1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 #include <linux/nsproxy.h> 88 #include <linux/magic.h> 89 #include <linux/slab.h> 90 #include <linux/xattr.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 #include <net/busy_poll.h> 108 109 #ifdef CONFIG_NET_RX_BUSY_POLL 110 unsigned int sysctl_net_busy_read __read_mostly; 111 unsigned int sysctl_net_busy_poll __read_mostly; 112 #endif 113 114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 116 unsigned long nr_segs, loff_t pos); 117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 118 unsigned long nr_segs, loff_t pos); 119 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 120 121 static int sock_close(struct inode *inode, struct file *file); 122 static unsigned int sock_poll(struct file *file, 123 struct poll_table_struct *wait); 124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 125 #ifdef CONFIG_COMPAT 126 static long compat_sock_ioctl(struct file *file, 127 unsigned int cmd, unsigned long arg); 128 #endif 129 static int sock_fasync(int fd, struct file *filp, int on); 130 static ssize_t sock_sendpage(struct file *file, struct page *page, 131 int offset, size_t size, loff_t *ppos, int more); 132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 133 struct pipe_inode_info *pipe, size_t len, 134 unsigned int flags); 135 136 /* 137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 138 * in the operation structures but are done directly via the socketcall() multiplexor. 139 */ 140 141 static const struct file_operations socket_file_ops = { 142 .owner = THIS_MODULE, 143 .llseek = no_llseek, 144 .aio_read = sock_aio_read, 145 .aio_write = sock_aio_write, 146 .poll = sock_poll, 147 .unlocked_ioctl = sock_ioctl, 148 #ifdef CONFIG_COMPAT 149 .compat_ioctl = compat_sock_ioctl, 150 #endif 151 .mmap = sock_mmap, 152 .open = sock_no_open, /* special open code to disallow open via /proc */ 153 .release = sock_close, 154 .fasync = sock_fasync, 155 .sendpage = sock_sendpage, 156 .splice_write = generic_splice_sendpage, 157 .splice_read = sock_splice_read, 158 }; 159 160 /* 161 * The protocol list. Each protocol is registered in here. 162 */ 163 164 static DEFINE_SPINLOCK(net_family_lock); 165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 166 167 /* 168 * Statistics counters of the socket lists 169 */ 170 171 static DEFINE_PER_CPU(int, sockets_in_use); 172 173 /* 174 * Support routines. 175 * Move socket addresses back and forth across the kernel/user 176 * divide and look after the messy bits. 177 */ 178 179 /** 180 * move_addr_to_kernel - copy a socket address into kernel space 181 * @uaddr: Address in user space 182 * @kaddr: Address in kernel space 183 * @ulen: Length in user space 184 * 185 * The address is copied into kernel space. If the provided address is 186 * too long an error code of -EINVAL is returned. If the copy gives 187 * invalid addresses -EFAULT is returned. On a success 0 is returned. 188 */ 189 190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 191 { 192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 193 return -EINVAL; 194 if (ulen == 0) 195 return 0; 196 if (copy_from_user(kaddr, uaddr, ulen)) 197 return -EFAULT; 198 return audit_sockaddr(ulen, kaddr); 199 } 200 201 /** 202 * move_addr_to_user - copy an address to user space 203 * @kaddr: kernel space address 204 * @klen: length of address in kernel 205 * @uaddr: user space address 206 * @ulen: pointer to user length field 207 * 208 * The value pointed to by ulen on entry is the buffer length available. 209 * This is overwritten with the buffer space used. -EINVAL is returned 210 * if an overlong buffer is specified or a negative buffer size. -EFAULT 211 * is returned if either the buffer or the length field are not 212 * accessible. 213 * After copying the data up to the limit the user specifies, the true 214 * length of the data is written over the length limit the user 215 * specified. Zero is returned for a success. 216 */ 217 218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 219 void __user *uaddr, int __user *ulen) 220 { 221 int err; 222 int len; 223 224 BUG_ON(klen > sizeof(struct sockaddr_storage)); 225 err = get_user(len, ulen); 226 if (err) 227 return err; 228 if (len > klen) 229 len = klen; 230 if (len < 0) 231 return -EINVAL; 232 if (len) { 233 if (audit_sockaddr(klen, kaddr)) 234 return -ENOMEM; 235 if (copy_to_user(uaddr, kaddr, len)) 236 return -EFAULT; 237 } 238 /* 239 * "fromlen shall refer to the value before truncation.." 240 * 1003.1g 241 */ 242 return __put_user(klen, ulen); 243 } 244 245 static struct kmem_cache *sock_inode_cachep __read_mostly; 246 247 static struct inode *sock_alloc_inode(struct super_block *sb) 248 { 249 struct socket_alloc *ei; 250 struct socket_wq *wq; 251 252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 253 if (!ei) 254 return NULL; 255 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 256 if (!wq) { 257 kmem_cache_free(sock_inode_cachep, ei); 258 return NULL; 259 } 260 init_waitqueue_head(&wq->wait); 261 wq->fasync_list = NULL; 262 RCU_INIT_POINTER(ei->socket.wq, wq); 263 264 ei->socket.state = SS_UNCONNECTED; 265 ei->socket.flags = 0; 266 ei->socket.ops = NULL; 267 ei->socket.sk = NULL; 268 ei->socket.file = NULL; 269 270 return &ei->vfs_inode; 271 } 272 273 static void sock_destroy_inode(struct inode *inode) 274 { 275 struct socket_alloc *ei; 276 struct socket_wq *wq; 277 278 ei = container_of(inode, struct socket_alloc, vfs_inode); 279 wq = rcu_dereference_protected(ei->socket.wq, 1); 280 kfree_rcu(wq, rcu); 281 kmem_cache_free(sock_inode_cachep, ei); 282 } 283 284 static void init_once(void *foo) 285 { 286 struct socket_alloc *ei = (struct socket_alloc *)foo; 287 288 inode_init_once(&ei->vfs_inode); 289 } 290 291 static int init_inodecache(void) 292 { 293 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 294 sizeof(struct socket_alloc), 295 0, 296 (SLAB_HWCACHE_ALIGN | 297 SLAB_RECLAIM_ACCOUNT | 298 SLAB_MEM_SPREAD), 299 init_once); 300 if (sock_inode_cachep == NULL) 301 return -ENOMEM; 302 return 0; 303 } 304 305 static const struct super_operations sockfs_ops = { 306 .alloc_inode = sock_alloc_inode, 307 .destroy_inode = sock_destroy_inode, 308 .statfs = simple_statfs, 309 }; 310 311 /* 312 * sockfs_dname() is called from d_path(). 313 */ 314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 315 { 316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 317 dentry->d_inode->i_ino); 318 } 319 320 static const struct dentry_operations sockfs_dentry_operations = { 321 .d_dname = sockfs_dname, 322 }; 323 324 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 325 int flags, const char *dev_name, void *data) 326 { 327 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 328 &sockfs_dentry_operations, SOCKFS_MAGIC); 329 } 330 331 static struct vfsmount *sock_mnt __read_mostly; 332 333 static struct file_system_type sock_fs_type = { 334 .name = "sockfs", 335 .mount = sockfs_mount, 336 .kill_sb = kill_anon_super, 337 }; 338 339 /* 340 * Obtains the first available file descriptor and sets it up for use. 341 * 342 * These functions create file structures and maps them to fd space 343 * of the current process. On success it returns file descriptor 344 * and file struct implicitly stored in sock->file. 345 * Note that another thread may close file descriptor before we return 346 * from this function. We use the fact that now we do not refer 347 * to socket after mapping. If one day we will need it, this 348 * function will increment ref. count on file by 1. 349 * 350 * In any case returned fd MAY BE not valid! 351 * This race condition is unavoidable 352 * with shared fd spaces, we cannot solve it inside kernel, 353 * but we take care of internal coherence yet. 354 */ 355 356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 357 { 358 struct qstr name = { .name = "" }; 359 struct path path; 360 struct file *file; 361 362 if (dname) { 363 name.name = dname; 364 name.len = strlen(name.name); 365 } else if (sock->sk) { 366 name.name = sock->sk->sk_prot_creator->name; 367 name.len = strlen(name.name); 368 } 369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 370 if (unlikely(!path.dentry)) 371 return ERR_PTR(-ENOMEM); 372 path.mnt = mntget(sock_mnt); 373 374 d_instantiate(path.dentry, SOCK_INODE(sock)); 375 SOCK_INODE(sock)->i_fop = &socket_file_ops; 376 377 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 378 &socket_file_ops); 379 if (unlikely(IS_ERR(file))) { 380 /* drop dentry, keep inode */ 381 ihold(path.dentry->d_inode); 382 path_put(&path); 383 return file; 384 } 385 386 sock->file = file; 387 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 388 file->private_data = sock; 389 return file; 390 } 391 EXPORT_SYMBOL(sock_alloc_file); 392 393 static int sock_map_fd(struct socket *sock, int flags) 394 { 395 struct file *newfile; 396 int fd = get_unused_fd_flags(flags); 397 if (unlikely(fd < 0)) 398 return fd; 399 400 newfile = sock_alloc_file(sock, flags, NULL); 401 if (likely(!IS_ERR(newfile))) { 402 fd_install(fd, newfile); 403 return fd; 404 } 405 406 put_unused_fd(fd); 407 return PTR_ERR(newfile); 408 } 409 410 struct socket *sock_from_file(struct file *file, int *err) 411 { 412 if (file->f_op == &socket_file_ops) 413 return file->private_data; /* set in sock_map_fd */ 414 415 *err = -ENOTSOCK; 416 return NULL; 417 } 418 EXPORT_SYMBOL(sock_from_file); 419 420 /** 421 * sockfd_lookup - Go from a file number to its socket slot 422 * @fd: file handle 423 * @err: pointer to an error code return 424 * 425 * The file handle passed in is locked and the socket it is bound 426 * too is returned. If an error occurs the err pointer is overwritten 427 * with a negative errno code and NULL is returned. The function checks 428 * for both invalid handles and passing a handle which is not a socket. 429 * 430 * On a success the socket object pointer is returned. 431 */ 432 433 struct socket *sockfd_lookup(int fd, int *err) 434 { 435 struct file *file; 436 struct socket *sock; 437 438 file = fget(fd); 439 if (!file) { 440 *err = -EBADF; 441 return NULL; 442 } 443 444 sock = sock_from_file(file, err); 445 if (!sock) 446 fput(file); 447 return sock; 448 } 449 EXPORT_SYMBOL(sockfd_lookup); 450 451 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 452 { 453 struct fd f = fdget(fd); 454 struct socket *sock; 455 456 *err = -EBADF; 457 if (f.file) { 458 sock = sock_from_file(f.file, err); 459 if (likely(sock)) { 460 *fput_needed = f.flags; 461 return sock; 462 } 463 fdput(f); 464 } 465 return NULL; 466 } 467 468 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 469 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 470 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 471 static ssize_t sockfs_getxattr(struct dentry *dentry, 472 const char *name, void *value, size_t size) 473 { 474 const char *proto_name; 475 size_t proto_size; 476 int error; 477 478 error = -ENODATA; 479 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 480 proto_name = dentry->d_name.name; 481 proto_size = strlen(proto_name); 482 483 if (value) { 484 error = -ERANGE; 485 if (proto_size + 1 > size) 486 goto out; 487 488 strncpy(value, proto_name, proto_size + 1); 489 } 490 error = proto_size + 1; 491 } 492 493 out: 494 return error; 495 } 496 497 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 498 size_t size) 499 { 500 ssize_t len; 501 ssize_t used = 0; 502 503 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 504 if (len < 0) 505 return len; 506 used += len; 507 if (buffer) { 508 if (size < used) 509 return -ERANGE; 510 buffer += len; 511 } 512 513 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 514 used += len; 515 if (buffer) { 516 if (size < used) 517 return -ERANGE; 518 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 519 buffer += len; 520 } 521 522 return used; 523 } 524 525 static const struct inode_operations sockfs_inode_ops = { 526 .getxattr = sockfs_getxattr, 527 .listxattr = sockfs_listxattr, 528 }; 529 530 /** 531 * sock_alloc - allocate a socket 532 * 533 * Allocate a new inode and socket object. The two are bound together 534 * and initialised. The socket is then returned. If we are out of inodes 535 * NULL is returned. 536 */ 537 538 static struct socket *sock_alloc(void) 539 { 540 struct inode *inode; 541 struct socket *sock; 542 543 inode = new_inode_pseudo(sock_mnt->mnt_sb); 544 if (!inode) 545 return NULL; 546 547 sock = SOCKET_I(inode); 548 549 kmemcheck_annotate_bitfield(sock, type); 550 inode->i_ino = get_next_ino(); 551 inode->i_mode = S_IFSOCK | S_IRWXUGO; 552 inode->i_uid = current_fsuid(); 553 inode->i_gid = current_fsgid(); 554 inode->i_op = &sockfs_inode_ops; 555 556 this_cpu_add(sockets_in_use, 1); 557 return sock; 558 } 559 560 /* 561 * In theory you can't get an open on this inode, but /proc provides 562 * a back door. Remember to keep it shut otherwise you'll let the 563 * creepy crawlies in. 564 */ 565 566 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 567 { 568 return -ENXIO; 569 } 570 571 const struct file_operations bad_sock_fops = { 572 .owner = THIS_MODULE, 573 .open = sock_no_open, 574 .llseek = noop_llseek, 575 }; 576 577 /** 578 * sock_release - close a socket 579 * @sock: socket to close 580 * 581 * The socket is released from the protocol stack if it has a release 582 * callback, and the inode is then released if the socket is bound to 583 * an inode not a file. 584 */ 585 586 void sock_release(struct socket *sock) 587 { 588 if (sock->ops) { 589 struct module *owner = sock->ops->owner; 590 591 sock->ops->release(sock); 592 sock->ops = NULL; 593 module_put(owner); 594 } 595 596 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 597 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 598 599 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 600 return; 601 602 this_cpu_sub(sockets_in_use, 1); 603 if (!sock->file) { 604 iput(SOCK_INODE(sock)); 605 return; 606 } 607 sock->file = NULL; 608 } 609 EXPORT_SYMBOL(sock_release); 610 611 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 612 { 613 *tx_flags = 0; 614 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 615 *tx_flags |= SKBTX_HW_TSTAMP; 616 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 617 *tx_flags |= SKBTX_SW_TSTAMP; 618 if (sock_flag(sk, SOCK_WIFI_STATUS)) 619 *tx_flags |= SKBTX_WIFI_STATUS; 620 } 621 EXPORT_SYMBOL(sock_tx_timestamp); 622 623 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 624 struct msghdr *msg, size_t size) 625 { 626 struct sock_iocb *si = kiocb_to_siocb(iocb); 627 628 si->sock = sock; 629 si->scm = NULL; 630 si->msg = msg; 631 si->size = size; 632 633 return sock->ops->sendmsg(iocb, sock, msg, size); 634 } 635 636 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 637 struct msghdr *msg, size_t size) 638 { 639 int err = security_socket_sendmsg(sock, msg, size); 640 641 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 642 } 643 644 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 645 { 646 struct kiocb iocb; 647 struct sock_iocb siocb; 648 int ret; 649 650 init_sync_kiocb(&iocb, NULL); 651 iocb.private = &siocb; 652 ret = __sock_sendmsg(&iocb, sock, msg, size); 653 if (-EIOCBQUEUED == ret) 654 ret = wait_on_sync_kiocb(&iocb); 655 return ret; 656 } 657 EXPORT_SYMBOL(sock_sendmsg); 658 659 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 660 { 661 struct kiocb iocb; 662 struct sock_iocb siocb; 663 int ret; 664 665 init_sync_kiocb(&iocb, NULL); 666 iocb.private = &siocb; 667 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size); 668 if (-EIOCBQUEUED == ret) 669 ret = wait_on_sync_kiocb(&iocb); 670 return ret; 671 } 672 673 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 674 struct kvec *vec, size_t num, size_t size) 675 { 676 mm_segment_t oldfs = get_fs(); 677 int result; 678 679 set_fs(KERNEL_DS); 680 /* 681 * the following is safe, since for compiler definitions of kvec and 682 * iovec are identical, yielding the same in-core layout and alignment 683 */ 684 msg->msg_iov = (struct iovec *)vec; 685 msg->msg_iovlen = num; 686 result = sock_sendmsg(sock, msg, size); 687 set_fs(oldfs); 688 return result; 689 } 690 EXPORT_SYMBOL(kernel_sendmsg); 691 692 /* 693 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 694 */ 695 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 696 struct sk_buff *skb) 697 { 698 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 699 struct timespec ts[3]; 700 int empty = 1; 701 struct skb_shared_hwtstamps *shhwtstamps = 702 skb_hwtstamps(skb); 703 704 /* Race occurred between timestamp enabling and packet 705 receiving. Fill in the current time for now. */ 706 if (need_software_tstamp && skb->tstamp.tv64 == 0) 707 __net_timestamp(skb); 708 709 if (need_software_tstamp) { 710 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 711 struct timeval tv; 712 skb_get_timestamp(skb, &tv); 713 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 714 sizeof(tv), &tv); 715 } else { 716 skb_get_timestampns(skb, &ts[0]); 717 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 718 sizeof(ts[0]), &ts[0]); 719 } 720 } 721 722 723 memset(ts, 0, sizeof(ts)); 724 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) && 725 ktime_to_timespec_cond(skb->tstamp, ts + 0)) 726 empty = 0; 727 if (shhwtstamps) { 728 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 729 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1)) 730 empty = 0; 731 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 732 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2)) 733 empty = 0; 734 } 735 if (!empty) 736 put_cmsg(msg, SOL_SOCKET, 737 SCM_TIMESTAMPING, sizeof(ts), &ts); 738 } 739 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 740 741 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 742 struct sk_buff *skb) 743 { 744 int ack; 745 746 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 747 return; 748 if (!skb->wifi_acked_valid) 749 return; 750 751 ack = skb->wifi_acked; 752 753 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 754 } 755 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 756 757 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 758 struct sk_buff *skb) 759 { 760 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 761 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 762 sizeof(__u32), &skb->dropcount); 763 } 764 765 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 766 struct sk_buff *skb) 767 { 768 sock_recv_timestamp(msg, sk, skb); 769 sock_recv_drops(msg, sk, skb); 770 } 771 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 772 773 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 774 struct msghdr *msg, size_t size, int flags) 775 { 776 struct sock_iocb *si = kiocb_to_siocb(iocb); 777 778 si->sock = sock; 779 si->scm = NULL; 780 si->msg = msg; 781 si->size = size; 782 si->flags = flags; 783 784 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 785 } 786 787 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 788 struct msghdr *msg, size_t size, int flags) 789 { 790 int err = security_socket_recvmsg(sock, msg, size, flags); 791 792 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 793 } 794 795 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 796 size_t size, int flags) 797 { 798 struct kiocb iocb; 799 struct sock_iocb siocb; 800 int ret; 801 802 init_sync_kiocb(&iocb, NULL); 803 iocb.private = &siocb; 804 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 805 if (-EIOCBQUEUED == ret) 806 ret = wait_on_sync_kiocb(&iocb); 807 return ret; 808 } 809 EXPORT_SYMBOL(sock_recvmsg); 810 811 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 812 size_t size, int flags) 813 { 814 struct kiocb iocb; 815 struct sock_iocb siocb; 816 int ret; 817 818 init_sync_kiocb(&iocb, NULL); 819 iocb.private = &siocb; 820 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 821 if (-EIOCBQUEUED == ret) 822 ret = wait_on_sync_kiocb(&iocb); 823 return ret; 824 } 825 826 /** 827 * kernel_recvmsg - Receive a message from a socket (kernel space) 828 * @sock: The socket to receive the message from 829 * @msg: Received message 830 * @vec: Input s/g array for message data 831 * @num: Size of input s/g array 832 * @size: Number of bytes to read 833 * @flags: Message flags (MSG_DONTWAIT, etc...) 834 * 835 * On return the msg structure contains the scatter/gather array passed in the 836 * vec argument. The array is modified so that it consists of the unfilled 837 * portion of the original array. 838 * 839 * The returned value is the total number of bytes received, or an error. 840 */ 841 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 842 struct kvec *vec, size_t num, size_t size, int flags) 843 { 844 mm_segment_t oldfs = get_fs(); 845 int result; 846 847 set_fs(KERNEL_DS); 848 /* 849 * the following is safe, since for compiler definitions of kvec and 850 * iovec are identical, yielding the same in-core layout and alignment 851 */ 852 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 853 result = sock_recvmsg(sock, msg, size, flags); 854 set_fs(oldfs); 855 return result; 856 } 857 EXPORT_SYMBOL(kernel_recvmsg); 858 859 static ssize_t sock_sendpage(struct file *file, struct page *page, 860 int offset, size_t size, loff_t *ppos, int more) 861 { 862 struct socket *sock; 863 int flags; 864 865 sock = file->private_data; 866 867 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 868 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 869 flags |= more; 870 871 return kernel_sendpage(sock, page, offset, size, flags); 872 } 873 874 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 875 struct pipe_inode_info *pipe, size_t len, 876 unsigned int flags) 877 { 878 struct socket *sock = file->private_data; 879 880 if (unlikely(!sock->ops->splice_read)) 881 return -EINVAL; 882 883 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 884 } 885 886 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 887 struct sock_iocb *siocb) 888 { 889 if (!is_sync_kiocb(iocb)) 890 BUG(); 891 892 siocb->kiocb = iocb; 893 iocb->private = siocb; 894 return siocb; 895 } 896 897 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 898 struct file *file, const struct iovec *iov, 899 unsigned long nr_segs) 900 { 901 struct socket *sock = file->private_data; 902 size_t size = 0; 903 int i; 904 905 for (i = 0; i < nr_segs; i++) 906 size += iov[i].iov_len; 907 908 msg->msg_name = NULL; 909 msg->msg_namelen = 0; 910 msg->msg_control = NULL; 911 msg->msg_controllen = 0; 912 msg->msg_iov = (struct iovec *)iov; 913 msg->msg_iovlen = nr_segs; 914 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 915 916 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 917 } 918 919 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 920 unsigned long nr_segs, loff_t pos) 921 { 922 struct sock_iocb siocb, *x; 923 924 if (pos != 0) 925 return -ESPIPE; 926 927 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */ 928 return 0; 929 930 931 x = alloc_sock_iocb(iocb, &siocb); 932 if (!x) 933 return -ENOMEM; 934 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 935 } 936 937 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 938 struct file *file, const struct iovec *iov, 939 unsigned long nr_segs) 940 { 941 struct socket *sock = file->private_data; 942 size_t size = 0; 943 int i; 944 945 for (i = 0; i < nr_segs; i++) 946 size += iov[i].iov_len; 947 948 msg->msg_name = NULL; 949 msg->msg_namelen = 0; 950 msg->msg_control = NULL; 951 msg->msg_controllen = 0; 952 msg->msg_iov = (struct iovec *)iov; 953 msg->msg_iovlen = nr_segs; 954 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 955 if (sock->type == SOCK_SEQPACKET) 956 msg->msg_flags |= MSG_EOR; 957 958 return __sock_sendmsg(iocb, sock, msg, size); 959 } 960 961 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 962 unsigned long nr_segs, loff_t pos) 963 { 964 struct sock_iocb siocb, *x; 965 966 if (pos != 0) 967 return -ESPIPE; 968 969 x = alloc_sock_iocb(iocb, &siocb); 970 if (!x) 971 return -ENOMEM; 972 973 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 974 } 975 976 /* 977 * Atomic setting of ioctl hooks to avoid race 978 * with module unload. 979 */ 980 981 static DEFINE_MUTEX(br_ioctl_mutex); 982 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 983 984 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 985 { 986 mutex_lock(&br_ioctl_mutex); 987 br_ioctl_hook = hook; 988 mutex_unlock(&br_ioctl_mutex); 989 } 990 EXPORT_SYMBOL(brioctl_set); 991 992 static DEFINE_MUTEX(vlan_ioctl_mutex); 993 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 994 995 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 996 { 997 mutex_lock(&vlan_ioctl_mutex); 998 vlan_ioctl_hook = hook; 999 mutex_unlock(&vlan_ioctl_mutex); 1000 } 1001 EXPORT_SYMBOL(vlan_ioctl_set); 1002 1003 static DEFINE_MUTEX(dlci_ioctl_mutex); 1004 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1005 1006 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1007 { 1008 mutex_lock(&dlci_ioctl_mutex); 1009 dlci_ioctl_hook = hook; 1010 mutex_unlock(&dlci_ioctl_mutex); 1011 } 1012 EXPORT_SYMBOL(dlci_ioctl_set); 1013 1014 static long sock_do_ioctl(struct net *net, struct socket *sock, 1015 unsigned int cmd, unsigned long arg) 1016 { 1017 int err; 1018 void __user *argp = (void __user *)arg; 1019 1020 err = sock->ops->ioctl(sock, cmd, arg); 1021 1022 /* 1023 * If this ioctl is unknown try to hand it down 1024 * to the NIC driver. 1025 */ 1026 if (err == -ENOIOCTLCMD) 1027 err = dev_ioctl(net, cmd, argp); 1028 1029 return err; 1030 } 1031 1032 /* 1033 * With an ioctl, arg may well be a user mode pointer, but we don't know 1034 * what to do with it - that's up to the protocol still. 1035 */ 1036 1037 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1038 { 1039 struct socket *sock; 1040 struct sock *sk; 1041 void __user *argp = (void __user *)arg; 1042 int pid, err; 1043 struct net *net; 1044 1045 sock = file->private_data; 1046 sk = sock->sk; 1047 net = sock_net(sk); 1048 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1049 err = dev_ioctl(net, cmd, argp); 1050 } else 1051 #ifdef CONFIG_WEXT_CORE 1052 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1053 err = dev_ioctl(net, cmd, argp); 1054 } else 1055 #endif 1056 switch (cmd) { 1057 case FIOSETOWN: 1058 case SIOCSPGRP: 1059 err = -EFAULT; 1060 if (get_user(pid, (int __user *)argp)) 1061 break; 1062 err = f_setown(sock->file, pid, 1); 1063 break; 1064 case FIOGETOWN: 1065 case SIOCGPGRP: 1066 err = put_user(f_getown(sock->file), 1067 (int __user *)argp); 1068 break; 1069 case SIOCGIFBR: 1070 case SIOCSIFBR: 1071 case SIOCBRADDBR: 1072 case SIOCBRDELBR: 1073 err = -ENOPKG; 1074 if (!br_ioctl_hook) 1075 request_module("bridge"); 1076 1077 mutex_lock(&br_ioctl_mutex); 1078 if (br_ioctl_hook) 1079 err = br_ioctl_hook(net, cmd, argp); 1080 mutex_unlock(&br_ioctl_mutex); 1081 break; 1082 case SIOCGIFVLAN: 1083 case SIOCSIFVLAN: 1084 err = -ENOPKG; 1085 if (!vlan_ioctl_hook) 1086 request_module("8021q"); 1087 1088 mutex_lock(&vlan_ioctl_mutex); 1089 if (vlan_ioctl_hook) 1090 err = vlan_ioctl_hook(net, argp); 1091 mutex_unlock(&vlan_ioctl_mutex); 1092 break; 1093 case SIOCADDDLCI: 1094 case SIOCDELDLCI: 1095 err = -ENOPKG; 1096 if (!dlci_ioctl_hook) 1097 request_module("dlci"); 1098 1099 mutex_lock(&dlci_ioctl_mutex); 1100 if (dlci_ioctl_hook) 1101 err = dlci_ioctl_hook(cmd, argp); 1102 mutex_unlock(&dlci_ioctl_mutex); 1103 break; 1104 default: 1105 err = sock_do_ioctl(net, sock, cmd, arg); 1106 break; 1107 } 1108 return err; 1109 } 1110 1111 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1112 { 1113 int err; 1114 struct socket *sock = NULL; 1115 1116 err = security_socket_create(family, type, protocol, 1); 1117 if (err) 1118 goto out; 1119 1120 sock = sock_alloc(); 1121 if (!sock) { 1122 err = -ENOMEM; 1123 goto out; 1124 } 1125 1126 sock->type = type; 1127 err = security_socket_post_create(sock, family, type, protocol, 1); 1128 if (err) 1129 goto out_release; 1130 1131 out: 1132 *res = sock; 1133 return err; 1134 out_release: 1135 sock_release(sock); 1136 sock = NULL; 1137 goto out; 1138 } 1139 EXPORT_SYMBOL(sock_create_lite); 1140 1141 /* No kernel lock held - perfect */ 1142 static unsigned int sock_poll(struct file *file, poll_table *wait) 1143 { 1144 unsigned int busy_flag = 0; 1145 struct socket *sock; 1146 1147 /* 1148 * We can't return errors to poll, so it's either yes or no. 1149 */ 1150 sock = file->private_data; 1151 1152 if (sk_can_busy_loop(sock->sk)) { 1153 /* this socket can poll_ll so tell the system call */ 1154 busy_flag = POLL_BUSY_LOOP; 1155 1156 /* once, only if requested by syscall */ 1157 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1158 sk_busy_loop(sock->sk, 1); 1159 } 1160 1161 return busy_flag | sock->ops->poll(file, sock, wait); 1162 } 1163 1164 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1165 { 1166 struct socket *sock = file->private_data; 1167 1168 return sock->ops->mmap(file, sock, vma); 1169 } 1170 1171 static int sock_close(struct inode *inode, struct file *filp) 1172 { 1173 sock_release(SOCKET_I(inode)); 1174 return 0; 1175 } 1176 1177 /* 1178 * Update the socket async list 1179 * 1180 * Fasync_list locking strategy. 1181 * 1182 * 1. fasync_list is modified only under process context socket lock 1183 * i.e. under semaphore. 1184 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1185 * or under socket lock 1186 */ 1187 1188 static int sock_fasync(int fd, struct file *filp, int on) 1189 { 1190 struct socket *sock = filp->private_data; 1191 struct sock *sk = sock->sk; 1192 struct socket_wq *wq; 1193 1194 if (sk == NULL) 1195 return -EINVAL; 1196 1197 lock_sock(sk); 1198 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1199 fasync_helper(fd, filp, on, &wq->fasync_list); 1200 1201 if (!wq->fasync_list) 1202 sock_reset_flag(sk, SOCK_FASYNC); 1203 else 1204 sock_set_flag(sk, SOCK_FASYNC); 1205 1206 release_sock(sk); 1207 return 0; 1208 } 1209 1210 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1211 1212 int sock_wake_async(struct socket *sock, int how, int band) 1213 { 1214 struct socket_wq *wq; 1215 1216 if (!sock) 1217 return -1; 1218 rcu_read_lock(); 1219 wq = rcu_dereference(sock->wq); 1220 if (!wq || !wq->fasync_list) { 1221 rcu_read_unlock(); 1222 return -1; 1223 } 1224 switch (how) { 1225 case SOCK_WAKE_WAITD: 1226 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1227 break; 1228 goto call_kill; 1229 case SOCK_WAKE_SPACE: 1230 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1231 break; 1232 /* fall through */ 1233 case SOCK_WAKE_IO: 1234 call_kill: 1235 kill_fasync(&wq->fasync_list, SIGIO, band); 1236 break; 1237 case SOCK_WAKE_URG: 1238 kill_fasync(&wq->fasync_list, SIGURG, band); 1239 } 1240 rcu_read_unlock(); 1241 return 0; 1242 } 1243 EXPORT_SYMBOL(sock_wake_async); 1244 1245 int __sock_create(struct net *net, int family, int type, int protocol, 1246 struct socket **res, int kern) 1247 { 1248 int err; 1249 struct socket *sock; 1250 const struct net_proto_family *pf; 1251 1252 /* 1253 * Check protocol is in range 1254 */ 1255 if (family < 0 || family >= NPROTO) 1256 return -EAFNOSUPPORT; 1257 if (type < 0 || type >= SOCK_MAX) 1258 return -EINVAL; 1259 1260 /* Compatibility. 1261 1262 This uglymoron is moved from INET layer to here to avoid 1263 deadlock in module load. 1264 */ 1265 if (family == PF_INET && type == SOCK_PACKET) { 1266 static int warned; 1267 if (!warned) { 1268 warned = 1; 1269 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1270 current->comm); 1271 } 1272 family = PF_PACKET; 1273 } 1274 1275 err = security_socket_create(family, type, protocol, kern); 1276 if (err) 1277 return err; 1278 1279 /* 1280 * Allocate the socket and allow the family to set things up. if 1281 * the protocol is 0, the family is instructed to select an appropriate 1282 * default. 1283 */ 1284 sock = sock_alloc(); 1285 if (!sock) { 1286 net_warn_ratelimited("socket: no more sockets\n"); 1287 return -ENFILE; /* Not exactly a match, but its the 1288 closest posix thing */ 1289 } 1290 1291 sock->type = type; 1292 1293 #ifdef CONFIG_MODULES 1294 /* Attempt to load a protocol module if the find failed. 1295 * 1296 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1297 * requested real, full-featured networking support upon configuration. 1298 * Otherwise module support will break! 1299 */ 1300 if (rcu_access_pointer(net_families[family]) == NULL) 1301 request_module("net-pf-%d", family); 1302 #endif 1303 1304 rcu_read_lock(); 1305 pf = rcu_dereference(net_families[family]); 1306 err = -EAFNOSUPPORT; 1307 if (!pf) 1308 goto out_release; 1309 1310 /* 1311 * We will call the ->create function, that possibly is in a loadable 1312 * module, so we have to bump that loadable module refcnt first. 1313 */ 1314 if (!try_module_get(pf->owner)) 1315 goto out_release; 1316 1317 /* Now protected by module ref count */ 1318 rcu_read_unlock(); 1319 1320 err = pf->create(net, sock, protocol, kern); 1321 if (err < 0) 1322 goto out_module_put; 1323 1324 /* 1325 * Now to bump the refcnt of the [loadable] module that owns this 1326 * socket at sock_release time we decrement its refcnt. 1327 */ 1328 if (!try_module_get(sock->ops->owner)) 1329 goto out_module_busy; 1330 1331 /* 1332 * Now that we're done with the ->create function, the [loadable] 1333 * module can have its refcnt decremented 1334 */ 1335 module_put(pf->owner); 1336 err = security_socket_post_create(sock, family, type, protocol, kern); 1337 if (err) 1338 goto out_sock_release; 1339 *res = sock; 1340 1341 return 0; 1342 1343 out_module_busy: 1344 err = -EAFNOSUPPORT; 1345 out_module_put: 1346 sock->ops = NULL; 1347 module_put(pf->owner); 1348 out_sock_release: 1349 sock_release(sock); 1350 return err; 1351 1352 out_release: 1353 rcu_read_unlock(); 1354 goto out_sock_release; 1355 } 1356 EXPORT_SYMBOL(__sock_create); 1357 1358 int sock_create(int family, int type, int protocol, struct socket **res) 1359 { 1360 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1361 } 1362 EXPORT_SYMBOL(sock_create); 1363 1364 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1365 { 1366 return __sock_create(&init_net, family, type, protocol, res, 1); 1367 } 1368 EXPORT_SYMBOL(sock_create_kern); 1369 1370 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1371 { 1372 int retval; 1373 struct socket *sock; 1374 int flags; 1375 1376 /* Check the SOCK_* constants for consistency. */ 1377 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1378 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1379 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1380 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1381 1382 flags = type & ~SOCK_TYPE_MASK; 1383 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1384 return -EINVAL; 1385 type &= SOCK_TYPE_MASK; 1386 1387 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1388 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1389 1390 retval = sock_create(family, type, protocol, &sock); 1391 if (retval < 0) 1392 goto out; 1393 1394 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1395 if (retval < 0) 1396 goto out_release; 1397 1398 out: 1399 /* It may be already another descriptor 8) Not kernel problem. */ 1400 return retval; 1401 1402 out_release: 1403 sock_release(sock); 1404 return retval; 1405 } 1406 1407 /* 1408 * Create a pair of connected sockets. 1409 */ 1410 1411 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1412 int __user *, usockvec) 1413 { 1414 struct socket *sock1, *sock2; 1415 int fd1, fd2, err; 1416 struct file *newfile1, *newfile2; 1417 int flags; 1418 1419 flags = type & ~SOCK_TYPE_MASK; 1420 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1421 return -EINVAL; 1422 type &= SOCK_TYPE_MASK; 1423 1424 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1425 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1426 1427 /* 1428 * Obtain the first socket and check if the underlying protocol 1429 * supports the socketpair call. 1430 */ 1431 1432 err = sock_create(family, type, protocol, &sock1); 1433 if (err < 0) 1434 goto out; 1435 1436 err = sock_create(family, type, protocol, &sock2); 1437 if (err < 0) 1438 goto out_release_1; 1439 1440 err = sock1->ops->socketpair(sock1, sock2); 1441 if (err < 0) 1442 goto out_release_both; 1443 1444 fd1 = get_unused_fd_flags(flags); 1445 if (unlikely(fd1 < 0)) { 1446 err = fd1; 1447 goto out_release_both; 1448 } 1449 1450 fd2 = get_unused_fd_flags(flags); 1451 if (unlikely(fd2 < 0)) { 1452 err = fd2; 1453 goto out_put_unused_1; 1454 } 1455 1456 newfile1 = sock_alloc_file(sock1, flags, NULL); 1457 if (unlikely(IS_ERR(newfile1))) { 1458 err = PTR_ERR(newfile1); 1459 goto out_put_unused_both; 1460 } 1461 1462 newfile2 = sock_alloc_file(sock2, flags, NULL); 1463 if (IS_ERR(newfile2)) { 1464 err = PTR_ERR(newfile2); 1465 goto out_fput_1; 1466 } 1467 1468 err = put_user(fd1, &usockvec[0]); 1469 if (err) 1470 goto out_fput_both; 1471 1472 err = put_user(fd2, &usockvec[1]); 1473 if (err) 1474 goto out_fput_both; 1475 1476 audit_fd_pair(fd1, fd2); 1477 1478 fd_install(fd1, newfile1); 1479 fd_install(fd2, newfile2); 1480 /* fd1 and fd2 may be already another descriptors. 1481 * Not kernel problem. 1482 */ 1483 1484 return 0; 1485 1486 out_fput_both: 1487 fput(newfile2); 1488 fput(newfile1); 1489 put_unused_fd(fd2); 1490 put_unused_fd(fd1); 1491 goto out; 1492 1493 out_fput_1: 1494 fput(newfile1); 1495 put_unused_fd(fd2); 1496 put_unused_fd(fd1); 1497 sock_release(sock2); 1498 goto out; 1499 1500 out_put_unused_both: 1501 put_unused_fd(fd2); 1502 out_put_unused_1: 1503 put_unused_fd(fd1); 1504 out_release_both: 1505 sock_release(sock2); 1506 out_release_1: 1507 sock_release(sock1); 1508 out: 1509 return err; 1510 } 1511 1512 /* 1513 * Bind a name to a socket. Nothing much to do here since it's 1514 * the protocol's responsibility to handle the local address. 1515 * 1516 * We move the socket address to kernel space before we call 1517 * the protocol layer (having also checked the address is ok). 1518 */ 1519 1520 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1521 { 1522 struct socket *sock; 1523 struct sockaddr_storage address; 1524 int err, fput_needed; 1525 1526 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1527 if (sock) { 1528 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1529 if (err >= 0) { 1530 err = security_socket_bind(sock, 1531 (struct sockaddr *)&address, 1532 addrlen); 1533 if (!err) 1534 err = sock->ops->bind(sock, 1535 (struct sockaddr *) 1536 &address, addrlen); 1537 } 1538 fput_light(sock->file, fput_needed); 1539 } 1540 return err; 1541 } 1542 1543 /* 1544 * Perform a listen. Basically, we allow the protocol to do anything 1545 * necessary for a listen, and if that works, we mark the socket as 1546 * ready for listening. 1547 */ 1548 1549 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1550 { 1551 struct socket *sock; 1552 int err, fput_needed; 1553 int somaxconn; 1554 1555 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1556 if (sock) { 1557 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1558 if ((unsigned int)backlog > somaxconn) 1559 backlog = somaxconn; 1560 1561 err = security_socket_listen(sock, backlog); 1562 if (!err) 1563 err = sock->ops->listen(sock, backlog); 1564 1565 fput_light(sock->file, fput_needed); 1566 } 1567 return err; 1568 } 1569 1570 /* 1571 * For accept, we attempt to create a new socket, set up the link 1572 * with the client, wake up the client, then return the new 1573 * connected fd. We collect the address of the connector in kernel 1574 * space and move it to user at the very end. This is unclean because 1575 * we open the socket then return an error. 1576 * 1577 * 1003.1g adds the ability to recvmsg() to query connection pending 1578 * status to recvmsg. We need to add that support in a way thats 1579 * clean when we restucture accept also. 1580 */ 1581 1582 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1583 int __user *, upeer_addrlen, int, flags) 1584 { 1585 struct socket *sock, *newsock; 1586 struct file *newfile; 1587 int err, len, newfd, fput_needed; 1588 struct sockaddr_storage address; 1589 1590 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1591 return -EINVAL; 1592 1593 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1594 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1595 1596 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1597 if (!sock) 1598 goto out; 1599 1600 err = -ENFILE; 1601 newsock = sock_alloc(); 1602 if (!newsock) 1603 goto out_put; 1604 1605 newsock->type = sock->type; 1606 newsock->ops = sock->ops; 1607 1608 /* 1609 * We don't need try_module_get here, as the listening socket (sock) 1610 * has the protocol module (sock->ops->owner) held. 1611 */ 1612 __module_get(newsock->ops->owner); 1613 1614 newfd = get_unused_fd_flags(flags); 1615 if (unlikely(newfd < 0)) { 1616 err = newfd; 1617 sock_release(newsock); 1618 goto out_put; 1619 } 1620 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1621 if (unlikely(IS_ERR(newfile))) { 1622 err = PTR_ERR(newfile); 1623 put_unused_fd(newfd); 1624 sock_release(newsock); 1625 goto out_put; 1626 } 1627 1628 err = security_socket_accept(sock, newsock); 1629 if (err) 1630 goto out_fd; 1631 1632 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1633 if (err < 0) 1634 goto out_fd; 1635 1636 if (upeer_sockaddr) { 1637 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1638 &len, 2) < 0) { 1639 err = -ECONNABORTED; 1640 goto out_fd; 1641 } 1642 err = move_addr_to_user(&address, 1643 len, upeer_sockaddr, upeer_addrlen); 1644 if (err < 0) 1645 goto out_fd; 1646 } 1647 1648 /* File flags are not inherited via accept() unlike another OSes. */ 1649 1650 fd_install(newfd, newfile); 1651 err = newfd; 1652 1653 out_put: 1654 fput_light(sock->file, fput_needed); 1655 out: 1656 return err; 1657 out_fd: 1658 fput(newfile); 1659 put_unused_fd(newfd); 1660 goto out_put; 1661 } 1662 1663 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1664 int __user *, upeer_addrlen) 1665 { 1666 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1667 } 1668 1669 /* 1670 * Attempt to connect to a socket with the server address. The address 1671 * is in user space so we verify it is OK and move it to kernel space. 1672 * 1673 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1674 * break bindings 1675 * 1676 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1677 * other SEQPACKET protocols that take time to connect() as it doesn't 1678 * include the -EINPROGRESS status for such sockets. 1679 */ 1680 1681 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1682 int, addrlen) 1683 { 1684 struct socket *sock; 1685 struct sockaddr_storage address; 1686 int err, fput_needed; 1687 1688 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1689 if (!sock) 1690 goto out; 1691 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1692 if (err < 0) 1693 goto out_put; 1694 1695 err = 1696 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1697 if (err) 1698 goto out_put; 1699 1700 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1701 sock->file->f_flags); 1702 out_put: 1703 fput_light(sock->file, fput_needed); 1704 out: 1705 return err; 1706 } 1707 1708 /* 1709 * Get the local address ('name') of a socket object. Move the obtained 1710 * name to user space. 1711 */ 1712 1713 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1714 int __user *, usockaddr_len) 1715 { 1716 struct socket *sock; 1717 struct sockaddr_storage address; 1718 int len, err, fput_needed; 1719 1720 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1721 if (!sock) 1722 goto out; 1723 1724 err = security_socket_getsockname(sock); 1725 if (err) 1726 goto out_put; 1727 1728 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1729 if (err) 1730 goto out_put; 1731 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1732 1733 out_put: 1734 fput_light(sock->file, fput_needed); 1735 out: 1736 return err; 1737 } 1738 1739 /* 1740 * Get the remote address ('name') of a socket object. Move the obtained 1741 * name to user space. 1742 */ 1743 1744 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1745 int __user *, usockaddr_len) 1746 { 1747 struct socket *sock; 1748 struct sockaddr_storage address; 1749 int len, err, fput_needed; 1750 1751 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1752 if (sock != NULL) { 1753 err = security_socket_getpeername(sock); 1754 if (err) { 1755 fput_light(sock->file, fput_needed); 1756 return err; 1757 } 1758 1759 err = 1760 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1761 1); 1762 if (!err) 1763 err = move_addr_to_user(&address, len, usockaddr, 1764 usockaddr_len); 1765 fput_light(sock->file, fput_needed); 1766 } 1767 return err; 1768 } 1769 1770 /* 1771 * Send a datagram to a given address. We move the address into kernel 1772 * space and check the user space data area is readable before invoking 1773 * the protocol. 1774 */ 1775 1776 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1777 unsigned int, flags, struct sockaddr __user *, addr, 1778 int, addr_len) 1779 { 1780 struct socket *sock; 1781 struct sockaddr_storage address; 1782 int err; 1783 struct msghdr msg; 1784 struct iovec iov; 1785 int fput_needed; 1786 1787 if (len > INT_MAX) 1788 len = INT_MAX; 1789 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1790 if (!sock) 1791 goto out; 1792 1793 iov.iov_base = buff; 1794 iov.iov_len = len; 1795 msg.msg_name = NULL; 1796 msg.msg_iov = &iov; 1797 msg.msg_iovlen = 1; 1798 msg.msg_control = NULL; 1799 msg.msg_controllen = 0; 1800 msg.msg_namelen = 0; 1801 if (addr) { 1802 err = move_addr_to_kernel(addr, addr_len, &address); 1803 if (err < 0) 1804 goto out_put; 1805 msg.msg_name = (struct sockaddr *)&address; 1806 msg.msg_namelen = addr_len; 1807 } 1808 if (sock->file->f_flags & O_NONBLOCK) 1809 flags |= MSG_DONTWAIT; 1810 msg.msg_flags = flags; 1811 err = sock_sendmsg(sock, &msg, len); 1812 1813 out_put: 1814 fput_light(sock->file, fput_needed); 1815 out: 1816 return err; 1817 } 1818 1819 /* 1820 * Send a datagram down a socket. 1821 */ 1822 1823 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1824 unsigned int, flags) 1825 { 1826 return sys_sendto(fd, buff, len, flags, NULL, 0); 1827 } 1828 1829 /* 1830 * Receive a frame from the socket and optionally record the address of the 1831 * sender. We verify the buffers are writable and if needed move the 1832 * sender address from kernel to user space. 1833 */ 1834 1835 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1836 unsigned int, flags, struct sockaddr __user *, addr, 1837 int __user *, addr_len) 1838 { 1839 struct socket *sock; 1840 struct iovec iov; 1841 struct msghdr msg; 1842 struct sockaddr_storage address; 1843 int err, err2; 1844 int fput_needed; 1845 1846 if (size > INT_MAX) 1847 size = INT_MAX; 1848 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1849 if (!sock) 1850 goto out; 1851 1852 msg.msg_control = NULL; 1853 msg.msg_controllen = 0; 1854 msg.msg_iovlen = 1; 1855 msg.msg_iov = &iov; 1856 iov.iov_len = size; 1857 iov.iov_base = ubuf; 1858 /* Save some cycles and don't copy the address if not needed */ 1859 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1860 /* We assume all kernel code knows the size of sockaddr_storage */ 1861 msg.msg_namelen = 0; 1862 if (sock->file->f_flags & O_NONBLOCK) 1863 flags |= MSG_DONTWAIT; 1864 err = sock_recvmsg(sock, &msg, size, flags); 1865 1866 if (err >= 0 && addr != NULL) { 1867 err2 = move_addr_to_user(&address, 1868 msg.msg_namelen, addr, addr_len); 1869 if (err2 < 0) 1870 err = err2; 1871 } 1872 1873 fput_light(sock->file, fput_needed); 1874 out: 1875 return err; 1876 } 1877 1878 /* 1879 * Receive a datagram from a socket. 1880 */ 1881 1882 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1883 unsigned int flags) 1884 { 1885 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1886 } 1887 1888 /* 1889 * Set a socket option. Because we don't know the option lengths we have 1890 * to pass the user mode parameter for the protocols to sort out. 1891 */ 1892 1893 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1894 char __user *, optval, int, optlen) 1895 { 1896 int err, fput_needed; 1897 struct socket *sock; 1898 1899 if (optlen < 0) 1900 return -EINVAL; 1901 1902 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1903 if (sock != NULL) { 1904 err = security_socket_setsockopt(sock, level, optname); 1905 if (err) 1906 goto out_put; 1907 1908 if (level == SOL_SOCKET) 1909 err = 1910 sock_setsockopt(sock, level, optname, optval, 1911 optlen); 1912 else 1913 err = 1914 sock->ops->setsockopt(sock, level, optname, optval, 1915 optlen); 1916 out_put: 1917 fput_light(sock->file, fput_needed); 1918 } 1919 return err; 1920 } 1921 1922 /* 1923 * Get a socket option. Because we don't know the option lengths we have 1924 * to pass a user mode parameter for the protocols to sort out. 1925 */ 1926 1927 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1928 char __user *, optval, int __user *, optlen) 1929 { 1930 int err, fput_needed; 1931 struct socket *sock; 1932 1933 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1934 if (sock != NULL) { 1935 err = security_socket_getsockopt(sock, level, optname); 1936 if (err) 1937 goto out_put; 1938 1939 if (level == SOL_SOCKET) 1940 err = 1941 sock_getsockopt(sock, level, optname, optval, 1942 optlen); 1943 else 1944 err = 1945 sock->ops->getsockopt(sock, level, optname, optval, 1946 optlen); 1947 out_put: 1948 fput_light(sock->file, fput_needed); 1949 } 1950 return err; 1951 } 1952 1953 /* 1954 * Shutdown a socket. 1955 */ 1956 1957 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1958 { 1959 int err, fput_needed; 1960 struct socket *sock; 1961 1962 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1963 if (sock != NULL) { 1964 err = security_socket_shutdown(sock, how); 1965 if (!err) 1966 err = sock->ops->shutdown(sock, how); 1967 fput_light(sock->file, fput_needed); 1968 } 1969 return err; 1970 } 1971 1972 /* A couple of helpful macros for getting the address of the 32/64 bit 1973 * fields which are the same type (int / unsigned) on our platforms. 1974 */ 1975 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1976 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1977 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1978 1979 struct used_address { 1980 struct sockaddr_storage name; 1981 unsigned int name_len; 1982 }; 1983 1984 static int copy_msghdr_from_user(struct msghdr *kmsg, 1985 struct msghdr __user *umsg) 1986 { 1987 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr))) 1988 return -EFAULT; 1989 1990 if (kmsg->msg_namelen < 0) 1991 return -EINVAL; 1992 1993 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1994 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1995 return 0; 1996 } 1997 1998 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg, 1999 struct msghdr *msg_sys, unsigned int flags, 2000 struct used_address *used_address) 2001 { 2002 struct compat_msghdr __user *msg_compat = 2003 (struct compat_msghdr __user *)msg; 2004 struct sockaddr_storage address; 2005 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2006 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2007 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 2008 /* 20 is size of ipv6_pktinfo */ 2009 unsigned char *ctl_buf = ctl; 2010 int err, ctl_len, total_len; 2011 2012 err = -EFAULT; 2013 if (MSG_CMSG_COMPAT & flags) { 2014 if (get_compat_msghdr(msg_sys, msg_compat)) 2015 return -EFAULT; 2016 } else { 2017 err = copy_msghdr_from_user(msg_sys, msg); 2018 if (err) 2019 return err; 2020 } 2021 2022 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2023 err = -EMSGSIZE; 2024 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2025 goto out; 2026 err = -ENOMEM; 2027 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2028 GFP_KERNEL); 2029 if (!iov) 2030 goto out; 2031 } 2032 2033 /* This will also move the address data into kernel space */ 2034 if (MSG_CMSG_COMPAT & flags) { 2035 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ); 2036 } else 2037 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ); 2038 if (err < 0) 2039 goto out_freeiov; 2040 total_len = err; 2041 2042 err = -ENOBUFS; 2043 2044 if (msg_sys->msg_controllen > INT_MAX) 2045 goto out_freeiov; 2046 ctl_len = msg_sys->msg_controllen; 2047 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2048 err = 2049 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2050 sizeof(ctl)); 2051 if (err) 2052 goto out_freeiov; 2053 ctl_buf = msg_sys->msg_control; 2054 ctl_len = msg_sys->msg_controllen; 2055 } else if (ctl_len) { 2056 if (ctl_len > sizeof(ctl)) { 2057 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2058 if (ctl_buf == NULL) 2059 goto out_freeiov; 2060 } 2061 err = -EFAULT; 2062 /* 2063 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2064 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2065 * checking falls down on this. 2066 */ 2067 if (copy_from_user(ctl_buf, 2068 (void __user __force *)msg_sys->msg_control, 2069 ctl_len)) 2070 goto out_freectl; 2071 msg_sys->msg_control = ctl_buf; 2072 } 2073 msg_sys->msg_flags = flags; 2074 2075 if (sock->file->f_flags & O_NONBLOCK) 2076 msg_sys->msg_flags |= MSG_DONTWAIT; 2077 /* 2078 * If this is sendmmsg() and current destination address is same as 2079 * previously succeeded address, omit asking LSM's decision. 2080 * used_address->name_len is initialized to UINT_MAX so that the first 2081 * destination address never matches. 2082 */ 2083 if (used_address && msg_sys->msg_name && 2084 used_address->name_len == msg_sys->msg_namelen && 2085 !memcmp(&used_address->name, msg_sys->msg_name, 2086 used_address->name_len)) { 2087 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2088 goto out_freectl; 2089 } 2090 err = sock_sendmsg(sock, msg_sys, total_len); 2091 /* 2092 * If this is sendmmsg() and sending to current destination address was 2093 * successful, remember it. 2094 */ 2095 if (used_address && err >= 0) { 2096 used_address->name_len = msg_sys->msg_namelen; 2097 if (msg_sys->msg_name) 2098 memcpy(&used_address->name, msg_sys->msg_name, 2099 used_address->name_len); 2100 } 2101 2102 out_freectl: 2103 if (ctl_buf != ctl) 2104 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2105 out_freeiov: 2106 if (iov != iovstack) 2107 kfree(iov); 2108 out: 2109 return err; 2110 } 2111 2112 /* 2113 * BSD sendmsg interface 2114 */ 2115 2116 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 2117 { 2118 int fput_needed, err; 2119 struct msghdr msg_sys; 2120 struct socket *sock; 2121 2122 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2123 if (!sock) 2124 goto out; 2125 2126 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2127 2128 fput_light(sock->file, fput_needed); 2129 out: 2130 return err; 2131 } 2132 2133 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags) 2134 { 2135 if (flags & MSG_CMSG_COMPAT) 2136 return -EINVAL; 2137 return __sys_sendmsg(fd, msg, flags); 2138 } 2139 2140 /* 2141 * Linux sendmmsg interface 2142 */ 2143 2144 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2145 unsigned int flags) 2146 { 2147 int fput_needed, err, datagrams; 2148 struct socket *sock; 2149 struct mmsghdr __user *entry; 2150 struct compat_mmsghdr __user *compat_entry; 2151 struct msghdr msg_sys; 2152 struct used_address used_address; 2153 2154 if (vlen > UIO_MAXIOV) 2155 vlen = UIO_MAXIOV; 2156 2157 datagrams = 0; 2158 2159 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2160 if (!sock) 2161 return err; 2162 2163 used_address.name_len = UINT_MAX; 2164 entry = mmsg; 2165 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2166 err = 0; 2167 2168 while (datagrams < vlen) { 2169 if (MSG_CMSG_COMPAT & flags) { 2170 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry, 2171 &msg_sys, flags, &used_address); 2172 if (err < 0) 2173 break; 2174 err = __put_user(err, &compat_entry->msg_len); 2175 ++compat_entry; 2176 } else { 2177 err = ___sys_sendmsg(sock, 2178 (struct msghdr __user *)entry, 2179 &msg_sys, flags, &used_address); 2180 if (err < 0) 2181 break; 2182 err = put_user(err, &entry->msg_len); 2183 ++entry; 2184 } 2185 2186 if (err) 2187 break; 2188 ++datagrams; 2189 } 2190 2191 fput_light(sock->file, fput_needed); 2192 2193 /* We only return an error if no datagrams were able to be sent */ 2194 if (datagrams != 0) 2195 return datagrams; 2196 2197 return err; 2198 } 2199 2200 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2201 unsigned int, vlen, unsigned int, flags) 2202 { 2203 if (flags & MSG_CMSG_COMPAT) 2204 return -EINVAL; 2205 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2206 } 2207 2208 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 2209 struct msghdr *msg_sys, unsigned int flags, int nosec) 2210 { 2211 struct compat_msghdr __user *msg_compat = 2212 (struct compat_msghdr __user *)msg; 2213 struct iovec iovstack[UIO_FASTIOV]; 2214 struct iovec *iov = iovstack; 2215 unsigned long cmsg_ptr; 2216 int err, total_len, len; 2217 2218 /* kernel mode address */ 2219 struct sockaddr_storage addr; 2220 2221 /* user mode address pointers */ 2222 struct sockaddr __user *uaddr; 2223 int __user *uaddr_len; 2224 2225 if (MSG_CMSG_COMPAT & flags) { 2226 if (get_compat_msghdr(msg_sys, msg_compat)) 2227 return -EFAULT; 2228 } else { 2229 err = copy_msghdr_from_user(msg_sys, msg); 2230 if (err) 2231 return err; 2232 } 2233 2234 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 2235 err = -EMSGSIZE; 2236 if (msg_sys->msg_iovlen > UIO_MAXIOV) 2237 goto out; 2238 err = -ENOMEM; 2239 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec), 2240 GFP_KERNEL); 2241 if (!iov) 2242 goto out; 2243 } 2244 2245 /* Save the user-mode address (verify_iovec will change the 2246 * kernel msghdr to use the kernel address space) 2247 */ 2248 uaddr = (__force void __user *)msg_sys->msg_name; 2249 uaddr_len = COMPAT_NAMELEN(msg); 2250 if (MSG_CMSG_COMPAT & flags) 2251 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2252 else 2253 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE); 2254 if (err < 0) 2255 goto out_freeiov; 2256 total_len = err; 2257 2258 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2259 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2260 2261 /* We assume all kernel code knows the size of sockaddr_storage */ 2262 msg_sys->msg_namelen = 0; 2263 2264 if (sock->file->f_flags & O_NONBLOCK) 2265 flags |= MSG_DONTWAIT; 2266 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2267 total_len, flags); 2268 if (err < 0) 2269 goto out_freeiov; 2270 len = err; 2271 2272 if (uaddr != NULL) { 2273 err = move_addr_to_user(&addr, 2274 msg_sys->msg_namelen, uaddr, 2275 uaddr_len); 2276 if (err < 0) 2277 goto out_freeiov; 2278 } 2279 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2280 COMPAT_FLAGS(msg)); 2281 if (err) 2282 goto out_freeiov; 2283 if (MSG_CMSG_COMPAT & flags) 2284 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2285 &msg_compat->msg_controllen); 2286 else 2287 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2288 &msg->msg_controllen); 2289 if (err) 2290 goto out_freeiov; 2291 err = len; 2292 2293 out_freeiov: 2294 if (iov != iovstack) 2295 kfree(iov); 2296 out: 2297 return err; 2298 } 2299 2300 /* 2301 * BSD recvmsg interface 2302 */ 2303 2304 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags) 2305 { 2306 int fput_needed, err; 2307 struct msghdr msg_sys; 2308 struct socket *sock; 2309 2310 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2311 if (!sock) 2312 goto out; 2313 2314 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2315 2316 fput_light(sock->file, fput_needed); 2317 out: 2318 return err; 2319 } 2320 2321 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2322 unsigned int, flags) 2323 { 2324 if (flags & MSG_CMSG_COMPAT) 2325 return -EINVAL; 2326 return __sys_recvmsg(fd, msg, flags); 2327 } 2328 2329 /* 2330 * Linux recvmmsg interface 2331 */ 2332 2333 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2334 unsigned int flags, struct timespec *timeout) 2335 { 2336 int fput_needed, err, datagrams; 2337 struct socket *sock; 2338 struct mmsghdr __user *entry; 2339 struct compat_mmsghdr __user *compat_entry; 2340 struct msghdr msg_sys; 2341 struct timespec end_time; 2342 2343 if (timeout && 2344 poll_select_set_timeout(&end_time, timeout->tv_sec, 2345 timeout->tv_nsec)) 2346 return -EINVAL; 2347 2348 datagrams = 0; 2349 2350 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2351 if (!sock) 2352 return err; 2353 2354 err = sock_error(sock->sk); 2355 if (err) 2356 goto out_put; 2357 2358 entry = mmsg; 2359 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2360 2361 while (datagrams < vlen) { 2362 /* 2363 * No need to ask LSM for more than the first datagram. 2364 */ 2365 if (MSG_CMSG_COMPAT & flags) { 2366 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2367 &msg_sys, flags & ~MSG_WAITFORONE, 2368 datagrams); 2369 if (err < 0) 2370 break; 2371 err = __put_user(err, &compat_entry->msg_len); 2372 ++compat_entry; 2373 } else { 2374 err = ___sys_recvmsg(sock, 2375 (struct msghdr __user *)entry, 2376 &msg_sys, flags & ~MSG_WAITFORONE, 2377 datagrams); 2378 if (err < 0) 2379 break; 2380 err = put_user(err, &entry->msg_len); 2381 ++entry; 2382 } 2383 2384 if (err) 2385 break; 2386 ++datagrams; 2387 2388 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2389 if (flags & MSG_WAITFORONE) 2390 flags |= MSG_DONTWAIT; 2391 2392 if (timeout) { 2393 ktime_get_ts(timeout); 2394 *timeout = timespec_sub(end_time, *timeout); 2395 if (timeout->tv_sec < 0) { 2396 timeout->tv_sec = timeout->tv_nsec = 0; 2397 break; 2398 } 2399 2400 /* Timeout, return less than vlen datagrams */ 2401 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2402 break; 2403 } 2404 2405 /* Out of band data, return right away */ 2406 if (msg_sys.msg_flags & MSG_OOB) 2407 break; 2408 } 2409 2410 out_put: 2411 fput_light(sock->file, fput_needed); 2412 2413 if (err == 0) 2414 return datagrams; 2415 2416 if (datagrams != 0) { 2417 /* 2418 * We may return less entries than requested (vlen) if the 2419 * sock is non block and there aren't enough datagrams... 2420 */ 2421 if (err != -EAGAIN) { 2422 /* 2423 * ... or if recvmsg returns an error after we 2424 * received some datagrams, where we record the 2425 * error to return on the next call or if the 2426 * app asks about it using getsockopt(SO_ERROR). 2427 */ 2428 sock->sk->sk_err = -err; 2429 } 2430 2431 return datagrams; 2432 } 2433 2434 return err; 2435 } 2436 2437 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2438 unsigned int, vlen, unsigned int, flags, 2439 struct timespec __user *, timeout) 2440 { 2441 int datagrams; 2442 struct timespec timeout_sys; 2443 2444 if (flags & MSG_CMSG_COMPAT) 2445 return -EINVAL; 2446 2447 if (!timeout) 2448 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2449 2450 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2451 return -EFAULT; 2452 2453 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2454 2455 if (datagrams > 0 && 2456 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2457 datagrams = -EFAULT; 2458 2459 return datagrams; 2460 } 2461 2462 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2463 /* Argument list sizes for sys_socketcall */ 2464 #define AL(x) ((x) * sizeof(unsigned long)) 2465 static const unsigned char nargs[21] = { 2466 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2467 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2468 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2469 AL(4), AL(5), AL(4) 2470 }; 2471 2472 #undef AL 2473 2474 /* 2475 * System call vectors. 2476 * 2477 * Argument checking cleaned up. Saved 20% in size. 2478 * This function doesn't need to set the kernel lock because 2479 * it is set by the callees. 2480 */ 2481 2482 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2483 { 2484 unsigned long a[AUDITSC_ARGS]; 2485 unsigned long a0, a1; 2486 int err; 2487 unsigned int len; 2488 2489 if (call < 1 || call > SYS_SENDMMSG) 2490 return -EINVAL; 2491 2492 len = nargs[call]; 2493 if (len > sizeof(a)) 2494 return -EINVAL; 2495 2496 /* copy_from_user should be SMP safe. */ 2497 if (copy_from_user(a, args, len)) 2498 return -EFAULT; 2499 2500 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2501 if (err) 2502 return err; 2503 2504 a0 = a[0]; 2505 a1 = a[1]; 2506 2507 switch (call) { 2508 case SYS_SOCKET: 2509 err = sys_socket(a0, a1, a[2]); 2510 break; 2511 case SYS_BIND: 2512 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2513 break; 2514 case SYS_CONNECT: 2515 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2516 break; 2517 case SYS_LISTEN: 2518 err = sys_listen(a0, a1); 2519 break; 2520 case SYS_ACCEPT: 2521 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2522 (int __user *)a[2], 0); 2523 break; 2524 case SYS_GETSOCKNAME: 2525 err = 2526 sys_getsockname(a0, (struct sockaddr __user *)a1, 2527 (int __user *)a[2]); 2528 break; 2529 case SYS_GETPEERNAME: 2530 err = 2531 sys_getpeername(a0, (struct sockaddr __user *)a1, 2532 (int __user *)a[2]); 2533 break; 2534 case SYS_SOCKETPAIR: 2535 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2536 break; 2537 case SYS_SEND: 2538 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2539 break; 2540 case SYS_SENDTO: 2541 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2542 (struct sockaddr __user *)a[4], a[5]); 2543 break; 2544 case SYS_RECV: 2545 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2546 break; 2547 case SYS_RECVFROM: 2548 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2549 (struct sockaddr __user *)a[4], 2550 (int __user *)a[5]); 2551 break; 2552 case SYS_SHUTDOWN: 2553 err = sys_shutdown(a0, a1); 2554 break; 2555 case SYS_SETSOCKOPT: 2556 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2557 break; 2558 case SYS_GETSOCKOPT: 2559 err = 2560 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2561 (int __user *)a[4]); 2562 break; 2563 case SYS_SENDMSG: 2564 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2565 break; 2566 case SYS_SENDMMSG: 2567 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2568 break; 2569 case SYS_RECVMSG: 2570 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2571 break; 2572 case SYS_RECVMMSG: 2573 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2574 (struct timespec __user *)a[4]); 2575 break; 2576 case SYS_ACCEPT4: 2577 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2578 (int __user *)a[2], a[3]); 2579 break; 2580 default: 2581 err = -EINVAL; 2582 break; 2583 } 2584 return err; 2585 } 2586 2587 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2588 2589 /** 2590 * sock_register - add a socket protocol handler 2591 * @ops: description of protocol 2592 * 2593 * This function is called by a protocol handler that wants to 2594 * advertise its address family, and have it linked into the 2595 * socket interface. The value ops->family coresponds to the 2596 * socket system call protocol family. 2597 */ 2598 int sock_register(const struct net_proto_family *ops) 2599 { 2600 int err; 2601 2602 if (ops->family >= NPROTO) { 2603 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2604 NPROTO); 2605 return -ENOBUFS; 2606 } 2607 2608 spin_lock(&net_family_lock); 2609 if (rcu_dereference_protected(net_families[ops->family], 2610 lockdep_is_held(&net_family_lock))) 2611 err = -EEXIST; 2612 else { 2613 rcu_assign_pointer(net_families[ops->family], ops); 2614 err = 0; 2615 } 2616 spin_unlock(&net_family_lock); 2617 2618 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2619 return err; 2620 } 2621 EXPORT_SYMBOL(sock_register); 2622 2623 /** 2624 * sock_unregister - remove a protocol handler 2625 * @family: protocol family to remove 2626 * 2627 * This function is called by a protocol handler that wants to 2628 * remove its address family, and have it unlinked from the 2629 * new socket creation. 2630 * 2631 * If protocol handler is a module, then it can use module reference 2632 * counts to protect against new references. If protocol handler is not 2633 * a module then it needs to provide its own protection in 2634 * the ops->create routine. 2635 */ 2636 void sock_unregister(int family) 2637 { 2638 BUG_ON(family < 0 || family >= NPROTO); 2639 2640 spin_lock(&net_family_lock); 2641 RCU_INIT_POINTER(net_families[family], NULL); 2642 spin_unlock(&net_family_lock); 2643 2644 synchronize_rcu(); 2645 2646 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2647 } 2648 EXPORT_SYMBOL(sock_unregister); 2649 2650 static int __init sock_init(void) 2651 { 2652 int err; 2653 /* 2654 * Initialize the network sysctl infrastructure. 2655 */ 2656 err = net_sysctl_init(); 2657 if (err) 2658 goto out; 2659 2660 /* 2661 * Initialize skbuff SLAB cache 2662 */ 2663 skb_init(); 2664 2665 /* 2666 * Initialize the protocols module. 2667 */ 2668 2669 init_inodecache(); 2670 2671 err = register_filesystem(&sock_fs_type); 2672 if (err) 2673 goto out_fs; 2674 sock_mnt = kern_mount(&sock_fs_type); 2675 if (IS_ERR(sock_mnt)) { 2676 err = PTR_ERR(sock_mnt); 2677 goto out_mount; 2678 } 2679 2680 /* The real protocol initialization is performed in later initcalls. 2681 */ 2682 2683 #ifdef CONFIG_NETFILTER 2684 err = netfilter_init(); 2685 if (err) 2686 goto out; 2687 #endif 2688 2689 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2690 skb_timestamping_init(); 2691 #endif 2692 2693 out: 2694 return err; 2695 2696 out_mount: 2697 unregister_filesystem(&sock_fs_type); 2698 out_fs: 2699 goto out; 2700 } 2701 2702 core_initcall(sock_init); /* early initcall */ 2703 2704 #ifdef CONFIG_PROC_FS 2705 void socket_seq_show(struct seq_file *seq) 2706 { 2707 int cpu; 2708 int counter = 0; 2709 2710 for_each_possible_cpu(cpu) 2711 counter += per_cpu(sockets_in_use, cpu); 2712 2713 /* It can be negative, by the way. 8) */ 2714 if (counter < 0) 2715 counter = 0; 2716 2717 seq_printf(seq, "sockets: used %d\n", counter); 2718 } 2719 #endif /* CONFIG_PROC_FS */ 2720 2721 #ifdef CONFIG_COMPAT 2722 static int do_siocgstamp(struct net *net, struct socket *sock, 2723 unsigned int cmd, void __user *up) 2724 { 2725 mm_segment_t old_fs = get_fs(); 2726 struct timeval ktv; 2727 int err; 2728 2729 set_fs(KERNEL_DS); 2730 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2731 set_fs(old_fs); 2732 if (!err) 2733 err = compat_put_timeval(&ktv, up); 2734 2735 return err; 2736 } 2737 2738 static int do_siocgstampns(struct net *net, struct socket *sock, 2739 unsigned int cmd, void __user *up) 2740 { 2741 mm_segment_t old_fs = get_fs(); 2742 struct timespec kts; 2743 int err; 2744 2745 set_fs(KERNEL_DS); 2746 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2747 set_fs(old_fs); 2748 if (!err) 2749 err = compat_put_timespec(&kts, up); 2750 2751 return err; 2752 } 2753 2754 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2755 { 2756 struct ifreq __user *uifr; 2757 int err; 2758 2759 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2760 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2761 return -EFAULT; 2762 2763 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2764 if (err) 2765 return err; 2766 2767 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2768 return -EFAULT; 2769 2770 return 0; 2771 } 2772 2773 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2774 { 2775 struct compat_ifconf ifc32; 2776 struct ifconf ifc; 2777 struct ifconf __user *uifc; 2778 struct compat_ifreq __user *ifr32; 2779 struct ifreq __user *ifr; 2780 unsigned int i, j; 2781 int err; 2782 2783 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2784 return -EFAULT; 2785 2786 memset(&ifc, 0, sizeof(ifc)); 2787 if (ifc32.ifcbuf == 0) { 2788 ifc32.ifc_len = 0; 2789 ifc.ifc_len = 0; 2790 ifc.ifc_req = NULL; 2791 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2792 } else { 2793 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2794 sizeof(struct ifreq); 2795 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2796 ifc.ifc_len = len; 2797 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2798 ifr32 = compat_ptr(ifc32.ifcbuf); 2799 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2800 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2801 return -EFAULT; 2802 ifr++; 2803 ifr32++; 2804 } 2805 } 2806 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2807 return -EFAULT; 2808 2809 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2810 if (err) 2811 return err; 2812 2813 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2814 return -EFAULT; 2815 2816 ifr = ifc.ifc_req; 2817 ifr32 = compat_ptr(ifc32.ifcbuf); 2818 for (i = 0, j = 0; 2819 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2820 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2821 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2822 return -EFAULT; 2823 ifr32++; 2824 ifr++; 2825 } 2826 2827 if (ifc32.ifcbuf == 0) { 2828 /* Translate from 64-bit structure multiple to 2829 * a 32-bit one. 2830 */ 2831 i = ifc.ifc_len; 2832 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2833 ifc32.ifc_len = i; 2834 } else { 2835 ifc32.ifc_len = i; 2836 } 2837 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2838 return -EFAULT; 2839 2840 return 0; 2841 } 2842 2843 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2844 { 2845 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2846 bool convert_in = false, convert_out = false; 2847 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2848 struct ethtool_rxnfc __user *rxnfc; 2849 struct ifreq __user *ifr; 2850 u32 rule_cnt = 0, actual_rule_cnt; 2851 u32 ethcmd; 2852 u32 data; 2853 int ret; 2854 2855 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2856 return -EFAULT; 2857 2858 compat_rxnfc = compat_ptr(data); 2859 2860 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2861 return -EFAULT; 2862 2863 /* Most ethtool structures are defined without padding. 2864 * Unfortunately struct ethtool_rxnfc is an exception. 2865 */ 2866 switch (ethcmd) { 2867 default: 2868 break; 2869 case ETHTOOL_GRXCLSRLALL: 2870 /* Buffer size is variable */ 2871 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2872 return -EFAULT; 2873 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2874 return -ENOMEM; 2875 buf_size += rule_cnt * sizeof(u32); 2876 /* fall through */ 2877 case ETHTOOL_GRXRINGS: 2878 case ETHTOOL_GRXCLSRLCNT: 2879 case ETHTOOL_GRXCLSRULE: 2880 case ETHTOOL_SRXCLSRLINS: 2881 convert_out = true; 2882 /* fall through */ 2883 case ETHTOOL_SRXCLSRLDEL: 2884 buf_size += sizeof(struct ethtool_rxnfc); 2885 convert_in = true; 2886 break; 2887 } 2888 2889 ifr = compat_alloc_user_space(buf_size); 2890 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2891 2892 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2893 return -EFAULT; 2894 2895 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2896 &ifr->ifr_ifru.ifru_data)) 2897 return -EFAULT; 2898 2899 if (convert_in) { 2900 /* We expect there to be holes between fs.m_ext and 2901 * fs.ring_cookie and at the end of fs, but nowhere else. 2902 */ 2903 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2904 sizeof(compat_rxnfc->fs.m_ext) != 2905 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2906 sizeof(rxnfc->fs.m_ext)); 2907 BUILD_BUG_ON( 2908 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2909 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2910 offsetof(struct ethtool_rxnfc, fs.location) - 2911 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2912 2913 if (copy_in_user(rxnfc, compat_rxnfc, 2914 (void __user *)(&rxnfc->fs.m_ext + 1) - 2915 (void __user *)rxnfc) || 2916 copy_in_user(&rxnfc->fs.ring_cookie, 2917 &compat_rxnfc->fs.ring_cookie, 2918 (void __user *)(&rxnfc->fs.location + 1) - 2919 (void __user *)&rxnfc->fs.ring_cookie) || 2920 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2921 sizeof(rxnfc->rule_cnt))) 2922 return -EFAULT; 2923 } 2924 2925 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2926 if (ret) 2927 return ret; 2928 2929 if (convert_out) { 2930 if (copy_in_user(compat_rxnfc, rxnfc, 2931 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2932 (const void __user *)rxnfc) || 2933 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2934 &rxnfc->fs.ring_cookie, 2935 (const void __user *)(&rxnfc->fs.location + 1) - 2936 (const void __user *)&rxnfc->fs.ring_cookie) || 2937 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2938 sizeof(rxnfc->rule_cnt))) 2939 return -EFAULT; 2940 2941 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2942 /* As an optimisation, we only copy the actual 2943 * number of rules that the underlying 2944 * function returned. Since Mallory might 2945 * change the rule count in user memory, we 2946 * check that it is less than the rule count 2947 * originally given (as the user buffer size), 2948 * which has been range-checked. 2949 */ 2950 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2951 return -EFAULT; 2952 if (actual_rule_cnt < rule_cnt) 2953 rule_cnt = actual_rule_cnt; 2954 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2955 &rxnfc->rule_locs[0], 2956 rule_cnt * sizeof(u32))) 2957 return -EFAULT; 2958 } 2959 } 2960 2961 return 0; 2962 } 2963 2964 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2965 { 2966 void __user *uptr; 2967 compat_uptr_t uptr32; 2968 struct ifreq __user *uifr; 2969 2970 uifr = compat_alloc_user_space(sizeof(*uifr)); 2971 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2972 return -EFAULT; 2973 2974 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2975 return -EFAULT; 2976 2977 uptr = compat_ptr(uptr32); 2978 2979 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2980 return -EFAULT; 2981 2982 return dev_ioctl(net, SIOCWANDEV, uifr); 2983 } 2984 2985 static int bond_ioctl(struct net *net, unsigned int cmd, 2986 struct compat_ifreq __user *ifr32) 2987 { 2988 struct ifreq kifr; 2989 mm_segment_t old_fs; 2990 int err; 2991 2992 switch (cmd) { 2993 case SIOCBONDENSLAVE: 2994 case SIOCBONDRELEASE: 2995 case SIOCBONDSETHWADDR: 2996 case SIOCBONDCHANGEACTIVE: 2997 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2998 return -EFAULT; 2999 3000 old_fs = get_fs(); 3001 set_fs(KERNEL_DS); 3002 err = dev_ioctl(net, cmd, 3003 (struct ifreq __user __force *) &kifr); 3004 set_fs(old_fs); 3005 3006 return err; 3007 default: 3008 return -ENOIOCTLCMD; 3009 } 3010 } 3011 3012 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3013 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3014 struct compat_ifreq __user *u_ifreq32) 3015 { 3016 struct ifreq __user *u_ifreq64; 3017 char tmp_buf[IFNAMSIZ]; 3018 void __user *data64; 3019 u32 data32; 3020 3021 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 3022 IFNAMSIZ)) 3023 return -EFAULT; 3024 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 3025 return -EFAULT; 3026 data64 = compat_ptr(data32); 3027 3028 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 3029 3030 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 3031 IFNAMSIZ)) 3032 return -EFAULT; 3033 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 3034 return -EFAULT; 3035 3036 return dev_ioctl(net, cmd, u_ifreq64); 3037 } 3038 3039 static int dev_ifsioc(struct net *net, struct socket *sock, 3040 unsigned int cmd, struct compat_ifreq __user *uifr32) 3041 { 3042 struct ifreq __user *uifr; 3043 int err; 3044 3045 uifr = compat_alloc_user_space(sizeof(*uifr)); 3046 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3047 return -EFAULT; 3048 3049 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3050 3051 if (!err) { 3052 switch (cmd) { 3053 case SIOCGIFFLAGS: 3054 case SIOCGIFMETRIC: 3055 case SIOCGIFMTU: 3056 case SIOCGIFMEM: 3057 case SIOCGIFHWADDR: 3058 case SIOCGIFINDEX: 3059 case SIOCGIFADDR: 3060 case SIOCGIFBRDADDR: 3061 case SIOCGIFDSTADDR: 3062 case SIOCGIFNETMASK: 3063 case SIOCGIFPFLAGS: 3064 case SIOCGIFTXQLEN: 3065 case SIOCGMIIPHY: 3066 case SIOCGMIIREG: 3067 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3068 err = -EFAULT; 3069 break; 3070 } 3071 } 3072 return err; 3073 } 3074 3075 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3076 struct compat_ifreq __user *uifr32) 3077 { 3078 struct ifreq ifr; 3079 struct compat_ifmap __user *uifmap32; 3080 mm_segment_t old_fs; 3081 int err; 3082 3083 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3084 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3085 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3086 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3087 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3088 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3089 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3090 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3091 if (err) 3092 return -EFAULT; 3093 3094 old_fs = get_fs(); 3095 set_fs(KERNEL_DS); 3096 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3097 set_fs(old_fs); 3098 3099 if (cmd == SIOCGIFMAP && !err) { 3100 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3101 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3102 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3103 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3104 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3105 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3106 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3107 if (err) 3108 err = -EFAULT; 3109 } 3110 return err; 3111 } 3112 3113 struct rtentry32 { 3114 u32 rt_pad1; 3115 struct sockaddr rt_dst; /* target address */ 3116 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3117 struct sockaddr rt_genmask; /* target network mask (IP) */ 3118 unsigned short rt_flags; 3119 short rt_pad2; 3120 u32 rt_pad3; 3121 unsigned char rt_tos; 3122 unsigned char rt_class; 3123 short rt_pad4; 3124 short rt_metric; /* +1 for binary compatibility! */ 3125 /* char * */ u32 rt_dev; /* forcing the device at add */ 3126 u32 rt_mtu; /* per route MTU/Window */ 3127 u32 rt_window; /* Window clamping */ 3128 unsigned short rt_irtt; /* Initial RTT */ 3129 }; 3130 3131 struct in6_rtmsg32 { 3132 struct in6_addr rtmsg_dst; 3133 struct in6_addr rtmsg_src; 3134 struct in6_addr rtmsg_gateway; 3135 u32 rtmsg_type; 3136 u16 rtmsg_dst_len; 3137 u16 rtmsg_src_len; 3138 u32 rtmsg_metric; 3139 u32 rtmsg_info; 3140 u32 rtmsg_flags; 3141 s32 rtmsg_ifindex; 3142 }; 3143 3144 static int routing_ioctl(struct net *net, struct socket *sock, 3145 unsigned int cmd, void __user *argp) 3146 { 3147 int ret; 3148 void *r = NULL; 3149 struct in6_rtmsg r6; 3150 struct rtentry r4; 3151 char devname[16]; 3152 u32 rtdev; 3153 mm_segment_t old_fs = get_fs(); 3154 3155 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3156 struct in6_rtmsg32 __user *ur6 = argp; 3157 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3158 3 * sizeof(struct in6_addr)); 3159 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3160 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3161 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3162 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3163 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3164 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3165 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3166 3167 r = (void *) &r6; 3168 } else { /* ipv4 */ 3169 struct rtentry32 __user *ur4 = argp; 3170 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3171 3 * sizeof(struct sockaddr)); 3172 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3173 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3174 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3175 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3176 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3177 ret |= get_user(rtdev, &(ur4->rt_dev)); 3178 if (rtdev) { 3179 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3180 r4.rt_dev = (char __user __force *)devname; 3181 devname[15] = 0; 3182 } else 3183 r4.rt_dev = NULL; 3184 3185 r = (void *) &r4; 3186 } 3187 3188 if (ret) { 3189 ret = -EFAULT; 3190 goto out; 3191 } 3192 3193 set_fs(KERNEL_DS); 3194 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3195 set_fs(old_fs); 3196 3197 out: 3198 return ret; 3199 } 3200 3201 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3202 * for some operations; this forces use of the newer bridge-utils that 3203 * use compatible ioctls 3204 */ 3205 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3206 { 3207 compat_ulong_t tmp; 3208 3209 if (get_user(tmp, argp)) 3210 return -EFAULT; 3211 if (tmp == BRCTL_GET_VERSION) 3212 return BRCTL_VERSION + 1; 3213 return -EINVAL; 3214 } 3215 3216 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3217 unsigned int cmd, unsigned long arg) 3218 { 3219 void __user *argp = compat_ptr(arg); 3220 struct sock *sk = sock->sk; 3221 struct net *net = sock_net(sk); 3222 3223 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3224 return compat_ifr_data_ioctl(net, cmd, argp); 3225 3226 switch (cmd) { 3227 case SIOCSIFBR: 3228 case SIOCGIFBR: 3229 return old_bridge_ioctl(argp); 3230 case SIOCGIFNAME: 3231 return dev_ifname32(net, argp); 3232 case SIOCGIFCONF: 3233 return dev_ifconf(net, argp); 3234 case SIOCETHTOOL: 3235 return ethtool_ioctl(net, argp); 3236 case SIOCWANDEV: 3237 return compat_siocwandev(net, argp); 3238 case SIOCGIFMAP: 3239 case SIOCSIFMAP: 3240 return compat_sioc_ifmap(net, cmd, argp); 3241 case SIOCBONDENSLAVE: 3242 case SIOCBONDRELEASE: 3243 case SIOCBONDSETHWADDR: 3244 case SIOCBONDCHANGEACTIVE: 3245 return bond_ioctl(net, cmd, argp); 3246 case SIOCADDRT: 3247 case SIOCDELRT: 3248 return routing_ioctl(net, sock, cmd, argp); 3249 case SIOCGSTAMP: 3250 return do_siocgstamp(net, sock, cmd, argp); 3251 case SIOCGSTAMPNS: 3252 return do_siocgstampns(net, sock, cmd, argp); 3253 case SIOCBONDSLAVEINFOQUERY: 3254 case SIOCBONDINFOQUERY: 3255 case SIOCSHWTSTAMP: 3256 case SIOCGHWTSTAMP: 3257 return compat_ifr_data_ioctl(net, cmd, argp); 3258 3259 case FIOSETOWN: 3260 case SIOCSPGRP: 3261 case FIOGETOWN: 3262 case SIOCGPGRP: 3263 case SIOCBRADDBR: 3264 case SIOCBRDELBR: 3265 case SIOCGIFVLAN: 3266 case SIOCSIFVLAN: 3267 case SIOCADDDLCI: 3268 case SIOCDELDLCI: 3269 return sock_ioctl(file, cmd, arg); 3270 3271 case SIOCGIFFLAGS: 3272 case SIOCSIFFLAGS: 3273 case SIOCGIFMETRIC: 3274 case SIOCSIFMETRIC: 3275 case SIOCGIFMTU: 3276 case SIOCSIFMTU: 3277 case SIOCGIFMEM: 3278 case SIOCSIFMEM: 3279 case SIOCGIFHWADDR: 3280 case SIOCSIFHWADDR: 3281 case SIOCADDMULTI: 3282 case SIOCDELMULTI: 3283 case SIOCGIFINDEX: 3284 case SIOCGIFADDR: 3285 case SIOCSIFADDR: 3286 case SIOCSIFHWBROADCAST: 3287 case SIOCDIFADDR: 3288 case SIOCGIFBRDADDR: 3289 case SIOCSIFBRDADDR: 3290 case SIOCGIFDSTADDR: 3291 case SIOCSIFDSTADDR: 3292 case SIOCGIFNETMASK: 3293 case SIOCSIFNETMASK: 3294 case SIOCSIFPFLAGS: 3295 case SIOCGIFPFLAGS: 3296 case SIOCGIFTXQLEN: 3297 case SIOCSIFTXQLEN: 3298 case SIOCBRADDIF: 3299 case SIOCBRDELIF: 3300 case SIOCSIFNAME: 3301 case SIOCGMIIPHY: 3302 case SIOCGMIIREG: 3303 case SIOCSMIIREG: 3304 return dev_ifsioc(net, sock, cmd, argp); 3305 3306 case SIOCSARP: 3307 case SIOCGARP: 3308 case SIOCDARP: 3309 case SIOCATMARK: 3310 return sock_do_ioctl(net, sock, cmd, arg); 3311 } 3312 3313 return -ENOIOCTLCMD; 3314 } 3315 3316 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3317 unsigned long arg) 3318 { 3319 struct socket *sock = file->private_data; 3320 int ret = -ENOIOCTLCMD; 3321 struct sock *sk; 3322 struct net *net; 3323 3324 sk = sock->sk; 3325 net = sock_net(sk); 3326 3327 if (sock->ops->compat_ioctl) 3328 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3329 3330 if (ret == -ENOIOCTLCMD && 3331 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3332 ret = compat_wext_handle_ioctl(net, cmd, arg); 3333 3334 if (ret == -ENOIOCTLCMD) 3335 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3336 3337 return ret; 3338 } 3339 #endif 3340 3341 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3342 { 3343 return sock->ops->bind(sock, addr, addrlen); 3344 } 3345 EXPORT_SYMBOL(kernel_bind); 3346 3347 int kernel_listen(struct socket *sock, int backlog) 3348 { 3349 return sock->ops->listen(sock, backlog); 3350 } 3351 EXPORT_SYMBOL(kernel_listen); 3352 3353 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3354 { 3355 struct sock *sk = sock->sk; 3356 int err; 3357 3358 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3359 newsock); 3360 if (err < 0) 3361 goto done; 3362 3363 err = sock->ops->accept(sock, *newsock, flags); 3364 if (err < 0) { 3365 sock_release(*newsock); 3366 *newsock = NULL; 3367 goto done; 3368 } 3369 3370 (*newsock)->ops = sock->ops; 3371 __module_get((*newsock)->ops->owner); 3372 3373 done: 3374 return err; 3375 } 3376 EXPORT_SYMBOL(kernel_accept); 3377 3378 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3379 int flags) 3380 { 3381 return sock->ops->connect(sock, addr, addrlen, flags); 3382 } 3383 EXPORT_SYMBOL(kernel_connect); 3384 3385 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3386 int *addrlen) 3387 { 3388 return sock->ops->getname(sock, addr, addrlen, 0); 3389 } 3390 EXPORT_SYMBOL(kernel_getsockname); 3391 3392 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3393 int *addrlen) 3394 { 3395 return sock->ops->getname(sock, addr, addrlen, 1); 3396 } 3397 EXPORT_SYMBOL(kernel_getpeername); 3398 3399 int kernel_getsockopt(struct socket *sock, int level, int optname, 3400 char *optval, int *optlen) 3401 { 3402 mm_segment_t oldfs = get_fs(); 3403 char __user *uoptval; 3404 int __user *uoptlen; 3405 int err; 3406 3407 uoptval = (char __user __force *) optval; 3408 uoptlen = (int __user __force *) optlen; 3409 3410 set_fs(KERNEL_DS); 3411 if (level == SOL_SOCKET) 3412 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3413 else 3414 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3415 uoptlen); 3416 set_fs(oldfs); 3417 return err; 3418 } 3419 EXPORT_SYMBOL(kernel_getsockopt); 3420 3421 int kernel_setsockopt(struct socket *sock, int level, int optname, 3422 char *optval, unsigned int optlen) 3423 { 3424 mm_segment_t oldfs = get_fs(); 3425 char __user *uoptval; 3426 int err; 3427 3428 uoptval = (char __user __force *) optval; 3429 3430 set_fs(KERNEL_DS); 3431 if (level == SOL_SOCKET) 3432 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3433 else 3434 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3435 optlen); 3436 set_fs(oldfs); 3437 return err; 3438 } 3439 EXPORT_SYMBOL(kernel_setsockopt); 3440 3441 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3442 size_t size, int flags) 3443 { 3444 if (sock->ops->sendpage) 3445 return sock->ops->sendpage(sock, page, offset, size, flags); 3446 3447 return sock_no_sendpage(sock, page, offset, size, flags); 3448 } 3449 EXPORT_SYMBOL(kernel_sendpage); 3450 3451 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3452 { 3453 mm_segment_t oldfs = get_fs(); 3454 int err; 3455 3456 set_fs(KERNEL_DS); 3457 err = sock->ops->ioctl(sock, cmd, arg); 3458 set_fs(oldfs); 3459 3460 return err; 3461 } 3462 EXPORT_SYMBOL(kernel_sock_ioctl); 3463 3464 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3465 { 3466 return sock->ops->shutdown(sock, how); 3467 } 3468 EXPORT_SYMBOL(kernel_sock_shutdown); 3469