1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/socket.h> 57 #include <linux/file.h> 58 #include <linux/net.h> 59 #include <linux/interrupt.h> 60 #include <linux/thread_info.h> 61 #include <linux/rcupdate.h> 62 #include <linux/netdevice.h> 63 #include <linux/proc_fs.h> 64 #include <linux/seq_file.h> 65 #include <linux/mutex.h> 66 #include <linux/if_bridge.h> 67 #include <linux/if_frad.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/termios.h> 104 #include <linux/sockios.h> 105 #include <net/busy_poll.h> 106 #include <linux/errqueue.h> 107 108 #ifdef CONFIG_NET_RX_BUSY_POLL 109 unsigned int sysctl_net_busy_read __read_mostly; 110 unsigned int sysctl_net_busy_poll __read_mostly; 111 #endif 112 113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 115 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 116 117 static int sock_close(struct inode *inode, struct file *file); 118 static __poll_t sock_poll(struct file *file, 119 struct poll_table_struct *wait); 120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 121 #ifdef CONFIG_COMPAT 122 static long compat_sock_ioctl(struct file *file, 123 unsigned int cmd, unsigned long arg); 124 #endif 125 static int sock_fasync(int fd, struct file *filp, int on); 126 static ssize_t sock_sendpage(struct file *file, struct page *page, 127 int offset, size_t size, loff_t *ppos, int more); 128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 129 struct pipe_inode_info *pipe, size_t len, 130 unsigned int flags); 131 132 #ifdef CONFIG_PROC_FS 133 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 134 { 135 struct socket *sock = f->private_data; 136 137 if (sock->ops->show_fdinfo) 138 sock->ops->show_fdinfo(m, sock); 139 } 140 #else 141 #define sock_show_fdinfo NULL 142 #endif 143 144 /* 145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 146 * in the operation structures but are done directly via the socketcall() multiplexor. 147 */ 148 149 static const struct file_operations socket_file_ops = { 150 .owner = THIS_MODULE, 151 .llseek = no_llseek, 152 .read_iter = sock_read_iter, 153 .write_iter = sock_write_iter, 154 .poll = sock_poll, 155 .unlocked_ioctl = sock_ioctl, 156 #ifdef CONFIG_COMPAT 157 .compat_ioctl = compat_sock_ioctl, 158 #endif 159 .mmap = sock_mmap, 160 .release = sock_close, 161 .fasync = sock_fasync, 162 .sendpage = sock_sendpage, 163 .splice_write = generic_splice_sendpage, 164 .splice_read = sock_splice_read, 165 .show_fdinfo = sock_show_fdinfo, 166 }; 167 168 /* 169 * The protocol list. Each protocol is registered in here. 170 */ 171 172 static DEFINE_SPINLOCK(net_family_lock); 173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 174 175 /* 176 * Support routines. 177 * Move socket addresses back and forth across the kernel/user 178 * divide and look after the messy bits. 179 */ 180 181 /** 182 * move_addr_to_kernel - copy a socket address into kernel space 183 * @uaddr: Address in user space 184 * @kaddr: Address in kernel space 185 * @ulen: Length in user space 186 * 187 * The address is copied into kernel space. If the provided address is 188 * too long an error code of -EINVAL is returned. If the copy gives 189 * invalid addresses -EFAULT is returned. On a success 0 is returned. 190 */ 191 192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 193 { 194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 195 return -EINVAL; 196 if (ulen == 0) 197 return 0; 198 if (copy_from_user(kaddr, uaddr, ulen)) 199 return -EFAULT; 200 return audit_sockaddr(ulen, kaddr); 201 } 202 203 /** 204 * move_addr_to_user - copy an address to user space 205 * @kaddr: kernel space address 206 * @klen: length of address in kernel 207 * @uaddr: user space address 208 * @ulen: pointer to user length field 209 * 210 * The value pointed to by ulen on entry is the buffer length available. 211 * This is overwritten with the buffer space used. -EINVAL is returned 212 * if an overlong buffer is specified or a negative buffer size. -EFAULT 213 * is returned if either the buffer or the length field are not 214 * accessible. 215 * After copying the data up to the limit the user specifies, the true 216 * length of the data is written over the length limit the user 217 * specified. Zero is returned for a success. 218 */ 219 220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 221 void __user *uaddr, int __user *ulen) 222 { 223 int err; 224 int len; 225 226 BUG_ON(klen > sizeof(struct sockaddr_storage)); 227 err = get_user(len, ulen); 228 if (err) 229 return err; 230 if (len > klen) 231 len = klen; 232 if (len < 0) 233 return -EINVAL; 234 if (len) { 235 if (audit_sockaddr(klen, kaddr)) 236 return -ENOMEM; 237 if (copy_to_user(uaddr, kaddr, len)) 238 return -EFAULT; 239 } 240 /* 241 * "fromlen shall refer to the value before truncation.." 242 * 1003.1g 243 */ 244 return __put_user(klen, ulen); 245 } 246 247 static struct kmem_cache *sock_inode_cachep __ro_after_init; 248 249 static struct inode *sock_alloc_inode(struct super_block *sb) 250 { 251 struct socket_alloc *ei; 252 253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 254 if (!ei) 255 return NULL; 256 init_waitqueue_head(&ei->socket.wq.wait); 257 ei->socket.wq.fasync_list = NULL; 258 ei->socket.wq.flags = 0; 259 260 ei->socket.state = SS_UNCONNECTED; 261 ei->socket.flags = 0; 262 ei->socket.ops = NULL; 263 ei->socket.sk = NULL; 264 ei->socket.file = NULL; 265 266 return &ei->vfs_inode; 267 } 268 269 static void sock_free_inode(struct inode *inode) 270 { 271 struct socket_alloc *ei; 272 273 ei = container_of(inode, struct socket_alloc, vfs_inode); 274 kmem_cache_free(sock_inode_cachep, ei); 275 } 276 277 static void init_once(void *foo) 278 { 279 struct socket_alloc *ei = (struct socket_alloc *)foo; 280 281 inode_init_once(&ei->vfs_inode); 282 } 283 284 static void init_inodecache(void) 285 { 286 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 287 sizeof(struct socket_alloc), 288 0, 289 (SLAB_HWCACHE_ALIGN | 290 SLAB_RECLAIM_ACCOUNT | 291 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 292 init_once); 293 BUG_ON(sock_inode_cachep == NULL); 294 } 295 296 static const struct super_operations sockfs_ops = { 297 .alloc_inode = sock_alloc_inode, 298 .free_inode = sock_free_inode, 299 .statfs = simple_statfs, 300 }; 301 302 /* 303 * sockfs_dname() is called from d_path(). 304 */ 305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 306 { 307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 308 d_inode(dentry)->i_ino); 309 } 310 311 static const struct dentry_operations sockfs_dentry_operations = { 312 .d_dname = sockfs_dname, 313 }; 314 315 static int sockfs_xattr_get(const struct xattr_handler *handler, 316 struct dentry *dentry, struct inode *inode, 317 const char *suffix, void *value, size_t size) 318 { 319 if (value) { 320 if (dentry->d_name.len + 1 > size) 321 return -ERANGE; 322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 323 } 324 return dentry->d_name.len + 1; 325 } 326 327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 330 331 static const struct xattr_handler sockfs_xattr_handler = { 332 .name = XATTR_NAME_SOCKPROTONAME, 333 .get = sockfs_xattr_get, 334 }; 335 336 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 337 struct dentry *dentry, struct inode *inode, 338 const char *suffix, const void *value, 339 size_t size, int flags) 340 { 341 /* Handled by LSM. */ 342 return -EAGAIN; 343 } 344 345 static const struct xattr_handler sockfs_security_xattr_handler = { 346 .prefix = XATTR_SECURITY_PREFIX, 347 .set = sockfs_security_xattr_set, 348 }; 349 350 static const struct xattr_handler *sockfs_xattr_handlers[] = { 351 &sockfs_xattr_handler, 352 &sockfs_security_xattr_handler, 353 NULL 354 }; 355 356 static int sockfs_init_fs_context(struct fs_context *fc) 357 { 358 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 359 if (!ctx) 360 return -ENOMEM; 361 ctx->ops = &sockfs_ops; 362 ctx->dops = &sockfs_dentry_operations; 363 ctx->xattr = sockfs_xattr_handlers; 364 return 0; 365 } 366 367 static struct vfsmount *sock_mnt __read_mostly; 368 369 static struct file_system_type sock_fs_type = { 370 .name = "sockfs", 371 .init_fs_context = sockfs_init_fs_context, 372 .kill_sb = kill_anon_super, 373 }; 374 375 /* 376 * Obtains the first available file descriptor and sets it up for use. 377 * 378 * These functions create file structures and maps them to fd space 379 * of the current process. On success it returns file descriptor 380 * and file struct implicitly stored in sock->file. 381 * Note that another thread may close file descriptor before we return 382 * from this function. We use the fact that now we do not refer 383 * to socket after mapping. If one day we will need it, this 384 * function will increment ref. count on file by 1. 385 * 386 * In any case returned fd MAY BE not valid! 387 * This race condition is unavoidable 388 * with shared fd spaces, we cannot solve it inside kernel, 389 * but we take care of internal coherence yet. 390 */ 391 392 /** 393 * sock_alloc_file - Bind a &socket to a &file 394 * @sock: socket 395 * @flags: file status flags 396 * @dname: protocol name 397 * 398 * Returns the &file bound with @sock, implicitly storing it 399 * in sock->file. If dname is %NULL, sets to "". 400 * On failure the return is a ERR pointer (see linux/err.h). 401 * This function uses GFP_KERNEL internally. 402 */ 403 404 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 405 { 406 struct file *file; 407 408 if (!dname) 409 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 410 411 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 412 O_RDWR | (flags & O_NONBLOCK), 413 &socket_file_ops); 414 if (IS_ERR(file)) { 415 sock_release(sock); 416 return file; 417 } 418 419 sock->file = file; 420 file->private_data = sock; 421 stream_open(SOCK_INODE(sock), file); 422 return file; 423 } 424 EXPORT_SYMBOL(sock_alloc_file); 425 426 static int sock_map_fd(struct socket *sock, int flags) 427 { 428 struct file *newfile; 429 int fd = get_unused_fd_flags(flags); 430 if (unlikely(fd < 0)) { 431 sock_release(sock); 432 return fd; 433 } 434 435 newfile = sock_alloc_file(sock, flags, NULL); 436 if (!IS_ERR(newfile)) { 437 fd_install(fd, newfile); 438 return fd; 439 } 440 441 put_unused_fd(fd); 442 return PTR_ERR(newfile); 443 } 444 445 /** 446 * sock_from_file - Return the &socket bounded to @file. 447 * @file: file 448 * @err: pointer to an error code return 449 * 450 * On failure returns %NULL and assigns -ENOTSOCK to @err. 451 */ 452 453 struct socket *sock_from_file(struct file *file, int *err) 454 { 455 if (file->f_op == &socket_file_ops) 456 return file->private_data; /* set in sock_map_fd */ 457 458 *err = -ENOTSOCK; 459 return NULL; 460 } 461 EXPORT_SYMBOL(sock_from_file); 462 463 /** 464 * sockfd_lookup - Go from a file number to its socket slot 465 * @fd: file handle 466 * @err: pointer to an error code return 467 * 468 * The file handle passed in is locked and the socket it is bound 469 * to is returned. If an error occurs the err pointer is overwritten 470 * with a negative errno code and NULL is returned. The function checks 471 * for both invalid handles and passing a handle which is not a socket. 472 * 473 * On a success the socket object pointer is returned. 474 */ 475 476 struct socket *sockfd_lookup(int fd, int *err) 477 { 478 struct file *file; 479 struct socket *sock; 480 481 file = fget(fd); 482 if (!file) { 483 *err = -EBADF; 484 return NULL; 485 } 486 487 sock = sock_from_file(file, err); 488 if (!sock) 489 fput(file); 490 return sock; 491 } 492 EXPORT_SYMBOL(sockfd_lookup); 493 494 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 495 { 496 struct fd f = fdget(fd); 497 struct socket *sock; 498 499 *err = -EBADF; 500 if (f.file) { 501 sock = sock_from_file(f.file, err); 502 if (likely(sock)) { 503 *fput_needed = f.flags; 504 return sock; 505 } 506 fdput(f); 507 } 508 return NULL; 509 } 510 511 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 512 size_t size) 513 { 514 ssize_t len; 515 ssize_t used = 0; 516 517 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 518 if (len < 0) 519 return len; 520 used += len; 521 if (buffer) { 522 if (size < used) 523 return -ERANGE; 524 buffer += len; 525 } 526 527 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 528 used += len; 529 if (buffer) { 530 if (size < used) 531 return -ERANGE; 532 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 533 buffer += len; 534 } 535 536 return used; 537 } 538 539 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 540 { 541 int err = simple_setattr(dentry, iattr); 542 543 if (!err && (iattr->ia_valid & ATTR_UID)) { 544 struct socket *sock = SOCKET_I(d_inode(dentry)); 545 546 if (sock->sk) 547 sock->sk->sk_uid = iattr->ia_uid; 548 else 549 err = -ENOENT; 550 } 551 552 return err; 553 } 554 555 static const struct inode_operations sockfs_inode_ops = { 556 .listxattr = sockfs_listxattr, 557 .setattr = sockfs_setattr, 558 }; 559 560 /** 561 * sock_alloc - allocate a socket 562 * 563 * Allocate a new inode and socket object. The two are bound together 564 * and initialised. The socket is then returned. If we are out of inodes 565 * NULL is returned. This functions uses GFP_KERNEL internally. 566 */ 567 568 struct socket *sock_alloc(void) 569 { 570 struct inode *inode; 571 struct socket *sock; 572 573 inode = new_inode_pseudo(sock_mnt->mnt_sb); 574 if (!inode) 575 return NULL; 576 577 sock = SOCKET_I(inode); 578 579 inode->i_ino = get_next_ino(); 580 inode->i_mode = S_IFSOCK | S_IRWXUGO; 581 inode->i_uid = current_fsuid(); 582 inode->i_gid = current_fsgid(); 583 inode->i_op = &sockfs_inode_ops; 584 585 return sock; 586 } 587 EXPORT_SYMBOL(sock_alloc); 588 589 /** 590 * sock_release - close a socket 591 * @sock: socket to close 592 * 593 * The socket is released from the protocol stack if it has a release 594 * callback, and the inode is then released if the socket is bound to 595 * an inode not a file. 596 */ 597 598 static void __sock_release(struct socket *sock, struct inode *inode) 599 { 600 if (sock->ops) { 601 struct module *owner = sock->ops->owner; 602 603 if (inode) 604 inode_lock(inode); 605 sock->ops->release(sock); 606 sock->sk = NULL; 607 if (inode) 608 inode_unlock(inode); 609 sock->ops = NULL; 610 module_put(owner); 611 } 612 613 if (sock->wq.fasync_list) 614 pr_err("%s: fasync list not empty!\n", __func__); 615 616 if (!sock->file) { 617 iput(SOCK_INODE(sock)); 618 return; 619 } 620 sock->file = NULL; 621 } 622 623 void sock_release(struct socket *sock) 624 { 625 __sock_release(sock, NULL); 626 } 627 EXPORT_SYMBOL(sock_release); 628 629 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 630 { 631 u8 flags = *tx_flags; 632 633 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 634 flags |= SKBTX_HW_TSTAMP; 635 636 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 637 flags |= SKBTX_SW_TSTAMP; 638 639 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 640 flags |= SKBTX_SCHED_TSTAMP; 641 642 *tx_flags = flags; 643 } 644 EXPORT_SYMBOL(__sock_tx_timestamp); 645 646 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 647 size_t)); 648 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 649 size_t)); 650 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 651 { 652 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 653 inet_sendmsg, sock, msg, 654 msg_data_left(msg)); 655 BUG_ON(ret == -EIOCBQUEUED); 656 return ret; 657 } 658 659 /** 660 * sock_sendmsg - send a message through @sock 661 * @sock: socket 662 * @msg: message to send 663 * 664 * Sends @msg through @sock, passing through LSM. 665 * Returns the number of bytes sent, or an error code. 666 */ 667 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 668 { 669 int err = security_socket_sendmsg(sock, msg, 670 msg_data_left(msg)); 671 672 return err ?: sock_sendmsg_nosec(sock, msg); 673 } 674 EXPORT_SYMBOL(sock_sendmsg); 675 676 /** 677 * kernel_sendmsg - send a message through @sock (kernel-space) 678 * @sock: socket 679 * @msg: message header 680 * @vec: kernel vec 681 * @num: vec array length 682 * @size: total message data size 683 * 684 * Builds the message data with @vec and sends it through @sock. 685 * Returns the number of bytes sent, or an error code. 686 */ 687 688 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 689 struct kvec *vec, size_t num, size_t size) 690 { 691 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 692 return sock_sendmsg(sock, msg); 693 } 694 EXPORT_SYMBOL(kernel_sendmsg); 695 696 /** 697 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 698 * @sk: sock 699 * @msg: message header 700 * @vec: output s/g array 701 * @num: output s/g array length 702 * @size: total message data size 703 * 704 * Builds the message data with @vec and sends it through @sock. 705 * Returns the number of bytes sent, or an error code. 706 * Caller must hold @sk. 707 */ 708 709 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 710 struct kvec *vec, size_t num, size_t size) 711 { 712 struct socket *sock = sk->sk_socket; 713 714 if (!sock->ops->sendmsg_locked) 715 return sock_no_sendmsg_locked(sk, msg, size); 716 717 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 718 719 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 720 } 721 EXPORT_SYMBOL(kernel_sendmsg_locked); 722 723 static bool skb_is_err_queue(const struct sk_buff *skb) 724 { 725 /* pkt_type of skbs enqueued on the error queue are set to 726 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 727 * in recvmsg, since skbs received on a local socket will never 728 * have a pkt_type of PACKET_OUTGOING. 729 */ 730 return skb->pkt_type == PACKET_OUTGOING; 731 } 732 733 /* On transmit, software and hardware timestamps are returned independently. 734 * As the two skb clones share the hardware timestamp, which may be updated 735 * before the software timestamp is received, a hardware TX timestamp may be 736 * returned only if there is no software TX timestamp. Ignore false software 737 * timestamps, which may be made in the __sock_recv_timestamp() call when the 738 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 739 * hardware timestamp. 740 */ 741 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 742 { 743 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 744 } 745 746 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 747 { 748 struct scm_ts_pktinfo ts_pktinfo; 749 struct net_device *orig_dev; 750 751 if (!skb_mac_header_was_set(skb)) 752 return; 753 754 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 755 756 rcu_read_lock(); 757 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 758 if (orig_dev) 759 ts_pktinfo.if_index = orig_dev->ifindex; 760 rcu_read_unlock(); 761 762 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 763 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 764 sizeof(ts_pktinfo), &ts_pktinfo); 765 } 766 767 /* 768 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 769 */ 770 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 771 struct sk_buff *skb) 772 { 773 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 774 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 775 struct scm_timestamping_internal tss; 776 777 int empty = 1, false_tstamp = 0; 778 struct skb_shared_hwtstamps *shhwtstamps = 779 skb_hwtstamps(skb); 780 781 /* Race occurred between timestamp enabling and packet 782 receiving. Fill in the current time for now. */ 783 if (need_software_tstamp && skb->tstamp == 0) { 784 __net_timestamp(skb); 785 false_tstamp = 1; 786 } 787 788 if (need_software_tstamp) { 789 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 790 if (new_tstamp) { 791 struct __kernel_sock_timeval tv; 792 793 skb_get_new_timestamp(skb, &tv); 794 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 795 sizeof(tv), &tv); 796 } else { 797 struct __kernel_old_timeval tv; 798 799 skb_get_timestamp(skb, &tv); 800 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 801 sizeof(tv), &tv); 802 } 803 } else { 804 if (new_tstamp) { 805 struct __kernel_timespec ts; 806 807 skb_get_new_timestampns(skb, &ts); 808 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 809 sizeof(ts), &ts); 810 } else { 811 struct __kernel_old_timespec ts; 812 813 skb_get_timestampns(skb, &ts); 814 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 815 sizeof(ts), &ts); 816 } 817 } 818 } 819 820 memset(&tss, 0, sizeof(tss)); 821 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 822 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 823 empty = 0; 824 if (shhwtstamps && 825 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 826 !skb_is_swtx_tstamp(skb, false_tstamp) && 827 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 828 empty = 0; 829 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 830 !skb_is_err_queue(skb)) 831 put_ts_pktinfo(msg, skb); 832 } 833 if (!empty) { 834 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 835 put_cmsg_scm_timestamping64(msg, &tss); 836 else 837 put_cmsg_scm_timestamping(msg, &tss); 838 839 if (skb_is_err_queue(skb) && skb->len && 840 SKB_EXT_ERR(skb)->opt_stats) 841 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 842 skb->len, skb->data); 843 } 844 } 845 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 846 847 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 848 struct sk_buff *skb) 849 { 850 int ack; 851 852 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 853 return; 854 if (!skb->wifi_acked_valid) 855 return; 856 857 ack = skb->wifi_acked; 858 859 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 860 } 861 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 862 863 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 864 struct sk_buff *skb) 865 { 866 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 867 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 868 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 869 } 870 871 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 872 struct sk_buff *skb) 873 { 874 sock_recv_timestamp(msg, sk, skb); 875 sock_recv_drops(msg, sk, skb); 876 } 877 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 878 879 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 880 size_t, int)); 881 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 882 size_t, int)); 883 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 884 int flags) 885 { 886 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 887 inet_recvmsg, sock, msg, msg_data_left(msg), 888 flags); 889 } 890 891 /** 892 * sock_recvmsg - receive a message from @sock 893 * @sock: socket 894 * @msg: message to receive 895 * @flags: message flags 896 * 897 * Receives @msg from @sock, passing through LSM. Returns the total number 898 * of bytes received, or an error. 899 */ 900 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 901 { 902 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 903 904 return err ?: sock_recvmsg_nosec(sock, msg, flags); 905 } 906 EXPORT_SYMBOL(sock_recvmsg); 907 908 /** 909 * kernel_recvmsg - Receive a message from a socket (kernel space) 910 * @sock: The socket to receive the message from 911 * @msg: Received message 912 * @vec: Input s/g array for message data 913 * @num: Size of input s/g array 914 * @size: Number of bytes to read 915 * @flags: Message flags (MSG_DONTWAIT, etc...) 916 * 917 * On return the msg structure contains the scatter/gather array passed in the 918 * vec argument. The array is modified so that it consists of the unfilled 919 * portion of the original array. 920 * 921 * The returned value is the total number of bytes received, or an error. 922 */ 923 924 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 925 struct kvec *vec, size_t num, size_t size, int flags) 926 { 927 msg->msg_control_is_user = false; 928 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 929 return sock_recvmsg(sock, msg, flags); 930 } 931 EXPORT_SYMBOL(kernel_recvmsg); 932 933 static ssize_t sock_sendpage(struct file *file, struct page *page, 934 int offset, size_t size, loff_t *ppos, int more) 935 { 936 struct socket *sock; 937 int flags; 938 939 sock = file->private_data; 940 941 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 942 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 943 flags |= more; 944 945 return kernel_sendpage(sock, page, offset, size, flags); 946 } 947 948 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 949 struct pipe_inode_info *pipe, size_t len, 950 unsigned int flags) 951 { 952 struct socket *sock = file->private_data; 953 954 if (unlikely(!sock->ops->splice_read)) 955 return generic_file_splice_read(file, ppos, pipe, len, flags); 956 957 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 958 } 959 960 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 961 { 962 struct file *file = iocb->ki_filp; 963 struct socket *sock = file->private_data; 964 struct msghdr msg = {.msg_iter = *to, 965 .msg_iocb = iocb}; 966 ssize_t res; 967 968 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 969 msg.msg_flags = MSG_DONTWAIT; 970 971 if (iocb->ki_pos != 0) 972 return -ESPIPE; 973 974 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 975 return 0; 976 977 res = sock_recvmsg(sock, &msg, msg.msg_flags); 978 *to = msg.msg_iter; 979 return res; 980 } 981 982 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 983 { 984 struct file *file = iocb->ki_filp; 985 struct socket *sock = file->private_data; 986 struct msghdr msg = {.msg_iter = *from, 987 .msg_iocb = iocb}; 988 ssize_t res; 989 990 if (iocb->ki_pos != 0) 991 return -ESPIPE; 992 993 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 994 msg.msg_flags = MSG_DONTWAIT; 995 996 if (sock->type == SOCK_SEQPACKET) 997 msg.msg_flags |= MSG_EOR; 998 999 res = sock_sendmsg(sock, &msg); 1000 *from = msg.msg_iter; 1001 return res; 1002 } 1003 1004 /* 1005 * Atomic setting of ioctl hooks to avoid race 1006 * with module unload. 1007 */ 1008 1009 static DEFINE_MUTEX(br_ioctl_mutex); 1010 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1011 1012 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1013 { 1014 mutex_lock(&br_ioctl_mutex); 1015 br_ioctl_hook = hook; 1016 mutex_unlock(&br_ioctl_mutex); 1017 } 1018 EXPORT_SYMBOL(brioctl_set); 1019 1020 static DEFINE_MUTEX(vlan_ioctl_mutex); 1021 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1022 1023 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1024 { 1025 mutex_lock(&vlan_ioctl_mutex); 1026 vlan_ioctl_hook = hook; 1027 mutex_unlock(&vlan_ioctl_mutex); 1028 } 1029 EXPORT_SYMBOL(vlan_ioctl_set); 1030 1031 static DEFINE_MUTEX(dlci_ioctl_mutex); 1032 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1033 1034 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1035 { 1036 mutex_lock(&dlci_ioctl_mutex); 1037 dlci_ioctl_hook = hook; 1038 mutex_unlock(&dlci_ioctl_mutex); 1039 } 1040 EXPORT_SYMBOL(dlci_ioctl_set); 1041 1042 static long sock_do_ioctl(struct net *net, struct socket *sock, 1043 unsigned int cmd, unsigned long arg) 1044 { 1045 int err; 1046 void __user *argp = (void __user *)arg; 1047 1048 err = sock->ops->ioctl(sock, cmd, arg); 1049 1050 /* 1051 * If this ioctl is unknown try to hand it down 1052 * to the NIC driver. 1053 */ 1054 if (err != -ENOIOCTLCMD) 1055 return err; 1056 1057 if (cmd == SIOCGIFCONF) { 1058 struct ifconf ifc; 1059 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1060 return -EFAULT; 1061 rtnl_lock(); 1062 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1063 rtnl_unlock(); 1064 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1065 err = -EFAULT; 1066 } else { 1067 struct ifreq ifr; 1068 bool need_copyout; 1069 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1070 return -EFAULT; 1071 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1072 if (!err && need_copyout) 1073 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1074 return -EFAULT; 1075 } 1076 return err; 1077 } 1078 1079 /* 1080 * With an ioctl, arg may well be a user mode pointer, but we don't know 1081 * what to do with it - that's up to the protocol still. 1082 */ 1083 1084 /** 1085 * get_net_ns - increment the refcount of the network namespace 1086 * @ns: common namespace (net) 1087 * 1088 * Returns the net's common namespace. 1089 */ 1090 1091 struct ns_common *get_net_ns(struct ns_common *ns) 1092 { 1093 return &get_net(container_of(ns, struct net, ns))->ns; 1094 } 1095 EXPORT_SYMBOL_GPL(get_net_ns); 1096 1097 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1098 { 1099 struct socket *sock; 1100 struct sock *sk; 1101 void __user *argp = (void __user *)arg; 1102 int pid, err; 1103 struct net *net; 1104 1105 sock = file->private_data; 1106 sk = sock->sk; 1107 net = sock_net(sk); 1108 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1109 struct ifreq ifr; 1110 bool need_copyout; 1111 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1112 return -EFAULT; 1113 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1114 if (!err && need_copyout) 1115 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1116 return -EFAULT; 1117 } else 1118 #ifdef CONFIG_WEXT_CORE 1119 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1120 err = wext_handle_ioctl(net, cmd, argp); 1121 } else 1122 #endif 1123 switch (cmd) { 1124 case FIOSETOWN: 1125 case SIOCSPGRP: 1126 err = -EFAULT; 1127 if (get_user(pid, (int __user *)argp)) 1128 break; 1129 err = f_setown(sock->file, pid, 1); 1130 break; 1131 case FIOGETOWN: 1132 case SIOCGPGRP: 1133 err = put_user(f_getown(sock->file), 1134 (int __user *)argp); 1135 break; 1136 case SIOCGIFBR: 1137 case SIOCSIFBR: 1138 case SIOCBRADDBR: 1139 case SIOCBRDELBR: 1140 err = -ENOPKG; 1141 if (!br_ioctl_hook) 1142 request_module("bridge"); 1143 1144 mutex_lock(&br_ioctl_mutex); 1145 if (br_ioctl_hook) 1146 err = br_ioctl_hook(net, cmd, argp); 1147 mutex_unlock(&br_ioctl_mutex); 1148 break; 1149 case SIOCGIFVLAN: 1150 case SIOCSIFVLAN: 1151 err = -ENOPKG; 1152 if (!vlan_ioctl_hook) 1153 request_module("8021q"); 1154 1155 mutex_lock(&vlan_ioctl_mutex); 1156 if (vlan_ioctl_hook) 1157 err = vlan_ioctl_hook(net, argp); 1158 mutex_unlock(&vlan_ioctl_mutex); 1159 break; 1160 case SIOCADDDLCI: 1161 case SIOCDELDLCI: 1162 err = -ENOPKG; 1163 if (!dlci_ioctl_hook) 1164 request_module("dlci"); 1165 1166 mutex_lock(&dlci_ioctl_mutex); 1167 if (dlci_ioctl_hook) 1168 err = dlci_ioctl_hook(cmd, argp); 1169 mutex_unlock(&dlci_ioctl_mutex); 1170 break; 1171 case SIOCGSKNS: 1172 err = -EPERM; 1173 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1174 break; 1175 1176 err = open_related_ns(&net->ns, get_net_ns); 1177 break; 1178 case SIOCGSTAMP_OLD: 1179 case SIOCGSTAMPNS_OLD: 1180 if (!sock->ops->gettstamp) { 1181 err = -ENOIOCTLCMD; 1182 break; 1183 } 1184 err = sock->ops->gettstamp(sock, argp, 1185 cmd == SIOCGSTAMP_OLD, 1186 !IS_ENABLED(CONFIG_64BIT)); 1187 break; 1188 case SIOCGSTAMP_NEW: 1189 case SIOCGSTAMPNS_NEW: 1190 if (!sock->ops->gettstamp) { 1191 err = -ENOIOCTLCMD; 1192 break; 1193 } 1194 err = sock->ops->gettstamp(sock, argp, 1195 cmd == SIOCGSTAMP_NEW, 1196 false); 1197 break; 1198 default: 1199 err = sock_do_ioctl(net, sock, cmd, arg); 1200 break; 1201 } 1202 return err; 1203 } 1204 1205 /** 1206 * sock_create_lite - creates a socket 1207 * @family: protocol family (AF_INET, ...) 1208 * @type: communication type (SOCK_STREAM, ...) 1209 * @protocol: protocol (0, ...) 1210 * @res: new socket 1211 * 1212 * Creates a new socket and assigns it to @res, passing through LSM. 1213 * The new socket initialization is not complete, see kernel_accept(). 1214 * Returns 0 or an error. On failure @res is set to %NULL. 1215 * This function internally uses GFP_KERNEL. 1216 */ 1217 1218 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1219 { 1220 int err; 1221 struct socket *sock = NULL; 1222 1223 err = security_socket_create(family, type, protocol, 1); 1224 if (err) 1225 goto out; 1226 1227 sock = sock_alloc(); 1228 if (!sock) { 1229 err = -ENOMEM; 1230 goto out; 1231 } 1232 1233 sock->type = type; 1234 err = security_socket_post_create(sock, family, type, protocol, 1); 1235 if (err) 1236 goto out_release; 1237 1238 out: 1239 *res = sock; 1240 return err; 1241 out_release: 1242 sock_release(sock); 1243 sock = NULL; 1244 goto out; 1245 } 1246 EXPORT_SYMBOL(sock_create_lite); 1247 1248 /* No kernel lock held - perfect */ 1249 static __poll_t sock_poll(struct file *file, poll_table *wait) 1250 { 1251 struct socket *sock = file->private_data; 1252 __poll_t events = poll_requested_events(wait), flag = 0; 1253 1254 if (!sock->ops->poll) 1255 return 0; 1256 1257 if (sk_can_busy_loop(sock->sk)) { 1258 /* poll once if requested by the syscall */ 1259 if (events & POLL_BUSY_LOOP) 1260 sk_busy_loop(sock->sk, 1); 1261 1262 /* if this socket can poll_ll, tell the system call */ 1263 flag = POLL_BUSY_LOOP; 1264 } 1265 1266 return sock->ops->poll(file, sock, wait) | flag; 1267 } 1268 1269 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1270 { 1271 struct socket *sock = file->private_data; 1272 1273 return sock->ops->mmap(file, sock, vma); 1274 } 1275 1276 static int sock_close(struct inode *inode, struct file *filp) 1277 { 1278 __sock_release(SOCKET_I(inode), inode); 1279 return 0; 1280 } 1281 1282 /* 1283 * Update the socket async list 1284 * 1285 * Fasync_list locking strategy. 1286 * 1287 * 1. fasync_list is modified only under process context socket lock 1288 * i.e. under semaphore. 1289 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1290 * or under socket lock 1291 */ 1292 1293 static int sock_fasync(int fd, struct file *filp, int on) 1294 { 1295 struct socket *sock = filp->private_data; 1296 struct sock *sk = sock->sk; 1297 struct socket_wq *wq = &sock->wq; 1298 1299 if (sk == NULL) 1300 return -EINVAL; 1301 1302 lock_sock(sk); 1303 fasync_helper(fd, filp, on, &wq->fasync_list); 1304 1305 if (!wq->fasync_list) 1306 sock_reset_flag(sk, SOCK_FASYNC); 1307 else 1308 sock_set_flag(sk, SOCK_FASYNC); 1309 1310 release_sock(sk); 1311 return 0; 1312 } 1313 1314 /* This function may be called only under rcu_lock */ 1315 1316 int sock_wake_async(struct socket_wq *wq, int how, int band) 1317 { 1318 if (!wq || !wq->fasync_list) 1319 return -1; 1320 1321 switch (how) { 1322 case SOCK_WAKE_WAITD: 1323 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1324 break; 1325 goto call_kill; 1326 case SOCK_WAKE_SPACE: 1327 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1328 break; 1329 /* fall through */ 1330 case SOCK_WAKE_IO: 1331 call_kill: 1332 kill_fasync(&wq->fasync_list, SIGIO, band); 1333 break; 1334 case SOCK_WAKE_URG: 1335 kill_fasync(&wq->fasync_list, SIGURG, band); 1336 } 1337 1338 return 0; 1339 } 1340 EXPORT_SYMBOL(sock_wake_async); 1341 1342 /** 1343 * __sock_create - creates a socket 1344 * @net: net namespace 1345 * @family: protocol family (AF_INET, ...) 1346 * @type: communication type (SOCK_STREAM, ...) 1347 * @protocol: protocol (0, ...) 1348 * @res: new socket 1349 * @kern: boolean for kernel space sockets 1350 * 1351 * Creates a new socket and assigns it to @res, passing through LSM. 1352 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1353 * be set to true if the socket resides in kernel space. 1354 * This function internally uses GFP_KERNEL. 1355 */ 1356 1357 int __sock_create(struct net *net, int family, int type, int protocol, 1358 struct socket **res, int kern) 1359 { 1360 int err; 1361 struct socket *sock; 1362 const struct net_proto_family *pf; 1363 1364 /* 1365 * Check protocol is in range 1366 */ 1367 if (family < 0 || family >= NPROTO) 1368 return -EAFNOSUPPORT; 1369 if (type < 0 || type >= SOCK_MAX) 1370 return -EINVAL; 1371 1372 /* Compatibility. 1373 1374 This uglymoron is moved from INET layer to here to avoid 1375 deadlock in module load. 1376 */ 1377 if (family == PF_INET && type == SOCK_PACKET) { 1378 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1379 current->comm); 1380 family = PF_PACKET; 1381 } 1382 1383 err = security_socket_create(family, type, protocol, kern); 1384 if (err) 1385 return err; 1386 1387 /* 1388 * Allocate the socket and allow the family to set things up. if 1389 * the protocol is 0, the family is instructed to select an appropriate 1390 * default. 1391 */ 1392 sock = sock_alloc(); 1393 if (!sock) { 1394 net_warn_ratelimited("socket: no more sockets\n"); 1395 return -ENFILE; /* Not exactly a match, but its the 1396 closest posix thing */ 1397 } 1398 1399 sock->type = type; 1400 1401 #ifdef CONFIG_MODULES 1402 /* Attempt to load a protocol module if the find failed. 1403 * 1404 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1405 * requested real, full-featured networking support upon configuration. 1406 * Otherwise module support will break! 1407 */ 1408 if (rcu_access_pointer(net_families[family]) == NULL) 1409 request_module("net-pf-%d", family); 1410 #endif 1411 1412 rcu_read_lock(); 1413 pf = rcu_dereference(net_families[family]); 1414 err = -EAFNOSUPPORT; 1415 if (!pf) 1416 goto out_release; 1417 1418 /* 1419 * We will call the ->create function, that possibly is in a loadable 1420 * module, so we have to bump that loadable module refcnt first. 1421 */ 1422 if (!try_module_get(pf->owner)) 1423 goto out_release; 1424 1425 /* Now protected by module ref count */ 1426 rcu_read_unlock(); 1427 1428 err = pf->create(net, sock, protocol, kern); 1429 if (err < 0) 1430 goto out_module_put; 1431 1432 /* 1433 * Now to bump the refcnt of the [loadable] module that owns this 1434 * socket at sock_release time we decrement its refcnt. 1435 */ 1436 if (!try_module_get(sock->ops->owner)) 1437 goto out_module_busy; 1438 1439 /* 1440 * Now that we're done with the ->create function, the [loadable] 1441 * module can have its refcnt decremented 1442 */ 1443 module_put(pf->owner); 1444 err = security_socket_post_create(sock, family, type, protocol, kern); 1445 if (err) 1446 goto out_sock_release; 1447 *res = sock; 1448 1449 return 0; 1450 1451 out_module_busy: 1452 err = -EAFNOSUPPORT; 1453 out_module_put: 1454 sock->ops = NULL; 1455 module_put(pf->owner); 1456 out_sock_release: 1457 sock_release(sock); 1458 return err; 1459 1460 out_release: 1461 rcu_read_unlock(); 1462 goto out_sock_release; 1463 } 1464 EXPORT_SYMBOL(__sock_create); 1465 1466 /** 1467 * sock_create - creates a socket 1468 * @family: protocol family (AF_INET, ...) 1469 * @type: communication type (SOCK_STREAM, ...) 1470 * @protocol: protocol (0, ...) 1471 * @res: new socket 1472 * 1473 * A wrapper around __sock_create(). 1474 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1475 */ 1476 1477 int sock_create(int family, int type, int protocol, struct socket **res) 1478 { 1479 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1480 } 1481 EXPORT_SYMBOL(sock_create); 1482 1483 /** 1484 * sock_create_kern - creates a socket (kernel space) 1485 * @net: net namespace 1486 * @family: protocol family (AF_INET, ...) 1487 * @type: communication type (SOCK_STREAM, ...) 1488 * @protocol: protocol (0, ...) 1489 * @res: new socket 1490 * 1491 * A wrapper around __sock_create(). 1492 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1493 */ 1494 1495 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1496 { 1497 return __sock_create(net, family, type, protocol, res, 1); 1498 } 1499 EXPORT_SYMBOL(sock_create_kern); 1500 1501 int __sys_socket(int family, int type, int protocol) 1502 { 1503 int retval; 1504 struct socket *sock; 1505 int flags; 1506 1507 /* Check the SOCK_* constants for consistency. */ 1508 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1509 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1510 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1511 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1512 1513 flags = type & ~SOCK_TYPE_MASK; 1514 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1515 return -EINVAL; 1516 type &= SOCK_TYPE_MASK; 1517 1518 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1519 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1520 1521 retval = sock_create(family, type, protocol, &sock); 1522 if (retval < 0) 1523 return retval; 1524 1525 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1526 } 1527 1528 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1529 { 1530 return __sys_socket(family, type, protocol); 1531 } 1532 1533 /* 1534 * Create a pair of connected sockets. 1535 */ 1536 1537 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1538 { 1539 struct socket *sock1, *sock2; 1540 int fd1, fd2, err; 1541 struct file *newfile1, *newfile2; 1542 int flags; 1543 1544 flags = type & ~SOCK_TYPE_MASK; 1545 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1546 return -EINVAL; 1547 type &= SOCK_TYPE_MASK; 1548 1549 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1550 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1551 1552 /* 1553 * reserve descriptors and make sure we won't fail 1554 * to return them to userland. 1555 */ 1556 fd1 = get_unused_fd_flags(flags); 1557 if (unlikely(fd1 < 0)) 1558 return fd1; 1559 1560 fd2 = get_unused_fd_flags(flags); 1561 if (unlikely(fd2 < 0)) { 1562 put_unused_fd(fd1); 1563 return fd2; 1564 } 1565 1566 err = put_user(fd1, &usockvec[0]); 1567 if (err) 1568 goto out; 1569 1570 err = put_user(fd2, &usockvec[1]); 1571 if (err) 1572 goto out; 1573 1574 /* 1575 * Obtain the first socket and check if the underlying protocol 1576 * supports the socketpair call. 1577 */ 1578 1579 err = sock_create(family, type, protocol, &sock1); 1580 if (unlikely(err < 0)) 1581 goto out; 1582 1583 err = sock_create(family, type, protocol, &sock2); 1584 if (unlikely(err < 0)) { 1585 sock_release(sock1); 1586 goto out; 1587 } 1588 1589 err = security_socket_socketpair(sock1, sock2); 1590 if (unlikely(err)) { 1591 sock_release(sock2); 1592 sock_release(sock1); 1593 goto out; 1594 } 1595 1596 err = sock1->ops->socketpair(sock1, sock2); 1597 if (unlikely(err < 0)) { 1598 sock_release(sock2); 1599 sock_release(sock1); 1600 goto out; 1601 } 1602 1603 newfile1 = sock_alloc_file(sock1, flags, NULL); 1604 if (IS_ERR(newfile1)) { 1605 err = PTR_ERR(newfile1); 1606 sock_release(sock2); 1607 goto out; 1608 } 1609 1610 newfile2 = sock_alloc_file(sock2, flags, NULL); 1611 if (IS_ERR(newfile2)) { 1612 err = PTR_ERR(newfile2); 1613 fput(newfile1); 1614 goto out; 1615 } 1616 1617 audit_fd_pair(fd1, fd2); 1618 1619 fd_install(fd1, newfile1); 1620 fd_install(fd2, newfile2); 1621 return 0; 1622 1623 out: 1624 put_unused_fd(fd2); 1625 put_unused_fd(fd1); 1626 return err; 1627 } 1628 1629 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1630 int __user *, usockvec) 1631 { 1632 return __sys_socketpair(family, type, protocol, usockvec); 1633 } 1634 1635 /* 1636 * Bind a name to a socket. Nothing much to do here since it's 1637 * the protocol's responsibility to handle the local address. 1638 * 1639 * We move the socket address to kernel space before we call 1640 * the protocol layer (having also checked the address is ok). 1641 */ 1642 1643 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1644 { 1645 struct socket *sock; 1646 struct sockaddr_storage address; 1647 int err, fput_needed; 1648 1649 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1650 if (sock) { 1651 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1652 if (!err) { 1653 err = security_socket_bind(sock, 1654 (struct sockaddr *)&address, 1655 addrlen); 1656 if (!err) 1657 err = sock->ops->bind(sock, 1658 (struct sockaddr *) 1659 &address, addrlen); 1660 } 1661 fput_light(sock->file, fput_needed); 1662 } 1663 return err; 1664 } 1665 1666 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1667 { 1668 return __sys_bind(fd, umyaddr, addrlen); 1669 } 1670 1671 /* 1672 * Perform a listen. Basically, we allow the protocol to do anything 1673 * necessary for a listen, and if that works, we mark the socket as 1674 * ready for listening. 1675 */ 1676 1677 int __sys_listen(int fd, int backlog) 1678 { 1679 struct socket *sock; 1680 int err, fput_needed; 1681 int somaxconn; 1682 1683 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1684 if (sock) { 1685 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1686 if ((unsigned int)backlog > somaxconn) 1687 backlog = somaxconn; 1688 1689 err = security_socket_listen(sock, backlog); 1690 if (!err) 1691 err = sock->ops->listen(sock, backlog); 1692 1693 fput_light(sock->file, fput_needed); 1694 } 1695 return err; 1696 } 1697 1698 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1699 { 1700 return __sys_listen(fd, backlog); 1701 } 1702 1703 int __sys_accept4_file(struct file *file, unsigned file_flags, 1704 struct sockaddr __user *upeer_sockaddr, 1705 int __user *upeer_addrlen, int flags, 1706 unsigned long nofile) 1707 { 1708 struct socket *sock, *newsock; 1709 struct file *newfile; 1710 int err, len, newfd; 1711 struct sockaddr_storage address; 1712 1713 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1714 return -EINVAL; 1715 1716 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1717 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1718 1719 sock = sock_from_file(file, &err); 1720 if (!sock) 1721 goto out; 1722 1723 err = -ENFILE; 1724 newsock = sock_alloc(); 1725 if (!newsock) 1726 goto out; 1727 1728 newsock->type = sock->type; 1729 newsock->ops = sock->ops; 1730 1731 /* 1732 * We don't need try_module_get here, as the listening socket (sock) 1733 * has the protocol module (sock->ops->owner) held. 1734 */ 1735 __module_get(newsock->ops->owner); 1736 1737 newfd = __get_unused_fd_flags(flags, nofile); 1738 if (unlikely(newfd < 0)) { 1739 err = newfd; 1740 sock_release(newsock); 1741 goto out; 1742 } 1743 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1744 if (IS_ERR(newfile)) { 1745 err = PTR_ERR(newfile); 1746 put_unused_fd(newfd); 1747 goto out; 1748 } 1749 1750 err = security_socket_accept(sock, newsock); 1751 if (err) 1752 goto out_fd; 1753 1754 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1755 false); 1756 if (err < 0) 1757 goto out_fd; 1758 1759 if (upeer_sockaddr) { 1760 len = newsock->ops->getname(newsock, 1761 (struct sockaddr *)&address, 2); 1762 if (len < 0) { 1763 err = -ECONNABORTED; 1764 goto out_fd; 1765 } 1766 err = move_addr_to_user(&address, 1767 len, upeer_sockaddr, upeer_addrlen); 1768 if (err < 0) 1769 goto out_fd; 1770 } 1771 1772 /* File flags are not inherited via accept() unlike another OSes. */ 1773 1774 fd_install(newfd, newfile); 1775 err = newfd; 1776 out: 1777 return err; 1778 out_fd: 1779 fput(newfile); 1780 put_unused_fd(newfd); 1781 goto out; 1782 1783 } 1784 1785 /* 1786 * For accept, we attempt to create a new socket, set up the link 1787 * with the client, wake up the client, then return the new 1788 * connected fd. We collect the address of the connector in kernel 1789 * space and move it to user at the very end. This is unclean because 1790 * we open the socket then return an error. 1791 * 1792 * 1003.1g adds the ability to recvmsg() to query connection pending 1793 * status to recvmsg. We need to add that support in a way thats 1794 * clean when we restructure accept also. 1795 */ 1796 1797 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1798 int __user *upeer_addrlen, int flags) 1799 { 1800 int ret = -EBADF; 1801 struct fd f; 1802 1803 f = fdget(fd); 1804 if (f.file) { 1805 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, 1806 upeer_addrlen, flags, 1807 rlimit(RLIMIT_NOFILE)); 1808 if (f.flags) 1809 fput(f.file); 1810 } 1811 1812 return ret; 1813 } 1814 1815 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1816 int __user *, upeer_addrlen, int, flags) 1817 { 1818 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1819 } 1820 1821 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1822 int __user *, upeer_addrlen) 1823 { 1824 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1825 } 1826 1827 /* 1828 * Attempt to connect to a socket with the server address. The address 1829 * is in user space so we verify it is OK and move it to kernel space. 1830 * 1831 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1832 * break bindings 1833 * 1834 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1835 * other SEQPACKET protocols that take time to connect() as it doesn't 1836 * include the -EINPROGRESS status for such sockets. 1837 */ 1838 1839 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1840 int addrlen, int file_flags) 1841 { 1842 struct socket *sock; 1843 int err; 1844 1845 sock = sock_from_file(file, &err); 1846 if (!sock) 1847 goto out; 1848 1849 err = 1850 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1851 if (err) 1852 goto out; 1853 1854 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1855 sock->file->f_flags | file_flags); 1856 out: 1857 return err; 1858 } 1859 1860 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1861 { 1862 int ret = -EBADF; 1863 struct fd f; 1864 1865 f = fdget(fd); 1866 if (f.file) { 1867 struct sockaddr_storage address; 1868 1869 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 1870 if (!ret) 1871 ret = __sys_connect_file(f.file, &address, addrlen, 0); 1872 if (f.flags) 1873 fput(f.file); 1874 } 1875 1876 return ret; 1877 } 1878 1879 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1880 int, addrlen) 1881 { 1882 return __sys_connect(fd, uservaddr, addrlen); 1883 } 1884 1885 /* 1886 * Get the local address ('name') of a socket object. Move the obtained 1887 * name to user space. 1888 */ 1889 1890 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1891 int __user *usockaddr_len) 1892 { 1893 struct socket *sock; 1894 struct sockaddr_storage address; 1895 int err, fput_needed; 1896 1897 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1898 if (!sock) 1899 goto out; 1900 1901 err = security_socket_getsockname(sock); 1902 if (err) 1903 goto out_put; 1904 1905 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1906 if (err < 0) 1907 goto out_put; 1908 /* "err" is actually length in this case */ 1909 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1910 1911 out_put: 1912 fput_light(sock->file, fput_needed); 1913 out: 1914 return err; 1915 } 1916 1917 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1918 int __user *, usockaddr_len) 1919 { 1920 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1921 } 1922 1923 /* 1924 * Get the remote address ('name') of a socket object. Move the obtained 1925 * name to user space. 1926 */ 1927 1928 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1929 int __user *usockaddr_len) 1930 { 1931 struct socket *sock; 1932 struct sockaddr_storage address; 1933 int err, fput_needed; 1934 1935 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1936 if (sock != NULL) { 1937 err = security_socket_getpeername(sock); 1938 if (err) { 1939 fput_light(sock->file, fput_needed); 1940 return err; 1941 } 1942 1943 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1944 if (err >= 0) 1945 /* "err" is actually length in this case */ 1946 err = move_addr_to_user(&address, err, usockaddr, 1947 usockaddr_len); 1948 fput_light(sock->file, fput_needed); 1949 } 1950 return err; 1951 } 1952 1953 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1954 int __user *, usockaddr_len) 1955 { 1956 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1957 } 1958 1959 /* 1960 * Send a datagram to a given address. We move the address into kernel 1961 * space and check the user space data area is readable before invoking 1962 * the protocol. 1963 */ 1964 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1965 struct sockaddr __user *addr, int addr_len) 1966 { 1967 struct socket *sock; 1968 struct sockaddr_storage address; 1969 int err; 1970 struct msghdr msg; 1971 struct iovec iov; 1972 int fput_needed; 1973 1974 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1975 if (unlikely(err)) 1976 return err; 1977 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1978 if (!sock) 1979 goto out; 1980 1981 msg.msg_name = NULL; 1982 msg.msg_control = NULL; 1983 msg.msg_controllen = 0; 1984 msg.msg_namelen = 0; 1985 if (addr) { 1986 err = move_addr_to_kernel(addr, addr_len, &address); 1987 if (err < 0) 1988 goto out_put; 1989 msg.msg_name = (struct sockaddr *)&address; 1990 msg.msg_namelen = addr_len; 1991 } 1992 if (sock->file->f_flags & O_NONBLOCK) 1993 flags |= MSG_DONTWAIT; 1994 msg.msg_flags = flags; 1995 err = sock_sendmsg(sock, &msg); 1996 1997 out_put: 1998 fput_light(sock->file, fput_needed); 1999 out: 2000 return err; 2001 } 2002 2003 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2004 unsigned int, flags, struct sockaddr __user *, addr, 2005 int, addr_len) 2006 { 2007 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2008 } 2009 2010 /* 2011 * Send a datagram down a socket. 2012 */ 2013 2014 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2015 unsigned int, flags) 2016 { 2017 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2018 } 2019 2020 /* 2021 * Receive a frame from the socket and optionally record the address of the 2022 * sender. We verify the buffers are writable and if needed move the 2023 * sender address from kernel to user space. 2024 */ 2025 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2026 struct sockaddr __user *addr, int __user *addr_len) 2027 { 2028 struct socket *sock; 2029 struct iovec iov; 2030 struct msghdr msg; 2031 struct sockaddr_storage address; 2032 int err, err2; 2033 int fput_needed; 2034 2035 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2036 if (unlikely(err)) 2037 return err; 2038 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2039 if (!sock) 2040 goto out; 2041 2042 msg.msg_control = NULL; 2043 msg.msg_controllen = 0; 2044 /* Save some cycles and don't copy the address if not needed */ 2045 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2046 /* We assume all kernel code knows the size of sockaddr_storage */ 2047 msg.msg_namelen = 0; 2048 msg.msg_iocb = NULL; 2049 msg.msg_flags = 0; 2050 if (sock->file->f_flags & O_NONBLOCK) 2051 flags |= MSG_DONTWAIT; 2052 err = sock_recvmsg(sock, &msg, flags); 2053 2054 if (err >= 0 && addr != NULL) { 2055 err2 = move_addr_to_user(&address, 2056 msg.msg_namelen, addr, addr_len); 2057 if (err2 < 0) 2058 err = err2; 2059 } 2060 2061 fput_light(sock->file, fput_needed); 2062 out: 2063 return err; 2064 } 2065 2066 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2067 unsigned int, flags, struct sockaddr __user *, addr, 2068 int __user *, addr_len) 2069 { 2070 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2071 } 2072 2073 /* 2074 * Receive a datagram from a socket. 2075 */ 2076 2077 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2078 unsigned int, flags) 2079 { 2080 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2081 } 2082 2083 /* 2084 * Set a socket option. Because we don't know the option lengths we have 2085 * to pass the user mode parameter for the protocols to sort out. 2086 */ 2087 2088 static int __sys_setsockopt(int fd, int level, int optname, 2089 char __user *optval, int optlen) 2090 { 2091 mm_segment_t oldfs = get_fs(); 2092 char *kernel_optval = NULL; 2093 int err, fput_needed; 2094 struct socket *sock; 2095 2096 if (optlen < 0) 2097 return -EINVAL; 2098 2099 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2100 if (sock != NULL) { 2101 err = security_socket_setsockopt(sock, level, optname); 2102 if (err) 2103 goto out_put; 2104 2105 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, 2106 &optname, optval, &optlen, 2107 &kernel_optval); 2108 2109 if (err < 0) { 2110 goto out_put; 2111 } else if (err > 0) { 2112 err = 0; 2113 goto out_put; 2114 } 2115 2116 if (kernel_optval) { 2117 set_fs(KERNEL_DS); 2118 optval = (char __user __force *)kernel_optval; 2119 } 2120 2121 if (level == SOL_SOCKET) 2122 err = 2123 sock_setsockopt(sock, level, optname, optval, 2124 optlen); 2125 else 2126 err = 2127 sock->ops->setsockopt(sock, level, optname, optval, 2128 optlen); 2129 2130 if (kernel_optval) { 2131 set_fs(oldfs); 2132 kfree(kernel_optval); 2133 } 2134 out_put: 2135 fput_light(sock->file, fput_needed); 2136 } 2137 return err; 2138 } 2139 2140 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2141 char __user *, optval, int, optlen) 2142 { 2143 return __sys_setsockopt(fd, level, optname, optval, optlen); 2144 } 2145 2146 /* 2147 * Get a socket option. Because we don't know the option lengths we have 2148 * to pass a user mode parameter for the protocols to sort out. 2149 */ 2150 2151 static int __sys_getsockopt(int fd, int level, int optname, 2152 char __user *optval, int __user *optlen) 2153 { 2154 int err, fput_needed; 2155 struct socket *sock; 2156 int max_optlen; 2157 2158 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2159 if (sock != NULL) { 2160 err = security_socket_getsockopt(sock, level, optname); 2161 if (err) 2162 goto out_put; 2163 2164 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2165 2166 if (level == SOL_SOCKET) 2167 err = 2168 sock_getsockopt(sock, level, optname, optval, 2169 optlen); 2170 else 2171 err = 2172 sock->ops->getsockopt(sock, level, optname, optval, 2173 optlen); 2174 2175 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2176 optval, optlen, 2177 max_optlen, err); 2178 out_put: 2179 fput_light(sock->file, fput_needed); 2180 } 2181 return err; 2182 } 2183 2184 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2185 char __user *, optval, int __user *, optlen) 2186 { 2187 return __sys_getsockopt(fd, level, optname, optval, optlen); 2188 } 2189 2190 /* 2191 * Shutdown a socket. 2192 */ 2193 2194 int __sys_shutdown(int fd, int how) 2195 { 2196 int err, fput_needed; 2197 struct socket *sock; 2198 2199 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2200 if (sock != NULL) { 2201 err = security_socket_shutdown(sock, how); 2202 if (!err) 2203 err = sock->ops->shutdown(sock, how); 2204 fput_light(sock->file, fput_needed); 2205 } 2206 return err; 2207 } 2208 2209 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2210 { 2211 return __sys_shutdown(fd, how); 2212 } 2213 2214 /* A couple of helpful macros for getting the address of the 32/64 bit 2215 * fields which are the same type (int / unsigned) on our platforms. 2216 */ 2217 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2218 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2219 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2220 2221 struct used_address { 2222 struct sockaddr_storage name; 2223 unsigned int name_len; 2224 }; 2225 2226 int __copy_msghdr_from_user(struct msghdr *kmsg, 2227 struct user_msghdr __user *umsg, 2228 struct sockaddr __user **save_addr, 2229 struct iovec __user **uiov, size_t *nsegs) 2230 { 2231 struct user_msghdr msg; 2232 ssize_t err; 2233 2234 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2235 return -EFAULT; 2236 2237 kmsg->msg_control_is_user = true; 2238 kmsg->msg_control_user = msg.msg_control; 2239 kmsg->msg_controllen = msg.msg_controllen; 2240 kmsg->msg_flags = msg.msg_flags; 2241 2242 kmsg->msg_namelen = msg.msg_namelen; 2243 if (!msg.msg_name) 2244 kmsg->msg_namelen = 0; 2245 2246 if (kmsg->msg_namelen < 0) 2247 return -EINVAL; 2248 2249 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2250 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2251 2252 if (save_addr) 2253 *save_addr = msg.msg_name; 2254 2255 if (msg.msg_name && kmsg->msg_namelen) { 2256 if (!save_addr) { 2257 err = move_addr_to_kernel(msg.msg_name, 2258 kmsg->msg_namelen, 2259 kmsg->msg_name); 2260 if (err < 0) 2261 return err; 2262 } 2263 } else { 2264 kmsg->msg_name = NULL; 2265 kmsg->msg_namelen = 0; 2266 } 2267 2268 if (msg.msg_iovlen > UIO_MAXIOV) 2269 return -EMSGSIZE; 2270 2271 kmsg->msg_iocb = NULL; 2272 *uiov = msg.msg_iov; 2273 *nsegs = msg.msg_iovlen; 2274 return 0; 2275 } 2276 2277 static int copy_msghdr_from_user(struct msghdr *kmsg, 2278 struct user_msghdr __user *umsg, 2279 struct sockaddr __user **save_addr, 2280 struct iovec **iov) 2281 { 2282 struct user_msghdr msg; 2283 ssize_t err; 2284 2285 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov, 2286 &msg.msg_iovlen); 2287 if (err) 2288 return err; 2289 2290 err = import_iovec(save_addr ? READ : WRITE, 2291 msg.msg_iov, msg.msg_iovlen, 2292 UIO_FASTIOV, iov, &kmsg->msg_iter); 2293 return err < 0 ? err : 0; 2294 } 2295 2296 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2297 unsigned int flags, struct used_address *used_address, 2298 unsigned int allowed_msghdr_flags) 2299 { 2300 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2301 __aligned(sizeof(__kernel_size_t)); 2302 /* 20 is size of ipv6_pktinfo */ 2303 unsigned char *ctl_buf = ctl; 2304 int ctl_len; 2305 ssize_t err; 2306 2307 err = -ENOBUFS; 2308 2309 if (msg_sys->msg_controllen > INT_MAX) 2310 goto out; 2311 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2312 ctl_len = msg_sys->msg_controllen; 2313 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2314 err = 2315 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2316 sizeof(ctl)); 2317 if (err) 2318 goto out; 2319 ctl_buf = msg_sys->msg_control; 2320 ctl_len = msg_sys->msg_controllen; 2321 } else if (ctl_len) { 2322 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2323 CMSG_ALIGN(sizeof(struct cmsghdr))); 2324 if (ctl_len > sizeof(ctl)) { 2325 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2326 if (ctl_buf == NULL) 2327 goto out; 2328 } 2329 err = -EFAULT; 2330 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2331 goto out_freectl; 2332 msg_sys->msg_control = ctl_buf; 2333 msg_sys->msg_control_is_user = false; 2334 } 2335 msg_sys->msg_flags = flags; 2336 2337 if (sock->file->f_flags & O_NONBLOCK) 2338 msg_sys->msg_flags |= MSG_DONTWAIT; 2339 /* 2340 * If this is sendmmsg() and current destination address is same as 2341 * previously succeeded address, omit asking LSM's decision. 2342 * used_address->name_len is initialized to UINT_MAX so that the first 2343 * destination address never matches. 2344 */ 2345 if (used_address && msg_sys->msg_name && 2346 used_address->name_len == msg_sys->msg_namelen && 2347 !memcmp(&used_address->name, msg_sys->msg_name, 2348 used_address->name_len)) { 2349 err = sock_sendmsg_nosec(sock, msg_sys); 2350 goto out_freectl; 2351 } 2352 err = sock_sendmsg(sock, msg_sys); 2353 /* 2354 * If this is sendmmsg() and sending to current destination address was 2355 * successful, remember it. 2356 */ 2357 if (used_address && err >= 0) { 2358 used_address->name_len = msg_sys->msg_namelen; 2359 if (msg_sys->msg_name) 2360 memcpy(&used_address->name, msg_sys->msg_name, 2361 used_address->name_len); 2362 } 2363 2364 out_freectl: 2365 if (ctl_buf != ctl) 2366 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2367 out: 2368 return err; 2369 } 2370 2371 int sendmsg_copy_msghdr(struct msghdr *msg, 2372 struct user_msghdr __user *umsg, unsigned flags, 2373 struct iovec **iov) 2374 { 2375 int err; 2376 2377 if (flags & MSG_CMSG_COMPAT) { 2378 struct compat_msghdr __user *msg_compat; 2379 2380 msg_compat = (struct compat_msghdr __user *) umsg; 2381 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2382 } else { 2383 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2384 } 2385 if (err < 0) 2386 return err; 2387 2388 return 0; 2389 } 2390 2391 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2392 struct msghdr *msg_sys, unsigned int flags, 2393 struct used_address *used_address, 2394 unsigned int allowed_msghdr_flags) 2395 { 2396 struct sockaddr_storage address; 2397 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2398 ssize_t err; 2399 2400 msg_sys->msg_name = &address; 2401 2402 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2403 if (err < 0) 2404 return err; 2405 2406 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2407 allowed_msghdr_flags); 2408 kfree(iov); 2409 return err; 2410 } 2411 2412 /* 2413 * BSD sendmsg interface 2414 */ 2415 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2416 unsigned int flags) 2417 { 2418 /* disallow ancillary data requests from this path */ 2419 if (msg->msg_control || msg->msg_controllen) 2420 return -EINVAL; 2421 2422 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2423 } 2424 2425 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2426 bool forbid_cmsg_compat) 2427 { 2428 int fput_needed, err; 2429 struct msghdr msg_sys; 2430 struct socket *sock; 2431 2432 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2433 return -EINVAL; 2434 2435 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2436 if (!sock) 2437 goto out; 2438 2439 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2440 2441 fput_light(sock->file, fput_needed); 2442 out: 2443 return err; 2444 } 2445 2446 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2447 { 2448 return __sys_sendmsg(fd, msg, flags, true); 2449 } 2450 2451 /* 2452 * Linux sendmmsg interface 2453 */ 2454 2455 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2456 unsigned int flags, bool forbid_cmsg_compat) 2457 { 2458 int fput_needed, err, datagrams; 2459 struct socket *sock; 2460 struct mmsghdr __user *entry; 2461 struct compat_mmsghdr __user *compat_entry; 2462 struct msghdr msg_sys; 2463 struct used_address used_address; 2464 unsigned int oflags = flags; 2465 2466 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2467 return -EINVAL; 2468 2469 if (vlen > UIO_MAXIOV) 2470 vlen = UIO_MAXIOV; 2471 2472 datagrams = 0; 2473 2474 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2475 if (!sock) 2476 return err; 2477 2478 used_address.name_len = UINT_MAX; 2479 entry = mmsg; 2480 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2481 err = 0; 2482 flags |= MSG_BATCH; 2483 2484 while (datagrams < vlen) { 2485 if (datagrams == vlen - 1) 2486 flags = oflags; 2487 2488 if (MSG_CMSG_COMPAT & flags) { 2489 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2490 &msg_sys, flags, &used_address, MSG_EOR); 2491 if (err < 0) 2492 break; 2493 err = __put_user(err, &compat_entry->msg_len); 2494 ++compat_entry; 2495 } else { 2496 err = ___sys_sendmsg(sock, 2497 (struct user_msghdr __user *)entry, 2498 &msg_sys, flags, &used_address, MSG_EOR); 2499 if (err < 0) 2500 break; 2501 err = put_user(err, &entry->msg_len); 2502 ++entry; 2503 } 2504 2505 if (err) 2506 break; 2507 ++datagrams; 2508 if (msg_data_left(&msg_sys)) 2509 break; 2510 cond_resched(); 2511 } 2512 2513 fput_light(sock->file, fput_needed); 2514 2515 /* We only return an error if no datagrams were able to be sent */ 2516 if (datagrams != 0) 2517 return datagrams; 2518 2519 return err; 2520 } 2521 2522 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2523 unsigned int, vlen, unsigned int, flags) 2524 { 2525 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2526 } 2527 2528 int recvmsg_copy_msghdr(struct msghdr *msg, 2529 struct user_msghdr __user *umsg, unsigned flags, 2530 struct sockaddr __user **uaddr, 2531 struct iovec **iov) 2532 { 2533 ssize_t err; 2534 2535 if (MSG_CMSG_COMPAT & flags) { 2536 struct compat_msghdr __user *msg_compat; 2537 2538 msg_compat = (struct compat_msghdr __user *) umsg; 2539 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2540 } else { 2541 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2542 } 2543 if (err < 0) 2544 return err; 2545 2546 return 0; 2547 } 2548 2549 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2550 struct user_msghdr __user *msg, 2551 struct sockaddr __user *uaddr, 2552 unsigned int flags, int nosec) 2553 { 2554 struct compat_msghdr __user *msg_compat = 2555 (struct compat_msghdr __user *) msg; 2556 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2557 struct sockaddr_storage addr; 2558 unsigned long cmsg_ptr; 2559 int len; 2560 ssize_t err; 2561 2562 msg_sys->msg_name = &addr; 2563 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2564 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2565 2566 /* We assume all kernel code knows the size of sockaddr_storage */ 2567 msg_sys->msg_namelen = 0; 2568 2569 if (sock->file->f_flags & O_NONBLOCK) 2570 flags |= MSG_DONTWAIT; 2571 2572 if (unlikely(nosec)) 2573 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2574 else 2575 err = sock_recvmsg(sock, msg_sys, flags); 2576 2577 if (err < 0) 2578 goto out; 2579 len = err; 2580 2581 if (uaddr != NULL) { 2582 err = move_addr_to_user(&addr, 2583 msg_sys->msg_namelen, uaddr, 2584 uaddr_len); 2585 if (err < 0) 2586 goto out; 2587 } 2588 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2589 COMPAT_FLAGS(msg)); 2590 if (err) 2591 goto out; 2592 if (MSG_CMSG_COMPAT & flags) 2593 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2594 &msg_compat->msg_controllen); 2595 else 2596 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2597 &msg->msg_controllen); 2598 if (err) 2599 goto out; 2600 err = len; 2601 out: 2602 return err; 2603 } 2604 2605 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2606 struct msghdr *msg_sys, unsigned int flags, int nosec) 2607 { 2608 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2609 /* user mode address pointers */ 2610 struct sockaddr __user *uaddr; 2611 ssize_t err; 2612 2613 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2614 if (err < 0) 2615 return err; 2616 2617 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2618 kfree(iov); 2619 return err; 2620 } 2621 2622 /* 2623 * BSD recvmsg interface 2624 */ 2625 2626 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2627 struct user_msghdr __user *umsg, 2628 struct sockaddr __user *uaddr, unsigned int flags) 2629 { 2630 /* disallow ancillary data requests from this path */ 2631 if (msg->msg_control || msg->msg_controllen) 2632 return -EINVAL; 2633 2634 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2635 } 2636 2637 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2638 bool forbid_cmsg_compat) 2639 { 2640 int fput_needed, err; 2641 struct msghdr msg_sys; 2642 struct socket *sock; 2643 2644 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2645 return -EINVAL; 2646 2647 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2648 if (!sock) 2649 goto out; 2650 2651 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2652 2653 fput_light(sock->file, fput_needed); 2654 out: 2655 return err; 2656 } 2657 2658 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2659 unsigned int, flags) 2660 { 2661 return __sys_recvmsg(fd, msg, flags, true); 2662 } 2663 2664 /* 2665 * Linux recvmmsg interface 2666 */ 2667 2668 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2669 unsigned int vlen, unsigned int flags, 2670 struct timespec64 *timeout) 2671 { 2672 int fput_needed, err, datagrams; 2673 struct socket *sock; 2674 struct mmsghdr __user *entry; 2675 struct compat_mmsghdr __user *compat_entry; 2676 struct msghdr msg_sys; 2677 struct timespec64 end_time; 2678 struct timespec64 timeout64; 2679 2680 if (timeout && 2681 poll_select_set_timeout(&end_time, timeout->tv_sec, 2682 timeout->tv_nsec)) 2683 return -EINVAL; 2684 2685 datagrams = 0; 2686 2687 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2688 if (!sock) 2689 return err; 2690 2691 if (likely(!(flags & MSG_ERRQUEUE))) { 2692 err = sock_error(sock->sk); 2693 if (err) { 2694 datagrams = err; 2695 goto out_put; 2696 } 2697 } 2698 2699 entry = mmsg; 2700 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2701 2702 while (datagrams < vlen) { 2703 /* 2704 * No need to ask LSM for more than the first datagram. 2705 */ 2706 if (MSG_CMSG_COMPAT & flags) { 2707 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2708 &msg_sys, flags & ~MSG_WAITFORONE, 2709 datagrams); 2710 if (err < 0) 2711 break; 2712 err = __put_user(err, &compat_entry->msg_len); 2713 ++compat_entry; 2714 } else { 2715 err = ___sys_recvmsg(sock, 2716 (struct user_msghdr __user *)entry, 2717 &msg_sys, flags & ~MSG_WAITFORONE, 2718 datagrams); 2719 if (err < 0) 2720 break; 2721 err = put_user(err, &entry->msg_len); 2722 ++entry; 2723 } 2724 2725 if (err) 2726 break; 2727 ++datagrams; 2728 2729 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2730 if (flags & MSG_WAITFORONE) 2731 flags |= MSG_DONTWAIT; 2732 2733 if (timeout) { 2734 ktime_get_ts64(&timeout64); 2735 *timeout = timespec64_sub(end_time, timeout64); 2736 if (timeout->tv_sec < 0) { 2737 timeout->tv_sec = timeout->tv_nsec = 0; 2738 break; 2739 } 2740 2741 /* Timeout, return less than vlen datagrams */ 2742 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2743 break; 2744 } 2745 2746 /* Out of band data, return right away */ 2747 if (msg_sys.msg_flags & MSG_OOB) 2748 break; 2749 cond_resched(); 2750 } 2751 2752 if (err == 0) 2753 goto out_put; 2754 2755 if (datagrams == 0) { 2756 datagrams = err; 2757 goto out_put; 2758 } 2759 2760 /* 2761 * We may return less entries than requested (vlen) if the 2762 * sock is non block and there aren't enough datagrams... 2763 */ 2764 if (err != -EAGAIN) { 2765 /* 2766 * ... or if recvmsg returns an error after we 2767 * received some datagrams, where we record the 2768 * error to return on the next call or if the 2769 * app asks about it using getsockopt(SO_ERROR). 2770 */ 2771 sock->sk->sk_err = -err; 2772 } 2773 out_put: 2774 fput_light(sock->file, fput_needed); 2775 2776 return datagrams; 2777 } 2778 2779 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2780 unsigned int vlen, unsigned int flags, 2781 struct __kernel_timespec __user *timeout, 2782 struct old_timespec32 __user *timeout32) 2783 { 2784 int datagrams; 2785 struct timespec64 timeout_sys; 2786 2787 if (timeout && get_timespec64(&timeout_sys, timeout)) 2788 return -EFAULT; 2789 2790 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2791 return -EFAULT; 2792 2793 if (!timeout && !timeout32) 2794 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2795 2796 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2797 2798 if (datagrams <= 0) 2799 return datagrams; 2800 2801 if (timeout && put_timespec64(&timeout_sys, timeout)) 2802 datagrams = -EFAULT; 2803 2804 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2805 datagrams = -EFAULT; 2806 2807 return datagrams; 2808 } 2809 2810 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2811 unsigned int, vlen, unsigned int, flags, 2812 struct __kernel_timespec __user *, timeout) 2813 { 2814 if (flags & MSG_CMSG_COMPAT) 2815 return -EINVAL; 2816 2817 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2818 } 2819 2820 #ifdef CONFIG_COMPAT_32BIT_TIME 2821 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2822 unsigned int, vlen, unsigned int, flags, 2823 struct old_timespec32 __user *, timeout) 2824 { 2825 if (flags & MSG_CMSG_COMPAT) 2826 return -EINVAL; 2827 2828 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2829 } 2830 #endif 2831 2832 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2833 /* Argument list sizes for sys_socketcall */ 2834 #define AL(x) ((x) * sizeof(unsigned long)) 2835 static const unsigned char nargs[21] = { 2836 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2837 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2838 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2839 AL(4), AL(5), AL(4) 2840 }; 2841 2842 #undef AL 2843 2844 /* 2845 * System call vectors. 2846 * 2847 * Argument checking cleaned up. Saved 20% in size. 2848 * This function doesn't need to set the kernel lock because 2849 * it is set by the callees. 2850 */ 2851 2852 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2853 { 2854 unsigned long a[AUDITSC_ARGS]; 2855 unsigned long a0, a1; 2856 int err; 2857 unsigned int len; 2858 2859 if (call < 1 || call > SYS_SENDMMSG) 2860 return -EINVAL; 2861 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2862 2863 len = nargs[call]; 2864 if (len > sizeof(a)) 2865 return -EINVAL; 2866 2867 /* copy_from_user should be SMP safe. */ 2868 if (copy_from_user(a, args, len)) 2869 return -EFAULT; 2870 2871 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2872 if (err) 2873 return err; 2874 2875 a0 = a[0]; 2876 a1 = a[1]; 2877 2878 switch (call) { 2879 case SYS_SOCKET: 2880 err = __sys_socket(a0, a1, a[2]); 2881 break; 2882 case SYS_BIND: 2883 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2884 break; 2885 case SYS_CONNECT: 2886 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2887 break; 2888 case SYS_LISTEN: 2889 err = __sys_listen(a0, a1); 2890 break; 2891 case SYS_ACCEPT: 2892 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2893 (int __user *)a[2], 0); 2894 break; 2895 case SYS_GETSOCKNAME: 2896 err = 2897 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2898 (int __user *)a[2]); 2899 break; 2900 case SYS_GETPEERNAME: 2901 err = 2902 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2903 (int __user *)a[2]); 2904 break; 2905 case SYS_SOCKETPAIR: 2906 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2907 break; 2908 case SYS_SEND: 2909 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2910 NULL, 0); 2911 break; 2912 case SYS_SENDTO: 2913 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2914 (struct sockaddr __user *)a[4], a[5]); 2915 break; 2916 case SYS_RECV: 2917 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2918 NULL, NULL); 2919 break; 2920 case SYS_RECVFROM: 2921 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2922 (struct sockaddr __user *)a[4], 2923 (int __user *)a[5]); 2924 break; 2925 case SYS_SHUTDOWN: 2926 err = __sys_shutdown(a0, a1); 2927 break; 2928 case SYS_SETSOCKOPT: 2929 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2930 a[4]); 2931 break; 2932 case SYS_GETSOCKOPT: 2933 err = 2934 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2935 (int __user *)a[4]); 2936 break; 2937 case SYS_SENDMSG: 2938 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2939 a[2], true); 2940 break; 2941 case SYS_SENDMMSG: 2942 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2943 a[3], true); 2944 break; 2945 case SYS_RECVMSG: 2946 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2947 a[2], true); 2948 break; 2949 case SYS_RECVMMSG: 2950 if (IS_ENABLED(CONFIG_64BIT)) 2951 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2952 a[2], a[3], 2953 (struct __kernel_timespec __user *)a[4], 2954 NULL); 2955 else 2956 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2957 a[2], a[3], NULL, 2958 (struct old_timespec32 __user *)a[4]); 2959 break; 2960 case SYS_ACCEPT4: 2961 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2962 (int __user *)a[2], a[3]); 2963 break; 2964 default: 2965 err = -EINVAL; 2966 break; 2967 } 2968 return err; 2969 } 2970 2971 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2972 2973 /** 2974 * sock_register - add a socket protocol handler 2975 * @ops: description of protocol 2976 * 2977 * This function is called by a protocol handler that wants to 2978 * advertise its address family, and have it linked into the 2979 * socket interface. The value ops->family corresponds to the 2980 * socket system call protocol family. 2981 */ 2982 int sock_register(const struct net_proto_family *ops) 2983 { 2984 int err; 2985 2986 if (ops->family >= NPROTO) { 2987 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2988 return -ENOBUFS; 2989 } 2990 2991 spin_lock(&net_family_lock); 2992 if (rcu_dereference_protected(net_families[ops->family], 2993 lockdep_is_held(&net_family_lock))) 2994 err = -EEXIST; 2995 else { 2996 rcu_assign_pointer(net_families[ops->family], ops); 2997 err = 0; 2998 } 2999 spin_unlock(&net_family_lock); 3000 3001 pr_info("NET: Registered protocol family %d\n", ops->family); 3002 return err; 3003 } 3004 EXPORT_SYMBOL(sock_register); 3005 3006 /** 3007 * sock_unregister - remove a protocol handler 3008 * @family: protocol family to remove 3009 * 3010 * This function is called by a protocol handler that wants to 3011 * remove its address family, and have it unlinked from the 3012 * new socket creation. 3013 * 3014 * If protocol handler is a module, then it can use module reference 3015 * counts to protect against new references. If protocol handler is not 3016 * a module then it needs to provide its own protection in 3017 * the ops->create routine. 3018 */ 3019 void sock_unregister(int family) 3020 { 3021 BUG_ON(family < 0 || family >= NPROTO); 3022 3023 spin_lock(&net_family_lock); 3024 RCU_INIT_POINTER(net_families[family], NULL); 3025 spin_unlock(&net_family_lock); 3026 3027 synchronize_rcu(); 3028 3029 pr_info("NET: Unregistered protocol family %d\n", family); 3030 } 3031 EXPORT_SYMBOL(sock_unregister); 3032 3033 bool sock_is_registered(int family) 3034 { 3035 return family < NPROTO && rcu_access_pointer(net_families[family]); 3036 } 3037 3038 static int __init sock_init(void) 3039 { 3040 int err; 3041 /* 3042 * Initialize the network sysctl infrastructure. 3043 */ 3044 err = net_sysctl_init(); 3045 if (err) 3046 goto out; 3047 3048 /* 3049 * Initialize skbuff SLAB cache 3050 */ 3051 skb_init(); 3052 3053 /* 3054 * Initialize the protocols module. 3055 */ 3056 3057 init_inodecache(); 3058 3059 err = register_filesystem(&sock_fs_type); 3060 if (err) 3061 goto out_fs; 3062 sock_mnt = kern_mount(&sock_fs_type); 3063 if (IS_ERR(sock_mnt)) { 3064 err = PTR_ERR(sock_mnt); 3065 goto out_mount; 3066 } 3067 3068 /* The real protocol initialization is performed in later initcalls. 3069 */ 3070 3071 #ifdef CONFIG_NETFILTER 3072 err = netfilter_init(); 3073 if (err) 3074 goto out; 3075 #endif 3076 3077 ptp_classifier_init(); 3078 3079 out: 3080 return err; 3081 3082 out_mount: 3083 unregister_filesystem(&sock_fs_type); 3084 out_fs: 3085 goto out; 3086 } 3087 3088 core_initcall(sock_init); /* early initcall */ 3089 3090 #ifdef CONFIG_PROC_FS 3091 void socket_seq_show(struct seq_file *seq) 3092 { 3093 seq_printf(seq, "sockets: used %d\n", 3094 sock_inuse_get(seq->private)); 3095 } 3096 #endif /* CONFIG_PROC_FS */ 3097 3098 #ifdef CONFIG_COMPAT 3099 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 3100 { 3101 struct compat_ifconf ifc32; 3102 struct ifconf ifc; 3103 int err; 3104 3105 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 3106 return -EFAULT; 3107 3108 ifc.ifc_len = ifc32.ifc_len; 3109 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 3110 3111 rtnl_lock(); 3112 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 3113 rtnl_unlock(); 3114 if (err) 3115 return err; 3116 3117 ifc32.ifc_len = ifc.ifc_len; 3118 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 3119 return -EFAULT; 3120 3121 return 0; 3122 } 3123 3124 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 3125 { 3126 struct compat_ethtool_rxnfc __user *compat_rxnfc; 3127 bool convert_in = false, convert_out = false; 3128 size_t buf_size = 0; 3129 struct ethtool_rxnfc __user *rxnfc = NULL; 3130 struct ifreq ifr; 3131 u32 rule_cnt = 0, actual_rule_cnt; 3132 u32 ethcmd; 3133 u32 data; 3134 int ret; 3135 3136 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 3137 return -EFAULT; 3138 3139 compat_rxnfc = compat_ptr(data); 3140 3141 if (get_user(ethcmd, &compat_rxnfc->cmd)) 3142 return -EFAULT; 3143 3144 /* Most ethtool structures are defined without padding. 3145 * Unfortunately struct ethtool_rxnfc is an exception. 3146 */ 3147 switch (ethcmd) { 3148 default: 3149 break; 3150 case ETHTOOL_GRXCLSRLALL: 3151 /* Buffer size is variable */ 3152 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 3153 return -EFAULT; 3154 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3155 return -ENOMEM; 3156 buf_size += rule_cnt * sizeof(u32); 3157 /* fall through */ 3158 case ETHTOOL_GRXRINGS: 3159 case ETHTOOL_GRXCLSRLCNT: 3160 case ETHTOOL_GRXCLSRULE: 3161 case ETHTOOL_SRXCLSRLINS: 3162 convert_out = true; 3163 /* fall through */ 3164 case ETHTOOL_SRXCLSRLDEL: 3165 buf_size += sizeof(struct ethtool_rxnfc); 3166 convert_in = true; 3167 rxnfc = compat_alloc_user_space(buf_size); 3168 break; 3169 } 3170 3171 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3172 return -EFAULT; 3173 3174 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3175 3176 if (convert_in) { 3177 /* We expect there to be holes between fs.m_ext and 3178 * fs.ring_cookie and at the end of fs, but nowhere else. 3179 */ 3180 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3181 sizeof(compat_rxnfc->fs.m_ext) != 3182 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3183 sizeof(rxnfc->fs.m_ext)); 3184 BUILD_BUG_ON( 3185 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3186 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3187 offsetof(struct ethtool_rxnfc, fs.location) - 3188 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3189 3190 if (copy_in_user(rxnfc, compat_rxnfc, 3191 (void __user *)(&rxnfc->fs.m_ext + 1) - 3192 (void __user *)rxnfc) || 3193 copy_in_user(&rxnfc->fs.ring_cookie, 3194 &compat_rxnfc->fs.ring_cookie, 3195 (void __user *)(&rxnfc->fs.location + 1) - 3196 (void __user *)&rxnfc->fs.ring_cookie)) 3197 return -EFAULT; 3198 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3199 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3200 return -EFAULT; 3201 } else if (copy_in_user(&rxnfc->rule_cnt, 3202 &compat_rxnfc->rule_cnt, 3203 sizeof(rxnfc->rule_cnt))) 3204 return -EFAULT; 3205 } 3206 3207 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3208 if (ret) 3209 return ret; 3210 3211 if (convert_out) { 3212 if (copy_in_user(compat_rxnfc, rxnfc, 3213 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3214 (const void __user *)rxnfc) || 3215 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3216 &rxnfc->fs.ring_cookie, 3217 (const void __user *)(&rxnfc->fs.location + 1) - 3218 (const void __user *)&rxnfc->fs.ring_cookie) || 3219 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3220 sizeof(rxnfc->rule_cnt))) 3221 return -EFAULT; 3222 3223 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3224 /* As an optimisation, we only copy the actual 3225 * number of rules that the underlying 3226 * function returned. Since Mallory might 3227 * change the rule count in user memory, we 3228 * check that it is less than the rule count 3229 * originally given (as the user buffer size), 3230 * which has been range-checked. 3231 */ 3232 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3233 return -EFAULT; 3234 if (actual_rule_cnt < rule_cnt) 3235 rule_cnt = actual_rule_cnt; 3236 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3237 &rxnfc->rule_locs[0], 3238 rule_cnt * sizeof(u32))) 3239 return -EFAULT; 3240 } 3241 } 3242 3243 return 0; 3244 } 3245 3246 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3247 { 3248 compat_uptr_t uptr32; 3249 struct ifreq ifr; 3250 void __user *saved; 3251 int err; 3252 3253 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3254 return -EFAULT; 3255 3256 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3257 return -EFAULT; 3258 3259 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3260 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3261 3262 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3263 if (!err) { 3264 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3265 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3266 err = -EFAULT; 3267 } 3268 return err; 3269 } 3270 3271 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3272 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3273 struct compat_ifreq __user *u_ifreq32) 3274 { 3275 struct ifreq ifreq; 3276 u32 data32; 3277 3278 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3279 return -EFAULT; 3280 if (get_user(data32, &u_ifreq32->ifr_data)) 3281 return -EFAULT; 3282 ifreq.ifr_data = compat_ptr(data32); 3283 3284 return dev_ioctl(net, cmd, &ifreq, NULL); 3285 } 3286 3287 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3288 unsigned int cmd, 3289 struct compat_ifreq __user *uifr32) 3290 { 3291 struct ifreq __user *uifr; 3292 int err; 3293 3294 /* Handle the fact that while struct ifreq has the same *layout* on 3295 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3296 * which are handled elsewhere, it still has different *size* due to 3297 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3298 * resulting in struct ifreq being 32 and 40 bytes respectively). 3299 * As a result, if the struct happens to be at the end of a page and 3300 * the next page isn't readable/writable, we get a fault. To prevent 3301 * that, copy back and forth to the full size. 3302 */ 3303 3304 uifr = compat_alloc_user_space(sizeof(*uifr)); 3305 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3306 return -EFAULT; 3307 3308 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3309 3310 if (!err) { 3311 switch (cmd) { 3312 case SIOCGIFFLAGS: 3313 case SIOCGIFMETRIC: 3314 case SIOCGIFMTU: 3315 case SIOCGIFMEM: 3316 case SIOCGIFHWADDR: 3317 case SIOCGIFINDEX: 3318 case SIOCGIFADDR: 3319 case SIOCGIFBRDADDR: 3320 case SIOCGIFDSTADDR: 3321 case SIOCGIFNETMASK: 3322 case SIOCGIFPFLAGS: 3323 case SIOCGIFTXQLEN: 3324 case SIOCGMIIPHY: 3325 case SIOCGMIIREG: 3326 case SIOCGIFNAME: 3327 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3328 err = -EFAULT; 3329 break; 3330 } 3331 } 3332 return err; 3333 } 3334 3335 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3336 struct compat_ifreq __user *uifr32) 3337 { 3338 struct ifreq ifr; 3339 struct compat_ifmap __user *uifmap32; 3340 int err; 3341 3342 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3343 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3344 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3345 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3346 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3347 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3348 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3349 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3350 if (err) 3351 return -EFAULT; 3352 3353 err = dev_ioctl(net, cmd, &ifr, NULL); 3354 3355 if (cmd == SIOCGIFMAP && !err) { 3356 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3357 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3358 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3359 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3360 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3361 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3362 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3363 if (err) 3364 err = -EFAULT; 3365 } 3366 return err; 3367 } 3368 3369 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3370 * for some operations; this forces use of the newer bridge-utils that 3371 * use compatible ioctls 3372 */ 3373 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3374 { 3375 compat_ulong_t tmp; 3376 3377 if (get_user(tmp, argp)) 3378 return -EFAULT; 3379 if (tmp == BRCTL_GET_VERSION) 3380 return BRCTL_VERSION + 1; 3381 return -EINVAL; 3382 } 3383 3384 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3385 unsigned int cmd, unsigned long arg) 3386 { 3387 void __user *argp = compat_ptr(arg); 3388 struct sock *sk = sock->sk; 3389 struct net *net = sock_net(sk); 3390 3391 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3392 return compat_ifr_data_ioctl(net, cmd, argp); 3393 3394 switch (cmd) { 3395 case SIOCSIFBR: 3396 case SIOCGIFBR: 3397 return old_bridge_ioctl(argp); 3398 case SIOCGIFCONF: 3399 return compat_dev_ifconf(net, argp); 3400 case SIOCETHTOOL: 3401 return ethtool_ioctl(net, argp); 3402 case SIOCWANDEV: 3403 return compat_siocwandev(net, argp); 3404 case SIOCGIFMAP: 3405 case SIOCSIFMAP: 3406 return compat_sioc_ifmap(net, cmd, argp); 3407 case SIOCGSTAMP_OLD: 3408 case SIOCGSTAMPNS_OLD: 3409 if (!sock->ops->gettstamp) 3410 return -ENOIOCTLCMD; 3411 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3412 !COMPAT_USE_64BIT_TIME); 3413 3414 case SIOCBONDSLAVEINFOQUERY: 3415 case SIOCBONDINFOQUERY: 3416 case SIOCSHWTSTAMP: 3417 case SIOCGHWTSTAMP: 3418 return compat_ifr_data_ioctl(net, cmd, argp); 3419 3420 case FIOSETOWN: 3421 case SIOCSPGRP: 3422 case FIOGETOWN: 3423 case SIOCGPGRP: 3424 case SIOCBRADDBR: 3425 case SIOCBRDELBR: 3426 case SIOCGIFVLAN: 3427 case SIOCSIFVLAN: 3428 case SIOCADDDLCI: 3429 case SIOCDELDLCI: 3430 case SIOCGSKNS: 3431 case SIOCGSTAMP_NEW: 3432 case SIOCGSTAMPNS_NEW: 3433 return sock_ioctl(file, cmd, arg); 3434 3435 case SIOCGIFFLAGS: 3436 case SIOCSIFFLAGS: 3437 case SIOCGIFMETRIC: 3438 case SIOCSIFMETRIC: 3439 case SIOCGIFMTU: 3440 case SIOCSIFMTU: 3441 case SIOCGIFMEM: 3442 case SIOCSIFMEM: 3443 case SIOCGIFHWADDR: 3444 case SIOCSIFHWADDR: 3445 case SIOCADDMULTI: 3446 case SIOCDELMULTI: 3447 case SIOCGIFINDEX: 3448 case SIOCGIFADDR: 3449 case SIOCSIFADDR: 3450 case SIOCSIFHWBROADCAST: 3451 case SIOCDIFADDR: 3452 case SIOCGIFBRDADDR: 3453 case SIOCSIFBRDADDR: 3454 case SIOCGIFDSTADDR: 3455 case SIOCSIFDSTADDR: 3456 case SIOCGIFNETMASK: 3457 case SIOCSIFNETMASK: 3458 case SIOCSIFPFLAGS: 3459 case SIOCGIFPFLAGS: 3460 case SIOCGIFTXQLEN: 3461 case SIOCSIFTXQLEN: 3462 case SIOCBRADDIF: 3463 case SIOCBRDELIF: 3464 case SIOCGIFNAME: 3465 case SIOCSIFNAME: 3466 case SIOCGMIIPHY: 3467 case SIOCGMIIREG: 3468 case SIOCSMIIREG: 3469 case SIOCBONDENSLAVE: 3470 case SIOCBONDRELEASE: 3471 case SIOCBONDSETHWADDR: 3472 case SIOCBONDCHANGEACTIVE: 3473 return compat_ifreq_ioctl(net, sock, cmd, argp); 3474 3475 case SIOCSARP: 3476 case SIOCGARP: 3477 case SIOCDARP: 3478 case SIOCOUTQ: 3479 case SIOCOUTQNSD: 3480 case SIOCATMARK: 3481 return sock_do_ioctl(net, sock, cmd, arg); 3482 } 3483 3484 return -ENOIOCTLCMD; 3485 } 3486 3487 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3488 unsigned long arg) 3489 { 3490 struct socket *sock = file->private_data; 3491 int ret = -ENOIOCTLCMD; 3492 struct sock *sk; 3493 struct net *net; 3494 3495 sk = sock->sk; 3496 net = sock_net(sk); 3497 3498 if (sock->ops->compat_ioctl) 3499 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3500 3501 if (ret == -ENOIOCTLCMD && 3502 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3503 ret = compat_wext_handle_ioctl(net, cmd, arg); 3504 3505 if (ret == -ENOIOCTLCMD) 3506 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3507 3508 return ret; 3509 } 3510 #endif 3511 3512 /** 3513 * kernel_bind - bind an address to a socket (kernel space) 3514 * @sock: socket 3515 * @addr: address 3516 * @addrlen: length of address 3517 * 3518 * Returns 0 or an error. 3519 */ 3520 3521 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3522 { 3523 return sock->ops->bind(sock, addr, addrlen); 3524 } 3525 EXPORT_SYMBOL(kernel_bind); 3526 3527 /** 3528 * kernel_listen - move socket to listening state (kernel space) 3529 * @sock: socket 3530 * @backlog: pending connections queue size 3531 * 3532 * Returns 0 or an error. 3533 */ 3534 3535 int kernel_listen(struct socket *sock, int backlog) 3536 { 3537 return sock->ops->listen(sock, backlog); 3538 } 3539 EXPORT_SYMBOL(kernel_listen); 3540 3541 /** 3542 * kernel_accept - accept a connection (kernel space) 3543 * @sock: listening socket 3544 * @newsock: new connected socket 3545 * @flags: flags 3546 * 3547 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3548 * If it fails, @newsock is guaranteed to be %NULL. 3549 * Returns 0 or an error. 3550 */ 3551 3552 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3553 { 3554 struct sock *sk = sock->sk; 3555 int err; 3556 3557 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3558 newsock); 3559 if (err < 0) 3560 goto done; 3561 3562 err = sock->ops->accept(sock, *newsock, flags, true); 3563 if (err < 0) { 3564 sock_release(*newsock); 3565 *newsock = NULL; 3566 goto done; 3567 } 3568 3569 (*newsock)->ops = sock->ops; 3570 __module_get((*newsock)->ops->owner); 3571 3572 done: 3573 return err; 3574 } 3575 EXPORT_SYMBOL(kernel_accept); 3576 3577 /** 3578 * kernel_connect - connect a socket (kernel space) 3579 * @sock: socket 3580 * @addr: address 3581 * @addrlen: address length 3582 * @flags: flags (O_NONBLOCK, ...) 3583 * 3584 * For datagram sockets, @addr is the addres to which datagrams are sent 3585 * by default, and the only address from which datagrams are received. 3586 * For stream sockets, attempts to connect to @addr. 3587 * Returns 0 or an error code. 3588 */ 3589 3590 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3591 int flags) 3592 { 3593 return sock->ops->connect(sock, addr, addrlen, flags); 3594 } 3595 EXPORT_SYMBOL(kernel_connect); 3596 3597 /** 3598 * kernel_getsockname - get the address which the socket is bound (kernel space) 3599 * @sock: socket 3600 * @addr: address holder 3601 * 3602 * Fills the @addr pointer with the address which the socket is bound. 3603 * Returns 0 or an error code. 3604 */ 3605 3606 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3607 { 3608 return sock->ops->getname(sock, addr, 0); 3609 } 3610 EXPORT_SYMBOL(kernel_getsockname); 3611 3612 /** 3613 * kernel_peername - get the address which the socket is connected (kernel space) 3614 * @sock: socket 3615 * @addr: address holder 3616 * 3617 * Fills the @addr pointer with the address which the socket is connected. 3618 * Returns 0 or an error code. 3619 */ 3620 3621 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3622 { 3623 return sock->ops->getname(sock, addr, 1); 3624 } 3625 EXPORT_SYMBOL(kernel_getpeername); 3626 3627 /** 3628 * kernel_sendpage - send a &page through a socket (kernel space) 3629 * @sock: socket 3630 * @page: page 3631 * @offset: page offset 3632 * @size: total size in bytes 3633 * @flags: flags (MSG_DONTWAIT, ...) 3634 * 3635 * Returns the total amount sent in bytes or an error. 3636 */ 3637 3638 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3639 size_t size, int flags) 3640 { 3641 if (sock->ops->sendpage) 3642 return sock->ops->sendpage(sock, page, offset, size, flags); 3643 3644 return sock_no_sendpage(sock, page, offset, size, flags); 3645 } 3646 EXPORT_SYMBOL(kernel_sendpage); 3647 3648 /** 3649 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3650 * @sk: sock 3651 * @page: page 3652 * @offset: page offset 3653 * @size: total size in bytes 3654 * @flags: flags (MSG_DONTWAIT, ...) 3655 * 3656 * Returns the total amount sent in bytes or an error. 3657 * Caller must hold @sk. 3658 */ 3659 3660 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3661 size_t size, int flags) 3662 { 3663 struct socket *sock = sk->sk_socket; 3664 3665 if (sock->ops->sendpage_locked) 3666 return sock->ops->sendpage_locked(sk, page, offset, size, 3667 flags); 3668 3669 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3670 } 3671 EXPORT_SYMBOL(kernel_sendpage_locked); 3672 3673 /** 3674 * kernel_shutdown - shut down part of a full-duplex connection (kernel space) 3675 * @sock: socket 3676 * @how: connection part 3677 * 3678 * Returns 0 or an error. 3679 */ 3680 3681 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3682 { 3683 return sock->ops->shutdown(sock, how); 3684 } 3685 EXPORT_SYMBOL(kernel_sock_shutdown); 3686 3687 /** 3688 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3689 * @sk: socket 3690 * 3691 * This routine returns the IP overhead imposed by a socket i.e. 3692 * the length of the underlying IP header, depending on whether 3693 * this is an IPv4 or IPv6 socket and the length from IP options turned 3694 * on at the socket. Assumes that the caller has a lock on the socket. 3695 */ 3696 3697 u32 kernel_sock_ip_overhead(struct sock *sk) 3698 { 3699 struct inet_sock *inet; 3700 struct ip_options_rcu *opt; 3701 u32 overhead = 0; 3702 #if IS_ENABLED(CONFIG_IPV6) 3703 struct ipv6_pinfo *np; 3704 struct ipv6_txoptions *optv6 = NULL; 3705 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3706 3707 if (!sk) 3708 return overhead; 3709 3710 switch (sk->sk_family) { 3711 case AF_INET: 3712 inet = inet_sk(sk); 3713 overhead += sizeof(struct iphdr); 3714 opt = rcu_dereference_protected(inet->inet_opt, 3715 sock_owned_by_user(sk)); 3716 if (opt) 3717 overhead += opt->opt.optlen; 3718 return overhead; 3719 #if IS_ENABLED(CONFIG_IPV6) 3720 case AF_INET6: 3721 np = inet6_sk(sk); 3722 overhead += sizeof(struct ipv6hdr); 3723 if (np) 3724 optv6 = rcu_dereference_protected(np->opt, 3725 sock_owned_by_user(sk)); 3726 if (optv6) 3727 overhead += (optv6->opt_flen + optv6->opt_nflen); 3728 return overhead; 3729 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3730 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3731 return overhead; 3732 } 3733 } 3734 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3735