or an error code. 716 */ 717 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 718 { 719 int err = security_socket_sendmsg(sock, msg, 720 msg_data_left(msg)); 721 722 return err ?: sock_sendmsg_nosec(sock, msg); 723 } 724 EXPORT_SYMBOL(sock_sendmsg); 725 726 /** 727 * kernel_sendmsg - send a message through @sock (kernel-space) 728 * @sock: socket 729 * @msg: message header 730 * @vec: kernel vec 731 * @num: vec array length 732 * @size: total message data size 733 * 734 * Builds the message data with @vec and sends it through @sock. 735 * Returns the number of bytes sent, or an error code. 736 */ 737 738 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 739 struct kvec *vec, size_t num, size_t size) 740 { 741 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 742 return sock_sendmsg(sock, msg); 743 } 744 EXPORT_SYMBOL(kernel_sendmsg); 745 746 /** 747 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 748 * @sk: sock 749 * @msg: message header 750 * @vec: output s/g array 751 * @num: output s/g array length 752 * @size: total message data size 753 * 754 * Builds the message data with @vec and sends it through @sock. 755 * Returns the number of bytes sent, or an error code. 756 * Caller must hold @sk. 757 */ 758 759 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 760 struct kvec *vec, size_t num, size_t size) 761 { 762 struct socket *sock = sk->sk_socket; 763 764 if (!sock->ops->sendmsg_locked) 765 return sock_no_sendmsg_locked(sk, msg, size); 766 767 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 768 769 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 770 } 771 EXPORT_SYMBOL(kernel_sendmsg_locked); 772 773 static bool skb_is_err_queue(const struct sk_buff *skb) 774 { 775 /* pkt_type of skbs enqueued on the error queue are set to 776 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 777 * in recvmsg, since skbs received on a local socket will never 778 * have a pkt_type of PACKET_OUTGOING. 779 */ 780 return skb->pkt_type == PACKET_OUTGOING; 781 } 782 783 /* On transmit, software and hardware timestamps are returned independently. 784 * As the two skb clones share the hardware timestamp, which may be updated 785 * before the software timestamp is received, a hardware TX timestamp may be 786 * returned only if there is no software TX timestamp. Ignore false software 787 * timestamps, which may be made in the __sock_recv_timestamp() call when the 788 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 789 * hardware timestamp. 790 */ 791 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 792 { 793 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 794 } 795 796 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 797 { 798 struct scm_ts_pktinfo ts_pktinfo; 799 struct net_device *orig_dev; 800 801 if (!skb_mac_header_was_set(skb)) 802 return; 803 804 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 805 806 rcu_read_lock(); 807 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 808 if (orig_dev) 809 ts_pktinfo.if_index = orig_dev->ifindex; 810 rcu_read_unlock(); 811 812 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 813 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 814 sizeof(ts_pktinfo), &ts_pktinfo); 815 } 816 817 /* 818 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 819 */ 820 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 821 struct sk_buff *skb) 822 { 823 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 824 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 825 struct scm_timestamping_internal tss; 826 827 int empty = 1, false_tstamp = 0; 828 struct skb_shared_hwtstamps *shhwtstamps = 829 skb_hwtstamps(skb); 830 831 /* Race occurred between timestamp enabling and packet 832 receiving. Fill in the current time for now. */ 833 if (need_software_tstamp && skb->tstamp == 0) { 834 __net_timestamp(skb); 835 false_tstamp = 1; 836 } 837 838 if (need_software_tstamp) { 839 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 840 if (new_tstamp) { 841 struct __kernel_sock_timeval tv; 842 843 skb_get_new_timestamp(skb, &tv); 844 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 845 sizeof(tv), &tv); 846 } else { 847 struct __kernel_old_timeval tv; 848 849 skb_get_timestamp(skb, &tv); 850 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 851 sizeof(tv), &tv); 852 } 853 } else { 854 if (new_tstamp) { 855 struct __kernel_timespec ts; 856 857 skb_get_new_timestampns(skb, &ts); 858 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 859 sizeof(ts), &ts); 860 } else { 861 struct __kernel_old_timespec ts; 862 863 skb_get_timestampns(skb, &ts); 864 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 865 sizeof(ts), &ts); 866 } 867 } 868 } 869 870 memset(&tss, 0, sizeof(tss)); 871 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 872 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 873 empty = 0; 874 if (shhwtstamps && 875 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 876 !skb_is_swtx_tstamp(skb, false_tstamp) && 877 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 878 empty = 0; 879 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 880 !skb_is_err_queue(skb)) 881 put_ts_pktinfo(msg, skb); 882 } 883 if (!empty) { 884 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 885 put_cmsg_scm_timestamping64(msg, &tss); 886 else 887 put_cmsg_scm_timestamping(msg, &tss); 888 889 if (skb_is_err_queue(skb) && skb->len && 890 SKB_EXT_ERR(skb)->opt_stats) 891 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 892 skb->len, skb->data); 893 } 894 } 895 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 896 897 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 898 struct sk_buff *skb) 899 { 900 int ack; 901 902 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 903 return; 904 if (!skb->wifi_acked_valid) 905 return; 906 907 ack = skb->wifi_acked; 908 909 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 910 } 911 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 912 913 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 914 struct sk_buff *skb) 915 { 916 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 917 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 918 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 919 } 920 921 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 922 struct sk_buff *skb) 923 { 924 sock_recv_timestamp(msg, sk, skb); 925 sock_recv_drops(msg, sk, skb); 926 } 927 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 928 929 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 930 size_t, int)); 931 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 932 size_t, int)); 933 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 934 int flags) 935 { 936 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 937 inet_recvmsg, sock, msg, msg_data_left(msg), 938 flags); 939 } 940 941 /** 942 * sock_recvmsg - receive a message from @sock 943 * @sock: socket 944 * @msg: message to receive 945 * @flags: message flags 946 * 947 * Receives @msg from @sock, passing through LSM. Returns the total number 948 * of bytes received, or an error. 949 */ 950 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 951 { 952 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 953 954 return err ?: sock_recvmsg_nosec(sock, msg, flags); 955 } 956 EXPORT_SYMBOL(sock_recvmsg); 957 958 /** 959 * kernel_recvmsg - Receive a message from a socket (kernel space) 960 * @sock: The socket to receive the message from 961 * @msg: Received message 962 * @vec: Input s/g array for message data 963 * @num: Size of input s/g array 964 * @size: Number of bytes to read 965 * @flags: Message flags (MSG_DONTWAIT, etc...) 966 * 967 * On return the msg structure contains the scatter/gather array passed in the 968 * vec argument. The array is modified so that it consists of the unfilled 969 * portion of the original array. 970 * 971 * The returned value is the total number of bytes received, or an error. 972 */ 973 974 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 975 struct kvec *vec, size_t num, size_t size, int flags) 976 { 977 msg->msg_control_is_user = false; 978 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 979 return sock_recvmsg(sock, msg, flags); 980 } 981 EXPORT_SYMBOL(kernel_recvmsg); 982 983 static ssize_t sock_sendpage(struct file *file, struct page *page, 984 int offset, size_t size, loff_t *ppos, int more) 985 { 986 struct socket *sock; 987 int flags; 988 989 sock = file->private_data; 990 991 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 992 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 993 flags |= more; 994 995 return kernel_sendpage(sock, page, offset, size, flags); 996 } 997 998 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 999 struct pipe_inode_info *pipe, size_t len, 1000 unsigned int flags) 1001 { 1002 struct socket *sock = file->private_data; 1003 1004 if (unlikely(!sock->ops->splice_read)) 1005 return generic_file_splice_read(file, ppos, pipe, len, flags); 1006 1007 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 1008 } 1009 1010 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1011 { 1012 struct file *file = iocb->ki_filp; 1013 struct socket *sock = file->private_data; 1014 struct msghdr msg = {.msg_iter = *to, 1015 .msg_iocb = iocb}; 1016 ssize_t res; 1017 1018 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1019 msg.msg_flags = MSG_DONTWAIT; 1020 1021 if (iocb->ki_pos != 0) 1022 return -ESPIPE; 1023 1024 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1025 return 0; 1026 1027 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1028 *to = msg.msg_iter; 1029 return res; 1030 } 1031 1032 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1033 { 1034 struct file *file = iocb->ki_filp; 1035 struct socket *sock = file->private_data; 1036 struct msghdr msg = {.msg_iter = *from, 1037 .msg_iocb = iocb}; 1038 ssize_t res; 1039 1040 if (iocb->ki_pos != 0) 1041 return -ESPIPE; 1042 1043 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1044 msg.msg_flags = MSG_DONTWAIT; 1045 1046 if (sock->type == SOCK_SEQPACKET) 1047 msg.msg_flags |= MSG_EOR; 1048 1049 res = sock_sendmsg(sock, &msg); 1050 *from = msg.msg_iter; 1051 return res; 1052 } 1053 1054 /* 1055 * Atomic setting of ioctl hooks to avoid race 1056 * with module unload. 1057 */ 1058 1059 static DEFINE_MUTEX(br_ioctl_mutex); 1060 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1061 1062 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1063 { 1064 mutex_lock(&br_ioctl_mutex); 1065 br_ioctl_hook = hook; 1066 mutex_unlock(&br_ioctl_mutex); 1067 } 1068 EXPORT_SYMBOL(brioctl_set); 1069 1070 static DEFINE_MUTEX(vlan_ioctl_mutex); 1071 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1072 1073 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1074 { 1075 mutex_lock(&vlan_ioctl_mutex); 1076 vlan_ioctl_hook = hook; 1077 mutex_unlock(&vlan_ioctl_mutex); 1078 } 1079 EXPORT_SYMBOL(vlan_ioctl_set); 1080 1081 static long sock_do_ioctl(struct net *net, struct socket *sock, 1082 unsigned int cmd, unsigned long arg) 1083 { 1084 int err; 1085 void __user *argp = (void __user *)arg; 1086 1087 err = sock->ops->ioctl(sock, cmd, arg); 1088 1089 /* 1090 * If this ioctl is unknown try to hand it down 1091 * to the NIC driver. 1092 */ 1093 if (err != -ENOIOCTLCMD) 1094 return err; 1095 1096 if (cmd == SIOCGIFCONF) { 1097 struct ifconf ifc; 1098 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1099 return -EFAULT; 1100 rtnl_lock(); 1101 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1102 rtnl_unlock(); 1103 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1104 err = -EFAULT; 1105 } else { 1106 struct ifreq ifr; 1107 bool need_copyout; 1108 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1109 return -EFAULT; 1110 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1111 if (!err && need_copyout) 1112 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1113 return -EFAULT; 1114 } 1115 return err; 1116 } 1117 1118 /* 1119 * With an ioctl, arg may well be a user mode pointer, but we don't know 1120 * what to do with it - that's up to the protocol still. 1121 */ 1122 1123 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1124 { 1125 struct socket *sock; 1126 struct sock *sk; 1127 void __user *argp = (void __user *)arg; 1128 int pid, err; 1129 struct net *net; 1130 1131 sock = file->private_data; 1132 sk = sock->sk; 1133 net = sock_net(sk); 1134 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1135 struct ifreq ifr; 1136 bool need_copyout; 1137 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1138 return -EFAULT; 1139 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1140 if (!err && need_copyout) 1141 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1142 return -EFAULT; 1143 } else 1144 #ifdef CONFIG_WEXT_CORE 1145 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1146 err = wext_handle_ioctl(net, cmd, argp); 1147 } else 1148 #endif 1149 switch (cmd) { 1150 case FIOSETOWN: 1151 case SIOCSPGRP: 1152 err = -EFAULT; 1153 if (get_user(pid, (int __user *)argp)) 1154 break; 1155 err = f_setown(sock->file, pid, 1); 1156 break; 1157 case FIOGETOWN: 1158 case SIOCGPGRP: 1159 err = put_user(f_getown(sock->file), 1160 (int __user *)argp); 1161 break; 1162 case SIOCGIFBR: 1163 case SIOCSIFBR: 1164 case SIOCBRADDBR: 1165 case SIOCBRDELBR: 1166 err = -ENOPKG; 1167 if (!br_ioctl_hook) 1168 request_module("bridge"); 1169 1170 mutex_lock(&br_ioctl_mutex); 1171 if (br_ioctl_hook) 1172 err = br_ioctl_hook(net, cmd, argp); 1173 mutex_unlock(&br_ioctl_mutex); 1174 break; 1175 case SIOCGIFVLAN: 1176 case SIOCSIFVLAN: 1177 err = -ENOPKG; 1178 if (!vlan_ioctl_hook) 1179 request_module("8021q"); 1180 1181 mutex_lock(&vlan_ioctl_mutex); 1182 if (vlan_ioctl_hook) 1183 err = vlan_ioctl_hook(net, argp); 1184 mutex_unlock(&vlan_ioctl_mutex); 1185 break; 1186 case SIOCGSKNS: 1187 err = -EPERM; 1188 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1189 break; 1190 1191 err = open_related_ns(&net->ns, get_net_ns); 1192 break; 1193 case SIOCGSTAMP_OLD: 1194 case SIOCGSTAMPNS_OLD: 1195 if (!sock->ops->gettstamp) { 1196 err = -ENOIOCTLCMD; 1197 break; 1198 } 1199 err = sock->ops->gettstamp(sock, argp, 1200 cmd == SIOCGSTAMP_OLD, 1201 !IS_ENABLED(CONFIG_64BIT)); 1202 break; 1203 case SIOCGSTAMP_NEW: 1204 case SIOCGSTAMPNS_NEW: 1205 if (!sock->ops->gettstamp) { 1206 err = -ENOIOCTLCMD; 1207 break; 1208 } 1209 err = sock->ops->gettstamp(sock, argp, 1210 cmd == SIOCGSTAMP_NEW, 1211 false); 1212 break; 1213 default: 1214 err = sock_do_ioctl(net, sock, cmd, arg); 1215 break; 1216 } 1217 return err; 1218 } 1219 1220 /** 1221 * sock_create_lite - creates a socket 1222 * @family: protocol family (AF_INET, ...) 1223 * @type: communication type (SOCK_STREAM, ...) 1224 * @protocol: protocol (0, ...) 1225 * @res: new socket 1226 * 1227 * Creates a new socket and assigns it to @res, passing through LSM. 1228 * The new socket initialization is not complete, see kernel_accept(). 1229 * Returns 0 or an error. On failure @res is set to %NULL. 1230 * This function internally uses GFP_KERNEL. 1231 */ 1232 1233 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1234 { 1235 int err; 1236 struct socket *sock = NULL; 1237 1238 err = security_socket_create(family, type, protocol, 1); 1239 if (err) 1240 goto out; 1241 1242 sock = sock_alloc(); 1243 if (!sock) { 1244 err = -ENOMEM; 1245 goto out; 1246 } 1247 1248 sock->type = type; 1249 err = security_socket_post_create(sock, family, type, protocol, 1); 1250 if (err) 1251 goto out_release; 1252 1253 out: 1254 *res = sock; 1255 return err; 1256 out_release: 1257 sock_release(sock); 1258 sock = NULL; 1259 goto out; 1260 } 1261 EXPORT_SYMBOL(sock_create_lite); 1262 1263 /* No kernel lock held - perfect */ 1264 static __poll_t sock_poll(struct file *file, poll_table *wait) 1265 { 1266 struct socket *sock = file->private_data; 1267 __poll_t events = poll_requested_events(wait), flag = 0; 1268 1269 if (!sock->ops->poll) 1270 return 0; 1271 1272 if (sk_can_busy_loop(sock->sk)) { 1273 /* poll once if requested by the syscall */ 1274 if (events & POLL_BUSY_LOOP) 1275 sk_busy_loop(sock->sk, 1); 1276 1277 /* if this socket can poll_ll, tell the system call */ 1278 flag = POLL_BUSY_LOOP; 1279 } 1280 1281 return sock->ops->poll(file, sock, wait) | flag; 1282 } 1283 1284 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1285 { 1286 struct socket *sock = file->private_data; 1287 1288 return sock->ops->mmap(file, sock, vma); 1289 } 1290 1291 static int sock_close(struct inode *inode, struct file *filp) 1292 { 1293 __sock_release(SOCKET_I(inode), inode); 1294 return 0; 1295 } 1296 1297 /* 1298 * Update the socket async list 1299 * 1300 * Fasync_list locking strategy. 1301 * 1302 * 1. fasync_list is modified only under process context socket lock 1303 * i.e. under semaphore. 1304 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1305 * or under socket lock 1306 */ 1307 1308 static int sock_fasync(int fd, struct file *filp, int on) 1309 { 1310 struct socket *sock = filp->private_data; 1311 struct sock *sk = sock->sk; 1312 struct socket_wq *wq = &sock->wq; 1313 1314 if (sk == NULL) 1315 return -EINVAL; 1316 1317 lock_sock(sk); 1318 fasync_helper(fd, filp, on, &wq->fasync_list); 1319 1320 if (!wq->fasync_list) 1321 sock_reset_flag(sk, SOCK_FASYNC); 1322 else 1323 sock_set_flag(sk, SOCK_FASYNC); 1324 1325 release_sock(sk); 1326 return 0; 1327 } 1328 1329 /* This function may be called only under rcu_lock */ 1330 1331 int sock_wake_async(struct socket_wq *wq, int how, int band) 1332 { 1333 if (!wq || !wq->fasync_list) 1334 return -1; 1335 1336 switch (how) { 1337 case SOCK_WAKE_WAITD: 1338 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1339 break; 1340 goto call_kill; 1341 case SOCK_WAKE_SPACE: 1342 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1343 break; 1344 fallthrough; 1345 case SOCK_WAKE_IO: 1346 call_kill: 1347 kill_fasync(&wq->fasync_list, SIGIO, band); 1348 break; 1349 case SOCK_WAKE_URG: 1350 kill_fasync(&wq->fasync_list, SIGURG, band); 1351 } 1352 1353 return 0; 1354 } 1355 EXPORT_SYMBOL(sock_wake_async); 1356 1357 /** 1358 * __sock_create - creates a socket 1359 * @net: net namespace 1360 * @family: protocol family (AF_INET, ...) 1361 * @type: communication type (SOCK_STREAM, ...) 1362 * @protocol: protocol (0, ...) 1363 * @res: new socket 1364 * @kern: boolean for kernel space sockets 1365 * 1366 * Creates a new socket and assigns it to @res, passing through LSM. 1367 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1368 * be set to true if the socket resides in kernel space. 1369 * This function internally uses GFP_KERNEL. 1370 */ 1371 1372 int __sock_create(struct net *net, int family, int type, int protocol, 1373 struct socket **res, int kern) 1374 { 1375 int err; 1376 struct socket *sock; 1377 const struct net_proto_family *pf; 1378 1379 /* 1380 * Check protocol is in range 1381 */ 1382 if (family < 0 || family >= NPROTO) 1383 return -EAFNOSUPPORT; 1384 if (type < 0 || type >= SOCK_MAX) 1385 return -EINVAL; 1386 1387 /* Compatibility. 1388 1389 This uglymoron is moved from INET layer to here to avoid 1390 deadlock in module load. 1391 */ 1392 if (family == PF_INET && type == SOCK_PACKET) { 1393 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1394 current->comm); 1395 family = PF_PACKET; 1396 } 1397 1398 err = security_socket_create(family, type, protocol, kern); 1399 if (err) 1400 return err; 1401 1402 /* 1403 * Allocate the socket and allow the family to set things up. if 1404 * the protocol is 0, the family is instructed to select an appropriate 1405 * default. 1406 */ 1407 sock = sock_alloc(); 1408 if (!sock) { 1409 net_warn_ratelimited("socket: no more sockets\n"); 1410 return -ENFILE; /* Not exactly a match, but its the 1411 closest posix thing */ 1412 } 1413 1414 sock->type = type; 1415 1416 #ifdef CONFIG_MODULES 1417 /* Attempt to load a protocol module if the find failed. 1418 * 1419 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1420 * requested real, full-featured networking support upon configuration. 1421 * Otherwise module support will break! 1422 */ 1423 if (rcu_access_pointer(net_families[family]) == NULL) 1424 request_module("net-pf-%d", family); 1425 #endif 1426 1427 rcu_read_lock(); 1428 pf = rcu_dereference(net_families[family]); 1429 err = -EAFNOSUPPORT; 1430 if (!pf) 1431 goto out_release; 1432 1433 /* 1434 * We will call the ->create function, that possibly is in a loadable 1435 * module, so we have to bump that loadable module refcnt first. 1436 */ 1437 if (!try_module_get(pf->owner)) 1438 goto out_release; 1439 1440 /* Now protected by module ref count */ 1441 rcu_read_unlock(); 1442 1443 err = pf->create(net, sock, protocol, kern); 1444 if (err < 0) 1445 goto out_module_put; 1446 1447 /* 1448 * Now to bump the refcnt of the [loadable] module that owns this 1449 * socket at sock_release time we decrement its refcnt. 1450 */ 1451 if (!try_module_get(sock->ops->owner)) 1452 goto out_module_busy; 1453 1454 /* 1455 * Now that we're done with the ->create function, the [loadable] 1456 * module can have its refcnt decremented 1457 */ 1458 module_put(pf->owner); 1459 err = security_socket_post_create(sock, family, type, protocol, kern); 1460 if (err) 1461 goto out_sock_release; 1462 *res = sock; 1463 1464 return 0; 1465 1466 out_module_busy: 1467 err = -EAFNOSUPPORT; 1468 out_module_put: 1469 sock->ops = NULL; 1470 module_put(pf->owner); 1471 out_sock_release: 1472 sock_release(sock); 1473 return err; 1474 1475 out_release: 1476 rcu_read_unlock(); 1477 goto out_sock_release; 1478 } 1479 EXPORT_SYMBOL(__sock_create); 1480 1481 /** 1482 * sock_create - creates a socket 1483 * @family: protocol family (AF_INET, ...) 1484 * @type: communication type (SOCK_STREAM, ...) 1485 * @protocol: protocol (0, ...) 1486 * @res: new socket 1487 * 1488 * A wrapper around __sock_create(). 1489 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1490 */ 1491 1492 int sock_create(int family, int type, int protocol, struct socket **res) 1493 { 1494 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1495 } 1496 EXPORT_SYMBOL(sock_create); 1497 1498 /** 1499 * sock_create_kern - creates a socket (kernel space) 1500 * @net: net namespace 1501 * @family: protocol family (AF_INET, ...) 1502 * @type: communication type (SOCK_STREAM, ...) 1503 * @protocol: protocol (0, ...) 1504 * @res: new socket 1505 * 1506 * A wrapper around __sock_create(). 1507 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1508 */ 1509 1510 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1511 { 1512 return __sock_create(net, family, type, protocol, res, 1); 1513 } 1514 EXPORT_SYMBOL(sock_create_kern); 1515 1516 int __sys_socket(int family, int type, int protocol) 1517 { 1518 int retval; 1519 struct socket *sock; 1520 int flags; 1521 1522 /* Check the SOCK_* constants for consistency. */ 1523 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1524 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1525 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1526 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1527 1528 flags = type & ~SOCK_TYPE_MASK; 1529 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1530 return -EINVAL; 1531 type &= SOCK_TYPE_MASK; 1532 1533 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1534 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1535 1536 retval = sock_create(family, type, protocol, &sock); 1537 if (retval < 0) 1538 return retval; 1539 1540 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1541 } 1542 1543 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1544 { 1545 return __sys_socket(family, type, protocol); 1546 } 1547 1548 /* 1549 * Create a pair of connected sockets. 1550 */ 1551 1552 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1553 { 1554 struct socket *sock1, *sock2; 1555 int fd1, fd2, err; 1556 struct file *newfile1, *newfile2; 1557 int flags; 1558 1559 flags = type & ~SOCK_TYPE_MASK; 1560 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1561 return -EINVAL; 1562 type &= SOCK_TYPE_MASK; 1563 1564 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1565 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1566 1567 /* 1568 * reserve descriptors and make sure we won't fail 1569 * to return them to userland. 1570 */ 1571 fd1 = get_unused_fd_flags(flags); 1572 if (unlikely(fd1 < 0)) 1573 return fd1; 1574 1575 fd2 = get_unused_fd_flags(flags); 1576 if (unlikely(fd2 < 0)) { 1577 put_unused_fd(fd1); 1578 return fd2; 1579 } 1580 1581 err = put_user(fd1, &usockvec[0]); 1582 if (err) 1583 goto out; 1584 1585 err = put_user(fd2, &usockvec[1]); 1586 if (err) 1587 goto out; 1588 1589 /* 1590 * Obtain the first socket and check if the underlying protocol 1591 * supports the socketpair call. 1592 */ 1593 1594 err = sock_create(family, type, protocol, &sock1); 1595 if (unlikely(err < 0)) 1596 goto out; 1597 1598 err = sock_create(family, type, protocol, &sock2); 1599 if (unlikely(err < 0)) { 1600 sock_release(sock1); 1601 goto out; 1602 } 1603 1604 err = security_socket_socketpair(sock1, sock2); 1605 if (unlikely(err)) { 1606 sock_release(sock2); 1607 sock_release(sock1); 1608 goto out; 1609 } 1610 1611 err = sock1->ops->socketpair(sock1, sock2); 1612 if (unlikely(err < 0)) { 1613 sock_release(sock2); 1614 sock_release(sock1); 1615 goto out; 1616 } 1617 1618 newfile1 = sock_alloc_file(sock1, flags, NULL); 1619 if (IS_ERR(newfile1)) { 1620 err = PTR_ERR(newfile1); 1621 sock_release(sock2); 1622 goto out; 1623 } 1624 1625 newfile2 = sock_alloc_file(sock2, flags, NULL); 1626 if (IS_ERR(newfile2)) { 1627 err = PTR_ERR(newfile2); 1628 fput(newfile1); 1629 goto out; 1630 } 1631 1632 audit_fd_pair(fd1, fd2); 1633 1634 fd_install(fd1, newfile1); 1635 fd_install(fd2, newfile2); 1636 return 0; 1637 1638 out: 1639 put_unused_fd(fd2); 1640 put_unused_fd(fd1); 1641 return err; 1642 } 1643 1644 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1645 int __user *, usockvec) 1646 { 1647 return __sys_socketpair(family, type, protocol, usockvec); 1648 } 1649 1650 /* 1651 * Bind a name to a socket. Nothing much to do here since it's 1652 * the protocol's responsibility to handle the local address. 1653 * 1654 * We move the socket address to kernel space before we call 1655 * the protocol layer (having also checked the address is ok). 1656 */ 1657 1658 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1659 { 1660 struct socket *sock; 1661 struct sockaddr_storage address; 1662 int err, fput_needed; 1663 1664 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1665 if (sock) { 1666 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1667 if (!err) { 1668 err = security_socket_bind(sock, 1669 (struct sockaddr *)&address, 1670 addrlen); 1671 if (!err) 1672 err = sock->ops->bind(sock, 1673 (struct sockaddr *) 1674 &address, addrlen); 1675 } 1676 fput_light(sock->file, fput_needed); 1677 } 1678 return err; 1679 } 1680 1681 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1682 { 1683 return __sys_bind(fd, umyaddr, addrlen); 1684 } 1685 1686 /* 1687 * Perform a listen. Basically, we allow the protocol to do anything 1688 * necessary for a listen, and if that works, we mark the socket as 1689 * ready for listening. 1690 */ 1691 1692 int __sys_listen(int fd, int backlog) 1693 { 1694 struct socket *sock; 1695 int err, fput_needed; 1696 int somaxconn; 1697 1698 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1699 if (sock) { 1700 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1701 if ((unsigned int)backlog > somaxconn) 1702 backlog = somaxconn; 1703 1704 err = security_socket_listen(sock, backlog); 1705 if (!err) 1706 err = sock->ops->listen(sock, backlog); 1707 1708 fput_light(sock->file, fput_needed); 1709 } 1710 return err; 1711 } 1712 1713 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1714 { 1715 return __sys_listen(fd, backlog); 1716 } 1717 1718 int __sys_accept4_file(struct file *file, unsigned file_flags, 1719 struct sockaddr __user *upeer_sockaddr, 1720 int __user *upeer_addrlen, int flags, 1721 unsigned long nofile) 1722 { 1723 struct socket *sock, *newsock; 1724 struct file *newfile; 1725 int err, len, newfd; 1726 struct sockaddr_storage address; 1727 1728 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1729 return -EINVAL; 1730 1731 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1732 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1733 1734 sock = sock_from_file(file); 1735 if (!sock) { 1736 err = -ENOTSOCK; 1737 goto out; 1738 } 1739 1740 err = -ENFILE; 1741 newsock = sock_alloc(); 1742 if (!newsock) 1743 goto out; 1744 1745 newsock->type = sock->type; 1746 newsock->ops = sock->ops; 1747 1748 /* 1749 * We don't need try_module_get here, as the listening socket (sock) 1750 * has the protocol module (sock->ops->owner) held. 1751 */ 1752 __module_get(newsock->ops->owner); 1753 1754 newfd = __get_unused_fd_flags(flags, nofile); 1755 if (unlikely(newfd < 0)) { 1756 err = newfd; 1757 sock_release(newsock); 1758 goto out; 1759 } 1760 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1761 if (IS_ERR(newfile)) { 1762 err = PTR_ERR(newfile); 1763 put_unused_fd(newfd); 1764 goto out; 1765 } 1766 1767 err = security_socket_accept(sock, newsock); 1768 if (err) 1769 goto out_fd; 1770 1771 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1772 false); 1773 if (err < 0) 1774 goto out_fd; 1775 1776 if (upeer_sockaddr) { 1777 len = newsock->ops->getname(newsock, 1778 (struct sockaddr *)&address, 2); 1779 if (len < 0) { 1780 err = -ECONNABORTED; 1781 goto out_fd; 1782 } 1783 err = move_addr_to_user(&address, 1784 len, upeer_sockaddr, upeer_addrlen); 1785 if (err < 0) 1786 goto out_fd; 1787 } 1788 1789 /* File flags are not inherited via accept() unlike another OSes. */ 1790 1791 fd_install(newfd, newfile); 1792 err = newfd; 1793 out: 1794 return err; 1795 out_fd: 1796 fput(newfile); 1797 put_unused_fd(newfd); 1798 goto out; 1799 1800 } 1801 1802 /* 1803 * For accept, we attempt to create a new socket, set up the link 1804 * with the client, wake up the client, then return the new 1805 * connected fd. We collect the address of the connector in kernel 1806 * space and move it to user at the very end. This is unclean because 1807 * we open the socket then return an error. 1808 * 1809 * 1003.1g adds the ability to recvmsg() to query connection pending 1810 * status to recvmsg. We need to add that support in a way thats 1811 * clean when we restructure accept also. 1812 */ 1813 1814 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1815 int __user *upeer_addrlen, int flags) 1816 { 1817 int ret = -EBADF; 1818 struct fd f; 1819 1820 f = fdget(fd); 1821 if (f.file) { 1822 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, 1823 upeer_addrlen, flags, 1824 rlimit(RLIMIT_NOFILE)); 1825 fdput(f); 1826 } 1827 1828 return ret; 1829 } 1830 1831 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1832 int __user *, upeer_addrlen, int, flags) 1833 { 1834 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1835 } 1836 1837 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1838 int __user *, upeer_addrlen) 1839 { 1840 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1841 } 1842 1843 /* 1844 * Attempt to connect to a socket with the server address. The address 1845 * is in user space so we verify it is OK and move it to kernel space. 1846 * 1847 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1848 * break bindings 1849 * 1850 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1851 * other SEQPACKET protocols that take time to connect() as it doesn't 1852 * include the -EINPROGRESS status for such sockets. 1853 */ 1854 1855 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1856 int addrlen, int file_flags) 1857 { 1858 struct socket *sock; 1859 int err; 1860 1861 sock = sock_from_file(file); 1862 if (!sock) { 1863 err = -ENOTSOCK; 1864 goto out; 1865 } 1866 1867 err = 1868 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1869 if (err) 1870 goto out; 1871 1872 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1873 sock->file->f_flags | file_flags); 1874 out: 1875 return err; 1876 } 1877 1878 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1879 { 1880 int ret = -EBADF; 1881 struct fd f; 1882 1883 f = fdget(fd); 1884 if (f.file) { 1885 struct sockaddr_storage address; 1886 1887 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 1888 if (!ret) 1889 ret = __sys_connect_file(f.file, &address, addrlen, 0); 1890 fdput(f); 1891 } 1892 1893 return ret; 1894 } 1895 1896 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1897 int, addrlen) 1898 { 1899 return __sys_connect(fd, uservaddr, addrlen); 1900 } 1901 1902 /* 1903 * Get the local address ('name') of a socket object. Move the obtained 1904 * name to user space. 1905 */ 1906 1907 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1908 int __user *usockaddr_len) 1909 { 1910 struct socket *sock; 1911 struct sockaddr_storage address; 1912 int err, fput_needed; 1913 1914 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1915 if (!sock) 1916 goto out; 1917 1918 err = security_socket_getsockname(sock); 1919 if (err) 1920 goto out_put; 1921 1922 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1923 if (err < 0) 1924 goto out_put; 1925 /* "err" is actually length in this case */ 1926 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1927 1928 out_put: 1929 fput_light(sock->file, fput_needed); 1930 out: 1931 return err; 1932 } 1933 1934 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1935 int __user *, usockaddr_len) 1936 { 1937 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1938 } 1939 1940 /* 1941 * Get the remote address ('name') of a socket object. Move the obtained 1942 * name to user space. 1943 */ 1944 1945 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1946 int __user *usockaddr_len) 1947 { 1948 struct socket *sock; 1949 struct sockaddr_storage address; 1950 int err, fput_needed; 1951 1952 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1953 if (sock != NULL) { 1954 err = security_socket_getpeername(sock); 1955 if (err) { 1956 fput_light(sock->file, fput_needed); 1957 return err; 1958 } 1959 1960 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1961 if (err >= 0) 1962 /* "err" is actually length in this case */ 1963 err = move_addr_to_user(&address, err, usockaddr, 1964 usockaddr_len); 1965 fput_light(sock->file, fput_needed); 1966 } 1967 return err; 1968 } 1969 1970 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1971 int __user *, usockaddr_len) 1972 { 1973 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1974 } 1975 1976 /* 1977 * Send a datagram to a given address. We move the address into kernel 1978 * space and check the user space data area is readable before invoking 1979 * the protocol. 1980 */ 1981 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1982 struct sockaddr __user *addr, int addr_len) 1983 { 1984 struct socket *sock; 1985 struct sockaddr_storage address; 1986 int err; 1987 struct msghdr msg; 1988 struct iovec iov; 1989 int fput_needed; 1990 1991 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1992 if (unlikely(err)) 1993 return err; 1994 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1995 if (!sock) 1996 goto out; 1997 1998 msg.msg_name = NULL; 1999 msg.msg_control = NULL; 2000 msg.msg_controllen = 0; 2001 msg.msg_namelen = 0; 2002 if (addr) { 2003 err = move_addr_to_kernel(addr, addr_len, &address); 2004 if (err < 0) 2005 goto out_put; 2006 msg.msg_name = (struct sockaddr *)&address; 2007 msg.msg_namelen = addr_len; 2008 } 2009 if (sock->file->f_flags & O_NONBLOCK) 2010 flags |= MSG_DONTWAIT; 2011 msg.msg_flags = flags; 2012 err = sock_sendmsg(sock, &msg); 2013 2014 out_put: 2015 fput_light(sock->file, fput_needed); 2016 out: 2017 return err; 2018 } 2019 2020 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2021 unsigned int, flags, struct sockaddr __user *, addr, 2022 int, addr_len) 2023 { 2024 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2025 } 2026 2027 /* 2028 * Send a datagram down a socket. 2029 */ 2030 2031 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2032 unsigned int, flags) 2033 { 2034 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2035 } 2036 2037 /* 2038 * Receive a frame from the socket and optionally record the address of the 2039 * sender. We verify the buffers are writable and if needed move the 2040 * sender address from kernel to user space. 2041 */ 2042 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2043 struct sockaddr __user *addr, int __user *addr_len) 2044 { 2045 struct socket *sock; 2046 struct iovec iov; 2047 struct msghdr msg; 2048 struct sockaddr_storage address; 2049 int err, err2; 2050 int fput_needed; 2051 2052 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2053 if (unlikely(err)) 2054 return err; 2055 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2056 if (!sock) 2057 goto out; 2058 2059 msg.msg_control = NULL; 2060 msg.msg_controllen = 0; 2061 /* Save some cycles and don't copy the address if not needed */ 2062 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2063 /* We assume all kernel code knows the size of sockaddr_storage */ 2064 msg.msg_namelen = 0; 2065 msg.msg_iocb = NULL; 2066 msg.msg_flags = 0; 2067 if (sock->file->f_flags & O_NONBLOCK) 2068 flags |= MSG_DONTWAIT; 2069 err = sock_recvmsg(sock, &msg, flags); 2070 2071 if (err >= 0 && addr != NULL) { 2072 err2 = move_addr_to_user(&address, 2073 msg.msg_namelen, addr, addr_len); 2074 if (err2 < 0) 2075 err = err2; 2076 } 2077 2078 fput_light(sock->file, fput_needed); 2079 out: 2080 return err; 2081 } 2082 2083 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2084 unsigned int, flags, struct sockaddr __user *, addr, 2085 int __user *, addr_len) 2086 { 2087 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2088 } 2089 2090 /* 2091 * Receive a datagram from a socket. 2092 */ 2093 2094 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2095 unsigned int, flags) 2096 { 2097 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2098 } 2099 2100 static bool sock_use_custom_sol_socket(const struct socket *sock) 2101 { 2102 const struct sock *sk = sock->sk; 2103 2104 /* Use sock->ops->setsockopt() for MPTCP */ 2105 return IS_ENABLED(CONFIG_MPTCP) && 2106 sk->sk_protocol == IPPROTO_MPTCP && 2107 sk->sk_type == SOCK_STREAM && 2108 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6); 2109 } 2110 2111 /* 2112 * Set a socket option. Because we don't know the option lengths we have 2113 * to pass the user mode parameter for the protocols to sort out. 2114 */ 2115 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2116 int optlen) 2117 { 2118 sockptr_t optval = USER_SOCKPTR(user_optval); 2119 char *kernel_optval = NULL; 2120 int err, fput_needed; 2121 struct socket *sock; 2122 2123 if (optlen < 0) 2124 return -EINVAL; 2125 2126 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2127 if (!sock) 2128 return err; 2129 2130 err = security_socket_setsockopt(sock, level, optname); 2131 if (err) 2132 goto out_put; 2133 2134 if (!in_compat_syscall()) 2135 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2136 user_optval, &optlen, 2137 &kernel_optval); 2138 if (err < 0) 2139 goto out_put; 2140 if (err > 0) { 2141 err = 0; 2142 goto out_put; 2143 } 2144 2145 if (kernel_optval) 2146 optval = KERNEL_SOCKPTR(kernel_optval); 2147 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2148 err = sock_setsockopt(sock, level, optname, optval, optlen); 2149 else if (unlikely(!sock->ops->setsockopt)) 2150 err = -EOPNOTSUPP; 2151 else 2152 err = sock->ops->setsockopt(sock, level, optname, optval, 2153 optlen); 2154 kfree(kernel_optval); 2155 out_put: 2156 fput_light(sock->file, fput_needed); 2157 return err; 2158 } 2159 2160 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2161 char __user *, optval, int, optlen) 2162 { 2163 return __sys_setsockopt(fd, level, optname, optval, optlen); 2164 } 2165 2166 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2167 int optname)); 2168 2169 /* 2170 * Get a socket option. Because we don't know the option lengths we have 2171 * to pass a user mode parameter for the protocols to sort out. 2172 */ 2173 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2174 int __user *optlen) 2175 { 2176 int err, fput_needed; 2177 struct socket *sock; 2178 int max_optlen; 2179 2180 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2181 if (!sock) 2182 return err; 2183 2184 err = security_socket_getsockopt(sock, level, optname); 2185 if (err) 2186 goto out_put; 2187 2188 if (!in_compat_syscall()) 2189 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2190 2191 if (level == SOL_SOCKET) 2192 err = sock_getsockopt(sock, level, optname, optval, optlen); 2193 else if (unlikely(!sock->ops->getsockopt)) 2194 err = -EOPNOTSUPP; 2195 else 2196 err = sock->ops->getsockopt(sock, level, optname, optval, 2197 optlen); 2198 2199 if (!in_compat_syscall()) 2200 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2201 optval, optlen, max_optlen, 2202 err); 2203 out_put: 2204 fput_light(sock->file, fput_needed); 2205 return err; 2206 } 2207 2208 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2209 char __user *, optval, int __user *, optlen) 2210 { 2211 return __sys_getsockopt(fd, level, optname, optval, optlen); 2212 } 2213 2214 /* 2215 * Shutdown a socket. 2216 */ 2217 2218 int __sys_shutdown_sock(struct socket *sock, int how) 2219 { 2220 int err; 2221 2222 err = security_socket_shutdown(sock, how); 2223 if (!err) 2224 err = sock->ops->shutdown(sock, how); 2225 2226 return err; 2227 } 2228 2229 int __sys_shutdown(int fd, int how) 2230 { 2231 int err, fput_needed; 2232 struct socket *sock; 2233 2234 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2235 if (sock != NULL) { 2236 err = __sys_shutdown_sock(sock, how); 2237 fput_light(sock->file, fput_needed); 2238 } 2239 return err; 2240 } 2241 2242 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2243 { 2244 return __sys_shutdown(fd, how); 2245 } 2246 2247 /* A couple of helpful macros for getting the address of the 32/64 bit 2248 * fields which are the same type (int / unsigned) on our platforms. 2249 */ 2250 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2251 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2252 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2253 2254 struct used_address { 2255 struct sockaddr_storage name; 2256 unsigned int name_len; 2257 }; 2258 2259 int __copy_msghdr_from_user(struct msghdr *kmsg, 2260 struct user_msghdr __user *umsg, 2261 struct sockaddr __user **save_addr, 2262 struct iovec __user **uiov, size_t *nsegs) 2263 { 2264 struct user_msghdr msg; 2265 ssize_t err; 2266 2267 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2268 return -EFAULT; 2269 2270 kmsg->msg_control_is_user = true; 2271 kmsg->msg_control_user = msg.msg_control; 2272 kmsg->msg_controllen = msg.msg_controllen; 2273 kmsg->msg_flags = msg.msg_flags; 2274 2275 kmsg->msg_namelen = msg.msg_namelen; 2276 if (!msg.msg_name) 2277 kmsg->msg_namelen = 0; 2278 2279 if (kmsg->msg_namelen < 0) 2280 return -EINVAL; 2281 2282 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2283 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2284 2285 if (save_addr) 2286 *save_addr = msg.msg_name; 2287 2288 if (msg.msg_name && kmsg->msg_namelen) { 2289 if (!save_addr) { 2290 err = move_addr_to_kernel(msg.msg_name, 2291 kmsg->msg_namelen, 2292 kmsg->msg_name); 2293 if (err < 0) 2294 return err; 2295 } 2296 } else { 2297 kmsg->msg_name = NULL; 2298 kmsg->msg_namelen = 0; 2299 } 2300 2301 if (msg.msg_iovlen > UIO_MAXIOV) 2302 return -EMSGSIZE; 2303 2304 kmsg->msg_iocb = NULL; 2305 *uiov = msg.msg_iov; 2306 *nsegs = msg.msg_iovlen; 2307 return 0; 2308 } 2309 2310 static int copy_msghdr_from_user(struct msghdr *kmsg, 2311 struct user_msghdr __user *umsg, 2312 struct sockaddr __user **save_addr, 2313 struct iovec **iov) 2314 { 2315 struct user_msghdr msg; 2316 ssize_t err; 2317 2318 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov, 2319 &msg.msg_iovlen); 2320 if (err) 2321 return err; 2322 2323 err = import_iovec(save_addr ? READ : WRITE, 2324 msg.msg_iov, msg.msg_iovlen, 2325 UIO_FASTIOV, iov, &kmsg->msg_iter); 2326 return err < 0 ? err : 0; 2327 } 2328 2329 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2330 unsigned int flags, struct used_address *used_address, 2331 unsigned int allowed_msghdr_flags) 2332 { 2333 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2334 __aligned(sizeof(__kernel_size_t)); 2335 /* 20 is size of ipv6_pktinfo */ 2336 unsigned char *ctl_buf = ctl; 2337 int ctl_len; 2338 ssize_t err; 2339 2340 err = -ENOBUFS; 2341 2342 if (msg_sys->msg_controllen > INT_MAX) 2343 goto out; 2344 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2345 ctl_len = msg_sys->msg_controllen; 2346 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2347 err = 2348 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2349 sizeof(ctl)); 2350 if (err) 2351 goto out; 2352 ctl_buf = msg_sys->msg_control; 2353 ctl_len = msg_sys->msg_controllen; 2354 } else if (ctl_len) { 2355 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2356 CMSG_ALIGN(sizeof(struct cmsghdr))); 2357 if (ctl_len > sizeof(ctl)) { 2358 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2359 if (ctl_buf == NULL) 2360 goto out; 2361 } 2362 err = -EFAULT; 2363 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2364 goto out_freectl; 2365 msg_sys->msg_control = ctl_buf; 2366 msg_sys->msg_control_is_user = false; 2367 } 2368 msg_sys->msg_flags = flags; 2369 2370 if (sock->file->f_flags & O_NONBLOCK) 2371 msg_sys->msg_flags |= MSG_DONTWAIT; 2372 /* 2373 * If this is sendmmsg() and current destination address is same as 2374 * previously succeeded address, omit asking LSM's decision. 2375 * used_address->name_len is initialized to UINT_MAX so that the first 2376 * destination address never matches. 2377 */ 2378 if (used_address && msg_sys->msg_name && 2379 used_address->name_len == msg_sys->msg_namelen && 2380 !memcmp(&used_address->name, msg_sys->msg_name, 2381 used_address->name_len)) { 2382 err = sock_sendmsg_nosec(sock, msg_sys); 2383 goto out_freectl; 2384 } 2385 err = sock_sendmsg(sock, msg_sys); 2386 /* 2387 * If this is sendmmsg() and sending to current destination address was 2388 * successful, remember it. 2389 */ 2390 if (used_address && err >= 0) { 2391 used_address->name_len = msg_sys->msg_namelen; 2392 if (msg_sys->msg_name) 2393 memcpy(&used_address->name, msg_sys->msg_name, 2394 used_address->name_len); 2395 } 2396 2397 out_freectl: 2398 if (ctl_buf != ctl) 2399 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2400 out: 2401 return err; 2402 } 2403 2404 int sendmsg_copy_msghdr(struct msghdr *msg, 2405 struct user_msghdr __user *umsg, unsigned flags, 2406 struct iovec **iov) 2407 { 2408 int err; 2409 2410 if (flags & MSG_CMSG_COMPAT) { 2411 struct compat_msghdr __user *msg_compat; 2412 2413 msg_compat = (struct compat_msghdr __user *) umsg; 2414 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2415 } else { 2416 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2417 } 2418 if (err < 0) 2419 return err; 2420 2421 return 0; 2422 } 2423 2424 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2425 struct msghdr *msg_sys, unsigned int flags, 2426 struct used_address *used_address, 2427 unsigned int allowed_msghdr_flags) 2428 { 2429 struct sockaddr_storage address; 2430 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2431 ssize_t err; 2432 2433 msg_sys->msg_name = &address; 2434 2435 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2436 if (err < 0) 2437 return err; 2438 2439 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2440 allowed_msghdr_flags); 2441 kfree(iov); 2442 return err; 2443 } 2444 2445 /* 2446 * BSD sendmsg interface 2447 */ 2448 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2449 unsigned int flags) 2450 { 2451 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2452 } 2453 2454 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2455 bool forbid_cmsg_compat) 2456 { 2457 int fput_needed, err; 2458 struct msghdr msg_sys; 2459 struct socket *sock; 2460 2461 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2462 return -EINVAL; 2463 2464 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2465 if (!sock) 2466 goto out; 2467 2468 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2469 2470 fput_light(sock->file, fput_needed); 2471 out: 2472 return err; 2473 } 2474 2475 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2476 { 2477 return __sys_sendmsg(fd, msg, flags, true); 2478 } 2479 2480 /* 2481 * Linux sendmmsg interface 2482 */ 2483 2484 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2485 unsigned int flags, bool forbid_cmsg_compat) 2486 { 2487 int fput_needed, err, datagrams; 2488 struct socket *sock; 2489 struct mmsghdr __user *entry; 2490 struct compat_mmsghdr __user *compat_entry; 2491 struct msghdr msg_sys; 2492 struct used_address used_address; 2493 unsigned int oflags = flags; 2494 2495 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2496 return -EINVAL; 2497 2498 if (vlen > UIO_MAXIOV) 2499 vlen = UIO_MAXIOV; 2500 2501 datagrams = 0; 2502 2503 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2504 if (!sock) 2505 return err; 2506 2507 used_address.name_len = UINT_MAX; 2508 entry = mmsg; 2509 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2510 err = 0; 2511 flags |= MSG_BATCH; 2512 2513 while (datagrams < vlen) { 2514 if (datagrams == vlen - 1) 2515 flags = oflags; 2516 2517 if (MSG_CMSG_COMPAT & flags) { 2518 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2519 &msg_sys, flags, &used_address, MSG_EOR); 2520 if (err < 0) 2521 break; 2522 err = __put_user(err, &compat_entry->msg_len); 2523 ++compat_entry; 2524 } else { 2525 err = ___sys_sendmsg(sock, 2526 (struct user_msghdr __user *)entry, 2527 &msg_sys, flags, &used_address, MSG_EOR); 2528 if (err < 0) 2529 break; 2530 err = put_user(err, &entry->msg_len); 2531 ++entry; 2532 } 2533 2534 if (err) 2535 break; 2536 ++datagrams; 2537 if (msg_data_left(&msg_sys)) 2538 break; 2539 cond_resched(); 2540 } 2541 2542 fput_light(sock->file, fput_needed); 2543 2544 /* We only return an error if no datagrams were able to be sent */ 2545 if (datagrams != 0) 2546 return datagrams; 2547 2548 return err; 2549 } 2550 2551 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2552 unsigned int, vlen, unsigned int, flags) 2553 { 2554 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2555 } 2556 2557 int recvmsg_copy_msghdr(struct msghdr *msg, 2558 struct user_msghdr __user *umsg, unsigned flags, 2559 struct sockaddr __user **uaddr, 2560 struct iovec **iov) 2561 { 2562 ssize_t err; 2563 2564 if (MSG_CMSG_COMPAT & flags) { 2565 struct compat_msghdr __user *msg_compat; 2566 2567 msg_compat = (struct compat_msghdr __user *) umsg; 2568 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2569 } else { 2570 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2571 } 2572 if (err < 0) 2573 return err; 2574 2575 return 0; 2576 } 2577 2578 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2579 struct user_msghdr __user *msg, 2580 struct sockaddr __user *uaddr, 2581 unsigned int flags, int nosec) 2582 { 2583 struct compat_msghdr __user *msg_compat = 2584 (struct compat_msghdr __user *) msg; 2585 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2586 struct sockaddr_storage addr; 2587 unsigned long cmsg_ptr; 2588 int len; 2589 ssize_t err; 2590 2591 msg_sys->msg_name = &addr; 2592 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2593 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2594 2595 /* We assume all kernel code knows the size of sockaddr_storage */ 2596 msg_sys->msg_namelen = 0; 2597 2598 if (sock->file->f_flags & O_NONBLOCK) 2599 flags |= MSG_DONTWAIT; 2600 2601 if (unlikely(nosec)) 2602 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2603 else 2604 err = sock_recvmsg(sock, msg_sys, flags); 2605 2606 if (err < 0) 2607 goto out; 2608 len = err; 2609 2610 if (uaddr != NULL) { 2611 err = move_addr_to_user(&addr, 2612 msg_sys->msg_namelen, uaddr, 2613 uaddr_len); 2614 if (err < 0) 2615 goto out; 2616 } 2617 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2618 COMPAT_FLAGS(msg)); 2619 if (err) 2620 goto out; 2621 if (MSG_CMSG_COMPAT & flags) 2622 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2623 &msg_compat->msg_controllen); 2624 else 2625 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2626 &msg->msg_controllen); 2627 if (err) 2628 goto out; 2629 err = len; 2630 out: 2631 return err; 2632 } 2633 2634 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2635 struct msghdr *msg_sys, unsigned int flags, int nosec) 2636 { 2637 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2638 /* user mode address pointers */ 2639 struct sockaddr __user *uaddr; 2640 ssize_t err; 2641 2642 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2643 if (err < 0) 2644 return err; 2645 2646 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2647 kfree(iov); 2648 return err; 2649 } 2650 2651 /* 2652 * BSD recvmsg interface 2653 */ 2654 2655 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2656 struct user_msghdr __user *umsg, 2657 struct sockaddr __user *uaddr, unsigned int flags) 2658 { 2659 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2660 } 2661 2662 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2663 bool forbid_cmsg_compat) 2664 { 2665 int fput_needed, err; 2666 struct msghdr msg_sys; 2667 struct socket *sock; 2668 2669 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2670 return -EINVAL; 2671 2672 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2673 if (!sock) 2674 goto out; 2675 2676 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2677 2678 fput_light(sock->file, fput_needed); 2679 out: 2680 return err; 2681 } 2682 2683 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2684 unsigned int, flags) 2685 { 2686 return __sys_recvmsg(fd, msg, flags, true); 2687 } 2688 2689 /* 2690 * Linux recvmmsg interface 2691 */ 2692 2693 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2694 unsigned int vlen, unsigned int flags, 2695 struct timespec64 *timeout) 2696 { 2697 int fput_needed, err, datagrams; 2698 struct socket *sock; 2699 struct mmsghdr __user *entry; 2700 struct compat_mmsghdr __user *compat_entry; 2701 struct msghdr msg_sys; 2702 struct timespec64 end_time; 2703 struct timespec64 timeout64; 2704 2705 if (timeout && 2706 poll_select_set_timeout(&end_time, timeout->tv_sec, 2707 timeout->tv_nsec)) 2708 return -EINVAL; 2709 2710 datagrams = 0; 2711 2712 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2713 if (!sock) 2714 return err; 2715 2716 if (likely(!(flags & MSG_ERRQUEUE))) { 2717 err = sock_error(sock->sk); 2718 if (err) { 2719 datagrams = err; 2720 goto out_put; 2721 } 2722 } 2723 2724 entry = mmsg; 2725 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2726 2727 while (datagrams < vlen) { 2728 /* 2729 * No need to ask LSM for more than the first datagram. 2730 */ 2731 if (MSG_CMSG_COMPAT & flags) { 2732 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2733 &msg_sys, flags & ~MSG_WAITFORONE, 2734 datagrams); 2735 if (err < 0) 2736 break; 2737 err = __put_user(err, &compat_entry->msg_len); 2738 ++compat_entry; 2739 } else { 2740 err = ___sys_recvmsg(sock, 2741 (struct user_msghdr __user *)entry, 2742 &msg_sys, flags & ~MSG_WAITFORONE, 2743 datagrams); 2744 if (err < 0) 2745 break; 2746 err = put_user(err, &entry->msg_len); 2747 ++entry; 2748 } 2749 2750 if (err) 2751 break; 2752 ++datagrams; 2753 2754 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2755 if (flags & MSG_WAITFORONE) 2756 flags |= MSG_DONTWAIT; 2757 2758 if (timeout) { 2759 ktime_get_ts64(&timeout64); 2760 *timeout = timespec64_sub(end_time, timeout64); 2761 if (timeout->tv_sec < 0) { 2762 timeout->tv_sec = timeout->tv_nsec = 0; 2763 break; 2764 } 2765 2766 /* Timeout, return less than vlen datagrams */ 2767 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2768 break; 2769 } 2770 2771 /* Out of band data, return right away */ 2772 if (msg_sys.msg_flags & MSG_OOB) 2773 break; 2774 cond_resched(); 2775 } 2776 2777 if (err == 0) 2778 goto out_put; 2779 2780 if (datagrams == 0) { 2781 datagrams = err; 2782 goto out_put; 2783 } 2784 2785 /* 2786 * We may return less entries than requested (vlen) if the 2787 * sock is non block and there aren't enough datagrams... 2788 */ 2789 if (err != -EAGAIN) { 2790 /* 2791 * ... or if recvmsg returns an error after we 2792 * received some datagrams, where we record the 2793 * error to return on the next call or if the 2794 * app asks about it using getsockopt(SO_ERROR). 2795 */ 2796 sock->sk->sk_err = -err; 2797 } 2798 out_put: 2799 fput_light(sock->file, fput_needed); 2800 2801 return datagrams; 2802 } 2803 2804 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2805 unsigned int vlen, unsigned int flags, 2806 struct __kernel_timespec __user *timeout, 2807 struct old_timespec32 __user *timeout32) 2808 { 2809 int datagrams; 2810 struct timespec64 timeout_sys; 2811 2812 if (timeout && get_timespec64(&timeout_sys, timeout)) 2813 return -EFAULT; 2814 2815 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2816 return -EFAULT; 2817 2818 if (!timeout && !timeout32) 2819 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2820 2821 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2822 2823 if (datagrams <= 0) 2824 return datagrams; 2825 2826 if (timeout && put_timespec64(&timeout_sys, timeout)) 2827 datagrams = -EFAULT; 2828 2829 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2830 datagrams = -EFAULT; 2831 2832 return datagrams; 2833 } 2834 2835 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2836 unsigned int, vlen, unsigned int, flags, 2837 struct __kernel_timespec __user *, timeout) 2838 { 2839 if (flags & MSG_CMSG_COMPAT) 2840 return -EINVAL; 2841 2842 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2843 } 2844 2845 #ifdef CONFIG_COMPAT_32BIT_TIME 2846 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2847 unsigned int, vlen, unsigned int, flags, 2848 struct old_timespec32 __user *, timeout) 2849 { 2850 if (flags & MSG_CMSG_COMPAT) 2851 return -EINVAL; 2852 2853 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2854 } 2855 #endif 2856 2857 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2858 /* Argument list sizes for sys_socketcall */ 2859 #define AL(x) ((x) * sizeof(unsigned long)) 2860 static const unsigned char nargs[21] = { 2861 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2862 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2863 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2864 AL(4), AL(5), AL(4) 2865 }; 2866 2867 #undef AL 2868 2869 /* 2870 * System call vectors. 2871 * 2872 * Argument checking cleaned up. Saved 20% in size. 2873 * This function doesn't need to set the kernel lock because 2874 * it is set by the callees. 2875 */ 2876 2877 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2878 { 2879 unsigned long a[AUDITSC_ARGS]; 2880 unsigned long a0, a1; 2881 int err; 2882 unsigned int len; 2883 2884 if (call < 1 || call > SYS_SENDMMSG) 2885 return -EINVAL; 2886 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2887 2888 len = nargs[call]; 2889 if (len > sizeof(a)) 2890 return -EINVAL; 2891 2892 /* copy_from_user should be SMP safe. */ 2893 if (copy_from_user(a, args, len)) 2894 return -EFAULT; 2895 2896 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2897 if (err) 2898 return err; 2899 2900 a0 = a[0]; 2901 a1 = a[1]; 2902 2903 switch (call) { 2904 case SYS_SOCKET: 2905 err = __sys_socket(a0, a1, a[2]); 2906 break; 2907 case SYS_BIND: 2908 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2909 break; 2910 case SYS_CONNECT: 2911 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2912 break; 2913 case SYS_LISTEN: 2914 err = __sys_listen(a0, a1); 2915 break; 2916 case SYS_ACCEPT: 2917 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2918 (int __user *)a[2], 0); 2919 break; 2920 case SYS_GETSOCKNAME: 2921 err = 2922 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2923 (int __user *)a[2]); 2924 break; 2925 case SYS_GETPEERNAME: 2926 err = 2927 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2928 (int __user *)a[2]); 2929 break; 2930 case SYS_SOCKETPAIR: 2931 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2932 break; 2933 case SYS_SEND: 2934 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2935 NULL, 0); 2936 break; 2937 case SYS_SENDTO: 2938 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2939 (struct sockaddr __user *)a[4], a[5]); 2940 break; 2941 case SYS_RECV: 2942 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2943 NULL, NULL); 2944 break; 2945 case SYS_RECVFROM: 2946 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2947 (struct sockaddr __user *)a[4], 2948 (int __user *)a[5]); 2949 break; 2950 case SYS_SHUTDOWN: 2951 err = __sys_shutdown(a0, a1); 2952 break; 2953 case SYS_SETSOCKOPT: 2954 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2955 a[4]); 2956 break; 2957 case SYS_GETSOCKOPT: 2958 err = 2959 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2960 (int __user *)a[4]); 2961 break; 2962 case SYS_SENDMSG: 2963 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2964 a[2], true); 2965 break; 2966 case SYS_SENDMMSG: 2967 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2968 a[3], true); 2969 break; 2970 case SYS_RECVMSG: 2971 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2972 a[2], true); 2973 break; 2974 case SYS_RECVMMSG: 2975 if (IS_ENABLED(CONFIG_64BIT)) 2976 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2977 a[2], a[3], 2978 (struct __kernel_timespec __user *)a[4], 2979 NULL); 2980 else 2981 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2982 a[2], a[3], NULL, 2983 (struct old_timespec32 __user *)a[4]); 2984 break; 2985 case SYS_ACCEPT4: 2986 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2987 (int __user *)a[2], a[3]); 2988 break; 2989 default: 2990 err = -EINVAL; 2991 break; 2992 } 2993 return err; 2994 } 2995 2996 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2997 2998 /** 2999 * sock_register - add a socket protocol handler 3000 * @ops: description of protocol 3001 * 3002 * This function is called by a protocol handler that wants to 3003 * advertise its address family, and have it linked into the 3004 * socket interface. The value ops->family corresponds to the 3005 * socket system call protocol family. 3006 */ 3007 int sock_register(const struct net_proto_family *ops) 3008 { 3009 int err; 3010 3011 if (ops->family >= NPROTO) { 3012 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3013 return -ENOBUFS; 3014 } 3015 3016 spin_lock(&net_family_lock); 3017 if (rcu_dereference_protected(net_families[ops->family], 3018 lockdep_is_held(&net_family_lock))) 3019 err = -EEXIST; 3020 else { 3021 rcu_assign_pointer(net_families[ops->family], ops); 3022 err = 0; 3023 } 3024 spin_unlock(&net_family_lock); 3025 3026 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3027 return err; 3028 } 3029 EXPORT_SYMBOL(sock_register); 3030 3031 /** 3032 * sock_unregister - remove a protocol handler 3033 * @family: protocol family to remove 3034 * 3035 * This function is called by a protocol handler that wants to 3036 * remove its address family, and have it unlinked from the 3037 * new socket creation. 3038 * 3039 * If protocol handler is a module, then it can use module reference 3040 * counts to protect against new references. If protocol handler is not 3041 * a module then it needs to provide its own protection in 3042 * the ops->create routine. 3043 */ 3044 void sock_unregister(int family) 3045 { 3046 BUG_ON(family < 0 || family >= NPROTO); 3047 3048 spin_lock(&net_family_lock); 3049 RCU_INIT_POINTER(net_families[family], NULL); 3050 spin_unlock(&net_family_lock); 3051 3052 synchronize_rcu(); 3053 3054 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3055 } 3056 EXPORT_SYMBOL(sock_unregister); 3057 3058 bool sock_is_registered(int family) 3059 { 3060 return family < NPROTO && rcu_access_pointer(net_families[family]); 3061 } 3062 3063 static int __init sock_init(void) 3064 { 3065 int err; 3066 /* 3067 * Initialize the network sysctl infrastructure. 3068 */ 3069 err = net_sysctl_init(); 3070 if (err) 3071 goto out; 3072 3073 /* 3074 * Initialize skbuff SLAB cache 3075 */ 3076 skb_init(); 3077 3078 /* 3079 * Initialize the protocols module. 3080 */ 3081 3082 init_inodecache(); 3083 3084 err = register_filesystem(&sock_fs_type); 3085 if (err) 3086 goto out; 3087 sock_mnt = kern_mount(&sock_fs_type); 3088 if (IS_ERR(sock_mnt)) { 3089 err = PTR_ERR(sock_mnt); 3090 goto out_mount; 3091 } 3092 3093 /* The real protocol initialization is performed in later initcalls. 3094 */ 3095 3096 #ifdef CONFIG_NETFILTER 3097 err = netfilter_init(); 3098 if (err) 3099 goto out; 3100 #endif 3101 3102 ptp_classifier_init(); 3103 3104 out: 3105 return err; 3106 3107 out_mount: 3108 unregister_filesystem(&sock_fs_type); 3109 goto out; 3110 } 3111 3112 core_initcall(sock_init); /* early initcall */ 3113 3114 #ifdef CONFIG_PROC_FS 3115 void socket_seq_show(struct seq_file *seq) 3116 { 3117 seq_printf(seq, "sockets: used %d\n", 3118 sock_inuse_get(seq->private)); 3119 } 3120 #endif /* CONFIG_PROC_FS */ 3121 3122 #ifdef CONFIG_COMPAT 3123 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 3124 { 3125 struct compat_ifconf ifc32; 3126 struct ifconf ifc; 3127 int err; 3128 3129 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 3130 return -EFAULT; 3131 3132 ifc.ifc_len = ifc32.ifc_len; 3133 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 3134 3135 rtnl_lock(); 3136 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 3137 rtnl_unlock(); 3138 if (err) 3139 return err; 3140 3141 ifc32.ifc_len = ifc.ifc_len; 3142 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 3143 return -EFAULT; 3144 3145 return 0; 3146 } 3147 3148 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 3149 { 3150 struct compat_ethtool_rxnfc __user *compat_rxnfc; 3151 bool convert_in = false, convert_out = false; 3152 size_t buf_size = 0; 3153 struct ethtool_rxnfc __user *rxnfc = NULL; 3154 struct ifreq ifr; 3155 u32 rule_cnt = 0, actual_rule_cnt; 3156 u32 ethcmd; 3157 u32 data; 3158 int ret; 3159 3160 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 3161 return -EFAULT; 3162 3163 compat_rxnfc = compat_ptr(data); 3164 3165 if (get_user(ethcmd, &compat_rxnfc->cmd)) 3166 return -EFAULT; 3167 3168 /* Most ethtool structures are defined without padding. 3169 * Unfortunately struct ethtool_rxnfc is an exception. 3170 */ 3171 switch (ethcmd) { 3172 default: 3173 break; 3174 case ETHTOOL_GRXCLSRLALL: 3175 /* Buffer size is variable */ 3176 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 3177 return -EFAULT; 3178 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3179 return -ENOMEM; 3180 buf_size += rule_cnt * sizeof(u32); 3181 fallthrough; 3182 case ETHTOOL_GRXRINGS: 3183 case ETHTOOL_GRXCLSRLCNT: 3184 case ETHTOOL_GRXCLSRULE: 3185 case ETHTOOL_SRXCLSRLINS: 3186 convert_out = true; 3187 fallthrough; 3188 case ETHTOOL_SRXCLSRLDEL: 3189 buf_size += sizeof(struct ethtool_rxnfc); 3190 convert_in = true; 3191 rxnfc = compat_alloc_user_space(buf_size); 3192 break; 3193 } 3194 3195 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3196 return -EFAULT; 3197 3198 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3199 3200 if (convert_in) { 3201 /* We expect there to be holes between fs.m_ext and 3202 * fs.ring_cookie and at the end of fs, but nowhere else. 3203 */ 3204 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3205 sizeof(compat_rxnfc->fs.m_ext) != 3206 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3207 sizeof(rxnfc->fs.m_ext)); 3208 BUILD_BUG_ON( 3209 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3210 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3211 offsetof(struct ethtool_rxnfc, fs.location) - 3212 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3213 3214 if (copy_in_user(rxnfc, compat_rxnfc, 3215 (void __user *)(&rxnfc->fs.m_ext + 1) - 3216 (void __user *)rxnfc) || 3217 copy_in_user(&rxnfc->fs.ring_cookie, 3218 &compat_rxnfc->fs.ring_cookie, 3219 (void __user *)(&rxnfc->fs.location + 1) - 3220 (void __user *)&rxnfc->fs.ring_cookie)) 3221 return -EFAULT; 3222 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3223 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3224 return -EFAULT; 3225 } else if (copy_in_user(&rxnfc->rule_cnt, 3226 &compat_rxnfc->rule_cnt, 3227 sizeof(rxnfc->rule_cnt))) 3228 return -EFAULT; 3229 } 3230 3231 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3232 if (ret) 3233 return ret; 3234 3235 if (convert_out) { 3236 if (copy_in_user(compat_rxnfc, rxnfc, 3237 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3238 (const void __user *)rxnfc) || 3239 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3240 &rxnfc->fs.ring_cookie, 3241 (const void __user *)(&rxnfc->fs.location + 1) - 3242 (const void __user *)&rxnfc->fs.ring_cookie) || 3243 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3244 sizeof(rxnfc->rule_cnt))) 3245 return -EFAULT; 3246 3247 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3248 /* As an optimisation, we only copy the actual 3249 * number of rules that the underlying 3250 * function returned. Since Mallory might 3251 * change the rule count in user memory, we 3252 * check that it is less than the rule count 3253 * originally given (as the user buffer size), 3254 * which has been range-checked. 3255 */ 3256 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3257 return -EFAULT; 3258 if (actual_rule_cnt < rule_cnt) 3259 rule_cnt = actual_rule_cnt; 3260 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3261 &rxnfc->rule_locs[0], 3262 rule_cnt * sizeof(u32))) 3263 return -EFAULT; 3264 } 3265 } 3266 3267 return 0; 3268 } 3269 3270 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3271 { 3272 compat_uptr_t uptr32; 3273 struct ifreq ifr; 3274 void __user *saved; 3275 int err; 3276 3277 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3278 return -EFAULT; 3279 3280 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3281 return -EFAULT; 3282 3283 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3284 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3285 3286 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3287 if (!err) { 3288 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3289 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3290 err = -EFAULT; 3291 } 3292 return err; 3293 } 3294 3295 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3296 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3297 struct compat_ifreq __user *u_ifreq32) 3298 { 3299 struct ifreq ifreq; 3300 u32 data32; 3301 3302 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3303 return -EFAULT; 3304 if (get_user(data32, &u_ifreq32->ifr_data)) 3305 return -EFAULT; 3306 ifreq.ifr_data = compat_ptr(data32); 3307 3308 return dev_ioctl(net, cmd, &ifreq, NULL); 3309 } 3310 3311 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3312 unsigned int cmd, 3313 struct compat_ifreq __user *uifr32) 3314 { 3315 struct ifreq __user *uifr; 3316 int err; 3317 3318 /* Handle the fact that while struct ifreq has the same *layout* on 3319 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3320 * which are handled elsewhere, it still has different *size* due to 3321 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3322 * resulting in struct ifreq being 32 and 40 bytes respectively). 3323 * As a result, if the struct happens to be at the end of a page and 3324 * the next page isn't readable/writable, we get a fault. To prevent 3325 * that, copy back and forth to the full size. 3326 */ 3327 3328 uifr = compat_alloc_user_space(sizeof(*uifr)); 3329 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3330 return -EFAULT; 3331 3332 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3333 3334 if (!err) { 3335 switch (cmd) { 3336 case SIOCGIFFLAGS: 3337 case SIOCGIFMETRIC: 3338 case SIOCGIFMTU: 3339 case SIOCGIFMEM: 3340 case SIOCGIFHWADDR: 3341 case SIOCGIFINDEX: 3342 case SIOCGIFADDR: 3343 case SIOCGIFBRDADDR: 3344 case SIOCGIFDSTADDR: 3345 case SIOCGIFNETMASK: 3346 case SIOCGIFPFLAGS: 3347 case SIOCGIFTXQLEN: 3348 case SIOCGMIIPHY: 3349 case SIOCGMIIREG: 3350 case SIOCGIFNAME: 3351 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3352 err = -EFAULT; 3353 break; 3354 } 3355 } 3356 return err; 3357 } 3358 3359 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3360 struct compat_ifreq __user *uifr32) 3361 { 3362 struct ifreq ifr; 3363 struct compat_ifmap __user *uifmap32; 3364 int err; 3365 3366 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3367 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3368 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3369 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3370 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3371 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3372 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3373 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3374 if (err) 3375 return -EFAULT; 3376 3377 err = dev_ioctl(net, cmd, &ifr, NULL); 3378 3379 if (cmd == SIOCGIFMAP && !err) { 3380 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3381 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3382 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3383 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3384 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3385 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3386 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3387 if (err) 3388 err = -EFAULT; 3389 } 3390 return err; 3391 } 3392 3393 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3394 * for some operations; this forces use of the newer bridge-utils that 3395 * use compatible ioctls 3396 */ 3397 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3398 { 3399 compat_ulong_t tmp; 3400 3401 if (get_user(tmp, argp)) 3402 return -EFAULT; 3403 if (tmp == BRCTL_GET_VERSION) 3404 return BRCTL_VERSION + 1; 3405 return -EINVAL; 3406 } 3407 3408 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3409 unsigned int cmd, unsigned long arg) 3410 { 3411 void __user *argp = compat_ptr(arg); 3412 struct sock *sk = sock->sk; 3413 struct net *net = sock_net(sk); 3414 3415 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3416 return compat_ifr_data_ioctl(net, cmd, argp); 3417 3418 switch (cmd) { 3419 case SIOCSIFBR: 3420 case SIOCGIFBR: 3421 return old_bridge_ioctl(argp); 3422 case SIOCGIFCONF: 3423 return compat_dev_ifconf(net, argp); 3424 case SIOCETHTOOL: 3425 return ethtool_ioctl(net, argp); 3426 case SIOCWANDEV: 3427 return compat_siocwandev(net, argp); 3428 case SIOCGIFMAP: 3429 case SIOCSIFMAP: 3430 return compat_sioc_ifmap(net, cmd, argp); 3431 case SIOCGSTAMP_OLD: 3432 case SIOCGSTAMPNS_OLD: 3433 if (!sock->ops->gettstamp) 3434 return -ENOIOCTLCMD; 3435 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3436 !COMPAT_USE_64BIT_TIME); 3437 3438 case SIOCBONDSLAVEINFOQUERY: 3439 case SIOCBONDINFOQUERY: 3440 case SIOCSHWTSTAMP: 3441 case SIOCGHWTSTAMP: 3442 return compat_ifr_data_ioctl(net, cmd, argp); 3443 3444 case FIOSETOWN: 3445 case SIOCSPGRP: 3446 case FIOGETOWN: 3447 case SIOCGPGRP: 3448 case SIOCBRADDBR: 3449 case SIOCBRDELBR: 3450 case SIOCGIFVLAN: 3451 case SIOCSIFVLAN: 3452 case SIOCGSKNS: 3453 case SIOCGSTAMP_NEW: 3454 case SIOCGSTAMPNS_NEW: 3455 return sock_ioctl(file, cmd, arg); 3456 3457 case SIOCGIFFLAGS: 3458 case SIOCSIFFLAGS: 3459 case SIOCGIFMETRIC: 3460 case SIOCSIFMETRIC: 3461 case SIOCGIFMTU: 3462 case SIOCSIFMTU: 3463 case SIOCGIFMEM: 3464 case SIOCSIFMEM: 3465 case SIOCGIFHWADDR: 3466 case SIOCSIFHWADDR: 3467 case SIOCADDMULTI: 3468 case SIOCDELMULTI: 3469 case SIOCGIFINDEX: 3470 case SIOCGIFADDR: 3471 case SIOCSIFADDR: 3472 case SIOCSIFHWBROADCAST: 3473 case SIOCDIFADDR: 3474 case SIOCGIFBRDADDR: 3475 case SIOCSIFBRDADDR: 3476 case SIOCGIFDSTADDR: 3477 case SIOCSIFDSTADDR: 3478 case SIOCGIFNETMASK: 3479 case SIOCSIFNETMASK: 3480 case SIOCSIFPFLAGS: 3481 case SIOCGIFPFLAGS: 3482 case SIOCGIFTXQLEN: 3483 case SIOCSIFTXQLEN: 3484 case SIOCBRADDIF: 3485 case SIOCBRDELIF: 3486 case SIOCGIFNAME: 3487 case SIOCSIFNAME: 3488 case SIOCGMIIPHY: 3489 case SIOCGMIIREG: 3490 case SIOCSMIIREG: 3491 case SIOCBONDENSLAVE: 3492 case SIOCBONDRELEASE: 3493 case SIOCBONDSETHWADDR: 3494 case SIOCBONDCHANGEACTIVE: 3495 return compat_ifreq_ioctl(net, sock, cmd, argp); 3496 3497 case SIOCSARP: 3498 case SIOCGARP: 3499 case SIOCDARP: 3500 case SIOCOUTQ: 3501 case SIOCOUTQNSD: 3502 case SIOCATMARK: 3503 return sock_do_ioctl(net, sock, cmd, arg); 3504 } 3505 3506 return -ENOIOCTLCMD; 3507 } 3508 3509 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3510 unsigned long arg) 3511 { 3512 struct socket *sock = file->private_data; 3513 int ret = -ENOIOCTLCMD; 3514 struct sock *sk; 3515 struct net *net; 3516 3517 sk = sock->sk; 3518 net = sock_net(sk); 3519 3520 if (sock->ops->compat_ioctl) 3521 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3522 3523 if (ret == -ENOIOCTLCMD && 3524 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3525 ret = compat_wext_handle_ioctl(net, cmd, arg); 3526 3527 if (ret == -ENOIOCTLCMD) 3528 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3529 3530 return ret; 3531 } 3532 #endif 3533 3534 /** 3535 * kernel_bind - bind an address to a socket (kernel space) 3536 * @sock: socket 3537 * @addr: address 3538 * @addrlen: length of address 3539 * 3540 * Returns 0 or an error. 3541 */ 3542 3543 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3544 { 3545 return sock->ops->bind(sock, addr, addrlen); 3546 } 3547 EXPORT_SYMBOL(kernel_bind); 3548 3549 /** 3550 * kernel_listen - move socket to listening state (kernel space) 3551 * @sock: socket 3552 * @backlog: pending connections queue size 3553 * 3554 * Returns 0 or an error. 3555 */ 3556 3557 int kernel_listen(struct socket *sock, int backlog) 3558 { 3559 return sock->ops->listen(sock, backlog); 3560 } 3561 EXPORT_SYMBOL(kernel_listen); 3562 3563 /** 3564 * kernel_accept - accept a connection (kernel space) 3565 * @sock: listening socket 3566 * @newsock: new connected socket 3567 * @flags: flags 3568 * 3569 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3570 * If it fails, @newsock is guaranteed to be %NULL. 3571 * Returns 0 or an error. 3572 */ 3573 3574 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3575 { 3576 struct sock *sk = sock->sk; 3577 int err; 3578 3579 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3580 newsock); 3581 if (err < 0) 3582 goto done; 3583 3584 err = sock->ops->accept(sock, *newsock, flags, true); 3585 if (err < 0) { 3586 sock_release(*newsock); 3587 *newsock = NULL; 3588 goto done; 3589 } 3590 3591 (*newsock)->ops = sock->ops; 3592 __module_get((*newsock)->ops->owner); 3593 3594 done: 3595 return err; 3596 } 3597 EXPORT_SYMBOL(kernel_accept); 3598 3599 /** 3600 * kernel_connect - connect a socket (kernel space) 3601 * @sock: socket 3602 * @addr: address 3603 * @addrlen: address length 3604 * @flags: flags (O_NONBLOCK, ...) 3605 * 3606 * For datagram sockets, @addr is the address to which datagrams are sent 3607 * by default, and the only address from which datagrams are received. 3608 * For stream sockets, attempts to connect to @addr. 3609 * Returns 0 or an error code. 3610 */ 3611 3612 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3613 int flags) 3614 { 3615 return sock->ops->connect(sock, addr, addrlen, flags); 3616 } 3617 EXPORT_SYMBOL(kernel_connect); 3618 3619 /** 3620 * kernel_getsockname - get the address which the socket is bound (kernel space) 3621 * @sock: socket 3622 * @addr: address holder 3623 * 3624 * Fills the @addr pointer with the address which the socket is bound. 3625 * Returns 0 or an error code. 3626 */ 3627 3628 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3629 { 3630 return sock->ops->getname(sock, addr, 0); 3631 } 3632 EXPORT_SYMBOL(kernel_getsockname); 3633 3634 /** 3635 * kernel_getpeername - get the address which the socket is connected (kernel space) 3636 * @sock: socket 3637 * @addr: address holder 3638 * 3639 * Fills the @addr pointer with the address which the socket is connected. 3640 * Returns 0 or an error code. 3641 */ 3642 3643 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3644 { 3645 return sock->ops->getname(sock, addr, 1); 3646 } 3647 EXPORT_SYMBOL(kernel_getpeername); 3648 3649 /** 3650 * kernel_sendpage - send a &page through a socket (kernel space) 3651 * @sock: socket 3652 * @page: page 3653 * @offset: page offset 3654 * @size: total size in bytes 3655 * @flags: flags (MSG_DONTWAIT, ...) 3656 * 3657 * Returns the total amount sent in bytes or an error. 3658 */ 3659 3660 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3661 size_t size, int flags) 3662 { 3663 if (sock->ops->sendpage) { 3664 /* Warn in case the improper page to zero-copy send */ 3665 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); 3666 return sock->ops->sendpage(sock, page, offset, size, flags); 3667 } 3668 return sock_no_sendpage(sock, page, offset, size, flags); 3669 } 3670 EXPORT_SYMBOL(kernel_sendpage); 3671 3672 /** 3673 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3674 * @sk: sock 3675 * @page: page 3676 * @offset: page offset 3677 * @size: total size in bytes 3678 * @flags: flags (MSG_DONTWAIT, ...) 3679 * 3680 * Returns the total amount sent in bytes or an error. 3681 * Caller must hold @sk. 3682 */ 3683 3684 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3685 size_t size, int flags) 3686 { 3687 struct socket *sock = sk->sk_socket; 3688 3689 if (sock->ops->sendpage_locked) 3690 return sock->ops->sendpage_locked(sk, page, offset, size, 3691 flags); 3692 3693 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3694 } 3695 EXPORT_SYMBOL(kernel_sendpage_locked); 3696 3697 /** 3698 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3699 * @sock: socket 3700 * @how: connection part 3701 * 3702 * Returns 0 or an error. 3703 */ 3704 3705 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3706 { 3707 return sock->ops->shutdown(sock, how); 3708 } 3709 EXPORT_SYMBOL(kernel_sock_shutdown); 3710 3711 /** 3712 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3713 * @sk: socket 3714 * 3715 * This routine returns the IP overhead imposed by a socket i.e. 3716 * the length of the underlying IP header, depending on whether 3717 * this is an IPv4 or IPv6 socket and the length from IP options turned 3718 * on at the socket. Assumes that the caller has a lock on the socket. 3719 */ 3720 3721 u32 kernel_sock_ip_overhead(struct sock *sk) 3722 { 3723 struct inet_sock *inet; 3724 struct ip_options_rcu *opt; 3725 u32 overhead = 0; 3726 #if IS_ENABLED(CONFIG_IPV6) 3727 struct ipv6_pinfo *np; 3728 struct ipv6_txoptions *optv6 = NULL; 3729 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3730 3731 if (!sk) 3732 return overhead; 3733 3734 switch (sk->sk_family) { 3735 case AF_INET: 3736 inet = inet_sk(sk); 3737 overhead += sizeof(struct iphdr); 3738 opt = rcu_dereference_protected(inet->inet_opt, 3739 sock_owned_by_user(sk)); 3740 if (opt) 3741 overhead += opt->opt.optlen; 3742 return overhead; 3743 #if IS_ENABLED(CONFIG_IPV6) 3744 case AF_INET6: 3745 np = inet6_sk(sk); 3746 overhead += sizeof(struct ipv6hdr); 3747 if (np) 3748 optv6 = rcu_dereference_protected(np->opt, 3749 sock_owned_by_user(sk)); 3750 if (optv6) 3751 overhead += (optv6->opt_flen + optv6->opt_nflen); 3752 return overhead; 3753 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3754 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3755 return overhead; 3756 } 3757 } 3758 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3759