xref: /linux/net/socket.c (revision c79c3c34f75d72a066e292b10aa50fc758c97c89)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/ethtool.h>
56 #include <linux/mm.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89 
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96 
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99 
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly;
110 unsigned int sysctl_net_busy_poll __read_mostly;
111 #endif
112 
113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116 
117 static int sock_close(struct inode *inode, struct file *file);
118 static __poll_t sock_poll(struct file *file,
119 			      struct poll_table_struct *wait);
120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 #ifdef CONFIG_COMPAT
122 static long compat_sock_ioctl(struct file *file,
123 			      unsigned int cmd, unsigned long arg);
124 #endif
125 static int sock_fasync(int fd, struct file *filp, int on);
126 static ssize_t sock_sendpage(struct file *file, struct page *page,
127 			     int offset, size_t size, loff_t *ppos, int more);
128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 				struct pipe_inode_info *pipe, size_t len,
130 				unsigned int flags);
131 
132 #ifdef CONFIG_PROC_FS
133 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134 {
135 	struct socket *sock = f->private_data;
136 
137 	if (sock->ops->show_fdinfo)
138 		sock->ops->show_fdinfo(m, sock);
139 }
140 #else
141 #define sock_show_fdinfo NULL
142 #endif
143 
144 /*
145  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146  *	in the operation structures but are done directly via the socketcall() multiplexor.
147  */
148 
149 static const struct file_operations socket_file_ops = {
150 	.owner =	THIS_MODULE,
151 	.llseek =	no_llseek,
152 	.read_iter =	sock_read_iter,
153 	.write_iter =	sock_write_iter,
154 	.poll =		sock_poll,
155 	.unlocked_ioctl = sock_ioctl,
156 #ifdef CONFIG_COMPAT
157 	.compat_ioctl = compat_sock_ioctl,
158 #endif
159 	.mmap =		sock_mmap,
160 	.release =	sock_close,
161 	.fasync =	sock_fasync,
162 	.sendpage =	sock_sendpage,
163 	.splice_write = generic_splice_sendpage,
164 	.splice_read =	sock_splice_read,
165 	.show_fdinfo =	sock_show_fdinfo,
166 };
167 
168 /*
169  *	The protocol list. Each protocol is registered in here.
170  */
171 
172 static DEFINE_SPINLOCK(net_family_lock);
173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __ro_after_init;
248 
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 
253 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 	if (!ei)
255 		return NULL;
256 	init_waitqueue_head(&ei->socket.wq.wait);
257 	ei->socket.wq.fasync_list = NULL;
258 	ei->socket.wq.flags = 0;
259 
260 	ei->socket.state = SS_UNCONNECTED;
261 	ei->socket.flags = 0;
262 	ei->socket.ops = NULL;
263 	ei->socket.sk = NULL;
264 	ei->socket.file = NULL;
265 
266 	return &ei->vfs_inode;
267 }
268 
269 static void sock_free_inode(struct inode *inode)
270 {
271 	struct socket_alloc *ei;
272 
273 	ei = container_of(inode, struct socket_alloc, vfs_inode);
274 	kmem_cache_free(sock_inode_cachep, ei);
275 }
276 
277 static void init_once(void *foo)
278 {
279 	struct socket_alloc *ei = (struct socket_alloc *)foo;
280 
281 	inode_init_once(&ei->vfs_inode);
282 }
283 
284 static void init_inodecache(void)
285 {
286 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 					      sizeof(struct socket_alloc),
288 					      0,
289 					      (SLAB_HWCACHE_ALIGN |
290 					       SLAB_RECLAIM_ACCOUNT |
291 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 					      init_once);
293 	BUG_ON(sock_inode_cachep == NULL);
294 }
295 
296 static const struct super_operations sockfs_ops = {
297 	.alloc_inode	= sock_alloc_inode,
298 	.free_inode	= sock_free_inode,
299 	.statfs		= simple_statfs,
300 };
301 
302 /*
303  * sockfs_dname() is called from d_path().
304  */
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306 {
307 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 				d_inode(dentry)->i_ino);
309 }
310 
311 static const struct dentry_operations sockfs_dentry_operations = {
312 	.d_dname  = sockfs_dname,
313 };
314 
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 			    struct dentry *dentry, struct inode *inode,
317 			    const char *suffix, void *value, size_t size)
318 {
319 	if (value) {
320 		if (dentry->d_name.len + 1 > size)
321 			return -ERANGE;
322 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 	}
324 	return dentry->d_name.len + 1;
325 }
326 
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330 
331 static const struct xattr_handler sockfs_xattr_handler = {
332 	.name = XATTR_NAME_SOCKPROTONAME,
333 	.get = sockfs_xattr_get,
334 };
335 
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 				     struct user_namespace *mnt_userns,
338 				     struct dentry *dentry, struct inode *inode,
339 				     const char *suffix, const void *value,
340 				     size_t size, int flags)
341 {
342 	/* Handled by LSM. */
343 	return -EAGAIN;
344 }
345 
346 static const struct xattr_handler sockfs_security_xattr_handler = {
347 	.prefix = XATTR_SECURITY_PREFIX,
348 	.set = sockfs_security_xattr_set,
349 };
350 
351 static const struct xattr_handler *sockfs_xattr_handlers[] = {
352 	&sockfs_xattr_handler,
353 	&sockfs_security_xattr_handler,
354 	NULL
355 };
356 
357 static int sockfs_init_fs_context(struct fs_context *fc)
358 {
359 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
360 	if (!ctx)
361 		return -ENOMEM;
362 	ctx->ops = &sockfs_ops;
363 	ctx->dops = &sockfs_dentry_operations;
364 	ctx->xattr = sockfs_xattr_handlers;
365 	return 0;
366 }
367 
368 static struct vfsmount *sock_mnt __read_mostly;
369 
370 static struct file_system_type sock_fs_type = {
371 	.name =		"sockfs",
372 	.init_fs_context = sockfs_init_fs_context,
373 	.kill_sb =	kill_anon_super,
374 };
375 
376 /*
377  *	Obtains the first available file descriptor and sets it up for use.
378  *
379  *	These functions create file structures and maps them to fd space
380  *	of the current process. On success it returns file descriptor
381  *	and file struct implicitly stored in sock->file.
382  *	Note that another thread may close file descriptor before we return
383  *	from this function. We use the fact that now we do not refer
384  *	to socket after mapping. If one day we will need it, this
385  *	function will increment ref. count on file by 1.
386  *
387  *	In any case returned fd MAY BE not valid!
388  *	This race condition is unavoidable
389  *	with shared fd spaces, we cannot solve it inside kernel,
390  *	but we take care of internal coherence yet.
391  */
392 
393 /**
394  *	sock_alloc_file - Bind a &socket to a &file
395  *	@sock: socket
396  *	@flags: file status flags
397  *	@dname: protocol name
398  *
399  *	Returns the &file bound with @sock, implicitly storing it
400  *	in sock->file. If dname is %NULL, sets to "".
401  *	On failure the return is a ERR pointer (see linux/err.h).
402  *	This function uses GFP_KERNEL internally.
403  */
404 
405 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
406 {
407 	struct file *file;
408 
409 	if (!dname)
410 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
411 
412 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
413 				O_RDWR | (flags & O_NONBLOCK),
414 				&socket_file_ops);
415 	if (IS_ERR(file)) {
416 		sock_release(sock);
417 		return file;
418 	}
419 
420 	sock->file = file;
421 	file->private_data = sock;
422 	stream_open(SOCK_INODE(sock), file);
423 	return file;
424 }
425 EXPORT_SYMBOL(sock_alloc_file);
426 
427 static int sock_map_fd(struct socket *sock, int flags)
428 {
429 	struct file *newfile;
430 	int fd = get_unused_fd_flags(flags);
431 	if (unlikely(fd < 0)) {
432 		sock_release(sock);
433 		return fd;
434 	}
435 
436 	newfile = sock_alloc_file(sock, flags, NULL);
437 	if (!IS_ERR(newfile)) {
438 		fd_install(fd, newfile);
439 		return fd;
440 	}
441 
442 	put_unused_fd(fd);
443 	return PTR_ERR(newfile);
444 }
445 
446 /**
447  *	sock_from_file - Return the &socket bounded to @file.
448  *	@file: file
449  *
450  *	On failure returns %NULL.
451  */
452 
453 struct socket *sock_from_file(struct file *file)
454 {
455 	if (file->f_op == &socket_file_ops)
456 		return file->private_data;	/* set in sock_map_fd */
457 
458 	return NULL;
459 }
460 EXPORT_SYMBOL(sock_from_file);
461 
462 /**
463  *	sockfd_lookup - Go from a file number to its socket slot
464  *	@fd: file handle
465  *	@err: pointer to an error code return
466  *
467  *	The file handle passed in is locked and the socket it is bound
468  *	to is returned. If an error occurs the err pointer is overwritten
469  *	with a negative errno code and NULL is returned. The function checks
470  *	for both invalid handles and passing a handle which is not a socket.
471  *
472  *	On a success the socket object pointer is returned.
473  */
474 
475 struct socket *sockfd_lookup(int fd, int *err)
476 {
477 	struct file *file;
478 	struct socket *sock;
479 
480 	file = fget(fd);
481 	if (!file) {
482 		*err = -EBADF;
483 		return NULL;
484 	}
485 
486 	sock = sock_from_file(file);
487 	if (!sock) {
488 		*err = -ENOTSOCK;
489 		fput(file);
490 	}
491 	return sock;
492 }
493 EXPORT_SYMBOL(sockfd_lookup);
494 
495 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
496 {
497 	struct fd f = fdget(fd);
498 	struct socket *sock;
499 
500 	*err = -EBADF;
501 	if (f.file) {
502 		sock = sock_from_file(f.file);
503 		if (likely(sock)) {
504 			*fput_needed = f.flags & FDPUT_FPUT;
505 			return sock;
506 		}
507 		*err = -ENOTSOCK;
508 		fdput(f);
509 	}
510 	return NULL;
511 }
512 
513 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
514 				size_t size)
515 {
516 	ssize_t len;
517 	ssize_t used = 0;
518 
519 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
520 	if (len < 0)
521 		return len;
522 	used += len;
523 	if (buffer) {
524 		if (size < used)
525 			return -ERANGE;
526 		buffer += len;
527 	}
528 
529 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
530 	used += len;
531 	if (buffer) {
532 		if (size < used)
533 			return -ERANGE;
534 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
535 		buffer += len;
536 	}
537 
538 	return used;
539 }
540 
541 static int sockfs_setattr(struct user_namespace *mnt_userns,
542 			  struct dentry *dentry, struct iattr *iattr)
543 {
544 	int err = simple_setattr(&init_user_ns, dentry, iattr);
545 
546 	if (!err && (iattr->ia_valid & ATTR_UID)) {
547 		struct socket *sock = SOCKET_I(d_inode(dentry));
548 
549 		if (sock->sk)
550 			sock->sk->sk_uid = iattr->ia_uid;
551 		else
552 			err = -ENOENT;
553 	}
554 
555 	return err;
556 }
557 
558 static const struct inode_operations sockfs_inode_ops = {
559 	.listxattr = sockfs_listxattr,
560 	.setattr = sockfs_setattr,
561 };
562 
563 /**
564  *	sock_alloc - allocate a socket
565  *
566  *	Allocate a new inode and socket object. The two are bound together
567  *	and initialised. The socket is then returned. If we are out of inodes
568  *	NULL is returned. This functions uses GFP_KERNEL internally.
569  */
570 
571 struct socket *sock_alloc(void)
572 {
573 	struct inode *inode;
574 	struct socket *sock;
575 
576 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
577 	if (!inode)
578 		return NULL;
579 
580 	sock = SOCKET_I(inode);
581 
582 	inode->i_ino = get_next_ino();
583 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
584 	inode->i_uid = current_fsuid();
585 	inode->i_gid = current_fsgid();
586 	inode->i_op = &sockfs_inode_ops;
587 
588 	return sock;
589 }
590 EXPORT_SYMBOL(sock_alloc);
591 
592 static void __sock_release(struct socket *sock, struct inode *inode)
593 {
594 	if (sock->ops) {
595 		struct module *owner = sock->ops->owner;
596 
597 		if (inode)
598 			inode_lock(inode);
599 		sock->ops->release(sock);
600 		sock->sk = NULL;
601 		if (inode)
602 			inode_unlock(inode);
603 		sock->ops = NULL;
604 		module_put(owner);
605 	}
606 
607 	if (sock->wq.fasync_list)
608 		pr_err("%s: fasync list not empty!\n", __func__);
609 
610 	if (!sock->file) {
611 		iput(SOCK_INODE(sock));
612 		return;
613 	}
614 	sock->file = NULL;
615 }
616 
617 /**
618  *	sock_release - close a socket
619  *	@sock: socket to close
620  *
621  *	The socket is released from the protocol stack if it has a release
622  *	callback, and the inode is then released if the socket is bound to
623  *	an inode not a file.
624  */
625 void sock_release(struct socket *sock)
626 {
627 	__sock_release(sock, NULL);
628 }
629 EXPORT_SYMBOL(sock_release);
630 
631 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
632 {
633 	u8 flags = *tx_flags;
634 
635 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
636 		flags |= SKBTX_HW_TSTAMP;
637 
638 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
639 		flags |= SKBTX_SW_TSTAMP;
640 
641 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
642 		flags |= SKBTX_SCHED_TSTAMP;
643 
644 	*tx_flags = flags;
645 }
646 EXPORT_SYMBOL(__sock_tx_timestamp);
647 
648 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
649 					   size_t));
650 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
651 					    size_t));
652 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
653 {
654 	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
655 				     inet_sendmsg, sock, msg,
656 				     msg_data_left(msg));
657 	BUG_ON(ret == -EIOCBQUEUED);
658 	return ret;
659 }
660 
661 /**
662  *	sock_sendmsg - send a message through @sock
663  *	@sock: socket
664  *	@msg: message to send
665  *
666  *	Sends @msg through @sock, passing through LSM.
667  *	Returns the number of bytes sent, or an error code.
668  */
669 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
670 {
671 	int err = security_socket_sendmsg(sock, msg,
672 					  msg_data_left(msg));
673 
674 	return err ?: sock_sendmsg_nosec(sock, msg);
675 }
676 EXPORT_SYMBOL(sock_sendmsg);
677 
678 /**
679  *	kernel_sendmsg - send a message through @sock (kernel-space)
680  *	@sock: socket
681  *	@msg: message header
682  *	@vec: kernel vec
683  *	@num: vec array length
684  *	@size: total message data size
685  *
686  *	Builds the message data with @vec and sends it through @sock.
687  *	Returns the number of bytes sent, or an error code.
688  */
689 
690 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
691 		   struct kvec *vec, size_t num, size_t size)
692 {
693 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
694 	return sock_sendmsg(sock, msg);
695 }
696 EXPORT_SYMBOL(kernel_sendmsg);
697 
698 /**
699  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
700  *	@sk: sock
701  *	@msg: message header
702  *	@vec: output s/g array
703  *	@num: output s/g array length
704  *	@size: total message data size
705  *
706  *	Builds the message data with @vec and sends it through @sock.
707  *	Returns the number of bytes sent, or an error code.
708  *	Caller must hold @sk.
709  */
710 
711 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
712 			  struct kvec *vec, size_t num, size_t size)
713 {
714 	struct socket *sock = sk->sk_socket;
715 
716 	if (!sock->ops->sendmsg_locked)
717 		return sock_no_sendmsg_locked(sk, msg, size);
718 
719 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
720 
721 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
722 }
723 EXPORT_SYMBOL(kernel_sendmsg_locked);
724 
725 static bool skb_is_err_queue(const struct sk_buff *skb)
726 {
727 	/* pkt_type of skbs enqueued on the error queue are set to
728 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
729 	 * in recvmsg, since skbs received on a local socket will never
730 	 * have a pkt_type of PACKET_OUTGOING.
731 	 */
732 	return skb->pkt_type == PACKET_OUTGOING;
733 }
734 
735 /* On transmit, software and hardware timestamps are returned independently.
736  * As the two skb clones share the hardware timestamp, which may be updated
737  * before the software timestamp is received, a hardware TX timestamp may be
738  * returned only if there is no software TX timestamp. Ignore false software
739  * timestamps, which may be made in the __sock_recv_timestamp() call when the
740  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
741  * hardware timestamp.
742  */
743 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
744 {
745 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
746 }
747 
748 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
749 {
750 	struct scm_ts_pktinfo ts_pktinfo;
751 	struct net_device *orig_dev;
752 
753 	if (!skb_mac_header_was_set(skb))
754 		return;
755 
756 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
757 
758 	rcu_read_lock();
759 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
760 	if (orig_dev)
761 		ts_pktinfo.if_index = orig_dev->ifindex;
762 	rcu_read_unlock();
763 
764 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
765 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
766 		 sizeof(ts_pktinfo), &ts_pktinfo);
767 }
768 
769 /*
770  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
771  */
772 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
773 	struct sk_buff *skb)
774 {
775 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
776 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
777 	struct scm_timestamping_internal tss;
778 
779 	int empty = 1, false_tstamp = 0;
780 	struct skb_shared_hwtstamps *shhwtstamps =
781 		skb_hwtstamps(skb);
782 
783 	/* Race occurred between timestamp enabling and packet
784 	   receiving.  Fill in the current time for now. */
785 	if (need_software_tstamp && skb->tstamp == 0) {
786 		__net_timestamp(skb);
787 		false_tstamp = 1;
788 	}
789 
790 	if (need_software_tstamp) {
791 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
792 			if (new_tstamp) {
793 				struct __kernel_sock_timeval tv;
794 
795 				skb_get_new_timestamp(skb, &tv);
796 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
797 					 sizeof(tv), &tv);
798 			} else {
799 				struct __kernel_old_timeval tv;
800 
801 				skb_get_timestamp(skb, &tv);
802 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
803 					 sizeof(tv), &tv);
804 			}
805 		} else {
806 			if (new_tstamp) {
807 				struct __kernel_timespec ts;
808 
809 				skb_get_new_timestampns(skb, &ts);
810 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
811 					 sizeof(ts), &ts);
812 			} else {
813 				struct __kernel_old_timespec ts;
814 
815 				skb_get_timestampns(skb, &ts);
816 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
817 					 sizeof(ts), &ts);
818 			}
819 		}
820 	}
821 
822 	memset(&tss, 0, sizeof(tss));
823 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
824 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
825 		empty = 0;
826 	if (shhwtstamps &&
827 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
828 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
829 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
830 		empty = 0;
831 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
832 		    !skb_is_err_queue(skb))
833 			put_ts_pktinfo(msg, skb);
834 	}
835 	if (!empty) {
836 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
837 			put_cmsg_scm_timestamping64(msg, &tss);
838 		else
839 			put_cmsg_scm_timestamping(msg, &tss);
840 
841 		if (skb_is_err_queue(skb) && skb->len &&
842 		    SKB_EXT_ERR(skb)->opt_stats)
843 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
844 				 skb->len, skb->data);
845 	}
846 }
847 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
848 
849 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
850 	struct sk_buff *skb)
851 {
852 	int ack;
853 
854 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
855 		return;
856 	if (!skb->wifi_acked_valid)
857 		return;
858 
859 	ack = skb->wifi_acked;
860 
861 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
862 }
863 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
864 
865 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
866 				   struct sk_buff *skb)
867 {
868 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
869 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
870 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
871 }
872 
873 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
874 	struct sk_buff *skb)
875 {
876 	sock_recv_timestamp(msg, sk, skb);
877 	sock_recv_drops(msg, sk, skb);
878 }
879 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
880 
881 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
882 					   size_t, int));
883 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
884 					    size_t, int));
885 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
886 				     int flags)
887 {
888 	return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
889 				  inet_recvmsg, sock, msg, msg_data_left(msg),
890 				  flags);
891 }
892 
893 /**
894  *	sock_recvmsg - receive a message from @sock
895  *	@sock: socket
896  *	@msg: message to receive
897  *	@flags: message flags
898  *
899  *	Receives @msg from @sock, passing through LSM. Returns the total number
900  *	of bytes received, or an error.
901  */
902 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
903 {
904 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
905 
906 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
907 }
908 EXPORT_SYMBOL(sock_recvmsg);
909 
910 /**
911  *	kernel_recvmsg - Receive a message from a socket (kernel space)
912  *	@sock: The socket to receive the message from
913  *	@msg: Received message
914  *	@vec: Input s/g array for message data
915  *	@num: Size of input s/g array
916  *	@size: Number of bytes to read
917  *	@flags: Message flags (MSG_DONTWAIT, etc...)
918  *
919  *	On return the msg structure contains the scatter/gather array passed in the
920  *	vec argument. The array is modified so that it consists of the unfilled
921  *	portion of the original array.
922  *
923  *	The returned value is the total number of bytes received, or an error.
924  */
925 
926 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
927 		   struct kvec *vec, size_t num, size_t size, int flags)
928 {
929 	msg->msg_control_is_user = false;
930 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
931 	return sock_recvmsg(sock, msg, flags);
932 }
933 EXPORT_SYMBOL(kernel_recvmsg);
934 
935 static ssize_t sock_sendpage(struct file *file, struct page *page,
936 			     int offset, size_t size, loff_t *ppos, int more)
937 {
938 	struct socket *sock;
939 	int flags;
940 
941 	sock = file->private_data;
942 
943 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
944 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
945 	flags |= more;
946 
947 	return kernel_sendpage(sock, page, offset, size, flags);
948 }
949 
950 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
951 				struct pipe_inode_info *pipe, size_t len,
952 				unsigned int flags)
953 {
954 	struct socket *sock = file->private_data;
955 
956 	if (unlikely(!sock->ops->splice_read))
957 		return generic_file_splice_read(file, ppos, pipe, len, flags);
958 
959 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
960 }
961 
962 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
963 {
964 	struct file *file = iocb->ki_filp;
965 	struct socket *sock = file->private_data;
966 	struct msghdr msg = {.msg_iter = *to,
967 			     .msg_iocb = iocb};
968 	ssize_t res;
969 
970 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
971 		msg.msg_flags = MSG_DONTWAIT;
972 
973 	if (iocb->ki_pos != 0)
974 		return -ESPIPE;
975 
976 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
977 		return 0;
978 
979 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
980 	*to = msg.msg_iter;
981 	return res;
982 }
983 
984 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
985 {
986 	struct file *file = iocb->ki_filp;
987 	struct socket *sock = file->private_data;
988 	struct msghdr msg = {.msg_iter = *from,
989 			     .msg_iocb = iocb};
990 	ssize_t res;
991 
992 	if (iocb->ki_pos != 0)
993 		return -ESPIPE;
994 
995 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
996 		msg.msg_flags = MSG_DONTWAIT;
997 
998 	if (sock->type == SOCK_SEQPACKET)
999 		msg.msg_flags |= MSG_EOR;
1000 
1001 	res = sock_sendmsg(sock, &msg);
1002 	*from = msg.msg_iter;
1003 	return res;
1004 }
1005 
1006 /*
1007  * Atomic setting of ioctl hooks to avoid race
1008  * with module unload.
1009  */
1010 
1011 static DEFINE_MUTEX(br_ioctl_mutex);
1012 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1013 
1014 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1015 {
1016 	mutex_lock(&br_ioctl_mutex);
1017 	br_ioctl_hook = hook;
1018 	mutex_unlock(&br_ioctl_mutex);
1019 }
1020 EXPORT_SYMBOL(brioctl_set);
1021 
1022 static DEFINE_MUTEX(vlan_ioctl_mutex);
1023 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1024 
1025 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1026 {
1027 	mutex_lock(&vlan_ioctl_mutex);
1028 	vlan_ioctl_hook = hook;
1029 	mutex_unlock(&vlan_ioctl_mutex);
1030 }
1031 EXPORT_SYMBOL(vlan_ioctl_set);
1032 
1033 static long sock_do_ioctl(struct net *net, struct socket *sock,
1034 			  unsigned int cmd, unsigned long arg)
1035 {
1036 	int err;
1037 	void __user *argp = (void __user *)arg;
1038 
1039 	err = sock->ops->ioctl(sock, cmd, arg);
1040 
1041 	/*
1042 	 * If this ioctl is unknown try to hand it down
1043 	 * to the NIC driver.
1044 	 */
1045 	if (err != -ENOIOCTLCMD)
1046 		return err;
1047 
1048 	if (cmd == SIOCGIFCONF) {
1049 		struct ifconf ifc;
1050 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1051 			return -EFAULT;
1052 		rtnl_lock();
1053 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1054 		rtnl_unlock();
1055 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1056 			err = -EFAULT;
1057 	} else {
1058 		struct ifreq ifr;
1059 		bool need_copyout;
1060 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1061 			return -EFAULT;
1062 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1063 		if (!err && need_copyout)
1064 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1065 				return -EFAULT;
1066 	}
1067 	return err;
1068 }
1069 
1070 /*
1071  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1072  *	what to do with it - that's up to the protocol still.
1073  */
1074 
1075 /**
1076  *	get_net_ns - increment the refcount of the network namespace
1077  *	@ns: common namespace (net)
1078  *
1079  *	Returns the net's common namespace.
1080  */
1081 
1082 struct ns_common *get_net_ns(struct ns_common *ns)
1083 {
1084 	return &get_net(container_of(ns, struct net, ns))->ns;
1085 }
1086 EXPORT_SYMBOL_GPL(get_net_ns);
1087 
1088 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1089 {
1090 	struct socket *sock;
1091 	struct sock *sk;
1092 	void __user *argp = (void __user *)arg;
1093 	int pid, err;
1094 	struct net *net;
1095 
1096 	sock = file->private_data;
1097 	sk = sock->sk;
1098 	net = sock_net(sk);
1099 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1100 		struct ifreq ifr;
1101 		bool need_copyout;
1102 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1103 			return -EFAULT;
1104 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1105 		if (!err && need_copyout)
1106 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1107 				return -EFAULT;
1108 	} else
1109 #ifdef CONFIG_WEXT_CORE
1110 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1111 		err = wext_handle_ioctl(net, cmd, argp);
1112 	} else
1113 #endif
1114 		switch (cmd) {
1115 		case FIOSETOWN:
1116 		case SIOCSPGRP:
1117 			err = -EFAULT;
1118 			if (get_user(pid, (int __user *)argp))
1119 				break;
1120 			err = f_setown(sock->file, pid, 1);
1121 			break;
1122 		case FIOGETOWN:
1123 		case SIOCGPGRP:
1124 			err = put_user(f_getown(sock->file),
1125 				       (int __user *)argp);
1126 			break;
1127 		case SIOCGIFBR:
1128 		case SIOCSIFBR:
1129 		case SIOCBRADDBR:
1130 		case SIOCBRDELBR:
1131 			err = -ENOPKG;
1132 			if (!br_ioctl_hook)
1133 				request_module("bridge");
1134 
1135 			mutex_lock(&br_ioctl_mutex);
1136 			if (br_ioctl_hook)
1137 				err = br_ioctl_hook(net, cmd, argp);
1138 			mutex_unlock(&br_ioctl_mutex);
1139 			break;
1140 		case SIOCGIFVLAN:
1141 		case SIOCSIFVLAN:
1142 			err = -ENOPKG;
1143 			if (!vlan_ioctl_hook)
1144 				request_module("8021q");
1145 
1146 			mutex_lock(&vlan_ioctl_mutex);
1147 			if (vlan_ioctl_hook)
1148 				err = vlan_ioctl_hook(net, argp);
1149 			mutex_unlock(&vlan_ioctl_mutex);
1150 			break;
1151 		case SIOCGSKNS:
1152 			err = -EPERM;
1153 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1154 				break;
1155 
1156 			err = open_related_ns(&net->ns, get_net_ns);
1157 			break;
1158 		case SIOCGSTAMP_OLD:
1159 		case SIOCGSTAMPNS_OLD:
1160 			if (!sock->ops->gettstamp) {
1161 				err = -ENOIOCTLCMD;
1162 				break;
1163 			}
1164 			err = sock->ops->gettstamp(sock, argp,
1165 						   cmd == SIOCGSTAMP_OLD,
1166 						   !IS_ENABLED(CONFIG_64BIT));
1167 			break;
1168 		case SIOCGSTAMP_NEW:
1169 		case SIOCGSTAMPNS_NEW:
1170 			if (!sock->ops->gettstamp) {
1171 				err = -ENOIOCTLCMD;
1172 				break;
1173 			}
1174 			err = sock->ops->gettstamp(sock, argp,
1175 						   cmd == SIOCGSTAMP_NEW,
1176 						   false);
1177 			break;
1178 		default:
1179 			err = sock_do_ioctl(net, sock, cmd, arg);
1180 			break;
1181 		}
1182 	return err;
1183 }
1184 
1185 /**
1186  *	sock_create_lite - creates a socket
1187  *	@family: protocol family (AF_INET, ...)
1188  *	@type: communication type (SOCK_STREAM, ...)
1189  *	@protocol: protocol (0, ...)
1190  *	@res: new socket
1191  *
1192  *	Creates a new socket and assigns it to @res, passing through LSM.
1193  *	The new socket initialization is not complete, see kernel_accept().
1194  *	Returns 0 or an error. On failure @res is set to %NULL.
1195  *	This function internally uses GFP_KERNEL.
1196  */
1197 
1198 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1199 {
1200 	int err;
1201 	struct socket *sock = NULL;
1202 
1203 	err = security_socket_create(family, type, protocol, 1);
1204 	if (err)
1205 		goto out;
1206 
1207 	sock = sock_alloc();
1208 	if (!sock) {
1209 		err = -ENOMEM;
1210 		goto out;
1211 	}
1212 
1213 	sock->type = type;
1214 	err = security_socket_post_create(sock, family, type, protocol, 1);
1215 	if (err)
1216 		goto out_release;
1217 
1218 out:
1219 	*res = sock;
1220 	return err;
1221 out_release:
1222 	sock_release(sock);
1223 	sock = NULL;
1224 	goto out;
1225 }
1226 EXPORT_SYMBOL(sock_create_lite);
1227 
1228 /* No kernel lock held - perfect */
1229 static __poll_t sock_poll(struct file *file, poll_table *wait)
1230 {
1231 	struct socket *sock = file->private_data;
1232 	__poll_t events = poll_requested_events(wait), flag = 0;
1233 
1234 	if (!sock->ops->poll)
1235 		return 0;
1236 
1237 	if (sk_can_busy_loop(sock->sk)) {
1238 		/* poll once if requested by the syscall */
1239 		if (events & POLL_BUSY_LOOP)
1240 			sk_busy_loop(sock->sk, 1);
1241 
1242 		/* if this socket can poll_ll, tell the system call */
1243 		flag = POLL_BUSY_LOOP;
1244 	}
1245 
1246 	return sock->ops->poll(file, sock, wait) | flag;
1247 }
1248 
1249 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1250 {
1251 	struct socket *sock = file->private_data;
1252 
1253 	return sock->ops->mmap(file, sock, vma);
1254 }
1255 
1256 static int sock_close(struct inode *inode, struct file *filp)
1257 {
1258 	__sock_release(SOCKET_I(inode), inode);
1259 	return 0;
1260 }
1261 
1262 /*
1263  *	Update the socket async list
1264  *
1265  *	Fasync_list locking strategy.
1266  *
1267  *	1. fasync_list is modified only under process context socket lock
1268  *	   i.e. under semaphore.
1269  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1270  *	   or under socket lock
1271  */
1272 
1273 static int sock_fasync(int fd, struct file *filp, int on)
1274 {
1275 	struct socket *sock = filp->private_data;
1276 	struct sock *sk = sock->sk;
1277 	struct socket_wq *wq = &sock->wq;
1278 
1279 	if (sk == NULL)
1280 		return -EINVAL;
1281 
1282 	lock_sock(sk);
1283 	fasync_helper(fd, filp, on, &wq->fasync_list);
1284 
1285 	if (!wq->fasync_list)
1286 		sock_reset_flag(sk, SOCK_FASYNC);
1287 	else
1288 		sock_set_flag(sk, SOCK_FASYNC);
1289 
1290 	release_sock(sk);
1291 	return 0;
1292 }
1293 
1294 /* This function may be called only under rcu_lock */
1295 
1296 int sock_wake_async(struct socket_wq *wq, int how, int band)
1297 {
1298 	if (!wq || !wq->fasync_list)
1299 		return -1;
1300 
1301 	switch (how) {
1302 	case SOCK_WAKE_WAITD:
1303 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1304 			break;
1305 		goto call_kill;
1306 	case SOCK_WAKE_SPACE:
1307 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1308 			break;
1309 		fallthrough;
1310 	case SOCK_WAKE_IO:
1311 call_kill:
1312 		kill_fasync(&wq->fasync_list, SIGIO, band);
1313 		break;
1314 	case SOCK_WAKE_URG:
1315 		kill_fasync(&wq->fasync_list, SIGURG, band);
1316 	}
1317 
1318 	return 0;
1319 }
1320 EXPORT_SYMBOL(sock_wake_async);
1321 
1322 /**
1323  *	__sock_create - creates a socket
1324  *	@net: net namespace
1325  *	@family: protocol family (AF_INET, ...)
1326  *	@type: communication type (SOCK_STREAM, ...)
1327  *	@protocol: protocol (0, ...)
1328  *	@res: new socket
1329  *	@kern: boolean for kernel space sockets
1330  *
1331  *	Creates a new socket and assigns it to @res, passing through LSM.
1332  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1333  *	be set to true if the socket resides in kernel space.
1334  *	This function internally uses GFP_KERNEL.
1335  */
1336 
1337 int __sock_create(struct net *net, int family, int type, int protocol,
1338 			 struct socket **res, int kern)
1339 {
1340 	int err;
1341 	struct socket *sock;
1342 	const struct net_proto_family *pf;
1343 
1344 	/*
1345 	 *      Check protocol is in range
1346 	 */
1347 	if (family < 0 || family >= NPROTO)
1348 		return -EAFNOSUPPORT;
1349 	if (type < 0 || type >= SOCK_MAX)
1350 		return -EINVAL;
1351 
1352 	/* Compatibility.
1353 
1354 	   This uglymoron is moved from INET layer to here to avoid
1355 	   deadlock in module load.
1356 	 */
1357 	if (family == PF_INET && type == SOCK_PACKET) {
1358 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1359 			     current->comm);
1360 		family = PF_PACKET;
1361 	}
1362 
1363 	err = security_socket_create(family, type, protocol, kern);
1364 	if (err)
1365 		return err;
1366 
1367 	/*
1368 	 *	Allocate the socket and allow the family to set things up. if
1369 	 *	the protocol is 0, the family is instructed to select an appropriate
1370 	 *	default.
1371 	 */
1372 	sock = sock_alloc();
1373 	if (!sock) {
1374 		net_warn_ratelimited("socket: no more sockets\n");
1375 		return -ENFILE;	/* Not exactly a match, but its the
1376 				   closest posix thing */
1377 	}
1378 
1379 	sock->type = type;
1380 
1381 #ifdef CONFIG_MODULES
1382 	/* Attempt to load a protocol module if the find failed.
1383 	 *
1384 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1385 	 * requested real, full-featured networking support upon configuration.
1386 	 * Otherwise module support will break!
1387 	 */
1388 	if (rcu_access_pointer(net_families[family]) == NULL)
1389 		request_module("net-pf-%d", family);
1390 #endif
1391 
1392 	rcu_read_lock();
1393 	pf = rcu_dereference(net_families[family]);
1394 	err = -EAFNOSUPPORT;
1395 	if (!pf)
1396 		goto out_release;
1397 
1398 	/*
1399 	 * We will call the ->create function, that possibly is in a loadable
1400 	 * module, so we have to bump that loadable module refcnt first.
1401 	 */
1402 	if (!try_module_get(pf->owner))
1403 		goto out_release;
1404 
1405 	/* Now protected by module ref count */
1406 	rcu_read_unlock();
1407 
1408 	err = pf->create(net, sock, protocol, kern);
1409 	if (err < 0)
1410 		goto out_module_put;
1411 
1412 	/*
1413 	 * Now to bump the refcnt of the [loadable] module that owns this
1414 	 * socket at sock_release time we decrement its refcnt.
1415 	 */
1416 	if (!try_module_get(sock->ops->owner))
1417 		goto out_module_busy;
1418 
1419 	/*
1420 	 * Now that we're done with the ->create function, the [loadable]
1421 	 * module can have its refcnt decremented
1422 	 */
1423 	module_put(pf->owner);
1424 	err = security_socket_post_create(sock, family, type, protocol, kern);
1425 	if (err)
1426 		goto out_sock_release;
1427 	*res = sock;
1428 
1429 	return 0;
1430 
1431 out_module_busy:
1432 	err = -EAFNOSUPPORT;
1433 out_module_put:
1434 	sock->ops = NULL;
1435 	module_put(pf->owner);
1436 out_sock_release:
1437 	sock_release(sock);
1438 	return err;
1439 
1440 out_release:
1441 	rcu_read_unlock();
1442 	goto out_sock_release;
1443 }
1444 EXPORT_SYMBOL(__sock_create);
1445 
1446 /**
1447  *	sock_create - creates a socket
1448  *	@family: protocol family (AF_INET, ...)
1449  *	@type: communication type (SOCK_STREAM, ...)
1450  *	@protocol: protocol (0, ...)
1451  *	@res: new socket
1452  *
1453  *	A wrapper around __sock_create().
1454  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1455  */
1456 
1457 int sock_create(int family, int type, int protocol, struct socket **res)
1458 {
1459 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1460 }
1461 EXPORT_SYMBOL(sock_create);
1462 
1463 /**
1464  *	sock_create_kern - creates a socket (kernel space)
1465  *	@net: net namespace
1466  *	@family: protocol family (AF_INET, ...)
1467  *	@type: communication type (SOCK_STREAM, ...)
1468  *	@protocol: protocol (0, ...)
1469  *	@res: new socket
1470  *
1471  *	A wrapper around __sock_create().
1472  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1473  */
1474 
1475 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1476 {
1477 	return __sock_create(net, family, type, protocol, res, 1);
1478 }
1479 EXPORT_SYMBOL(sock_create_kern);
1480 
1481 int __sys_socket(int family, int type, int protocol)
1482 {
1483 	int retval;
1484 	struct socket *sock;
1485 	int flags;
1486 
1487 	/* Check the SOCK_* constants for consistency.  */
1488 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1489 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1490 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1491 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1492 
1493 	flags = type & ~SOCK_TYPE_MASK;
1494 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1495 		return -EINVAL;
1496 	type &= SOCK_TYPE_MASK;
1497 
1498 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1499 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1500 
1501 	retval = sock_create(family, type, protocol, &sock);
1502 	if (retval < 0)
1503 		return retval;
1504 
1505 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1506 }
1507 
1508 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1509 {
1510 	return __sys_socket(family, type, protocol);
1511 }
1512 
1513 /*
1514  *	Create a pair of connected sockets.
1515  */
1516 
1517 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1518 {
1519 	struct socket *sock1, *sock2;
1520 	int fd1, fd2, err;
1521 	struct file *newfile1, *newfile2;
1522 	int flags;
1523 
1524 	flags = type & ~SOCK_TYPE_MASK;
1525 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1526 		return -EINVAL;
1527 	type &= SOCK_TYPE_MASK;
1528 
1529 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1530 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1531 
1532 	/*
1533 	 * reserve descriptors and make sure we won't fail
1534 	 * to return them to userland.
1535 	 */
1536 	fd1 = get_unused_fd_flags(flags);
1537 	if (unlikely(fd1 < 0))
1538 		return fd1;
1539 
1540 	fd2 = get_unused_fd_flags(flags);
1541 	if (unlikely(fd2 < 0)) {
1542 		put_unused_fd(fd1);
1543 		return fd2;
1544 	}
1545 
1546 	err = put_user(fd1, &usockvec[0]);
1547 	if (err)
1548 		goto out;
1549 
1550 	err = put_user(fd2, &usockvec[1]);
1551 	if (err)
1552 		goto out;
1553 
1554 	/*
1555 	 * Obtain the first socket and check if the underlying protocol
1556 	 * supports the socketpair call.
1557 	 */
1558 
1559 	err = sock_create(family, type, protocol, &sock1);
1560 	if (unlikely(err < 0))
1561 		goto out;
1562 
1563 	err = sock_create(family, type, protocol, &sock2);
1564 	if (unlikely(err < 0)) {
1565 		sock_release(sock1);
1566 		goto out;
1567 	}
1568 
1569 	err = security_socket_socketpair(sock1, sock2);
1570 	if (unlikely(err)) {
1571 		sock_release(sock2);
1572 		sock_release(sock1);
1573 		goto out;
1574 	}
1575 
1576 	err = sock1->ops->socketpair(sock1, sock2);
1577 	if (unlikely(err < 0)) {
1578 		sock_release(sock2);
1579 		sock_release(sock1);
1580 		goto out;
1581 	}
1582 
1583 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1584 	if (IS_ERR(newfile1)) {
1585 		err = PTR_ERR(newfile1);
1586 		sock_release(sock2);
1587 		goto out;
1588 	}
1589 
1590 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1591 	if (IS_ERR(newfile2)) {
1592 		err = PTR_ERR(newfile2);
1593 		fput(newfile1);
1594 		goto out;
1595 	}
1596 
1597 	audit_fd_pair(fd1, fd2);
1598 
1599 	fd_install(fd1, newfile1);
1600 	fd_install(fd2, newfile2);
1601 	return 0;
1602 
1603 out:
1604 	put_unused_fd(fd2);
1605 	put_unused_fd(fd1);
1606 	return err;
1607 }
1608 
1609 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1610 		int __user *, usockvec)
1611 {
1612 	return __sys_socketpair(family, type, protocol, usockvec);
1613 }
1614 
1615 /*
1616  *	Bind a name to a socket. Nothing much to do here since it's
1617  *	the protocol's responsibility to handle the local address.
1618  *
1619  *	We move the socket address to kernel space before we call
1620  *	the protocol layer (having also checked the address is ok).
1621  */
1622 
1623 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1624 {
1625 	struct socket *sock;
1626 	struct sockaddr_storage address;
1627 	int err, fput_needed;
1628 
1629 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1630 	if (sock) {
1631 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1632 		if (!err) {
1633 			err = security_socket_bind(sock,
1634 						   (struct sockaddr *)&address,
1635 						   addrlen);
1636 			if (!err)
1637 				err = sock->ops->bind(sock,
1638 						      (struct sockaddr *)
1639 						      &address, addrlen);
1640 		}
1641 		fput_light(sock->file, fput_needed);
1642 	}
1643 	return err;
1644 }
1645 
1646 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1647 {
1648 	return __sys_bind(fd, umyaddr, addrlen);
1649 }
1650 
1651 /*
1652  *	Perform a listen. Basically, we allow the protocol to do anything
1653  *	necessary for a listen, and if that works, we mark the socket as
1654  *	ready for listening.
1655  */
1656 
1657 int __sys_listen(int fd, int backlog)
1658 {
1659 	struct socket *sock;
1660 	int err, fput_needed;
1661 	int somaxconn;
1662 
1663 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1664 	if (sock) {
1665 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1666 		if ((unsigned int)backlog > somaxconn)
1667 			backlog = somaxconn;
1668 
1669 		err = security_socket_listen(sock, backlog);
1670 		if (!err)
1671 			err = sock->ops->listen(sock, backlog);
1672 
1673 		fput_light(sock->file, fput_needed);
1674 	}
1675 	return err;
1676 }
1677 
1678 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1679 {
1680 	return __sys_listen(fd, backlog);
1681 }
1682 
1683 int __sys_accept4_file(struct file *file, unsigned file_flags,
1684 		       struct sockaddr __user *upeer_sockaddr,
1685 		       int __user *upeer_addrlen, int flags,
1686 		       unsigned long nofile)
1687 {
1688 	struct socket *sock, *newsock;
1689 	struct file *newfile;
1690 	int err, len, newfd;
1691 	struct sockaddr_storage address;
1692 
1693 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1694 		return -EINVAL;
1695 
1696 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1697 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1698 
1699 	sock = sock_from_file(file);
1700 	if (!sock) {
1701 		err = -ENOTSOCK;
1702 		goto out;
1703 	}
1704 
1705 	err = -ENFILE;
1706 	newsock = sock_alloc();
1707 	if (!newsock)
1708 		goto out;
1709 
1710 	newsock->type = sock->type;
1711 	newsock->ops = sock->ops;
1712 
1713 	/*
1714 	 * We don't need try_module_get here, as the listening socket (sock)
1715 	 * has the protocol module (sock->ops->owner) held.
1716 	 */
1717 	__module_get(newsock->ops->owner);
1718 
1719 	newfd = __get_unused_fd_flags(flags, nofile);
1720 	if (unlikely(newfd < 0)) {
1721 		err = newfd;
1722 		sock_release(newsock);
1723 		goto out;
1724 	}
1725 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1726 	if (IS_ERR(newfile)) {
1727 		err = PTR_ERR(newfile);
1728 		put_unused_fd(newfd);
1729 		goto out;
1730 	}
1731 
1732 	err = security_socket_accept(sock, newsock);
1733 	if (err)
1734 		goto out_fd;
1735 
1736 	err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1737 					false);
1738 	if (err < 0)
1739 		goto out_fd;
1740 
1741 	if (upeer_sockaddr) {
1742 		len = newsock->ops->getname(newsock,
1743 					(struct sockaddr *)&address, 2);
1744 		if (len < 0) {
1745 			err = -ECONNABORTED;
1746 			goto out_fd;
1747 		}
1748 		err = move_addr_to_user(&address,
1749 					len, upeer_sockaddr, upeer_addrlen);
1750 		if (err < 0)
1751 			goto out_fd;
1752 	}
1753 
1754 	/* File flags are not inherited via accept() unlike another OSes. */
1755 
1756 	fd_install(newfd, newfile);
1757 	err = newfd;
1758 out:
1759 	return err;
1760 out_fd:
1761 	fput(newfile);
1762 	put_unused_fd(newfd);
1763 	goto out;
1764 
1765 }
1766 
1767 /*
1768  *	For accept, we attempt to create a new socket, set up the link
1769  *	with the client, wake up the client, then return the new
1770  *	connected fd. We collect the address of the connector in kernel
1771  *	space and move it to user at the very end. This is unclean because
1772  *	we open the socket then return an error.
1773  *
1774  *	1003.1g adds the ability to recvmsg() to query connection pending
1775  *	status to recvmsg. We need to add that support in a way thats
1776  *	clean when we restructure accept also.
1777  */
1778 
1779 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1780 		  int __user *upeer_addrlen, int flags)
1781 {
1782 	int ret = -EBADF;
1783 	struct fd f;
1784 
1785 	f = fdget(fd);
1786 	if (f.file) {
1787 		ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1788 						upeer_addrlen, flags,
1789 						rlimit(RLIMIT_NOFILE));
1790 		fdput(f);
1791 	}
1792 
1793 	return ret;
1794 }
1795 
1796 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1797 		int __user *, upeer_addrlen, int, flags)
1798 {
1799 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1800 }
1801 
1802 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1803 		int __user *, upeer_addrlen)
1804 {
1805 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1806 }
1807 
1808 /*
1809  *	Attempt to connect to a socket with the server address.  The address
1810  *	is in user space so we verify it is OK and move it to kernel space.
1811  *
1812  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1813  *	break bindings
1814  *
1815  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1816  *	other SEQPACKET protocols that take time to connect() as it doesn't
1817  *	include the -EINPROGRESS status for such sockets.
1818  */
1819 
1820 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1821 		       int addrlen, int file_flags)
1822 {
1823 	struct socket *sock;
1824 	int err;
1825 
1826 	sock = sock_from_file(file);
1827 	if (!sock) {
1828 		err = -ENOTSOCK;
1829 		goto out;
1830 	}
1831 
1832 	err =
1833 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1834 	if (err)
1835 		goto out;
1836 
1837 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1838 				 sock->file->f_flags | file_flags);
1839 out:
1840 	return err;
1841 }
1842 
1843 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1844 {
1845 	int ret = -EBADF;
1846 	struct fd f;
1847 
1848 	f = fdget(fd);
1849 	if (f.file) {
1850 		struct sockaddr_storage address;
1851 
1852 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1853 		if (!ret)
1854 			ret = __sys_connect_file(f.file, &address, addrlen, 0);
1855 		fdput(f);
1856 	}
1857 
1858 	return ret;
1859 }
1860 
1861 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1862 		int, addrlen)
1863 {
1864 	return __sys_connect(fd, uservaddr, addrlen);
1865 }
1866 
1867 /*
1868  *	Get the local address ('name') of a socket object. Move the obtained
1869  *	name to user space.
1870  */
1871 
1872 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1873 		      int __user *usockaddr_len)
1874 {
1875 	struct socket *sock;
1876 	struct sockaddr_storage address;
1877 	int err, fput_needed;
1878 
1879 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1880 	if (!sock)
1881 		goto out;
1882 
1883 	err = security_socket_getsockname(sock);
1884 	if (err)
1885 		goto out_put;
1886 
1887 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1888 	if (err < 0)
1889 		goto out_put;
1890         /* "err" is actually length in this case */
1891 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1892 
1893 out_put:
1894 	fput_light(sock->file, fput_needed);
1895 out:
1896 	return err;
1897 }
1898 
1899 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1900 		int __user *, usockaddr_len)
1901 {
1902 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1903 }
1904 
1905 /*
1906  *	Get the remote address ('name') of a socket object. Move the obtained
1907  *	name to user space.
1908  */
1909 
1910 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1911 		      int __user *usockaddr_len)
1912 {
1913 	struct socket *sock;
1914 	struct sockaddr_storage address;
1915 	int err, fput_needed;
1916 
1917 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1918 	if (sock != NULL) {
1919 		err = security_socket_getpeername(sock);
1920 		if (err) {
1921 			fput_light(sock->file, fput_needed);
1922 			return err;
1923 		}
1924 
1925 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1926 		if (err >= 0)
1927 			/* "err" is actually length in this case */
1928 			err = move_addr_to_user(&address, err, usockaddr,
1929 						usockaddr_len);
1930 		fput_light(sock->file, fput_needed);
1931 	}
1932 	return err;
1933 }
1934 
1935 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1936 		int __user *, usockaddr_len)
1937 {
1938 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1939 }
1940 
1941 /*
1942  *	Send a datagram to a given address. We move the address into kernel
1943  *	space and check the user space data area is readable before invoking
1944  *	the protocol.
1945  */
1946 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1947 		 struct sockaddr __user *addr,  int addr_len)
1948 {
1949 	struct socket *sock;
1950 	struct sockaddr_storage address;
1951 	int err;
1952 	struct msghdr msg;
1953 	struct iovec iov;
1954 	int fput_needed;
1955 
1956 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1957 	if (unlikely(err))
1958 		return err;
1959 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1960 	if (!sock)
1961 		goto out;
1962 
1963 	msg.msg_name = NULL;
1964 	msg.msg_control = NULL;
1965 	msg.msg_controllen = 0;
1966 	msg.msg_namelen = 0;
1967 	if (addr) {
1968 		err = move_addr_to_kernel(addr, addr_len, &address);
1969 		if (err < 0)
1970 			goto out_put;
1971 		msg.msg_name = (struct sockaddr *)&address;
1972 		msg.msg_namelen = addr_len;
1973 	}
1974 	if (sock->file->f_flags & O_NONBLOCK)
1975 		flags |= MSG_DONTWAIT;
1976 	msg.msg_flags = flags;
1977 	err = sock_sendmsg(sock, &msg);
1978 
1979 out_put:
1980 	fput_light(sock->file, fput_needed);
1981 out:
1982 	return err;
1983 }
1984 
1985 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1986 		unsigned int, flags, struct sockaddr __user *, addr,
1987 		int, addr_len)
1988 {
1989 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1990 }
1991 
1992 /*
1993  *	Send a datagram down a socket.
1994  */
1995 
1996 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1997 		unsigned int, flags)
1998 {
1999 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2000 }
2001 
2002 /*
2003  *	Receive a frame from the socket and optionally record the address of the
2004  *	sender. We verify the buffers are writable and if needed move the
2005  *	sender address from kernel to user space.
2006  */
2007 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2008 		   struct sockaddr __user *addr, int __user *addr_len)
2009 {
2010 	struct socket *sock;
2011 	struct iovec iov;
2012 	struct msghdr msg;
2013 	struct sockaddr_storage address;
2014 	int err, err2;
2015 	int fput_needed;
2016 
2017 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2018 	if (unlikely(err))
2019 		return err;
2020 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2021 	if (!sock)
2022 		goto out;
2023 
2024 	msg.msg_control = NULL;
2025 	msg.msg_controllen = 0;
2026 	/* Save some cycles and don't copy the address if not needed */
2027 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2028 	/* We assume all kernel code knows the size of sockaddr_storage */
2029 	msg.msg_namelen = 0;
2030 	msg.msg_iocb = NULL;
2031 	msg.msg_flags = 0;
2032 	if (sock->file->f_flags & O_NONBLOCK)
2033 		flags |= MSG_DONTWAIT;
2034 	err = sock_recvmsg(sock, &msg, flags);
2035 
2036 	if (err >= 0 && addr != NULL) {
2037 		err2 = move_addr_to_user(&address,
2038 					 msg.msg_namelen, addr, addr_len);
2039 		if (err2 < 0)
2040 			err = err2;
2041 	}
2042 
2043 	fput_light(sock->file, fput_needed);
2044 out:
2045 	return err;
2046 }
2047 
2048 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2049 		unsigned int, flags, struct sockaddr __user *, addr,
2050 		int __user *, addr_len)
2051 {
2052 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2053 }
2054 
2055 /*
2056  *	Receive a datagram from a socket.
2057  */
2058 
2059 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2060 		unsigned int, flags)
2061 {
2062 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2063 }
2064 
2065 static bool sock_use_custom_sol_socket(const struct socket *sock)
2066 {
2067 	const struct sock *sk = sock->sk;
2068 
2069 	/* Use sock->ops->setsockopt() for MPTCP */
2070 	return IS_ENABLED(CONFIG_MPTCP) &&
2071 	       sk->sk_protocol == IPPROTO_MPTCP &&
2072 	       sk->sk_type == SOCK_STREAM &&
2073 	       (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2074 }
2075 
2076 /*
2077  *	Set a socket option. Because we don't know the option lengths we have
2078  *	to pass the user mode parameter for the protocols to sort out.
2079  */
2080 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2081 		int optlen)
2082 {
2083 	sockptr_t optval = USER_SOCKPTR(user_optval);
2084 	char *kernel_optval = NULL;
2085 	int err, fput_needed;
2086 	struct socket *sock;
2087 
2088 	if (optlen < 0)
2089 		return -EINVAL;
2090 
2091 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2092 	if (!sock)
2093 		return err;
2094 
2095 	err = security_socket_setsockopt(sock, level, optname);
2096 	if (err)
2097 		goto out_put;
2098 
2099 	if (!in_compat_syscall())
2100 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2101 						     user_optval, &optlen,
2102 						     &kernel_optval);
2103 	if (err < 0)
2104 		goto out_put;
2105 	if (err > 0) {
2106 		err = 0;
2107 		goto out_put;
2108 	}
2109 
2110 	if (kernel_optval)
2111 		optval = KERNEL_SOCKPTR(kernel_optval);
2112 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2113 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2114 	else if (unlikely(!sock->ops->setsockopt))
2115 		err = -EOPNOTSUPP;
2116 	else
2117 		err = sock->ops->setsockopt(sock, level, optname, optval,
2118 					    optlen);
2119 	kfree(kernel_optval);
2120 out_put:
2121 	fput_light(sock->file, fput_needed);
2122 	return err;
2123 }
2124 
2125 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2126 		char __user *, optval, int, optlen)
2127 {
2128 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2129 }
2130 
2131 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2132 							 int optname));
2133 
2134 /*
2135  *	Get a socket option. Because we don't know the option lengths we have
2136  *	to pass a user mode parameter for the protocols to sort out.
2137  */
2138 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2139 		int __user *optlen)
2140 {
2141 	int err, fput_needed;
2142 	struct socket *sock;
2143 	int max_optlen;
2144 
2145 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2146 	if (!sock)
2147 		return err;
2148 
2149 	err = security_socket_getsockopt(sock, level, optname);
2150 	if (err)
2151 		goto out_put;
2152 
2153 	if (!in_compat_syscall())
2154 		max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2155 
2156 	if (level == SOL_SOCKET)
2157 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2158 	else if (unlikely(!sock->ops->getsockopt))
2159 		err = -EOPNOTSUPP;
2160 	else
2161 		err = sock->ops->getsockopt(sock, level, optname, optval,
2162 					    optlen);
2163 
2164 	if (!in_compat_syscall())
2165 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2166 						     optval, optlen, max_optlen,
2167 						     err);
2168 out_put:
2169 	fput_light(sock->file, fput_needed);
2170 	return err;
2171 }
2172 
2173 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2174 		char __user *, optval, int __user *, optlen)
2175 {
2176 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2177 }
2178 
2179 /*
2180  *	Shutdown a socket.
2181  */
2182 
2183 int __sys_shutdown_sock(struct socket *sock, int how)
2184 {
2185 	int err;
2186 
2187 	err = security_socket_shutdown(sock, how);
2188 	if (!err)
2189 		err = sock->ops->shutdown(sock, how);
2190 
2191 	return err;
2192 }
2193 
2194 int __sys_shutdown(int fd, int how)
2195 {
2196 	int err, fput_needed;
2197 	struct socket *sock;
2198 
2199 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2200 	if (sock != NULL) {
2201 		err = __sys_shutdown_sock(sock, how);
2202 		fput_light(sock->file, fput_needed);
2203 	}
2204 	return err;
2205 }
2206 
2207 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2208 {
2209 	return __sys_shutdown(fd, how);
2210 }
2211 
2212 /* A couple of helpful macros for getting the address of the 32/64 bit
2213  * fields which are the same type (int / unsigned) on our platforms.
2214  */
2215 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2216 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2217 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2218 
2219 struct used_address {
2220 	struct sockaddr_storage name;
2221 	unsigned int name_len;
2222 };
2223 
2224 int __copy_msghdr_from_user(struct msghdr *kmsg,
2225 			    struct user_msghdr __user *umsg,
2226 			    struct sockaddr __user **save_addr,
2227 			    struct iovec __user **uiov, size_t *nsegs)
2228 {
2229 	struct user_msghdr msg;
2230 	ssize_t err;
2231 
2232 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2233 		return -EFAULT;
2234 
2235 	kmsg->msg_control_is_user = true;
2236 	kmsg->msg_control_user = msg.msg_control;
2237 	kmsg->msg_controllen = msg.msg_controllen;
2238 	kmsg->msg_flags = msg.msg_flags;
2239 
2240 	kmsg->msg_namelen = msg.msg_namelen;
2241 	if (!msg.msg_name)
2242 		kmsg->msg_namelen = 0;
2243 
2244 	if (kmsg->msg_namelen < 0)
2245 		return -EINVAL;
2246 
2247 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2248 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2249 
2250 	if (save_addr)
2251 		*save_addr = msg.msg_name;
2252 
2253 	if (msg.msg_name && kmsg->msg_namelen) {
2254 		if (!save_addr) {
2255 			err = move_addr_to_kernel(msg.msg_name,
2256 						  kmsg->msg_namelen,
2257 						  kmsg->msg_name);
2258 			if (err < 0)
2259 				return err;
2260 		}
2261 	} else {
2262 		kmsg->msg_name = NULL;
2263 		kmsg->msg_namelen = 0;
2264 	}
2265 
2266 	if (msg.msg_iovlen > UIO_MAXIOV)
2267 		return -EMSGSIZE;
2268 
2269 	kmsg->msg_iocb = NULL;
2270 	*uiov = msg.msg_iov;
2271 	*nsegs = msg.msg_iovlen;
2272 	return 0;
2273 }
2274 
2275 static int copy_msghdr_from_user(struct msghdr *kmsg,
2276 				 struct user_msghdr __user *umsg,
2277 				 struct sockaddr __user **save_addr,
2278 				 struct iovec **iov)
2279 {
2280 	struct user_msghdr msg;
2281 	ssize_t err;
2282 
2283 	err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2284 					&msg.msg_iovlen);
2285 	if (err)
2286 		return err;
2287 
2288 	err = import_iovec(save_addr ? READ : WRITE,
2289 			    msg.msg_iov, msg.msg_iovlen,
2290 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2291 	return err < 0 ? err : 0;
2292 }
2293 
2294 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2295 			   unsigned int flags, struct used_address *used_address,
2296 			   unsigned int allowed_msghdr_flags)
2297 {
2298 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2299 				__aligned(sizeof(__kernel_size_t));
2300 	/* 20 is size of ipv6_pktinfo */
2301 	unsigned char *ctl_buf = ctl;
2302 	int ctl_len;
2303 	ssize_t err;
2304 
2305 	err = -ENOBUFS;
2306 
2307 	if (msg_sys->msg_controllen > INT_MAX)
2308 		goto out;
2309 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2310 	ctl_len = msg_sys->msg_controllen;
2311 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2312 		err =
2313 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2314 						     sizeof(ctl));
2315 		if (err)
2316 			goto out;
2317 		ctl_buf = msg_sys->msg_control;
2318 		ctl_len = msg_sys->msg_controllen;
2319 	} else if (ctl_len) {
2320 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2321 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2322 		if (ctl_len > sizeof(ctl)) {
2323 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2324 			if (ctl_buf == NULL)
2325 				goto out;
2326 		}
2327 		err = -EFAULT;
2328 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2329 			goto out_freectl;
2330 		msg_sys->msg_control = ctl_buf;
2331 		msg_sys->msg_control_is_user = false;
2332 	}
2333 	msg_sys->msg_flags = flags;
2334 
2335 	if (sock->file->f_flags & O_NONBLOCK)
2336 		msg_sys->msg_flags |= MSG_DONTWAIT;
2337 	/*
2338 	 * If this is sendmmsg() and current destination address is same as
2339 	 * previously succeeded address, omit asking LSM's decision.
2340 	 * used_address->name_len is initialized to UINT_MAX so that the first
2341 	 * destination address never matches.
2342 	 */
2343 	if (used_address && msg_sys->msg_name &&
2344 	    used_address->name_len == msg_sys->msg_namelen &&
2345 	    !memcmp(&used_address->name, msg_sys->msg_name,
2346 		    used_address->name_len)) {
2347 		err = sock_sendmsg_nosec(sock, msg_sys);
2348 		goto out_freectl;
2349 	}
2350 	err = sock_sendmsg(sock, msg_sys);
2351 	/*
2352 	 * If this is sendmmsg() and sending to current destination address was
2353 	 * successful, remember it.
2354 	 */
2355 	if (used_address && err >= 0) {
2356 		used_address->name_len = msg_sys->msg_namelen;
2357 		if (msg_sys->msg_name)
2358 			memcpy(&used_address->name, msg_sys->msg_name,
2359 			       used_address->name_len);
2360 	}
2361 
2362 out_freectl:
2363 	if (ctl_buf != ctl)
2364 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2365 out:
2366 	return err;
2367 }
2368 
2369 int sendmsg_copy_msghdr(struct msghdr *msg,
2370 			struct user_msghdr __user *umsg, unsigned flags,
2371 			struct iovec **iov)
2372 {
2373 	int err;
2374 
2375 	if (flags & MSG_CMSG_COMPAT) {
2376 		struct compat_msghdr __user *msg_compat;
2377 
2378 		msg_compat = (struct compat_msghdr __user *) umsg;
2379 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2380 	} else {
2381 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2382 	}
2383 	if (err < 0)
2384 		return err;
2385 
2386 	return 0;
2387 }
2388 
2389 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2390 			 struct msghdr *msg_sys, unsigned int flags,
2391 			 struct used_address *used_address,
2392 			 unsigned int allowed_msghdr_flags)
2393 {
2394 	struct sockaddr_storage address;
2395 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2396 	ssize_t err;
2397 
2398 	msg_sys->msg_name = &address;
2399 
2400 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2401 	if (err < 0)
2402 		return err;
2403 
2404 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2405 				allowed_msghdr_flags);
2406 	kfree(iov);
2407 	return err;
2408 }
2409 
2410 /*
2411  *	BSD sendmsg interface
2412  */
2413 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2414 			unsigned int flags)
2415 {
2416 	/* disallow ancillary data requests from this path */
2417 	if (msg->msg_control || msg->msg_controllen)
2418 		return -EINVAL;
2419 
2420 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2421 }
2422 
2423 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2424 		   bool forbid_cmsg_compat)
2425 {
2426 	int fput_needed, err;
2427 	struct msghdr msg_sys;
2428 	struct socket *sock;
2429 
2430 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2431 		return -EINVAL;
2432 
2433 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2434 	if (!sock)
2435 		goto out;
2436 
2437 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2438 
2439 	fput_light(sock->file, fput_needed);
2440 out:
2441 	return err;
2442 }
2443 
2444 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2445 {
2446 	return __sys_sendmsg(fd, msg, flags, true);
2447 }
2448 
2449 /*
2450  *	Linux sendmmsg interface
2451  */
2452 
2453 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2454 		   unsigned int flags, bool forbid_cmsg_compat)
2455 {
2456 	int fput_needed, err, datagrams;
2457 	struct socket *sock;
2458 	struct mmsghdr __user *entry;
2459 	struct compat_mmsghdr __user *compat_entry;
2460 	struct msghdr msg_sys;
2461 	struct used_address used_address;
2462 	unsigned int oflags = flags;
2463 
2464 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2465 		return -EINVAL;
2466 
2467 	if (vlen > UIO_MAXIOV)
2468 		vlen = UIO_MAXIOV;
2469 
2470 	datagrams = 0;
2471 
2472 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2473 	if (!sock)
2474 		return err;
2475 
2476 	used_address.name_len = UINT_MAX;
2477 	entry = mmsg;
2478 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2479 	err = 0;
2480 	flags |= MSG_BATCH;
2481 
2482 	while (datagrams < vlen) {
2483 		if (datagrams == vlen - 1)
2484 			flags = oflags;
2485 
2486 		if (MSG_CMSG_COMPAT & flags) {
2487 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2488 					     &msg_sys, flags, &used_address, MSG_EOR);
2489 			if (err < 0)
2490 				break;
2491 			err = __put_user(err, &compat_entry->msg_len);
2492 			++compat_entry;
2493 		} else {
2494 			err = ___sys_sendmsg(sock,
2495 					     (struct user_msghdr __user *)entry,
2496 					     &msg_sys, flags, &used_address, MSG_EOR);
2497 			if (err < 0)
2498 				break;
2499 			err = put_user(err, &entry->msg_len);
2500 			++entry;
2501 		}
2502 
2503 		if (err)
2504 			break;
2505 		++datagrams;
2506 		if (msg_data_left(&msg_sys))
2507 			break;
2508 		cond_resched();
2509 	}
2510 
2511 	fput_light(sock->file, fput_needed);
2512 
2513 	/* We only return an error if no datagrams were able to be sent */
2514 	if (datagrams != 0)
2515 		return datagrams;
2516 
2517 	return err;
2518 }
2519 
2520 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2521 		unsigned int, vlen, unsigned int, flags)
2522 {
2523 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2524 }
2525 
2526 int recvmsg_copy_msghdr(struct msghdr *msg,
2527 			struct user_msghdr __user *umsg, unsigned flags,
2528 			struct sockaddr __user **uaddr,
2529 			struct iovec **iov)
2530 {
2531 	ssize_t err;
2532 
2533 	if (MSG_CMSG_COMPAT & flags) {
2534 		struct compat_msghdr __user *msg_compat;
2535 
2536 		msg_compat = (struct compat_msghdr __user *) umsg;
2537 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2538 	} else {
2539 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2540 	}
2541 	if (err < 0)
2542 		return err;
2543 
2544 	return 0;
2545 }
2546 
2547 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2548 			   struct user_msghdr __user *msg,
2549 			   struct sockaddr __user *uaddr,
2550 			   unsigned int flags, int nosec)
2551 {
2552 	struct compat_msghdr __user *msg_compat =
2553 					(struct compat_msghdr __user *) msg;
2554 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2555 	struct sockaddr_storage addr;
2556 	unsigned long cmsg_ptr;
2557 	int len;
2558 	ssize_t err;
2559 
2560 	msg_sys->msg_name = &addr;
2561 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2562 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2563 
2564 	/* We assume all kernel code knows the size of sockaddr_storage */
2565 	msg_sys->msg_namelen = 0;
2566 
2567 	if (sock->file->f_flags & O_NONBLOCK)
2568 		flags |= MSG_DONTWAIT;
2569 
2570 	if (unlikely(nosec))
2571 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2572 	else
2573 		err = sock_recvmsg(sock, msg_sys, flags);
2574 
2575 	if (err < 0)
2576 		goto out;
2577 	len = err;
2578 
2579 	if (uaddr != NULL) {
2580 		err = move_addr_to_user(&addr,
2581 					msg_sys->msg_namelen, uaddr,
2582 					uaddr_len);
2583 		if (err < 0)
2584 			goto out;
2585 	}
2586 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2587 			 COMPAT_FLAGS(msg));
2588 	if (err)
2589 		goto out;
2590 	if (MSG_CMSG_COMPAT & flags)
2591 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2592 				 &msg_compat->msg_controllen);
2593 	else
2594 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2595 				 &msg->msg_controllen);
2596 	if (err)
2597 		goto out;
2598 	err = len;
2599 out:
2600 	return err;
2601 }
2602 
2603 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2604 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2605 {
2606 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2607 	/* user mode address pointers */
2608 	struct sockaddr __user *uaddr;
2609 	ssize_t err;
2610 
2611 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2612 	if (err < 0)
2613 		return err;
2614 
2615 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2616 	kfree(iov);
2617 	return err;
2618 }
2619 
2620 /*
2621  *	BSD recvmsg interface
2622  */
2623 
2624 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2625 			struct user_msghdr __user *umsg,
2626 			struct sockaddr __user *uaddr, unsigned int flags)
2627 {
2628 	if (msg->msg_control || msg->msg_controllen) {
2629 		/* disallow ancillary data reqs unless cmsg is plain data */
2630 		if (!(sock->ops->flags & PROTO_CMSG_DATA_ONLY))
2631 			return -EINVAL;
2632 	}
2633 
2634 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2635 }
2636 
2637 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2638 		   bool forbid_cmsg_compat)
2639 {
2640 	int fput_needed, err;
2641 	struct msghdr msg_sys;
2642 	struct socket *sock;
2643 
2644 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2645 		return -EINVAL;
2646 
2647 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2648 	if (!sock)
2649 		goto out;
2650 
2651 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2652 
2653 	fput_light(sock->file, fput_needed);
2654 out:
2655 	return err;
2656 }
2657 
2658 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2659 		unsigned int, flags)
2660 {
2661 	return __sys_recvmsg(fd, msg, flags, true);
2662 }
2663 
2664 /*
2665  *     Linux recvmmsg interface
2666  */
2667 
2668 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2669 			  unsigned int vlen, unsigned int flags,
2670 			  struct timespec64 *timeout)
2671 {
2672 	int fput_needed, err, datagrams;
2673 	struct socket *sock;
2674 	struct mmsghdr __user *entry;
2675 	struct compat_mmsghdr __user *compat_entry;
2676 	struct msghdr msg_sys;
2677 	struct timespec64 end_time;
2678 	struct timespec64 timeout64;
2679 
2680 	if (timeout &&
2681 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2682 				    timeout->tv_nsec))
2683 		return -EINVAL;
2684 
2685 	datagrams = 0;
2686 
2687 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2688 	if (!sock)
2689 		return err;
2690 
2691 	if (likely(!(flags & MSG_ERRQUEUE))) {
2692 		err = sock_error(sock->sk);
2693 		if (err) {
2694 			datagrams = err;
2695 			goto out_put;
2696 		}
2697 	}
2698 
2699 	entry = mmsg;
2700 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2701 
2702 	while (datagrams < vlen) {
2703 		/*
2704 		 * No need to ask LSM for more than the first datagram.
2705 		 */
2706 		if (MSG_CMSG_COMPAT & flags) {
2707 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2708 					     &msg_sys, flags & ~MSG_WAITFORONE,
2709 					     datagrams);
2710 			if (err < 0)
2711 				break;
2712 			err = __put_user(err, &compat_entry->msg_len);
2713 			++compat_entry;
2714 		} else {
2715 			err = ___sys_recvmsg(sock,
2716 					     (struct user_msghdr __user *)entry,
2717 					     &msg_sys, flags & ~MSG_WAITFORONE,
2718 					     datagrams);
2719 			if (err < 0)
2720 				break;
2721 			err = put_user(err, &entry->msg_len);
2722 			++entry;
2723 		}
2724 
2725 		if (err)
2726 			break;
2727 		++datagrams;
2728 
2729 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2730 		if (flags & MSG_WAITFORONE)
2731 			flags |= MSG_DONTWAIT;
2732 
2733 		if (timeout) {
2734 			ktime_get_ts64(&timeout64);
2735 			*timeout = timespec64_sub(end_time, timeout64);
2736 			if (timeout->tv_sec < 0) {
2737 				timeout->tv_sec = timeout->tv_nsec = 0;
2738 				break;
2739 			}
2740 
2741 			/* Timeout, return less than vlen datagrams */
2742 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2743 				break;
2744 		}
2745 
2746 		/* Out of band data, return right away */
2747 		if (msg_sys.msg_flags & MSG_OOB)
2748 			break;
2749 		cond_resched();
2750 	}
2751 
2752 	if (err == 0)
2753 		goto out_put;
2754 
2755 	if (datagrams == 0) {
2756 		datagrams = err;
2757 		goto out_put;
2758 	}
2759 
2760 	/*
2761 	 * We may return less entries than requested (vlen) if the
2762 	 * sock is non block and there aren't enough datagrams...
2763 	 */
2764 	if (err != -EAGAIN) {
2765 		/*
2766 		 * ... or  if recvmsg returns an error after we
2767 		 * received some datagrams, where we record the
2768 		 * error to return on the next call or if the
2769 		 * app asks about it using getsockopt(SO_ERROR).
2770 		 */
2771 		sock->sk->sk_err = -err;
2772 	}
2773 out_put:
2774 	fput_light(sock->file, fput_needed);
2775 
2776 	return datagrams;
2777 }
2778 
2779 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2780 		   unsigned int vlen, unsigned int flags,
2781 		   struct __kernel_timespec __user *timeout,
2782 		   struct old_timespec32 __user *timeout32)
2783 {
2784 	int datagrams;
2785 	struct timespec64 timeout_sys;
2786 
2787 	if (timeout && get_timespec64(&timeout_sys, timeout))
2788 		return -EFAULT;
2789 
2790 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2791 		return -EFAULT;
2792 
2793 	if (!timeout && !timeout32)
2794 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2795 
2796 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2797 
2798 	if (datagrams <= 0)
2799 		return datagrams;
2800 
2801 	if (timeout && put_timespec64(&timeout_sys, timeout))
2802 		datagrams = -EFAULT;
2803 
2804 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2805 		datagrams = -EFAULT;
2806 
2807 	return datagrams;
2808 }
2809 
2810 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2811 		unsigned int, vlen, unsigned int, flags,
2812 		struct __kernel_timespec __user *, timeout)
2813 {
2814 	if (flags & MSG_CMSG_COMPAT)
2815 		return -EINVAL;
2816 
2817 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2818 }
2819 
2820 #ifdef CONFIG_COMPAT_32BIT_TIME
2821 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2822 		unsigned int, vlen, unsigned int, flags,
2823 		struct old_timespec32 __user *, timeout)
2824 {
2825 	if (flags & MSG_CMSG_COMPAT)
2826 		return -EINVAL;
2827 
2828 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2829 }
2830 #endif
2831 
2832 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2833 /* Argument list sizes for sys_socketcall */
2834 #define AL(x) ((x) * sizeof(unsigned long))
2835 static const unsigned char nargs[21] = {
2836 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2837 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2838 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2839 	AL(4), AL(5), AL(4)
2840 };
2841 
2842 #undef AL
2843 
2844 /*
2845  *	System call vectors.
2846  *
2847  *	Argument checking cleaned up. Saved 20% in size.
2848  *  This function doesn't need to set the kernel lock because
2849  *  it is set by the callees.
2850  */
2851 
2852 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2853 {
2854 	unsigned long a[AUDITSC_ARGS];
2855 	unsigned long a0, a1;
2856 	int err;
2857 	unsigned int len;
2858 
2859 	if (call < 1 || call > SYS_SENDMMSG)
2860 		return -EINVAL;
2861 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2862 
2863 	len = nargs[call];
2864 	if (len > sizeof(a))
2865 		return -EINVAL;
2866 
2867 	/* copy_from_user should be SMP safe. */
2868 	if (copy_from_user(a, args, len))
2869 		return -EFAULT;
2870 
2871 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2872 	if (err)
2873 		return err;
2874 
2875 	a0 = a[0];
2876 	a1 = a[1];
2877 
2878 	switch (call) {
2879 	case SYS_SOCKET:
2880 		err = __sys_socket(a0, a1, a[2]);
2881 		break;
2882 	case SYS_BIND:
2883 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2884 		break;
2885 	case SYS_CONNECT:
2886 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2887 		break;
2888 	case SYS_LISTEN:
2889 		err = __sys_listen(a0, a1);
2890 		break;
2891 	case SYS_ACCEPT:
2892 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2893 				    (int __user *)a[2], 0);
2894 		break;
2895 	case SYS_GETSOCKNAME:
2896 		err =
2897 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2898 				      (int __user *)a[2]);
2899 		break;
2900 	case SYS_GETPEERNAME:
2901 		err =
2902 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2903 				      (int __user *)a[2]);
2904 		break;
2905 	case SYS_SOCKETPAIR:
2906 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2907 		break;
2908 	case SYS_SEND:
2909 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2910 				   NULL, 0);
2911 		break;
2912 	case SYS_SENDTO:
2913 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2914 				   (struct sockaddr __user *)a[4], a[5]);
2915 		break;
2916 	case SYS_RECV:
2917 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2918 				     NULL, NULL);
2919 		break;
2920 	case SYS_RECVFROM:
2921 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2922 				     (struct sockaddr __user *)a[4],
2923 				     (int __user *)a[5]);
2924 		break;
2925 	case SYS_SHUTDOWN:
2926 		err = __sys_shutdown(a0, a1);
2927 		break;
2928 	case SYS_SETSOCKOPT:
2929 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2930 				       a[4]);
2931 		break;
2932 	case SYS_GETSOCKOPT:
2933 		err =
2934 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2935 				     (int __user *)a[4]);
2936 		break;
2937 	case SYS_SENDMSG:
2938 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2939 				    a[2], true);
2940 		break;
2941 	case SYS_SENDMMSG:
2942 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2943 				     a[3], true);
2944 		break;
2945 	case SYS_RECVMSG:
2946 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2947 				    a[2], true);
2948 		break;
2949 	case SYS_RECVMMSG:
2950 		if (IS_ENABLED(CONFIG_64BIT))
2951 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2952 					     a[2], a[3],
2953 					     (struct __kernel_timespec __user *)a[4],
2954 					     NULL);
2955 		else
2956 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2957 					     a[2], a[3], NULL,
2958 					     (struct old_timespec32 __user *)a[4]);
2959 		break;
2960 	case SYS_ACCEPT4:
2961 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2962 				    (int __user *)a[2], a[3]);
2963 		break;
2964 	default:
2965 		err = -EINVAL;
2966 		break;
2967 	}
2968 	return err;
2969 }
2970 
2971 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2972 
2973 /**
2974  *	sock_register - add a socket protocol handler
2975  *	@ops: description of protocol
2976  *
2977  *	This function is called by a protocol handler that wants to
2978  *	advertise its address family, and have it linked into the
2979  *	socket interface. The value ops->family corresponds to the
2980  *	socket system call protocol family.
2981  */
2982 int sock_register(const struct net_proto_family *ops)
2983 {
2984 	int err;
2985 
2986 	if (ops->family >= NPROTO) {
2987 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2988 		return -ENOBUFS;
2989 	}
2990 
2991 	spin_lock(&net_family_lock);
2992 	if (rcu_dereference_protected(net_families[ops->family],
2993 				      lockdep_is_held(&net_family_lock)))
2994 		err = -EEXIST;
2995 	else {
2996 		rcu_assign_pointer(net_families[ops->family], ops);
2997 		err = 0;
2998 	}
2999 	spin_unlock(&net_family_lock);
3000 
3001 	pr_info("NET: Registered protocol family %d\n", ops->family);
3002 	return err;
3003 }
3004 EXPORT_SYMBOL(sock_register);
3005 
3006 /**
3007  *	sock_unregister - remove a protocol handler
3008  *	@family: protocol family to remove
3009  *
3010  *	This function is called by a protocol handler that wants to
3011  *	remove its address family, and have it unlinked from the
3012  *	new socket creation.
3013  *
3014  *	If protocol handler is a module, then it can use module reference
3015  *	counts to protect against new references. If protocol handler is not
3016  *	a module then it needs to provide its own protection in
3017  *	the ops->create routine.
3018  */
3019 void sock_unregister(int family)
3020 {
3021 	BUG_ON(family < 0 || family >= NPROTO);
3022 
3023 	spin_lock(&net_family_lock);
3024 	RCU_INIT_POINTER(net_families[family], NULL);
3025 	spin_unlock(&net_family_lock);
3026 
3027 	synchronize_rcu();
3028 
3029 	pr_info("NET: Unregistered protocol family %d\n", family);
3030 }
3031 EXPORT_SYMBOL(sock_unregister);
3032 
3033 bool sock_is_registered(int family)
3034 {
3035 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3036 }
3037 
3038 static int __init sock_init(void)
3039 {
3040 	int err;
3041 	/*
3042 	 *      Initialize the network sysctl infrastructure.
3043 	 */
3044 	err = net_sysctl_init();
3045 	if (err)
3046 		goto out;
3047 
3048 	/*
3049 	 *      Initialize skbuff SLAB cache
3050 	 */
3051 	skb_init();
3052 
3053 	/*
3054 	 *      Initialize the protocols module.
3055 	 */
3056 
3057 	init_inodecache();
3058 
3059 	err = register_filesystem(&sock_fs_type);
3060 	if (err)
3061 		goto out;
3062 	sock_mnt = kern_mount(&sock_fs_type);
3063 	if (IS_ERR(sock_mnt)) {
3064 		err = PTR_ERR(sock_mnt);
3065 		goto out_mount;
3066 	}
3067 
3068 	/* The real protocol initialization is performed in later initcalls.
3069 	 */
3070 
3071 #ifdef CONFIG_NETFILTER
3072 	err = netfilter_init();
3073 	if (err)
3074 		goto out;
3075 #endif
3076 
3077 	ptp_classifier_init();
3078 
3079 out:
3080 	return err;
3081 
3082 out_mount:
3083 	unregister_filesystem(&sock_fs_type);
3084 	goto out;
3085 }
3086 
3087 core_initcall(sock_init);	/* early initcall */
3088 
3089 #ifdef CONFIG_PROC_FS
3090 void socket_seq_show(struct seq_file *seq)
3091 {
3092 	seq_printf(seq, "sockets: used %d\n",
3093 		   sock_inuse_get(seq->private));
3094 }
3095 #endif				/* CONFIG_PROC_FS */
3096 
3097 #ifdef CONFIG_COMPAT
3098 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3099 {
3100 	struct compat_ifconf ifc32;
3101 	struct ifconf ifc;
3102 	int err;
3103 
3104 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3105 		return -EFAULT;
3106 
3107 	ifc.ifc_len = ifc32.ifc_len;
3108 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3109 
3110 	rtnl_lock();
3111 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3112 	rtnl_unlock();
3113 	if (err)
3114 		return err;
3115 
3116 	ifc32.ifc_len = ifc.ifc_len;
3117 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3118 		return -EFAULT;
3119 
3120 	return 0;
3121 }
3122 
3123 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3124 {
3125 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
3126 	bool convert_in = false, convert_out = false;
3127 	size_t buf_size = 0;
3128 	struct ethtool_rxnfc __user *rxnfc = NULL;
3129 	struct ifreq ifr;
3130 	u32 rule_cnt = 0, actual_rule_cnt;
3131 	u32 ethcmd;
3132 	u32 data;
3133 	int ret;
3134 
3135 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3136 		return -EFAULT;
3137 
3138 	compat_rxnfc = compat_ptr(data);
3139 
3140 	if (get_user(ethcmd, &compat_rxnfc->cmd))
3141 		return -EFAULT;
3142 
3143 	/* Most ethtool structures are defined without padding.
3144 	 * Unfortunately struct ethtool_rxnfc is an exception.
3145 	 */
3146 	switch (ethcmd) {
3147 	default:
3148 		break;
3149 	case ETHTOOL_GRXCLSRLALL:
3150 		/* Buffer size is variable */
3151 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3152 			return -EFAULT;
3153 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3154 			return -ENOMEM;
3155 		buf_size += rule_cnt * sizeof(u32);
3156 		fallthrough;
3157 	case ETHTOOL_GRXRINGS:
3158 	case ETHTOOL_GRXCLSRLCNT:
3159 	case ETHTOOL_GRXCLSRULE:
3160 	case ETHTOOL_SRXCLSRLINS:
3161 		convert_out = true;
3162 		fallthrough;
3163 	case ETHTOOL_SRXCLSRLDEL:
3164 		buf_size += sizeof(struct ethtool_rxnfc);
3165 		convert_in = true;
3166 		rxnfc = compat_alloc_user_space(buf_size);
3167 		break;
3168 	}
3169 
3170 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3171 		return -EFAULT;
3172 
3173 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3174 
3175 	if (convert_in) {
3176 		/* We expect there to be holes between fs.m_ext and
3177 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3178 		 */
3179 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3180 			     sizeof(compat_rxnfc->fs.m_ext) !=
3181 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3182 			     sizeof(rxnfc->fs.m_ext));
3183 		BUILD_BUG_ON(
3184 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3185 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3186 			offsetof(struct ethtool_rxnfc, fs.location) -
3187 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3188 
3189 		if (copy_in_user(rxnfc, compat_rxnfc,
3190 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3191 				 (void __user *)rxnfc) ||
3192 		    copy_in_user(&rxnfc->fs.ring_cookie,
3193 				 &compat_rxnfc->fs.ring_cookie,
3194 				 (void __user *)(&rxnfc->fs.location + 1) -
3195 				 (void __user *)&rxnfc->fs.ring_cookie))
3196 			return -EFAULT;
3197 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3198 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3199 				return -EFAULT;
3200 		} else if (copy_in_user(&rxnfc->rule_cnt,
3201 					&compat_rxnfc->rule_cnt,
3202 					sizeof(rxnfc->rule_cnt)))
3203 			return -EFAULT;
3204 	}
3205 
3206 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3207 	if (ret)
3208 		return ret;
3209 
3210 	if (convert_out) {
3211 		if (copy_in_user(compat_rxnfc, rxnfc,
3212 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3213 				 (const void __user *)rxnfc) ||
3214 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3215 				 &rxnfc->fs.ring_cookie,
3216 				 (const void __user *)(&rxnfc->fs.location + 1) -
3217 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3218 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3219 				 sizeof(rxnfc->rule_cnt)))
3220 			return -EFAULT;
3221 
3222 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3223 			/* As an optimisation, we only copy the actual
3224 			 * number of rules that the underlying
3225 			 * function returned.  Since Mallory might
3226 			 * change the rule count in user memory, we
3227 			 * check that it is less than the rule count
3228 			 * originally given (as the user buffer size),
3229 			 * which has been range-checked.
3230 			 */
3231 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3232 				return -EFAULT;
3233 			if (actual_rule_cnt < rule_cnt)
3234 				rule_cnt = actual_rule_cnt;
3235 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3236 					 &rxnfc->rule_locs[0],
3237 					 rule_cnt * sizeof(u32)))
3238 				return -EFAULT;
3239 		}
3240 	}
3241 
3242 	return 0;
3243 }
3244 
3245 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3246 {
3247 	compat_uptr_t uptr32;
3248 	struct ifreq ifr;
3249 	void __user *saved;
3250 	int err;
3251 
3252 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3253 		return -EFAULT;
3254 
3255 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3256 		return -EFAULT;
3257 
3258 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3259 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3260 
3261 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3262 	if (!err) {
3263 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3264 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3265 			err = -EFAULT;
3266 	}
3267 	return err;
3268 }
3269 
3270 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3271 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3272 				 struct compat_ifreq __user *u_ifreq32)
3273 {
3274 	struct ifreq ifreq;
3275 	u32 data32;
3276 
3277 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3278 		return -EFAULT;
3279 	if (get_user(data32, &u_ifreq32->ifr_data))
3280 		return -EFAULT;
3281 	ifreq.ifr_data = compat_ptr(data32);
3282 
3283 	return dev_ioctl(net, cmd, &ifreq, NULL);
3284 }
3285 
3286 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3287 			      unsigned int cmd,
3288 			      struct compat_ifreq __user *uifr32)
3289 {
3290 	struct ifreq __user *uifr;
3291 	int err;
3292 
3293 	/* Handle the fact that while struct ifreq has the same *layout* on
3294 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3295 	 * which are handled elsewhere, it still has different *size* due to
3296 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3297 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3298 	 * As a result, if the struct happens to be at the end of a page and
3299 	 * the next page isn't readable/writable, we get a fault. To prevent
3300 	 * that, copy back and forth to the full size.
3301 	 */
3302 
3303 	uifr = compat_alloc_user_space(sizeof(*uifr));
3304 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3305 		return -EFAULT;
3306 
3307 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3308 
3309 	if (!err) {
3310 		switch (cmd) {
3311 		case SIOCGIFFLAGS:
3312 		case SIOCGIFMETRIC:
3313 		case SIOCGIFMTU:
3314 		case SIOCGIFMEM:
3315 		case SIOCGIFHWADDR:
3316 		case SIOCGIFINDEX:
3317 		case SIOCGIFADDR:
3318 		case SIOCGIFBRDADDR:
3319 		case SIOCGIFDSTADDR:
3320 		case SIOCGIFNETMASK:
3321 		case SIOCGIFPFLAGS:
3322 		case SIOCGIFTXQLEN:
3323 		case SIOCGMIIPHY:
3324 		case SIOCGMIIREG:
3325 		case SIOCGIFNAME:
3326 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3327 				err = -EFAULT;
3328 			break;
3329 		}
3330 	}
3331 	return err;
3332 }
3333 
3334 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3335 			struct compat_ifreq __user *uifr32)
3336 {
3337 	struct ifreq ifr;
3338 	struct compat_ifmap __user *uifmap32;
3339 	int err;
3340 
3341 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3342 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3343 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3344 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3345 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3346 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3347 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3348 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3349 	if (err)
3350 		return -EFAULT;
3351 
3352 	err = dev_ioctl(net, cmd, &ifr, NULL);
3353 
3354 	if (cmd == SIOCGIFMAP && !err) {
3355 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3356 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3357 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3358 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3359 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3360 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3361 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3362 		if (err)
3363 			err = -EFAULT;
3364 	}
3365 	return err;
3366 }
3367 
3368 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3369  * for some operations; this forces use of the newer bridge-utils that
3370  * use compatible ioctls
3371  */
3372 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3373 {
3374 	compat_ulong_t tmp;
3375 
3376 	if (get_user(tmp, argp))
3377 		return -EFAULT;
3378 	if (tmp == BRCTL_GET_VERSION)
3379 		return BRCTL_VERSION + 1;
3380 	return -EINVAL;
3381 }
3382 
3383 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3384 			 unsigned int cmd, unsigned long arg)
3385 {
3386 	void __user *argp = compat_ptr(arg);
3387 	struct sock *sk = sock->sk;
3388 	struct net *net = sock_net(sk);
3389 
3390 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3391 		return compat_ifr_data_ioctl(net, cmd, argp);
3392 
3393 	switch (cmd) {
3394 	case SIOCSIFBR:
3395 	case SIOCGIFBR:
3396 		return old_bridge_ioctl(argp);
3397 	case SIOCGIFCONF:
3398 		return compat_dev_ifconf(net, argp);
3399 	case SIOCETHTOOL:
3400 		return ethtool_ioctl(net, argp);
3401 	case SIOCWANDEV:
3402 		return compat_siocwandev(net, argp);
3403 	case SIOCGIFMAP:
3404 	case SIOCSIFMAP:
3405 		return compat_sioc_ifmap(net, cmd, argp);
3406 	case SIOCGSTAMP_OLD:
3407 	case SIOCGSTAMPNS_OLD:
3408 		if (!sock->ops->gettstamp)
3409 			return -ENOIOCTLCMD;
3410 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3411 					    !COMPAT_USE_64BIT_TIME);
3412 
3413 	case SIOCBONDSLAVEINFOQUERY:
3414 	case SIOCBONDINFOQUERY:
3415 	case SIOCSHWTSTAMP:
3416 	case SIOCGHWTSTAMP:
3417 		return compat_ifr_data_ioctl(net, cmd, argp);
3418 
3419 	case FIOSETOWN:
3420 	case SIOCSPGRP:
3421 	case FIOGETOWN:
3422 	case SIOCGPGRP:
3423 	case SIOCBRADDBR:
3424 	case SIOCBRDELBR:
3425 	case SIOCGIFVLAN:
3426 	case SIOCSIFVLAN:
3427 	case SIOCGSKNS:
3428 	case SIOCGSTAMP_NEW:
3429 	case SIOCGSTAMPNS_NEW:
3430 		return sock_ioctl(file, cmd, arg);
3431 
3432 	case SIOCGIFFLAGS:
3433 	case SIOCSIFFLAGS:
3434 	case SIOCGIFMETRIC:
3435 	case SIOCSIFMETRIC:
3436 	case SIOCGIFMTU:
3437 	case SIOCSIFMTU:
3438 	case SIOCGIFMEM:
3439 	case SIOCSIFMEM:
3440 	case SIOCGIFHWADDR:
3441 	case SIOCSIFHWADDR:
3442 	case SIOCADDMULTI:
3443 	case SIOCDELMULTI:
3444 	case SIOCGIFINDEX:
3445 	case SIOCGIFADDR:
3446 	case SIOCSIFADDR:
3447 	case SIOCSIFHWBROADCAST:
3448 	case SIOCDIFADDR:
3449 	case SIOCGIFBRDADDR:
3450 	case SIOCSIFBRDADDR:
3451 	case SIOCGIFDSTADDR:
3452 	case SIOCSIFDSTADDR:
3453 	case SIOCGIFNETMASK:
3454 	case SIOCSIFNETMASK:
3455 	case SIOCSIFPFLAGS:
3456 	case SIOCGIFPFLAGS:
3457 	case SIOCGIFTXQLEN:
3458 	case SIOCSIFTXQLEN:
3459 	case SIOCBRADDIF:
3460 	case SIOCBRDELIF:
3461 	case SIOCGIFNAME:
3462 	case SIOCSIFNAME:
3463 	case SIOCGMIIPHY:
3464 	case SIOCGMIIREG:
3465 	case SIOCSMIIREG:
3466 	case SIOCBONDENSLAVE:
3467 	case SIOCBONDRELEASE:
3468 	case SIOCBONDSETHWADDR:
3469 	case SIOCBONDCHANGEACTIVE:
3470 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3471 
3472 	case SIOCSARP:
3473 	case SIOCGARP:
3474 	case SIOCDARP:
3475 	case SIOCOUTQ:
3476 	case SIOCOUTQNSD:
3477 	case SIOCATMARK:
3478 		return sock_do_ioctl(net, sock, cmd, arg);
3479 	}
3480 
3481 	return -ENOIOCTLCMD;
3482 }
3483 
3484 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3485 			      unsigned long arg)
3486 {
3487 	struct socket *sock = file->private_data;
3488 	int ret = -ENOIOCTLCMD;
3489 	struct sock *sk;
3490 	struct net *net;
3491 
3492 	sk = sock->sk;
3493 	net = sock_net(sk);
3494 
3495 	if (sock->ops->compat_ioctl)
3496 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3497 
3498 	if (ret == -ENOIOCTLCMD &&
3499 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3500 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3501 
3502 	if (ret == -ENOIOCTLCMD)
3503 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3504 
3505 	return ret;
3506 }
3507 #endif
3508 
3509 /**
3510  *	kernel_bind - bind an address to a socket (kernel space)
3511  *	@sock: socket
3512  *	@addr: address
3513  *	@addrlen: length of address
3514  *
3515  *	Returns 0 or an error.
3516  */
3517 
3518 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3519 {
3520 	return sock->ops->bind(sock, addr, addrlen);
3521 }
3522 EXPORT_SYMBOL(kernel_bind);
3523 
3524 /**
3525  *	kernel_listen - move socket to listening state (kernel space)
3526  *	@sock: socket
3527  *	@backlog: pending connections queue size
3528  *
3529  *	Returns 0 or an error.
3530  */
3531 
3532 int kernel_listen(struct socket *sock, int backlog)
3533 {
3534 	return sock->ops->listen(sock, backlog);
3535 }
3536 EXPORT_SYMBOL(kernel_listen);
3537 
3538 /**
3539  *	kernel_accept - accept a connection (kernel space)
3540  *	@sock: listening socket
3541  *	@newsock: new connected socket
3542  *	@flags: flags
3543  *
3544  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3545  *	If it fails, @newsock is guaranteed to be %NULL.
3546  *	Returns 0 or an error.
3547  */
3548 
3549 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3550 {
3551 	struct sock *sk = sock->sk;
3552 	int err;
3553 
3554 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3555 			       newsock);
3556 	if (err < 0)
3557 		goto done;
3558 
3559 	err = sock->ops->accept(sock, *newsock, flags, true);
3560 	if (err < 0) {
3561 		sock_release(*newsock);
3562 		*newsock = NULL;
3563 		goto done;
3564 	}
3565 
3566 	(*newsock)->ops = sock->ops;
3567 	__module_get((*newsock)->ops->owner);
3568 
3569 done:
3570 	return err;
3571 }
3572 EXPORT_SYMBOL(kernel_accept);
3573 
3574 /**
3575  *	kernel_connect - connect a socket (kernel space)
3576  *	@sock: socket
3577  *	@addr: address
3578  *	@addrlen: address length
3579  *	@flags: flags (O_NONBLOCK, ...)
3580  *
3581  *	For datagram sockets, @addr is the addres to which datagrams are sent
3582  *	by default, and the only address from which datagrams are received.
3583  *	For stream sockets, attempts to connect to @addr.
3584  *	Returns 0 or an error code.
3585  */
3586 
3587 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3588 		   int flags)
3589 {
3590 	return sock->ops->connect(sock, addr, addrlen, flags);
3591 }
3592 EXPORT_SYMBOL(kernel_connect);
3593 
3594 /**
3595  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3596  *	@sock: socket
3597  *	@addr: address holder
3598  *
3599  * 	Fills the @addr pointer with the address which the socket is bound.
3600  *	Returns 0 or an error code.
3601  */
3602 
3603 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3604 {
3605 	return sock->ops->getname(sock, addr, 0);
3606 }
3607 EXPORT_SYMBOL(kernel_getsockname);
3608 
3609 /**
3610  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3611  *	@sock: socket
3612  *	@addr: address holder
3613  *
3614  * 	Fills the @addr pointer with the address which the socket is connected.
3615  *	Returns 0 or an error code.
3616  */
3617 
3618 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3619 {
3620 	return sock->ops->getname(sock, addr, 1);
3621 }
3622 EXPORT_SYMBOL(kernel_getpeername);
3623 
3624 /**
3625  *	kernel_sendpage - send a &page through a socket (kernel space)
3626  *	@sock: socket
3627  *	@page: page
3628  *	@offset: page offset
3629  *	@size: total size in bytes
3630  *	@flags: flags (MSG_DONTWAIT, ...)
3631  *
3632  *	Returns the total amount sent in bytes or an error.
3633  */
3634 
3635 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3636 		    size_t size, int flags)
3637 {
3638 	if (sock->ops->sendpage) {
3639 		/* Warn in case the improper page to zero-copy send */
3640 		WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3641 		return sock->ops->sendpage(sock, page, offset, size, flags);
3642 	}
3643 	return sock_no_sendpage(sock, page, offset, size, flags);
3644 }
3645 EXPORT_SYMBOL(kernel_sendpage);
3646 
3647 /**
3648  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3649  *	@sk: sock
3650  *	@page: page
3651  *	@offset: page offset
3652  *	@size: total size in bytes
3653  *	@flags: flags (MSG_DONTWAIT, ...)
3654  *
3655  *	Returns the total amount sent in bytes or an error.
3656  *	Caller must hold @sk.
3657  */
3658 
3659 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3660 			   size_t size, int flags)
3661 {
3662 	struct socket *sock = sk->sk_socket;
3663 
3664 	if (sock->ops->sendpage_locked)
3665 		return sock->ops->sendpage_locked(sk, page, offset, size,
3666 						  flags);
3667 
3668 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3669 }
3670 EXPORT_SYMBOL(kernel_sendpage_locked);
3671 
3672 /**
3673  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3674  *	@sock: socket
3675  *	@how: connection part
3676  *
3677  *	Returns 0 or an error.
3678  */
3679 
3680 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3681 {
3682 	return sock->ops->shutdown(sock, how);
3683 }
3684 EXPORT_SYMBOL(kernel_sock_shutdown);
3685 
3686 /**
3687  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3688  *	@sk: socket
3689  *
3690  *	This routine returns the IP overhead imposed by a socket i.e.
3691  *	the length of the underlying IP header, depending on whether
3692  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3693  *	on at the socket. Assumes that the caller has a lock on the socket.
3694  */
3695 
3696 u32 kernel_sock_ip_overhead(struct sock *sk)
3697 {
3698 	struct inet_sock *inet;
3699 	struct ip_options_rcu *opt;
3700 	u32 overhead = 0;
3701 #if IS_ENABLED(CONFIG_IPV6)
3702 	struct ipv6_pinfo *np;
3703 	struct ipv6_txoptions *optv6 = NULL;
3704 #endif /* IS_ENABLED(CONFIG_IPV6) */
3705 
3706 	if (!sk)
3707 		return overhead;
3708 
3709 	switch (sk->sk_family) {
3710 	case AF_INET:
3711 		inet = inet_sk(sk);
3712 		overhead += sizeof(struct iphdr);
3713 		opt = rcu_dereference_protected(inet->inet_opt,
3714 						sock_owned_by_user(sk));
3715 		if (opt)
3716 			overhead += opt->opt.optlen;
3717 		return overhead;
3718 #if IS_ENABLED(CONFIG_IPV6)
3719 	case AF_INET6:
3720 		np = inet6_sk(sk);
3721 		overhead += sizeof(struct ipv6hdr);
3722 		if (np)
3723 			optv6 = rcu_dereference_protected(np->opt,
3724 							  sock_owned_by_user(sk));
3725 		if (optv6)
3726 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3727 		return overhead;
3728 #endif /* IS_ENABLED(CONFIG_IPV6) */
3729 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3730 		return overhead;
3731 	}
3732 }
3733 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3734