1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/ethtool.h> 56 #include <linux/mm.h> 57 #include <linux/socket.h> 58 #include <linux/file.h> 59 #include <linux/net.h> 60 #include <linux/interrupt.h> 61 #include <linux/thread_info.h> 62 #include <linux/rcupdate.h> 63 #include <linux/netdevice.h> 64 #include <linux/proc_fs.h> 65 #include <linux/seq_file.h> 66 #include <linux/mutex.h> 67 #include <linux/if_bridge.h> 68 #include <linux/if_vlan.h> 69 #include <linux/ptp_classify.h> 70 #include <linux/init.h> 71 #include <linux/poll.h> 72 #include <linux/cache.h> 73 #include <linux/module.h> 74 #include <linux/highmem.h> 75 #include <linux/mount.h> 76 #include <linux/pseudo_fs.h> 77 #include <linux/security.h> 78 #include <linux/syscalls.h> 79 #include <linux/compat.h> 80 #include <linux/kmod.h> 81 #include <linux/audit.h> 82 #include <linux/wireless.h> 83 #include <linux/nsproxy.h> 84 #include <linux/magic.h> 85 #include <linux/slab.h> 86 #include <linux/xattr.h> 87 #include <linux/nospec.h> 88 #include <linux/indirect_call_wrapper.h> 89 90 #include <linux/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 #include <net/cls_cgroup.h> 96 97 #include <net/sock.h> 98 #include <linux/netfilter.h> 99 100 #include <linux/if_tun.h> 101 #include <linux/ipv6_route.h> 102 #include <linux/route.h> 103 #include <linux/termios.h> 104 #include <linux/sockios.h> 105 #include <net/busy_poll.h> 106 #include <linux/errqueue.h> 107 108 #ifdef CONFIG_NET_RX_BUSY_POLL 109 unsigned int sysctl_net_busy_read __read_mostly; 110 unsigned int sysctl_net_busy_poll __read_mostly; 111 #endif 112 113 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 115 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 116 117 static int sock_close(struct inode *inode, struct file *file); 118 static __poll_t sock_poll(struct file *file, 119 struct poll_table_struct *wait); 120 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 121 #ifdef CONFIG_COMPAT 122 static long compat_sock_ioctl(struct file *file, 123 unsigned int cmd, unsigned long arg); 124 #endif 125 static int sock_fasync(int fd, struct file *filp, int on); 126 static ssize_t sock_sendpage(struct file *file, struct page *page, 127 int offset, size_t size, loff_t *ppos, int more); 128 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 129 struct pipe_inode_info *pipe, size_t len, 130 unsigned int flags); 131 132 #ifdef CONFIG_PROC_FS 133 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 134 { 135 struct socket *sock = f->private_data; 136 137 if (sock->ops->show_fdinfo) 138 sock->ops->show_fdinfo(m, sock); 139 } 140 #else 141 #define sock_show_fdinfo NULL 142 #endif 143 144 /* 145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 146 * in the operation structures but are done directly via the socketcall() multiplexor. 147 */ 148 149 static const struct file_operations socket_file_ops = { 150 .owner = THIS_MODULE, 151 .llseek = no_llseek, 152 .read_iter = sock_read_iter, 153 .write_iter = sock_write_iter, 154 .poll = sock_poll, 155 .unlocked_ioctl = sock_ioctl, 156 #ifdef CONFIG_COMPAT 157 .compat_ioctl = compat_sock_ioctl, 158 #endif 159 .mmap = sock_mmap, 160 .release = sock_close, 161 .fasync = sock_fasync, 162 .sendpage = sock_sendpage, 163 .splice_write = generic_splice_sendpage, 164 .splice_read = sock_splice_read, 165 .show_fdinfo = sock_show_fdinfo, 166 }; 167 168 /* 169 * The protocol list. Each protocol is registered in here. 170 */ 171 172 static DEFINE_SPINLOCK(net_family_lock); 173 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 174 175 /* 176 * Support routines. 177 * Move socket addresses back and forth across the kernel/user 178 * divide and look after the messy bits. 179 */ 180 181 /** 182 * move_addr_to_kernel - copy a socket address into kernel space 183 * @uaddr: Address in user space 184 * @kaddr: Address in kernel space 185 * @ulen: Length in user space 186 * 187 * The address is copied into kernel space. If the provided address is 188 * too long an error code of -EINVAL is returned. If the copy gives 189 * invalid addresses -EFAULT is returned. On a success 0 is returned. 190 */ 191 192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 193 { 194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 195 return -EINVAL; 196 if (ulen == 0) 197 return 0; 198 if (copy_from_user(kaddr, uaddr, ulen)) 199 return -EFAULT; 200 return audit_sockaddr(ulen, kaddr); 201 } 202 203 /** 204 * move_addr_to_user - copy an address to user space 205 * @kaddr: kernel space address 206 * @klen: length of address in kernel 207 * @uaddr: user space address 208 * @ulen: pointer to user length field 209 * 210 * The value pointed to by ulen on entry is the buffer length available. 211 * This is overwritten with the buffer space used. -EINVAL is returned 212 * if an overlong buffer is specified or a negative buffer size. -EFAULT 213 * is returned if either the buffer or the length field are not 214 * accessible. 215 * After copying the data up to the limit the user specifies, the true 216 * length of the data is written over the length limit the user 217 * specified. Zero is returned for a success. 218 */ 219 220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 221 void __user *uaddr, int __user *ulen) 222 { 223 int err; 224 int len; 225 226 BUG_ON(klen > sizeof(struct sockaddr_storage)); 227 err = get_user(len, ulen); 228 if (err) 229 return err; 230 if (len > klen) 231 len = klen; 232 if (len < 0) 233 return -EINVAL; 234 if (len) { 235 if (audit_sockaddr(klen, kaddr)) 236 return -ENOMEM; 237 if (copy_to_user(uaddr, kaddr, len)) 238 return -EFAULT; 239 } 240 /* 241 * "fromlen shall refer to the value before truncation.." 242 * 1003.1g 243 */ 244 return __put_user(klen, ulen); 245 } 246 247 static struct kmem_cache *sock_inode_cachep __ro_after_init; 248 249 static struct inode *sock_alloc_inode(struct super_block *sb) 250 { 251 struct socket_alloc *ei; 252 253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 254 if (!ei) 255 return NULL; 256 init_waitqueue_head(&ei->socket.wq.wait); 257 ei->socket.wq.fasync_list = NULL; 258 ei->socket.wq.flags = 0; 259 260 ei->socket.state = SS_UNCONNECTED; 261 ei->socket.flags = 0; 262 ei->socket.ops = NULL; 263 ei->socket.sk = NULL; 264 ei->socket.file = NULL; 265 266 return &ei->vfs_inode; 267 } 268 269 static void sock_free_inode(struct inode *inode) 270 { 271 struct socket_alloc *ei; 272 273 ei = container_of(inode, struct socket_alloc, vfs_inode); 274 kmem_cache_free(sock_inode_cachep, ei); 275 } 276 277 static void init_once(void *foo) 278 { 279 struct socket_alloc *ei = (struct socket_alloc *)foo; 280 281 inode_init_once(&ei->vfs_inode); 282 } 283 284 static void init_inodecache(void) 285 { 286 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 287 sizeof(struct socket_alloc), 288 0, 289 (SLAB_HWCACHE_ALIGN | 290 SLAB_RECLAIM_ACCOUNT | 291 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 292 init_once); 293 BUG_ON(sock_inode_cachep == NULL); 294 } 295 296 static const struct super_operations sockfs_ops = { 297 .alloc_inode = sock_alloc_inode, 298 .free_inode = sock_free_inode, 299 .statfs = simple_statfs, 300 }; 301 302 /* 303 * sockfs_dname() is called from d_path(). 304 */ 305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 306 { 307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 308 d_inode(dentry)->i_ino); 309 } 310 311 static const struct dentry_operations sockfs_dentry_operations = { 312 .d_dname = sockfs_dname, 313 }; 314 315 static int sockfs_xattr_get(const struct xattr_handler *handler, 316 struct dentry *dentry, struct inode *inode, 317 const char *suffix, void *value, size_t size) 318 { 319 if (value) { 320 if (dentry->d_name.len + 1 > size) 321 return -ERANGE; 322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 323 } 324 return dentry->d_name.len + 1; 325 } 326 327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 330 331 static const struct xattr_handler sockfs_xattr_handler = { 332 .name = XATTR_NAME_SOCKPROTONAME, 333 .get = sockfs_xattr_get, 334 }; 335 336 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 337 struct user_namespace *mnt_userns, 338 struct dentry *dentry, struct inode *inode, 339 const char *suffix, const void *value, 340 size_t size, int flags) 341 { 342 /* Handled by LSM. */ 343 return -EAGAIN; 344 } 345 346 static const struct xattr_handler sockfs_security_xattr_handler = { 347 .prefix = XATTR_SECURITY_PREFIX, 348 .set = sockfs_security_xattr_set, 349 }; 350 351 static const struct xattr_handler *sockfs_xattr_handlers[] = { 352 &sockfs_xattr_handler, 353 &sockfs_security_xattr_handler, 354 NULL 355 }; 356 357 static int sockfs_init_fs_context(struct fs_context *fc) 358 { 359 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 360 if (!ctx) 361 return -ENOMEM; 362 ctx->ops = &sockfs_ops; 363 ctx->dops = &sockfs_dentry_operations; 364 ctx->xattr = sockfs_xattr_handlers; 365 return 0; 366 } 367 368 static struct vfsmount *sock_mnt __read_mostly; 369 370 static struct file_system_type sock_fs_type = { 371 .name = "sockfs", 372 .init_fs_context = sockfs_init_fs_context, 373 .kill_sb = kill_anon_super, 374 }; 375 376 /* 377 * Obtains the first available file descriptor and sets it up for use. 378 * 379 * These functions create file structures and maps them to fd space 380 * of the current process. On success it returns file descriptor 381 * and file struct implicitly stored in sock->file. 382 * Note that another thread may close file descriptor before we return 383 * from this function. We use the fact that now we do not refer 384 * to socket after mapping. If one day we will need it, this 385 * function will increment ref. count on file by 1. 386 * 387 * In any case returned fd MAY BE not valid! 388 * This race condition is unavoidable 389 * with shared fd spaces, we cannot solve it inside kernel, 390 * but we take care of internal coherence yet. 391 */ 392 393 /** 394 * sock_alloc_file - Bind a &socket to a &file 395 * @sock: socket 396 * @flags: file status flags 397 * @dname: protocol name 398 * 399 * Returns the &file bound with @sock, implicitly storing it 400 * in sock->file. If dname is %NULL, sets to "". 401 * On failure the return is a ERR pointer (see linux/err.h). 402 * This function uses GFP_KERNEL internally. 403 */ 404 405 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 406 { 407 struct file *file; 408 409 if (!dname) 410 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 411 412 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 413 O_RDWR | (flags & O_NONBLOCK), 414 &socket_file_ops); 415 if (IS_ERR(file)) { 416 sock_release(sock); 417 return file; 418 } 419 420 sock->file = file; 421 file->private_data = sock; 422 stream_open(SOCK_INODE(sock), file); 423 return file; 424 } 425 EXPORT_SYMBOL(sock_alloc_file); 426 427 static int sock_map_fd(struct socket *sock, int flags) 428 { 429 struct file *newfile; 430 int fd = get_unused_fd_flags(flags); 431 if (unlikely(fd < 0)) { 432 sock_release(sock); 433 return fd; 434 } 435 436 newfile = sock_alloc_file(sock, flags, NULL); 437 if (!IS_ERR(newfile)) { 438 fd_install(fd, newfile); 439 return fd; 440 } 441 442 put_unused_fd(fd); 443 return PTR_ERR(newfile); 444 } 445 446 /** 447 * sock_from_file - Return the &socket bounded to @file. 448 * @file: file 449 * 450 * On failure returns %NULL. 451 */ 452 453 struct socket *sock_from_file(struct file *file) 454 { 455 if (file->f_op == &socket_file_ops) 456 return file->private_data; /* set in sock_map_fd */ 457 458 return NULL; 459 } 460 EXPORT_SYMBOL(sock_from_file); 461 462 /** 463 * sockfd_lookup - Go from a file number to its socket slot 464 * @fd: file handle 465 * @err: pointer to an error code return 466 * 467 * The file handle passed in is locked and the socket it is bound 468 * to is returned. If an error occurs the err pointer is overwritten 469 * with a negative errno code and NULL is returned. The function checks 470 * for both invalid handles and passing a handle which is not a socket. 471 * 472 * On a success the socket object pointer is returned. 473 */ 474 475 struct socket *sockfd_lookup(int fd, int *err) 476 { 477 struct file *file; 478 struct socket *sock; 479 480 file = fget(fd); 481 if (!file) { 482 *err = -EBADF; 483 return NULL; 484 } 485 486 sock = sock_from_file(file); 487 if (!sock) { 488 *err = -ENOTSOCK; 489 fput(file); 490 } 491 return sock; 492 } 493 EXPORT_SYMBOL(sockfd_lookup); 494 495 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 496 { 497 struct fd f = fdget(fd); 498 struct socket *sock; 499 500 *err = -EBADF; 501 if (f.file) { 502 sock = sock_from_file(f.file); 503 if (likely(sock)) { 504 *fput_needed = f.flags & FDPUT_FPUT; 505 return sock; 506 } 507 *err = -ENOTSOCK; 508 fdput(f); 509 } 510 return NULL; 511 } 512 513 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 514 size_t size) 515 { 516 ssize_t len; 517 ssize_t used = 0; 518 519 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 520 if (len < 0) 521 return len; 522 used += len; 523 if (buffer) { 524 if (size < used) 525 return -ERANGE; 526 buffer += len; 527 } 528 529 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 530 used += len; 531 if (buffer) { 532 if (size < used) 533 return -ERANGE; 534 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 535 buffer += len; 536 } 537 538 return used; 539 } 540 541 static int sockfs_setattr(struct user_namespace *mnt_userns, 542 struct dentry *dentry, struct iattr *iattr) 543 { 544 int err = simple_setattr(&init_user_ns, dentry, iattr); 545 546 if (!err && (iattr->ia_valid & ATTR_UID)) { 547 struct socket *sock = SOCKET_I(d_inode(dentry)); 548 549 if (sock->sk) 550 sock->sk->sk_uid = iattr->ia_uid; 551 else 552 err = -ENOENT; 553 } 554 555 return err; 556 } 557 558 static const struct inode_operations sockfs_inode_ops = { 559 .listxattr = sockfs_listxattr, 560 .setattr = sockfs_setattr, 561 }; 562 563 /** 564 * sock_alloc - allocate a socket 565 * 566 * Allocate a new inode and socket object. The two are bound together 567 * and initialised. The socket is then returned. If we are out of inodes 568 * NULL is returned. This functions uses GFP_KERNEL internally. 569 */ 570 571 struct socket *sock_alloc(void) 572 { 573 struct inode *inode; 574 struct socket *sock; 575 576 inode = new_inode_pseudo(sock_mnt->mnt_sb); 577 if (!inode) 578 return NULL; 579 580 sock = SOCKET_I(inode); 581 582 inode->i_ino = get_next_ino(); 583 inode->i_mode = S_IFSOCK | S_IRWXUGO; 584 inode->i_uid = current_fsuid(); 585 inode->i_gid = current_fsgid(); 586 inode->i_op = &sockfs_inode_ops; 587 588 return sock; 589 } 590 EXPORT_SYMBOL(sock_alloc); 591 592 static void __sock_release(struct socket *sock, struct inode *inode) 593 { 594 if (sock->ops) { 595 struct module *owner = sock->ops->owner; 596 597 if (inode) 598 inode_lock(inode); 599 sock->ops->release(sock); 600 sock->sk = NULL; 601 if (inode) 602 inode_unlock(inode); 603 sock->ops = NULL; 604 module_put(owner); 605 } 606 607 if (sock->wq.fasync_list) 608 pr_err("%s: fasync list not empty!\n", __func__); 609 610 if (!sock->file) { 611 iput(SOCK_INODE(sock)); 612 return; 613 } 614 sock->file = NULL; 615 } 616 617 /** 618 * sock_release - close a socket 619 * @sock: socket to close 620 * 621 * The socket is released from the protocol stack if it has a release 622 * callback, and the inode is then released if the socket is bound to 623 * an inode not a file. 624 */ 625 void sock_release(struct socket *sock) 626 { 627 __sock_release(sock, NULL); 628 } 629 EXPORT_SYMBOL(sock_release); 630 631 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 632 { 633 u8 flags = *tx_flags; 634 635 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 636 flags |= SKBTX_HW_TSTAMP; 637 638 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 639 flags |= SKBTX_SW_TSTAMP; 640 641 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 642 flags |= SKBTX_SCHED_TSTAMP; 643 644 *tx_flags = flags; 645 } 646 EXPORT_SYMBOL(__sock_tx_timestamp); 647 648 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 649 size_t)); 650 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 651 size_t)); 652 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 653 { 654 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg, 655 inet_sendmsg, sock, msg, 656 msg_data_left(msg)); 657 BUG_ON(ret == -EIOCBQUEUED); 658 return ret; 659 } 660 661 /** 662 * sock_sendmsg - send a message through @sock 663 * @sock: socket 664 * @msg: message to send 665 * 666 * Sends @msg through @sock, passing through LSM. 667 * Returns the number of bytes sent, or an error code. 668 */ 669 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 670 { 671 int err = security_socket_sendmsg(sock, msg, 672 msg_data_left(msg)); 673 674 return err ?: sock_sendmsg_nosec(sock, msg); 675 } 676 EXPORT_SYMBOL(sock_sendmsg); 677 678 /** 679 * kernel_sendmsg - send a message through @sock (kernel-space) 680 * @sock: socket 681 * @msg: message header 682 * @vec: kernel vec 683 * @num: vec array length 684 * @size: total message data size 685 * 686 * Builds the message data with @vec and sends it through @sock. 687 * Returns the number of bytes sent, or an error code. 688 */ 689 690 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 691 struct kvec *vec, size_t num, size_t size) 692 { 693 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 694 return sock_sendmsg(sock, msg); 695 } 696 EXPORT_SYMBOL(kernel_sendmsg); 697 698 /** 699 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 700 * @sk: sock 701 * @msg: message header 702 * @vec: output s/g array 703 * @num: output s/g array length 704 * @size: total message data size 705 * 706 * Builds the message data with @vec and sends it through @sock. 707 * Returns the number of bytes sent, or an error code. 708 * Caller must hold @sk. 709 */ 710 711 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 712 struct kvec *vec, size_t num, size_t size) 713 { 714 struct socket *sock = sk->sk_socket; 715 716 if (!sock->ops->sendmsg_locked) 717 return sock_no_sendmsg_locked(sk, msg, size); 718 719 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 720 721 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 722 } 723 EXPORT_SYMBOL(kernel_sendmsg_locked); 724 725 static bool skb_is_err_queue(const struct sk_buff *skb) 726 { 727 /* pkt_type of skbs enqueued on the error queue are set to 728 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 729 * in recvmsg, since skbs received on a local socket will never 730 * have a pkt_type of PACKET_OUTGOING. 731 */ 732 return skb->pkt_type == PACKET_OUTGOING; 733 } 734 735 /* On transmit, software and hardware timestamps are returned independently. 736 * As the two skb clones share the hardware timestamp, which may be updated 737 * before the software timestamp is received, a hardware TX timestamp may be 738 * returned only if there is no software TX timestamp. Ignore false software 739 * timestamps, which may be made in the __sock_recv_timestamp() call when the 740 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 741 * hardware timestamp. 742 */ 743 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 744 { 745 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 746 } 747 748 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 749 { 750 struct scm_ts_pktinfo ts_pktinfo; 751 struct net_device *orig_dev; 752 753 if (!skb_mac_header_was_set(skb)) 754 return; 755 756 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 757 758 rcu_read_lock(); 759 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 760 if (orig_dev) 761 ts_pktinfo.if_index = orig_dev->ifindex; 762 rcu_read_unlock(); 763 764 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 765 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 766 sizeof(ts_pktinfo), &ts_pktinfo); 767 } 768 769 /* 770 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 771 */ 772 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 773 struct sk_buff *skb) 774 { 775 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 776 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 777 struct scm_timestamping_internal tss; 778 779 int empty = 1, false_tstamp = 0; 780 struct skb_shared_hwtstamps *shhwtstamps = 781 skb_hwtstamps(skb); 782 783 /* Race occurred between timestamp enabling and packet 784 receiving. Fill in the current time for now. */ 785 if (need_software_tstamp && skb->tstamp == 0) { 786 __net_timestamp(skb); 787 false_tstamp = 1; 788 } 789 790 if (need_software_tstamp) { 791 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 792 if (new_tstamp) { 793 struct __kernel_sock_timeval tv; 794 795 skb_get_new_timestamp(skb, &tv); 796 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 797 sizeof(tv), &tv); 798 } else { 799 struct __kernel_old_timeval tv; 800 801 skb_get_timestamp(skb, &tv); 802 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 803 sizeof(tv), &tv); 804 } 805 } else { 806 if (new_tstamp) { 807 struct __kernel_timespec ts; 808 809 skb_get_new_timestampns(skb, &ts); 810 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 811 sizeof(ts), &ts); 812 } else { 813 struct __kernel_old_timespec ts; 814 815 skb_get_timestampns(skb, &ts); 816 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 817 sizeof(ts), &ts); 818 } 819 } 820 } 821 822 memset(&tss, 0, sizeof(tss)); 823 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 824 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 825 empty = 0; 826 if (shhwtstamps && 827 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 828 !skb_is_swtx_tstamp(skb, false_tstamp) && 829 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 830 empty = 0; 831 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 832 !skb_is_err_queue(skb)) 833 put_ts_pktinfo(msg, skb); 834 } 835 if (!empty) { 836 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 837 put_cmsg_scm_timestamping64(msg, &tss); 838 else 839 put_cmsg_scm_timestamping(msg, &tss); 840 841 if (skb_is_err_queue(skb) && skb->len && 842 SKB_EXT_ERR(skb)->opt_stats) 843 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 844 skb->len, skb->data); 845 } 846 } 847 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 848 849 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 850 struct sk_buff *skb) 851 { 852 int ack; 853 854 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 855 return; 856 if (!skb->wifi_acked_valid) 857 return; 858 859 ack = skb->wifi_acked; 860 861 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 862 } 863 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 864 865 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 866 struct sk_buff *skb) 867 { 868 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 869 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 870 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 871 } 872 873 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 874 struct sk_buff *skb) 875 { 876 sock_recv_timestamp(msg, sk, skb); 877 sock_recv_drops(msg, sk, skb); 878 } 879 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 880 881 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 882 size_t, int)); 883 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 884 size_t, int)); 885 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 886 int flags) 887 { 888 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg, 889 inet_recvmsg, sock, msg, msg_data_left(msg), 890 flags); 891 } 892 893 /** 894 * sock_recvmsg - receive a message from @sock 895 * @sock: socket 896 * @msg: message to receive 897 * @flags: message flags 898 * 899 * Receives @msg from @sock, passing through LSM. Returns the total number 900 * of bytes received, or an error. 901 */ 902 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 903 { 904 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 905 906 return err ?: sock_recvmsg_nosec(sock, msg, flags); 907 } 908 EXPORT_SYMBOL(sock_recvmsg); 909 910 /** 911 * kernel_recvmsg - Receive a message from a socket (kernel space) 912 * @sock: The socket to receive the message from 913 * @msg: Received message 914 * @vec: Input s/g array for message data 915 * @num: Size of input s/g array 916 * @size: Number of bytes to read 917 * @flags: Message flags (MSG_DONTWAIT, etc...) 918 * 919 * On return the msg structure contains the scatter/gather array passed in the 920 * vec argument. The array is modified so that it consists of the unfilled 921 * portion of the original array. 922 * 923 * The returned value is the total number of bytes received, or an error. 924 */ 925 926 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 927 struct kvec *vec, size_t num, size_t size, int flags) 928 { 929 msg->msg_control_is_user = false; 930 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 931 return sock_recvmsg(sock, msg, flags); 932 } 933 EXPORT_SYMBOL(kernel_recvmsg); 934 935 static ssize_t sock_sendpage(struct file *file, struct page *page, 936 int offset, size_t size, loff_t *ppos, int more) 937 { 938 struct socket *sock; 939 int flags; 940 941 sock = file->private_data; 942 943 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 944 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 945 flags |= more; 946 947 return kernel_sendpage(sock, page, offset, size, flags); 948 } 949 950 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 951 struct pipe_inode_info *pipe, size_t len, 952 unsigned int flags) 953 { 954 struct socket *sock = file->private_data; 955 956 if (unlikely(!sock->ops->splice_read)) 957 return generic_file_splice_read(file, ppos, pipe, len, flags); 958 959 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 960 } 961 962 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 963 { 964 struct file *file = iocb->ki_filp; 965 struct socket *sock = file->private_data; 966 struct msghdr msg = {.msg_iter = *to, 967 .msg_iocb = iocb}; 968 ssize_t res; 969 970 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 971 msg.msg_flags = MSG_DONTWAIT; 972 973 if (iocb->ki_pos != 0) 974 return -ESPIPE; 975 976 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 977 return 0; 978 979 res = sock_recvmsg(sock, &msg, msg.msg_flags); 980 *to = msg.msg_iter; 981 return res; 982 } 983 984 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 985 { 986 struct file *file = iocb->ki_filp; 987 struct socket *sock = file->private_data; 988 struct msghdr msg = {.msg_iter = *from, 989 .msg_iocb = iocb}; 990 ssize_t res; 991 992 if (iocb->ki_pos != 0) 993 return -ESPIPE; 994 995 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 996 msg.msg_flags = MSG_DONTWAIT; 997 998 if (sock->type == SOCK_SEQPACKET) 999 msg.msg_flags |= MSG_EOR; 1000 1001 res = sock_sendmsg(sock, &msg); 1002 *from = msg.msg_iter; 1003 return res; 1004 } 1005 1006 /* 1007 * Atomic setting of ioctl hooks to avoid race 1008 * with module unload. 1009 */ 1010 1011 static DEFINE_MUTEX(br_ioctl_mutex); 1012 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1013 1014 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1015 { 1016 mutex_lock(&br_ioctl_mutex); 1017 br_ioctl_hook = hook; 1018 mutex_unlock(&br_ioctl_mutex); 1019 } 1020 EXPORT_SYMBOL(brioctl_set); 1021 1022 static DEFINE_MUTEX(vlan_ioctl_mutex); 1023 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1024 1025 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1026 { 1027 mutex_lock(&vlan_ioctl_mutex); 1028 vlan_ioctl_hook = hook; 1029 mutex_unlock(&vlan_ioctl_mutex); 1030 } 1031 EXPORT_SYMBOL(vlan_ioctl_set); 1032 1033 static long sock_do_ioctl(struct net *net, struct socket *sock, 1034 unsigned int cmd, unsigned long arg) 1035 { 1036 int err; 1037 void __user *argp = (void __user *)arg; 1038 1039 err = sock->ops->ioctl(sock, cmd, arg); 1040 1041 /* 1042 * If this ioctl is unknown try to hand it down 1043 * to the NIC driver. 1044 */ 1045 if (err != -ENOIOCTLCMD) 1046 return err; 1047 1048 if (cmd == SIOCGIFCONF) { 1049 struct ifconf ifc; 1050 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1051 return -EFAULT; 1052 rtnl_lock(); 1053 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1054 rtnl_unlock(); 1055 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1056 err = -EFAULT; 1057 } else { 1058 struct ifreq ifr; 1059 bool need_copyout; 1060 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1061 return -EFAULT; 1062 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1063 if (!err && need_copyout) 1064 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1065 return -EFAULT; 1066 } 1067 return err; 1068 } 1069 1070 /* 1071 * With an ioctl, arg may well be a user mode pointer, but we don't know 1072 * what to do with it - that's up to the protocol still. 1073 */ 1074 1075 /** 1076 * get_net_ns - increment the refcount of the network namespace 1077 * @ns: common namespace (net) 1078 * 1079 * Returns the net's common namespace. 1080 */ 1081 1082 struct ns_common *get_net_ns(struct ns_common *ns) 1083 { 1084 return &get_net(container_of(ns, struct net, ns))->ns; 1085 } 1086 EXPORT_SYMBOL_GPL(get_net_ns); 1087 1088 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1089 { 1090 struct socket *sock; 1091 struct sock *sk; 1092 void __user *argp = (void __user *)arg; 1093 int pid, err; 1094 struct net *net; 1095 1096 sock = file->private_data; 1097 sk = sock->sk; 1098 net = sock_net(sk); 1099 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1100 struct ifreq ifr; 1101 bool need_copyout; 1102 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1103 return -EFAULT; 1104 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1105 if (!err && need_copyout) 1106 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1107 return -EFAULT; 1108 } else 1109 #ifdef CONFIG_WEXT_CORE 1110 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1111 err = wext_handle_ioctl(net, cmd, argp); 1112 } else 1113 #endif 1114 switch (cmd) { 1115 case FIOSETOWN: 1116 case SIOCSPGRP: 1117 err = -EFAULT; 1118 if (get_user(pid, (int __user *)argp)) 1119 break; 1120 err = f_setown(sock->file, pid, 1); 1121 break; 1122 case FIOGETOWN: 1123 case SIOCGPGRP: 1124 err = put_user(f_getown(sock->file), 1125 (int __user *)argp); 1126 break; 1127 case SIOCGIFBR: 1128 case SIOCSIFBR: 1129 case SIOCBRADDBR: 1130 case SIOCBRDELBR: 1131 err = -ENOPKG; 1132 if (!br_ioctl_hook) 1133 request_module("bridge"); 1134 1135 mutex_lock(&br_ioctl_mutex); 1136 if (br_ioctl_hook) 1137 err = br_ioctl_hook(net, cmd, argp); 1138 mutex_unlock(&br_ioctl_mutex); 1139 break; 1140 case SIOCGIFVLAN: 1141 case SIOCSIFVLAN: 1142 err = -ENOPKG; 1143 if (!vlan_ioctl_hook) 1144 request_module("8021q"); 1145 1146 mutex_lock(&vlan_ioctl_mutex); 1147 if (vlan_ioctl_hook) 1148 err = vlan_ioctl_hook(net, argp); 1149 mutex_unlock(&vlan_ioctl_mutex); 1150 break; 1151 case SIOCGSKNS: 1152 err = -EPERM; 1153 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1154 break; 1155 1156 err = open_related_ns(&net->ns, get_net_ns); 1157 break; 1158 case SIOCGSTAMP_OLD: 1159 case SIOCGSTAMPNS_OLD: 1160 if (!sock->ops->gettstamp) { 1161 err = -ENOIOCTLCMD; 1162 break; 1163 } 1164 err = sock->ops->gettstamp(sock, argp, 1165 cmd == SIOCGSTAMP_OLD, 1166 !IS_ENABLED(CONFIG_64BIT)); 1167 break; 1168 case SIOCGSTAMP_NEW: 1169 case SIOCGSTAMPNS_NEW: 1170 if (!sock->ops->gettstamp) { 1171 err = -ENOIOCTLCMD; 1172 break; 1173 } 1174 err = sock->ops->gettstamp(sock, argp, 1175 cmd == SIOCGSTAMP_NEW, 1176 false); 1177 break; 1178 default: 1179 err = sock_do_ioctl(net, sock, cmd, arg); 1180 break; 1181 } 1182 return err; 1183 } 1184 1185 /** 1186 * sock_create_lite - creates a socket 1187 * @family: protocol family (AF_INET, ...) 1188 * @type: communication type (SOCK_STREAM, ...) 1189 * @protocol: protocol (0, ...) 1190 * @res: new socket 1191 * 1192 * Creates a new socket and assigns it to @res, passing through LSM. 1193 * The new socket initialization is not complete, see kernel_accept(). 1194 * Returns 0 or an error. On failure @res is set to %NULL. 1195 * This function internally uses GFP_KERNEL. 1196 */ 1197 1198 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1199 { 1200 int err; 1201 struct socket *sock = NULL; 1202 1203 err = security_socket_create(family, type, protocol, 1); 1204 if (err) 1205 goto out; 1206 1207 sock = sock_alloc(); 1208 if (!sock) { 1209 err = -ENOMEM; 1210 goto out; 1211 } 1212 1213 sock->type = type; 1214 err = security_socket_post_create(sock, family, type, protocol, 1); 1215 if (err) 1216 goto out_release; 1217 1218 out: 1219 *res = sock; 1220 return err; 1221 out_release: 1222 sock_release(sock); 1223 sock = NULL; 1224 goto out; 1225 } 1226 EXPORT_SYMBOL(sock_create_lite); 1227 1228 /* No kernel lock held - perfect */ 1229 static __poll_t sock_poll(struct file *file, poll_table *wait) 1230 { 1231 struct socket *sock = file->private_data; 1232 __poll_t events = poll_requested_events(wait), flag = 0; 1233 1234 if (!sock->ops->poll) 1235 return 0; 1236 1237 if (sk_can_busy_loop(sock->sk)) { 1238 /* poll once if requested by the syscall */ 1239 if (events & POLL_BUSY_LOOP) 1240 sk_busy_loop(sock->sk, 1); 1241 1242 /* if this socket can poll_ll, tell the system call */ 1243 flag = POLL_BUSY_LOOP; 1244 } 1245 1246 return sock->ops->poll(file, sock, wait) | flag; 1247 } 1248 1249 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1250 { 1251 struct socket *sock = file->private_data; 1252 1253 return sock->ops->mmap(file, sock, vma); 1254 } 1255 1256 static int sock_close(struct inode *inode, struct file *filp) 1257 { 1258 __sock_release(SOCKET_I(inode), inode); 1259 return 0; 1260 } 1261 1262 /* 1263 * Update the socket async list 1264 * 1265 * Fasync_list locking strategy. 1266 * 1267 * 1. fasync_list is modified only under process context socket lock 1268 * i.e. under semaphore. 1269 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1270 * or under socket lock 1271 */ 1272 1273 static int sock_fasync(int fd, struct file *filp, int on) 1274 { 1275 struct socket *sock = filp->private_data; 1276 struct sock *sk = sock->sk; 1277 struct socket_wq *wq = &sock->wq; 1278 1279 if (sk == NULL) 1280 return -EINVAL; 1281 1282 lock_sock(sk); 1283 fasync_helper(fd, filp, on, &wq->fasync_list); 1284 1285 if (!wq->fasync_list) 1286 sock_reset_flag(sk, SOCK_FASYNC); 1287 else 1288 sock_set_flag(sk, SOCK_FASYNC); 1289 1290 release_sock(sk); 1291 return 0; 1292 } 1293 1294 /* This function may be called only under rcu_lock */ 1295 1296 int sock_wake_async(struct socket_wq *wq, int how, int band) 1297 { 1298 if (!wq || !wq->fasync_list) 1299 return -1; 1300 1301 switch (how) { 1302 case SOCK_WAKE_WAITD: 1303 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1304 break; 1305 goto call_kill; 1306 case SOCK_WAKE_SPACE: 1307 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1308 break; 1309 fallthrough; 1310 case SOCK_WAKE_IO: 1311 call_kill: 1312 kill_fasync(&wq->fasync_list, SIGIO, band); 1313 break; 1314 case SOCK_WAKE_URG: 1315 kill_fasync(&wq->fasync_list, SIGURG, band); 1316 } 1317 1318 return 0; 1319 } 1320 EXPORT_SYMBOL(sock_wake_async); 1321 1322 /** 1323 * __sock_create - creates a socket 1324 * @net: net namespace 1325 * @family: protocol family (AF_INET, ...) 1326 * @type: communication type (SOCK_STREAM, ...) 1327 * @protocol: protocol (0, ...) 1328 * @res: new socket 1329 * @kern: boolean for kernel space sockets 1330 * 1331 * Creates a new socket and assigns it to @res, passing through LSM. 1332 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1333 * be set to true if the socket resides in kernel space. 1334 * This function internally uses GFP_KERNEL. 1335 */ 1336 1337 int __sock_create(struct net *net, int family, int type, int protocol, 1338 struct socket **res, int kern) 1339 { 1340 int err; 1341 struct socket *sock; 1342 const struct net_proto_family *pf; 1343 1344 /* 1345 * Check protocol is in range 1346 */ 1347 if (family < 0 || family >= NPROTO) 1348 return -EAFNOSUPPORT; 1349 if (type < 0 || type >= SOCK_MAX) 1350 return -EINVAL; 1351 1352 /* Compatibility. 1353 1354 This uglymoron is moved from INET layer to here to avoid 1355 deadlock in module load. 1356 */ 1357 if (family == PF_INET && type == SOCK_PACKET) { 1358 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1359 current->comm); 1360 family = PF_PACKET; 1361 } 1362 1363 err = security_socket_create(family, type, protocol, kern); 1364 if (err) 1365 return err; 1366 1367 /* 1368 * Allocate the socket and allow the family to set things up. if 1369 * the protocol is 0, the family is instructed to select an appropriate 1370 * default. 1371 */ 1372 sock = sock_alloc(); 1373 if (!sock) { 1374 net_warn_ratelimited("socket: no more sockets\n"); 1375 return -ENFILE; /* Not exactly a match, but its the 1376 closest posix thing */ 1377 } 1378 1379 sock->type = type; 1380 1381 #ifdef CONFIG_MODULES 1382 /* Attempt to load a protocol module if the find failed. 1383 * 1384 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1385 * requested real, full-featured networking support upon configuration. 1386 * Otherwise module support will break! 1387 */ 1388 if (rcu_access_pointer(net_families[family]) == NULL) 1389 request_module("net-pf-%d", family); 1390 #endif 1391 1392 rcu_read_lock(); 1393 pf = rcu_dereference(net_families[family]); 1394 err = -EAFNOSUPPORT; 1395 if (!pf) 1396 goto out_release; 1397 1398 /* 1399 * We will call the ->create function, that possibly is in a loadable 1400 * module, so we have to bump that loadable module refcnt first. 1401 */ 1402 if (!try_module_get(pf->owner)) 1403 goto out_release; 1404 1405 /* Now protected by module ref count */ 1406 rcu_read_unlock(); 1407 1408 err = pf->create(net, sock, protocol, kern); 1409 if (err < 0) 1410 goto out_module_put; 1411 1412 /* 1413 * Now to bump the refcnt of the [loadable] module that owns this 1414 * socket at sock_release time we decrement its refcnt. 1415 */ 1416 if (!try_module_get(sock->ops->owner)) 1417 goto out_module_busy; 1418 1419 /* 1420 * Now that we're done with the ->create function, the [loadable] 1421 * module can have its refcnt decremented 1422 */ 1423 module_put(pf->owner); 1424 err = security_socket_post_create(sock, family, type, protocol, kern); 1425 if (err) 1426 goto out_sock_release; 1427 *res = sock; 1428 1429 return 0; 1430 1431 out_module_busy: 1432 err = -EAFNOSUPPORT; 1433 out_module_put: 1434 sock->ops = NULL; 1435 module_put(pf->owner); 1436 out_sock_release: 1437 sock_release(sock); 1438 return err; 1439 1440 out_release: 1441 rcu_read_unlock(); 1442 goto out_sock_release; 1443 } 1444 EXPORT_SYMBOL(__sock_create); 1445 1446 /** 1447 * sock_create - creates a socket 1448 * @family: protocol family (AF_INET, ...) 1449 * @type: communication type (SOCK_STREAM, ...) 1450 * @protocol: protocol (0, ...) 1451 * @res: new socket 1452 * 1453 * A wrapper around __sock_create(). 1454 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1455 */ 1456 1457 int sock_create(int family, int type, int protocol, struct socket **res) 1458 { 1459 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1460 } 1461 EXPORT_SYMBOL(sock_create); 1462 1463 /** 1464 * sock_create_kern - creates a socket (kernel space) 1465 * @net: net namespace 1466 * @family: protocol family (AF_INET, ...) 1467 * @type: communication type (SOCK_STREAM, ...) 1468 * @protocol: protocol (0, ...) 1469 * @res: new socket 1470 * 1471 * A wrapper around __sock_create(). 1472 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1473 */ 1474 1475 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1476 { 1477 return __sock_create(net, family, type, protocol, res, 1); 1478 } 1479 EXPORT_SYMBOL(sock_create_kern); 1480 1481 int __sys_socket(int family, int type, int protocol) 1482 { 1483 int retval; 1484 struct socket *sock; 1485 int flags; 1486 1487 /* Check the SOCK_* constants for consistency. */ 1488 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1489 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1490 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1491 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1492 1493 flags = type & ~SOCK_TYPE_MASK; 1494 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1495 return -EINVAL; 1496 type &= SOCK_TYPE_MASK; 1497 1498 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1499 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1500 1501 retval = sock_create(family, type, protocol, &sock); 1502 if (retval < 0) 1503 return retval; 1504 1505 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1506 } 1507 1508 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1509 { 1510 return __sys_socket(family, type, protocol); 1511 } 1512 1513 /* 1514 * Create a pair of connected sockets. 1515 */ 1516 1517 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1518 { 1519 struct socket *sock1, *sock2; 1520 int fd1, fd2, err; 1521 struct file *newfile1, *newfile2; 1522 int flags; 1523 1524 flags = type & ~SOCK_TYPE_MASK; 1525 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1526 return -EINVAL; 1527 type &= SOCK_TYPE_MASK; 1528 1529 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1530 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1531 1532 /* 1533 * reserve descriptors and make sure we won't fail 1534 * to return them to userland. 1535 */ 1536 fd1 = get_unused_fd_flags(flags); 1537 if (unlikely(fd1 < 0)) 1538 return fd1; 1539 1540 fd2 = get_unused_fd_flags(flags); 1541 if (unlikely(fd2 < 0)) { 1542 put_unused_fd(fd1); 1543 return fd2; 1544 } 1545 1546 err = put_user(fd1, &usockvec[0]); 1547 if (err) 1548 goto out; 1549 1550 err = put_user(fd2, &usockvec[1]); 1551 if (err) 1552 goto out; 1553 1554 /* 1555 * Obtain the first socket and check if the underlying protocol 1556 * supports the socketpair call. 1557 */ 1558 1559 err = sock_create(family, type, protocol, &sock1); 1560 if (unlikely(err < 0)) 1561 goto out; 1562 1563 err = sock_create(family, type, protocol, &sock2); 1564 if (unlikely(err < 0)) { 1565 sock_release(sock1); 1566 goto out; 1567 } 1568 1569 err = security_socket_socketpair(sock1, sock2); 1570 if (unlikely(err)) { 1571 sock_release(sock2); 1572 sock_release(sock1); 1573 goto out; 1574 } 1575 1576 err = sock1->ops->socketpair(sock1, sock2); 1577 if (unlikely(err < 0)) { 1578 sock_release(sock2); 1579 sock_release(sock1); 1580 goto out; 1581 } 1582 1583 newfile1 = sock_alloc_file(sock1, flags, NULL); 1584 if (IS_ERR(newfile1)) { 1585 err = PTR_ERR(newfile1); 1586 sock_release(sock2); 1587 goto out; 1588 } 1589 1590 newfile2 = sock_alloc_file(sock2, flags, NULL); 1591 if (IS_ERR(newfile2)) { 1592 err = PTR_ERR(newfile2); 1593 fput(newfile1); 1594 goto out; 1595 } 1596 1597 audit_fd_pair(fd1, fd2); 1598 1599 fd_install(fd1, newfile1); 1600 fd_install(fd2, newfile2); 1601 return 0; 1602 1603 out: 1604 put_unused_fd(fd2); 1605 put_unused_fd(fd1); 1606 return err; 1607 } 1608 1609 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1610 int __user *, usockvec) 1611 { 1612 return __sys_socketpair(family, type, protocol, usockvec); 1613 } 1614 1615 /* 1616 * Bind a name to a socket. Nothing much to do here since it's 1617 * the protocol's responsibility to handle the local address. 1618 * 1619 * We move the socket address to kernel space before we call 1620 * the protocol layer (having also checked the address is ok). 1621 */ 1622 1623 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1624 { 1625 struct socket *sock; 1626 struct sockaddr_storage address; 1627 int err, fput_needed; 1628 1629 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1630 if (sock) { 1631 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1632 if (!err) { 1633 err = security_socket_bind(sock, 1634 (struct sockaddr *)&address, 1635 addrlen); 1636 if (!err) 1637 err = sock->ops->bind(sock, 1638 (struct sockaddr *) 1639 &address, addrlen); 1640 } 1641 fput_light(sock->file, fput_needed); 1642 } 1643 return err; 1644 } 1645 1646 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1647 { 1648 return __sys_bind(fd, umyaddr, addrlen); 1649 } 1650 1651 /* 1652 * Perform a listen. Basically, we allow the protocol to do anything 1653 * necessary for a listen, and if that works, we mark the socket as 1654 * ready for listening. 1655 */ 1656 1657 int __sys_listen(int fd, int backlog) 1658 { 1659 struct socket *sock; 1660 int err, fput_needed; 1661 int somaxconn; 1662 1663 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1664 if (sock) { 1665 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1666 if ((unsigned int)backlog > somaxconn) 1667 backlog = somaxconn; 1668 1669 err = security_socket_listen(sock, backlog); 1670 if (!err) 1671 err = sock->ops->listen(sock, backlog); 1672 1673 fput_light(sock->file, fput_needed); 1674 } 1675 return err; 1676 } 1677 1678 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1679 { 1680 return __sys_listen(fd, backlog); 1681 } 1682 1683 int __sys_accept4_file(struct file *file, unsigned file_flags, 1684 struct sockaddr __user *upeer_sockaddr, 1685 int __user *upeer_addrlen, int flags, 1686 unsigned long nofile) 1687 { 1688 struct socket *sock, *newsock; 1689 struct file *newfile; 1690 int err, len, newfd; 1691 struct sockaddr_storage address; 1692 1693 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1694 return -EINVAL; 1695 1696 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1697 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1698 1699 sock = sock_from_file(file); 1700 if (!sock) { 1701 err = -ENOTSOCK; 1702 goto out; 1703 } 1704 1705 err = -ENFILE; 1706 newsock = sock_alloc(); 1707 if (!newsock) 1708 goto out; 1709 1710 newsock->type = sock->type; 1711 newsock->ops = sock->ops; 1712 1713 /* 1714 * We don't need try_module_get here, as the listening socket (sock) 1715 * has the protocol module (sock->ops->owner) held. 1716 */ 1717 __module_get(newsock->ops->owner); 1718 1719 newfd = __get_unused_fd_flags(flags, nofile); 1720 if (unlikely(newfd < 0)) { 1721 err = newfd; 1722 sock_release(newsock); 1723 goto out; 1724 } 1725 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1726 if (IS_ERR(newfile)) { 1727 err = PTR_ERR(newfile); 1728 put_unused_fd(newfd); 1729 goto out; 1730 } 1731 1732 err = security_socket_accept(sock, newsock); 1733 if (err) 1734 goto out_fd; 1735 1736 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1737 false); 1738 if (err < 0) 1739 goto out_fd; 1740 1741 if (upeer_sockaddr) { 1742 len = newsock->ops->getname(newsock, 1743 (struct sockaddr *)&address, 2); 1744 if (len < 0) { 1745 err = -ECONNABORTED; 1746 goto out_fd; 1747 } 1748 err = move_addr_to_user(&address, 1749 len, upeer_sockaddr, upeer_addrlen); 1750 if (err < 0) 1751 goto out_fd; 1752 } 1753 1754 /* File flags are not inherited via accept() unlike another OSes. */ 1755 1756 fd_install(newfd, newfile); 1757 err = newfd; 1758 out: 1759 return err; 1760 out_fd: 1761 fput(newfile); 1762 put_unused_fd(newfd); 1763 goto out; 1764 1765 } 1766 1767 /* 1768 * For accept, we attempt to create a new socket, set up the link 1769 * with the client, wake up the client, then return the new 1770 * connected fd. We collect the address of the connector in kernel 1771 * space and move it to user at the very end. This is unclean because 1772 * we open the socket then return an error. 1773 * 1774 * 1003.1g adds the ability to recvmsg() to query connection pending 1775 * status to recvmsg. We need to add that support in a way thats 1776 * clean when we restructure accept also. 1777 */ 1778 1779 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1780 int __user *upeer_addrlen, int flags) 1781 { 1782 int ret = -EBADF; 1783 struct fd f; 1784 1785 f = fdget(fd); 1786 if (f.file) { 1787 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr, 1788 upeer_addrlen, flags, 1789 rlimit(RLIMIT_NOFILE)); 1790 fdput(f); 1791 } 1792 1793 return ret; 1794 } 1795 1796 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1797 int __user *, upeer_addrlen, int, flags) 1798 { 1799 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1800 } 1801 1802 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1803 int __user *, upeer_addrlen) 1804 { 1805 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1806 } 1807 1808 /* 1809 * Attempt to connect to a socket with the server address. The address 1810 * is in user space so we verify it is OK and move it to kernel space. 1811 * 1812 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1813 * break bindings 1814 * 1815 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1816 * other SEQPACKET protocols that take time to connect() as it doesn't 1817 * include the -EINPROGRESS status for such sockets. 1818 */ 1819 1820 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 1821 int addrlen, int file_flags) 1822 { 1823 struct socket *sock; 1824 int err; 1825 1826 sock = sock_from_file(file); 1827 if (!sock) { 1828 err = -ENOTSOCK; 1829 goto out; 1830 } 1831 1832 err = 1833 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1834 if (err) 1835 goto out; 1836 1837 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1838 sock->file->f_flags | file_flags); 1839 out: 1840 return err; 1841 } 1842 1843 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1844 { 1845 int ret = -EBADF; 1846 struct fd f; 1847 1848 f = fdget(fd); 1849 if (f.file) { 1850 struct sockaddr_storage address; 1851 1852 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 1853 if (!ret) 1854 ret = __sys_connect_file(f.file, &address, addrlen, 0); 1855 fdput(f); 1856 } 1857 1858 return ret; 1859 } 1860 1861 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1862 int, addrlen) 1863 { 1864 return __sys_connect(fd, uservaddr, addrlen); 1865 } 1866 1867 /* 1868 * Get the local address ('name') of a socket object. Move the obtained 1869 * name to user space. 1870 */ 1871 1872 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1873 int __user *usockaddr_len) 1874 { 1875 struct socket *sock; 1876 struct sockaddr_storage address; 1877 int err, fput_needed; 1878 1879 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1880 if (!sock) 1881 goto out; 1882 1883 err = security_socket_getsockname(sock); 1884 if (err) 1885 goto out_put; 1886 1887 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1888 if (err < 0) 1889 goto out_put; 1890 /* "err" is actually length in this case */ 1891 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1892 1893 out_put: 1894 fput_light(sock->file, fput_needed); 1895 out: 1896 return err; 1897 } 1898 1899 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1900 int __user *, usockaddr_len) 1901 { 1902 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1903 } 1904 1905 /* 1906 * Get the remote address ('name') of a socket object. Move the obtained 1907 * name to user space. 1908 */ 1909 1910 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1911 int __user *usockaddr_len) 1912 { 1913 struct socket *sock; 1914 struct sockaddr_storage address; 1915 int err, fput_needed; 1916 1917 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1918 if (sock != NULL) { 1919 err = security_socket_getpeername(sock); 1920 if (err) { 1921 fput_light(sock->file, fput_needed); 1922 return err; 1923 } 1924 1925 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1926 if (err >= 0) 1927 /* "err" is actually length in this case */ 1928 err = move_addr_to_user(&address, err, usockaddr, 1929 usockaddr_len); 1930 fput_light(sock->file, fput_needed); 1931 } 1932 return err; 1933 } 1934 1935 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1936 int __user *, usockaddr_len) 1937 { 1938 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1939 } 1940 1941 /* 1942 * Send a datagram to a given address. We move the address into kernel 1943 * space and check the user space data area is readable before invoking 1944 * the protocol. 1945 */ 1946 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1947 struct sockaddr __user *addr, int addr_len) 1948 { 1949 struct socket *sock; 1950 struct sockaddr_storage address; 1951 int err; 1952 struct msghdr msg; 1953 struct iovec iov; 1954 int fput_needed; 1955 1956 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1957 if (unlikely(err)) 1958 return err; 1959 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1960 if (!sock) 1961 goto out; 1962 1963 msg.msg_name = NULL; 1964 msg.msg_control = NULL; 1965 msg.msg_controllen = 0; 1966 msg.msg_namelen = 0; 1967 if (addr) { 1968 err = move_addr_to_kernel(addr, addr_len, &address); 1969 if (err < 0) 1970 goto out_put; 1971 msg.msg_name = (struct sockaddr *)&address; 1972 msg.msg_namelen = addr_len; 1973 } 1974 if (sock->file->f_flags & O_NONBLOCK) 1975 flags |= MSG_DONTWAIT; 1976 msg.msg_flags = flags; 1977 err = sock_sendmsg(sock, &msg); 1978 1979 out_put: 1980 fput_light(sock->file, fput_needed); 1981 out: 1982 return err; 1983 } 1984 1985 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1986 unsigned int, flags, struct sockaddr __user *, addr, 1987 int, addr_len) 1988 { 1989 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1990 } 1991 1992 /* 1993 * Send a datagram down a socket. 1994 */ 1995 1996 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1997 unsigned int, flags) 1998 { 1999 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2000 } 2001 2002 /* 2003 * Receive a frame from the socket and optionally record the address of the 2004 * sender. We verify the buffers are writable and if needed move the 2005 * sender address from kernel to user space. 2006 */ 2007 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2008 struct sockaddr __user *addr, int __user *addr_len) 2009 { 2010 struct socket *sock; 2011 struct iovec iov; 2012 struct msghdr msg; 2013 struct sockaddr_storage address; 2014 int err, err2; 2015 int fput_needed; 2016 2017 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 2018 if (unlikely(err)) 2019 return err; 2020 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2021 if (!sock) 2022 goto out; 2023 2024 msg.msg_control = NULL; 2025 msg.msg_controllen = 0; 2026 /* Save some cycles and don't copy the address if not needed */ 2027 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2028 /* We assume all kernel code knows the size of sockaddr_storage */ 2029 msg.msg_namelen = 0; 2030 msg.msg_iocb = NULL; 2031 msg.msg_flags = 0; 2032 if (sock->file->f_flags & O_NONBLOCK) 2033 flags |= MSG_DONTWAIT; 2034 err = sock_recvmsg(sock, &msg, flags); 2035 2036 if (err >= 0 && addr != NULL) { 2037 err2 = move_addr_to_user(&address, 2038 msg.msg_namelen, addr, addr_len); 2039 if (err2 < 0) 2040 err = err2; 2041 } 2042 2043 fput_light(sock->file, fput_needed); 2044 out: 2045 return err; 2046 } 2047 2048 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2049 unsigned int, flags, struct sockaddr __user *, addr, 2050 int __user *, addr_len) 2051 { 2052 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2053 } 2054 2055 /* 2056 * Receive a datagram from a socket. 2057 */ 2058 2059 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2060 unsigned int, flags) 2061 { 2062 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2063 } 2064 2065 static bool sock_use_custom_sol_socket(const struct socket *sock) 2066 { 2067 const struct sock *sk = sock->sk; 2068 2069 /* Use sock->ops->setsockopt() for MPTCP */ 2070 return IS_ENABLED(CONFIG_MPTCP) && 2071 sk->sk_protocol == IPPROTO_MPTCP && 2072 sk->sk_type == SOCK_STREAM && 2073 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6); 2074 } 2075 2076 /* 2077 * Set a socket option. Because we don't know the option lengths we have 2078 * to pass the user mode parameter for the protocols to sort out. 2079 */ 2080 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2081 int optlen) 2082 { 2083 sockptr_t optval = USER_SOCKPTR(user_optval); 2084 char *kernel_optval = NULL; 2085 int err, fput_needed; 2086 struct socket *sock; 2087 2088 if (optlen < 0) 2089 return -EINVAL; 2090 2091 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2092 if (!sock) 2093 return err; 2094 2095 err = security_socket_setsockopt(sock, level, optname); 2096 if (err) 2097 goto out_put; 2098 2099 if (!in_compat_syscall()) 2100 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2101 user_optval, &optlen, 2102 &kernel_optval); 2103 if (err < 0) 2104 goto out_put; 2105 if (err > 0) { 2106 err = 0; 2107 goto out_put; 2108 } 2109 2110 if (kernel_optval) 2111 optval = KERNEL_SOCKPTR(kernel_optval); 2112 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2113 err = sock_setsockopt(sock, level, optname, optval, optlen); 2114 else if (unlikely(!sock->ops->setsockopt)) 2115 err = -EOPNOTSUPP; 2116 else 2117 err = sock->ops->setsockopt(sock, level, optname, optval, 2118 optlen); 2119 kfree(kernel_optval); 2120 out_put: 2121 fput_light(sock->file, fput_needed); 2122 return err; 2123 } 2124 2125 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2126 char __user *, optval, int, optlen) 2127 { 2128 return __sys_setsockopt(fd, level, optname, optval, optlen); 2129 } 2130 2131 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2132 int optname)); 2133 2134 /* 2135 * Get a socket option. Because we don't know the option lengths we have 2136 * to pass a user mode parameter for the protocols to sort out. 2137 */ 2138 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2139 int __user *optlen) 2140 { 2141 int err, fput_needed; 2142 struct socket *sock; 2143 int max_optlen; 2144 2145 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2146 if (!sock) 2147 return err; 2148 2149 err = security_socket_getsockopt(sock, level, optname); 2150 if (err) 2151 goto out_put; 2152 2153 if (!in_compat_syscall()) 2154 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2155 2156 if (level == SOL_SOCKET) 2157 err = sock_getsockopt(sock, level, optname, optval, optlen); 2158 else if (unlikely(!sock->ops->getsockopt)) 2159 err = -EOPNOTSUPP; 2160 else 2161 err = sock->ops->getsockopt(sock, level, optname, optval, 2162 optlen); 2163 2164 if (!in_compat_syscall()) 2165 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2166 optval, optlen, max_optlen, 2167 err); 2168 out_put: 2169 fput_light(sock->file, fput_needed); 2170 return err; 2171 } 2172 2173 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2174 char __user *, optval, int __user *, optlen) 2175 { 2176 return __sys_getsockopt(fd, level, optname, optval, optlen); 2177 } 2178 2179 /* 2180 * Shutdown a socket. 2181 */ 2182 2183 int __sys_shutdown_sock(struct socket *sock, int how) 2184 { 2185 int err; 2186 2187 err = security_socket_shutdown(sock, how); 2188 if (!err) 2189 err = sock->ops->shutdown(sock, how); 2190 2191 return err; 2192 } 2193 2194 int __sys_shutdown(int fd, int how) 2195 { 2196 int err, fput_needed; 2197 struct socket *sock; 2198 2199 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2200 if (sock != NULL) { 2201 err = __sys_shutdown_sock(sock, how); 2202 fput_light(sock->file, fput_needed); 2203 } 2204 return err; 2205 } 2206 2207 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2208 { 2209 return __sys_shutdown(fd, how); 2210 } 2211 2212 /* A couple of helpful macros for getting the address of the 32/64 bit 2213 * fields which are the same type (int / unsigned) on our platforms. 2214 */ 2215 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2216 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2217 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2218 2219 struct used_address { 2220 struct sockaddr_storage name; 2221 unsigned int name_len; 2222 }; 2223 2224 int __copy_msghdr_from_user(struct msghdr *kmsg, 2225 struct user_msghdr __user *umsg, 2226 struct sockaddr __user **save_addr, 2227 struct iovec __user **uiov, size_t *nsegs) 2228 { 2229 struct user_msghdr msg; 2230 ssize_t err; 2231 2232 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2233 return -EFAULT; 2234 2235 kmsg->msg_control_is_user = true; 2236 kmsg->msg_control_user = msg.msg_control; 2237 kmsg->msg_controllen = msg.msg_controllen; 2238 kmsg->msg_flags = msg.msg_flags; 2239 2240 kmsg->msg_namelen = msg.msg_namelen; 2241 if (!msg.msg_name) 2242 kmsg->msg_namelen = 0; 2243 2244 if (kmsg->msg_namelen < 0) 2245 return -EINVAL; 2246 2247 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2248 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2249 2250 if (save_addr) 2251 *save_addr = msg.msg_name; 2252 2253 if (msg.msg_name && kmsg->msg_namelen) { 2254 if (!save_addr) { 2255 err = move_addr_to_kernel(msg.msg_name, 2256 kmsg->msg_namelen, 2257 kmsg->msg_name); 2258 if (err < 0) 2259 return err; 2260 } 2261 } else { 2262 kmsg->msg_name = NULL; 2263 kmsg->msg_namelen = 0; 2264 } 2265 2266 if (msg.msg_iovlen > UIO_MAXIOV) 2267 return -EMSGSIZE; 2268 2269 kmsg->msg_iocb = NULL; 2270 *uiov = msg.msg_iov; 2271 *nsegs = msg.msg_iovlen; 2272 return 0; 2273 } 2274 2275 static int copy_msghdr_from_user(struct msghdr *kmsg, 2276 struct user_msghdr __user *umsg, 2277 struct sockaddr __user **save_addr, 2278 struct iovec **iov) 2279 { 2280 struct user_msghdr msg; 2281 ssize_t err; 2282 2283 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov, 2284 &msg.msg_iovlen); 2285 if (err) 2286 return err; 2287 2288 err = import_iovec(save_addr ? READ : WRITE, 2289 msg.msg_iov, msg.msg_iovlen, 2290 UIO_FASTIOV, iov, &kmsg->msg_iter); 2291 return err < 0 ? err : 0; 2292 } 2293 2294 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2295 unsigned int flags, struct used_address *used_address, 2296 unsigned int allowed_msghdr_flags) 2297 { 2298 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2299 __aligned(sizeof(__kernel_size_t)); 2300 /* 20 is size of ipv6_pktinfo */ 2301 unsigned char *ctl_buf = ctl; 2302 int ctl_len; 2303 ssize_t err; 2304 2305 err = -ENOBUFS; 2306 2307 if (msg_sys->msg_controllen > INT_MAX) 2308 goto out; 2309 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2310 ctl_len = msg_sys->msg_controllen; 2311 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2312 err = 2313 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2314 sizeof(ctl)); 2315 if (err) 2316 goto out; 2317 ctl_buf = msg_sys->msg_control; 2318 ctl_len = msg_sys->msg_controllen; 2319 } else if (ctl_len) { 2320 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2321 CMSG_ALIGN(sizeof(struct cmsghdr))); 2322 if (ctl_len > sizeof(ctl)) { 2323 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2324 if (ctl_buf == NULL) 2325 goto out; 2326 } 2327 err = -EFAULT; 2328 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2329 goto out_freectl; 2330 msg_sys->msg_control = ctl_buf; 2331 msg_sys->msg_control_is_user = false; 2332 } 2333 msg_sys->msg_flags = flags; 2334 2335 if (sock->file->f_flags & O_NONBLOCK) 2336 msg_sys->msg_flags |= MSG_DONTWAIT; 2337 /* 2338 * If this is sendmmsg() and current destination address is same as 2339 * previously succeeded address, omit asking LSM's decision. 2340 * used_address->name_len is initialized to UINT_MAX so that the first 2341 * destination address never matches. 2342 */ 2343 if (used_address && msg_sys->msg_name && 2344 used_address->name_len == msg_sys->msg_namelen && 2345 !memcmp(&used_address->name, msg_sys->msg_name, 2346 used_address->name_len)) { 2347 err = sock_sendmsg_nosec(sock, msg_sys); 2348 goto out_freectl; 2349 } 2350 err = sock_sendmsg(sock, msg_sys); 2351 /* 2352 * If this is sendmmsg() and sending to current destination address was 2353 * successful, remember it. 2354 */ 2355 if (used_address && err >= 0) { 2356 used_address->name_len = msg_sys->msg_namelen; 2357 if (msg_sys->msg_name) 2358 memcpy(&used_address->name, msg_sys->msg_name, 2359 used_address->name_len); 2360 } 2361 2362 out_freectl: 2363 if (ctl_buf != ctl) 2364 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2365 out: 2366 return err; 2367 } 2368 2369 int sendmsg_copy_msghdr(struct msghdr *msg, 2370 struct user_msghdr __user *umsg, unsigned flags, 2371 struct iovec **iov) 2372 { 2373 int err; 2374 2375 if (flags & MSG_CMSG_COMPAT) { 2376 struct compat_msghdr __user *msg_compat; 2377 2378 msg_compat = (struct compat_msghdr __user *) umsg; 2379 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2380 } else { 2381 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2382 } 2383 if (err < 0) 2384 return err; 2385 2386 return 0; 2387 } 2388 2389 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2390 struct msghdr *msg_sys, unsigned int flags, 2391 struct used_address *used_address, 2392 unsigned int allowed_msghdr_flags) 2393 { 2394 struct sockaddr_storage address; 2395 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2396 ssize_t err; 2397 2398 msg_sys->msg_name = &address; 2399 2400 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2401 if (err < 0) 2402 return err; 2403 2404 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2405 allowed_msghdr_flags); 2406 kfree(iov); 2407 return err; 2408 } 2409 2410 /* 2411 * BSD sendmsg interface 2412 */ 2413 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2414 unsigned int flags) 2415 { 2416 /* disallow ancillary data requests from this path */ 2417 if (msg->msg_control || msg->msg_controllen) 2418 return -EINVAL; 2419 2420 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2421 } 2422 2423 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2424 bool forbid_cmsg_compat) 2425 { 2426 int fput_needed, err; 2427 struct msghdr msg_sys; 2428 struct socket *sock; 2429 2430 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2431 return -EINVAL; 2432 2433 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2434 if (!sock) 2435 goto out; 2436 2437 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2438 2439 fput_light(sock->file, fput_needed); 2440 out: 2441 return err; 2442 } 2443 2444 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2445 { 2446 return __sys_sendmsg(fd, msg, flags, true); 2447 } 2448 2449 /* 2450 * Linux sendmmsg interface 2451 */ 2452 2453 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2454 unsigned int flags, bool forbid_cmsg_compat) 2455 { 2456 int fput_needed, err, datagrams; 2457 struct socket *sock; 2458 struct mmsghdr __user *entry; 2459 struct compat_mmsghdr __user *compat_entry; 2460 struct msghdr msg_sys; 2461 struct used_address used_address; 2462 unsigned int oflags = flags; 2463 2464 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2465 return -EINVAL; 2466 2467 if (vlen > UIO_MAXIOV) 2468 vlen = UIO_MAXIOV; 2469 2470 datagrams = 0; 2471 2472 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2473 if (!sock) 2474 return err; 2475 2476 used_address.name_len = UINT_MAX; 2477 entry = mmsg; 2478 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2479 err = 0; 2480 flags |= MSG_BATCH; 2481 2482 while (datagrams < vlen) { 2483 if (datagrams == vlen - 1) 2484 flags = oflags; 2485 2486 if (MSG_CMSG_COMPAT & flags) { 2487 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2488 &msg_sys, flags, &used_address, MSG_EOR); 2489 if (err < 0) 2490 break; 2491 err = __put_user(err, &compat_entry->msg_len); 2492 ++compat_entry; 2493 } else { 2494 err = ___sys_sendmsg(sock, 2495 (struct user_msghdr __user *)entry, 2496 &msg_sys, flags, &used_address, MSG_EOR); 2497 if (err < 0) 2498 break; 2499 err = put_user(err, &entry->msg_len); 2500 ++entry; 2501 } 2502 2503 if (err) 2504 break; 2505 ++datagrams; 2506 if (msg_data_left(&msg_sys)) 2507 break; 2508 cond_resched(); 2509 } 2510 2511 fput_light(sock->file, fput_needed); 2512 2513 /* We only return an error if no datagrams were able to be sent */ 2514 if (datagrams != 0) 2515 return datagrams; 2516 2517 return err; 2518 } 2519 2520 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2521 unsigned int, vlen, unsigned int, flags) 2522 { 2523 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2524 } 2525 2526 int recvmsg_copy_msghdr(struct msghdr *msg, 2527 struct user_msghdr __user *umsg, unsigned flags, 2528 struct sockaddr __user **uaddr, 2529 struct iovec **iov) 2530 { 2531 ssize_t err; 2532 2533 if (MSG_CMSG_COMPAT & flags) { 2534 struct compat_msghdr __user *msg_compat; 2535 2536 msg_compat = (struct compat_msghdr __user *) umsg; 2537 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2538 } else { 2539 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2540 } 2541 if (err < 0) 2542 return err; 2543 2544 return 0; 2545 } 2546 2547 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2548 struct user_msghdr __user *msg, 2549 struct sockaddr __user *uaddr, 2550 unsigned int flags, int nosec) 2551 { 2552 struct compat_msghdr __user *msg_compat = 2553 (struct compat_msghdr __user *) msg; 2554 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2555 struct sockaddr_storage addr; 2556 unsigned long cmsg_ptr; 2557 int len; 2558 ssize_t err; 2559 2560 msg_sys->msg_name = &addr; 2561 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2562 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2563 2564 /* We assume all kernel code knows the size of sockaddr_storage */ 2565 msg_sys->msg_namelen = 0; 2566 2567 if (sock->file->f_flags & O_NONBLOCK) 2568 flags |= MSG_DONTWAIT; 2569 2570 if (unlikely(nosec)) 2571 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2572 else 2573 err = sock_recvmsg(sock, msg_sys, flags); 2574 2575 if (err < 0) 2576 goto out; 2577 len = err; 2578 2579 if (uaddr != NULL) { 2580 err = move_addr_to_user(&addr, 2581 msg_sys->msg_namelen, uaddr, 2582 uaddr_len); 2583 if (err < 0) 2584 goto out; 2585 } 2586 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2587 COMPAT_FLAGS(msg)); 2588 if (err) 2589 goto out; 2590 if (MSG_CMSG_COMPAT & flags) 2591 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2592 &msg_compat->msg_controllen); 2593 else 2594 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2595 &msg->msg_controllen); 2596 if (err) 2597 goto out; 2598 err = len; 2599 out: 2600 return err; 2601 } 2602 2603 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2604 struct msghdr *msg_sys, unsigned int flags, int nosec) 2605 { 2606 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2607 /* user mode address pointers */ 2608 struct sockaddr __user *uaddr; 2609 ssize_t err; 2610 2611 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2612 if (err < 0) 2613 return err; 2614 2615 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2616 kfree(iov); 2617 return err; 2618 } 2619 2620 /* 2621 * BSD recvmsg interface 2622 */ 2623 2624 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2625 struct user_msghdr __user *umsg, 2626 struct sockaddr __user *uaddr, unsigned int flags) 2627 { 2628 if (msg->msg_control || msg->msg_controllen) { 2629 /* disallow ancillary data reqs unless cmsg is plain data */ 2630 if (!(sock->ops->flags & PROTO_CMSG_DATA_ONLY)) 2631 return -EINVAL; 2632 } 2633 2634 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2635 } 2636 2637 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2638 bool forbid_cmsg_compat) 2639 { 2640 int fput_needed, err; 2641 struct msghdr msg_sys; 2642 struct socket *sock; 2643 2644 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2645 return -EINVAL; 2646 2647 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2648 if (!sock) 2649 goto out; 2650 2651 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2652 2653 fput_light(sock->file, fput_needed); 2654 out: 2655 return err; 2656 } 2657 2658 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2659 unsigned int, flags) 2660 { 2661 return __sys_recvmsg(fd, msg, flags, true); 2662 } 2663 2664 /* 2665 * Linux recvmmsg interface 2666 */ 2667 2668 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2669 unsigned int vlen, unsigned int flags, 2670 struct timespec64 *timeout) 2671 { 2672 int fput_needed, err, datagrams; 2673 struct socket *sock; 2674 struct mmsghdr __user *entry; 2675 struct compat_mmsghdr __user *compat_entry; 2676 struct msghdr msg_sys; 2677 struct timespec64 end_time; 2678 struct timespec64 timeout64; 2679 2680 if (timeout && 2681 poll_select_set_timeout(&end_time, timeout->tv_sec, 2682 timeout->tv_nsec)) 2683 return -EINVAL; 2684 2685 datagrams = 0; 2686 2687 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2688 if (!sock) 2689 return err; 2690 2691 if (likely(!(flags & MSG_ERRQUEUE))) { 2692 err = sock_error(sock->sk); 2693 if (err) { 2694 datagrams = err; 2695 goto out_put; 2696 } 2697 } 2698 2699 entry = mmsg; 2700 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2701 2702 while (datagrams < vlen) { 2703 /* 2704 * No need to ask LSM for more than the first datagram. 2705 */ 2706 if (MSG_CMSG_COMPAT & flags) { 2707 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2708 &msg_sys, flags & ~MSG_WAITFORONE, 2709 datagrams); 2710 if (err < 0) 2711 break; 2712 err = __put_user(err, &compat_entry->msg_len); 2713 ++compat_entry; 2714 } else { 2715 err = ___sys_recvmsg(sock, 2716 (struct user_msghdr __user *)entry, 2717 &msg_sys, flags & ~MSG_WAITFORONE, 2718 datagrams); 2719 if (err < 0) 2720 break; 2721 err = put_user(err, &entry->msg_len); 2722 ++entry; 2723 } 2724 2725 if (err) 2726 break; 2727 ++datagrams; 2728 2729 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2730 if (flags & MSG_WAITFORONE) 2731 flags |= MSG_DONTWAIT; 2732 2733 if (timeout) { 2734 ktime_get_ts64(&timeout64); 2735 *timeout = timespec64_sub(end_time, timeout64); 2736 if (timeout->tv_sec < 0) { 2737 timeout->tv_sec = timeout->tv_nsec = 0; 2738 break; 2739 } 2740 2741 /* Timeout, return less than vlen datagrams */ 2742 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2743 break; 2744 } 2745 2746 /* Out of band data, return right away */ 2747 if (msg_sys.msg_flags & MSG_OOB) 2748 break; 2749 cond_resched(); 2750 } 2751 2752 if (err == 0) 2753 goto out_put; 2754 2755 if (datagrams == 0) { 2756 datagrams = err; 2757 goto out_put; 2758 } 2759 2760 /* 2761 * We may return less entries than requested (vlen) if the 2762 * sock is non block and there aren't enough datagrams... 2763 */ 2764 if (err != -EAGAIN) { 2765 /* 2766 * ... or if recvmsg returns an error after we 2767 * received some datagrams, where we record the 2768 * error to return on the next call or if the 2769 * app asks about it using getsockopt(SO_ERROR). 2770 */ 2771 sock->sk->sk_err = -err; 2772 } 2773 out_put: 2774 fput_light(sock->file, fput_needed); 2775 2776 return datagrams; 2777 } 2778 2779 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2780 unsigned int vlen, unsigned int flags, 2781 struct __kernel_timespec __user *timeout, 2782 struct old_timespec32 __user *timeout32) 2783 { 2784 int datagrams; 2785 struct timespec64 timeout_sys; 2786 2787 if (timeout && get_timespec64(&timeout_sys, timeout)) 2788 return -EFAULT; 2789 2790 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2791 return -EFAULT; 2792 2793 if (!timeout && !timeout32) 2794 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2795 2796 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2797 2798 if (datagrams <= 0) 2799 return datagrams; 2800 2801 if (timeout && put_timespec64(&timeout_sys, timeout)) 2802 datagrams = -EFAULT; 2803 2804 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2805 datagrams = -EFAULT; 2806 2807 return datagrams; 2808 } 2809 2810 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2811 unsigned int, vlen, unsigned int, flags, 2812 struct __kernel_timespec __user *, timeout) 2813 { 2814 if (flags & MSG_CMSG_COMPAT) 2815 return -EINVAL; 2816 2817 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2818 } 2819 2820 #ifdef CONFIG_COMPAT_32BIT_TIME 2821 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2822 unsigned int, vlen, unsigned int, flags, 2823 struct old_timespec32 __user *, timeout) 2824 { 2825 if (flags & MSG_CMSG_COMPAT) 2826 return -EINVAL; 2827 2828 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2829 } 2830 #endif 2831 2832 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2833 /* Argument list sizes for sys_socketcall */ 2834 #define AL(x) ((x) * sizeof(unsigned long)) 2835 static const unsigned char nargs[21] = { 2836 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2837 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2838 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2839 AL(4), AL(5), AL(4) 2840 }; 2841 2842 #undef AL 2843 2844 /* 2845 * System call vectors. 2846 * 2847 * Argument checking cleaned up. Saved 20% in size. 2848 * This function doesn't need to set the kernel lock because 2849 * it is set by the callees. 2850 */ 2851 2852 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2853 { 2854 unsigned long a[AUDITSC_ARGS]; 2855 unsigned long a0, a1; 2856 int err; 2857 unsigned int len; 2858 2859 if (call < 1 || call > SYS_SENDMMSG) 2860 return -EINVAL; 2861 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2862 2863 len = nargs[call]; 2864 if (len > sizeof(a)) 2865 return -EINVAL; 2866 2867 /* copy_from_user should be SMP safe. */ 2868 if (copy_from_user(a, args, len)) 2869 return -EFAULT; 2870 2871 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2872 if (err) 2873 return err; 2874 2875 a0 = a[0]; 2876 a1 = a[1]; 2877 2878 switch (call) { 2879 case SYS_SOCKET: 2880 err = __sys_socket(a0, a1, a[2]); 2881 break; 2882 case SYS_BIND: 2883 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2884 break; 2885 case SYS_CONNECT: 2886 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2887 break; 2888 case SYS_LISTEN: 2889 err = __sys_listen(a0, a1); 2890 break; 2891 case SYS_ACCEPT: 2892 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2893 (int __user *)a[2], 0); 2894 break; 2895 case SYS_GETSOCKNAME: 2896 err = 2897 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2898 (int __user *)a[2]); 2899 break; 2900 case SYS_GETPEERNAME: 2901 err = 2902 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2903 (int __user *)a[2]); 2904 break; 2905 case SYS_SOCKETPAIR: 2906 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2907 break; 2908 case SYS_SEND: 2909 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2910 NULL, 0); 2911 break; 2912 case SYS_SENDTO: 2913 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2914 (struct sockaddr __user *)a[4], a[5]); 2915 break; 2916 case SYS_RECV: 2917 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2918 NULL, NULL); 2919 break; 2920 case SYS_RECVFROM: 2921 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2922 (struct sockaddr __user *)a[4], 2923 (int __user *)a[5]); 2924 break; 2925 case SYS_SHUTDOWN: 2926 err = __sys_shutdown(a0, a1); 2927 break; 2928 case SYS_SETSOCKOPT: 2929 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2930 a[4]); 2931 break; 2932 case SYS_GETSOCKOPT: 2933 err = 2934 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2935 (int __user *)a[4]); 2936 break; 2937 case SYS_SENDMSG: 2938 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2939 a[2], true); 2940 break; 2941 case SYS_SENDMMSG: 2942 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2943 a[3], true); 2944 break; 2945 case SYS_RECVMSG: 2946 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2947 a[2], true); 2948 break; 2949 case SYS_RECVMMSG: 2950 if (IS_ENABLED(CONFIG_64BIT)) 2951 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2952 a[2], a[3], 2953 (struct __kernel_timespec __user *)a[4], 2954 NULL); 2955 else 2956 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2957 a[2], a[3], NULL, 2958 (struct old_timespec32 __user *)a[4]); 2959 break; 2960 case SYS_ACCEPT4: 2961 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2962 (int __user *)a[2], a[3]); 2963 break; 2964 default: 2965 err = -EINVAL; 2966 break; 2967 } 2968 return err; 2969 } 2970 2971 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2972 2973 /** 2974 * sock_register - add a socket protocol handler 2975 * @ops: description of protocol 2976 * 2977 * This function is called by a protocol handler that wants to 2978 * advertise its address family, and have it linked into the 2979 * socket interface. The value ops->family corresponds to the 2980 * socket system call protocol family. 2981 */ 2982 int sock_register(const struct net_proto_family *ops) 2983 { 2984 int err; 2985 2986 if (ops->family >= NPROTO) { 2987 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2988 return -ENOBUFS; 2989 } 2990 2991 spin_lock(&net_family_lock); 2992 if (rcu_dereference_protected(net_families[ops->family], 2993 lockdep_is_held(&net_family_lock))) 2994 err = -EEXIST; 2995 else { 2996 rcu_assign_pointer(net_families[ops->family], ops); 2997 err = 0; 2998 } 2999 spin_unlock(&net_family_lock); 3000 3001 pr_info("NET: Registered protocol family %d\n", ops->family); 3002 return err; 3003 } 3004 EXPORT_SYMBOL(sock_register); 3005 3006 /** 3007 * sock_unregister - remove a protocol handler 3008 * @family: protocol family to remove 3009 * 3010 * This function is called by a protocol handler that wants to 3011 * remove its address family, and have it unlinked from the 3012 * new socket creation. 3013 * 3014 * If protocol handler is a module, then it can use module reference 3015 * counts to protect against new references. If protocol handler is not 3016 * a module then it needs to provide its own protection in 3017 * the ops->create routine. 3018 */ 3019 void sock_unregister(int family) 3020 { 3021 BUG_ON(family < 0 || family >= NPROTO); 3022 3023 spin_lock(&net_family_lock); 3024 RCU_INIT_POINTER(net_families[family], NULL); 3025 spin_unlock(&net_family_lock); 3026 3027 synchronize_rcu(); 3028 3029 pr_info("NET: Unregistered protocol family %d\n", family); 3030 } 3031 EXPORT_SYMBOL(sock_unregister); 3032 3033 bool sock_is_registered(int family) 3034 { 3035 return family < NPROTO && rcu_access_pointer(net_families[family]); 3036 } 3037 3038 static int __init sock_init(void) 3039 { 3040 int err; 3041 /* 3042 * Initialize the network sysctl infrastructure. 3043 */ 3044 err = net_sysctl_init(); 3045 if (err) 3046 goto out; 3047 3048 /* 3049 * Initialize skbuff SLAB cache 3050 */ 3051 skb_init(); 3052 3053 /* 3054 * Initialize the protocols module. 3055 */ 3056 3057 init_inodecache(); 3058 3059 err = register_filesystem(&sock_fs_type); 3060 if (err) 3061 goto out; 3062 sock_mnt = kern_mount(&sock_fs_type); 3063 if (IS_ERR(sock_mnt)) { 3064 err = PTR_ERR(sock_mnt); 3065 goto out_mount; 3066 } 3067 3068 /* The real protocol initialization is performed in later initcalls. 3069 */ 3070 3071 #ifdef CONFIG_NETFILTER 3072 err = netfilter_init(); 3073 if (err) 3074 goto out; 3075 #endif 3076 3077 ptp_classifier_init(); 3078 3079 out: 3080 return err; 3081 3082 out_mount: 3083 unregister_filesystem(&sock_fs_type); 3084 goto out; 3085 } 3086 3087 core_initcall(sock_init); /* early initcall */ 3088 3089 #ifdef CONFIG_PROC_FS 3090 void socket_seq_show(struct seq_file *seq) 3091 { 3092 seq_printf(seq, "sockets: used %d\n", 3093 sock_inuse_get(seq->private)); 3094 } 3095 #endif /* CONFIG_PROC_FS */ 3096 3097 #ifdef CONFIG_COMPAT 3098 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 3099 { 3100 struct compat_ifconf ifc32; 3101 struct ifconf ifc; 3102 int err; 3103 3104 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 3105 return -EFAULT; 3106 3107 ifc.ifc_len = ifc32.ifc_len; 3108 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 3109 3110 rtnl_lock(); 3111 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 3112 rtnl_unlock(); 3113 if (err) 3114 return err; 3115 3116 ifc32.ifc_len = ifc.ifc_len; 3117 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 3118 return -EFAULT; 3119 3120 return 0; 3121 } 3122 3123 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 3124 { 3125 struct compat_ethtool_rxnfc __user *compat_rxnfc; 3126 bool convert_in = false, convert_out = false; 3127 size_t buf_size = 0; 3128 struct ethtool_rxnfc __user *rxnfc = NULL; 3129 struct ifreq ifr; 3130 u32 rule_cnt = 0, actual_rule_cnt; 3131 u32 ethcmd; 3132 u32 data; 3133 int ret; 3134 3135 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 3136 return -EFAULT; 3137 3138 compat_rxnfc = compat_ptr(data); 3139 3140 if (get_user(ethcmd, &compat_rxnfc->cmd)) 3141 return -EFAULT; 3142 3143 /* Most ethtool structures are defined without padding. 3144 * Unfortunately struct ethtool_rxnfc is an exception. 3145 */ 3146 switch (ethcmd) { 3147 default: 3148 break; 3149 case ETHTOOL_GRXCLSRLALL: 3150 /* Buffer size is variable */ 3151 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 3152 return -EFAULT; 3153 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 3154 return -ENOMEM; 3155 buf_size += rule_cnt * sizeof(u32); 3156 fallthrough; 3157 case ETHTOOL_GRXRINGS: 3158 case ETHTOOL_GRXCLSRLCNT: 3159 case ETHTOOL_GRXCLSRULE: 3160 case ETHTOOL_SRXCLSRLINS: 3161 convert_out = true; 3162 fallthrough; 3163 case ETHTOOL_SRXCLSRLDEL: 3164 buf_size += sizeof(struct ethtool_rxnfc); 3165 convert_in = true; 3166 rxnfc = compat_alloc_user_space(buf_size); 3167 break; 3168 } 3169 3170 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3171 return -EFAULT; 3172 3173 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3174 3175 if (convert_in) { 3176 /* We expect there to be holes between fs.m_ext and 3177 * fs.ring_cookie and at the end of fs, but nowhere else. 3178 */ 3179 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3180 sizeof(compat_rxnfc->fs.m_ext) != 3181 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3182 sizeof(rxnfc->fs.m_ext)); 3183 BUILD_BUG_ON( 3184 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3185 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3186 offsetof(struct ethtool_rxnfc, fs.location) - 3187 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3188 3189 if (copy_in_user(rxnfc, compat_rxnfc, 3190 (void __user *)(&rxnfc->fs.m_ext + 1) - 3191 (void __user *)rxnfc) || 3192 copy_in_user(&rxnfc->fs.ring_cookie, 3193 &compat_rxnfc->fs.ring_cookie, 3194 (void __user *)(&rxnfc->fs.location + 1) - 3195 (void __user *)&rxnfc->fs.ring_cookie)) 3196 return -EFAULT; 3197 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3198 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3199 return -EFAULT; 3200 } else if (copy_in_user(&rxnfc->rule_cnt, 3201 &compat_rxnfc->rule_cnt, 3202 sizeof(rxnfc->rule_cnt))) 3203 return -EFAULT; 3204 } 3205 3206 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3207 if (ret) 3208 return ret; 3209 3210 if (convert_out) { 3211 if (copy_in_user(compat_rxnfc, rxnfc, 3212 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3213 (const void __user *)rxnfc) || 3214 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3215 &rxnfc->fs.ring_cookie, 3216 (const void __user *)(&rxnfc->fs.location + 1) - 3217 (const void __user *)&rxnfc->fs.ring_cookie) || 3218 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3219 sizeof(rxnfc->rule_cnt))) 3220 return -EFAULT; 3221 3222 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3223 /* As an optimisation, we only copy the actual 3224 * number of rules that the underlying 3225 * function returned. Since Mallory might 3226 * change the rule count in user memory, we 3227 * check that it is less than the rule count 3228 * originally given (as the user buffer size), 3229 * which has been range-checked. 3230 */ 3231 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3232 return -EFAULT; 3233 if (actual_rule_cnt < rule_cnt) 3234 rule_cnt = actual_rule_cnt; 3235 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3236 &rxnfc->rule_locs[0], 3237 rule_cnt * sizeof(u32))) 3238 return -EFAULT; 3239 } 3240 } 3241 3242 return 0; 3243 } 3244 3245 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3246 { 3247 compat_uptr_t uptr32; 3248 struct ifreq ifr; 3249 void __user *saved; 3250 int err; 3251 3252 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3253 return -EFAULT; 3254 3255 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3256 return -EFAULT; 3257 3258 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3259 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3260 3261 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3262 if (!err) { 3263 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3264 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3265 err = -EFAULT; 3266 } 3267 return err; 3268 } 3269 3270 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3271 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3272 struct compat_ifreq __user *u_ifreq32) 3273 { 3274 struct ifreq ifreq; 3275 u32 data32; 3276 3277 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3278 return -EFAULT; 3279 if (get_user(data32, &u_ifreq32->ifr_data)) 3280 return -EFAULT; 3281 ifreq.ifr_data = compat_ptr(data32); 3282 3283 return dev_ioctl(net, cmd, &ifreq, NULL); 3284 } 3285 3286 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3287 unsigned int cmd, 3288 struct compat_ifreq __user *uifr32) 3289 { 3290 struct ifreq __user *uifr; 3291 int err; 3292 3293 /* Handle the fact that while struct ifreq has the same *layout* on 3294 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3295 * which are handled elsewhere, it still has different *size* due to 3296 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3297 * resulting in struct ifreq being 32 and 40 bytes respectively). 3298 * As a result, if the struct happens to be at the end of a page and 3299 * the next page isn't readable/writable, we get a fault. To prevent 3300 * that, copy back and forth to the full size. 3301 */ 3302 3303 uifr = compat_alloc_user_space(sizeof(*uifr)); 3304 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3305 return -EFAULT; 3306 3307 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3308 3309 if (!err) { 3310 switch (cmd) { 3311 case SIOCGIFFLAGS: 3312 case SIOCGIFMETRIC: 3313 case SIOCGIFMTU: 3314 case SIOCGIFMEM: 3315 case SIOCGIFHWADDR: 3316 case SIOCGIFINDEX: 3317 case SIOCGIFADDR: 3318 case SIOCGIFBRDADDR: 3319 case SIOCGIFDSTADDR: 3320 case SIOCGIFNETMASK: 3321 case SIOCGIFPFLAGS: 3322 case SIOCGIFTXQLEN: 3323 case SIOCGMIIPHY: 3324 case SIOCGMIIREG: 3325 case SIOCGIFNAME: 3326 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3327 err = -EFAULT; 3328 break; 3329 } 3330 } 3331 return err; 3332 } 3333 3334 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3335 struct compat_ifreq __user *uifr32) 3336 { 3337 struct ifreq ifr; 3338 struct compat_ifmap __user *uifmap32; 3339 int err; 3340 3341 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3342 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3343 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3344 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3345 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3346 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3347 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3348 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3349 if (err) 3350 return -EFAULT; 3351 3352 err = dev_ioctl(net, cmd, &ifr, NULL); 3353 3354 if (cmd == SIOCGIFMAP && !err) { 3355 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3356 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3357 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3358 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3359 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3360 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3361 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3362 if (err) 3363 err = -EFAULT; 3364 } 3365 return err; 3366 } 3367 3368 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3369 * for some operations; this forces use of the newer bridge-utils that 3370 * use compatible ioctls 3371 */ 3372 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3373 { 3374 compat_ulong_t tmp; 3375 3376 if (get_user(tmp, argp)) 3377 return -EFAULT; 3378 if (tmp == BRCTL_GET_VERSION) 3379 return BRCTL_VERSION + 1; 3380 return -EINVAL; 3381 } 3382 3383 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3384 unsigned int cmd, unsigned long arg) 3385 { 3386 void __user *argp = compat_ptr(arg); 3387 struct sock *sk = sock->sk; 3388 struct net *net = sock_net(sk); 3389 3390 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3391 return compat_ifr_data_ioctl(net, cmd, argp); 3392 3393 switch (cmd) { 3394 case SIOCSIFBR: 3395 case SIOCGIFBR: 3396 return old_bridge_ioctl(argp); 3397 case SIOCGIFCONF: 3398 return compat_dev_ifconf(net, argp); 3399 case SIOCETHTOOL: 3400 return ethtool_ioctl(net, argp); 3401 case SIOCWANDEV: 3402 return compat_siocwandev(net, argp); 3403 case SIOCGIFMAP: 3404 case SIOCSIFMAP: 3405 return compat_sioc_ifmap(net, cmd, argp); 3406 case SIOCGSTAMP_OLD: 3407 case SIOCGSTAMPNS_OLD: 3408 if (!sock->ops->gettstamp) 3409 return -ENOIOCTLCMD; 3410 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3411 !COMPAT_USE_64BIT_TIME); 3412 3413 case SIOCBONDSLAVEINFOQUERY: 3414 case SIOCBONDINFOQUERY: 3415 case SIOCSHWTSTAMP: 3416 case SIOCGHWTSTAMP: 3417 return compat_ifr_data_ioctl(net, cmd, argp); 3418 3419 case FIOSETOWN: 3420 case SIOCSPGRP: 3421 case FIOGETOWN: 3422 case SIOCGPGRP: 3423 case SIOCBRADDBR: 3424 case SIOCBRDELBR: 3425 case SIOCGIFVLAN: 3426 case SIOCSIFVLAN: 3427 case SIOCGSKNS: 3428 case SIOCGSTAMP_NEW: 3429 case SIOCGSTAMPNS_NEW: 3430 return sock_ioctl(file, cmd, arg); 3431 3432 case SIOCGIFFLAGS: 3433 case SIOCSIFFLAGS: 3434 case SIOCGIFMETRIC: 3435 case SIOCSIFMETRIC: 3436 case SIOCGIFMTU: 3437 case SIOCSIFMTU: 3438 case SIOCGIFMEM: 3439 case SIOCSIFMEM: 3440 case SIOCGIFHWADDR: 3441 case SIOCSIFHWADDR: 3442 case SIOCADDMULTI: 3443 case SIOCDELMULTI: 3444 case SIOCGIFINDEX: 3445 case SIOCGIFADDR: 3446 case SIOCSIFADDR: 3447 case SIOCSIFHWBROADCAST: 3448 case SIOCDIFADDR: 3449 case SIOCGIFBRDADDR: 3450 case SIOCSIFBRDADDR: 3451 case SIOCGIFDSTADDR: 3452 case SIOCSIFDSTADDR: 3453 case SIOCGIFNETMASK: 3454 case SIOCSIFNETMASK: 3455 case SIOCSIFPFLAGS: 3456 case SIOCGIFPFLAGS: 3457 case SIOCGIFTXQLEN: 3458 case SIOCSIFTXQLEN: 3459 case SIOCBRADDIF: 3460 case SIOCBRDELIF: 3461 case SIOCGIFNAME: 3462 case SIOCSIFNAME: 3463 case SIOCGMIIPHY: 3464 case SIOCGMIIREG: 3465 case SIOCSMIIREG: 3466 case SIOCBONDENSLAVE: 3467 case SIOCBONDRELEASE: 3468 case SIOCBONDSETHWADDR: 3469 case SIOCBONDCHANGEACTIVE: 3470 return compat_ifreq_ioctl(net, sock, cmd, argp); 3471 3472 case SIOCSARP: 3473 case SIOCGARP: 3474 case SIOCDARP: 3475 case SIOCOUTQ: 3476 case SIOCOUTQNSD: 3477 case SIOCATMARK: 3478 return sock_do_ioctl(net, sock, cmd, arg); 3479 } 3480 3481 return -ENOIOCTLCMD; 3482 } 3483 3484 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3485 unsigned long arg) 3486 { 3487 struct socket *sock = file->private_data; 3488 int ret = -ENOIOCTLCMD; 3489 struct sock *sk; 3490 struct net *net; 3491 3492 sk = sock->sk; 3493 net = sock_net(sk); 3494 3495 if (sock->ops->compat_ioctl) 3496 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3497 3498 if (ret == -ENOIOCTLCMD && 3499 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3500 ret = compat_wext_handle_ioctl(net, cmd, arg); 3501 3502 if (ret == -ENOIOCTLCMD) 3503 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3504 3505 return ret; 3506 } 3507 #endif 3508 3509 /** 3510 * kernel_bind - bind an address to a socket (kernel space) 3511 * @sock: socket 3512 * @addr: address 3513 * @addrlen: length of address 3514 * 3515 * Returns 0 or an error. 3516 */ 3517 3518 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3519 { 3520 return sock->ops->bind(sock, addr, addrlen); 3521 } 3522 EXPORT_SYMBOL(kernel_bind); 3523 3524 /** 3525 * kernel_listen - move socket to listening state (kernel space) 3526 * @sock: socket 3527 * @backlog: pending connections queue size 3528 * 3529 * Returns 0 or an error. 3530 */ 3531 3532 int kernel_listen(struct socket *sock, int backlog) 3533 { 3534 return sock->ops->listen(sock, backlog); 3535 } 3536 EXPORT_SYMBOL(kernel_listen); 3537 3538 /** 3539 * kernel_accept - accept a connection (kernel space) 3540 * @sock: listening socket 3541 * @newsock: new connected socket 3542 * @flags: flags 3543 * 3544 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3545 * If it fails, @newsock is guaranteed to be %NULL. 3546 * Returns 0 or an error. 3547 */ 3548 3549 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3550 { 3551 struct sock *sk = sock->sk; 3552 int err; 3553 3554 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3555 newsock); 3556 if (err < 0) 3557 goto done; 3558 3559 err = sock->ops->accept(sock, *newsock, flags, true); 3560 if (err < 0) { 3561 sock_release(*newsock); 3562 *newsock = NULL; 3563 goto done; 3564 } 3565 3566 (*newsock)->ops = sock->ops; 3567 __module_get((*newsock)->ops->owner); 3568 3569 done: 3570 return err; 3571 } 3572 EXPORT_SYMBOL(kernel_accept); 3573 3574 /** 3575 * kernel_connect - connect a socket (kernel space) 3576 * @sock: socket 3577 * @addr: address 3578 * @addrlen: address length 3579 * @flags: flags (O_NONBLOCK, ...) 3580 * 3581 * For datagram sockets, @addr is the addres to which datagrams are sent 3582 * by default, and the only address from which datagrams are received. 3583 * For stream sockets, attempts to connect to @addr. 3584 * Returns 0 or an error code. 3585 */ 3586 3587 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3588 int flags) 3589 { 3590 return sock->ops->connect(sock, addr, addrlen, flags); 3591 } 3592 EXPORT_SYMBOL(kernel_connect); 3593 3594 /** 3595 * kernel_getsockname - get the address which the socket is bound (kernel space) 3596 * @sock: socket 3597 * @addr: address holder 3598 * 3599 * Fills the @addr pointer with the address which the socket is bound. 3600 * Returns 0 or an error code. 3601 */ 3602 3603 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3604 { 3605 return sock->ops->getname(sock, addr, 0); 3606 } 3607 EXPORT_SYMBOL(kernel_getsockname); 3608 3609 /** 3610 * kernel_getpeername - get the address which the socket is connected (kernel space) 3611 * @sock: socket 3612 * @addr: address holder 3613 * 3614 * Fills the @addr pointer with the address which the socket is connected. 3615 * Returns 0 or an error code. 3616 */ 3617 3618 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3619 { 3620 return sock->ops->getname(sock, addr, 1); 3621 } 3622 EXPORT_SYMBOL(kernel_getpeername); 3623 3624 /** 3625 * kernel_sendpage - send a &page through a socket (kernel space) 3626 * @sock: socket 3627 * @page: page 3628 * @offset: page offset 3629 * @size: total size in bytes 3630 * @flags: flags (MSG_DONTWAIT, ...) 3631 * 3632 * Returns the total amount sent in bytes or an error. 3633 */ 3634 3635 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3636 size_t size, int flags) 3637 { 3638 if (sock->ops->sendpage) { 3639 /* Warn in case the improper page to zero-copy send */ 3640 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send"); 3641 return sock->ops->sendpage(sock, page, offset, size, flags); 3642 } 3643 return sock_no_sendpage(sock, page, offset, size, flags); 3644 } 3645 EXPORT_SYMBOL(kernel_sendpage); 3646 3647 /** 3648 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3649 * @sk: sock 3650 * @page: page 3651 * @offset: page offset 3652 * @size: total size in bytes 3653 * @flags: flags (MSG_DONTWAIT, ...) 3654 * 3655 * Returns the total amount sent in bytes or an error. 3656 * Caller must hold @sk. 3657 */ 3658 3659 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3660 size_t size, int flags) 3661 { 3662 struct socket *sock = sk->sk_socket; 3663 3664 if (sock->ops->sendpage_locked) 3665 return sock->ops->sendpage_locked(sk, page, offset, size, 3666 flags); 3667 3668 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3669 } 3670 EXPORT_SYMBOL(kernel_sendpage_locked); 3671 3672 /** 3673 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3674 * @sock: socket 3675 * @how: connection part 3676 * 3677 * Returns 0 or an error. 3678 */ 3679 3680 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3681 { 3682 return sock->ops->shutdown(sock, how); 3683 } 3684 EXPORT_SYMBOL(kernel_sock_shutdown); 3685 3686 /** 3687 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3688 * @sk: socket 3689 * 3690 * This routine returns the IP overhead imposed by a socket i.e. 3691 * the length of the underlying IP header, depending on whether 3692 * this is an IPv4 or IPv6 socket and the length from IP options turned 3693 * on at the socket. Assumes that the caller has a lock on the socket. 3694 */ 3695 3696 u32 kernel_sock_ip_overhead(struct sock *sk) 3697 { 3698 struct inet_sock *inet; 3699 struct ip_options_rcu *opt; 3700 u32 overhead = 0; 3701 #if IS_ENABLED(CONFIG_IPV6) 3702 struct ipv6_pinfo *np; 3703 struct ipv6_txoptions *optv6 = NULL; 3704 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3705 3706 if (!sk) 3707 return overhead; 3708 3709 switch (sk->sk_family) { 3710 case AF_INET: 3711 inet = inet_sk(sk); 3712 overhead += sizeof(struct iphdr); 3713 opt = rcu_dereference_protected(inet->inet_opt, 3714 sock_owned_by_user(sk)); 3715 if (opt) 3716 overhead += opt->opt.optlen; 3717 return overhead; 3718 #if IS_ENABLED(CONFIG_IPV6) 3719 case AF_INET6: 3720 np = inet6_sk(sk); 3721 overhead += sizeof(struct ipv6hdr); 3722 if (np) 3723 optv6 = rcu_dereference_protected(np->opt, 3724 sock_owned_by_user(sk)); 3725 if (optv6) 3726 overhead += (optv6->opt_flen + optv6->opt_nflen); 3727 return overhead; 3728 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3729 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3730 return overhead; 3731 } 3732 } 3733 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3734