xref: /linux/net/socket.c (revision c98be0c96db00e9b6b02d31e0fa7590c54cdaaac)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/busy_poll.h>
108 
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
113 
114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
116 			 unsigned long nr_segs, loff_t pos);
117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
118 			  unsigned long nr_segs, loff_t pos);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 			      struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 			      unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 			     int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 				struct pipe_inode_info *pipe, size_t len,
134 				unsigned int flags);
135 
136 /*
137  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138  *	in the operation structures but are done directly via the socketcall() multiplexor.
139  */
140 
141 static const struct file_operations socket_file_ops = {
142 	.owner =	THIS_MODULE,
143 	.llseek =	no_llseek,
144 	.aio_read =	sock_aio_read,
145 	.aio_write =	sock_aio_write,
146 	.poll =		sock_poll,
147 	.unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 	.compat_ioctl = compat_sock_ioctl,
150 #endif
151 	.mmap =		sock_mmap,
152 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
153 	.release =	sock_close,
154 	.fasync =	sock_fasync,
155 	.sendpage =	sock_sendpage,
156 	.splice_write = generic_splice_sendpage,
157 	.splice_read =	sock_splice_read,
158 };
159 
160 /*
161  *	The protocol list. Each protocol is registered in here.
162  */
163 
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 
167 /*
168  *	Statistics counters of the socket lists
169  */
170 
171 static DEFINE_PER_CPU(int, sockets_in_use);
172 
173 /*
174  * Support routines.
175  * Move socket addresses back and forth across the kernel/user
176  * divide and look after the messy bits.
177  */
178 
179 /**
180  *	move_addr_to_kernel	-	copy a socket address into kernel space
181  *	@uaddr: Address in user space
182  *	@kaddr: Address in kernel space
183  *	@ulen: Length in user space
184  *
185  *	The address is copied into kernel space. If the provided address is
186  *	too long an error code of -EINVAL is returned. If the copy gives
187  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
188  */
189 
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 		return -EINVAL;
194 	if (ulen == 0)
195 		return 0;
196 	if (copy_from_user(kaddr, uaddr, ulen))
197 		return -EFAULT;
198 	return audit_sockaddr(ulen, kaddr);
199 }
200 
201 /**
202  *	move_addr_to_user	-	copy an address to user space
203  *	@kaddr: kernel space address
204  *	@klen: length of address in kernel
205  *	@uaddr: user space address
206  *	@ulen: pointer to user length field
207  *
208  *	The value pointed to by ulen on entry is the buffer length available.
209  *	This is overwritten with the buffer space used. -EINVAL is returned
210  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
211  *	is returned if either the buffer or the length field are not
212  *	accessible.
213  *	After copying the data up to the limit the user specifies, the true
214  *	length of the data is written over the length limit the user
215  *	specified. Zero is returned for a success.
216  */
217 
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 			     void __user *uaddr, int __user *ulen)
220 {
221 	int err;
222 	int len;
223 
224 	BUG_ON(klen > sizeof(struct sockaddr_storage));
225 	err = get_user(len, ulen);
226 	if (err)
227 		return err;
228 	if (len > klen)
229 		len = klen;
230 	if (len < 0)
231 		return -EINVAL;
232 	if (len) {
233 		if (audit_sockaddr(klen, kaddr))
234 			return -ENOMEM;
235 		if (copy_to_user(uaddr, kaddr, len))
236 			return -EFAULT;
237 	}
238 	/*
239 	 *      "fromlen shall refer to the value before truncation.."
240 	 *                      1003.1g
241 	 */
242 	return __put_user(klen, ulen);
243 }
244 
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246 
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 	struct socket_alloc *ei;
250 	struct socket_wq *wq;
251 
252 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 	if (!ei)
254 		return NULL;
255 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 	if (!wq) {
257 		kmem_cache_free(sock_inode_cachep, ei);
258 		return NULL;
259 	}
260 	init_waitqueue_head(&wq->wait);
261 	wq->fasync_list = NULL;
262 	RCU_INIT_POINTER(ei->socket.wq, wq);
263 
264 	ei->socket.state = SS_UNCONNECTED;
265 	ei->socket.flags = 0;
266 	ei->socket.ops = NULL;
267 	ei->socket.sk = NULL;
268 	ei->socket.file = NULL;
269 
270 	return &ei->vfs_inode;
271 }
272 
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 	struct socket_alloc *ei;
276 	struct socket_wq *wq;
277 
278 	ei = container_of(inode, struct socket_alloc, vfs_inode);
279 	wq = rcu_dereference_protected(ei->socket.wq, 1);
280 	kfree_rcu(wq, rcu);
281 	kmem_cache_free(sock_inode_cachep, ei);
282 }
283 
284 static void init_once(void *foo)
285 {
286 	struct socket_alloc *ei = (struct socket_alloc *)foo;
287 
288 	inode_init_once(&ei->vfs_inode);
289 }
290 
291 static int init_inodecache(void)
292 {
293 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 					      sizeof(struct socket_alloc),
295 					      0,
296 					      (SLAB_HWCACHE_ALIGN |
297 					       SLAB_RECLAIM_ACCOUNT |
298 					       SLAB_MEM_SPREAD),
299 					      init_once);
300 	if (sock_inode_cachep == NULL)
301 		return -ENOMEM;
302 	return 0;
303 }
304 
305 static const struct super_operations sockfs_ops = {
306 	.alloc_inode	= sock_alloc_inode,
307 	.destroy_inode	= sock_destroy_inode,
308 	.statfs		= simple_statfs,
309 };
310 
311 /*
312  * sockfs_dname() is called from d_path().
313  */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 				dentry->d_inode->i_ino);
318 }
319 
320 static const struct dentry_operations sockfs_dentry_operations = {
321 	.d_dname  = sockfs_dname,
322 };
323 
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 			 int flags, const char *dev_name, void *data)
326 {
327 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 		&sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330 
331 static struct vfsmount *sock_mnt __read_mostly;
332 
333 static struct file_system_type sock_fs_type = {
334 	.name =		"sockfs",
335 	.mount =	sockfs_mount,
336 	.kill_sb =	kill_anon_super,
337 };
338 
339 /*
340  *	Obtains the first available file descriptor and sets it up for use.
341  *
342  *	These functions create file structures and maps them to fd space
343  *	of the current process. On success it returns file descriptor
344  *	and file struct implicitly stored in sock->file.
345  *	Note that another thread may close file descriptor before we return
346  *	from this function. We use the fact that now we do not refer
347  *	to socket after mapping. If one day we will need it, this
348  *	function will increment ref. count on file by 1.
349  *
350  *	In any case returned fd MAY BE not valid!
351  *	This race condition is unavoidable
352  *	with shared fd spaces, we cannot solve it inside kernel,
353  *	but we take care of internal coherence yet.
354  */
355 
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 	struct qstr name = { .name = "" };
359 	struct path path;
360 	struct file *file;
361 
362 	if (dname) {
363 		name.name = dname;
364 		name.len = strlen(name.name);
365 	} else if (sock->sk) {
366 		name.name = sock->sk->sk_prot_creator->name;
367 		name.len = strlen(name.name);
368 	}
369 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 	if (unlikely(!path.dentry))
371 		return ERR_PTR(-ENOMEM);
372 	path.mnt = mntget(sock_mnt);
373 
374 	d_instantiate(path.dentry, SOCK_INODE(sock));
375 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
376 
377 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
378 		  &socket_file_ops);
379 	if (unlikely(IS_ERR(file))) {
380 		/* drop dentry, keep inode */
381 		ihold(path.dentry->d_inode);
382 		path_put(&path);
383 		return file;
384 	}
385 
386 	sock->file = file;
387 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
388 	file->private_data = sock;
389 	return file;
390 }
391 EXPORT_SYMBOL(sock_alloc_file);
392 
393 static int sock_map_fd(struct socket *sock, int flags)
394 {
395 	struct file *newfile;
396 	int fd = get_unused_fd_flags(flags);
397 	if (unlikely(fd < 0))
398 		return fd;
399 
400 	newfile = sock_alloc_file(sock, flags, NULL);
401 	if (likely(!IS_ERR(newfile))) {
402 		fd_install(fd, newfile);
403 		return fd;
404 	}
405 
406 	put_unused_fd(fd);
407 	return PTR_ERR(newfile);
408 }
409 
410 struct socket *sock_from_file(struct file *file, int *err)
411 {
412 	if (file->f_op == &socket_file_ops)
413 		return file->private_data;	/* set in sock_map_fd */
414 
415 	*err = -ENOTSOCK;
416 	return NULL;
417 }
418 EXPORT_SYMBOL(sock_from_file);
419 
420 /**
421  *	sockfd_lookup - Go from a file number to its socket slot
422  *	@fd: file handle
423  *	@err: pointer to an error code return
424  *
425  *	The file handle passed in is locked and the socket it is bound
426  *	too is returned. If an error occurs the err pointer is overwritten
427  *	with a negative errno code and NULL is returned. The function checks
428  *	for both invalid handles and passing a handle which is not a socket.
429  *
430  *	On a success the socket object pointer is returned.
431  */
432 
433 struct socket *sockfd_lookup(int fd, int *err)
434 {
435 	struct file *file;
436 	struct socket *sock;
437 
438 	file = fget(fd);
439 	if (!file) {
440 		*err = -EBADF;
441 		return NULL;
442 	}
443 
444 	sock = sock_from_file(file, err);
445 	if (!sock)
446 		fput(file);
447 	return sock;
448 }
449 EXPORT_SYMBOL(sockfd_lookup);
450 
451 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
452 {
453 	struct fd f = fdget(fd);
454 	struct socket *sock;
455 
456 	*err = -EBADF;
457 	if (f.file) {
458 		sock = sock_from_file(f.file, err);
459 		if (likely(sock)) {
460 			*fput_needed = f.flags;
461 			return sock;
462 		}
463 		fdput(f);
464 	}
465 	return NULL;
466 }
467 
468 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
469 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
470 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
471 static ssize_t sockfs_getxattr(struct dentry *dentry,
472 			       const char *name, void *value, size_t size)
473 {
474 	const char *proto_name;
475 	size_t proto_size;
476 	int error;
477 
478 	error = -ENODATA;
479 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
480 		proto_name = dentry->d_name.name;
481 		proto_size = strlen(proto_name);
482 
483 		if (value) {
484 			error = -ERANGE;
485 			if (proto_size + 1 > size)
486 				goto out;
487 
488 			strncpy(value, proto_name, proto_size + 1);
489 		}
490 		error = proto_size + 1;
491 	}
492 
493 out:
494 	return error;
495 }
496 
497 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
498 				size_t size)
499 {
500 	ssize_t len;
501 	ssize_t used = 0;
502 
503 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
504 	if (len < 0)
505 		return len;
506 	used += len;
507 	if (buffer) {
508 		if (size < used)
509 			return -ERANGE;
510 		buffer += len;
511 	}
512 
513 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
514 	used += len;
515 	if (buffer) {
516 		if (size < used)
517 			return -ERANGE;
518 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
519 		buffer += len;
520 	}
521 
522 	return used;
523 }
524 
525 static const struct inode_operations sockfs_inode_ops = {
526 	.getxattr = sockfs_getxattr,
527 	.listxattr = sockfs_listxattr,
528 };
529 
530 /**
531  *	sock_alloc	-	allocate a socket
532  *
533  *	Allocate a new inode and socket object. The two are bound together
534  *	and initialised. The socket is then returned. If we are out of inodes
535  *	NULL is returned.
536  */
537 
538 static struct socket *sock_alloc(void)
539 {
540 	struct inode *inode;
541 	struct socket *sock;
542 
543 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
544 	if (!inode)
545 		return NULL;
546 
547 	sock = SOCKET_I(inode);
548 
549 	kmemcheck_annotate_bitfield(sock, type);
550 	inode->i_ino = get_next_ino();
551 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
552 	inode->i_uid = current_fsuid();
553 	inode->i_gid = current_fsgid();
554 	inode->i_op = &sockfs_inode_ops;
555 
556 	this_cpu_add(sockets_in_use, 1);
557 	return sock;
558 }
559 
560 /*
561  *	In theory you can't get an open on this inode, but /proc provides
562  *	a back door. Remember to keep it shut otherwise you'll let the
563  *	creepy crawlies in.
564  */
565 
566 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
567 {
568 	return -ENXIO;
569 }
570 
571 const struct file_operations bad_sock_fops = {
572 	.owner = THIS_MODULE,
573 	.open = sock_no_open,
574 	.llseek = noop_llseek,
575 };
576 
577 /**
578  *	sock_release	-	close a socket
579  *	@sock: socket to close
580  *
581  *	The socket is released from the protocol stack if it has a release
582  *	callback, and the inode is then released if the socket is bound to
583  *	an inode not a file.
584  */
585 
586 void sock_release(struct socket *sock)
587 {
588 	if (sock->ops) {
589 		struct module *owner = sock->ops->owner;
590 
591 		sock->ops->release(sock);
592 		sock->ops = NULL;
593 		module_put(owner);
594 	}
595 
596 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
597 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
598 
599 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
600 		return;
601 
602 	this_cpu_sub(sockets_in_use, 1);
603 	if (!sock->file) {
604 		iput(SOCK_INODE(sock));
605 		return;
606 	}
607 	sock->file = NULL;
608 }
609 EXPORT_SYMBOL(sock_release);
610 
611 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
612 {
613 	*tx_flags = 0;
614 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
615 		*tx_flags |= SKBTX_HW_TSTAMP;
616 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
617 		*tx_flags |= SKBTX_SW_TSTAMP;
618 	if (sock_flag(sk, SOCK_WIFI_STATUS))
619 		*tx_flags |= SKBTX_WIFI_STATUS;
620 }
621 EXPORT_SYMBOL(sock_tx_timestamp);
622 
623 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
624 				       struct msghdr *msg, size_t size)
625 {
626 	struct sock_iocb *si = kiocb_to_siocb(iocb);
627 
628 	si->sock = sock;
629 	si->scm = NULL;
630 	si->msg = msg;
631 	si->size = size;
632 
633 	return sock->ops->sendmsg(iocb, sock, msg, size);
634 }
635 
636 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
637 				 struct msghdr *msg, size_t size)
638 {
639 	int err = security_socket_sendmsg(sock, msg, size);
640 
641 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
642 }
643 
644 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
645 {
646 	struct kiocb iocb;
647 	struct sock_iocb siocb;
648 	int ret;
649 
650 	init_sync_kiocb(&iocb, NULL);
651 	iocb.private = &siocb;
652 	ret = __sock_sendmsg(&iocb, sock, msg, size);
653 	if (-EIOCBQUEUED == ret)
654 		ret = wait_on_sync_kiocb(&iocb);
655 	return ret;
656 }
657 EXPORT_SYMBOL(sock_sendmsg);
658 
659 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
660 {
661 	struct kiocb iocb;
662 	struct sock_iocb siocb;
663 	int ret;
664 
665 	init_sync_kiocb(&iocb, NULL);
666 	iocb.private = &siocb;
667 	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
668 	if (-EIOCBQUEUED == ret)
669 		ret = wait_on_sync_kiocb(&iocb);
670 	return ret;
671 }
672 
673 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
674 		   struct kvec *vec, size_t num, size_t size)
675 {
676 	mm_segment_t oldfs = get_fs();
677 	int result;
678 
679 	set_fs(KERNEL_DS);
680 	/*
681 	 * the following is safe, since for compiler definitions of kvec and
682 	 * iovec are identical, yielding the same in-core layout and alignment
683 	 */
684 	msg->msg_iov = (struct iovec *)vec;
685 	msg->msg_iovlen = num;
686 	result = sock_sendmsg(sock, msg, size);
687 	set_fs(oldfs);
688 	return result;
689 }
690 EXPORT_SYMBOL(kernel_sendmsg);
691 
692 /*
693  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
694  */
695 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
696 	struct sk_buff *skb)
697 {
698 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
699 	struct timespec ts[3];
700 	int empty = 1;
701 	struct skb_shared_hwtstamps *shhwtstamps =
702 		skb_hwtstamps(skb);
703 
704 	/* Race occurred between timestamp enabling and packet
705 	   receiving.  Fill in the current time for now. */
706 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
707 		__net_timestamp(skb);
708 
709 	if (need_software_tstamp) {
710 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
711 			struct timeval tv;
712 			skb_get_timestamp(skb, &tv);
713 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
714 				 sizeof(tv), &tv);
715 		} else {
716 			skb_get_timestampns(skb, &ts[0]);
717 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
718 				 sizeof(ts[0]), &ts[0]);
719 		}
720 	}
721 
722 
723 	memset(ts, 0, sizeof(ts));
724 	if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
725 	    ktime_to_timespec_cond(skb->tstamp, ts + 0))
726 		empty = 0;
727 	if (shhwtstamps) {
728 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
729 		    ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
730 			empty = 0;
731 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
732 		    ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
733 			empty = 0;
734 	}
735 	if (!empty)
736 		put_cmsg(msg, SOL_SOCKET,
737 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
738 }
739 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
740 
741 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
742 	struct sk_buff *skb)
743 {
744 	int ack;
745 
746 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
747 		return;
748 	if (!skb->wifi_acked_valid)
749 		return;
750 
751 	ack = skb->wifi_acked;
752 
753 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
754 }
755 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
756 
757 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
758 				   struct sk_buff *skb)
759 {
760 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
761 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
762 			sizeof(__u32), &skb->dropcount);
763 }
764 
765 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
766 	struct sk_buff *skb)
767 {
768 	sock_recv_timestamp(msg, sk, skb);
769 	sock_recv_drops(msg, sk, skb);
770 }
771 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
772 
773 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
774 				       struct msghdr *msg, size_t size, int flags)
775 {
776 	struct sock_iocb *si = kiocb_to_siocb(iocb);
777 
778 	si->sock = sock;
779 	si->scm = NULL;
780 	si->msg = msg;
781 	si->size = size;
782 	si->flags = flags;
783 
784 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
785 }
786 
787 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
788 				 struct msghdr *msg, size_t size, int flags)
789 {
790 	int err = security_socket_recvmsg(sock, msg, size, flags);
791 
792 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
793 }
794 
795 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
796 		 size_t size, int flags)
797 {
798 	struct kiocb iocb;
799 	struct sock_iocb siocb;
800 	int ret;
801 
802 	init_sync_kiocb(&iocb, NULL);
803 	iocb.private = &siocb;
804 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
805 	if (-EIOCBQUEUED == ret)
806 		ret = wait_on_sync_kiocb(&iocb);
807 	return ret;
808 }
809 EXPORT_SYMBOL(sock_recvmsg);
810 
811 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
812 			      size_t size, int flags)
813 {
814 	struct kiocb iocb;
815 	struct sock_iocb siocb;
816 	int ret;
817 
818 	init_sync_kiocb(&iocb, NULL);
819 	iocb.private = &siocb;
820 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
821 	if (-EIOCBQUEUED == ret)
822 		ret = wait_on_sync_kiocb(&iocb);
823 	return ret;
824 }
825 
826 /**
827  * kernel_recvmsg - Receive a message from a socket (kernel space)
828  * @sock:       The socket to receive the message from
829  * @msg:        Received message
830  * @vec:        Input s/g array for message data
831  * @num:        Size of input s/g array
832  * @size:       Number of bytes to read
833  * @flags:      Message flags (MSG_DONTWAIT, etc...)
834  *
835  * On return the msg structure contains the scatter/gather array passed in the
836  * vec argument. The array is modified so that it consists of the unfilled
837  * portion of the original array.
838  *
839  * The returned value is the total number of bytes received, or an error.
840  */
841 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
842 		   struct kvec *vec, size_t num, size_t size, int flags)
843 {
844 	mm_segment_t oldfs = get_fs();
845 	int result;
846 
847 	set_fs(KERNEL_DS);
848 	/*
849 	 * the following is safe, since for compiler definitions of kvec and
850 	 * iovec are identical, yielding the same in-core layout and alignment
851 	 */
852 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
853 	result = sock_recvmsg(sock, msg, size, flags);
854 	set_fs(oldfs);
855 	return result;
856 }
857 EXPORT_SYMBOL(kernel_recvmsg);
858 
859 static ssize_t sock_sendpage(struct file *file, struct page *page,
860 			     int offset, size_t size, loff_t *ppos, int more)
861 {
862 	struct socket *sock;
863 	int flags;
864 
865 	sock = file->private_data;
866 
867 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
868 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
869 	flags |= more;
870 
871 	return kernel_sendpage(sock, page, offset, size, flags);
872 }
873 
874 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
875 				struct pipe_inode_info *pipe, size_t len,
876 				unsigned int flags)
877 {
878 	struct socket *sock = file->private_data;
879 
880 	if (unlikely(!sock->ops->splice_read))
881 		return -EINVAL;
882 
883 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
884 }
885 
886 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
887 					 struct sock_iocb *siocb)
888 {
889 	if (!is_sync_kiocb(iocb))
890 		BUG();
891 
892 	siocb->kiocb = iocb;
893 	iocb->private = siocb;
894 	return siocb;
895 }
896 
897 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
898 		struct file *file, const struct iovec *iov,
899 		unsigned long nr_segs)
900 {
901 	struct socket *sock = file->private_data;
902 	size_t size = 0;
903 	int i;
904 
905 	for (i = 0; i < nr_segs; i++)
906 		size += iov[i].iov_len;
907 
908 	msg->msg_name = NULL;
909 	msg->msg_namelen = 0;
910 	msg->msg_control = NULL;
911 	msg->msg_controllen = 0;
912 	msg->msg_iov = (struct iovec *)iov;
913 	msg->msg_iovlen = nr_segs;
914 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
915 
916 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
917 }
918 
919 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
920 				unsigned long nr_segs, loff_t pos)
921 {
922 	struct sock_iocb siocb, *x;
923 
924 	if (pos != 0)
925 		return -ESPIPE;
926 
927 	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
928 		return 0;
929 
930 
931 	x = alloc_sock_iocb(iocb, &siocb);
932 	if (!x)
933 		return -ENOMEM;
934 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
935 }
936 
937 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
938 			struct file *file, const struct iovec *iov,
939 			unsigned long nr_segs)
940 {
941 	struct socket *sock = file->private_data;
942 	size_t size = 0;
943 	int i;
944 
945 	for (i = 0; i < nr_segs; i++)
946 		size += iov[i].iov_len;
947 
948 	msg->msg_name = NULL;
949 	msg->msg_namelen = 0;
950 	msg->msg_control = NULL;
951 	msg->msg_controllen = 0;
952 	msg->msg_iov = (struct iovec *)iov;
953 	msg->msg_iovlen = nr_segs;
954 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
955 	if (sock->type == SOCK_SEQPACKET)
956 		msg->msg_flags |= MSG_EOR;
957 
958 	return __sock_sendmsg(iocb, sock, msg, size);
959 }
960 
961 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
962 			  unsigned long nr_segs, loff_t pos)
963 {
964 	struct sock_iocb siocb, *x;
965 
966 	if (pos != 0)
967 		return -ESPIPE;
968 
969 	x = alloc_sock_iocb(iocb, &siocb);
970 	if (!x)
971 		return -ENOMEM;
972 
973 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
974 }
975 
976 /*
977  * Atomic setting of ioctl hooks to avoid race
978  * with module unload.
979  */
980 
981 static DEFINE_MUTEX(br_ioctl_mutex);
982 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
983 
984 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
985 {
986 	mutex_lock(&br_ioctl_mutex);
987 	br_ioctl_hook = hook;
988 	mutex_unlock(&br_ioctl_mutex);
989 }
990 EXPORT_SYMBOL(brioctl_set);
991 
992 static DEFINE_MUTEX(vlan_ioctl_mutex);
993 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
994 
995 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
996 {
997 	mutex_lock(&vlan_ioctl_mutex);
998 	vlan_ioctl_hook = hook;
999 	mutex_unlock(&vlan_ioctl_mutex);
1000 }
1001 EXPORT_SYMBOL(vlan_ioctl_set);
1002 
1003 static DEFINE_MUTEX(dlci_ioctl_mutex);
1004 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1005 
1006 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1007 {
1008 	mutex_lock(&dlci_ioctl_mutex);
1009 	dlci_ioctl_hook = hook;
1010 	mutex_unlock(&dlci_ioctl_mutex);
1011 }
1012 EXPORT_SYMBOL(dlci_ioctl_set);
1013 
1014 static long sock_do_ioctl(struct net *net, struct socket *sock,
1015 				 unsigned int cmd, unsigned long arg)
1016 {
1017 	int err;
1018 	void __user *argp = (void __user *)arg;
1019 
1020 	err = sock->ops->ioctl(sock, cmd, arg);
1021 
1022 	/*
1023 	 * If this ioctl is unknown try to hand it down
1024 	 * to the NIC driver.
1025 	 */
1026 	if (err == -ENOIOCTLCMD)
1027 		err = dev_ioctl(net, cmd, argp);
1028 
1029 	return err;
1030 }
1031 
1032 /*
1033  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1034  *	what to do with it - that's up to the protocol still.
1035  */
1036 
1037 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1038 {
1039 	struct socket *sock;
1040 	struct sock *sk;
1041 	void __user *argp = (void __user *)arg;
1042 	int pid, err;
1043 	struct net *net;
1044 
1045 	sock = file->private_data;
1046 	sk = sock->sk;
1047 	net = sock_net(sk);
1048 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1049 		err = dev_ioctl(net, cmd, argp);
1050 	} else
1051 #ifdef CONFIG_WEXT_CORE
1052 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1053 		err = dev_ioctl(net, cmd, argp);
1054 	} else
1055 #endif
1056 		switch (cmd) {
1057 		case FIOSETOWN:
1058 		case SIOCSPGRP:
1059 			err = -EFAULT;
1060 			if (get_user(pid, (int __user *)argp))
1061 				break;
1062 			err = f_setown(sock->file, pid, 1);
1063 			break;
1064 		case FIOGETOWN:
1065 		case SIOCGPGRP:
1066 			err = put_user(f_getown(sock->file),
1067 				       (int __user *)argp);
1068 			break;
1069 		case SIOCGIFBR:
1070 		case SIOCSIFBR:
1071 		case SIOCBRADDBR:
1072 		case SIOCBRDELBR:
1073 			err = -ENOPKG;
1074 			if (!br_ioctl_hook)
1075 				request_module("bridge");
1076 
1077 			mutex_lock(&br_ioctl_mutex);
1078 			if (br_ioctl_hook)
1079 				err = br_ioctl_hook(net, cmd, argp);
1080 			mutex_unlock(&br_ioctl_mutex);
1081 			break;
1082 		case SIOCGIFVLAN:
1083 		case SIOCSIFVLAN:
1084 			err = -ENOPKG;
1085 			if (!vlan_ioctl_hook)
1086 				request_module("8021q");
1087 
1088 			mutex_lock(&vlan_ioctl_mutex);
1089 			if (vlan_ioctl_hook)
1090 				err = vlan_ioctl_hook(net, argp);
1091 			mutex_unlock(&vlan_ioctl_mutex);
1092 			break;
1093 		case SIOCADDDLCI:
1094 		case SIOCDELDLCI:
1095 			err = -ENOPKG;
1096 			if (!dlci_ioctl_hook)
1097 				request_module("dlci");
1098 
1099 			mutex_lock(&dlci_ioctl_mutex);
1100 			if (dlci_ioctl_hook)
1101 				err = dlci_ioctl_hook(cmd, argp);
1102 			mutex_unlock(&dlci_ioctl_mutex);
1103 			break;
1104 		default:
1105 			err = sock_do_ioctl(net, sock, cmd, arg);
1106 			break;
1107 		}
1108 	return err;
1109 }
1110 
1111 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1112 {
1113 	int err;
1114 	struct socket *sock = NULL;
1115 
1116 	err = security_socket_create(family, type, protocol, 1);
1117 	if (err)
1118 		goto out;
1119 
1120 	sock = sock_alloc();
1121 	if (!sock) {
1122 		err = -ENOMEM;
1123 		goto out;
1124 	}
1125 
1126 	sock->type = type;
1127 	err = security_socket_post_create(sock, family, type, protocol, 1);
1128 	if (err)
1129 		goto out_release;
1130 
1131 out:
1132 	*res = sock;
1133 	return err;
1134 out_release:
1135 	sock_release(sock);
1136 	sock = NULL;
1137 	goto out;
1138 }
1139 EXPORT_SYMBOL(sock_create_lite);
1140 
1141 /* No kernel lock held - perfect */
1142 static unsigned int sock_poll(struct file *file, poll_table *wait)
1143 {
1144 	unsigned int busy_flag = 0;
1145 	struct socket *sock;
1146 
1147 	/*
1148 	 *      We can't return errors to poll, so it's either yes or no.
1149 	 */
1150 	sock = file->private_data;
1151 
1152 	if (sk_can_busy_loop(sock->sk)) {
1153 		/* this socket can poll_ll so tell the system call */
1154 		busy_flag = POLL_BUSY_LOOP;
1155 
1156 		/* once, only if requested by syscall */
1157 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1158 			sk_busy_loop(sock->sk, 1);
1159 	}
1160 
1161 	return busy_flag | sock->ops->poll(file, sock, wait);
1162 }
1163 
1164 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1165 {
1166 	struct socket *sock = file->private_data;
1167 
1168 	return sock->ops->mmap(file, sock, vma);
1169 }
1170 
1171 static int sock_close(struct inode *inode, struct file *filp)
1172 {
1173 	sock_release(SOCKET_I(inode));
1174 	return 0;
1175 }
1176 
1177 /*
1178  *	Update the socket async list
1179  *
1180  *	Fasync_list locking strategy.
1181  *
1182  *	1. fasync_list is modified only under process context socket lock
1183  *	   i.e. under semaphore.
1184  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1185  *	   or under socket lock
1186  */
1187 
1188 static int sock_fasync(int fd, struct file *filp, int on)
1189 {
1190 	struct socket *sock = filp->private_data;
1191 	struct sock *sk = sock->sk;
1192 	struct socket_wq *wq;
1193 
1194 	if (sk == NULL)
1195 		return -EINVAL;
1196 
1197 	lock_sock(sk);
1198 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1199 	fasync_helper(fd, filp, on, &wq->fasync_list);
1200 
1201 	if (!wq->fasync_list)
1202 		sock_reset_flag(sk, SOCK_FASYNC);
1203 	else
1204 		sock_set_flag(sk, SOCK_FASYNC);
1205 
1206 	release_sock(sk);
1207 	return 0;
1208 }
1209 
1210 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1211 
1212 int sock_wake_async(struct socket *sock, int how, int band)
1213 {
1214 	struct socket_wq *wq;
1215 
1216 	if (!sock)
1217 		return -1;
1218 	rcu_read_lock();
1219 	wq = rcu_dereference(sock->wq);
1220 	if (!wq || !wq->fasync_list) {
1221 		rcu_read_unlock();
1222 		return -1;
1223 	}
1224 	switch (how) {
1225 	case SOCK_WAKE_WAITD:
1226 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1227 			break;
1228 		goto call_kill;
1229 	case SOCK_WAKE_SPACE:
1230 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1231 			break;
1232 		/* fall through */
1233 	case SOCK_WAKE_IO:
1234 call_kill:
1235 		kill_fasync(&wq->fasync_list, SIGIO, band);
1236 		break;
1237 	case SOCK_WAKE_URG:
1238 		kill_fasync(&wq->fasync_list, SIGURG, band);
1239 	}
1240 	rcu_read_unlock();
1241 	return 0;
1242 }
1243 EXPORT_SYMBOL(sock_wake_async);
1244 
1245 int __sock_create(struct net *net, int family, int type, int protocol,
1246 			 struct socket **res, int kern)
1247 {
1248 	int err;
1249 	struct socket *sock;
1250 	const struct net_proto_family *pf;
1251 
1252 	/*
1253 	 *      Check protocol is in range
1254 	 */
1255 	if (family < 0 || family >= NPROTO)
1256 		return -EAFNOSUPPORT;
1257 	if (type < 0 || type >= SOCK_MAX)
1258 		return -EINVAL;
1259 
1260 	/* Compatibility.
1261 
1262 	   This uglymoron is moved from INET layer to here to avoid
1263 	   deadlock in module load.
1264 	 */
1265 	if (family == PF_INET && type == SOCK_PACKET) {
1266 		static int warned;
1267 		if (!warned) {
1268 			warned = 1;
1269 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1270 			       current->comm);
1271 		}
1272 		family = PF_PACKET;
1273 	}
1274 
1275 	err = security_socket_create(family, type, protocol, kern);
1276 	if (err)
1277 		return err;
1278 
1279 	/*
1280 	 *	Allocate the socket and allow the family to set things up. if
1281 	 *	the protocol is 0, the family is instructed to select an appropriate
1282 	 *	default.
1283 	 */
1284 	sock = sock_alloc();
1285 	if (!sock) {
1286 		net_warn_ratelimited("socket: no more sockets\n");
1287 		return -ENFILE;	/* Not exactly a match, but its the
1288 				   closest posix thing */
1289 	}
1290 
1291 	sock->type = type;
1292 
1293 #ifdef CONFIG_MODULES
1294 	/* Attempt to load a protocol module if the find failed.
1295 	 *
1296 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1297 	 * requested real, full-featured networking support upon configuration.
1298 	 * Otherwise module support will break!
1299 	 */
1300 	if (rcu_access_pointer(net_families[family]) == NULL)
1301 		request_module("net-pf-%d", family);
1302 #endif
1303 
1304 	rcu_read_lock();
1305 	pf = rcu_dereference(net_families[family]);
1306 	err = -EAFNOSUPPORT;
1307 	if (!pf)
1308 		goto out_release;
1309 
1310 	/*
1311 	 * We will call the ->create function, that possibly is in a loadable
1312 	 * module, so we have to bump that loadable module refcnt first.
1313 	 */
1314 	if (!try_module_get(pf->owner))
1315 		goto out_release;
1316 
1317 	/* Now protected by module ref count */
1318 	rcu_read_unlock();
1319 
1320 	err = pf->create(net, sock, protocol, kern);
1321 	if (err < 0)
1322 		goto out_module_put;
1323 
1324 	/*
1325 	 * Now to bump the refcnt of the [loadable] module that owns this
1326 	 * socket at sock_release time we decrement its refcnt.
1327 	 */
1328 	if (!try_module_get(sock->ops->owner))
1329 		goto out_module_busy;
1330 
1331 	/*
1332 	 * Now that we're done with the ->create function, the [loadable]
1333 	 * module can have its refcnt decremented
1334 	 */
1335 	module_put(pf->owner);
1336 	err = security_socket_post_create(sock, family, type, protocol, kern);
1337 	if (err)
1338 		goto out_sock_release;
1339 	*res = sock;
1340 
1341 	return 0;
1342 
1343 out_module_busy:
1344 	err = -EAFNOSUPPORT;
1345 out_module_put:
1346 	sock->ops = NULL;
1347 	module_put(pf->owner);
1348 out_sock_release:
1349 	sock_release(sock);
1350 	return err;
1351 
1352 out_release:
1353 	rcu_read_unlock();
1354 	goto out_sock_release;
1355 }
1356 EXPORT_SYMBOL(__sock_create);
1357 
1358 int sock_create(int family, int type, int protocol, struct socket **res)
1359 {
1360 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1361 }
1362 EXPORT_SYMBOL(sock_create);
1363 
1364 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1365 {
1366 	return __sock_create(&init_net, family, type, protocol, res, 1);
1367 }
1368 EXPORT_SYMBOL(sock_create_kern);
1369 
1370 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1371 {
1372 	int retval;
1373 	struct socket *sock;
1374 	int flags;
1375 
1376 	/* Check the SOCK_* constants for consistency.  */
1377 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1378 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1379 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1380 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1381 
1382 	flags = type & ~SOCK_TYPE_MASK;
1383 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1384 		return -EINVAL;
1385 	type &= SOCK_TYPE_MASK;
1386 
1387 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1388 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1389 
1390 	retval = sock_create(family, type, protocol, &sock);
1391 	if (retval < 0)
1392 		goto out;
1393 
1394 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1395 	if (retval < 0)
1396 		goto out_release;
1397 
1398 out:
1399 	/* It may be already another descriptor 8) Not kernel problem. */
1400 	return retval;
1401 
1402 out_release:
1403 	sock_release(sock);
1404 	return retval;
1405 }
1406 
1407 /*
1408  *	Create a pair of connected sockets.
1409  */
1410 
1411 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1412 		int __user *, usockvec)
1413 {
1414 	struct socket *sock1, *sock2;
1415 	int fd1, fd2, err;
1416 	struct file *newfile1, *newfile2;
1417 	int flags;
1418 
1419 	flags = type & ~SOCK_TYPE_MASK;
1420 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1421 		return -EINVAL;
1422 	type &= SOCK_TYPE_MASK;
1423 
1424 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1425 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1426 
1427 	/*
1428 	 * Obtain the first socket and check if the underlying protocol
1429 	 * supports the socketpair call.
1430 	 */
1431 
1432 	err = sock_create(family, type, protocol, &sock1);
1433 	if (err < 0)
1434 		goto out;
1435 
1436 	err = sock_create(family, type, protocol, &sock2);
1437 	if (err < 0)
1438 		goto out_release_1;
1439 
1440 	err = sock1->ops->socketpair(sock1, sock2);
1441 	if (err < 0)
1442 		goto out_release_both;
1443 
1444 	fd1 = get_unused_fd_flags(flags);
1445 	if (unlikely(fd1 < 0)) {
1446 		err = fd1;
1447 		goto out_release_both;
1448 	}
1449 
1450 	fd2 = get_unused_fd_flags(flags);
1451 	if (unlikely(fd2 < 0)) {
1452 		err = fd2;
1453 		goto out_put_unused_1;
1454 	}
1455 
1456 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1457 	if (unlikely(IS_ERR(newfile1))) {
1458 		err = PTR_ERR(newfile1);
1459 		goto out_put_unused_both;
1460 	}
1461 
1462 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1463 	if (IS_ERR(newfile2)) {
1464 		err = PTR_ERR(newfile2);
1465 		goto out_fput_1;
1466 	}
1467 
1468 	err = put_user(fd1, &usockvec[0]);
1469 	if (err)
1470 		goto out_fput_both;
1471 
1472 	err = put_user(fd2, &usockvec[1]);
1473 	if (err)
1474 		goto out_fput_both;
1475 
1476 	audit_fd_pair(fd1, fd2);
1477 
1478 	fd_install(fd1, newfile1);
1479 	fd_install(fd2, newfile2);
1480 	/* fd1 and fd2 may be already another descriptors.
1481 	 * Not kernel problem.
1482 	 */
1483 
1484 	return 0;
1485 
1486 out_fput_both:
1487 	fput(newfile2);
1488 	fput(newfile1);
1489 	put_unused_fd(fd2);
1490 	put_unused_fd(fd1);
1491 	goto out;
1492 
1493 out_fput_1:
1494 	fput(newfile1);
1495 	put_unused_fd(fd2);
1496 	put_unused_fd(fd1);
1497 	sock_release(sock2);
1498 	goto out;
1499 
1500 out_put_unused_both:
1501 	put_unused_fd(fd2);
1502 out_put_unused_1:
1503 	put_unused_fd(fd1);
1504 out_release_both:
1505 	sock_release(sock2);
1506 out_release_1:
1507 	sock_release(sock1);
1508 out:
1509 	return err;
1510 }
1511 
1512 /*
1513  *	Bind a name to a socket. Nothing much to do here since it's
1514  *	the protocol's responsibility to handle the local address.
1515  *
1516  *	We move the socket address to kernel space before we call
1517  *	the protocol layer (having also checked the address is ok).
1518  */
1519 
1520 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1521 {
1522 	struct socket *sock;
1523 	struct sockaddr_storage address;
1524 	int err, fput_needed;
1525 
1526 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1527 	if (sock) {
1528 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1529 		if (err >= 0) {
1530 			err = security_socket_bind(sock,
1531 						   (struct sockaddr *)&address,
1532 						   addrlen);
1533 			if (!err)
1534 				err = sock->ops->bind(sock,
1535 						      (struct sockaddr *)
1536 						      &address, addrlen);
1537 		}
1538 		fput_light(sock->file, fput_needed);
1539 	}
1540 	return err;
1541 }
1542 
1543 /*
1544  *	Perform a listen. Basically, we allow the protocol to do anything
1545  *	necessary for a listen, and if that works, we mark the socket as
1546  *	ready for listening.
1547  */
1548 
1549 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1550 {
1551 	struct socket *sock;
1552 	int err, fput_needed;
1553 	int somaxconn;
1554 
1555 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1556 	if (sock) {
1557 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1558 		if ((unsigned int)backlog > somaxconn)
1559 			backlog = somaxconn;
1560 
1561 		err = security_socket_listen(sock, backlog);
1562 		if (!err)
1563 			err = sock->ops->listen(sock, backlog);
1564 
1565 		fput_light(sock->file, fput_needed);
1566 	}
1567 	return err;
1568 }
1569 
1570 /*
1571  *	For accept, we attempt to create a new socket, set up the link
1572  *	with the client, wake up the client, then return the new
1573  *	connected fd. We collect the address of the connector in kernel
1574  *	space and move it to user at the very end. This is unclean because
1575  *	we open the socket then return an error.
1576  *
1577  *	1003.1g adds the ability to recvmsg() to query connection pending
1578  *	status to recvmsg. We need to add that support in a way thats
1579  *	clean when we restucture accept also.
1580  */
1581 
1582 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1583 		int __user *, upeer_addrlen, int, flags)
1584 {
1585 	struct socket *sock, *newsock;
1586 	struct file *newfile;
1587 	int err, len, newfd, fput_needed;
1588 	struct sockaddr_storage address;
1589 
1590 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1591 		return -EINVAL;
1592 
1593 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1594 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1595 
1596 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1597 	if (!sock)
1598 		goto out;
1599 
1600 	err = -ENFILE;
1601 	newsock = sock_alloc();
1602 	if (!newsock)
1603 		goto out_put;
1604 
1605 	newsock->type = sock->type;
1606 	newsock->ops = sock->ops;
1607 
1608 	/*
1609 	 * We don't need try_module_get here, as the listening socket (sock)
1610 	 * has the protocol module (sock->ops->owner) held.
1611 	 */
1612 	__module_get(newsock->ops->owner);
1613 
1614 	newfd = get_unused_fd_flags(flags);
1615 	if (unlikely(newfd < 0)) {
1616 		err = newfd;
1617 		sock_release(newsock);
1618 		goto out_put;
1619 	}
1620 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1621 	if (unlikely(IS_ERR(newfile))) {
1622 		err = PTR_ERR(newfile);
1623 		put_unused_fd(newfd);
1624 		sock_release(newsock);
1625 		goto out_put;
1626 	}
1627 
1628 	err = security_socket_accept(sock, newsock);
1629 	if (err)
1630 		goto out_fd;
1631 
1632 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1633 	if (err < 0)
1634 		goto out_fd;
1635 
1636 	if (upeer_sockaddr) {
1637 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1638 					  &len, 2) < 0) {
1639 			err = -ECONNABORTED;
1640 			goto out_fd;
1641 		}
1642 		err = move_addr_to_user(&address,
1643 					len, upeer_sockaddr, upeer_addrlen);
1644 		if (err < 0)
1645 			goto out_fd;
1646 	}
1647 
1648 	/* File flags are not inherited via accept() unlike another OSes. */
1649 
1650 	fd_install(newfd, newfile);
1651 	err = newfd;
1652 
1653 out_put:
1654 	fput_light(sock->file, fput_needed);
1655 out:
1656 	return err;
1657 out_fd:
1658 	fput(newfile);
1659 	put_unused_fd(newfd);
1660 	goto out_put;
1661 }
1662 
1663 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1664 		int __user *, upeer_addrlen)
1665 {
1666 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1667 }
1668 
1669 /*
1670  *	Attempt to connect to a socket with the server address.  The address
1671  *	is in user space so we verify it is OK and move it to kernel space.
1672  *
1673  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1674  *	break bindings
1675  *
1676  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1677  *	other SEQPACKET protocols that take time to connect() as it doesn't
1678  *	include the -EINPROGRESS status for such sockets.
1679  */
1680 
1681 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1682 		int, addrlen)
1683 {
1684 	struct socket *sock;
1685 	struct sockaddr_storage address;
1686 	int err, fput_needed;
1687 
1688 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1689 	if (!sock)
1690 		goto out;
1691 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1692 	if (err < 0)
1693 		goto out_put;
1694 
1695 	err =
1696 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1697 	if (err)
1698 		goto out_put;
1699 
1700 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1701 				 sock->file->f_flags);
1702 out_put:
1703 	fput_light(sock->file, fput_needed);
1704 out:
1705 	return err;
1706 }
1707 
1708 /*
1709  *	Get the local address ('name') of a socket object. Move the obtained
1710  *	name to user space.
1711  */
1712 
1713 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1714 		int __user *, usockaddr_len)
1715 {
1716 	struct socket *sock;
1717 	struct sockaddr_storage address;
1718 	int len, err, fput_needed;
1719 
1720 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1721 	if (!sock)
1722 		goto out;
1723 
1724 	err = security_socket_getsockname(sock);
1725 	if (err)
1726 		goto out_put;
1727 
1728 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1729 	if (err)
1730 		goto out_put;
1731 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1732 
1733 out_put:
1734 	fput_light(sock->file, fput_needed);
1735 out:
1736 	return err;
1737 }
1738 
1739 /*
1740  *	Get the remote address ('name') of a socket object. Move the obtained
1741  *	name to user space.
1742  */
1743 
1744 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1745 		int __user *, usockaddr_len)
1746 {
1747 	struct socket *sock;
1748 	struct sockaddr_storage address;
1749 	int len, err, fput_needed;
1750 
1751 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1752 	if (sock != NULL) {
1753 		err = security_socket_getpeername(sock);
1754 		if (err) {
1755 			fput_light(sock->file, fput_needed);
1756 			return err;
1757 		}
1758 
1759 		err =
1760 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1761 				       1);
1762 		if (!err)
1763 			err = move_addr_to_user(&address, len, usockaddr,
1764 						usockaddr_len);
1765 		fput_light(sock->file, fput_needed);
1766 	}
1767 	return err;
1768 }
1769 
1770 /*
1771  *	Send a datagram to a given address. We move the address into kernel
1772  *	space and check the user space data area is readable before invoking
1773  *	the protocol.
1774  */
1775 
1776 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1777 		unsigned int, flags, struct sockaddr __user *, addr,
1778 		int, addr_len)
1779 {
1780 	struct socket *sock;
1781 	struct sockaddr_storage address;
1782 	int err;
1783 	struct msghdr msg;
1784 	struct iovec iov;
1785 	int fput_needed;
1786 
1787 	if (len > INT_MAX)
1788 		len = INT_MAX;
1789 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1790 	if (!sock)
1791 		goto out;
1792 
1793 	iov.iov_base = buff;
1794 	iov.iov_len = len;
1795 	msg.msg_name = NULL;
1796 	msg.msg_iov = &iov;
1797 	msg.msg_iovlen = 1;
1798 	msg.msg_control = NULL;
1799 	msg.msg_controllen = 0;
1800 	msg.msg_namelen = 0;
1801 	if (addr) {
1802 		err = move_addr_to_kernel(addr, addr_len, &address);
1803 		if (err < 0)
1804 			goto out_put;
1805 		msg.msg_name = (struct sockaddr *)&address;
1806 		msg.msg_namelen = addr_len;
1807 	}
1808 	if (sock->file->f_flags & O_NONBLOCK)
1809 		flags |= MSG_DONTWAIT;
1810 	msg.msg_flags = flags;
1811 	err = sock_sendmsg(sock, &msg, len);
1812 
1813 out_put:
1814 	fput_light(sock->file, fput_needed);
1815 out:
1816 	return err;
1817 }
1818 
1819 /*
1820  *	Send a datagram down a socket.
1821  */
1822 
1823 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1824 		unsigned int, flags)
1825 {
1826 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1827 }
1828 
1829 /*
1830  *	Receive a frame from the socket and optionally record the address of the
1831  *	sender. We verify the buffers are writable and if needed move the
1832  *	sender address from kernel to user space.
1833  */
1834 
1835 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1836 		unsigned int, flags, struct sockaddr __user *, addr,
1837 		int __user *, addr_len)
1838 {
1839 	struct socket *sock;
1840 	struct iovec iov;
1841 	struct msghdr msg;
1842 	struct sockaddr_storage address;
1843 	int err, err2;
1844 	int fput_needed;
1845 
1846 	if (size > INT_MAX)
1847 		size = INT_MAX;
1848 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1849 	if (!sock)
1850 		goto out;
1851 
1852 	msg.msg_control = NULL;
1853 	msg.msg_controllen = 0;
1854 	msg.msg_iovlen = 1;
1855 	msg.msg_iov = &iov;
1856 	iov.iov_len = size;
1857 	iov.iov_base = ubuf;
1858 	/* Save some cycles and don't copy the address if not needed */
1859 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1860 	/* We assume all kernel code knows the size of sockaddr_storage */
1861 	msg.msg_namelen = 0;
1862 	if (sock->file->f_flags & O_NONBLOCK)
1863 		flags |= MSG_DONTWAIT;
1864 	err = sock_recvmsg(sock, &msg, size, flags);
1865 
1866 	if (err >= 0 && addr != NULL) {
1867 		err2 = move_addr_to_user(&address,
1868 					 msg.msg_namelen, addr, addr_len);
1869 		if (err2 < 0)
1870 			err = err2;
1871 	}
1872 
1873 	fput_light(sock->file, fput_needed);
1874 out:
1875 	return err;
1876 }
1877 
1878 /*
1879  *	Receive a datagram from a socket.
1880  */
1881 
1882 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1883 			 unsigned int flags)
1884 {
1885 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1886 }
1887 
1888 /*
1889  *	Set a socket option. Because we don't know the option lengths we have
1890  *	to pass the user mode parameter for the protocols to sort out.
1891  */
1892 
1893 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1894 		char __user *, optval, int, optlen)
1895 {
1896 	int err, fput_needed;
1897 	struct socket *sock;
1898 
1899 	if (optlen < 0)
1900 		return -EINVAL;
1901 
1902 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1903 	if (sock != NULL) {
1904 		err = security_socket_setsockopt(sock, level, optname);
1905 		if (err)
1906 			goto out_put;
1907 
1908 		if (level == SOL_SOCKET)
1909 			err =
1910 			    sock_setsockopt(sock, level, optname, optval,
1911 					    optlen);
1912 		else
1913 			err =
1914 			    sock->ops->setsockopt(sock, level, optname, optval,
1915 						  optlen);
1916 out_put:
1917 		fput_light(sock->file, fput_needed);
1918 	}
1919 	return err;
1920 }
1921 
1922 /*
1923  *	Get a socket option. Because we don't know the option lengths we have
1924  *	to pass a user mode parameter for the protocols to sort out.
1925  */
1926 
1927 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1928 		char __user *, optval, int __user *, optlen)
1929 {
1930 	int err, fput_needed;
1931 	struct socket *sock;
1932 
1933 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1934 	if (sock != NULL) {
1935 		err = security_socket_getsockopt(sock, level, optname);
1936 		if (err)
1937 			goto out_put;
1938 
1939 		if (level == SOL_SOCKET)
1940 			err =
1941 			    sock_getsockopt(sock, level, optname, optval,
1942 					    optlen);
1943 		else
1944 			err =
1945 			    sock->ops->getsockopt(sock, level, optname, optval,
1946 						  optlen);
1947 out_put:
1948 		fput_light(sock->file, fput_needed);
1949 	}
1950 	return err;
1951 }
1952 
1953 /*
1954  *	Shutdown a socket.
1955  */
1956 
1957 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1958 {
1959 	int err, fput_needed;
1960 	struct socket *sock;
1961 
1962 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1963 	if (sock != NULL) {
1964 		err = security_socket_shutdown(sock, how);
1965 		if (!err)
1966 			err = sock->ops->shutdown(sock, how);
1967 		fput_light(sock->file, fput_needed);
1968 	}
1969 	return err;
1970 }
1971 
1972 /* A couple of helpful macros for getting the address of the 32/64 bit
1973  * fields which are the same type (int / unsigned) on our platforms.
1974  */
1975 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1976 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1977 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1978 
1979 struct used_address {
1980 	struct sockaddr_storage name;
1981 	unsigned int name_len;
1982 };
1983 
1984 static int copy_msghdr_from_user(struct msghdr *kmsg,
1985 				 struct msghdr __user *umsg)
1986 {
1987 	if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1988 		return -EFAULT;
1989 
1990 	if (kmsg->msg_namelen < 0)
1991 		return -EINVAL;
1992 
1993 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1994 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1995 	return 0;
1996 }
1997 
1998 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1999 			 struct msghdr *msg_sys, unsigned int flags,
2000 			 struct used_address *used_address)
2001 {
2002 	struct compat_msghdr __user *msg_compat =
2003 	    (struct compat_msghdr __user *)msg;
2004 	struct sockaddr_storage address;
2005 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2006 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2007 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
2008 	/* 20 is size of ipv6_pktinfo */
2009 	unsigned char *ctl_buf = ctl;
2010 	int err, ctl_len, total_len;
2011 
2012 	err = -EFAULT;
2013 	if (MSG_CMSG_COMPAT & flags) {
2014 		if (get_compat_msghdr(msg_sys, msg_compat))
2015 			return -EFAULT;
2016 	} else {
2017 		err = copy_msghdr_from_user(msg_sys, msg);
2018 		if (err)
2019 			return err;
2020 	}
2021 
2022 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2023 		err = -EMSGSIZE;
2024 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2025 			goto out;
2026 		err = -ENOMEM;
2027 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2028 			      GFP_KERNEL);
2029 		if (!iov)
2030 			goto out;
2031 	}
2032 
2033 	/* This will also move the address data into kernel space */
2034 	if (MSG_CMSG_COMPAT & flags) {
2035 		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2036 	} else
2037 		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2038 	if (err < 0)
2039 		goto out_freeiov;
2040 	total_len = err;
2041 
2042 	err = -ENOBUFS;
2043 
2044 	if (msg_sys->msg_controllen > INT_MAX)
2045 		goto out_freeiov;
2046 	ctl_len = msg_sys->msg_controllen;
2047 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2048 		err =
2049 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2050 						     sizeof(ctl));
2051 		if (err)
2052 			goto out_freeiov;
2053 		ctl_buf = msg_sys->msg_control;
2054 		ctl_len = msg_sys->msg_controllen;
2055 	} else if (ctl_len) {
2056 		if (ctl_len > sizeof(ctl)) {
2057 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2058 			if (ctl_buf == NULL)
2059 				goto out_freeiov;
2060 		}
2061 		err = -EFAULT;
2062 		/*
2063 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2064 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2065 		 * checking falls down on this.
2066 		 */
2067 		if (copy_from_user(ctl_buf,
2068 				   (void __user __force *)msg_sys->msg_control,
2069 				   ctl_len))
2070 			goto out_freectl;
2071 		msg_sys->msg_control = ctl_buf;
2072 	}
2073 	msg_sys->msg_flags = flags;
2074 
2075 	if (sock->file->f_flags & O_NONBLOCK)
2076 		msg_sys->msg_flags |= MSG_DONTWAIT;
2077 	/*
2078 	 * If this is sendmmsg() and current destination address is same as
2079 	 * previously succeeded address, omit asking LSM's decision.
2080 	 * used_address->name_len is initialized to UINT_MAX so that the first
2081 	 * destination address never matches.
2082 	 */
2083 	if (used_address && msg_sys->msg_name &&
2084 	    used_address->name_len == msg_sys->msg_namelen &&
2085 	    !memcmp(&used_address->name, msg_sys->msg_name,
2086 		    used_address->name_len)) {
2087 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2088 		goto out_freectl;
2089 	}
2090 	err = sock_sendmsg(sock, msg_sys, total_len);
2091 	/*
2092 	 * If this is sendmmsg() and sending to current destination address was
2093 	 * successful, remember it.
2094 	 */
2095 	if (used_address && err >= 0) {
2096 		used_address->name_len = msg_sys->msg_namelen;
2097 		if (msg_sys->msg_name)
2098 			memcpy(&used_address->name, msg_sys->msg_name,
2099 			       used_address->name_len);
2100 	}
2101 
2102 out_freectl:
2103 	if (ctl_buf != ctl)
2104 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2105 out_freeiov:
2106 	if (iov != iovstack)
2107 		kfree(iov);
2108 out:
2109 	return err;
2110 }
2111 
2112 /*
2113  *	BSD sendmsg interface
2114  */
2115 
2116 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2117 {
2118 	int fput_needed, err;
2119 	struct msghdr msg_sys;
2120 	struct socket *sock;
2121 
2122 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2123 	if (!sock)
2124 		goto out;
2125 
2126 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2127 
2128 	fput_light(sock->file, fput_needed);
2129 out:
2130 	return err;
2131 }
2132 
2133 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2134 {
2135 	if (flags & MSG_CMSG_COMPAT)
2136 		return -EINVAL;
2137 	return __sys_sendmsg(fd, msg, flags);
2138 }
2139 
2140 /*
2141  *	Linux sendmmsg interface
2142  */
2143 
2144 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2145 		   unsigned int flags)
2146 {
2147 	int fput_needed, err, datagrams;
2148 	struct socket *sock;
2149 	struct mmsghdr __user *entry;
2150 	struct compat_mmsghdr __user *compat_entry;
2151 	struct msghdr msg_sys;
2152 	struct used_address used_address;
2153 
2154 	if (vlen > UIO_MAXIOV)
2155 		vlen = UIO_MAXIOV;
2156 
2157 	datagrams = 0;
2158 
2159 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2160 	if (!sock)
2161 		return err;
2162 
2163 	used_address.name_len = UINT_MAX;
2164 	entry = mmsg;
2165 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2166 	err = 0;
2167 
2168 	while (datagrams < vlen) {
2169 		if (MSG_CMSG_COMPAT & flags) {
2170 			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2171 					     &msg_sys, flags, &used_address);
2172 			if (err < 0)
2173 				break;
2174 			err = __put_user(err, &compat_entry->msg_len);
2175 			++compat_entry;
2176 		} else {
2177 			err = ___sys_sendmsg(sock,
2178 					     (struct msghdr __user *)entry,
2179 					     &msg_sys, flags, &used_address);
2180 			if (err < 0)
2181 				break;
2182 			err = put_user(err, &entry->msg_len);
2183 			++entry;
2184 		}
2185 
2186 		if (err)
2187 			break;
2188 		++datagrams;
2189 	}
2190 
2191 	fput_light(sock->file, fput_needed);
2192 
2193 	/* We only return an error if no datagrams were able to be sent */
2194 	if (datagrams != 0)
2195 		return datagrams;
2196 
2197 	return err;
2198 }
2199 
2200 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2201 		unsigned int, vlen, unsigned int, flags)
2202 {
2203 	if (flags & MSG_CMSG_COMPAT)
2204 		return -EINVAL;
2205 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2206 }
2207 
2208 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2209 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2210 {
2211 	struct compat_msghdr __user *msg_compat =
2212 	    (struct compat_msghdr __user *)msg;
2213 	struct iovec iovstack[UIO_FASTIOV];
2214 	struct iovec *iov = iovstack;
2215 	unsigned long cmsg_ptr;
2216 	int err, total_len, len;
2217 
2218 	/* kernel mode address */
2219 	struct sockaddr_storage addr;
2220 
2221 	/* user mode address pointers */
2222 	struct sockaddr __user *uaddr;
2223 	int __user *uaddr_len;
2224 
2225 	if (MSG_CMSG_COMPAT & flags) {
2226 		if (get_compat_msghdr(msg_sys, msg_compat))
2227 			return -EFAULT;
2228 	} else {
2229 		err = copy_msghdr_from_user(msg_sys, msg);
2230 		if (err)
2231 			return err;
2232 	}
2233 
2234 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2235 		err = -EMSGSIZE;
2236 		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2237 			goto out;
2238 		err = -ENOMEM;
2239 		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2240 			      GFP_KERNEL);
2241 		if (!iov)
2242 			goto out;
2243 	}
2244 
2245 	/* Save the user-mode address (verify_iovec will change the
2246 	 * kernel msghdr to use the kernel address space)
2247 	 */
2248 	uaddr = (__force void __user *)msg_sys->msg_name;
2249 	uaddr_len = COMPAT_NAMELEN(msg);
2250 	if (MSG_CMSG_COMPAT & flags)
2251 		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2252 	else
2253 		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2254 	if (err < 0)
2255 		goto out_freeiov;
2256 	total_len = err;
2257 
2258 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2259 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2260 
2261 	/* We assume all kernel code knows the size of sockaddr_storage */
2262 	msg_sys->msg_namelen = 0;
2263 
2264 	if (sock->file->f_flags & O_NONBLOCK)
2265 		flags |= MSG_DONTWAIT;
2266 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2267 							  total_len, flags);
2268 	if (err < 0)
2269 		goto out_freeiov;
2270 	len = err;
2271 
2272 	if (uaddr != NULL) {
2273 		err = move_addr_to_user(&addr,
2274 					msg_sys->msg_namelen, uaddr,
2275 					uaddr_len);
2276 		if (err < 0)
2277 			goto out_freeiov;
2278 	}
2279 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2280 			 COMPAT_FLAGS(msg));
2281 	if (err)
2282 		goto out_freeiov;
2283 	if (MSG_CMSG_COMPAT & flags)
2284 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2285 				 &msg_compat->msg_controllen);
2286 	else
2287 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2288 				 &msg->msg_controllen);
2289 	if (err)
2290 		goto out_freeiov;
2291 	err = len;
2292 
2293 out_freeiov:
2294 	if (iov != iovstack)
2295 		kfree(iov);
2296 out:
2297 	return err;
2298 }
2299 
2300 /*
2301  *	BSD recvmsg interface
2302  */
2303 
2304 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2305 {
2306 	int fput_needed, err;
2307 	struct msghdr msg_sys;
2308 	struct socket *sock;
2309 
2310 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2311 	if (!sock)
2312 		goto out;
2313 
2314 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2315 
2316 	fput_light(sock->file, fput_needed);
2317 out:
2318 	return err;
2319 }
2320 
2321 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2322 		unsigned int, flags)
2323 {
2324 	if (flags & MSG_CMSG_COMPAT)
2325 		return -EINVAL;
2326 	return __sys_recvmsg(fd, msg, flags);
2327 }
2328 
2329 /*
2330  *     Linux recvmmsg interface
2331  */
2332 
2333 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2334 		   unsigned int flags, struct timespec *timeout)
2335 {
2336 	int fput_needed, err, datagrams;
2337 	struct socket *sock;
2338 	struct mmsghdr __user *entry;
2339 	struct compat_mmsghdr __user *compat_entry;
2340 	struct msghdr msg_sys;
2341 	struct timespec end_time;
2342 
2343 	if (timeout &&
2344 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2345 				    timeout->tv_nsec))
2346 		return -EINVAL;
2347 
2348 	datagrams = 0;
2349 
2350 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2351 	if (!sock)
2352 		return err;
2353 
2354 	err = sock_error(sock->sk);
2355 	if (err)
2356 		goto out_put;
2357 
2358 	entry = mmsg;
2359 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2360 
2361 	while (datagrams < vlen) {
2362 		/*
2363 		 * No need to ask LSM for more than the first datagram.
2364 		 */
2365 		if (MSG_CMSG_COMPAT & flags) {
2366 			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2367 					     &msg_sys, flags & ~MSG_WAITFORONE,
2368 					     datagrams);
2369 			if (err < 0)
2370 				break;
2371 			err = __put_user(err, &compat_entry->msg_len);
2372 			++compat_entry;
2373 		} else {
2374 			err = ___sys_recvmsg(sock,
2375 					     (struct msghdr __user *)entry,
2376 					     &msg_sys, flags & ~MSG_WAITFORONE,
2377 					     datagrams);
2378 			if (err < 0)
2379 				break;
2380 			err = put_user(err, &entry->msg_len);
2381 			++entry;
2382 		}
2383 
2384 		if (err)
2385 			break;
2386 		++datagrams;
2387 
2388 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2389 		if (flags & MSG_WAITFORONE)
2390 			flags |= MSG_DONTWAIT;
2391 
2392 		if (timeout) {
2393 			ktime_get_ts(timeout);
2394 			*timeout = timespec_sub(end_time, *timeout);
2395 			if (timeout->tv_sec < 0) {
2396 				timeout->tv_sec = timeout->tv_nsec = 0;
2397 				break;
2398 			}
2399 
2400 			/* Timeout, return less than vlen datagrams */
2401 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2402 				break;
2403 		}
2404 
2405 		/* Out of band data, return right away */
2406 		if (msg_sys.msg_flags & MSG_OOB)
2407 			break;
2408 	}
2409 
2410 out_put:
2411 	fput_light(sock->file, fput_needed);
2412 
2413 	if (err == 0)
2414 		return datagrams;
2415 
2416 	if (datagrams != 0) {
2417 		/*
2418 		 * We may return less entries than requested (vlen) if the
2419 		 * sock is non block and there aren't enough datagrams...
2420 		 */
2421 		if (err != -EAGAIN) {
2422 			/*
2423 			 * ... or  if recvmsg returns an error after we
2424 			 * received some datagrams, where we record the
2425 			 * error to return on the next call or if the
2426 			 * app asks about it using getsockopt(SO_ERROR).
2427 			 */
2428 			sock->sk->sk_err = -err;
2429 		}
2430 
2431 		return datagrams;
2432 	}
2433 
2434 	return err;
2435 }
2436 
2437 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2438 		unsigned int, vlen, unsigned int, flags,
2439 		struct timespec __user *, timeout)
2440 {
2441 	int datagrams;
2442 	struct timespec timeout_sys;
2443 
2444 	if (flags & MSG_CMSG_COMPAT)
2445 		return -EINVAL;
2446 
2447 	if (!timeout)
2448 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2449 
2450 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2451 		return -EFAULT;
2452 
2453 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2454 
2455 	if (datagrams > 0 &&
2456 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2457 		datagrams = -EFAULT;
2458 
2459 	return datagrams;
2460 }
2461 
2462 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2463 /* Argument list sizes for sys_socketcall */
2464 #define AL(x) ((x) * sizeof(unsigned long))
2465 static const unsigned char nargs[21] = {
2466 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2467 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2468 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2469 	AL(4), AL(5), AL(4)
2470 };
2471 
2472 #undef AL
2473 
2474 /*
2475  *	System call vectors.
2476  *
2477  *	Argument checking cleaned up. Saved 20% in size.
2478  *  This function doesn't need to set the kernel lock because
2479  *  it is set by the callees.
2480  */
2481 
2482 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2483 {
2484 	unsigned long a[AUDITSC_ARGS];
2485 	unsigned long a0, a1;
2486 	int err;
2487 	unsigned int len;
2488 
2489 	if (call < 1 || call > SYS_SENDMMSG)
2490 		return -EINVAL;
2491 
2492 	len = nargs[call];
2493 	if (len > sizeof(a))
2494 		return -EINVAL;
2495 
2496 	/* copy_from_user should be SMP safe. */
2497 	if (copy_from_user(a, args, len))
2498 		return -EFAULT;
2499 
2500 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2501 	if (err)
2502 		return err;
2503 
2504 	a0 = a[0];
2505 	a1 = a[1];
2506 
2507 	switch (call) {
2508 	case SYS_SOCKET:
2509 		err = sys_socket(a0, a1, a[2]);
2510 		break;
2511 	case SYS_BIND:
2512 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2513 		break;
2514 	case SYS_CONNECT:
2515 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2516 		break;
2517 	case SYS_LISTEN:
2518 		err = sys_listen(a0, a1);
2519 		break;
2520 	case SYS_ACCEPT:
2521 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2522 				  (int __user *)a[2], 0);
2523 		break;
2524 	case SYS_GETSOCKNAME:
2525 		err =
2526 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2527 				    (int __user *)a[2]);
2528 		break;
2529 	case SYS_GETPEERNAME:
2530 		err =
2531 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2532 				    (int __user *)a[2]);
2533 		break;
2534 	case SYS_SOCKETPAIR:
2535 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2536 		break;
2537 	case SYS_SEND:
2538 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2539 		break;
2540 	case SYS_SENDTO:
2541 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2542 				 (struct sockaddr __user *)a[4], a[5]);
2543 		break;
2544 	case SYS_RECV:
2545 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2546 		break;
2547 	case SYS_RECVFROM:
2548 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2549 				   (struct sockaddr __user *)a[4],
2550 				   (int __user *)a[5]);
2551 		break;
2552 	case SYS_SHUTDOWN:
2553 		err = sys_shutdown(a0, a1);
2554 		break;
2555 	case SYS_SETSOCKOPT:
2556 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2557 		break;
2558 	case SYS_GETSOCKOPT:
2559 		err =
2560 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2561 				   (int __user *)a[4]);
2562 		break;
2563 	case SYS_SENDMSG:
2564 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2565 		break;
2566 	case SYS_SENDMMSG:
2567 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2568 		break;
2569 	case SYS_RECVMSG:
2570 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2571 		break;
2572 	case SYS_RECVMMSG:
2573 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2574 				   (struct timespec __user *)a[4]);
2575 		break;
2576 	case SYS_ACCEPT4:
2577 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2578 				  (int __user *)a[2], a[3]);
2579 		break;
2580 	default:
2581 		err = -EINVAL;
2582 		break;
2583 	}
2584 	return err;
2585 }
2586 
2587 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2588 
2589 /**
2590  *	sock_register - add a socket protocol handler
2591  *	@ops: description of protocol
2592  *
2593  *	This function is called by a protocol handler that wants to
2594  *	advertise its address family, and have it linked into the
2595  *	socket interface. The value ops->family coresponds to the
2596  *	socket system call protocol family.
2597  */
2598 int sock_register(const struct net_proto_family *ops)
2599 {
2600 	int err;
2601 
2602 	if (ops->family >= NPROTO) {
2603 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2604 		       NPROTO);
2605 		return -ENOBUFS;
2606 	}
2607 
2608 	spin_lock(&net_family_lock);
2609 	if (rcu_dereference_protected(net_families[ops->family],
2610 				      lockdep_is_held(&net_family_lock)))
2611 		err = -EEXIST;
2612 	else {
2613 		rcu_assign_pointer(net_families[ops->family], ops);
2614 		err = 0;
2615 	}
2616 	spin_unlock(&net_family_lock);
2617 
2618 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2619 	return err;
2620 }
2621 EXPORT_SYMBOL(sock_register);
2622 
2623 /**
2624  *	sock_unregister - remove a protocol handler
2625  *	@family: protocol family to remove
2626  *
2627  *	This function is called by a protocol handler that wants to
2628  *	remove its address family, and have it unlinked from the
2629  *	new socket creation.
2630  *
2631  *	If protocol handler is a module, then it can use module reference
2632  *	counts to protect against new references. If protocol handler is not
2633  *	a module then it needs to provide its own protection in
2634  *	the ops->create routine.
2635  */
2636 void sock_unregister(int family)
2637 {
2638 	BUG_ON(family < 0 || family >= NPROTO);
2639 
2640 	spin_lock(&net_family_lock);
2641 	RCU_INIT_POINTER(net_families[family], NULL);
2642 	spin_unlock(&net_family_lock);
2643 
2644 	synchronize_rcu();
2645 
2646 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2647 }
2648 EXPORT_SYMBOL(sock_unregister);
2649 
2650 static int __init sock_init(void)
2651 {
2652 	int err;
2653 	/*
2654 	 *      Initialize the network sysctl infrastructure.
2655 	 */
2656 	err = net_sysctl_init();
2657 	if (err)
2658 		goto out;
2659 
2660 	/*
2661 	 *      Initialize skbuff SLAB cache
2662 	 */
2663 	skb_init();
2664 
2665 	/*
2666 	 *      Initialize the protocols module.
2667 	 */
2668 
2669 	init_inodecache();
2670 
2671 	err = register_filesystem(&sock_fs_type);
2672 	if (err)
2673 		goto out_fs;
2674 	sock_mnt = kern_mount(&sock_fs_type);
2675 	if (IS_ERR(sock_mnt)) {
2676 		err = PTR_ERR(sock_mnt);
2677 		goto out_mount;
2678 	}
2679 
2680 	/* The real protocol initialization is performed in later initcalls.
2681 	 */
2682 
2683 #ifdef CONFIG_NETFILTER
2684 	err = netfilter_init();
2685 	if (err)
2686 		goto out;
2687 #endif
2688 
2689 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2690 	skb_timestamping_init();
2691 #endif
2692 
2693 out:
2694 	return err;
2695 
2696 out_mount:
2697 	unregister_filesystem(&sock_fs_type);
2698 out_fs:
2699 	goto out;
2700 }
2701 
2702 core_initcall(sock_init);	/* early initcall */
2703 
2704 #ifdef CONFIG_PROC_FS
2705 void socket_seq_show(struct seq_file *seq)
2706 {
2707 	int cpu;
2708 	int counter = 0;
2709 
2710 	for_each_possible_cpu(cpu)
2711 	    counter += per_cpu(sockets_in_use, cpu);
2712 
2713 	/* It can be negative, by the way. 8) */
2714 	if (counter < 0)
2715 		counter = 0;
2716 
2717 	seq_printf(seq, "sockets: used %d\n", counter);
2718 }
2719 #endif				/* CONFIG_PROC_FS */
2720 
2721 #ifdef CONFIG_COMPAT
2722 static int do_siocgstamp(struct net *net, struct socket *sock,
2723 			 unsigned int cmd, void __user *up)
2724 {
2725 	mm_segment_t old_fs = get_fs();
2726 	struct timeval ktv;
2727 	int err;
2728 
2729 	set_fs(KERNEL_DS);
2730 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2731 	set_fs(old_fs);
2732 	if (!err)
2733 		err = compat_put_timeval(&ktv, up);
2734 
2735 	return err;
2736 }
2737 
2738 static int do_siocgstampns(struct net *net, struct socket *sock,
2739 			   unsigned int cmd, void __user *up)
2740 {
2741 	mm_segment_t old_fs = get_fs();
2742 	struct timespec kts;
2743 	int err;
2744 
2745 	set_fs(KERNEL_DS);
2746 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2747 	set_fs(old_fs);
2748 	if (!err)
2749 		err = compat_put_timespec(&kts, up);
2750 
2751 	return err;
2752 }
2753 
2754 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2755 {
2756 	struct ifreq __user *uifr;
2757 	int err;
2758 
2759 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2760 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2761 		return -EFAULT;
2762 
2763 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2764 	if (err)
2765 		return err;
2766 
2767 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2768 		return -EFAULT;
2769 
2770 	return 0;
2771 }
2772 
2773 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2774 {
2775 	struct compat_ifconf ifc32;
2776 	struct ifconf ifc;
2777 	struct ifconf __user *uifc;
2778 	struct compat_ifreq __user *ifr32;
2779 	struct ifreq __user *ifr;
2780 	unsigned int i, j;
2781 	int err;
2782 
2783 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2784 		return -EFAULT;
2785 
2786 	memset(&ifc, 0, sizeof(ifc));
2787 	if (ifc32.ifcbuf == 0) {
2788 		ifc32.ifc_len = 0;
2789 		ifc.ifc_len = 0;
2790 		ifc.ifc_req = NULL;
2791 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2792 	} else {
2793 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2794 			sizeof(struct ifreq);
2795 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2796 		ifc.ifc_len = len;
2797 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2798 		ifr32 = compat_ptr(ifc32.ifcbuf);
2799 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2800 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2801 				return -EFAULT;
2802 			ifr++;
2803 			ifr32++;
2804 		}
2805 	}
2806 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2807 		return -EFAULT;
2808 
2809 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2810 	if (err)
2811 		return err;
2812 
2813 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2814 		return -EFAULT;
2815 
2816 	ifr = ifc.ifc_req;
2817 	ifr32 = compat_ptr(ifc32.ifcbuf);
2818 	for (i = 0, j = 0;
2819 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2820 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2821 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2822 			return -EFAULT;
2823 		ifr32++;
2824 		ifr++;
2825 	}
2826 
2827 	if (ifc32.ifcbuf == 0) {
2828 		/* Translate from 64-bit structure multiple to
2829 		 * a 32-bit one.
2830 		 */
2831 		i = ifc.ifc_len;
2832 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2833 		ifc32.ifc_len = i;
2834 	} else {
2835 		ifc32.ifc_len = i;
2836 	}
2837 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2838 		return -EFAULT;
2839 
2840 	return 0;
2841 }
2842 
2843 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2844 {
2845 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2846 	bool convert_in = false, convert_out = false;
2847 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2848 	struct ethtool_rxnfc __user *rxnfc;
2849 	struct ifreq __user *ifr;
2850 	u32 rule_cnt = 0, actual_rule_cnt;
2851 	u32 ethcmd;
2852 	u32 data;
2853 	int ret;
2854 
2855 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2856 		return -EFAULT;
2857 
2858 	compat_rxnfc = compat_ptr(data);
2859 
2860 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2861 		return -EFAULT;
2862 
2863 	/* Most ethtool structures are defined without padding.
2864 	 * Unfortunately struct ethtool_rxnfc is an exception.
2865 	 */
2866 	switch (ethcmd) {
2867 	default:
2868 		break;
2869 	case ETHTOOL_GRXCLSRLALL:
2870 		/* Buffer size is variable */
2871 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2872 			return -EFAULT;
2873 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2874 			return -ENOMEM;
2875 		buf_size += rule_cnt * sizeof(u32);
2876 		/* fall through */
2877 	case ETHTOOL_GRXRINGS:
2878 	case ETHTOOL_GRXCLSRLCNT:
2879 	case ETHTOOL_GRXCLSRULE:
2880 	case ETHTOOL_SRXCLSRLINS:
2881 		convert_out = true;
2882 		/* fall through */
2883 	case ETHTOOL_SRXCLSRLDEL:
2884 		buf_size += sizeof(struct ethtool_rxnfc);
2885 		convert_in = true;
2886 		break;
2887 	}
2888 
2889 	ifr = compat_alloc_user_space(buf_size);
2890 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2891 
2892 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2893 		return -EFAULT;
2894 
2895 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2896 		     &ifr->ifr_ifru.ifru_data))
2897 		return -EFAULT;
2898 
2899 	if (convert_in) {
2900 		/* We expect there to be holes between fs.m_ext and
2901 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2902 		 */
2903 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2904 			     sizeof(compat_rxnfc->fs.m_ext) !=
2905 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2906 			     sizeof(rxnfc->fs.m_ext));
2907 		BUILD_BUG_ON(
2908 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2909 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2910 			offsetof(struct ethtool_rxnfc, fs.location) -
2911 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2912 
2913 		if (copy_in_user(rxnfc, compat_rxnfc,
2914 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2915 				 (void __user *)rxnfc) ||
2916 		    copy_in_user(&rxnfc->fs.ring_cookie,
2917 				 &compat_rxnfc->fs.ring_cookie,
2918 				 (void __user *)(&rxnfc->fs.location + 1) -
2919 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2920 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2921 				 sizeof(rxnfc->rule_cnt)))
2922 			return -EFAULT;
2923 	}
2924 
2925 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2926 	if (ret)
2927 		return ret;
2928 
2929 	if (convert_out) {
2930 		if (copy_in_user(compat_rxnfc, rxnfc,
2931 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2932 				 (const void __user *)rxnfc) ||
2933 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2934 				 &rxnfc->fs.ring_cookie,
2935 				 (const void __user *)(&rxnfc->fs.location + 1) -
2936 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2937 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2938 				 sizeof(rxnfc->rule_cnt)))
2939 			return -EFAULT;
2940 
2941 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2942 			/* As an optimisation, we only copy the actual
2943 			 * number of rules that the underlying
2944 			 * function returned.  Since Mallory might
2945 			 * change the rule count in user memory, we
2946 			 * check that it is less than the rule count
2947 			 * originally given (as the user buffer size),
2948 			 * which has been range-checked.
2949 			 */
2950 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2951 				return -EFAULT;
2952 			if (actual_rule_cnt < rule_cnt)
2953 				rule_cnt = actual_rule_cnt;
2954 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2955 					 &rxnfc->rule_locs[0],
2956 					 rule_cnt * sizeof(u32)))
2957 				return -EFAULT;
2958 		}
2959 	}
2960 
2961 	return 0;
2962 }
2963 
2964 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2965 {
2966 	void __user *uptr;
2967 	compat_uptr_t uptr32;
2968 	struct ifreq __user *uifr;
2969 
2970 	uifr = compat_alloc_user_space(sizeof(*uifr));
2971 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2972 		return -EFAULT;
2973 
2974 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2975 		return -EFAULT;
2976 
2977 	uptr = compat_ptr(uptr32);
2978 
2979 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2980 		return -EFAULT;
2981 
2982 	return dev_ioctl(net, SIOCWANDEV, uifr);
2983 }
2984 
2985 static int bond_ioctl(struct net *net, unsigned int cmd,
2986 			 struct compat_ifreq __user *ifr32)
2987 {
2988 	struct ifreq kifr;
2989 	mm_segment_t old_fs;
2990 	int err;
2991 
2992 	switch (cmd) {
2993 	case SIOCBONDENSLAVE:
2994 	case SIOCBONDRELEASE:
2995 	case SIOCBONDSETHWADDR:
2996 	case SIOCBONDCHANGEACTIVE:
2997 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2998 			return -EFAULT;
2999 
3000 		old_fs = get_fs();
3001 		set_fs(KERNEL_DS);
3002 		err = dev_ioctl(net, cmd,
3003 				(struct ifreq __user __force *) &kifr);
3004 		set_fs(old_fs);
3005 
3006 		return err;
3007 	default:
3008 		return -ENOIOCTLCMD;
3009 	}
3010 }
3011 
3012 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3013 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3014 				 struct compat_ifreq __user *u_ifreq32)
3015 {
3016 	struct ifreq __user *u_ifreq64;
3017 	char tmp_buf[IFNAMSIZ];
3018 	void __user *data64;
3019 	u32 data32;
3020 
3021 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3022 			   IFNAMSIZ))
3023 		return -EFAULT;
3024 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3025 		return -EFAULT;
3026 	data64 = compat_ptr(data32);
3027 
3028 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3029 
3030 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3031 			 IFNAMSIZ))
3032 		return -EFAULT;
3033 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3034 		return -EFAULT;
3035 
3036 	return dev_ioctl(net, cmd, u_ifreq64);
3037 }
3038 
3039 static int dev_ifsioc(struct net *net, struct socket *sock,
3040 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3041 {
3042 	struct ifreq __user *uifr;
3043 	int err;
3044 
3045 	uifr = compat_alloc_user_space(sizeof(*uifr));
3046 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3047 		return -EFAULT;
3048 
3049 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3050 
3051 	if (!err) {
3052 		switch (cmd) {
3053 		case SIOCGIFFLAGS:
3054 		case SIOCGIFMETRIC:
3055 		case SIOCGIFMTU:
3056 		case SIOCGIFMEM:
3057 		case SIOCGIFHWADDR:
3058 		case SIOCGIFINDEX:
3059 		case SIOCGIFADDR:
3060 		case SIOCGIFBRDADDR:
3061 		case SIOCGIFDSTADDR:
3062 		case SIOCGIFNETMASK:
3063 		case SIOCGIFPFLAGS:
3064 		case SIOCGIFTXQLEN:
3065 		case SIOCGMIIPHY:
3066 		case SIOCGMIIREG:
3067 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3068 				err = -EFAULT;
3069 			break;
3070 		}
3071 	}
3072 	return err;
3073 }
3074 
3075 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3076 			struct compat_ifreq __user *uifr32)
3077 {
3078 	struct ifreq ifr;
3079 	struct compat_ifmap __user *uifmap32;
3080 	mm_segment_t old_fs;
3081 	int err;
3082 
3083 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3084 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3085 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3086 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3087 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3088 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3089 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3090 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3091 	if (err)
3092 		return -EFAULT;
3093 
3094 	old_fs = get_fs();
3095 	set_fs(KERNEL_DS);
3096 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3097 	set_fs(old_fs);
3098 
3099 	if (cmd == SIOCGIFMAP && !err) {
3100 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3101 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3102 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3103 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3104 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3105 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3106 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3107 		if (err)
3108 			err = -EFAULT;
3109 	}
3110 	return err;
3111 }
3112 
3113 struct rtentry32 {
3114 	u32		rt_pad1;
3115 	struct sockaddr rt_dst;         /* target address               */
3116 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3117 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3118 	unsigned short	rt_flags;
3119 	short		rt_pad2;
3120 	u32		rt_pad3;
3121 	unsigned char	rt_tos;
3122 	unsigned char	rt_class;
3123 	short		rt_pad4;
3124 	short		rt_metric;      /* +1 for binary compatibility! */
3125 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3126 	u32		rt_mtu;         /* per route MTU/Window         */
3127 	u32		rt_window;      /* Window clamping              */
3128 	unsigned short  rt_irtt;        /* Initial RTT                  */
3129 };
3130 
3131 struct in6_rtmsg32 {
3132 	struct in6_addr		rtmsg_dst;
3133 	struct in6_addr		rtmsg_src;
3134 	struct in6_addr		rtmsg_gateway;
3135 	u32			rtmsg_type;
3136 	u16			rtmsg_dst_len;
3137 	u16			rtmsg_src_len;
3138 	u32			rtmsg_metric;
3139 	u32			rtmsg_info;
3140 	u32			rtmsg_flags;
3141 	s32			rtmsg_ifindex;
3142 };
3143 
3144 static int routing_ioctl(struct net *net, struct socket *sock,
3145 			 unsigned int cmd, void __user *argp)
3146 {
3147 	int ret;
3148 	void *r = NULL;
3149 	struct in6_rtmsg r6;
3150 	struct rtentry r4;
3151 	char devname[16];
3152 	u32 rtdev;
3153 	mm_segment_t old_fs = get_fs();
3154 
3155 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3156 		struct in6_rtmsg32 __user *ur6 = argp;
3157 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3158 			3 * sizeof(struct in6_addr));
3159 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3160 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3161 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3162 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3163 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3164 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3165 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3166 
3167 		r = (void *) &r6;
3168 	} else { /* ipv4 */
3169 		struct rtentry32 __user *ur4 = argp;
3170 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3171 					3 * sizeof(struct sockaddr));
3172 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3173 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3174 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3175 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3176 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3177 		ret |= get_user(rtdev, &(ur4->rt_dev));
3178 		if (rtdev) {
3179 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3180 			r4.rt_dev = (char __user __force *)devname;
3181 			devname[15] = 0;
3182 		} else
3183 			r4.rt_dev = NULL;
3184 
3185 		r = (void *) &r4;
3186 	}
3187 
3188 	if (ret) {
3189 		ret = -EFAULT;
3190 		goto out;
3191 	}
3192 
3193 	set_fs(KERNEL_DS);
3194 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3195 	set_fs(old_fs);
3196 
3197 out:
3198 	return ret;
3199 }
3200 
3201 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3202  * for some operations; this forces use of the newer bridge-utils that
3203  * use compatible ioctls
3204  */
3205 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3206 {
3207 	compat_ulong_t tmp;
3208 
3209 	if (get_user(tmp, argp))
3210 		return -EFAULT;
3211 	if (tmp == BRCTL_GET_VERSION)
3212 		return BRCTL_VERSION + 1;
3213 	return -EINVAL;
3214 }
3215 
3216 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3217 			 unsigned int cmd, unsigned long arg)
3218 {
3219 	void __user *argp = compat_ptr(arg);
3220 	struct sock *sk = sock->sk;
3221 	struct net *net = sock_net(sk);
3222 
3223 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3224 		return compat_ifr_data_ioctl(net, cmd, argp);
3225 
3226 	switch (cmd) {
3227 	case SIOCSIFBR:
3228 	case SIOCGIFBR:
3229 		return old_bridge_ioctl(argp);
3230 	case SIOCGIFNAME:
3231 		return dev_ifname32(net, argp);
3232 	case SIOCGIFCONF:
3233 		return dev_ifconf(net, argp);
3234 	case SIOCETHTOOL:
3235 		return ethtool_ioctl(net, argp);
3236 	case SIOCWANDEV:
3237 		return compat_siocwandev(net, argp);
3238 	case SIOCGIFMAP:
3239 	case SIOCSIFMAP:
3240 		return compat_sioc_ifmap(net, cmd, argp);
3241 	case SIOCBONDENSLAVE:
3242 	case SIOCBONDRELEASE:
3243 	case SIOCBONDSETHWADDR:
3244 	case SIOCBONDCHANGEACTIVE:
3245 		return bond_ioctl(net, cmd, argp);
3246 	case SIOCADDRT:
3247 	case SIOCDELRT:
3248 		return routing_ioctl(net, sock, cmd, argp);
3249 	case SIOCGSTAMP:
3250 		return do_siocgstamp(net, sock, cmd, argp);
3251 	case SIOCGSTAMPNS:
3252 		return do_siocgstampns(net, sock, cmd, argp);
3253 	case SIOCBONDSLAVEINFOQUERY:
3254 	case SIOCBONDINFOQUERY:
3255 	case SIOCSHWTSTAMP:
3256 	case SIOCGHWTSTAMP:
3257 		return compat_ifr_data_ioctl(net, cmd, argp);
3258 
3259 	case FIOSETOWN:
3260 	case SIOCSPGRP:
3261 	case FIOGETOWN:
3262 	case SIOCGPGRP:
3263 	case SIOCBRADDBR:
3264 	case SIOCBRDELBR:
3265 	case SIOCGIFVLAN:
3266 	case SIOCSIFVLAN:
3267 	case SIOCADDDLCI:
3268 	case SIOCDELDLCI:
3269 		return sock_ioctl(file, cmd, arg);
3270 
3271 	case SIOCGIFFLAGS:
3272 	case SIOCSIFFLAGS:
3273 	case SIOCGIFMETRIC:
3274 	case SIOCSIFMETRIC:
3275 	case SIOCGIFMTU:
3276 	case SIOCSIFMTU:
3277 	case SIOCGIFMEM:
3278 	case SIOCSIFMEM:
3279 	case SIOCGIFHWADDR:
3280 	case SIOCSIFHWADDR:
3281 	case SIOCADDMULTI:
3282 	case SIOCDELMULTI:
3283 	case SIOCGIFINDEX:
3284 	case SIOCGIFADDR:
3285 	case SIOCSIFADDR:
3286 	case SIOCSIFHWBROADCAST:
3287 	case SIOCDIFADDR:
3288 	case SIOCGIFBRDADDR:
3289 	case SIOCSIFBRDADDR:
3290 	case SIOCGIFDSTADDR:
3291 	case SIOCSIFDSTADDR:
3292 	case SIOCGIFNETMASK:
3293 	case SIOCSIFNETMASK:
3294 	case SIOCSIFPFLAGS:
3295 	case SIOCGIFPFLAGS:
3296 	case SIOCGIFTXQLEN:
3297 	case SIOCSIFTXQLEN:
3298 	case SIOCBRADDIF:
3299 	case SIOCBRDELIF:
3300 	case SIOCSIFNAME:
3301 	case SIOCGMIIPHY:
3302 	case SIOCGMIIREG:
3303 	case SIOCSMIIREG:
3304 		return dev_ifsioc(net, sock, cmd, argp);
3305 
3306 	case SIOCSARP:
3307 	case SIOCGARP:
3308 	case SIOCDARP:
3309 	case SIOCATMARK:
3310 		return sock_do_ioctl(net, sock, cmd, arg);
3311 	}
3312 
3313 	return -ENOIOCTLCMD;
3314 }
3315 
3316 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3317 			      unsigned long arg)
3318 {
3319 	struct socket *sock = file->private_data;
3320 	int ret = -ENOIOCTLCMD;
3321 	struct sock *sk;
3322 	struct net *net;
3323 
3324 	sk = sock->sk;
3325 	net = sock_net(sk);
3326 
3327 	if (sock->ops->compat_ioctl)
3328 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3329 
3330 	if (ret == -ENOIOCTLCMD &&
3331 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3332 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3333 
3334 	if (ret == -ENOIOCTLCMD)
3335 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3336 
3337 	return ret;
3338 }
3339 #endif
3340 
3341 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3342 {
3343 	return sock->ops->bind(sock, addr, addrlen);
3344 }
3345 EXPORT_SYMBOL(kernel_bind);
3346 
3347 int kernel_listen(struct socket *sock, int backlog)
3348 {
3349 	return sock->ops->listen(sock, backlog);
3350 }
3351 EXPORT_SYMBOL(kernel_listen);
3352 
3353 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3354 {
3355 	struct sock *sk = sock->sk;
3356 	int err;
3357 
3358 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3359 			       newsock);
3360 	if (err < 0)
3361 		goto done;
3362 
3363 	err = sock->ops->accept(sock, *newsock, flags);
3364 	if (err < 0) {
3365 		sock_release(*newsock);
3366 		*newsock = NULL;
3367 		goto done;
3368 	}
3369 
3370 	(*newsock)->ops = sock->ops;
3371 	__module_get((*newsock)->ops->owner);
3372 
3373 done:
3374 	return err;
3375 }
3376 EXPORT_SYMBOL(kernel_accept);
3377 
3378 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3379 		   int flags)
3380 {
3381 	return sock->ops->connect(sock, addr, addrlen, flags);
3382 }
3383 EXPORT_SYMBOL(kernel_connect);
3384 
3385 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3386 			 int *addrlen)
3387 {
3388 	return sock->ops->getname(sock, addr, addrlen, 0);
3389 }
3390 EXPORT_SYMBOL(kernel_getsockname);
3391 
3392 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3393 			 int *addrlen)
3394 {
3395 	return sock->ops->getname(sock, addr, addrlen, 1);
3396 }
3397 EXPORT_SYMBOL(kernel_getpeername);
3398 
3399 int kernel_getsockopt(struct socket *sock, int level, int optname,
3400 			char *optval, int *optlen)
3401 {
3402 	mm_segment_t oldfs = get_fs();
3403 	char __user *uoptval;
3404 	int __user *uoptlen;
3405 	int err;
3406 
3407 	uoptval = (char __user __force *) optval;
3408 	uoptlen = (int __user __force *) optlen;
3409 
3410 	set_fs(KERNEL_DS);
3411 	if (level == SOL_SOCKET)
3412 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3413 	else
3414 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3415 					    uoptlen);
3416 	set_fs(oldfs);
3417 	return err;
3418 }
3419 EXPORT_SYMBOL(kernel_getsockopt);
3420 
3421 int kernel_setsockopt(struct socket *sock, int level, int optname,
3422 			char *optval, unsigned int optlen)
3423 {
3424 	mm_segment_t oldfs = get_fs();
3425 	char __user *uoptval;
3426 	int err;
3427 
3428 	uoptval = (char __user __force *) optval;
3429 
3430 	set_fs(KERNEL_DS);
3431 	if (level == SOL_SOCKET)
3432 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3433 	else
3434 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3435 					    optlen);
3436 	set_fs(oldfs);
3437 	return err;
3438 }
3439 EXPORT_SYMBOL(kernel_setsockopt);
3440 
3441 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3442 		    size_t size, int flags)
3443 {
3444 	if (sock->ops->sendpage)
3445 		return sock->ops->sendpage(sock, page, offset, size, flags);
3446 
3447 	return sock_no_sendpage(sock, page, offset, size, flags);
3448 }
3449 EXPORT_SYMBOL(kernel_sendpage);
3450 
3451 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3452 {
3453 	mm_segment_t oldfs = get_fs();
3454 	int err;
3455 
3456 	set_fs(KERNEL_DS);
3457 	err = sock->ops->ioctl(sock, cmd, arg);
3458 	set_fs(oldfs);
3459 
3460 	return err;
3461 }
3462 EXPORT_SYMBOL(kernel_sock_ioctl);
3463 
3464 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3465 {
3466 	return sock->ops->shutdown(sock, how);
3467 }
3468 EXPORT_SYMBOL(kernel_sock_shutdown);
3469