1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/rcupdate.h> 67 #include <linux/netdevice.h> 68 #include <linux/proc_fs.h> 69 #include <linux/seq_file.h> 70 #include <linux/mutex.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 88 #include <asm/uaccess.h> 89 #include <asm/unistd.h> 90 91 #include <net/compat.h> 92 93 #include <net/sock.h> 94 #include <linux/netfilter.h> 95 96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 98 unsigned long nr_segs, loff_t pos); 99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 100 unsigned long nr_segs, loff_t pos); 101 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 102 103 static int sock_close(struct inode *inode, struct file *file); 104 static unsigned int sock_poll(struct file *file, 105 struct poll_table_struct *wait); 106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 107 #ifdef CONFIG_COMPAT 108 static long compat_sock_ioctl(struct file *file, 109 unsigned int cmd, unsigned long arg); 110 #endif 111 static int sock_fasync(int fd, struct file *filp, int on); 112 static ssize_t sock_sendpage(struct file *file, struct page *page, 113 int offset, size_t size, loff_t *ppos, int more); 114 115 /* 116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 117 * in the operation structures but are done directly via the socketcall() multiplexor. 118 */ 119 120 static const struct file_operations socket_file_ops = { 121 .owner = THIS_MODULE, 122 .llseek = no_llseek, 123 .aio_read = sock_aio_read, 124 .aio_write = sock_aio_write, 125 .poll = sock_poll, 126 .unlocked_ioctl = sock_ioctl, 127 #ifdef CONFIG_COMPAT 128 .compat_ioctl = compat_sock_ioctl, 129 #endif 130 .mmap = sock_mmap, 131 .open = sock_no_open, /* special open code to disallow open via /proc */ 132 .release = sock_close, 133 .fasync = sock_fasync, 134 .sendpage = sock_sendpage, 135 .splice_write = generic_splice_sendpage, 136 }; 137 138 /* 139 * The protocol list. Each protocol is registered in here. 140 */ 141 142 static DEFINE_SPINLOCK(net_family_lock); 143 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 144 145 /* 146 * Statistics counters of the socket lists 147 */ 148 149 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 150 151 /* 152 * Support routines. 153 * Move socket addresses back and forth across the kernel/user 154 * divide and look after the messy bits. 155 */ 156 157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 158 16 for IP, 16 for IPX, 159 24 for IPv6, 160 about 80 for AX.25 161 must be at least one bigger than 162 the AF_UNIX size (see net/unix/af_unix.c 163 :unix_mkname()). 164 */ 165 166 /** 167 * move_addr_to_kernel - copy a socket address into kernel space 168 * @uaddr: Address in user space 169 * @kaddr: Address in kernel space 170 * @ulen: Length in user space 171 * 172 * The address is copied into kernel space. If the provided address is 173 * too long an error code of -EINVAL is returned. If the copy gives 174 * invalid addresses -EFAULT is returned. On a success 0 is returned. 175 */ 176 177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 178 { 179 if (ulen < 0 || ulen > MAX_SOCK_ADDR) 180 return -EINVAL; 181 if (ulen == 0) 182 return 0; 183 if (copy_from_user(kaddr, uaddr, ulen)) 184 return -EFAULT; 185 return audit_sockaddr(ulen, kaddr); 186 } 187 188 /** 189 * move_addr_to_user - copy an address to user space 190 * @kaddr: kernel space address 191 * @klen: length of address in kernel 192 * @uaddr: user space address 193 * @ulen: pointer to user length field 194 * 195 * The value pointed to by ulen on entry is the buffer length available. 196 * This is overwritten with the buffer space used. -EINVAL is returned 197 * if an overlong buffer is specified or a negative buffer size. -EFAULT 198 * is returned if either the buffer or the length field are not 199 * accessible. 200 * After copying the data up to the limit the user specifies, the true 201 * length of the data is written over the length limit the user 202 * specified. Zero is returned for a success. 203 */ 204 205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, 206 int __user *ulen) 207 { 208 int err; 209 int len; 210 211 err = get_user(len, ulen); 212 if (err) 213 return err; 214 if (len > klen) 215 len = klen; 216 if (len < 0 || len > MAX_SOCK_ADDR) 217 return -EINVAL; 218 if (len) { 219 if (audit_sockaddr(klen, kaddr)) 220 return -ENOMEM; 221 if (copy_to_user(uaddr, kaddr, len)) 222 return -EFAULT; 223 } 224 /* 225 * "fromlen shall refer to the value before truncation.." 226 * 1003.1g 227 */ 228 return __put_user(klen, ulen); 229 } 230 231 #define SOCKFS_MAGIC 0x534F434B 232 233 static struct kmem_cache *sock_inode_cachep __read_mostly; 234 235 static struct inode *sock_alloc_inode(struct super_block *sb) 236 { 237 struct socket_alloc *ei; 238 239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 240 if (!ei) 241 return NULL; 242 init_waitqueue_head(&ei->socket.wait); 243 244 ei->socket.fasync_list = NULL; 245 ei->socket.state = SS_UNCONNECTED; 246 ei->socket.flags = 0; 247 ei->socket.ops = NULL; 248 ei->socket.sk = NULL; 249 ei->socket.file = NULL; 250 251 return &ei->vfs_inode; 252 } 253 254 static void sock_destroy_inode(struct inode *inode) 255 { 256 kmem_cache_free(sock_inode_cachep, 257 container_of(inode, struct socket_alloc, vfs_inode)); 258 } 259 260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags) 261 { 262 struct socket_alloc *ei = (struct socket_alloc *)foo; 263 264 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) 265 == SLAB_CTOR_CONSTRUCTOR) 266 inode_init_once(&ei->vfs_inode); 267 } 268 269 static int init_inodecache(void) 270 { 271 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 272 sizeof(struct socket_alloc), 273 0, 274 (SLAB_HWCACHE_ALIGN | 275 SLAB_RECLAIM_ACCOUNT | 276 SLAB_MEM_SPREAD), 277 init_once, 278 NULL); 279 if (sock_inode_cachep == NULL) 280 return -ENOMEM; 281 return 0; 282 } 283 284 static struct super_operations sockfs_ops = { 285 .alloc_inode = sock_alloc_inode, 286 .destroy_inode =sock_destroy_inode, 287 .statfs = simple_statfs, 288 }; 289 290 static int sockfs_get_sb(struct file_system_type *fs_type, 291 int flags, const char *dev_name, void *data, 292 struct vfsmount *mnt) 293 { 294 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 295 mnt); 296 } 297 298 static struct vfsmount *sock_mnt __read_mostly; 299 300 static struct file_system_type sock_fs_type = { 301 .name = "sockfs", 302 .get_sb = sockfs_get_sb, 303 .kill_sb = kill_anon_super, 304 }; 305 306 static int sockfs_delete_dentry(struct dentry *dentry) 307 { 308 /* 309 * At creation time, we pretended this dentry was hashed 310 * (by clearing DCACHE_UNHASHED bit in d_flags) 311 * At delete time, we restore the truth : not hashed. 312 * (so that dput() can proceed correctly) 313 */ 314 dentry->d_flags |= DCACHE_UNHASHED; 315 return 0; 316 } 317 static struct dentry_operations sockfs_dentry_operations = { 318 .d_delete = sockfs_delete_dentry, 319 }; 320 321 /* 322 * Obtains the first available file descriptor and sets it up for use. 323 * 324 * These functions create file structures and maps them to fd space 325 * of the current process. On success it returns file descriptor 326 * and file struct implicitly stored in sock->file. 327 * Note that another thread may close file descriptor before we return 328 * from this function. We use the fact that now we do not refer 329 * to socket after mapping. If one day we will need it, this 330 * function will increment ref. count on file by 1. 331 * 332 * In any case returned fd MAY BE not valid! 333 * This race condition is unavoidable 334 * with shared fd spaces, we cannot solve it inside kernel, 335 * but we take care of internal coherence yet. 336 */ 337 338 static int sock_alloc_fd(struct file **filep) 339 { 340 int fd; 341 342 fd = get_unused_fd(); 343 if (likely(fd >= 0)) { 344 struct file *file = get_empty_filp(); 345 346 *filep = file; 347 if (unlikely(!file)) { 348 put_unused_fd(fd); 349 return -ENFILE; 350 } 351 } else 352 *filep = NULL; 353 return fd; 354 } 355 356 static int sock_attach_fd(struct socket *sock, struct file *file) 357 { 358 struct qstr this; 359 char name[32]; 360 361 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino); 362 this.name = name; 363 this.hash = 0; 364 365 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); 366 if (unlikely(!file->f_path.dentry)) 367 return -ENOMEM; 368 369 file->f_path.dentry->d_op = &sockfs_dentry_operations; 370 /* 371 * We dont want to push this dentry into global dentry hash table. 372 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 373 * This permits a working /proc/$pid/fd/XXX on sockets 374 */ 375 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED; 376 d_instantiate(file->f_path.dentry, SOCK_INODE(sock)); 377 file->f_path.mnt = mntget(sock_mnt); 378 file->f_mapping = file->f_path.dentry->d_inode->i_mapping; 379 380 sock->file = file; 381 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 382 file->f_mode = FMODE_READ | FMODE_WRITE; 383 file->f_flags = O_RDWR; 384 file->f_pos = 0; 385 file->private_data = sock; 386 387 return 0; 388 } 389 390 int sock_map_fd(struct socket *sock) 391 { 392 struct file *newfile; 393 int fd = sock_alloc_fd(&newfile); 394 395 if (likely(fd >= 0)) { 396 int err = sock_attach_fd(sock, newfile); 397 398 if (unlikely(err < 0)) { 399 put_filp(newfile); 400 put_unused_fd(fd); 401 return err; 402 } 403 fd_install(fd, newfile); 404 } 405 return fd; 406 } 407 408 static struct socket *sock_from_file(struct file *file, int *err) 409 { 410 if (file->f_op == &socket_file_ops) 411 return file->private_data; /* set in sock_map_fd */ 412 413 *err = -ENOTSOCK; 414 return NULL; 415 } 416 417 /** 418 * sockfd_lookup - Go from a file number to its socket slot 419 * @fd: file handle 420 * @err: pointer to an error code return 421 * 422 * The file handle passed in is locked and the socket it is bound 423 * too is returned. If an error occurs the err pointer is overwritten 424 * with a negative errno code and NULL is returned. The function checks 425 * for both invalid handles and passing a handle which is not a socket. 426 * 427 * On a success the socket object pointer is returned. 428 */ 429 430 struct socket *sockfd_lookup(int fd, int *err) 431 { 432 struct file *file; 433 struct socket *sock; 434 435 file = fget(fd); 436 if (!file) { 437 *err = -EBADF; 438 return NULL; 439 } 440 441 sock = sock_from_file(file, err); 442 if (!sock) 443 fput(file); 444 return sock; 445 } 446 447 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 448 { 449 struct file *file; 450 struct socket *sock; 451 452 *err = -EBADF; 453 file = fget_light(fd, fput_needed); 454 if (file) { 455 sock = sock_from_file(file, err); 456 if (sock) 457 return sock; 458 fput_light(file, *fput_needed); 459 } 460 return NULL; 461 } 462 463 /** 464 * sock_alloc - allocate a socket 465 * 466 * Allocate a new inode and socket object. The two are bound together 467 * and initialised. The socket is then returned. If we are out of inodes 468 * NULL is returned. 469 */ 470 471 static struct socket *sock_alloc(void) 472 { 473 struct inode *inode; 474 struct socket *sock; 475 476 inode = new_inode(sock_mnt->mnt_sb); 477 if (!inode) 478 return NULL; 479 480 sock = SOCKET_I(inode); 481 482 inode->i_mode = S_IFSOCK | S_IRWXUGO; 483 inode->i_uid = current->fsuid; 484 inode->i_gid = current->fsgid; 485 486 get_cpu_var(sockets_in_use)++; 487 put_cpu_var(sockets_in_use); 488 return sock; 489 } 490 491 /* 492 * In theory you can't get an open on this inode, but /proc provides 493 * a back door. Remember to keep it shut otherwise you'll let the 494 * creepy crawlies in. 495 */ 496 497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 498 { 499 return -ENXIO; 500 } 501 502 const struct file_operations bad_sock_fops = { 503 .owner = THIS_MODULE, 504 .open = sock_no_open, 505 }; 506 507 /** 508 * sock_release - close a socket 509 * @sock: socket to close 510 * 511 * The socket is released from the protocol stack if it has a release 512 * callback, and the inode is then released if the socket is bound to 513 * an inode not a file. 514 */ 515 516 void sock_release(struct socket *sock) 517 { 518 if (sock->ops) { 519 struct module *owner = sock->ops->owner; 520 521 sock->ops->release(sock); 522 sock->ops = NULL; 523 module_put(owner); 524 } 525 526 if (sock->fasync_list) 527 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 528 529 get_cpu_var(sockets_in_use)--; 530 put_cpu_var(sockets_in_use); 531 if (!sock->file) { 532 iput(SOCK_INODE(sock)); 533 return; 534 } 535 sock->file = NULL; 536 } 537 538 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 539 struct msghdr *msg, size_t size) 540 { 541 struct sock_iocb *si = kiocb_to_siocb(iocb); 542 int err; 543 544 si->sock = sock; 545 si->scm = NULL; 546 si->msg = msg; 547 si->size = size; 548 549 err = security_socket_sendmsg(sock, msg, size); 550 if (err) 551 return err; 552 553 return sock->ops->sendmsg(iocb, sock, msg, size); 554 } 555 556 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 557 { 558 struct kiocb iocb; 559 struct sock_iocb siocb; 560 int ret; 561 562 init_sync_kiocb(&iocb, NULL); 563 iocb.private = &siocb; 564 ret = __sock_sendmsg(&iocb, sock, msg, size); 565 if (-EIOCBQUEUED == ret) 566 ret = wait_on_sync_kiocb(&iocb); 567 return ret; 568 } 569 570 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 571 struct kvec *vec, size_t num, size_t size) 572 { 573 mm_segment_t oldfs = get_fs(); 574 int result; 575 576 set_fs(KERNEL_DS); 577 /* 578 * the following is safe, since for compiler definitions of kvec and 579 * iovec are identical, yielding the same in-core layout and alignment 580 */ 581 msg->msg_iov = (struct iovec *)vec; 582 msg->msg_iovlen = num; 583 result = sock_sendmsg(sock, msg, size); 584 set_fs(oldfs); 585 return result; 586 } 587 588 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 589 struct msghdr *msg, size_t size, int flags) 590 { 591 int err; 592 struct sock_iocb *si = kiocb_to_siocb(iocb); 593 594 si->sock = sock; 595 si->scm = NULL; 596 si->msg = msg; 597 si->size = size; 598 si->flags = flags; 599 600 err = security_socket_recvmsg(sock, msg, size, flags); 601 if (err) 602 return err; 603 604 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 605 } 606 607 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 608 size_t size, int flags) 609 { 610 struct kiocb iocb; 611 struct sock_iocb siocb; 612 int ret; 613 614 init_sync_kiocb(&iocb, NULL); 615 iocb.private = &siocb; 616 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 617 if (-EIOCBQUEUED == ret) 618 ret = wait_on_sync_kiocb(&iocb); 619 return ret; 620 } 621 622 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 623 struct kvec *vec, size_t num, size_t size, int flags) 624 { 625 mm_segment_t oldfs = get_fs(); 626 int result; 627 628 set_fs(KERNEL_DS); 629 /* 630 * the following is safe, since for compiler definitions of kvec and 631 * iovec are identical, yielding the same in-core layout and alignment 632 */ 633 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 634 result = sock_recvmsg(sock, msg, size, flags); 635 set_fs(oldfs); 636 return result; 637 } 638 639 static void sock_aio_dtor(struct kiocb *iocb) 640 { 641 kfree(iocb->private); 642 } 643 644 static ssize_t sock_sendpage(struct file *file, struct page *page, 645 int offset, size_t size, loff_t *ppos, int more) 646 { 647 struct socket *sock; 648 int flags; 649 650 sock = file->private_data; 651 652 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 653 if (more) 654 flags |= MSG_MORE; 655 656 return sock->ops->sendpage(sock, page, offset, size, flags); 657 } 658 659 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 660 struct sock_iocb *siocb) 661 { 662 if (!is_sync_kiocb(iocb)) { 663 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 664 if (!siocb) 665 return NULL; 666 iocb->ki_dtor = sock_aio_dtor; 667 } 668 669 siocb->kiocb = iocb; 670 iocb->private = siocb; 671 return siocb; 672 } 673 674 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 675 struct file *file, const struct iovec *iov, 676 unsigned long nr_segs) 677 { 678 struct socket *sock = file->private_data; 679 size_t size = 0; 680 int i; 681 682 for (i = 0; i < nr_segs; i++) 683 size += iov[i].iov_len; 684 685 msg->msg_name = NULL; 686 msg->msg_namelen = 0; 687 msg->msg_control = NULL; 688 msg->msg_controllen = 0; 689 msg->msg_iov = (struct iovec *)iov; 690 msg->msg_iovlen = nr_segs; 691 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 692 693 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 694 } 695 696 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 697 unsigned long nr_segs, loff_t pos) 698 { 699 struct sock_iocb siocb, *x; 700 701 if (pos != 0) 702 return -ESPIPE; 703 704 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 705 return 0; 706 707 708 x = alloc_sock_iocb(iocb, &siocb); 709 if (!x) 710 return -ENOMEM; 711 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 712 } 713 714 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 715 struct file *file, const struct iovec *iov, 716 unsigned long nr_segs) 717 { 718 struct socket *sock = file->private_data; 719 size_t size = 0; 720 int i; 721 722 for (i = 0; i < nr_segs; i++) 723 size += iov[i].iov_len; 724 725 msg->msg_name = NULL; 726 msg->msg_namelen = 0; 727 msg->msg_control = NULL; 728 msg->msg_controllen = 0; 729 msg->msg_iov = (struct iovec *)iov; 730 msg->msg_iovlen = nr_segs; 731 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 732 if (sock->type == SOCK_SEQPACKET) 733 msg->msg_flags |= MSG_EOR; 734 735 return __sock_sendmsg(iocb, sock, msg, size); 736 } 737 738 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 739 unsigned long nr_segs, loff_t pos) 740 { 741 struct sock_iocb siocb, *x; 742 743 if (pos != 0) 744 return -ESPIPE; 745 746 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 747 return 0; 748 749 x = alloc_sock_iocb(iocb, &siocb); 750 if (!x) 751 return -ENOMEM; 752 753 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 754 } 755 756 /* 757 * Atomic setting of ioctl hooks to avoid race 758 * with module unload. 759 */ 760 761 static DEFINE_MUTEX(br_ioctl_mutex); 762 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL; 763 764 void brioctl_set(int (*hook) (unsigned int, void __user *)) 765 { 766 mutex_lock(&br_ioctl_mutex); 767 br_ioctl_hook = hook; 768 mutex_unlock(&br_ioctl_mutex); 769 } 770 771 EXPORT_SYMBOL(brioctl_set); 772 773 static DEFINE_MUTEX(vlan_ioctl_mutex); 774 static int (*vlan_ioctl_hook) (void __user *arg); 775 776 void vlan_ioctl_set(int (*hook) (void __user *)) 777 { 778 mutex_lock(&vlan_ioctl_mutex); 779 vlan_ioctl_hook = hook; 780 mutex_unlock(&vlan_ioctl_mutex); 781 } 782 783 EXPORT_SYMBOL(vlan_ioctl_set); 784 785 static DEFINE_MUTEX(dlci_ioctl_mutex); 786 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 787 788 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 789 { 790 mutex_lock(&dlci_ioctl_mutex); 791 dlci_ioctl_hook = hook; 792 mutex_unlock(&dlci_ioctl_mutex); 793 } 794 795 EXPORT_SYMBOL(dlci_ioctl_set); 796 797 /* 798 * With an ioctl, arg may well be a user mode pointer, but we don't know 799 * what to do with it - that's up to the protocol still. 800 */ 801 802 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 803 { 804 struct socket *sock; 805 void __user *argp = (void __user *)arg; 806 int pid, err; 807 808 sock = file->private_data; 809 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 810 err = dev_ioctl(cmd, argp); 811 } else 812 #ifdef CONFIG_WIRELESS_EXT 813 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 814 err = dev_ioctl(cmd, argp); 815 } else 816 #endif /* CONFIG_WIRELESS_EXT */ 817 switch (cmd) { 818 case FIOSETOWN: 819 case SIOCSPGRP: 820 err = -EFAULT; 821 if (get_user(pid, (int __user *)argp)) 822 break; 823 err = f_setown(sock->file, pid, 1); 824 break; 825 case FIOGETOWN: 826 case SIOCGPGRP: 827 err = put_user(f_getown(sock->file), 828 (int __user *)argp); 829 break; 830 case SIOCGIFBR: 831 case SIOCSIFBR: 832 case SIOCBRADDBR: 833 case SIOCBRDELBR: 834 err = -ENOPKG; 835 if (!br_ioctl_hook) 836 request_module("bridge"); 837 838 mutex_lock(&br_ioctl_mutex); 839 if (br_ioctl_hook) 840 err = br_ioctl_hook(cmd, argp); 841 mutex_unlock(&br_ioctl_mutex); 842 break; 843 case SIOCGIFVLAN: 844 case SIOCSIFVLAN: 845 err = -ENOPKG; 846 if (!vlan_ioctl_hook) 847 request_module("8021q"); 848 849 mutex_lock(&vlan_ioctl_mutex); 850 if (vlan_ioctl_hook) 851 err = vlan_ioctl_hook(argp); 852 mutex_unlock(&vlan_ioctl_mutex); 853 break; 854 case SIOCADDDLCI: 855 case SIOCDELDLCI: 856 err = -ENOPKG; 857 if (!dlci_ioctl_hook) 858 request_module("dlci"); 859 860 if (dlci_ioctl_hook) { 861 mutex_lock(&dlci_ioctl_mutex); 862 err = dlci_ioctl_hook(cmd, argp); 863 mutex_unlock(&dlci_ioctl_mutex); 864 } 865 break; 866 default: 867 err = sock->ops->ioctl(sock, cmd, arg); 868 869 /* 870 * If this ioctl is unknown try to hand it down 871 * to the NIC driver. 872 */ 873 if (err == -ENOIOCTLCMD) 874 err = dev_ioctl(cmd, argp); 875 break; 876 } 877 return err; 878 } 879 880 int sock_create_lite(int family, int type, int protocol, struct socket **res) 881 { 882 int err; 883 struct socket *sock = NULL; 884 885 err = security_socket_create(family, type, protocol, 1); 886 if (err) 887 goto out; 888 889 sock = sock_alloc(); 890 if (!sock) { 891 err = -ENOMEM; 892 goto out; 893 } 894 895 sock->type = type; 896 err = security_socket_post_create(sock, family, type, protocol, 1); 897 if (err) 898 goto out_release; 899 900 out: 901 *res = sock; 902 return err; 903 out_release: 904 sock_release(sock); 905 sock = NULL; 906 goto out; 907 } 908 909 /* No kernel lock held - perfect */ 910 static unsigned int sock_poll(struct file *file, poll_table *wait) 911 { 912 struct socket *sock; 913 914 /* 915 * We can't return errors to poll, so it's either yes or no. 916 */ 917 sock = file->private_data; 918 return sock->ops->poll(file, sock, wait); 919 } 920 921 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 922 { 923 struct socket *sock = file->private_data; 924 925 return sock->ops->mmap(file, sock, vma); 926 } 927 928 static int sock_close(struct inode *inode, struct file *filp) 929 { 930 /* 931 * It was possible the inode is NULL we were 932 * closing an unfinished socket. 933 */ 934 935 if (!inode) { 936 printk(KERN_DEBUG "sock_close: NULL inode\n"); 937 return 0; 938 } 939 sock_fasync(-1, filp, 0); 940 sock_release(SOCKET_I(inode)); 941 return 0; 942 } 943 944 /* 945 * Update the socket async list 946 * 947 * Fasync_list locking strategy. 948 * 949 * 1. fasync_list is modified only under process context socket lock 950 * i.e. under semaphore. 951 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 952 * or under socket lock. 953 * 3. fasync_list can be used from softirq context, so that 954 * modification under socket lock have to be enhanced with 955 * write_lock_bh(&sk->sk_callback_lock). 956 * --ANK (990710) 957 */ 958 959 static int sock_fasync(int fd, struct file *filp, int on) 960 { 961 struct fasync_struct *fa, *fna = NULL, **prev; 962 struct socket *sock; 963 struct sock *sk; 964 965 if (on) { 966 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 967 if (fna == NULL) 968 return -ENOMEM; 969 } 970 971 sock = filp->private_data; 972 973 sk = sock->sk; 974 if (sk == NULL) { 975 kfree(fna); 976 return -EINVAL; 977 } 978 979 lock_sock(sk); 980 981 prev = &(sock->fasync_list); 982 983 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 984 if (fa->fa_file == filp) 985 break; 986 987 if (on) { 988 if (fa != NULL) { 989 write_lock_bh(&sk->sk_callback_lock); 990 fa->fa_fd = fd; 991 write_unlock_bh(&sk->sk_callback_lock); 992 993 kfree(fna); 994 goto out; 995 } 996 fna->fa_file = filp; 997 fna->fa_fd = fd; 998 fna->magic = FASYNC_MAGIC; 999 fna->fa_next = sock->fasync_list; 1000 write_lock_bh(&sk->sk_callback_lock); 1001 sock->fasync_list = fna; 1002 write_unlock_bh(&sk->sk_callback_lock); 1003 } else { 1004 if (fa != NULL) { 1005 write_lock_bh(&sk->sk_callback_lock); 1006 *prev = fa->fa_next; 1007 write_unlock_bh(&sk->sk_callback_lock); 1008 kfree(fa); 1009 } 1010 } 1011 1012 out: 1013 release_sock(sock->sk); 1014 return 0; 1015 } 1016 1017 /* This function may be called only under socket lock or callback_lock */ 1018 1019 int sock_wake_async(struct socket *sock, int how, int band) 1020 { 1021 if (!sock || !sock->fasync_list) 1022 return -1; 1023 switch (how) { 1024 case 1: 1025 1026 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1027 break; 1028 goto call_kill; 1029 case 2: 1030 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1031 break; 1032 /* fall through */ 1033 case 0: 1034 call_kill: 1035 __kill_fasync(sock->fasync_list, SIGIO, band); 1036 break; 1037 case 3: 1038 __kill_fasync(sock->fasync_list, SIGURG, band); 1039 } 1040 return 0; 1041 } 1042 1043 static int __sock_create(int family, int type, int protocol, 1044 struct socket **res, int kern) 1045 { 1046 int err; 1047 struct socket *sock; 1048 const struct net_proto_family *pf; 1049 1050 /* 1051 * Check protocol is in range 1052 */ 1053 if (family < 0 || family >= NPROTO) 1054 return -EAFNOSUPPORT; 1055 if (type < 0 || type >= SOCK_MAX) 1056 return -EINVAL; 1057 1058 /* Compatibility. 1059 1060 This uglymoron is moved from INET layer to here to avoid 1061 deadlock in module load. 1062 */ 1063 if (family == PF_INET && type == SOCK_PACKET) { 1064 static int warned; 1065 if (!warned) { 1066 warned = 1; 1067 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1068 current->comm); 1069 } 1070 family = PF_PACKET; 1071 } 1072 1073 err = security_socket_create(family, type, protocol, kern); 1074 if (err) 1075 return err; 1076 1077 /* 1078 * Allocate the socket and allow the family to set things up. if 1079 * the protocol is 0, the family is instructed to select an appropriate 1080 * default. 1081 */ 1082 sock = sock_alloc(); 1083 if (!sock) { 1084 if (net_ratelimit()) 1085 printk(KERN_WARNING "socket: no more sockets\n"); 1086 return -ENFILE; /* Not exactly a match, but its the 1087 closest posix thing */ 1088 } 1089 1090 sock->type = type; 1091 1092 #if defined(CONFIG_KMOD) 1093 /* Attempt to load a protocol module if the find failed. 1094 * 1095 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1096 * requested real, full-featured networking support upon configuration. 1097 * Otherwise module support will break! 1098 */ 1099 if (net_families[family] == NULL) 1100 request_module("net-pf-%d", family); 1101 #endif 1102 1103 rcu_read_lock(); 1104 pf = rcu_dereference(net_families[family]); 1105 err = -EAFNOSUPPORT; 1106 if (!pf) 1107 goto out_release; 1108 1109 /* 1110 * We will call the ->create function, that possibly is in a loadable 1111 * module, so we have to bump that loadable module refcnt first. 1112 */ 1113 if (!try_module_get(pf->owner)) 1114 goto out_release; 1115 1116 /* Now protected by module ref count */ 1117 rcu_read_unlock(); 1118 1119 err = pf->create(sock, protocol); 1120 if (err < 0) 1121 goto out_module_put; 1122 1123 /* 1124 * Now to bump the refcnt of the [loadable] module that owns this 1125 * socket at sock_release time we decrement its refcnt. 1126 */ 1127 if (!try_module_get(sock->ops->owner)) 1128 goto out_module_busy; 1129 1130 /* 1131 * Now that we're done with the ->create function, the [loadable] 1132 * module can have its refcnt decremented 1133 */ 1134 module_put(pf->owner); 1135 err = security_socket_post_create(sock, family, type, protocol, kern); 1136 if (err) 1137 goto out_release; 1138 *res = sock; 1139 1140 return 0; 1141 1142 out_module_busy: 1143 err = -EAFNOSUPPORT; 1144 out_module_put: 1145 sock->ops = NULL; 1146 module_put(pf->owner); 1147 out_sock_release: 1148 sock_release(sock); 1149 return err; 1150 1151 out_release: 1152 rcu_read_unlock(); 1153 goto out_sock_release; 1154 } 1155 1156 int sock_create(int family, int type, int protocol, struct socket **res) 1157 { 1158 return __sock_create(family, type, protocol, res, 0); 1159 } 1160 1161 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1162 { 1163 return __sock_create(family, type, protocol, res, 1); 1164 } 1165 1166 asmlinkage long sys_socket(int family, int type, int protocol) 1167 { 1168 int retval; 1169 struct socket *sock; 1170 1171 retval = sock_create(family, type, protocol, &sock); 1172 if (retval < 0) 1173 goto out; 1174 1175 retval = sock_map_fd(sock); 1176 if (retval < 0) 1177 goto out_release; 1178 1179 out: 1180 /* It may be already another descriptor 8) Not kernel problem. */ 1181 return retval; 1182 1183 out_release: 1184 sock_release(sock); 1185 return retval; 1186 } 1187 1188 /* 1189 * Create a pair of connected sockets. 1190 */ 1191 1192 asmlinkage long sys_socketpair(int family, int type, int protocol, 1193 int __user *usockvec) 1194 { 1195 struct socket *sock1, *sock2; 1196 int fd1, fd2, err; 1197 1198 /* 1199 * Obtain the first socket and check if the underlying protocol 1200 * supports the socketpair call. 1201 */ 1202 1203 err = sock_create(family, type, protocol, &sock1); 1204 if (err < 0) 1205 goto out; 1206 1207 err = sock_create(family, type, protocol, &sock2); 1208 if (err < 0) 1209 goto out_release_1; 1210 1211 err = sock1->ops->socketpair(sock1, sock2); 1212 if (err < 0) 1213 goto out_release_both; 1214 1215 fd1 = fd2 = -1; 1216 1217 err = sock_map_fd(sock1); 1218 if (err < 0) 1219 goto out_release_both; 1220 fd1 = err; 1221 1222 err = sock_map_fd(sock2); 1223 if (err < 0) 1224 goto out_close_1; 1225 fd2 = err; 1226 1227 /* fd1 and fd2 may be already another descriptors. 1228 * Not kernel problem. 1229 */ 1230 1231 err = put_user(fd1, &usockvec[0]); 1232 if (!err) 1233 err = put_user(fd2, &usockvec[1]); 1234 if (!err) 1235 return 0; 1236 1237 sys_close(fd2); 1238 sys_close(fd1); 1239 return err; 1240 1241 out_close_1: 1242 sock_release(sock2); 1243 sys_close(fd1); 1244 return err; 1245 1246 out_release_both: 1247 sock_release(sock2); 1248 out_release_1: 1249 sock_release(sock1); 1250 out: 1251 return err; 1252 } 1253 1254 /* 1255 * Bind a name to a socket. Nothing much to do here since it's 1256 * the protocol's responsibility to handle the local address. 1257 * 1258 * We move the socket address to kernel space before we call 1259 * the protocol layer (having also checked the address is ok). 1260 */ 1261 1262 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1263 { 1264 struct socket *sock; 1265 char address[MAX_SOCK_ADDR]; 1266 int err, fput_needed; 1267 1268 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1269 if(sock) { 1270 err = move_addr_to_kernel(umyaddr, addrlen, address); 1271 if (err >= 0) { 1272 err = security_socket_bind(sock, 1273 (struct sockaddr *)address, 1274 addrlen); 1275 if (!err) 1276 err = sock->ops->bind(sock, 1277 (struct sockaddr *) 1278 address, addrlen); 1279 } 1280 fput_light(sock->file, fput_needed); 1281 } 1282 return err; 1283 } 1284 1285 /* 1286 * Perform a listen. Basically, we allow the protocol to do anything 1287 * necessary for a listen, and if that works, we mark the socket as 1288 * ready for listening. 1289 */ 1290 1291 int sysctl_somaxconn __read_mostly = SOMAXCONN; 1292 1293 asmlinkage long sys_listen(int fd, int backlog) 1294 { 1295 struct socket *sock; 1296 int err, fput_needed; 1297 1298 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1299 if (sock) { 1300 if ((unsigned)backlog > sysctl_somaxconn) 1301 backlog = sysctl_somaxconn; 1302 1303 err = security_socket_listen(sock, backlog); 1304 if (!err) 1305 err = sock->ops->listen(sock, backlog); 1306 1307 fput_light(sock->file, fput_needed); 1308 } 1309 return err; 1310 } 1311 1312 /* 1313 * For accept, we attempt to create a new socket, set up the link 1314 * with the client, wake up the client, then return the new 1315 * connected fd. We collect the address of the connector in kernel 1316 * space and move it to user at the very end. This is unclean because 1317 * we open the socket then return an error. 1318 * 1319 * 1003.1g adds the ability to recvmsg() to query connection pending 1320 * status to recvmsg. We need to add that support in a way thats 1321 * clean when we restucture accept also. 1322 */ 1323 1324 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1325 int __user *upeer_addrlen) 1326 { 1327 struct socket *sock, *newsock; 1328 struct file *newfile; 1329 int err, len, newfd, fput_needed; 1330 char address[MAX_SOCK_ADDR]; 1331 1332 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1333 if (!sock) 1334 goto out; 1335 1336 err = -ENFILE; 1337 if (!(newsock = sock_alloc())) 1338 goto out_put; 1339 1340 newsock->type = sock->type; 1341 newsock->ops = sock->ops; 1342 1343 /* 1344 * We don't need try_module_get here, as the listening socket (sock) 1345 * has the protocol module (sock->ops->owner) held. 1346 */ 1347 __module_get(newsock->ops->owner); 1348 1349 newfd = sock_alloc_fd(&newfile); 1350 if (unlikely(newfd < 0)) { 1351 err = newfd; 1352 sock_release(newsock); 1353 goto out_put; 1354 } 1355 1356 err = sock_attach_fd(newsock, newfile); 1357 if (err < 0) 1358 goto out_fd; 1359 1360 err = security_socket_accept(sock, newsock); 1361 if (err) 1362 goto out_fd; 1363 1364 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1365 if (err < 0) 1366 goto out_fd; 1367 1368 if (upeer_sockaddr) { 1369 if (newsock->ops->getname(newsock, (struct sockaddr *)address, 1370 &len, 2) < 0) { 1371 err = -ECONNABORTED; 1372 goto out_fd; 1373 } 1374 err = move_addr_to_user(address, len, upeer_sockaddr, 1375 upeer_addrlen); 1376 if (err < 0) 1377 goto out_fd; 1378 } 1379 1380 /* File flags are not inherited via accept() unlike another OSes. */ 1381 1382 fd_install(newfd, newfile); 1383 err = newfd; 1384 1385 security_socket_post_accept(sock, newsock); 1386 1387 out_put: 1388 fput_light(sock->file, fput_needed); 1389 out: 1390 return err; 1391 out_fd: 1392 fput(newfile); 1393 put_unused_fd(newfd); 1394 goto out_put; 1395 } 1396 1397 /* 1398 * Attempt to connect to a socket with the server address. The address 1399 * is in user space so we verify it is OK and move it to kernel space. 1400 * 1401 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1402 * break bindings 1403 * 1404 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1405 * other SEQPACKET protocols that take time to connect() as it doesn't 1406 * include the -EINPROGRESS status for such sockets. 1407 */ 1408 1409 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, 1410 int addrlen) 1411 { 1412 struct socket *sock; 1413 char address[MAX_SOCK_ADDR]; 1414 int err, fput_needed; 1415 1416 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1417 if (!sock) 1418 goto out; 1419 err = move_addr_to_kernel(uservaddr, addrlen, address); 1420 if (err < 0) 1421 goto out_put; 1422 1423 err = 1424 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1425 if (err) 1426 goto out_put; 1427 1428 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1429 sock->file->f_flags); 1430 out_put: 1431 fput_light(sock->file, fput_needed); 1432 out: 1433 return err; 1434 } 1435 1436 /* 1437 * Get the local address ('name') of a socket object. Move the obtained 1438 * name to user space. 1439 */ 1440 1441 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1442 int __user *usockaddr_len) 1443 { 1444 struct socket *sock; 1445 char address[MAX_SOCK_ADDR]; 1446 int len, err, fput_needed; 1447 1448 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1449 if (!sock) 1450 goto out; 1451 1452 err = security_socket_getsockname(sock); 1453 if (err) 1454 goto out_put; 1455 1456 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1457 if (err) 1458 goto out_put; 1459 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1460 1461 out_put: 1462 fput_light(sock->file, fput_needed); 1463 out: 1464 return err; 1465 } 1466 1467 /* 1468 * Get the remote address ('name') of a socket object. Move the obtained 1469 * name to user space. 1470 */ 1471 1472 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1473 int __user *usockaddr_len) 1474 { 1475 struct socket *sock; 1476 char address[MAX_SOCK_ADDR]; 1477 int len, err, fput_needed; 1478 1479 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1480 if (sock != NULL) { 1481 err = security_socket_getpeername(sock); 1482 if (err) { 1483 fput_light(sock->file, fput_needed); 1484 return err; 1485 } 1486 1487 err = 1488 sock->ops->getname(sock, (struct sockaddr *)address, &len, 1489 1); 1490 if (!err) 1491 err = move_addr_to_user(address, len, usockaddr, 1492 usockaddr_len); 1493 fput_light(sock->file, fput_needed); 1494 } 1495 return err; 1496 } 1497 1498 /* 1499 * Send a datagram to a given address. We move the address into kernel 1500 * space and check the user space data area is readable before invoking 1501 * the protocol. 1502 */ 1503 1504 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len, 1505 unsigned flags, struct sockaddr __user *addr, 1506 int addr_len) 1507 { 1508 struct socket *sock; 1509 char address[MAX_SOCK_ADDR]; 1510 int err; 1511 struct msghdr msg; 1512 struct iovec iov; 1513 int fput_needed; 1514 struct file *sock_file; 1515 1516 sock_file = fget_light(fd, &fput_needed); 1517 err = -EBADF; 1518 if (!sock_file) 1519 goto out; 1520 1521 sock = sock_from_file(sock_file, &err); 1522 if (!sock) 1523 goto out_put; 1524 iov.iov_base = buff; 1525 iov.iov_len = len; 1526 msg.msg_name = NULL; 1527 msg.msg_iov = &iov; 1528 msg.msg_iovlen = 1; 1529 msg.msg_control = NULL; 1530 msg.msg_controllen = 0; 1531 msg.msg_namelen = 0; 1532 if (addr) { 1533 err = move_addr_to_kernel(addr, addr_len, address); 1534 if (err < 0) 1535 goto out_put; 1536 msg.msg_name = address; 1537 msg.msg_namelen = addr_len; 1538 } 1539 if (sock->file->f_flags & O_NONBLOCK) 1540 flags |= MSG_DONTWAIT; 1541 msg.msg_flags = flags; 1542 err = sock_sendmsg(sock, &msg, len); 1543 1544 out_put: 1545 fput_light(sock_file, fput_needed); 1546 out: 1547 return err; 1548 } 1549 1550 /* 1551 * Send a datagram down a socket. 1552 */ 1553 1554 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags) 1555 { 1556 return sys_sendto(fd, buff, len, flags, NULL, 0); 1557 } 1558 1559 /* 1560 * Receive a frame from the socket and optionally record the address of the 1561 * sender. We verify the buffers are writable and if needed move the 1562 * sender address from kernel to user space. 1563 */ 1564 1565 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size, 1566 unsigned flags, struct sockaddr __user *addr, 1567 int __user *addr_len) 1568 { 1569 struct socket *sock; 1570 struct iovec iov; 1571 struct msghdr msg; 1572 char address[MAX_SOCK_ADDR]; 1573 int err, err2; 1574 struct file *sock_file; 1575 int fput_needed; 1576 1577 sock_file = fget_light(fd, &fput_needed); 1578 err = -EBADF; 1579 if (!sock_file) 1580 goto out; 1581 1582 sock = sock_from_file(sock_file, &err); 1583 if (!sock) 1584 goto out_put; 1585 1586 msg.msg_control = NULL; 1587 msg.msg_controllen = 0; 1588 msg.msg_iovlen = 1; 1589 msg.msg_iov = &iov; 1590 iov.iov_len = size; 1591 iov.iov_base = ubuf; 1592 msg.msg_name = address; 1593 msg.msg_namelen = MAX_SOCK_ADDR; 1594 if (sock->file->f_flags & O_NONBLOCK) 1595 flags |= MSG_DONTWAIT; 1596 err = sock_recvmsg(sock, &msg, size, flags); 1597 1598 if (err >= 0 && addr != NULL) { 1599 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1600 if (err2 < 0) 1601 err = err2; 1602 } 1603 out_put: 1604 fput_light(sock_file, fput_needed); 1605 out: 1606 return err; 1607 } 1608 1609 /* 1610 * Receive a datagram from a socket. 1611 */ 1612 1613 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1614 unsigned flags) 1615 { 1616 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1617 } 1618 1619 /* 1620 * Set a socket option. Because we don't know the option lengths we have 1621 * to pass the user mode parameter for the protocols to sort out. 1622 */ 1623 1624 asmlinkage long sys_setsockopt(int fd, int level, int optname, 1625 char __user *optval, int optlen) 1626 { 1627 int err, fput_needed; 1628 struct socket *sock; 1629 1630 if (optlen < 0) 1631 return -EINVAL; 1632 1633 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1634 if (sock != NULL) { 1635 err = security_socket_setsockopt(sock, level, optname); 1636 if (err) 1637 goto out_put; 1638 1639 if (level == SOL_SOCKET) 1640 err = 1641 sock_setsockopt(sock, level, optname, optval, 1642 optlen); 1643 else 1644 err = 1645 sock->ops->setsockopt(sock, level, optname, optval, 1646 optlen); 1647 out_put: 1648 fput_light(sock->file, fput_needed); 1649 } 1650 return err; 1651 } 1652 1653 /* 1654 * Get a socket option. Because we don't know the option lengths we have 1655 * to pass a user mode parameter for the protocols to sort out. 1656 */ 1657 1658 asmlinkage long sys_getsockopt(int fd, int level, int optname, 1659 char __user *optval, int __user *optlen) 1660 { 1661 int err, fput_needed; 1662 struct socket *sock; 1663 1664 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1665 if (sock != NULL) { 1666 err = security_socket_getsockopt(sock, level, optname); 1667 if (err) 1668 goto out_put; 1669 1670 if (level == SOL_SOCKET) 1671 err = 1672 sock_getsockopt(sock, level, optname, optval, 1673 optlen); 1674 else 1675 err = 1676 sock->ops->getsockopt(sock, level, optname, optval, 1677 optlen); 1678 out_put: 1679 fput_light(sock->file, fput_needed); 1680 } 1681 return err; 1682 } 1683 1684 /* 1685 * Shutdown a socket. 1686 */ 1687 1688 asmlinkage long sys_shutdown(int fd, int how) 1689 { 1690 int err, fput_needed; 1691 struct socket *sock; 1692 1693 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1694 if (sock != NULL) { 1695 err = security_socket_shutdown(sock, how); 1696 if (!err) 1697 err = sock->ops->shutdown(sock, how); 1698 fput_light(sock->file, fput_needed); 1699 } 1700 return err; 1701 } 1702 1703 /* A couple of helpful macros for getting the address of the 32/64 bit 1704 * fields which are the same type (int / unsigned) on our platforms. 1705 */ 1706 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1707 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1708 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1709 1710 /* 1711 * BSD sendmsg interface 1712 */ 1713 1714 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1715 { 1716 struct compat_msghdr __user *msg_compat = 1717 (struct compat_msghdr __user *)msg; 1718 struct socket *sock; 1719 char address[MAX_SOCK_ADDR]; 1720 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1721 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1722 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1723 /* 20 is size of ipv6_pktinfo */ 1724 unsigned char *ctl_buf = ctl; 1725 struct msghdr msg_sys; 1726 int err, ctl_len, iov_size, total_len; 1727 int fput_needed; 1728 1729 err = -EFAULT; 1730 if (MSG_CMSG_COMPAT & flags) { 1731 if (get_compat_msghdr(&msg_sys, msg_compat)) 1732 return -EFAULT; 1733 } 1734 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1735 return -EFAULT; 1736 1737 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1738 if (!sock) 1739 goto out; 1740 1741 /* do not move before msg_sys is valid */ 1742 err = -EMSGSIZE; 1743 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1744 goto out_put; 1745 1746 /* Check whether to allocate the iovec area */ 1747 err = -ENOMEM; 1748 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1749 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1750 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1751 if (!iov) 1752 goto out_put; 1753 } 1754 1755 /* This will also move the address data into kernel space */ 1756 if (MSG_CMSG_COMPAT & flags) { 1757 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1758 } else 1759 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1760 if (err < 0) 1761 goto out_freeiov; 1762 total_len = err; 1763 1764 err = -ENOBUFS; 1765 1766 if (msg_sys.msg_controllen > INT_MAX) 1767 goto out_freeiov; 1768 ctl_len = msg_sys.msg_controllen; 1769 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1770 err = 1771 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1772 sizeof(ctl)); 1773 if (err) 1774 goto out_freeiov; 1775 ctl_buf = msg_sys.msg_control; 1776 ctl_len = msg_sys.msg_controllen; 1777 } else if (ctl_len) { 1778 if (ctl_len > sizeof(ctl)) { 1779 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1780 if (ctl_buf == NULL) 1781 goto out_freeiov; 1782 } 1783 err = -EFAULT; 1784 /* 1785 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1786 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1787 * checking falls down on this. 1788 */ 1789 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1790 ctl_len)) 1791 goto out_freectl; 1792 msg_sys.msg_control = ctl_buf; 1793 } 1794 msg_sys.msg_flags = flags; 1795 1796 if (sock->file->f_flags & O_NONBLOCK) 1797 msg_sys.msg_flags |= MSG_DONTWAIT; 1798 err = sock_sendmsg(sock, &msg_sys, total_len); 1799 1800 out_freectl: 1801 if (ctl_buf != ctl) 1802 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1803 out_freeiov: 1804 if (iov != iovstack) 1805 sock_kfree_s(sock->sk, iov, iov_size); 1806 out_put: 1807 fput_light(sock->file, fput_needed); 1808 out: 1809 return err; 1810 } 1811 1812 /* 1813 * BSD recvmsg interface 1814 */ 1815 1816 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, 1817 unsigned int flags) 1818 { 1819 struct compat_msghdr __user *msg_compat = 1820 (struct compat_msghdr __user *)msg; 1821 struct socket *sock; 1822 struct iovec iovstack[UIO_FASTIOV]; 1823 struct iovec *iov = iovstack; 1824 struct msghdr msg_sys; 1825 unsigned long cmsg_ptr; 1826 int err, iov_size, total_len, len; 1827 int fput_needed; 1828 1829 /* kernel mode address */ 1830 char addr[MAX_SOCK_ADDR]; 1831 1832 /* user mode address pointers */ 1833 struct sockaddr __user *uaddr; 1834 int __user *uaddr_len; 1835 1836 if (MSG_CMSG_COMPAT & flags) { 1837 if (get_compat_msghdr(&msg_sys, msg_compat)) 1838 return -EFAULT; 1839 } 1840 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1841 return -EFAULT; 1842 1843 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1844 if (!sock) 1845 goto out; 1846 1847 err = -EMSGSIZE; 1848 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1849 goto out_put; 1850 1851 /* Check whether to allocate the iovec area */ 1852 err = -ENOMEM; 1853 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1854 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1855 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1856 if (!iov) 1857 goto out_put; 1858 } 1859 1860 /* 1861 * Save the user-mode address (verify_iovec will change the 1862 * kernel msghdr to use the kernel address space) 1863 */ 1864 1865 uaddr = (void __user *)msg_sys.msg_name; 1866 uaddr_len = COMPAT_NAMELEN(msg); 1867 if (MSG_CMSG_COMPAT & flags) { 1868 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1869 } else 1870 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1871 if (err < 0) 1872 goto out_freeiov; 1873 total_len = err; 1874 1875 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1876 msg_sys.msg_flags = 0; 1877 if (MSG_CMSG_COMPAT & flags) 1878 msg_sys.msg_flags = MSG_CMSG_COMPAT; 1879 1880 if (sock->file->f_flags & O_NONBLOCK) 1881 flags |= MSG_DONTWAIT; 1882 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1883 if (err < 0) 1884 goto out_freeiov; 1885 len = err; 1886 1887 if (uaddr != NULL) { 1888 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, 1889 uaddr_len); 1890 if (err < 0) 1891 goto out_freeiov; 1892 } 1893 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1894 COMPAT_FLAGS(msg)); 1895 if (err) 1896 goto out_freeiov; 1897 if (MSG_CMSG_COMPAT & flags) 1898 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1899 &msg_compat->msg_controllen); 1900 else 1901 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1902 &msg->msg_controllen); 1903 if (err) 1904 goto out_freeiov; 1905 err = len; 1906 1907 out_freeiov: 1908 if (iov != iovstack) 1909 sock_kfree_s(sock->sk, iov, iov_size); 1910 out_put: 1911 fput_light(sock->file, fput_needed); 1912 out: 1913 return err; 1914 } 1915 1916 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1917 1918 /* Argument list sizes for sys_socketcall */ 1919 #define AL(x) ((x) * sizeof(unsigned long)) 1920 static const unsigned char nargs[18]={ 1921 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1922 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1923 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3) 1924 }; 1925 1926 #undef AL 1927 1928 /* 1929 * System call vectors. 1930 * 1931 * Argument checking cleaned up. Saved 20% in size. 1932 * This function doesn't need to set the kernel lock because 1933 * it is set by the callees. 1934 */ 1935 1936 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1937 { 1938 unsigned long a[6]; 1939 unsigned long a0, a1; 1940 int err; 1941 1942 if (call < 1 || call > SYS_RECVMSG) 1943 return -EINVAL; 1944 1945 /* copy_from_user should be SMP safe. */ 1946 if (copy_from_user(a, args, nargs[call])) 1947 return -EFAULT; 1948 1949 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 1950 if (err) 1951 return err; 1952 1953 a0 = a[0]; 1954 a1 = a[1]; 1955 1956 switch (call) { 1957 case SYS_SOCKET: 1958 err = sys_socket(a0, a1, a[2]); 1959 break; 1960 case SYS_BIND: 1961 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 1962 break; 1963 case SYS_CONNECT: 1964 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 1965 break; 1966 case SYS_LISTEN: 1967 err = sys_listen(a0, a1); 1968 break; 1969 case SYS_ACCEPT: 1970 err = 1971 sys_accept(a0, (struct sockaddr __user *)a1, 1972 (int __user *)a[2]); 1973 break; 1974 case SYS_GETSOCKNAME: 1975 err = 1976 sys_getsockname(a0, (struct sockaddr __user *)a1, 1977 (int __user *)a[2]); 1978 break; 1979 case SYS_GETPEERNAME: 1980 err = 1981 sys_getpeername(a0, (struct sockaddr __user *)a1, 1982 (int __user *)a[2]); 1983 break; 1984 case SYS_SOCKETPAIR: 1985 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 1986 break; 1987 case SYS_SEND: 1988 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 1989 break; 1990 case SYS_SENDTO: 1991 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 1992 (struct sockaddr __user *)a[4], a[5]); 1993 break; 1994 case SYS_RECV: 1995 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 1996 break; 1997 case SYS_RECVFROM: 1998 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 1999 (struct sockaddr __user *)a[4], 2000 (int __user *)a[5]); 2001 break; 2002 case SYS_SHUTDOWN: 2003 err = sys_shutdown(a0, a1); 2004 break; 2005 case SYS_SETSOCKOPT: 2006 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2007 break; 2008 case SYS_GETSOCKOPT: 2009 err = 2010 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2011 (int __user *)a[4]); 2012 break; 2013 case SYS_SENDMSG: 2014 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2015 break; 2016 case SYS_RECVMSG: 2017 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2018 break; 2019 default: 2020 err = -EINVAL; 2021 break; 2022 } 2023 return err; 2024 } 2025 2026 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2027 2028 /** 2029 * sock_register - add a socket protocol handler 2030 * @ops: description of protocol 2031 * 2032 * This function is called by a protocol handler that wants to 2033 * advertise its address family, and have it linked into the 2034 * socket interface. The value ops->family coresponds to the 2035 * socket system call protocol family. 2036 */ 2037 int sock_register(const struct net_proto_family *ops) 2038 { 2039 int err; 2040 2041 if (ops->family >= NPROTO) { 2042 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2043 NPROTO); 2044 return -ENOBUFS; 2045 } 2046 2047 spin_lock(&net_family_lock); 2048 if (net_families[ops->family]) 2049 err = -EEXIST; 2050 else { 2051 net_families[ops->family] = ops; 2052 err = 0; 2053 } 2054 spin_unlock(&net_family_lock); 2055 2056 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2057 return err; 2058 } 2059 2060 /** 2061 * sock_unregister - remove a protocol handler 2062 * @family: protocol family to remove 2063 * 2064 * This function is called by a protocol handler that wants to 2065 * remove its address family, and have it unlinked from the 2066 * new socket creation. 2067 * 2068 * If protocol handler is a module, then it can use module reference 2069 * counts to protect against new references. If protocol handler is not 2070 * a module then it needs to provide its own protection in 2071 * the ops->create routine. 2072 */ 2073 void sock_unregister(int family) 2074 { 2075 BUG_ON(family < 0 || family >= NPROTO); 2076 2077 spin_lock(&net_family_lock); 2078 net_families[family] = NULL; 2079 spin_unlock(&net_family_lock); 2080 2081 synchronize_rcu(); 2082 2083 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2084 } 2085 2086 static int __init sock_init(void) 2087 { 2088 /* 2089 * Initialize sock SLAB cache. 2090 */ 2091 2092 sk_init(); 2093 2094 /* 2095 * Initialize skbuff SLAB cache 2096 */ 2097 skb_init(); 2098 2099 /* 2100 * Initialize the protocols module. 2101 */ 2102 2103 init_inodecache(); 2104 register_filesystem(&sock_fs_type); 2105 sock_mnt = kern_mount(&sock_fs_type); 2106 2107 /* The real protocol initialization is performed in later initcalls. 2108 */ 2109 2110 #ifdef CONFIG_NETFILTER 2111 netfilter_init(); 2112 #endif 2113 2114 return 0; 2115 } 2116 2117 core_initcall(sock_init); /* early initcall */ 2118 2119 #ifdef CONFIG_PROC_FS 2120 void socket_seq_show(struct seq_file *seq) 2121 { 2122 int cpu; 2123 int counter = 0; 2124 2125 for_each_possible_cpu(cpu) 2126 counter += per_cpu(sockets_in_use, cpu); 2127 2128 /* It can be negative, by the way. 8) */ 2129 if (counter < 0) 2130 counter = 0; 2131 2132 seq_printf(seq, "sockets: used %d\n", counter); 2133 } 2134 #endif /* CONFIG_PROC_FS */ 2135 2136 #ifdef CONFIG_COMPAT 2137 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2138 unsigned long arg) 2139 { 2140 struct socket *sock = file->private_data; 2141 int ret = -ENOIOCTLCMD; 2142 2143 if (sock->ops->compat_ioctl) 2144 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2145 2146 return ret; 2147 } 2148 #endif 2149 2150 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2151 { 2152 return sock->ops->bind(sock, addr, addrlen); 2153 } 2154 2155 int kernel_listen(struct socket *sock, int backlog) 2156 { 2157 return sock->ops->listen(sock, backlog); 2158 } 2159 2160 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2161 { 2162 struct sock *sk = sock->sk; 2163 int err; 2164 2165 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 2166 newsock); 2167 if (err < 0) 2168 goto done; 2169 2170 err = sock->ops->accept(sock, *newsock, flags); 2171 if (err < 0) { 2172 sock_release(*newsock); 2173 goto done; 2174 } 2175 2176 (*newsock)->ops = sock->ops; 2177 2178 done: 2179 return err; 2180 } 2181 2182 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 2183 int flags) 2184 { 2185 return sock->ops->connect(sock, addr, addrlen, flags); 2186 } 2187 2188 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 2189 int *addrlen) 2190 { 2191 return sock->ops->getname(sock, addr, addrlen, 0); 2192 } 2193 2194 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 2195 int *addrlen) 2196 { 2197 return sock->ops->getname(sock, addr, addrlen, 1); 2198 } 2199 2200 int kernel_getsockopt(struct socket *sock, int level, int optname, 2201 char *optval, int *optlen) 2202 { 2203 mm_segment_t oldfs = get_fs(); 2204 int err; 2205 2206 set_fs(KERNEL_DS); 2207 if (level == SOL_SOCKET) 2208 err = sock_getsockopt(sock, level, optname, optval, optlen); 2209 else 2210 err = sock->ops->getsockopt(sock, level, optname, optval, 2211 optlen); 2212 set_fs(oldfs); 2213 return err; 2214 } 2215 2216 int kernel_setsockopt(struct socket *sock, int level, int optname, 2217 char *optval, int optlen) 2218 { 2219 mm_segment_t oldfs = get_fs(); 2220 int err; 2221 2222 set_fs(KERNEL_DS); 2223 if (level == SOL_SOCKET) 2224 err = sock_setsockopt(sock, level, optname, optval, optlen); 2225 else 2226 err = sock->ops->setsockopt(sock, level, optname, optval, 2227 optlen); 2228 set_fs(oldfs); 2229 return err; 2230 } 2231 2232 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 2233 size_t size, int flags) 2234 { 2235 if (sock->ops->sendpage) 2236 return sock->ops->sendpage(sock, page, offset, size, flags); 2237 2238 return sock_no_sendpage(sock, page, offset, size, flags); 2239 } 2240 2241 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 2242 { 2243 mm_segment_t oldfs = get_fs(); 2244 int err; 2245 2246 set_fs(KERNEL_DS); 2247 err = sock->ops->ioctl(sock, cmd, arg); 2248 set_fs(oldfs); 2249 2250 return err; 2251 } 2252 2253 /* ABI emulation layers need these two */ 2254 EXPORT_SYMBOL(move_addr_to_kernel); 2255 EXPORT_SYMBOL(move_addr_to_user); 2256 EXPORT_SYMBOL(sock_create); 2257 EXPORT_SYMBOL(sock_create_kern); 2258 EXPORT_SYMBOL(sock_create_lite); 2259 EXPORT_SYMBOL(sock_map_fd); 2260 EXPORT_SYMBOL(sock_recvmsg); 2261 EXPORT_SYMBOL(sock_register); 2262 EXPORT_SYMBOL(sock_release); 2263 EXPORT_SYMBOL(sock_sendmsg); 2264 EXPORT_SYMBOL(sock_unregister); 2265 EXPORT_SYMBOL(sock_wake_async); 2266 EXPORT_SYMBOL(sockfd_lookup); 2267 EXPORT_SYMBOL(kernel_sendmsg); 2268 EXPORT_SYMBOL(kernel_recvmsg); 2269 EXPORT_SYMBOL(kernel_bind); 2270 EXPORT_SYMBOL(kernel_listen); 2271 EXPORT_SYMBOL(kernel_accept); 2272 EXPORT_SYMBOL(kernel_connect); 2273 EXPORT_SYMBOL(kernel_getsockname); 2274 EXPORT_SYMBOL(kernel_getpeername); 2275 EXPORT_SYMBOL(kernel_getsockopt); 2276 EXPORT_SYMBOL(kernel_setsockopt); 2277 EXPORT_SYMBOL(kernel_sendpage); 2278 EXPORT_SYMBOL(kernel_sock_ioctl); 2279