xref: /linux/net/socket.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 			 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 			  unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 				struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.aio_read =	sock_aio_read,
139 	.aio_write =	sock_aio_write,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
160 
161 /*
162  *	Statistics counters of the socket lists
163  */
164 
165 static DEFINE_PER_CPU(int, sockets_in_use);
166 
167 /*
168  * Support routines.
169  * Move socket addresses back and forth across the kernel/user
170  * divide and look after the messy bits.
171  */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 			     void __user *uaddr, int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
248 	if (!ei->socket.wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&ei->socket.wq->wait);
253 	ei->socket.wq->fasync_list = NULL;
254 
255 	ei->socket.state = SS_UNCONNECTED;
256 	ei->socket.flags = 0;
257 	ei->socket.ops = NULL;
258 	ei->socket.sk = NULL;
259 	ei->socket.file = NULL;
260 
261 	return &ei->vfs_inode;
262 }
263 
264 
265 static void wq_free_rcu(struct rcu_head *head)
266 {
267 	struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
268 
269 	kfree(wq);
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 
276 	ei = container_of(inode, struct socket_alloc, vfs_inode);
277 	call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
278 	kmem_cache_free(sock_inode_cachep, ei);
279 }
280 
281 static void init_once(void *foo)
282 {
283 	struct socket_alloc *ei = (struct socket_alloc *)foo;
284 
285 	inode_init_once(&ei->vfs_inode);
286 }
287 
288 static int init_inodecache(void)
289 {
290 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
291 					      sizeof(struct socket_alloc),
292 					      0,
293 					      (SLAB_HWCACHE_ALIGN |
294 					       SLAB_RECLAIM_ACCOUNT |
295 					       SLAB_MEM_SPREAD),
296 					      init_once);
297 	if (sock_inode_cachep == NULL)
298 		return -ENOMEM;
299 	return 0;
300 }
301 
302 static const struct super_operations sockfs_ops = {
303 	.alloc_inode	= sock_alloc_inode,
304 	.destroy_inode	= sock_destroy_inode,
305 	.statfs		= simple_statfs,
306 };
307 
308 static int sockfs_get_sb(struct file_system_type *fs_type,
309 			 int flags, const char *dev_name, void *data,
310 			 struct vfsmount *mnt)
311 {
312 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
313 			     mnt);
314 }
315 
316 static struct vfsmount *sock_mnt __read_mostly;
317 
318 static struct file_system_type sock_fs_type = {
319 	.name =		"sockfs",
320 	.get_sb =	sockfs_get_sb,
321 	.kill_sb =	kill_anon_super,
322 };
323 
324 /*
325  * sockfs_dname() is called from d_path().
326  */
327 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
328 {
329 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
330 				dentry->d_inode->i_ino);
331 }
332 
333 static const struct dentry_operations sockfs_dentry_operations = {
334 	.d_dname  = sockfs_dname,
335 };
336 
337 /*
338  *	Obtains the first available file descriptor and sets it up for use.
339  *
340  *	These functions create file structures and maps them to fd space
341  *	of the current process. On success it returns file descriptor
342  *	and file struct implicitly stored in sock->file.
343  *	Note that another thread may close file descriptor before we return
344  *	from this function. We use the fact that now we do not refer
345  *	to socket after mapping. If one day we will need it, this
346  *	function will increment ref. count on file by 1.
347  *
348  *	In any case returned fd MAY BE not valid!
349  *	This race condition is unavoidable
350  *	with shared fd spaces, we cannot solve it inside kernel,
351  *	but we take care of internal coherence yet.
352  */
353 
354 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
355 {
356 	struct qstr name = { .name = "" };
357 	struct path path;
358 	struct file *file;
359 	int fd;
360 
361 	fd = get_unused_fd_flags(flags);
362 	if (unlikely(fd < 0))
363 		return fd;
364 
365 	path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
366 	if (unlikely(!path.dentry)) {
367 		put_unused_fd(fd);
368 		return -ENOMEM;
369 	}
370 	path.mnt = mntget(sock_mnt);
371 
372 	path.dentry->d_op = &sockfs_dentry_operations;
373 	d_instantiate(path.dentry, SOCK_INODE(sock));
374 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
375 
376 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 		  &socket_file_ops);
378 	if (unlikely(!file)) {
379 		/* drop dentry, keep inode */
380 		ihold(path.dentry->d_inode);
381 		path_put(&path);
382 		put_unused_fd(fd);
383 		return -ENFILE;
384 	}
385 
386 	sock->file = file;
387 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
388 	file->f_pos = 0;
389 	file->private_data = sock;
390 
391 	*f = file;
392 	return fd;
393 }
394 
395 int sock_map_fd(struct socket *sock, int flags)
396 {
397 	struct file *newfile;
398 	int fd = sock_alloc_file(sock, &newfile, flags);
399 
400 	if (likely(fd >= 0))
401 		fd_install(fd, newfile);
402 
403 	return fd;
404 }
405 EXPORT_SYMBOL(sock_map_fd);
406 
407 static struct socket *sock_from_file(struct file *file, int *err)
408 {
409 	if (file->f_op == &socket_file_ops)
410 		return file->private_data;	/* set in sock_map_fd */
411 
412 	*err = -ENOTSOCK;
413 	return NULL;
414 }
415 
416 /**
417  *	sockfd_lookup - Go from a file number to its socket slot
418  *	@fd: file handle
419  *	@err: pointer to an error code return
420  *
421  *	The file handle passed in is locked and the socket it is bound
422  *	too is returned. If an error occurs the err pointer is overwritten
423  *	with a negative errno code and NULL is returned. The function checks
424  *	for both invalid handles and passing a handle which is not a socket.
425  *
426  *	On a success the socket object pointer is returned.
427  */
428 
429 struct socket *sockfd_lookup(int fd, int *err)
430 {
431 	struct file *file;
432 	struct socket *sock;
433 
434 	file = fget(fd);
435 	if (!file) {
436 		*err = -EBADF;
437 		return NULL;
438 	}
439 
440 	sock = sock_from_file(file, err);
441 	if (!sock)
442 		fput(file);
443 	return sock;
444 }
445 EXPORT_SYMBOL(sockfd_lookup);
446 
447 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
448 {
449 	struct file *file;
450 	struct socket *sock;
451 
452 	*err = -EBADF;
453 	file = fget_light(fd, fput_needed);
454 	if (file) {
455 		sock = sock_from_file(file, err);
456 		if (sock)
457 			return sock;
458 		fput_light(file, *fput_needed);
459 	}
460 	return NULL;
461 }
462 
463 /**
464  *	sock_alloc	-	allocate a socket
465  *
466  *	Allocate a new inode and socket object. The two are bound together
467  *	and initialised. The socket is then returned. If we are out of inodes
468  *	NULL is returned.
469  */
470 
471 static struct socket *sock_alloc(void)
472 {
473 	struct inode *inode;
474 	struct socket *sock;
475 
476 	inode = new_inode(sock_mnt->mnt_sb);
477 	if (!inode)
478 		return NULL;
479 
480 	sock = SOCKET_I(inode);
481 
482 	kmemcheck_annotate_bitfield(sock, type);
483 	inode->i_ino = get_next_ino();
484 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
485 	inode->i_uid = current_fsuid();
486 	inode->i_gid = current_fsgid();
487 
488 	percpu_add(sockets_in_use, 1);
489 	return sock;
490 }
491 
492 /*
493  *	In theory you can't get an open on this inode, but /proc provides
494  *	a back door. Remember to keep it shut otherwise you'll let the
495  *	creepy crawlies in.
496  */
497 
498 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
499 {
500 	return -ENXIO;
501 }
502 
503 const struct file_operations bad_sock_fops = {
504 	.owner = THIS_MODULE,
505 	.open = sock_no_open,
506 	.llseek = noop_llseek,
507 };
508 
509 /**
510  *	sock_release	-	close a socket
511  *	@sock: socket to close
512  *
513  *	The socket is released from the protocol stack if it has a release
514  *	callback, and the inode is then released if the socket is bound to
515  *	an inode not a file.
516  */
517 
518 void sock_release(struct socket *sock)
519 {
520 	if (sock->ops) {
521 		struct module *owner = sock->ops->owner;
522 
523 		sock->ops->release(sock);
524 		sock->ops = NULL;
525 		module_put(owner);
526 	}
527 
528 	if (sock->wq->fasync_list)
529 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
530 
531 	percpu_sub(sockets_in_use, 1);
532 	if (!sock->file) {
533 		iput(SOCK_INODE(sock));
534 		return;
535 	}
536 	sock->file = NULL;
537 }
538 EXPORT_SYMBOL(sock_release);
539 
540 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
541 {
542 	*tx_flags = 0;
543 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
544 		*tx_flags |= SKBTX_HW_TSTAMP;
545 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
546 		*tx_flags |= SKBTX_SW_TSTAMP;
547 	return 0;
548 }
549 EXPORT_SYMBOL(sock_tx_timestamp);
550 
551 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
552 				 struct msghdr *msg, size_t size)
553 {
554 	struct sock_iocb *si = kiocb_to_siocb(iocb);
555 	int err;
556 
557 	sock_update_classid(sock->sk);
558 
559 	si->sock = sock;
560 	si->scm = NULL;
561 	si->msg = msg;
562 	si->size = size;
563 
564 	err = security_socket_sendmsg(sock, msg, size);
565 	if (err)
566 		return err;
567 
568 	return sock->ops->sendmsg(iocb, sock, msg, size);
569 }
570 
571 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
572 {
573 	struct kiocb iocb;
574 	struct sock_iocb siocb;
575 	int ret;
576 
577 	init_sync_kiocb(&iocb, NULL);
578 	iocb.private = &siocb;
579 	ret = __sock_sendmsg(&iocb, sock, msg, size);
580 	if (-EIOCBQUEUED == ret)
581 		ret = wait_on_sync_kiocb(&iocb);
582 	return ret;
583 }
584 EXPORT_SYMBOL(sock_sendmsg);
585 
586 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
587 		   struct kvec *vec, size_t num, size_t size)
588 {
589 	mm_segment_t oldfs = get_fs();
590 	int result;
591 
592 	set_fs(KERNEL_DS);
593 	/*
594 	 * the following is safe, since for compiler definitions of kvec and
595 	 * iovec are identical, yielding the same in-core layout and alignment
596 	 */
597 	msg->msg_iov = (struct iovec *)vec;
598 	msg->msg_iovlen = num;
599 	result = sock_sendmsg(sock, msg, size);
600 	set_fs(oldfs);
601 	return result;
602 }
603 EXPORT_SYMBOL(kernel_sendmsg);
604 
605 static int ktime2ts(ktime_t kt, struct timespec *ts)
606 {
607 	if (kt.tv64) {
608 		*ts = ktime_to_timespec(kt);
609 		return 1;
610 	} else {
611 		return 0;
612 	}
613 }
614 
615 /*
616  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
617  */
618 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
619 	struct sk_buff *skb)
620 {
621 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
622 	struct timespec ts[3];
623 	int empty = 1;
624 	struct skb_shared_hwtstamps *shhwtstamps =
625 		skb_hwtstamps(skb);
626 
627 	/* Race occurred between timestamp enabling and packet
628 	   receiving.  Fill in the current time for now. */
629 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
630 		__net_timestamp(skb);
631 
632 	if (need_software_tstamp) {
633 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
634 			struct timeval tv;
635 			skb_get_timestamp(skb, &tv);
636 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
637 				 sizeof(tv), &tv);
638 		} else {
639 			skb_get_timestampns(skb, &ts[0]);
640 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
641 				 sizeof(ts[0]), &ts[0]);
642 		}
643 	}
644 
645 
646 	memset(ts, 0, sizeof(ts));
647 	if (skb->tstamp.tv64 &&
648 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
649 		skb_get_timestampns(skb, ts + 0);
650 		empty = 0;
651 	}
652 	if (shhwtstamps) {
653 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
654 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
655 			empty = 0;
656 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
657 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
658 			empty = 0;
659 	}
660 	if (!empty)
661 		put_cmsg(msg, SOL_SOCKET,
662 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
663 }
664 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
665 
666 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
667 				   struct sk_buff *skb)
668 {
669 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
670 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
671 			sizeof(__u32), &skb->dropcount);
672 }
673 
674 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
675 	struct sk_buff *skb)
676 {
677 	sock_recv_timestamp(msg, sk, skb);
678 	sock_recv_drops(msg, sk, skb);
679 }
680 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
681 
682 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
683 				       struct msghdr *msg, size_t size, int flags)
684 {
685 	struct sock_iocb *si = kiocb_to_siocb(iocb);
686 
687 	sock_update_classid(sock->sk);
688 
689 	si->sock = sock;
690 	si->scm = NULL;
691 	si->msg = msg;
692 	si->size = size;
693 	si->flags = flags;
694 
695 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
696 }
697 
698 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
699 				 struct msghdr *msg, size_t size, int flags)
700 {
701 	int err = security_socket_recvmsg(sock, msg, size, flags);
702 
703 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
704 }
705 
706 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
707 		 size_t size, int flags)
708 {
709 	struct kiocb iocb;
710 	struct sock_iocb siocb;
711 	int ret;
712 
713 	init_sync_kiocb(&iocb, NULL);
714 	iocb.private = &siocb;
715 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
716 	if (-EIOCBQUEUED == ret)
717 		ret = wait_on_sync_kiocb(&iocb);
718 	return ret;
719 }
720 EXPORT_SYMBOL(sock_recvmsg);
721 
722 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
723 			      size_t size, int flags)
724 {
725 	struct kiocb iocb;
726 	struct sock_iocb siocb;
727 	int ret;
728 
729 	init_sync_kiocb(&iocb, NULL);
730 	iocb.private = &siocb;
731 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
732 	if (-EIOCBQUEUED == ret)
733 		ret = wait_on_sync_kiocb(&iocb);
734 	return ret;
735 }
736 
737 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
738 		   struct kvec *vec, size_t num, size_t size, int flags)
739 {
740 	mm_segment_t oldfs = get_fs();
741 	int result;
742 
743 	set_fs(KERNEL_DS);
744 	/*
745 	 * the following is safe, since for compiler definitions of kvec and
746 	 * iovec are identical, yielding the same in-core layout and alignment
747 	 */
748 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
749 	result = sock_recvmsg(sock, msg, size, flags);
750 	set_fs(oldfs);
751 	return result;
752 }
753 EXPORT_SYMBOL(kernel_recvmsg);
754 
755 static void sock_aio_dtor(struct kiocb *iocb)
756 {
757 	kfree(iocb->private);
758 }
759 
760 static ssize_t sock_sendpage(struct file *file, struct page *page,
761 			     int offset, size_t size, loff_t *ppos, int more)
762 {
763 	struct socket *sock;
764 	int flags;
765 
766 	sock = file->private_data;
767 
768 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
769 	if (more)
770 		flags |= MSG_MORE;
771 
772 	return kernel_sendpage(sock, page, offset, size, flags);
773 }
774 
775 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
776 				struct pipe_inode_info *pipe, size_t len,
777 				unsigned int flags)
778 {
779 	struct socket *sock = file->private_data;
780 
781 	if (unlikely(!sock->ops->splice_read))
782 		return -EINVAL;
783 
784 	sock_update_classid(sock->sk);
785 
786 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
787 }
788 
789 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
790 					 struct sock_iocb *siocb)
791 {
792 	if (!is_sync_kiocb(iocb)) {
793 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
794 		if (!siocb)
795 			return NULL;
796 		iocb->ki_dtor = sock_aio_dtor;
797 	}
798 
799 	siocb->kiocb = iocb;
800 	iocb->private = siocb;
801 	return siocb;
802 }
803 
804 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
805 		struct file *file, const struct iovec *iov,
806 		unsigned long nr_segs)
807 {
808 	struct socket *sock = file->private_data;
809 	size_t size = 0;
810 	int i;
811 
812 	for (i = 0; i < nr_segs; i++)
813 		size += iov[i].iov_len;
814 
815 	msg->msg_name = NULL;
816 	msg->msg_namelen = 0;
817 	msg->msg_control = NULL;
818 	msg->msg_controllen = 0;
819 	msg->msg_iov = (struct iovec *)iov;
820 	msg->msg_iovlen = nr_segs;
821 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
822 
823 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
824 }
825 
826 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
827 				unsigned long nr_segs, loff_t pos)
828 {
829 	struct sock_iocb siocb, *x;
830 
831 	if (pos != 0)
832 		return -ESPIPE;
833 
834 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
835 		return 0;
836 
837 
838 	x = alloc_sock_iocb(iocb, &siocb);
839 	if (!x)
840 		return -ENOMEM;
841 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
842 }
843 
844 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
845 			struct file *file, const struct iovec *iov,
846 			unsigned long nr_segs)
847 {
848 	struct socket *sock = file->private_data;
849 	size_t size = 0;
850 	int i;
851 
852 	for (i = 0; i < nr_segs; i++)
853 		size += iov[i].iov_len;
854 
855 	msg->msg_name = NULL;
856 	msg->msg_namelen = 0;
857 	msg->msg_control = NULL;
858 	msg->msg_controllen = 0;
859 	msg->msg_iov = (struct iovec *)iov;
860 	msg->msg_iovlen = nr_segs;
861 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
862 	if (sock->type == SOCK_SEQPACKET)
863 		msg->msg_flags |= MSG_EOR;
864 
865 	return __sock_sendmsg(iocb, sock, msg, size);
866 }
867 
868 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
869 			  unsigned long nr_segs, loff_t pos)
870 {
871 	struct sock_iocb siocb, *x;
872 
873 	if (pos != 0)
874 		return -ESPIPE;
875 
876 	x = alloc_sock_iocb(iocb, &siocb);
877 	if (!x)
878 		return -ENOMEM;
879 
880 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
881 }
882 
883 /*
884  * Atomic setting of ioctl hooks to avoid race
885  * with module unload.
886  */
887 
888 static DEFINE_MUTEX(br_ioctl_mutex);
889 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
890 
891 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
892 {
893 	mutex_lock(&br_ioctl_mutex);
894 	br_ioctl_hook = hook;
895 	mutex_unlock(&br_ioctl_mutex);
896 }
897 EXPORT_SYMBOL(brioctl_set);
898 
899 static DEFINE_MUTEX(vlan_ioctl_mutex);
900 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
901 
902 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
903 {
904 	mutex_lock(&vlan_ioctl_mutex);
905 	vlan_ioctl_hook = hook;
906 	mutex_unlock(&vlan_ioctl_mutex);
907 }
908 EXPORT_SYMBOL(vlan_ioctl_set);
909 
910 static DEFINE_MUTEX(dlci_ioctl_mutex);
911 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
912 
913 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
914 {
915 	mutex_lock(&dlci_ioctl_mutex);
916 	dlci_ioctl_hook = hook;
917 	mutex_unlock(&dlci_ioctl_mutex);
918 }
919 EXPORT_SYMBOL(dlci_ioctl_set);
920 
921 static long sock_do_ioctl(struct net *net, struct socket *sock,
922 				 unsigned int cmd, unsigned long arg)
923 {
924 	int err;
925 	void __user *argp = (void __user *)arg;
926 
927 	err = sock->ops->ioctl(sock, cmd, arg);
928 
929 	/*
930 	 * If this ioctl is unknown try to hand it down
931 	 * to the NIC driver.
932 	 */
933 	if (err == -ENOIOCTLCMD)
934 		err = dev_ioctl(net, cmd, argp);
935 
936 	return err;
937 }
938 
939 /*
940  *	With an ioctl, arg may well be a user mode pointer, but we don't know
941  *	what to do with it - that's up to the protocol still.
942  */
943 
944 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
945 {
946 	struct socket *sock;
947 	struct sock *sk;
948 	void __user *argp = (void __user *)arg;
949 	int pid, err;
950 	struct net *net;
951 
952 	sock = file->private_data;
953 	sk = sock->sk;
954 	net = sock_net(sk);
955 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
956 		err = dev_ioctl(net, cmd, argp);
957 	} else
958 #ifdef CONFIG_WEXT_CORE
959 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
960 		err = dev_ioctl(net, cmd, argp);
961 	} else
962 #endif
963 		switch (cmd) {
964 		case FIOSETOWN:
965 		case SIOCSPGRP:
966 			err = -EFAULT;
967 			if (get_user(pid, (int __user *)argp))
968 				break;
969 			err = f_setown(sock->file, pid, 1);
970 			break;
971 		case FIOGETOWN:
972 		case SIOCGPGRP:
973 			err = put_user(f_getown(sock->file),
974 				       (int __user *)argp);
975 			break;
976 		case SIOCGIFBR:
977 		case SIOCSIFBR:
978 		case SIOCBRADDBR:
979 		case SIOCBRDELBR:
980 			err = -ENOPKG;
981 			if (!br_ioctl_hook)
982 				request_module("bridge");
983 
984 			mutex_lock(&br_ioctl_mutex);
985 			if (br_ioctl_hook)
986 				err = br_ioctl_hook(net, cmd, argp);
987 			mutex_unlock(&br_ioctl_mutex);
988 			break;
989 		case SIOCGIFVLAN:
990 		case SIOCSIFVLAN:
991 			err = -ENOPKG;
992 			if (!vlan_ioctl_hook)
993 				request_module("8021q");
994 
995 			mutex_lock(&vlan_ioctl_mutex);
996 			if (vlan_ioctl_hook)
997 				err = vlan_ioctl_hook(net, argp);
998 			mutex_unlock(&vlan_ioctl_mutex);
999 			break;
1000 		case SIOCADDDLCI:
1001 		case SIOCDELDLCI:
1002 			err = -ENOPKG;
1003 			if (!dlci_ioctl_hook)
1004 				request_module("dlci");
1005 
1006 			mutex_lock(&dlci_ioctl_mutex);
1007 			if (dlci_ioctl_hook)
1008 				err = dlci_ioctl_hook(cmd, argp);
1009 			mutex_unlock(&dlci_ioctl_mutex);
1010 			break;
1011 		default:
1012 			err = sock_do_ioctl(net, sock, cmd, arg);
1013 			break;
1014 		}
1015 	return err;
1016 }
1017 
1018 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1019 {
1020 	int err;
1021 	struct socket *sock = NULL;
1022 
1023 	err = security_socket_create(family, type, protocol, 1);
1024 	if (err)
1025 		goto out;
1026 
1027 	sock = sock_alloc();
1028 	if (!sock) {
1029 		err = -ENOMEM;
1030 		goto out;
1031 	}
1032 
1033 	sock->type = type;
1034 	err = security_socket_post_create(sock, family, type, protocol, 1);
1035 	if (err)
1036 		goto out_release;
1037 
1038 out:
1039 	*res = sock;
1040 	return err;
1041 out_release:
1042 	sock_release(sock);
1043 	sock = NULL;
1044 	goto out;
1045 }
1046 EXPORT_SYMBOL(sock_create_lite);
1047 
1048 /* No kernel lock held - perfect */
1049 static unsigned int sock_poll(struct file *file, poll_table *wait)
1050 {
1051 	struct socket *sock;
1052 
1053 	/*
1054 	 *      We can't return errors to poll, so it's either yes or no.
1055 	 */
1056 	sock = file->private_data;
1057 	return sock->ops->poll(file, sock, wait);
1058 }
1059 
1060 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1061 {
1062 	struct socket *sock = file->private_data;
1063 
1064 	return sock->ops->mmap(file, sock, vma);
1065 }
1066 
1067 static int sock_close(struct inode *inode, struct file *filp)
1068 {
1069 	/*
1070 	 *      It was possible the inode is NULL we were
1071 	 *      closing an unfinished socket.
1072 	 */
1073 
1074 	if (!inode) {
1075 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1076 		return 0;
1077 	}
1078 	sock_release(SOCKET_I(inode));
1079 	return 0;
1080 }
1081 
1082 /*
1083  *	Update the socket async list
1084  *
1085  *	Fasync_list locking strategy.
1086  *
1087  *	1. fasync_list is modified only under process context socket lock
1088  *	   i.e. under semaphore.
1089  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1090  *	   or under socket lock
1091  */
1092 
1093 static int sock_fasync(int fd, struct file *filp, int on)
1094 {
1095 	struct socket *sock = filp->private_data;
1096 	struct sock *sk = sock->sk;
1097 
1098 	if (sk == NULL)
1099 		return -EINVAL;
1100 
1101 	lock_sock(sk);
1102 
1103 	fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1104 
1105 	if (!sock->wq->fasync_list)
1106 		sock_reset_flag(sk, SOCK_FASYNC);
1107 	else
1108 		sock_set_flag(sk, SOCK_FASYNC);
1109 
1110 	release_sock(sk);
1111 	return 0;
1112 }
1113 
1114 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1115 
1116 int sock_wake_async(struct socket *sock, int how, int band)
1117 {
1118 	struct socket_wq *wq;
1119 
1120 	if (!sock)
1121 		return -1;
1122 	rcu_read_lock();
1123 	wq = rcu_dereference(sock->wq);
1124 	if (!wq || !wq->fasync_list) {
1125 		rcu_read_unlock();
1126 		return -1;
1127 	}
1128 	switch (how) {
1129 	case SOCK_WAKE_WAITD:
1130 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1131 			break;
1132 		goto call_kill;
1133 	case SOCK_WAKE_SPACE:
1134 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1135 			break;
1136 		/* fall through */
1137 	case SOCK_WAKE_IO:
1138 call_kill:
1139 		kill_fasync(&wq->fasync_list, SIGIO, band);
1140 		break;
1141 	case SOCK_WAKE_URG:
1142 		kill_fasync(&wq->fasync_list, SIGURG, band);
1143 	}
1144 	rcu_read_unlock();
1145 	return 0;
1146 }
1147 EXPORT_SYMBOL(sock_wake_async);
1148 
1149 int __sock_create(struct net *net, int family, int type, int protocol,
1150 			 struct socket **res, int kern)
1151 {
1152 	int err;
1153 	struct socket *sock;
1154 	const struct net_proto_family *pf;
1155 
1156 	/*
1157 	 *      Check protocol is in range
1158 	 */
1159 	if (family < 0 || family >= NPROTO)
1160 		return -EAFNOSUPPORT;
1161 	if (type < 0 || type >= SOCK_MAX)
1162 		return -EINVAL;
1163 
1164 	/* Compatibility.
1165 
1166 	   This uglymoron is moved from INET layer to here to avoid
1167 	   deadlock in module load.
1168 	 */
1169 	if (family == PF_INET && type == SOCK_PACKET) {
1170 		static int warned;
1171 		if (!warned) {
1172 			warned = 1;
1173 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1174 			       current->comm);
1175 		}
1176 		family = PF_PACKET;
1177 	}
1178 
1179 	err = security_socket_create(family, type, protocol, kern);
1180 	if (err)
1181 		return err;
1182 
1183 	/*
1184 	 *	Allocate the socket and allow the family to set things up. if
1185 	 *	the protocol is 0, the family is instructed to select an appropriate
1186 	 *	default.
1187 	 */
1188 	sock = sock_alloc();
1189 	if (!sock) {
1190 		if (net_ratelimit())
1191 			printk(KERN_WARNING "socket: no more sockets\n");
1192 		return -ENFILE;	/* Not exactly a match, but its the
1193 				   closest posix thing */
1194 	}
1195 
1196 	sock->type = type;
1197 
1198 #ifdef CONFIG_MODULES
1199 	/* Attempt to load a protocol module if the find failed.
1200 	 *
1201 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1202 	 * requested real, full-featured networking support upon configuration.
1203 	 * Otherwise module support will break!
1204 	 */
1205 	if (net_families[family] == NULL)
1206 		request_module("net-pf-%d", family);
1207 #endif
1208 
1209 	rcu_read_lock();
1210 	pf = rcu_dereference(net_families[family]);
1211 	err = -EAFNOSUPPORT;
1212 	if (!pf)
1213 		goto out_release;
1214 
1215 	/*
1216 	 * We will call the ->create function, that possibly is in a loadable
1217 	 * module, so we have to bump that loadable module refcnt first.
1218 	 */
1219 	if (!try_module_get(pf->owner))
1220 		goto out_release;
1221 
1222 	/* Now protected by module ref count */
1223 	rcu_read_unlock();
1224 
1225 	err = pf->create(net, sock, protocol, kern);
1226 	if (err < 0)
1227 		goto out_module_put;
1228 
1229 	/*
1230 	 * Now to bump the refcnt of the [loadable] module that owns this
1231 	 * socket at sock_release time we decrement its refcnt.
1232 	 */
1233 	if (!try_module_get(sock->ops->owner))
1234 		goto out_module_busy;
1235 
1236 	/*
1237 	 * Now that we're done with the ->create function, the [loadable]
1238 	 * module can have its refcnt decremented
1239 	 */
1240 	module_put(pf->owner);
1241 	err = security_socket_post_create(sock, family, type, protocol, kern);
1242 	if (err)
1243 		goto out_sock_release;
1244 	*res = sock;
1245 
1246 	return 0;
1247 
1248 out_module_busy:
1249 	err = -EAFNOSUPPORT;
1250 out_module_put:
1251 	sock->ops = NULL;
1252 	module_put(pf->owner);
1253 out_sock_release:
1254 	sock_release(sock);
1255 	return err;
1256 
1257 out_release:
1258 	rcu_read_unlock();
1259 	goto out_sock_release;
1260 }
1261 EXPORT_SYMBOL(__sock_create);
1262 
1263 int sock_create(int family, int type, int protocol, struct socket **res)
1264 {
1265 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1266 }
1267 EXPORT_SYMBOL(sock_create);
1268 
1269 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1270 {
1271 	return __sock_create(&init_net, family, type, protocol, res, 1);
1272 }
1273 EXPORT_SYMBOL(sock_create_kern);
1274 
1275 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1276 {
1277 	int retval;
1278 	struct socket *sock;
1279 	int flags;
1280 
1281 	/* Check the SOCK_* constants for consistency.  */
1282 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1283 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1284 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1285 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1286 
1287 	flags = type & ~SOCK_TYPE_MASK;
1288 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1289 		return -EINVAL;
1290 	type &= SOCK_TYPE_MASK;
1291 
1292 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1293 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1294 
1295 	retval = sock_create(family, type, protocol, &sock);
1296 	if (retval < 0)
1297 		goto out;
1298 
1299 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1300 	if (retval < 0)
1301 		goto out_release;
1302 
1303 out:
1304 	/* It may be already another descriptor 8) Not kernel problem. */
1305 	return retval;
1306 
1307 out_release:
1308 	sock_release(sock);
1309 	return retval;
1310 }
1311 
1312 /*
1313  *	Create a pair of connected sockets.
1314  */
1315 
1316 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1317 		int __user *, usockvec)
1318 {
1319 	struct socket *sock1, *sock2;
1320 	int fd1, fd2, err;
1321 	struct file *newfile1, *newfile2;
1322 	int flags;
1323 
1324 	flags = type & ~SOCK_TYPE_MASK;
1325 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1326 		return -EINVAL;
1327 	type &= SOCK_TYPE_MASK;
1328 
1329 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1330 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1331 
1332 	/*
1333 	 * Obtain the first socket and check if the underlying protocol
1334 	 * supports the socketpair call.
1335 	 */
1336 
1337 	err = sock_create(family, type, protocol, &sock1);
1338 	if (err < 0)
1339 		goto out;
1340 
1341 	err = sock_create(family, type, protocol, &sock2);
1342 	if (err < 0)
1343 		goto out_release_1;
1344 
1345 	err = sock1->ops->socketpair(sock1, sock2);
1346 	if (err < 0)
1347 		goto out_release_both;
1348 
1349 	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1350 	if (unlikely(fd1 < 0)) {
1351 		err = fd1;
1352 		goto out_release_both;
1353 	}
1354 
1355 	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1356 	if (unlikely(fd2 < 0)) {
1357 		err = fd2;
1358 		fput(newfile1);
1359 		put_unused_fd(fd1);
1360 		sock_release(sock2);
1361 		goto out;
1362 	}
1363 
1364 	audit_fd_pair(fd1, fd2);
1365 	fd_install(fd1, newfile1);
1366 	fd_install(fd2, newfile2);
1367 	/* fd1 and fd2 may be already another descriptors.
1368 	 * Not kernel problem.
1369 	 */
1370 
1371 	err = put_user(fd1, &usockvec[0]);
1372 	if (!err)
1373 		err = put_user(fd2, &usockvec[1]);
1374 	if (!err)
1375 		return 0;
1376 
1377 	sys_close(fd2);
1378 	sys_close(fd1);
1379 	return err;
1380 
1381 out_release_both:
1382 	sock_release(sock2);
1383 out_release_1:
1384 	sock_release(sock1);
1385 out:
1386 	return err;
1387 }
1388 
1389 /*
1390  *	Bind a name to a socket. Nothing much to do here since it's
1391  *	the protocol's responsibility to handle the local address.
1392  *
1393  *	We move the socket address to kernel space before we call
1394  *	the protocol layer (having also checked the address is ok).
1395  */
1396 
1397 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1398 {
1399 	struct socket *sock;
1400 	struct sockaddr_storage address;
1401 	int err, fput_needed;
1402 
1403 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1404 	if (sock) {
1405 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1406 		if (err >= 0) {
1407 			err = security_socket_bind(sock,
1408 						   (struct sockaddr *)&address,
1409 						   addrlen);
1410 			if (!err)
1411 				err = sock->ops->bind(sock,
1412 						      (struct sockaddr *)
1413 						      &address, addrlen);
1414 		}
1415 		fput_light(sock->file, fput_needed);
1416 	}
1417 	return err;
1418 }
1419 
1420 /*
1421  *	Perform a listen. Basically, we allow the protocol to do anything
1422  *	necessary for a listen, and if that works, we mark the socket as
1423  *	ready for listening.
1424  */
1425 
1426 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1427 {
1428 	struct socket *sock;
1429 	int err, fput_needed;
1430 	int somaxconn;
1431 
1432 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1433 	if (sock) {
1434 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1435 		if ((unsigned)backlog > somaxconn)
1436 			backlog = somaxconn;
1437 
1438 		err = security_socket_listen(sock, backlog);
1439 		if (!err)
1440 			err = sock->ops->listen(sock, backlog);
1441 
1442 		fput_light(sock->file, fput_needed);
1443 	}
1444 	return err;
1445 }
1446 
1447 /*
1448  *	For accept, we attempt to create a new socket, set up the link
1449  *	with the client, wake up the client, then return the new
1450  *	connected fd. We collect the address of the connector in kernel
1451  *	space and move it to user at the very end. This is unclean because
1452  *	we open the socket then return an error.
1453  *
1454  *	1003.1g adds the ability to recvmsg() to query connection pending
1455  *	status to recvmsg. We need to add that support in a way thats
1456  *	clean when we restucture accept also.
1457  */
1458 
1459 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1460 		int __user *, upeer_addrlen, int, flags)
1461 {
1462 	struct socket *sock, *newsock;
1463 	struct file *newfile;
1464 	int err, len, newfd, fput_needed;
1465 	struct sockaddr_storage address;
1466 
1467 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1468 		return -EINVAL;
1469 
1470 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1471 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1472 
1473 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1474 	if (!sock)
1475 		goto out;
1476 
1477 	err = -ENFILE;
1478 	newsock = sock_alloc();
1479 	if (!newsock)
1480 		goto out_put;
1481 
1482 	newsock->type = sock->type;
1483 	newsock->ops = sock->ops;
1484 
1485 	/*
1486 	 * We don't need try_module_get here, as the listening socket (sock)
1487 	 * has the protocol module (sock->ops->owner) held.
1488 	 */
1489 	__module_get(newsock->ops->owner);
1490 
1491 	newfd = sock_alloc_file(newsock, &newfile, flags);
1492 	if (unlikely(newfd < 0)) {
1493 		err = newfd;
1494 		sock_release(newsock);
1495 		goto out_put;
1496 	}
1497 
1498 	err = security_socket_accept(sock, newsock);
1499 	if (err)
1500 		goto out_fd;
1501 
1502 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1503 	if (err < 0)
1504 		goto out_fd;
1505 
1506 	if (upeer_sockaddr) {
1507 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1508 					  &len, 2) < 0) {
1509 			err = -ECONNABORTED;
1510 			goto out_fd;
1511 		}
1512 		err = move_addr_to_user((struct sockaddr *)&address,
1513 					len, upeer_sockaddr, upeer_addrlen);
1514 		if (err < 0)
1515 			goto out_fd;
1516 	}
1517 
1518 	/* File flags are not inherited via accept() unlike another OSes. */
1519 
1520 	fd_install(newfd, newfile);
1521 	err = newfd;
1522 
1523 out_put:
1524 	fput_light(sock->file, fput_needed);
1525 out:
1526 	return err;
1527 out_fd:
1528 	fput(newfile);
1529 	put_unused_fd(newfd);
1530 	goto out_put;
1531 }
1532 
1533 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1534 		int __user *, upeer_addrlen)
1535 {
1536 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1537 }
1538 
1539 /*
1540  *	Attempt to connect to a socket with the server address.  The address
1541  *	is in user space so we verify it is OK and move it to kernel space.
1542  *
1543  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1544  *	break bindings
1545  *
1546  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1547  *	other SEQPACKET protocols that take time to connect() as it doesn't
1548  *	include the -EINPROGRESS status for such sockets.
1549  */
1550 
1551 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1552 		int, addrlen)
1553 {
1554 	struct socket *sock;
1555 	struct sockaddr_storage address;
1556 	int err, fput_needed;
1557 
1558 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1559 	if (!sock)
1560 		goto out;
1561 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1562 	if (err < 0)
1563 		goto out_put;
1564 
1565 	err =
1566 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1567 	if (err)
1568 		goto out_put;
1569 
1570 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1571 				 sock->file->f_flags);
1572 out_put:
1573 	fput_light(sock->file, fput_needed);
1574 out:
1575 	return err;
1576 }
1577 
1578 /*
1579  *	Get the local address ('name') of a socket object. Move the obtained
1580  *	name to user space.
1581  */
1582 
1583 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1584 		int __user *, usockaddr_len)
1585 {
1586 	struct socket *sock;
1587 	struct sockaddr_storage address;
1588 	int len, err, fput_needed;
1589 
1590 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1591 	if (!sock)
1592 		goto out;
1593 
1594 	err = security_socket_getsockname(sock);
1595 	if (err)
1596 		goto out_put;
1597 
1598 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1599 	if (err)
1600 		goto out_put;
1601 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1602 
1603 out_put:
1604 	fput_light(sock->file, fput_needed);
1605 out:
1606 	return err;
1607 }
1608 
1609 /*
1610  *	Get the remote address ('name') of a socket object. Move the obtained
1611  *	name to user space.
1612  */
1613 
1614 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1615 		int __user *, usockaddr_len)
1616 {
1617 	struct socket *sock;
1618 	struct sockaddr_storage address;
1619 	int len, err, fput_needed;
1620 
1621 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1622 	if (sock != NULL) {
1623 		err = security_socket_getpeername(sock);
1624 		if (err) {
1625 			fput_light(sock->file, fput_needed);
1626 			return err;
1627 		}
1628 
1629 		err =
1630 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1631 				       1);
1632 		if (!err)
1633 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1634 						usockaddr_len);
1635 		fput_light(sock->file, fput_needed);
1636 	}
1637 	return err;
1638 }
1639 
1640 /*
1641  *	Send a datagram to a given address. We move the address into kernel
1642  *	space and check the user space data area is readable before invoking
1643  *	the protocol.
1644  */
1645 
1646 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1647 		unsigned, flags, struct sockaddr __user *, addr,
1648 		int, addr_len)
1649 {
1650 	struct socket *sock;
1651 	struct sockaddr_storage address;
1652 	int err;
1653 	struct msghdr msg;
1654 	struct iovec iov;
1655 	int fput_needed;
1656 
1657 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1658 	if (!sock)
1659 		goto out;
1660 
1661 	iov.iov_base = buff;
1662 	iov.iov_len = len;
1663 	msg.msg_name = NULL;
1664 	msg.msg_iov = &iov;
1665 	msg.msg_iovlen = 1;
1666 	msg.msg_control = NULL;
1667 	msg.msg_controllen = 0;
1668 	msg.msg_namelen = 0;
1669 	if (addr) {
1670 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1671 		if (err < 0)
1672 			goto out_put;
1673 		msg.msg_name = (struct sockaddr *)&address;
1674 		msg.msg_namelen = addr_len;
1675 	}
1676 	if (sock->file->f_flags & O_NONBLOCK)
1677 		flags |= MSG_DONTWAIT;
1678 	msg.msg_flags = flags;
1679 	err = sock_sendmsg(sock, &msg, len);
1680 
1681 out_put:
1682 	fput_light(sock->file, fput_needed);
1683 out:
1684 	return err;
1685 }
1686 
1687 /*
1688  *	Send a datagram down a socket.
1689  */
1690 
1691 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1692 		unsigned, flags)
1693 {
1694 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1695 }
1696 
1697 /*
1698  *	Receive a frame from the socket and optionally record the address of the
1699  *	sender. We verify the buffers are writable and if needed move the
1700  *	sender address from kernel to user space.
1701  */
1702 
1703 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1704 		unsigned, flags, struct sockaddr __user *, addr,
1705 		int __user *, addr_len)
1706 {
1707 	struct socket *sock;
1708 	struct iovec iov;
1709 	struct msghdr msg;
1710 	struct sockaddr_storage address;
1711 	int err, err2;
1712 	int fput_needed;
1713 
1714 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1715 	if (!sock)
1716 		goto out;
1717 
1718 	msg.msg_control = NULL;
1719 	msg.msg_controllen = 0;
1720 	msg.msg_iovlen = 1;
1721 	msg.msg_iov = &iov;
1722 	iov.iov_len = size;
1723 	iov.iov_base = ubuf;
1724 	msg.msg_name = (struct sockaddr *)&address;
1725 	msg.msg_namelen = sizeof(address);
1726 	if (sock->file->f_flags & O_NONBLOCK)
1727 		flags |= MSG_DONTWAIT;
1728 	err = sock_recvmsg(sock, &msg, size, flags);
1729 
1730 	if (err >= 0 && addr != NULL) {
1731 		err2 = move_addr_to_user((struct sockaddr *)&address,
1732 					 msg.msg_namelen, addr, addr_len);
1733 		if (err2 < 0)
1734 			err = err2;
1735 	}
1736 
1737 	fput_light(sock->file, fput_needed);
1738 out:
1739 	return err;
1740 }
1741 
1742 /*
1743  *	Receive a datagram from a socket.
1744  */
1745 
1746 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1747 			 unsigned flags)
1748 {
1749 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1750 }
1751 
1752 /*
1753  *	Set a socket option. Because we don't know the option lengths we have
1754  *	to pass the user mode parameter for the protocols to sort out.
1755  */
1756 
1757 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1758 		char __user *, optval, int, optlen)
1759 {
1760 	int err, fput_needed;
1761 	struct socket *sock;
1762 
1763 	if (optlen < 0)
1764 		return -EINVAL;
1765 
1766 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1767 	if (sock != NULL) {
1768 		err = security_socket_setsockopt(sock, level, optname);
1769 		if (err)
1770 			goto out_put;
1771 
1772 		if (level == SOL_SOCKET)
1773 			err =
1774 			    sock_setsockopt(sock, level, optname, optval,
1775 					    optlen);
1776 		else
1777 			err =
1778 			    sock->ops->setsockopt(sock, level, optname, optval,
1779 						  optlen);
1780 out_put:
1781 		fput_light(sock->file, fput_needed);
1782 	}
1783 	return err;
1784 }
1785 
1786 /*
1787  *	Get a socket option. Because we don't know the option lengths we have
1788  *	to pass a user mode parameter for the protocols to sort out.
1789  */
1790 
1791 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1792 		char __user *, optval, int __user *, optlen)
1793 {
1794 	int err, fput_needed;
1795 	struct socket *sock;
1796 
1797 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1798 	if (sock != NULL) {
1799 		err = security_socket_getsockopt(sock, level, optname);
1800 		if (err)
1801 			goto out_put;
1802 
1803 		if (level == SOL_SOCKET)
1804 			err =
1805 			    sock_getsockopt(sock, level, optname, optval,
1806 					    optlen);
1807 		else
1808 			err =
1809 			    sock->ops->getsockopt(sock, level, optname, optval,
1810 						  optlen);
1811 out_put:
1812 		fput_light(sock->file, fput_needed);
1813 	}
1814 	return err;
1815 }
1816 
1817 /*
1818  *	Shutdown a socket.
1819  */
1820 
1821 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1822 {
1823 	int err, fput_needed;
1824 	struct socket *sock;
1825 
1826 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1827 	if (sock != NULL) {
1828 		err = security_socket_shutdown(sock, how);
1829 		if (!err)
1830 			err = sock->ops->shutdown(sock, how);
1831 		fput_light(sock->file, fput_needed);
1832 	}
1833 	return err;
1834 }
1835 
1836 /* A couple of helpful macros for getting the address of the 32/64 bit
1837  * fields which are the same type (int / unsigned) on our platforms.
1838  */
1839 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1840 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1841 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1842 
1843 /*
1844  *	BSD sendmsg interface
1845  */
1846 
1847 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1848 {
1849 	struct compat_msghdr __user *msg_compat =
1850 	    (struct compat_msghdr __user *)msg;
1851 	struct socket *sock;
1852 	struct sockaddr_storage address;
1853 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1854 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1855 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1856 	/* 20 is size of ipv6_pktinfo */
1857 	unsigned char *ctl_buf = ctl;
1858 	struct msghdr msg_sys;
1859 	int err, ctl_len, iov_size, total_len;
1860 	int fput_needed;
1861 
1862 	err = -EFAULT;
1863 	if (MSG_CMSG_COMPAT & flags) {
1864 		if (get_compat_msghdr(&msg_sys, msg_compat))
1865 			return -EFAULT;
1866 	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1867 		return -EFAULT;
1868 
1869 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1870 	if (!sock)
1871 		goto out;
1872 
1873 	/* do not move before msg_sys is valid */
1874 	err = -EMSGSIZE;
1875 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1876 		goto out_put;
1877 
1878 	/* Check whether to allocate the iovec area */
1879 	err = -ENOMEM;
1880 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1881 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1882 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1883 		if (!iov)
1884 			goto out_put;
1885 	}
1886 
1887 	/* This will also move the address data into kernel space */
1888 	if (MSG_CMSG_COMPAT & flags) {
1889 		err = verify_compat_iovec(&msg_sys, iov,
1890 					  (struct sockaddr *)&address,
1891 					  VERIFY_READ);
1892 	} else
1893 		err = verify_iovec(&msg_sys, iov,
1894 				   (struct sockaddr *)&address,
1895 				   VERIFY_READ);
1896 	if (err < 0)
1897 		goto out_freeiov;
1898 	total_len = err;
1899 
1900 	err = -ENOBUFS;
1901 
1902 	if (msg_sys.msg_controllen > INT_MAX)
1903 		goto out_freeiov;
1904 	ctl_len = msg_sys.msg_controllen;
1905 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1906 		err =
1907 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1908 						     sizeof(ctl));
1909 		if (err)
1910 			goto out_freeiov;
1911 		ctl_buf = msg_sys.msg_control;
1912 		ctl_len = msg_sys.msg_controllen;
1913 	} else if (ctl_len) {
1914 		if (ctl_len > sizeof(ctl)) {
1915 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1916 			if (ctl_buf == NULL)
1917 				goto out_freeiov;
1918 		}
1919 		err = -EFAULT;
1920 		/*
1921 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1922 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1923 		 * checking falls down on this.
1924 		 */
1925 		if (copy_from_user(ctl_buf,
1926 				   (void __user __force *)msg_sys.msg_control,
1927 				   ctl_len))
1928 			goto out_freectl;
1929 		msg_sys.msg_control = ctl_buf;
1930 	}
1931 	msg_sys.msg_flags = flags;
1932 
1933 	if (sock->file->f_flags & O_NONBLOCK)
1934 		msg_sys.msg_flags |= MSG_DONTWAIT;
1935 	err = sock_sendmsg(sock, &msg_sys, total_len);
1936 
1937 out_freectl:
1938 	if (ctl_buf != ctl)
1939 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1940 out_freeiov:
1941 	if (iov != iovstack)
1942 		sock_kfree_s(sock->sk, iov, iov_size);
1943 out_put:
1944 	fput_light(sock->file, fput_needed);
1945 out:
1946 	return err;
1947 }
1948 
1949 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1950 			 struct msghdr *msg_sys, unsigned flags, int nosec)
1951 {
1952 	struct compat_msghdr __user *msg_compat =
1953 	    (struct compat_msghdr __user *)msg;
1954 	struct iovec iovstack[UIO_FASTIOV];
1955 	struct iovec *iov = iovstack;
1956 	unsigned long cmsg_ptr;
1957 	int err, iov_size, total_len, len;
1958 
1959 	/* kernel mode address */
1960 	struct sockaddr_storage addr;
1961 
1962 	/* user mode address pointers */
1963 	struct sockaddr __user *uaddr;
1964 	int __user *uaddr_len;
1965 
1966 	if (MSG_CMSG_COMPAT & flags) {
1967 		if (get_compat_msghdr(msg_sys, msg_compat))
1968 			return -EFAULT;
1969 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1970 		return -EFAULT;
1971 
1972 	err = -EMSGSIZE;
1973 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
1974 		goto out;
1975 
1976 	/* Check whether to allocate the iovec area */
1977 	err = -ENOMEM;
1978 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1979 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1980 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1981 		if (!iov)
1982 			goto out;
1983 	}
1984 
1985 	/*
1986 	 *      Save the user-mode address (verify_iovec will change the
1987 	 *      kernel msghdr to use the kernel address space)
1988 	 */
1989 
1990 	uaddr = (__force void __user *)msg_sys->msg_name;
1991 	uaddr_len = COMPAT_NAMELEN(msg);
1992 	if (MSG_CMSG_COMPAT & flags) {
1993 		err = verify_compat_iovec(msg_sys, iov,
1994 					  (struct sockaddr *)&addr,
1995 					  VERIFY_WRITE);
1996 	} else
1997 		err = verify_iovec(msg_sys, iov,
1998 				   (struct sockaddr *)&addr,
1999 				   VERIFY_WRITE);
2000 	if (err < 0)
2001 		goto out_freeiov;
2002 	total_len = err;
2003 
2004 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2005 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2006 
2007 	if (sock->file->f_flags & O_NONBLOCK)
2008 		flags |= MSG_DONTWAIT;
2009 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2010 							  total_len, flags);
2011 	if (err < 0)
2012 		goto out_freeiov;
2013 	len = err;
2014 
2015 	if (uaddr != NULL) {
2016 		err = move_addr_to_user((struct sockaddr *)&addr,
2017 					msg_sys->msg_namelen, uaddr,
2018 					uaddr_len);
2019 		if (err < 0)
2020 			goto out_freeiov;
2021 	}
2022 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2023 			 COMPAT_FLAGS(msg));
2024 	if (err)
2025 		goto out_freeiov;
2026 	if (MSG_CMSG_COMPAT & flags)
2027 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2028 				 &msg_compat->msg_controllen);
2029 	else
2030 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2031 				 &msg->msg_controllen);
2032 	if (err)
2033 		goto out_freeiov;
2034 	err = len;
2035 
2036 out_freeiov:
2037 	if (iov != iovstack)
2038 		sock_kfree_s(sock->sk, iov, iov_size);
2039 out:
2040 	return err;
2041 }
2042 
2043 /*
2044  *	BSD recvmsg interface
2045  */
2046 
2047 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2048 		unsigned int, flags)
2049 {
2050 	int fput_needed, err;
2051 	struct msghdr msg_sys;
2052 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2053 
2054 	if (!sock)
2055 		goto out;
2056 
2057 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2058 
2059 	fput_light(sock->file, fput_needed);
2060 out:
2061 	return err;
2062 }
2063 
2064 /*
2065  *     Linux recvmmsg interface
2066  */
2067 
2068 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2069 		   unsigned int flags, struct timespec *timeout)
2070 {
2071 	int fput_needed, err, datagrams;
2072 	struct socket *sock;
2073 	struct mmsghdr __user *entry;
2074 	struct compat_mmsghdr __user *compat_entry;
2075 	struct msghdr msg_sys;
2076 	struct timespec end_time;
2077 
2078 	if (timeout &&
2079 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2080 				    timeout->tv_nsec))
2081 		return -EINVAL;
2082 
2083 	datagrams = 0;
2084 
2085 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2086 	if (!sock)
2087 		return err;
2088 
2089 	err = sock_error(sock->sk);
2090 	if (err)
2091 		goto out_put;
2092 
2093 	entry = mmsg;
2094 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2095 
2096 	while (datagrams < vlen) {
2097 		/*
2098 		 * No need to ask LSM for more than the first datagram.
2099 		 */
2100 		if (MSG_CMSG_COMPAT & flags) {
2101 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2102 					    &msg_sys, flags, datagrams);
2103 			if (err < 0)
2104 				break;
2105 			err = __put_user(err, &compat_entry->msg_len);
2106 			++compat_entry;
2107 		} else {
2108 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2109 					    &msg_sys, flags, datagrams);
2110 			if (err < 0)
2111 				break;
2112 			err = put_user(err, &entry->msg_len);
2113 			++entry;
2114 		}
2115 
2116 		if (err)
2117 			break;
2118 		++datagrams;
2119 
2120 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2121 		if (flags & MSG_WAITFORONE)
2122 			flags |= MSG_DONTWAIT;
2123 
2124 		if (timeout) {
2125 			ktime_get_ts(timeout);
2126 			*timeout = timespec_sub(end_time, *timeout);
2127 			if (timeout->tv_sec < 0) {
2128 				timeout->tv_sec = timeout->tv_nsec = 0;
2129 				break;
2130 			}
2131 
2132 			/* Timeout, return less than vlen datagrams */
2133 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2134 				break;
2135 		}
2136 
2137 		/* Out of band data, return right away */
2138 		if (msg_sys.msg_flags & MSG_OOB)
2139 			break;
2140 	}
2141 
2142 out_put:
2143 	fput_light(sock->file, fput_needed);
2144 
2145 	if (err == 0)
2146 		return datagrams;
2147 
2148 	if (datagrams != 0) {
2149 		/*
2150 		 * We may return less entries than requested (vlen) if the
2151 		 * sock is non block and there aren't enough datagrams...
2152 		 */
2153 		if (err != -EAGAIN) {
2154 			/*
2155 			 * ... or  if recvmsg returns an error after we
2156 			 * received some datagrams, where we record the
2157 			 * error to return on the next call or if the
2158 			 * app asks about it using getsockopt(SO_ERROR).
2159 			 */
2160 			sock->sk->sk_err = -err;
2161 		}
2162 
2163 		return datagrams;
2164 	}
2165 
2166 	return err;
2167 }
2168 
2169 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2170 		unsigned int, vlen, unsigned int, flags,
2171 		struct timespec __user *, timeout)
2172 {
2173 	int datagrams;
2174 	struct timespec timeout_sys;
2175 
2176 	if (!timeout)
2177 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2178 
2179 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2180 		return -EFAULT;
2181 
2182 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2183 
2184 	if (datagrams > 0 &&
2185 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2186 		datagrams = -EFAULT;
2187 
2188 	return datagrams;
2189 }
2190 
2191 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2192 /* Argument list sizes for sys_socketcall */
2193 #define AL(x) ((x) * sizeof(unsigned long))
2194 static const unsigned char nargs[20] = {
2195 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2196 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2197 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2198 	AL(4), AL(5)
2199 };
2200 
2201 #undef AL
2202 
2203 /*
2204  *	System call vectors.
2205  *
2206  *	Argument checking cleaned up. Saved 20% in size.
2207  *  This function doesn't need to set the kernel lock because
2208  *  it is set by the callees.
2209  */
2210 
2211 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2212 {
2213 	unsigned long a[6];
2214 	unsigned long a0, a1;
2215 	int err;
2216 	unsigned int len;
2217 
2218 	if (call < 1 || call > SYS_RECVMMSG)
2219 		return -EINVAL;
2220 
2221 	len = nargs[call];
2222 	if (len > sizeof(a))
2223 		return -EINVAL;
2224 
2225 	/* copy_from_user should be SMP safe. */
2226 	if (copy_from_user(a, args, len))
2227 		return -EFAULT;
2228 
2229 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2230 
2231 	a0 = a[0];
2232 	a1 = a[1];
2233 
2234 	switch (call) {
2235 	case SYS_SOCKET:
2236 		err = sys_socket(a0, a1, a[2]);
2237 		break;
2238 	case SYS_BIND:
2239 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2240 		break;
2241 	case SYS_CONNECT:
2242 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2243 		break;
2244 	case SYS_LISTEN:
2245 		err = sys_listen(a0, a1);
2246 		break;
2247 	case SYS_ACCEPT:
2248 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2249 				  (int __user *)a[2], 0);
2250 		break;
2251 	case SYS_GETSOCKNAME:
2252 		err =
2253 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2254 				    (int __user *)a[2]);
2255 		break;
2256 	case SYS_GETPEERNAME:
2257 		err =
2258 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2259 				    (int __user *)a[2]);
2260 		break;
2261 	case SYS_SOCKETPAIR:
2262 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2263 		break;
2264 	case SYS_SEND:
2265 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2266 		break;
2267 	case SYS_SENDTO:
2268 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2269 				 (struct sockaddr __user *)a[4], a[5]);
2270 		break;
2271 	case SYS_RECV:
2272 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2273 		break;
2274 	case SYS_RECVFROM:
2275 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2276 				   (struct sockaddr __user *)a[4],
2277 				   (int __user *)a[5]);
2278 		break;
2279 	case SYS_SHUTDOWN:
2280 		err = sys_shutdown(a0, a1);
2281 		break;
2282 	case SYS_SETSOCKOPT:
2283 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2284 		break;
2285 	case SYS_GETSOCKOPT:
2286 		err =
2287 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2288 				   (int __user *)a[4]);
2289 		break;
2290 	case SYS_SENDMSG:
2291 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2292 		break;
2293 	case SYS_RECVMSG:
2294 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2295 		break;
2296 	case SYS_RECVMMSG:
2297 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2298 				   (struct timespec __user *)a[4]);
2299 		break;
2300 	case SYS_ACCEPT4:
2301 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2302 				  (int __user *)a[2], a[3]);
2303 		break;
2304 	default:
2305 		err = -EINVAL;
2306 		break;
2307 	}
2308 	return err;
2309 }
2310 
2311 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2312 
2313 /**
2314  *	sock_register - add a socket protocol handler
2315  *	@ops: description of protocol
2316  *
2317  *	This function is called by a protocol handler that wants to
2318  *	advertise its address family, and have it linked into the
2319  *	socket interface. The value ops->family coresponds to the
2320  *	socket system call protocol family.
2321  */
2322 int sock_register(const struct net_proto_family *ops)
2323 {
2324 	int err;
2325 
2326 	if (ops->family >= NPROTO) {
2327 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2328 		       NPROTO);
2329 		return -ENOBUFS;
2330 	}
2331 
2332 	spin_lock(&net_family_lock);
2333 	if (net_families[ops->family])
2334 		err = -EEXIST;
2335 	else {
2336 		net_families[ops->family] = ops;
2337 		err = 0;
2338 	}
2339 	spin_unlock(&net_family_lock);
2340 
2341 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2342 	return err;
2343 }
2344 EXPORT_SYMBOL(sock_register);
2345 
2346 /**
2347  *	sock_unregister - remove a protocol handler
2348  *	@family: protocol family to remove
2349  *
2350  *	This function is called by a protocol handler that wants to
2351  *	remove its address family, and have it unlinked from the
2352  *	new socket creation.
2353  *
2354  *	If protocol handler is a module, then it can use module reference
2355  *	counts to protect against new references. If protocol handler is not
2356  *	a module then it needs to provide its own protection in
2357  *	the ops->create routine.
2358  */
2359 void sock_unregister(int family)
2360 {
2361 	BUG_ON(family < 0 || family >= NPROTO);
2362 
2363 	spin_lock(&net_family_lock);
2364 	net_families[family] = NULL;
2365 	spin_unlock(&net_family_lock);
2366 
2367 	synchronize_rcu();
2368 
2369 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2370 }
2371 EXPORT_SYMBOL(sock_unregister);
2372 
2373 static int __init sock_init(void)
2374 {
2375 	/*
2376 	 *      Initialize sock SLAB cache.
2377 	 */
2378 
2379 	sk_init();
2380 
2381 	/*
2382 	 *      Initialize skbuff SLAB cache
2383 	 */
2384 	skb_init();
2385 
2386 	/*
2387 	 *      Initialize the protocols module.
2388 	 */
2389 
2390 	init_inodecache();
2391 	register_filesystem(&sock_fs_type);
2392 	sock_mnt = kern_mount(&sock_fs_type);
2393 
2394 	/* The real protocol initialization is performed in later initcalls.
2395 	 */
2396 
2397 #ifdef CONFIG_NETFILTER
2398 	netfilter_init();
2399 #endif
2400 
2401 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2402 	skb_timestamping_init();
2403 #endif
2404 
2405 	return 0;
2406 }
2407 
2408 core_initcall(sock_init);	/* early initcall */
2409 
2410 #ifdef CONFIG_PROC_FS
2411 void socket_seq_show(struct seq_file *seq)
2412 {
2413 	int cpu;
2414 	int counter = 0;
2415 
2416 	for_each_possible_cpu(cpu)
2417 	    counter += per_cpu(sockets_in_use, cpu);
2418 
2419 	/* It can be negative, by the way. 8) */
2420 	if (counter < 0)
2421 		counter = 0;
2422 
2423 	seq_printf(seq, "sockets: used %d\n", counter);
2424 }
2425 #endif				/* CONFIG_PROC_FS */
2426 
2427 #ifdef CONFIG_COMPAT
2428 static int do_siocgstamp(struct net *net, struct socket *sock,
2429 			 unsigned int cmd, struct compat_timeval __user *up)
2430 {
2431 	mm_segment_t old_fs = get_fs();
2432 	struct timeval ktv;
2433 	int err;
2434 
2435 	set_fs(KERNEL_DS);
2436 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2437 	set_fs(old_fs);
2438 	if (!err) {
2439 		err = put_user(ktv.tv_sec, &up->tv_sec);
2440 		err |= __put_user(ktv.tv_usec, &up->tv_usec);
2441 	}
2442 	return err;
2443 }
2444 
2445 static int do_siocgstampns(struct net *net, struct socket *sock,
2446 			 unsigned int cmd, struct compat_timespec __user *up)
2447 {
2448 	mm_segment_t old_fs = get_fs();
2449 	struct timespec kts;
2450 	int err;
2451 
2452 	set_fs(KERNEL_DS);
2453 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2454 	set_fs(old_fs);
2455 	if (!err) {
2456 		err = put_user(kts.tv_sec, &up->tv_sec);
2457 		err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2458 	}
2459 	return err;
2460 }
2461 
2462 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2463 {
2464 	struct ifreq __user *uifr;
2465 	int err;
2466 
2467 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2468 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2469 		return -EFAULT;
2470 
2471 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2472 	if (err)
2473 		return err;
2474 
2475 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2476 		return -EFAULT;
2477 
2478 	return 0;
2479 }
2480 
2481 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2482 {
2483 	struct compat_ifconf ifc32;
2484 	struct ifconf ifc;
2485 	struct ifconf __user *uifc;
2486 	struct compat_ifreq __user *ifr32;
2487 	struct ifreq __user *ifr;
2488 	unsigned int i, j;
2489 	int err;
2490 
2491 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2492 		return -EFAULT;
2493 
2494 	if (ifc32.ifcbuf == 0) {
2495 		ifc32.ifc_len = 0;
2496 		ifc.ifc_len = 0;
2497 		ifc.ifc_req = NULL;
2498 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2499 	} else {
2500 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2501 			sizeof(struct ifreq);
2502 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2503 		ifc.ifc_len = len;
2504 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2505 		ifr32 = compat_ptr(ifc32.ifcbuf);
2506 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2507 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2508 				return -EFAULT;
2509 			ifr++;
2510 			ifr32++;
2511 		}
2512 	}
2513 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2514 		return -EFAULT;
2515 
2516 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2517 	if (err)
2518 		return err;
2519 
2520 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2521 		return -EFAULT;
2522 
2523 	ifr = ifc.ifc_req;
2524 	ifr32 = compat_ptr(ifc32.ifcbuf);
2525 	for (i = 0, j = 0;
2526 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2527 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2528 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2529 			return -EFAULT;
2530 		ifr32++;
2531 		ifr++;
2532 	}
2533 
2534 	if (ifc32.ifcbuf == 0) {
2535 		/* Translate from 64-bit structure multiple to
2536 		 * a 32-bit one.
2537 		 */
2538 		i = ifc.ifc_len;
2539 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2540 		ifc32.ifc_len = i;
2541 	} else {
2542 		ifc32.ifc_len = i;
2543 	}
2544 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2545 		return -EFAULT;
2546 
2547 	return 0;
2548 }
2549 
2550 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2551 {
2552 	struct ifreq __user *ifr;
2553 	u32 data;
2554 	void __user *datap;
2555 
2556 	ifr = compat_alloc_user_space(sizeof(*ifr));
2557 
2558 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2559 		return -EFAULT;
2560 
2561 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2562 		return -EFAULT;
2563 
2564 	datap = compat_ptr(data);
2565 	if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2566 		return -EFAULT;
2567 
2568 	return dev_ioctl(net, SIOCETHTOOL, ifr);
2569 }
2570 
2571 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2572 {
2573 	void __user *uptr;
2574 	compat_uptr_t uptr32;
2575 	struct ifreq __user *uifr;
2576 
2577 	uifr = compat_alloc_user_space(sizeof(*uifr));
2578 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2579 		return -EFAULT;
2580 
2581 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2582 		return -EFAULT;
2583 
2584 	uptr = compat_ptr(uptr32);
2585 
2586 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2587 		return -EFAULT;
2588 
2589 	return dev_ioctl(net, SIOCWANDEV, uifr);
2590 }
2591 
2592 static int bond_ioctl(struct net *net, unsigned int cmd,
2593 			 struct compat_ifreq __user *ifr32)
2594 {
2595 	struct ifreq kifr;
2596 	struct ifreq __user *uifr;
2597 	mm_segment_t old_fs;
2598 	int err;
2599 	u32 data;
2600 	void __user *datap;
2601 
2602 	switch (cmd) {
2603 	case SIOCBONDENSLAVE:
2604 	case SIOCBONDRELEASE:
2605 	case SIOCBONDSETHWADDR:
2606 	case SIOCBONDCHANGEACTIVE:
2607 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2608 			return -EFAULT;
2609 
2610 		old_fs = get_fs();
2611 		set_fs(KERNEL_DS);
2612 		err = dev_ioctl(net, cmd, &kifr);
2613 		set_fs(old_fs);
2614 
2615 		return err;
2616 	case SIOCBONDSLAVEINFOQUERY:
2617 	case SIOCBONDINFOQUERY:
2618 		uifr = compat_alloc_user_space(sizeof(*uifr));
2619 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2620 			return -EFAULT;
2621 
2622 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2623 			return -EFAULT;
2624 
2625 		datap = compat_ptr(data);
2626 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2627 			return -EFAULT;
2628 
2629 		return dev_ioctl(net, cmd, uifr);
2630 	default:
2631 		return -EINVAL;
2632 	}
2633 }
2634 
2635 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2636 				 struct compat_ifreq __user *u_ifreq32)
2637 {
2638 	struct ifreq __user *u_ifreq64;
2639 	char tmp_buf[IFNAMSIZ];
2640 	void __user *data64;
2641 	u32 data32;
2642 
2643 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2644 			   IFNAMSIZ))
2645 		return -EFAULT;
2646 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2647 		return -EFAULT;
2648 	data64 = compat_ptr(data32);
2649 
2650 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2651 
2652 	/* Don't check these user accesses, just let that get trapped
2653 	 * in the ioctl handler instead.
2654 	 */
2655 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2656 			 IFNAMSIZ))
2657 		return -EFAULT;
2658 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2659 		return -EFAULT;
2660 
2661 	return dev_ioctl(net, cmd, u_ifreq64);
2662 }
2663 
2664 static int dev_ifsioc(struct net *net, struct socket *sock,
2665 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2666 {
2667 	struct ifreq __user *uifr;
2668 	int err;
2669 
2670 	uifr = compat_alloc_user_space(sizeof(*uifr));
2671 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2672 		return -EFAULT;
2673 
2674 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2675 
2676 	if (!err) {
2677 		switch (cmd) {
2678 		case SIOCGIFFLAGS:
2679 		case SIOCGIFMETRIC:
2680 		case SIOCGIFMTU:
2681 		case SIOCGIFMEM:
2682 		case SIOCGIFHWADDR:
2683 		case SIOCGIFINDEX:
2684 		case SIOCGIFADDR:
2685 		case SIOCGIFBRDADDR:
2686 		case SIOCGIFDSTADDR:
2687 		case SIOCGIFNETMASK:
2688 		case SIOCGIFPFLAGS:
2689 		case SIOCGIFTXQLEN:
2690 		case SIOCGMIIPHY:
2691 		case SIOCGMIIREG:
2692 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2693 				err = -EFAULT;
2694 			break;
2695 		}
2696 	}
2697 	return err;
2698 }
2699 
2700 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2701 			struct compat_ifreq __user *uifr32)
2702 {
2703 	struct ifreq ifr;
2704 	struct compat_ifmap __user *uifmap32;
2705 	mm_segment_t old_fs;
2706 	int err;
2707 
2708 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2709 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2710 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2711 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2712 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2713 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2714 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2715 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2716 	if (err)
2717 		return -EFAULT;
2718 
2719 	old_fs = get_fs();
2720 	set_fs(KERNEL_DS);
2721 	err = dev_ioctl(net, cmd, (void __user *)&ifr);
2722 	set_fs(old_fs);
2723 
2724 	if (cmd == SIOCGIFMAP && !err) {
2725 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2726 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2727 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2728 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2729 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2730 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2731 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2732 		if (err)
2733 			err = -EFAULT;
2734 	}
2735 	return err;
2736 }
2737 
2738 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2739 {
2740 	void __user *uptr;
2741 	compat_uptr_t uptr32;
2742 	struct ifreq __user *uifr;
2743 
2744 	uifr = compat_alloc_user_space(sizeof(*uifr));
2745 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2746 		return -EFAULT;
2747 
2748 	if (get_user(uptr32, &uifr32->ifr_data))
2749 		return -EFAULT;
2750 
2751 	uptr = compat_ptr(uptr32);
2752 
2753 	if (put_user(uptr, &uifr->ifr_data))
2754 		return -EFAULT;
2755 
2756 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2757 }
2758 
2759 struct rtentry32 {
2760 	u32		rt_pad1;
2761 	struct sockaddr rt_dst;         /* target address               */
2762 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2763 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2764 	unsigned short	rt_flags;
2765 	short		rt_pad2;
2766 	u32		rt_pad3;
2767 	unsigned char	rt_tos;
2768 	unsigned char	rt_class;
2769 	short		rt_pad4;
2770 	short		rt_metric;      /* +1 for binary compatibility! */
2771 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2772 	u32		rt_mtu;         /* per route MTU/Window         */
2773 	u32		rt_window;      /* Window clamping              */
2774 	unsigned short  rt_irtt;        /* Initial RTT                  */
2775 };
2776 
2777 struct in6_rtmsg32 {
2778 	struct in6_addr		rtmsg_dst;
2779 	struct in6_addr		rtmsg_src;
2780 	struct in6_addr		rtmsg_gateway;
2781 	u32			rtmsg_type;
2782 	u16			rtmsg_dst_len;
2783 	u16			rtmsg_src_len;
2784 	u32			rtmsg_metric;
2785 	u32			rtmsg_info;
2786 	u32			rtmsg_flags;
2787 	s32			rtmsg_ifindex;
2788 };
2789 
2790 static int routing_ioctl(struct net *net, struct socket *sock,
2791 			 unsigned int cmd, void __user *argp)
2792 {
2793 	int ret;
2794 	void *r = NULL;
2795 	struct in6_rtmsg r6;
2796 	struct rtentry r4;
2797 	char devname[16];
2798 	u32 rtdev;
2799 	mm_segment_t old_fs = get_fs();
2800 
2801 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2802 		struct in6_rtmsg32 __user *ur6 = argp;
2803 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2804 			3 * sizeof(struct in6_addr));
2805 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2806 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2807 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2808 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2809 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2810 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2811 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2812 
2813 		r = (void *) &r6;
2814 	} else { /* ipv4 */
2815 		struct rtentry32 __user *ur4 = argp;
2816 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2817 					3 * sizeof(struct sockaddr));
2818 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2819 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2820 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2821 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2822 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2823 		ret |= __get_user(rtdev, &(ur4->rt_dev));
2824 		if (rtdev) {
2825 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2826 			r4.rt_dev = devname; devname[15] = 0;
2827 		} else
2828 			r4.rt_dev = NULL;
2829 
2830 		r = (void *) &r4;
2831 	}
2832 
2833 	if (ret) {
2834 		ret = -EFAULT;
2835 		goto out;
2836 	}
2837 
2838 	set_fs(KERNEL_DS);
2839 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2840 	set_fs(old_fs);
2841 
2842 out:
2843 	return ret;
2844 }
2845 
2846 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2847  * for some operations; this forces use of the newer bridge-utils that
2848  * use compatiable ioctls
2849  */
2850 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2851 {
2852 	compat_ulong_t tmp;
2853 
2854 	if (get_user(tmp, argp))
2855 		return -EFAULT;
2856 	if (tmp == BRCTL_GET_VERSION)
2857 		return BRCTL_VERSION + 1;
2858 	return -EINVAL;
2859 }
2860 
2861 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2862 			 unsigned int cmd, unsigned long arg)
2863 {
2864 	void __user *argp = compat_ptr(arg);
2865 	struct sock *sk = sock->sk;
2866 	struct net *net = sock_net(sk);
2867 
2868 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2869 		return siocdevprivate_ioctl(net, cmd, argp);
2870 
2871 	switch (cmd) {
2872 	case SIOCSIFBR:
2873 	case SIOCGIFBR:
2874 		return old_bridge_ioctl(argp);
2875 	case SIOCGIFNAME:
2876 		return dev_ifname32(net, argp);
2877 	case SIOCGIFCONF:
2878 		return dev_ifconf(net, argp);
2879 	case SIOCETHTOOL:
2880 		return ethtool_ioctl(net, argp);
2881 	case SIOCWANDEV:
2882 		return compat_siocwandev(net, argp);
2883 	case SIOCGIFMAP:
2884 	case SIOCSIFMAP:
2885 		return compat_sioc_ifmap(net, cmd, argp);
2886 	case SIOCBONDENSLAVE:
2887 	case SIOCBONDRELEASE:
2888 	case SIOCBONDSETHWADDR:
2889 	case SIOCBONDSLAVEINFOQUERY:
2890 	case SIOCBONDINFOQUERY:
2891 	case SIOCBONDCHANGEACTIVE:
2892 		return bond_ioctl(net, cmd, argp);
2893 	case SIOCADDRT:
2894 	case SIOCDELRT:
2895 		return routing_ioctl(net, sock, cmd, argp);
2896 	case SIOCGSTAMP:
2897 		return do_siocgstamp(net, sock, cmd, argp);
2898 	case SIOCGSTAMPNS:
2899 		return do_siocgstampns(net, sock, cmd, argp);
2900 	case SIOCSHWTSTAMP:
2901 		return compat_siocshwtstamp(net, argp);
2902 
2903 	case FIOSETOWN:
2904 	case SIOCSPGRP:
2905 	case FIOGETOWN:
2906 	case SIOCGPGRP:
2907 	case SIOCBRADDBR:
2908 	case SIOCBRDELBR:
2909 	case SIOCGIFVLAN:
2910 	case SIOCSIFVLAN:
2911 	case SIOCADDDLCI:
2912 	case SIOCDELDLCI:
2913 		return sock_ioctl(file, cmd, arg);
2914 
2915 	case SIOCGIFFLAGS:
2916 	case SIOCSIFFLAGS:
2917 	case SIOCGIFMETRIC:
2918 	case SIOCSIFMETRIC:
2919 	case SIOCGIFMTU:
2920 	case SIOCSIFMTU:
2921 	case SIOCGIFMEM:
2922 	case SIOCSIFMEM:
2923 	case SIOCGIFHWADDR:
2924 	case SIOCSIFHWADDR:
2925 	case SIOCADDMULTI:
2926 	case SIOCDELMULTI:
2927 	case SIOCGIFINDEX:
2928 	case SIOCGIFADDR:
2929 	case SIOCSIFADDR:
2930 	case SIOCSIFHWBROADCAST:
2931 	case SIOCDIFADDR:
2932 	case SIOCGIFBRDADDR:
2933 	case SIOCSIFBRDADDR:
2934 	case SIOCGIFDSTADDR:
2935 	case SIOCSIFDSTADDR:
2936 	case SIOCGIFNETMASK:
2937 	case SIOCSIFNETMASK:
2938 	case SIOCSIFPFLAGS:
2939 	case SIOCGIFPFLAGS:
2940 	case SIOCGIFTXQLEN:
2941 	case SIOCSIFTXQLEN:
2942 	case SIOCBRADDIF:
2943 	case SIOCBRDELIF:
2944 	case SIOCSIFNAME:
2945 	case SIOCGMIIPHY:
2946 	case SIOCGMIIREG:
2947 	case SIOCSMIIREG:
2948 		return dev_ifsioc(net, sock, cmd, argp);
2949 
2950 	case SIOCSARP:
2951 	case SIOCGARP:
2952 	case SIOCDARP:
2953 	case SIOCATMARK:
2954 		return sock_do_ioctl(net, sock, cmd, arg);
2955 	}
2956 
2957 	/* Prevent warning from compat_sys_ioctl, these always
2958 	 * result in -EINVAL in the native case anyway. */
2959 	switch (cmd) {
2960 	case SIOCRTMSG:
2961 	case SIOCGIFCOUNT:
2962 	case SIOCSRARP:
2963 	case SIOCGRARP:
2964 	case SIOCDRARP:
2965 	case SIOCSIFLINK:
2966 	case SIOCGIFSLAVE:
2967 	case SIOCSIFSLAVE:
2968 		return -EINVAL;
2969 	}
2970 
2971 	return -ENOIOCTLCMD;
2972 }
2973 
2974 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2975 			      unsigned long arg)
2976 {
2977 	struct socket *sock = file->private_data;
2978 	int ret = -ENOIOCTLCMD;
2979 	struct sock *sk;
2980 	struct net *net;
2981 
2982 	sk = sock->sk;
2983 	net = sock_net(sk);
2984 
2985 	if (sock->ops->compat_ioctl)
2986 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2987 
2988 	if (ret == -ENOIOCTLCMD &&
2989 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2990 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2991 
2992 	if (ret == -ENOIOCTLCMD)
2993 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2994 
2995 	return ret;
2996 }
2997 #endif
2998 
2999 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3000 {
3001 	return sock->ops->bind(sock, addr, addrlen);
3002 }
3003 EXPORT_SYMBOL(kernel_bind);
3004 
3005 int kernel_listen(struct socket *sock, int backlog)
3006 {
3007 	return sock->ops->listen(sock, backlog);
3008 }
3009 EXPORT_SYMBOL(kernel_listen);
3010 
3011 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3012 {
3013 	struct sock *sk = sock->sk;
3014 	int err;
3015 
3016 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3017 			       newsock);
3018 	if (err < 0)
3019 		goto done;
3020 
3021 	err = sock->ops->accept(sock, *newsock, flags);
3022 	if (err < 0) {
3023 		sock_release(*newsock);
3024 		*newsock = NULL;
3025 		goto done;
3026 	}
3027 
3028 	(*newsock)->ops = sock->ops;
3029 	__module_get((*newsock)->ops->owner);
3030 
3031 done:
3032 	return err;
3033 }
3034 EXPORT_SYMBOL(kernel_accept);
3035 
3036 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3037 		   int flags)
3038 {
3039 	return sock->ops->connect(sock, addr, addrlen, flags);
3040 }
3041 EXPORT_SYMBOL(kernel_connect);
3042 
3043 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3044 			 int *addrlen)
3045 {
3046 	return sock->ops->getname(sock, addr, addrlen, 0);
3047 }
3048 EXPORT_SYMBOL(kernel_getsockname);
3049 
3050 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3051 			 int *addrlen)
3052 {
3053 	return sock->ops->getname(sock, addr, addrlen, 1);
3054 }
3055 EXPORT_SYMBOL(kernel_getpeername);
3056 
3057 int kernel_getsockopt(struct socket *sock, int level, int optname,
3058 			char *optval, int *optlen)
3059 {
3060 	mm_segment_t oldfs = get_fs();
3061 	char __user *uoptval;
3062 	int __user *uoptlen;
3063 	int err;
3064 
3065 	uoptval = (char __user __force *) optval;
3066 	uoptlen = (int __user __force *) optlen;
3067 
3068 	set_fs(KERNEL_DS);
3069 	if (level == SOL_SOCKET)
3070 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3071 	else
3072 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3073 					    uoptlen);
3074 	set_fs(oldfs);
3075 	return err;
3076 }
3077 EXPORT_SYMBOL(kernel_getsockopt);
3078 
3079 int kernel_setsockopt(struct socket *sock, int level, int optname,
3080 			char *optval, unsigned int optlen)
3081 {
3082 	mm_segment_t oldfs = get_fs();
3083 	char __user *uoptval;
3084 	int err;
3085 
3086 	uoptval = (char __user __force *) optval;
3087 
3088 	set_fs(KERNEL_DS);
3089 	if (level == SOL_SOCKET)
3090 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3091 	else
3092 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3093 					    optlen);
3094 	set_fs(oldfs);
3095 	return err;
3096 }
3097 EXPORT_SYMBOL(kernel_setsockopt);
3098 
3099 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3100 		    size_t size, int flags)
3101 {
3102 	sock_update_classid(sock->sk);
3103 
3104 	if (sock->ops->sendpage)
3105 		return sock->ops->sendpage(sock, page, offset, size, flags);
3106 
3107 	return sock_no_sendpage(sock, page, offset, size, flags);
3108 }
3109 EXPORT_SYMBOL(kernel_sendpage);
3110 
3111 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3112 {
3113 	mm_segment_t oldfs = get_fs();
3114 	int err;
3115 
3116 	set_fs(KERNEL_DS);
3117 	err = sock->ops->ioctl(sock, cmd, arg);
3118 	set_fs(oldfs);
3119 
3120 	return err;
3121 }
3122 EXPORT_SYMBOL(kernel_sock_ioctl);
3123 
3124 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3125 {
3126 	return sock->ops->shutdown(sock, how);
3127 }
3128 EXPORT_SYMBOL(kernel_sock_shutdown);
3129