1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 112 unsigned long nr_segs, loff_t pos); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static unsigned int sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .aio_read = sock_aio_read, 139 .aio_write = sock_aio_write, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .open = sock_no_open, /* special open code to disallow open via /proc */ 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Statistics counters of the socket lists 163 */ 164 165 static DEFINE_PER_CPU(int, sockets_in_use); 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 static int move_addr_to_user(struct sockaddr *kaddr, int klen, 213 void __user *uaddr, int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL); 248 if (!ei->socket.wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&ei->socket.wq->wait); 253 ei->socket.wq->fasync_list = NULL; 254 255 ei->socket.state = SS_UNCONNECTED; 256 ei->socket.flags = 0; 257 ei->socket.ops = NULL; 258 ei->socket.sk = NULL; 259 ei->socket.file = NULL; 260 261 return &ei->vfs_inode; 262 } 263 264 265 static void wq_free_rcu(struct rcu_head *head) 266 { 267 struct socket_wq *wq = container_of(head, struct socket_wq, rcu); 268 269 kfree(wq); 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 276 ei = container_of(inode, struct socket_alloc, vfs_inode); 277 call_rcu(&ei->socket.wq->rcu, wq_free_rcu); 278 kmem_cache_free(sock_inode_cachep, ei); 279 } 280 281 static void init_once(void *foo) 282 { 283 struct socket_alloc *ei = (struct socket_alloc *)foo; 284 285 inode_init_once(&ei->vfs_inode); 286 } 287 288 static int init_inodecache(void) 289 { 290 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 291 sizeof(struct socket_alloc), 292 0, 293 (SLAB_HWCACHE_ALIGN | 294 SLAB_RECLAIM_ACCOUNT | 295 SLAB_MEM_SPREAD), 296 init_once); 297 if (sock_inode_cachep == NULL) 298 return -ENOMEM; 299 return 0; 300 } 301 302 static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306 }; 307 308 static int sockfs_get_sb(struct file_system_type *fs_type, 309 int flags, const char *dev_name, void *data, 310 struct vfsmount *mnt) 311 { 312 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 313 mnt); 314 } 315 316 static struct vfsmount *sock_mnt __read_mostly; 317 318 static struct file_system_type sock_fs_type = { 319 .name = "sockfs", 320 .get_sb = sockfs_get_sb, 321 .kill_sb = kill_anon_super, 322 }; 323 324 /* 325 * sockfs_dname() is called from d_path(). 326 */ 327 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 328 { 329 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 330 dentry->d_inode->i_ino); 331 } 332 333 static const struct dentry_operations sockfs_dentry_operations = { 334 .d_dname = sockfs_dname, 335 }; 336 337 /* 338 * Obtains the first available file descriptor and sets it up for use. 339 * 340 * These functions create file structures and maps them to fd space 341 * of the current process. On success it returns file descriptor 342 * and file struct implicitly stored in sock->file. 343 * Note that another thread may close file descriptor before we return 344 * from this function. We use the fact that now we do not refer 345 * to socket after mapping. If one day we will need it, this 346 * function will increment ref. count on file by 1. 347 * 348 * In any case returned fd MAY BE not valid! 349 * This race condition is unavoidable 350 * with shared fd spaces, we cannot solve it inside kernel, 351 * but we take care of internal coherence yet. 352 */ 353 354 static int sock_alloc_file(struct socket *sock, struct file **f, int flags) 355 { 356 struct qstr name = { .name = "" }; 357 struct path path; 358 struct file *file; 359 int fd; 360 361 fd = get_unused_fd_flags(flags); 362 if (unlikely(fd < 0)) 363 return fd; 364 365 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 366 if (unlikely(!path.dentry)) { 367 put_unused_fd(fd); 368 return -ENOMEM; 369 } 370 path.mnt = mntget(sock_mnt); 371 372 path.dentry->d_op = &sockfs_dentry_operations; 373 d_instantiate(path.dentry, SOCK_INODE(sock)); 374 SOCK_INODE(sock)->i_fop = &socket_file_ops; 375 376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 377 &socket_file_ops); 378 if (unlikely(!file)) { 379 /* drop dentry, keep inode */ 380 atomic_inc(&path.dentry->d_inode->i_count); 381 path_put(&path); 382 put_unused_fd(fd); 383 return -ENFILE; 384 } 385 386 sock->file = file; 387 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 388 file->f_pos = 0; 389 file->private_data = sock; 390 391 *f = file; 392 return fd; 393 } 394 395 int sock_map_fd(struct socket *sock, int flags) 396 { 397 struct file *newfile; 398 int fd = sock_alloc_file(sock, &newfile, flags); 399 400 if (likely(fd >= 0)) 401 fd_install(fd, newfile); 402 403 return fd; 404 } 405 EXPORT_SYMBOL(sock_map_fd); 406 407 static struct socket *sock_from_file(struct file *file, int *err) 408 { 409 if (file->f_op == &socket_file_ops) 410 return file->private_data; /* set in sock_map_fd */ 411 412 *err = -ENOTSOCK; 413 return NULL; 414 } 415 416 /** 417 * sockfd_lookup - Go from a file number to its socket slot 418 * @fd: file handle 419 * @err: pointer to an error code return 420 * 421 * The file handle passed in is locked and the socket it is bound 422 * too is returned. If an error occurs the err pointer is overwritten 423 * with a negative errno code and NULL is returned. The function checks 424 * for both invalid handles and passing a handle which is not a socket. 425 * 426 * On a success the socket object pointer is returned. 427 */ 428 429 struct socket *sockfd_lookup(int fd, int *err) 430 { 431 struct file *file; 432 struct socket *sock; 433 434 file = fget(fd); 435 if (!file) { 436 *err = -EBADF; 437 return NULL; 438 } 439 440 sock = sock_from_file(file, err); 441 if (!sock) 442 fput(file); 443 return sock; 444 } 445 EXPORT_SYMBOL(sockfd_lookup); 446 447 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 448 { 449 struct file *file; 450 struct socket *sock; 451 452 *err = -EBADF; 453 file = fget_light(fd, fput_needed); 454 if (file) { 455 sock = sock_from_file(file, err); 456 if (sock) 457 return sock; 458 fput_light(file, *fput_needed); 459 } 460 return NULL; 461 } 462 463 /** 464 * sock_alloc - allocate a socket 465 * 466 * Allocate a new inode and socket object. The two are bound together 467 * and initialised. The socket is then returned. If we are out of inodes 468 * NULL is returned. 469 */ 470 471 static struct socket *sock_alloc(void) 472 { 473 struct inode *inode; 474 struct socket *sock; 475 476 inode = new_inode(sock_mnt->mnt_sb); 477 if (!inode) 478 return NULL; 479 480 sock = SOCKET_I(inode); 481 482 kmemcheck_annotate_bitfield(sock, type); 483 inode->i_mode = S_IFSOCK | S_IRWXUGO; 484 inode->i_uid = current_fsuid(); 485 inode->i_gid = current_fsgid(); 486 487 percpu_add(sockets_in_use, 1); 488 return sock; 489 } 490 491 /* 492 * In theory you can't get an open on this inode, but /proc provides 493 * a back door. Remember to keep it shut otherwise you'll let the 494 * creepy crawlies in. 495 */ 496 497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 498 { 499 return -ENXIO; 500 } 501 502 const struct file_operations bad_sock_fops = { 503 .owner = THIS_MODULE, 504 .open = sock_no_open, 505 .llseek = noop_llseek, 506 }; 507 508 /** 509 * sock_release - close a socket 510 * @sock: socket to close 511 * 512 * The socket is released from the protocol stack if it has a release 513 * callback, and the inode is then released if the socket is bound to 514 * an inode not a file. 515 */ 516 517 void sock_release(struct socket *sock) 518 { 519 if (sock->ops) { 520 struct module *owner = sock->ops->owner; 521 522 sock->ops->release(sock); 523 sock->ops = NULL; 524 module_put(owner); 525 } 526 527 if (sock->wq->fasync_list) 528 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 529 530 percpu_sub(sockets_in_use, 1); 531 if (!sock->file) { 532 iput(SOCK_INODE(sock)); 533 return; 534 } 535 sock->file = NULL; 536 } 537 EXPORT_SYMBOL(sock_release); 538 539 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 540 { 541 *tx_flags = 0; 542 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 543 *tx_flags |= SKBTX_HW_TSTAMP; 544 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 545 *tx_flags |= SKBTX_SW_TSTAMP; 546 return 0; 547 } 548 EXPORT_SYMBOL(sock_tx_timestamp); 549 550 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 551 struct msghdr *msg, size_t size) 552 { 553 struct sock_iocb *si = kiocb_to_siocb(iocb); 554 int err; 555 556 sock_update_classid(sock->sk); 557 558 si->sock = sock; 559 si->scm = NULL; 560 si->msg = msg; 561 si->size = size; 562 563 err = security_socket_sendmsg(sock, msg, size); 564 if (err) 565 return err; 566 567 return sock->ops->sendmsg(iocb, sock, msg, size); 568 } 569 570 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 571 { 572 struct kiocb iocb; 573 struct sock_iocb siocb; 574 int ret; 575 576 init_sync_kiocb(&iocb, NULL); 577 iocb.private = &siocb; 578 ret = __sock_sendmsg(&iocb, sock, msg, size); 579 if (-EIOCBQUEUED == ret) 580 ret = wait_on_sync_kiocb(&iocb); 581 return ret; 582 } 583 EXPORT_SYMBOL(sock_sendmsg); 584 585 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 586 struct kvec *vec, size_t num, size_t size) 587 { 588 mm_segment_t oldfs = get_fs(); 589 int result; 590 591 set_fs(KERNEL_DS); 592 /* 593 * the following is safe, since for compiler definitions of kvec and 594 * iovec are identical, yielding the same in-core layout and alignment 595 */ 596 msg->msg_iov = (struct iovec *)vec; 597 msg->msg_iovlen = num; 598 result = sock_sendmsg(sock, msg, size); 599 set_fs(oldfs); 600 return result; 601 } 602 EXPORT_SYMBOL(kernel_sendmsg); 603 604 static int ktime2ts(ktime_t kt, struct timespec *ts) 605 { 606 if (kt.tv64) { 607 *ts = ktime_to_timespec(kt); 608 return 1; 609 } else { 610 return 0; 611 } 612 } 613 614 /* 615 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 616 */ 617 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 618 struct sk_buff *skb) 619 { 620 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 621 struct timespec ts[3]; 622 int empty = 1; 623 struct skb_shared_hwtstamps *shhwtstamps = 624 skb_hwtstamps(skb); 625 626 /* Race occurred between timestamp enabling and packet 627 receiving. Fill in the current time for now. */ 628 if (need_software_tstamp && skb->tstamp.tv64 == 0) 629 __net_timestamp(skb); 630 631 if (need_software_tstamp) { 632 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 633 struct timeval tv; 634 skb_get_timestamp(skb, &tv); 635 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 636 sizeof(tv), &tv); 637 } else { 638 skb_get_timestampns(skb, &ts[0]); 639 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 640 sizeof(ts[0]), &ts[0]); 641 } 642 } 643 644 645 memset(ts, 0, sizeof(ts)); 646 if (skb->tstamp.tv64 && 647 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 648 skb_get_timestampns(skb, ts + 0); 649 empty = 0; 650 } 651 if (shhwtstamps) { 652 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 653 ktime2ts(shhwtstamps->syststamp, ts + 1)) 654 empty = 0; 655 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 656 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 657 empty = 0; 658 } 659 if (!empty) 660 put_cmsg(msg, SOL_SOCKET, 661 SCM_TIMESTAMPING, sizeof(ts), &ts); 662 } 663 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 664 665 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 666 struct sk_buff *skb) 667 { 668 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 669 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 670 sizeof(__u32), &skb->dropcount); 671 } 672 673 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 674 struct sk_buff *skb) 675 { 676 sock_recv_timestamp(msg, sk, skb); 677 sock_recv_drops(msg, sk, skb); 678 } 679 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 680 681 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 682 struct msghdr *msg, size_t size, int flags) 683 { 684 struct sock_iocb *si = kiocb_to_siocb(iocb); 685 686 sock_update_classid(sock->sk); 687 688 si->sock = sock; 689 si->scm = NULL; 690 si->msg = msg; 691 si->size = size; 692 si->flags = flags; 693 694 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 695 } 696 697 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 698 struct msghdr *msg, size_t size, int flags) 699 { 700 int err = security_socket_recvmsg(sock, msg, size, flags); 701 702 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 703 } 704 705 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 706 size_t size, int flags) 707 { 708 struct kiocb iocb; 709 struct sock_iocb siocb; 710 int ret; 711 712 init_sync_kiocb(&iocb, NULL); 713 iocb.private = &siocb; 714 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 715 if (-EIOCBQUEUED == ret) 716 ret = wait_on_sync_kiocb(&iocb); 717 return ret; 718 } 719 EXPORT_SYMBOL(sock_recvmsg); 720 721 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 722 size_t size, int flags) 723 { 724 struct kiocb iocb; 725 struct sock_iocb siocb; 726 int ret; 727 728 init_sync_kiocb(&iocb, NULL); 729 iocb.private = &siocb; 730 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 731 if (-EIOCBQUEUED == ret) 732 ret = wait_on_sync_kiocb(&iocb); 733 return ret; 734 } 735 736 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 737 struct kvec *vec, size_t num, size_t size, int flags) 738 { 739 mm_segment_t oldfs = get_fs(); 740 int result; 741 742 set_fs(KERNEL_DS); 743 /* 744 * the following is safe, since for compiler definitions of kvec and 745 * iovec are identical, yielding the same in-core layout and alignment 746 */ 747 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 748 result = sock_recvmsg(sock, msg, size, flags); 749 set_fs(oldfs); 750 return result; 751 } 752 EXPORT_SYMBOL(kernel_recvmsg); 753 754 static void sock_aio_dtor(struct kiocb *iocb) 755 { 756 kfree(iocb->private); 757 } 758 759 static ssize_t sock_sendpage(struct file *file, struct page *page, 760 int offset, size_t size, loff_t *ppos, int more) 761 { 762 struct socket *sock; 763 int flags; 764 765 sock = file->private_data; 766 767 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 768 if (more) 769 flags |= MSG_MORE; 770 771 return kernel_sendpage(sock, page, offset, size, flags); 772 } 773 774 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 775 struct pipe_inode_info *pipe, size_t len, 776 unsigned int flags) 777 { 778 struct socket *sock = file->private_data; 779 780 if (unlikely(!sock->ops->splice_read)) 781 return -EINVAL; 782 783 sock_update_classid(sock->sk); 784 785 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 786 } 787 788 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 789 struct sock_iocb *siocb) 790 { 791 if (!is_sync_kiocb(iocb)) { 792 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 793 if (!siocb) 794 return NULL; 795 iocb->ki_dtor = sock_aio_dtor; 796 } 797 798 siocb->kiocb = iocb; 799 iocb->private = siocb; 800 return siocb; 801 } 802 803 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 804 struct file *file, const struct iovec *iov, 805 unsigned long nr_segs) 806 { 807 struct socket *sock = file->private_data; 808 size_t size = 0; 809 int i; 810 811 for (i = 0; i < nr_segs; i++) 812 size += iov[i].iov_len; 813 814 msg->msg_name = NULL; 815 msg->msg_namelen = 0; 816 msg->msg_control = NULL; 817 msg->msg_controllen = 0; 818 msg->msg_iov = (struct iovec *)iov; 819 msg->msg_iovlen = nr_segs; 820 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 821 822 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 823 } 824 825 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 826 unsigned long nr_segs, loff_t pos) 827 { 828 struct sock_iocb siocb, *x; 829 830 if (pos != 0) 831 return -ESPIPE; 832 833 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 834 return 0; 835 836 837 x = alloc_sock_iocb(iocb, &siocb); 838 if (!x) 839 return -ENOMEM; 840 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 841 } 842 843 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 844 struct file *file, const struct iovec *iov, 845 unsigned long nr_segs) 846 { 847 struct socket *sock = file->private_data; 848 size_t size = 0; 849 int i; 850 851 for (i = 0; i < nr_segs; i++) 852 size += iov[i].iov_len; 853 854 msg->msg_name = NULL; 855 msg->msg_namelen = 0; 856 msg->msg_control = NULL; 857 msg->msg_controllen = 0; 858 msg->msg_iov = (struct iovec *)iov; 859 msg->msg_iovlen = nr_segs; 860 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 861 if (sock->type == SOCK_SEQPACKET) 862 msg->msg_flags |= MSG_EOR; 863 864 return __sock_sendmsg(iocb, sock, msg, size); 865 } 866 867 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 868 unsigned long nr_segs, loff_t pos) 869 { 870 struct sock_iocb siocb, *x; 871 872 if (pos != 0) 873 return -ESPIPE; 874 875 x = alloc_sock_iocb(iocb, &siocb); 876 if (!x) 877 return -ENOMEM; 878 879 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 880 } 881 882 /* 883 * Atomic setting of ioctl hooks to avoid race 884 * with module unload. 885 */ 886 887 static DEFINE_MUTEX(br_ioctl_mutex); 888 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 889 890 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 891 { 892 mutex_lock(&br_ioctl_mutex); 893 br_ioctl_hook = hook; 894 mutex_unlock(&br_ioctl_mutex); 895 } 896 EXPORT_SYMBOL(brioctl_set); 897 898 static DEFINE_MUTEX(vlan_ioctl_mutex); 899 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 900 901 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 902 { 903 mutex_lock(&vlan_ioctl_mutex); 904 vlan_ioctl_hook = hook; 905 mutex_unlock(&vlan_ioctl_mutex); 906 } 907 EXPORT_SYMBOL(vlan_ioctl_set); 908 909 static DEFINE_MUTEX(dlci_ioctl_mutex); 910 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 911 912 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 913 { 914 mutex_lock(&dlci_ioctl_mutex); 915 dlci_ioctl_hook = hook; 916 mutex_unlock(&dlci_ioctl_mutex); 917 } 918 EXPORT_SYMBOL(dlci_ioctl_set); 919 920 static long sock_do_ioctl(struct net *net, struct socket *sock, 921 unsigned int cmd, unsigned long arg) 922 { 923 int err; 924 void __user *argp = (void __user *)arg; 925 926 err = sock->ops->ioctl(sock, cmd, arg); 927 928 /* 929 * If this ioctl is unknown try to hand it down 930 * to the NIC driver. 931 */ 932 if (err == -ENOIOCTLCMD) 933 err = dev_ioctl(net, cmd, argp); 934 935 return err; 936 } 937 938 /* 939 * With an ioctl, arg may well be a user mode pointer, but we don't know 940 * what to do with it - that's up to the protocol still. 941 */ 942 943 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 944 { 945 struct socket *sock; 946 struct sock *sk; 947 void __user *argp = (void __user *)arg; 948 int pid, err; 949 struct net *net; 950 951 sock = file->private_data; 952 sk = sock->sk; 953 net = sock_net(sk); 954 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 955 err = dev_ioctl(net, cmd, argp); 956 } else 957 #ifdef CONFIG_WEXT_CORE 958 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 959 err = dev_ioctl(net, cmd, argp); 960 } else 961 #endif 962 switch (cmd) { 963 case FIOSETOWN: 964 case SIOCSPGRP: 965 err = -EFAULT; 966 if (get_user(pid, (int __user *)argp)) 967 break; 968 err = f_setown(sock->file, pid, 1); 969 break; 970 case FIOGETOWN: 971 case SIOCGPGRP: 972 err = put_user(f_getown(sock->file), 973 (int __user *)argp); 974 break; 975 case SIOCGIFBR: 976 case SIOCSIFBR: 977 case SIOCBRADDBR: 978 case SIOCBRDELBR: 979 err = -ENOPKG; 980 if (!br_ioctl_hook) 981 request_module("bridge"); 982 983 mutex_lock(&br_ioctl_mutex); 984 if (br_ioctl_hook) 985 err = br_ioctl_hook(net, cmd, argp); 986 mutex_unlock(&br_ioctl_mutex); 987 break; 988 case SIOCGIFVLAN: 989 case SIOCSIFVLAN: 990 err = -ENOPKG; 991 if (!vlan_ioctl_hook) 992 request_module("8021q"); 993 994 mutex_lock(&vlan_ioctl_mutex); 995 if (vlan_ioctl_hook) 996 err = vlan_ioctl_hook(net, argp); 997 mutex_unlock(&vlan_ioctl_mutex); 998 break; 999 case SIOCADDDLCI: 1000 case SIOCDELDLCI: 1001 err = -ENOPKG; 1002 if (!dlci_ioctl_hook) 1003 request_module("dlci"); 1004 1005 mutex_lock(&dlci_ioctl_mutex); 1006 if (dlci_ioctl_hook) 1007 err = dlci_ioctl_hook(cmd, argp); 1008 mutex_unlock(&dlci_ioctl_mutex); 1009 break; 1010 default: 1011 err = sock_do_ioctl(net, sock, cmd, arg); 1012 break; 1013 } 1014 return err; 1015 } 1016 1017 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1018 { 1019 int err; 1020 struct socket *sock = NULL; 1021 1022 err = security_socket_create(family, type, protocol, 1); 1023 if (err) 1024 goto out; 1025 1026 sock = sock_alloc(); 1027 if (!sock) { 1028 err = -ENOMEM; 1029 goto out; 1030 } 1031 1032 sock->type = type; 1033 err = security_socket_post_create(sock, family, type, protocol, 1); 1034 if (err) 1035 goto out_release; 1036 1037 out: 1038 *res = sock; 1039 return err; 1040 out_release: 1041 sock_release(sock); 1042 sock = NULL; 1043 goto out; 1044 } 1045 EXPORT_SYMBOL(sock_create_lite); 1046 1047 /* No kernel lock held - perfect */ 1048 static unsigned int sock_poll(struct file *file, poll_table *wait) 1049 { 1050 struct socket *sock; 1051 1052 /* 1053 * We can't return errors to poll, so it's either yes or no. 1054 */ 1055 sock = file->private_data; 1056 return sock->ops->poll(file, sock, wait); 1057 } 1058 1059 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1060 { 1061 struct socket *sock = file->private_data; 1062 1063 return sock->ops->mmap(file, sock, vma); 1064 } 1065 1066 static int sock_close(struct inode *inode, struct file *filp) 1067 { 1068 /* 1069 * It was possible the inode is NULL we were 1070 * closing an unfinished socket. 1071 */ 1072 1073 if (!inode) { 1074 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1075 return 0; 1076 } 1077 sock_release(SOCKET_I(inode)); 1078 return 0; 1079 } 1080 1081 /* 1082 * Update the socket async list 1083 * 1084 * Fasync_list locking strategy. 1085 * 1086 * 1. fasync_list is modified only under process context socket lock 1087 * i.e. under semaphore. 1088 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1089 * or under socket lock 1090 */ 1091 1092 static int sock_fasync(int fd, struct file *filp, int on) 1093 { 1094 struct socket *sock = filp->private_data; 1095 struct sock *sk = sock->sk; 1096 1097 if (sk == NULL) 1098 return -EINVAL; 1099 1100 lock_sock(sk); 1101 1102 fasync_helper(fd, filp, on, &sock->wq->fasync_list); 1103 1104 if (!sock->wq->fasync_list) 1105 sock_reset_flag(sk, SOCK_FASYNC); 1106 else 1107 sock_set_flag(sk, SOCK_FASYNC); 1108 1109 release_sock(sk); 1110 return 0; 1111 } 1112 1113 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1114 1115 int sock_wake_async(struct socket *sock, int how, int band) 1116 { 1117 struct socket_wq *wq; 1118 1119 if (!sock) 1120 return -1; 1121 rcu_read_lock(); 1122 wq = rcu_dereference(sock->wq); 1123 if (!wq || !wq->fasync_list) { 1124 rcu_read_unlock(); 1125 return -1; 1126 } 1127 switch (how) { 1128 case SOCK_WAKE_WAITD: 1129 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1130 break; 1131 goto call_kill; 1132 case SOCK_WAKE_SPACE: 1133 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1134 break; 1135 /* fall through */ 1136 case SOCK_WAKE_IO: 1137 call_kill: 1138 kill_fasync(&wq->fasync_list, SIGIO, band); 1139 break; 1140 case SOCK_WAKE_URG: 1141 kill_fasync(&wq->fasync_list, SIGURG, band); 1142 } 1143 rcu_read_unlock(); 1144 return 0; 1145 } 1146 EXPORT_SYMBOL(sock_wake_async); 1147 1148 static int __sock_create(struct net *net, int family, int type, int protocol, 1149 struct socket **res, int kern) 1150 { 1151 int err; 1152 struct socket *sock; 1153 const struct net_proto_family *pf; 1154 1155 /* 1156 * Check protocol is in range 1157 */ 1158 if (family < 0 || family >= NPROTO) 1159 return -EAFNOSUPPORT; 1160 if (type < 0 || type >= SOCK_MAX) 1161 return -EINVAL; 1162 1163 /* Compatibility. 1164 1165 This uglymoron is moved from INET layer to here to avoid 1166 deadlock in module load. 1167 */ 1168 if (family == PF_INET && type == SOCK_PACKET) { 1169 static int warned; 1170 if (!warned) { 1171 warned = 1; 1172 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1173 current->comm); 1174 } 1175 family = PF_PACKET; 1176 } 1177 1178 err = security_socket_create(family, type, protocol, kern); 1179 if (err) 1180 return err; 1181 1182 /* 1183 * Allocate the socket and allow the family to set things up. if 1184 * the protocol is 0, the family is instructed to select an appropriate 1185 * default. 1186 */ 1187 sock = sock_alloc(); 1188 if (!sock) { 1189 if (net_ratelimit()) 1190 printk(KERN_WARNING "socket: no more sockets\n"); 1191 return -ENFILE; /* Not exactly a match, but its the 1192 closest posix thing */ 1193 } 1194 1195 sock->type = type; 1196 1197 #ifdef CONFIG_MODULES 1198 /* Attempt to load a protocol module if the find failed. 1199 * 1200 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1201 * requested real, full-featured networking support upon configuration. 1202 * Otherwise module support will break! 1203 */ 1204 if (net_families[family] == NULL) 1205 request_module("net-pf-%d", family); 1206 #endif 1207 1208 rcu_read_lock(); 1209 pf = rcu_dereference(net_families[family]); 1210 err = -EAFNOSUPPORT; 1211 if (!pf) 1212 goto out_release; 1213 1214 /* 1215 * We will call the ->create function, that possibly is in a loadable 1216 * module, so we have to bump that loadable module refcnt first. 1217 */ 1218 if (!try_module_get(pf->owner)) 1219 goto out_release; 1220 1221 /* Now protected by module ref count */ 1222 rcu_read_unlock(); 1223 1224 err = pf->create(net, sock, protocol, kern); 1225 if (err < 0) 1226 goto out_module_put; 1227 1228 /* 1229 * Now to bump the refcnt of the [loadable] module that owns this 1230 * socket at sock_release time we decrement its refcnt. 1231 */ 1232 if (!try_module_get(sock->ops->owner)) 1233 goto out_module_busy; 1234 1235 /* 1236 * Now that we're done with the ->create function, the [loadable] 1237 * module can have its refcnt decremented 1238 */ 1239 module_put(pf->owner); 1240 err = security_socket_post_create(sock, family, type, protocol, kern); 1241 if (err) 1242 goto out_sock_release; 1243 *res = sock; 1244 1245 return 0; 1246 1247 out_module_busy: 1248 err = -EAFNOSUPPORT; 1249 out_module_put: 1250 sock->ops = NULL; 1251 module_put(pf->owner); 1252 out_sock_release: 1253 sock_release(sock); 1254 return err; 1255 1256 out_release: 1257 rcu_read_unlock(); 1258 goto out_sock_release; 1259 } 1260 1261 int sock_create(int family, int type, int protocol, struct socket **res) 1262 { 1263 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1264 } 1265 EXPORT_SYMBOL(sock_create); 1266 1267 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1268 { 1269 return __sock_create(&init_net, family, type, protocol, res, 1); 1270 } 1271 EXPORT_SYMBOL(sock_create_kern); 1272 1273 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1274 { 1275 int retval; 1276 struct socket *sock; 1277 int flags; 1278 1279 /* Check the SOCK_* constants for consistency. */ 1280 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1281 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1282 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1283 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1284 1285 flags = type & ~SOCK_TYPE_MASK; 1286 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1287 return -EINVAL; 1288 type &= SOCK_TYPE_MASK; 1289 1290 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1291 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1292 1293 retval = sock_create(family, type, protocol, &sock); 1294 if (retval < 0) 1295 goto out; 1296 1297 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1298 if (retval < 0) 1299 goto out_release; 1300 1301 out: 1302 /* It may be already another descriptor 8) Not kernel problem. */ 1303 return retval; 1304 1305 out_release: 1306 sock_release(sock); 1307 return retval; 1308 } 1309 1310 /* 1311 * Create a pair of connected sockets. 1312 */ 1313 1314 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1315 int __user *, usockvec) 1316 { 1317 struct socket *sock1, *sock2; 1318 int fd1, fd2, err; 1319 struct file *newfile1, *newfile2; 1320 int flags; 1321 1322 flags = type & ~SOCK_TYPE_MASK; 1323 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1324 return -EINVAL; 1325 type &= SOCK_TYPE_MASK; 1326 1327 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1328 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1329 1330 /* 1331 * Obtain the first socket and check if the underlying protocol 1332 * supports the socketpair call. 1333 */ 1334 1335 err = sock_create(family, type, protocol, &sock1); 1336 if (err < 0) 1337 goto out; 1338 1339 err = sock_create(family, type, protocol, &sock2); 1340 if (err < 0) 1341 goto out_release_1; 1342 1343 err = sock1->ops->socketpair(sock1, sock2); 1344 if (err < 0) 1345 goto out_release_both; 1346 1347 fd1 = sock_alloc_file(sock1, &newfile1, flags); 1348 if (unlikely(fd1 < 0)) { 1349 err = fd1; 1350 goto out_release_both; 1351 } 1352 1353 fd2 = sock_alloc_file(sock2, &newfile2, flags); 1354 if (unlikely(fd2 < 0)) { 1355 err = fd2; 1356 fput(newfile1); 1357 put_unused_fd(fd1); 1358 sock_release(sock2); 1359 goto out; 1360 } 1361 1362 audit_fd_pair(fd1, fd2); 1363 fd_install(fd1, newfile1); 1364 fd_install(fd2, newfile2); 1365 /* fd1 and fd2 may be already another descriptors. 1366 * Not kernel problem. 1367 */ 1368 1369 err = put_user(fd1, &usockvec[0]); 1370 if (!err) 1371 err = put_user(fd2, &usockvec[1]); 1372 if (!err) 1373 return 0; 1374 1375 sys_close(fd2); 1376 sys_close(fd1); 1377 return err; 1378 1379 out_release_both: 1380 sock_release(sock2); 1381 out_release_1: 1382 sock_release(sock1); 1383 out: 1384 return err; 1385 } 1386 1387 /* 1388 * Bind a name to a socket. Nothing much to do here since it's 1389 * the protocol's responsibility to handle the local address. 1390 * 1391 * We move the socket address to kernel space before we call 1392 * the protocol layer (having also checked the address is ok). 1393 */ 1394 1395 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1396 { 1397 struct socket *sock; 1398 struct sockaddr_storage address; 1399 int err, fput_needed; 1400 1401 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1402 if (sock) { 1403 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1404 if (err >= 0) { 1405 err = security_socket_bind(sock, 1406 (struct sockaddr *)&address, 1407 addrlen); 1408 if (!err) 1409 err = sock->ops->bind(sock, 1410 (struct sockaddr *) 1411 &address, addrlen); 1412 } 1413 fput_light(sock->file, fput_needed); 1414 } 1415 return err; 1416 } 1417 1418 /* 1419 * Perform a listen. Basically, we allow the protocol to do anything 1420 * necessary for a listen, and if that works, we mark the socket as 1421 * ready for listening. 1422 */ 1423 1424 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1425 { 1426 struct socket *sock; 1427 int err, fput_needed; 1428 int somaxconn; 1429 1430 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1431 if (sock) { 1432 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1433 if ((unsigned)backlog > somaxconn) 1434 backlog = somaxconn; 1435 1436 err = security_socket_listen(sock, backlog); 1437 if (!err) 1438 err = sock->ops->listen(sock, backlog); 1439 1440 fput_light(sock->file, fput_needed); 1441 } 1442 return err; 1443 } 1444 1445 /* 1446 * For accept, we attempt to create a new socket, set up the link 1447 * with the client, wake up the client, then return the new 1448 * connected fd. We collect the address of the connector in kernel 1449 * space and move it to user at the very end. This is unclean because 1450 * we open the socket then return an error. 1451 * 1452 * 1003.1g adds the ability to recvmsg() to query connection pending 1453 * status to recvmsg. We need to add that support in a way thats 1454 * clean when we restucture accept also. 1455 */ 1456 1457 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1458 int __user *, upeer_addrlen, int, flags) 1459 { 1460 struct socket *sock, *newsock; 1461 struct file *newfile; 1462 int err, len, newfd, fput_needed; 1463 struct sockaddr_storage address; 1464 1465 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1466 return -EINVAL; 1467 1468 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1469 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1470 1471 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1472 if (!sock) 1473 goto out; 1474 1475 err = -ENFILE; 1476 newsock = sock_alloc(); 1477 if (!newsock) 1478 goto out_put; 1479 1480 newsock->type = sock->type; 1481 newsock->ops = sock->ops; 1482 1483 /* 1484 * We don't need try_module_get here, as the listening socket (sock) 1485 * has the protocol module (sock->ops->owner) held. 1486 */ 1487 __module_get(newsock->ops->owner); 1488 1489 newfd = sock_alloc_file(newsock, &newfile, flags); 1490 if (unlikely(newfd < 0)) { 1491 err = newfd; 1492 sock_release(newsock); 1493 goto out_put; 1494 } 1495 1496 err = security_socket_accept(sock, newsock); 1497 if (err) 1498 goto out_fd; 1499 1500 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1501 if (err < 0) 1502 goto out_fd; 1503 1504 if (upeer_sockaddr) { 1505 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1506 &len, 2) < 0) { 1507 err = -ECONNABORTED; 1508 goto out_fd; 1509 } 1510 err = move_addr_to_user((struct sockaddr *)&address, 1511 len, upeer_sockaddr, upeer_addrlen); 1512 if (err < 0) 1513 goto out_fd; 1514 } 1515 1516 /* File flags are not inherited via accept() unlike another OSes. */ 1517 1518 fd_install(newfd, newfile); 1519 err = newfd; 1520 1521 out_put: 1522 fput_light(sock->file, fput_needed); 1523 out: 1524 return err; 1525 out_fd: 1526 fput(newfile); 1527 put_unused_fd(newfd); 1528 goto out_put; 1529 } 1530 1531 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1532 int __user *, upeer_addrlen) 1533 { 1534 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1535 } 1536 1537 /* 1538 * Attempt to connect to a socket with the server address. The address 1539 * is in user space so we verify it is OK and move it to kernel space. 1540 * 1541 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1542 * break bindings 1543 * 1544 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1545 * other SEQPACKET protocols that take time to connect() as it doesn't 1546 * include the -EINPROGRESS status for such sockets. 1547 */ 1548 1549 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1550 int, addrlen) 1551 { 1552 struct socket *sock; 1553 struct sockaddr_storage address; 1554 int err, fput_needed; 1555 1556 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1557 if (!sock) 1558 goto out; 1559 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1560 if (err < 0) 1561 goto out_put; 1562 1563 err = 1564 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1565 if (err) 1566 goto out_put; 1567 1568 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1569 sock->file->f_flags); 1570 out_put: 1571 fput_light(sock->file, fput_needed); 1572 out: 1573 return err; 1574 } 1575 1576 /* 1577 * Get the local address ('name') of a socket object. Move the obtained 1578 * name to user space. 1579 */ 1580 1581 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1582 int __user *, usockaddr_len) 1583 { 1584 struct socket *sock; 1585 struct sockaddr_storage address; 1586 int len, err, fput_needed; 1587 1588 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1589 if (!sock) 1590 goto out; 1591 1592 err = security_socket_getsockname(sock); 1593 if (err) 1594 goto out_put; 1595 1596 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1597 if (err) 1598 goto out_put; 1599 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1600 1601 out_put: 1602 fput_light(sock->file, fput_needed); 1603 out: 1604 return err; 1605 } 1606 1607 /* 1608 * Get the remote address ('name') of a socket object. Move the obtained 1609 * name to user space. 1610 */ 1611 1612 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1613 int __user *, usockaddr_len) 1614 { 1615 struct socket *sock; 1616 struct sockaddr_storage address; 1617 int len, err, fput_needed; 1618 1619 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1620 if (sock != NULL) { 1621 err = security_socket_getpeername(sock); 1622 if (err) { 1623 fput_light(sock->file, fput_needed); 1624 return err; 1625 } 1626 1627 err = 1628 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1629 1); 1630 if (!err) 1631 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1632 usockaddr_len); 1633 fput_light(sock->file, fput_needed); 1634 } 1635 return err; 1636 } 1637 1638 /* 1639 * Send a datagram to a given address. We move the address into kernel 1640 * space and check the user space data area is readable before invoking 1641 * the protocol. 1642 */ 1643 1644 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1645 unsigned, flags, struct sockaddr __user *, addr, 1646 int, addr_len) 1647 { 1648 struct socket *sock; 1649 struct sockaddr_storage address; 1650 int err; 1651 struct msghdr msg; 1652 struct iovec iov; 1653 int fput_needed; 1654 1655 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1656 if (!sock) 1657 goto out; 1658 1659 iov.iov_base = buff; 1660 iov.iov_len = len; 1661 msg.msg_name = NULL; 1662 msg.msg_iov = &iov; 1663 msg.msg_iovlen = 1; 1664 msg.msg_control = NULL; 1665 msg.msg_controllen = 0; 1666 msg.msg_namelen = 0; 1667 if (addr) { 1668 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1669 if (err < 0) 1670 goto out_put; 1671 msg.msg_name = (struct sockaddr *)&address; 1672 msg.msg_namelen = addr_len; 1673 } 1674 if (sock->file->f_flags & O_NONBLOCK) 1675 flags |= MSG_DONTWAIT; 1676 msg.msg_flags = flags; 1677 err = sock_sendmsg(sock, &msg, len); 1678 1679 out_put: 1680 fput_light(sock->file, fput_needed); 1681 out: 1682 return err; 1683 } 1684 1685 /* 1686 * Send a datagram down a socket. 1687 */ 1688 1689 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1690 unsigned, flags) 1691 { 1692 return sys_sendto(fd, buff, len, flags, NULL, 0); 1693 } 1694 1695 /* 1696 * Receive a frame from the socket and optionally record the address of the 1697 * sender. We verify the buffers are writable and if needed move the 1698 * sender address from kernel to user space. 1699 */ 1700 1701 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1702 unsigned, flags, struct sockaddr __user *, addr, 1703 int __user *, addr_len) 1704 { 1705 struct socket *sock; 1706 struct iovec iov; 1707 struct msghdr msg; 1708 struct sockaddr_storage address; 1709 int err, err2; 1710 int fput_needed; 1711 1712 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1713 if (!sock) 1714 goto out; 1715 1716 msg.msg_control = NULL; 1717 msg.msg_controllen = 0; 1718 msg.msg_iovlen = 1; 1719 msg.msg_iov = &iov; 1720 iov.iov_len = size; 1721 iov.iov_base = ubuf; 1722 msg.msg_name = (struct sockaddr *)&address; 1723 msg.msg_namelen = sizeof(address); 1724 if (sock->file->f_flags & O_NONBLOCK) 1725 flags |= MSG_DONTWAIT; 1726 err = sock_recvmsg(sock, &msg, size, flags); 1727 1728 if (err >= 0 && addr != NULL) { 1729 err2 = move_addr_to_user((struct sockaddr *)&address, 1730 msg.msg_namelen, addr, addr_len); 1731 if (err2 < 0) 1732 err = err2; 1733 } 1734 1735 fput_light(sock->file, fput_needed); 1736 out: 1737 return err; 1738 } 1739 1740 /* 1741 * Receive a datagram from a socket. 1742 */ 1743 1744 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1745 unsigned flags) 1746 { 1747 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1748 } 1749 1750 /* 1751 * Set a socket option. Because we don't know the option lengths we have 1752 * to pass the user mode parameter for the protocols to sort out. 1753 */ 1754 1755 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1756 char __user *, optval, int, optlen) 1757 { 1758 int err, fput_needed; 1759 struct socket *sock; 1760 1761 if (optlen < 0) 1762 return -EINVAL; 1763 1764 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1765 if (sock != NULL) { 1766 err = security_socket_setsockopt(sock, level, optname); 1767 if (err) 1768 goto out_put; 1769 1770 if (level == SOL_SOCKET) 1771 err = 1772 sock_setsockopt(sock, level, optname, optval, 1773 optlen); 1774 else 1775 err = 1776 sock->ops->setsockopt(sock, level, optname, optval, 1777 optlen); 1778 out_put: 1779 fput_light(sock->file, fput_needed); 1780 } 1781 return err; 1782 } 1783 1784 /* 1785 * Get a socket option. Because we don't know the option lengths we have 1786 * to pass a user mode parameter for the protocols to sort out. 1787 */ 1788 1789 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1790 char __user *, optval, int __user *, optlen) 1791 { 1792 int err, fput_needed; 1793 struct socket *sock; 1794 1795 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1796 if (sock != NULL) { 1797 err = security_socket_getsockopt(sock, level, optname); 1798 if (err) 1799 goto out_put; 1800 1801 if (level == SOL_SOCKET) 1802 err = 1803 sock_getsockopt(sock, level, optname, optval, 1804 optlen); 1805 else 1806 err = 1807 sock->ops->getsockopt(sock, level, optname, optval, 1808 optlen); 1809 out_put: 1810 fput_light(sock->file, fput_needed); 1811 } 1812 return err; 1813 } 1814 1815 /* 1816 * Shutdown a socket. 1817 */ 1818 1819 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1820 { 1821 int err, fput_needed; 1822 struct socket *sock; 1823 1824 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1825 if (sock != NULL) { 1826 err = security_socket_shutdown(sock, how); 1827 if (!err) 1828 err = sock->ops->shutdown(sock, how); 1829 fput_light(sock->file, fput_needed); 1830 } 1831 return err; 1832 } 1833 1834 /* A couple of helpful macros for getting the address of the 32/64 bit 1835 * fields which are the same type (int / unsigned) on our platforms. 1836 */ 1837 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1838 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1839 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1840 1841 /* 1842 * BSD sendmsg interface 1843 */ 1844 1845 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags) 1846 { 1847 struct compat_msghdr __user *msg_compat = 1848 (struct compat_msghdr __user *)msg; 1849 struct socket *sock; 1850 struct sockaddr_storage address; 1851 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1852 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1853 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1854 /* 20 is size of ipv6_pktinfo */ 1855 unsigned char *ctl_buf = ctl; 1856 struct msghdr msg_sys; 1857 int err, ctl_len, iov_size, total_len; 1858 int fput_needed; 1859 1860 err = -EFAULT; 1861 if (MSG_CMSG_COMPAT & flags) { 1862 if (get_compat_msghdr(&msg_sys, msg_compat)) 1863 return -EFAULT; 1864 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1865 return -EFAULT; 1866 1867 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1868 if (!sock) 1869 goto out; 1870 1871 /* do not move before msg_sys is valid */ 1872 err = -EMSGSIZE; 1873 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1874 goto out_put; 1875 1876 /* Check whether to allocate the iovec area */ 1877 err = -ENOMEM; 1878 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1879 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1880 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1881 if (!iov) 1882 goto out_put; 1883 } 1884 1885 /* This will also move the address data into kernel space */ 1886 if (MSG_CMSG_COMPAT & flags) { 1887 err = verify_compat_iovec(&msg_sys, iov, 1888 (struct sockaddr *)&address, 1889 VERIFY_READ); 1890 } else 1891 err = verify_iovec(&msg_sys, iov, 1892 (struct sockaddr *)&address, 1893 VERIFY_READ); 1894 if (err < 0) 1895 goto out_freeiov; 1896 total_len = err; 1897 1898 err = -ENOBUFS; 1899 1900 if (msg_sys.msg_controllen > INT_MAX) 1901 goto out_freeiov; 1902 ctl_len = msg_sys.msg_controllen; 1903 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1904 err = 1905 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1906 sizeof(ctl)); 1907 if (err) 1908 goto out_freeiov; 1909 ctl_buf = msg_sys.msg_control; 1910 ctl_len = msg_sys.msg_controllen; 1911 } else if (ctl_len) { 1912 if (ctl_len > sizeof(ctl)) { 1913 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1914 if (ctl_buf == NULL) 1915 goto out_freeiov; 1916 } 1917 err = -EFAULT; 1918 /* 1919 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1920 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1921 * checking falls down on this. 1922 */ 1923 if (copy_from_user(ctl_buf, 1924 (void __user __force *)msg_sys.msg_control, 1925 ctl_len)) 1926 goto out_freectl; 1927 msg_sys.msg_control = ctl_buf; 1928 } 1929 msg_sys.msg_flags = flags; 1930 1931 if (sock->file->f_flags & O_NONBLOCK) 1932 msg_sys.msg_flags |= MSG_DONTWAIT; 1933 err = sock_sendmsg(sock, &msg_sys, total_len); 1934 1935 out_freectl: 1936 if (ctl_buf != ctl) 1937 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1938 out_freeiov: 1939 if (iov != iovstack) 1940 sock_kfree_s(sock->sk, iov, iov_size); 1941 out_put: 1942 fput_light(sock->file, fput_needed); 1943 out: 1944 return err; 1945 } 1946 1947 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 1948 struct msghdr *msg_sys, unsigned flags, int nosec) 1949 { 1950 struct compat_msghdr __user *msg_compat = 1951 (struct compat_msghdr __user *)msg; 1952 struct iovec iovstack[UIO_FASTIOV]; 1953 struct iovec *iov = iovstack; 1954 unsigned long cmsg_ptr; 1955 int err, iov_size, total_len, len; 1956 1957 /* kernel mode address */ 1958 struct sockaddr_storage addr; 1959 1960 /* user mode address pointers */ 1961 struct sockaddr __user *uaddr; 1962 int __user *uaddr_len; 1963 1964 if (MSG_CMSG_COMPAT & flags) { 1965 if (get_compat_msghdr(msg_sys, msg_compat)) 1966 return -EFAULT; 1967 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1968 return -EFAULT; 1969 1970 err = -EMSGSIZE; 1971 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1972 goto out; 1973 1974 /* Check whether to allocate the iovec area */ 1975 err = -ENOMEM; 1976 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec); 1977 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 1978 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1979 if (!iov) 1980 goto out; 1981 } 1982 1983 /* 1984 * Save the user-mode address (verify_iovec will change the 1985 * kernel msghdr to use the kernel address space) 1986 */ 1987 1988 uaddr = (__force void __user *)msg_sys->msg_name; 1989 uaddr_len = COMPAT_NAMELEN(msg); 1990 if (MSG_CMSG_COMPAT & flags) { 1991 err = verify_compat_iovec(msg_sys, iov, 1992 (struct sockaddr *)&addr, 1993 VERIFY_WRITE); 1994 } else 1995 err = verify_iovec(msg_sys, iov, 1996 (struct sockaddr *)&addr, 1997 VERIFY_WRITE); 1998 if (err < 0) 1999 goto out_freeiov; 2000 total_len = err; 2001 2002 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2003 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2004 2005 if (sock->file->f_flags & O_NONBLOCK) 2006 flags |= MSG_DONTWAIT; 2007 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2008 total_len, flags); 2009 if (err < 0) 2010 goto out_freeiov; 2011 len = err; 2012 2013 if (uaddr != NULL) { 2014 err = move_addr_to_user((struct sockaddr *)&addr, 2015 msg_sys->msg_namelen, uaddr, 2016 uaddr_len); 2017 if (err < 0) 2018 goto out_freeiov; 2019 } 2020 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2021 COMPAT_FLAGS(msg)); 2022 if (err) 2023 goto out_freeiov; 2024 if (MSG_CMSG_COMPAT & flags) 2025 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2026 &msg_compat->msg_controllen); 2027 else 2028 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2029 &msg->msg_controllen); 2030 if (err) 2031 goto out_freeiov; 2032 err = len; 2033 2034 out_freeiov: 2035 if (iov != iovstack) 2036 sock_kfree_s(sock->sk, iov, iov_size); 2037 out: 2038 return err; 2039 } 2040 2041 /* 2042 * BSD recvmsg interface 2043 */ 2044 2045 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2046 unsigned int, flags) 2047 { 2048 int fput_needed, err; 2049 struct msghdr msg_sys; 2050 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2051 2052 if (!sock) 2053 goto out; 2054 2055 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2056 2057 fput_light(sock->file, fput_needed); 2058 out: 2059 return err; 2060 } 2061 2062 /* 2063 * Linux recvmmsg interface 2064 */ 2065 2066 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2067 unsigned int flags, struct timespec *timeout) 2068 { 2069 int fput_needed, err, datagrams; 2070 struct socket *sock; 2071 struct mmsghdr __user *entry; 2072 struct compat_mmsghdr __user *compat_entry; 2073 struct msghdr msg_sys; 2074 struct timespec end_time; 2075 2076 if (timeout && 2077 poll_select_set_timeout(&end_time, timeout->tv_sec, 2078 timeout->tv_nsec)) 2079 return -EINVAL; 2080 2081 datagrams = 0; 2082 2083 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2084 if (!sock) 2085 return err; 2086 2087 err = sock_error(sock->sk); 2088 if (err) 2089 goto out_put; 2090 2091 entry = mmsg; 2092 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2093 2094 while (datagrams < vlen) { 2095 /* 2096 * No need to ask LSM for more than the first datagram. 2097 */ 2098 if (MSG_CMSG_COMPAT & flags) { 2099 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2100 &msg_sys, flags, datagrams); 2101 if (err < 0) 2102 break; 2103 err = __put_user(err, &compat_entry->msg_len); 2104 ++compat_entry; 2105 } else { 2106 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2107 &msg_sys, flags, datagrams); 2108 if (err < 0) 2109 break; 2110 err = put_user(err, &entry->msg_len); 2111 ++entry; 2112 } 2113 2114 if (err) 2115 break; 2116 ++datagrams; 2117 2118 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2119 if (flags & MSG_WAITFORONE) 2120 flags |= MSG_DONTWAIT; 2121 2122 if (timeout) { 2123 ktime_get_ts(timeout); 2124 *timeout = timespec_sub(end_time, *timeout); 2125 if (timeout->tv_sec < 0) { 2126 timeout->tv_sec = timeout->tv_nsec = 0; 2127 break; 2128 } 2129 2130 /* Timeout, return less than vlen datagrams */ 2131 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2132 break; 2133 } 2134 2135 /* Out of band data, return right away */ 2136 if (msg_sys.msg_flags & MSG_OOB) 2137 break; 2138 } 2139 2140 out_put: 2141 fput_light(sock->file, fput_needed); 2142 2143 if (err == 0) 2144 return datagrams; 2145 2146 if (datagrams != 0) { 2147 /* 2148 * We may return less entries than requested (vlen) if the 2149 * sock is non block and there aren't enough datagrams... 2150 */ 2151 if (err != -EAGAIN) { 2152 /* 2153 * ... or if recvmsg returns an error after we 2154 * received some datagrams, where we record the 2155 * error to return on the next call or if the 2156 * app asks about it using getsockopt(SO_ERROR). 2157 */ 2158 sock->sk->sk_err = -err; 2159 } 2160 2161 return datagrams; 2162 } 2163 2164 return err; 2165 } 2166 2167 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2168 unsigned int, vlen, unsigned int, flags, 2169 struct timespec __user *, timeout) 2170 { 2171 int datagrams; 2172 struct timespec timeout_sys; 2173 2174 if (!timeout) 2175 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2176 2177 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2178 return -EFAULT; 2179 2180 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2181 2182 if (datagrams > 0 && 2183 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2184 datagrams = -EFAULT; 2185 2186 return datagrams; 2187 } 2188 2189 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2190 /* Argument list sizes for sys_socketcall */ 2191 #define AL(x) ((x) * sizeof(unsigned long)) 2192 static const unsigned char nargs[20] = { 2193 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2194 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2195 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2196 AL(4), AL(5) 2197 }; 2198 2199 #undef AL 2200 2201 /* 2202 * System call vectors. 2203 * 2204 * Argument checking cleaned up. Saved 20% in size. 2205 * This function doesn't need to set the kernel lock because 2206 * it is set by the callees. 2207 */ 2208 2209 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2210 { 2211 unsigned long a[6]; 2212 unsigned long a0, a1; 2213 int err; 2214 unsigned int len; 2215 2216 if (call < 1 || call > SYS_RECVMMSG) 2217 return -EINVAL; 2218 2219 len = nargs[call]; 2220 if (len > sizeof(a)) 2221 return -EINVAL; 2222 2223 /* copy_from_user should be SMP safe. */ 2224 if (copy_from_user(a, args, len)) 2225 return -EFAULT; 2226 2227 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2228 2229 a0 = a[0]; 2230 a1 = a[1]; 2231 2232 switch (call) { 2233 case SYS_SOCKET: 2234 err = sys_socket(a0, a1, a[2]); 2235 break; 2236 case SYS_BIND: 2237 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2238 break; 2239 case SYS_CONNECT: 2240 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2241 break; 2242 case SYS_LISTEN: 2243 err = sys_listen(a0, a1); 2244 break; 2245 case SYS_ACCEPT: 2246 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2247 (int __user *)a[2], 0); 2248 break; 2249 case SYS_GETSOCKNAME: 2250 err = 2251 sys_getsockname(a0, (struct sockaddr __user *)a1, 2252 (int __user *)a[2]); 2253 break; 2254 case SYS_GETPEERNAME: 2255 err = 2256 sys_getpeername(a0, (struct sockaddr __user *)a1, 2257 (int __user *)a[2]); 2258 break; 2259 case SYS_SOCKETPAIR: 2260 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2261 break; 2262 case SYS_SEND: 2263 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2264 break; 2265 case SYS_SENDTO: 2266 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2267 (struct sockaddr __user *)a[4], a[5]); 2268 break; 2269 case SYS_RECV: 2270 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2271 break; 2272 case SYS_RECVFROM: 2273 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2274 (struct sockaddr __user *)a[4], 2275 (int __user *)a[5]); 2276 break; 2277 case SYS_SHUTDOWN: 2278 err = sys_shutdown(a0, a1); 2279 break; 2280 case SYS_SETSOCKOPT: 2281 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2282 break; 2283 case SYS_GETSOCKOPT: 2284 err = 2285 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2286 (int __user *)a[4]); 2287 break; 2288 case SYS_SENDMSG: 2289 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2290 break; 2291 case SYS_RECVMSG: 2292 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2293 break; 2294 case SYS_RECVMMSG: 2295 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2296 (struct timespec __user *)a[4]); 2297 break; 2298 case SYS_ACCEPT4: 2299 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2300 (int __user *)a[2], a[3]); 2301 break; 2302 default: 2303 err = -EINVAL; 2304 break; 2305 } 2306 return err; 2307 } 2308 2309 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2310 2311 /** 2312 * sock_register - add a socket protocol handler 2313 * @ops: description of protocol 2314 * 2315 * This function is called by a protocol handler that wants to 2316 * advertise its address family, and have it linked into the 2317 * socket interface. The value ops->family coresponds to the 2318 * socket system call protocol family. 2319 */ 2320 int sock_register(const struct net_proto_family *ops) 2321 { 2322 int err; 2323 2324 if (ops->family >= NPROTO) { 2325 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2326 NPROTO); 2327 return -ENOBUFS; 2328 } 2329 2330 spin_lock(&net_family_lock); 2331 if (net_families[ops->family]) 2332 err = -EEXIST; 2333 else { 2334 net_families[ops->family] = ops; 2335 err = 0; 2336 } 2337 spin_unlock(&net_family_lock); 2338 2339 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2340 return err; 2341 } 2342 EXPORT_SYMBOL(sock_register); 2343 2344 /** 2345 * sock_unregister - remove a protocol handler 2346 * @family: protocol family to remove 2347 * 2348 * This function is called by a protocol handler that wants to 2349 * remove its address family, and have it unlinked from the 2350 * new socket creation. 2351 * 2352 * If protocol handler is a module, then it can use module reference 2353 * counts to protect against new references. If protocol handler is not 2354 * a module then it needs to provide its own protection in 2355 * the ops->create routine. 2356 */ 2357 void sock_unregister(int family) 2358 { 2359 BUG_ON(family < 0 || family >= NPROTO); 2360 2361 spin_lock(&net_family_lock); 2362 net_families[family] = NULL; 2363 spin_unlock(&net_family_lock); 2364 2365 synchronize_rcu(); 2366 2367 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2368 } 2369 EXPORT_SYMBOL(sock_unregister); 2370 2371 static int __init sock_init(void) 2372 { 2373 /* 2374 * Initialize sock SLAB cache. 2375 */ 2376 2377 sk_init(); 2378 2379 /* 2380 * Initialize skbuff SLAB cache 2381 */ 2382 skb_init(); 2383 2384 /* 2385 * Initialize the protocols module. 2386 */ 2387 2388 init_inodecache(); 2389 register_filesystem(&sock_fs_type); 2390 sock_mnt = kern_mount(&sock_fs_type); 2391 2392 /* The real protocol initialization is performed in later initcalls. 2393 */ 2394 2395 #ifdef CONFIG_NETFILTER 2396 netfilter_init(); 2397 #endif 2398 2399 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2400 skb_timestamping_init(); 2401 #endif 2402 2403 return 0; 2404 } 2405 2406 core_initcall(sock_init); /* early initcall */ 2407 2408 #ifdef CONFIG_PROC_FS 2409 void socket_seq_show(struct seq_file *seq) 2410 { 2411 int cpu; 2412 int counter = 0; 2413 2414 for_each_possible_cpu(cpu) 2415 counter += per_cpu(sockets_in_use, cpu); 2416 2417 /* It can be negative, by the way. 8) */ 2418 if (counter < 0) 2419 counter = 0; 2420 2421 seq_printf(seq, "sockets: used %d\n", counter); 2422 } 2423 #endif /* CONFIG_PROC_FS */ 2424 2425 #ifdef CONFIG_COMPAT 2426 static int do_siocgstamp(struct net *net, struct socket *sock, 2427 unsigned int cmd, struct compat_timeval __user *up) 2428 { 2429 mm_segment_t old_fs = get_fs(); 2430 struct timeval ktv; 2431 int err; 2432 2433 set_fs(KERNEL_DS); 2434 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2435 set_fs(old_fs); 2436 if (!err) { 2437 err = put_user(ktv.tv_sec, &up->tv_sec); 2438 err |= __put_user(ktv.tv_usec, &up->tv_usec); 2439 } 2440 return err; 2441 } 2442 2443 static int do_siocgstampns(struct net *net, struct socket *sock, 2444 unsigned int cmd, struct compat_timespec __user *up) 2445 { 2446 mm_segment_t old_fs = get_fs(); 2447 struct timespec kts; 2448 int err; 2449 2450 set_fs(KERNEL_DS); 2451 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2452 set_fs(old_fs); 2453 if (!err) { 2454 err = put_user(kts.tv_sec, &up->tv_sec); 2455 err |= __put_user(kts.tv_nsec, &up->tv_nsec); 2456 } 2457 return err; 2458 } 2459 2460 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2461 { 2462 struct ifreq __user *uifr; 2463 int err; 2464 2465 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2466 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2467 return -EFAULT; 2468 2469 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2470 if (err) 2471 return err; 2472 2473 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2474 return -EFAULT; 2475 2476 return 0; 2477 } 2478 2479 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2480 { 2481 struct compat_ifconf ifc32; 2482 struct ifconf ifc; 2483 struct ifconf __user *uifc; 2484 struct compat_ifreq __user *ifr32; 2485 struct ifreq __user *ifr; 2486 unsigned int i, j; 2487 int err; 2488 2489 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2490 return -EFAULT; 2491 2492 if (ifc32.ifcbuf == 0) { 2493 ifc32.ifc_len = 0; 2494 ifc.ifc_len = 0; 2495 ifc.ifc_req = NULL; 2496 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2497 } else { 2498 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2499 sizeof(struct ifreq); 2500 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2501 ifc.ifc_len = len; 2502 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2503 ifr32 = compat_ptr(ifc32.ifcbuf); 2504 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2505 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2506 return -EFAULT; 2507 ifr++; 2508 ifr32++; 2509 } 2510 } 2511 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2512 return -EFAULT; 2513 2514 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2515 if (err) 2516 return err; 2517 2518 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2519 return -EFAULT; 2520 2521 ifr = ifc.ifc_req; 2522 ifr32 = compat_ptr(ifc32.ifcbuf); 2523 for (i = 0, j = 0; 2524 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2525 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2526 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2527 return -EFAULT; 2528 ifr32++; 2529 ifr++; 2530 } 2531 2532 if (ifc32.ifcbuf == 0) { 2533 /* Translate from 64-bit structure multiple to 2534 * a 32-bit one. 2535 */ 2536 i = ifc.ifc_len; 2537 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2538 ifc32.ifc_len = i; 2539 } else { 2540 ifc32.ifc_len = i; 2541 } 2542 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2543 return -EFAULT; 2544 2545 return 0; 2546 } 2547 2548 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2549 { 2550 struct ifreq __user *ifr; 2551 u32 data; 2552 void __user *datap; 2553 2554 ifr = compat_alloc_user_space(sizeof(*ifr)); 2555 2556 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2557 return -EFAULT; 2558 2559 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2560 return -EFAULT; 2561 2562 datap = compat_ptr(data); 2563 if (put_user(datap, &ifr->ifr_ifru.ifru_data)) 2564 return -EFAULT; 2565 2566 return dev_ioctl(net, SIOCETHTOOL, ifr); 2567 } 2568 2569 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2570 { 2571 void __user *uptr; 2572 compat_uptr_t uptr32; 2573 struct ifreq __user *uifr; 2574 2575 uifr = compat_alloc_user_space(sizeof(*uifr)); 2576 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2577 return -EFAULT; 2578 2579 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2580 return -EFAULT; 2581 2582 uptr = compat_ptr(uptr32); 2583 2584 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2585 return -EFAULT; 2586 2587 return dev_ioctl(net, SIOCWANDEV, uifr); 2588 } 2589 2590 static int bond_ioctl(struct net *net, unsigned int cmd, 2591 struct compat_ifreq __user *ifr32) 2592 { 2593 struct ifreq kifr; 2594 struct ifreq __user *uifr; 2595 mm_segment_t old_fs; 2596 int err; 2597 u32 data; 2598 void __user *datap; 2599 2600 switch (cmd) { 2601 case SIOCBONDENSLAVE: 2602 case SIOCBONDRELEASE: 2603 case SIOCBONDSETHWADDR: 2604 case SIOCBONDCHANGEACTIVE: 2605 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2606 return -EFAULT; 2607 2608 old_fs = get_fs(); 2609 set_fs(KERNEL_DS); 2610 err = dev_ioctl(net, cmd, &kifr); 2611 set_fs(old_fs); 2612 2613 return err; 2614 case SIOCBONDSLAVEINFOQUERY: 2615 case SIOCBONDINFOQUERY: 2616 uifr = compat_alloc_user_space(sizeof(*uifr)); 2617 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2618 return -EFAULT; 2619 2620 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2621 return -EFAULT; 2622 2623 datap = compat_ptr(data); 2624 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2625 return -EFAULT; 2626 2627 return dev_ioctl(net, cmd, uifr); 2628 default: 2629 return -EINVAL; 2630 } 2631 } 2632 2633 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2634 struct compat_ifreq __user *u_ifreq32) 2635 { 2636 struct ifreq __user *u_ifreq64; 2637 char tmp_buf[IFNAMSIZ]; 2638 void __user *data64; 2639 u32 data32; 2640 2641 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2642 IFNAMSIZ)) 2643 return -EFAULT; 2644 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2645 return -EFAULT; 2646 data64 = compat_ptr(data32); 2647 2648 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2649 2650 /* Don't check these user accesses, just let that get trapped 2651 * in the ioctl handler instead. 2652 */ 2653 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2654 IFNAMSIZ)) 2655 return -EFAULT; 2656 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2657 return -EFAULT; 2658 2659 return dev_ioctl(net, cmd, u_ifreq64); 2660 } 2661 2662 static int dev_ifsioc(struct net *net, struct socket *sock, 2663 unsigned int cmd, struct compat_ifreq __user *uifr32) 2664 { 2665 struct ifreq __user *uifr; 2666 int err; 2667 2668 uifr = compat_alloc_user_space(sizeof(*uifr)); 2669 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2670 return -EFAULT; 2671 2672 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2673 2674 if (!err) { 2675 switch (cmd) { 2676 case SIOCGIFFLAGS: 2677 case SIOCGIFMETRIC: 2678 case SIOCGIFMTU: 2679 case SIOCGIFMEM: 2680 case SIOCGIFHWADDR: 2681 case SIOCGIFINDEX: 2682 case SIOCGIFADDR: 2683 case SIOCGIFBRDADDR: 2684 case SIOCGIFDSTADDR: 2685 case SIOCGIFNETMASK: 2686 case SIOCGIFPFLAGS: 2687 case SIOCGIFTXQLEN: 2688 case SIOCGMIIPHY: 2689 case SIOCGMIIREG: 2690 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2691 err = -EFAULT; 2692 break; 2693 } 2694 } 2695 return err; 2696 } 2697 2698 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2699 struct compat_ifreq __user *uifr32) 2700 { 2701 struct ifreq ifr; 2702 struct compat_ifmap __user *uifmap32; 2703 mm_segment_t old_fs; 2704 int err; 2705 2706 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2707 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2708 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2709 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2710 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2711 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 2712 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 2713 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 2714 if (err) 2715 return -EFAULT; 2716 2717 old_fs = get_fs(); 2718 set_fs(KERNEL_DS); 2719 err = dev_ioctl(net, cmd, (void __user *)&ifr); 2720 set_fs(old_fs); 2721 2722 if (cmd == SIOCGIFMAP && !err) { 2723 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2724 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2725 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2726 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2727 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 2728 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 2729 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 2730 if (err) 2731 err = -EFAULT; 2732 } 2733 return err; 2734 } 2735 2736 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 2737 { 2738 void __user *uptr; 2739 compat_uptr_t uptr32; 2740 struct ifreq __user *uifr; 2741 2742 uifr = compat_alloc_user_space(sizeof(*uifr)); 2743 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2744 return -EFAULT; 2745 2746 if (get_user(uptr32, &uifr32->ifr_data)) 2747 return -EFAULT; 2748 2749 uptr = compat_ptr(uptr32); 2750 2751 if (put_user(uptr, &uifr->ifr_data)) 2752 return -EFAULT; 2753 2754 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 2755 } 2756 2757 struct rtentry32 { 2758 u32 rt_pad1; 2759 struct sockaddr rt_dst; /* target address */ 2760 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2761 struct sockaddr rt_genmask; /* target network mask (IP) */ 2762 unsigned short rt_flags; 2763 short rt_pad2; 2764 u32 rt_pad3; 2765 unsigned char rt_tos; 2766 unsigned char rt_class; 2767 short rt_pad4; 2768 short rt_metric; /* +1 for binary compatibility! */ 2769 /* char * */ u32 rt_dev; /* forcing the device at add */ 2770 u32 rt_mtu; /* per route MTU/Window */ 2771 u32 rt_window; /* Window clamping */ 2772 unsigned short rt_irtt; /* Initial RTT */ 2773 }; 2774 2775 struct in6_rtmsg32 { 2776 struct in6_addr rtmsg_dst; 2777 struct in6_addr rtmsg_src; 2778 struct in6_addr rtmsg_gateway; 2779 u32 rtmsg_type; 2780 u16 rtmsg_dst_len; 2781 u16 rtmsg_src_len; 2782 u32 rtmsg_metric; 2783 u32 rtmsg_info; 2784 u32 rtmsg_flags; 2785 s32 rtmsg_ifindex; 2786 }; 2787 2788 static int routing_ioctl(struct net *net, struct socket *sock, 2789 unsigned int cmd, void __user *argp) 2790 { 2791 int ret; 2792 void *r = NULL; 2793 struct in6_rtmsg r6; 2794 struct rtentry r4; 2795 char devname[16]; 2796 u32 rtdev; 2797 mm_segment_t old_fs = get_fs(); 2798 2799 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2800 struct in6_rtmsg32 __user *ur6 = argp; 2801 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2802 3 * sizeof(struct in6_addr)); 2803 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2804 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2805 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2806 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2807 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2808 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2809 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2810 2811 r = (void *) &r6; 2812 } else { /* ipv4 */ 2813 struct rtentry32 __user *ur4 = argp; 2814 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 2815 3 * sizeof(struct sockaddr)); 2816 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 2817 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 2818 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 2819 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 2820 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 2821 ret |= __get_user(rtdev, &(ur4->rt_dev)); 2822 if (rtdev) { 2823 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 2824 r4.rt_dev = devname; devname[15] = 0; 2825 } else 2826 r4.rt_dev = NULL; 2827 2828 r = (void *) &r4; 2829 } 2830 2831 if (ret) { 2832 ret = -EFAULT; 2833 goto out; 2834 } 2835 2836 set_fs(KERNEL_DS); 2837 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 2838 set_fs(old_fs); 2839 2840 out: 2841 return ret; 2842 } 2843 2844 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 2845 * for some operations; this forces use of the newer bridge-utils that 2846 * use compatiable ioctls 2847 */ 2848 static int old_bridge_ioctl(compat_ulong_t __user *argp) 2849 { 2850 compat_ulong_t tmp; 2851 2852 if (get_user(tmp, argp)) 2853 return -EFAULT; 2854 if (tmp == BRCTL_GET_VERSION) 2855 return BRCTL_VERSION + 1; 2856 return -EINVAL; 2857 } 2858 2859 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 2860 unsigned int cmd, unsigned long arg) 2861 { 2862 void __user *argp = compat_ptr(arg); 2863 struct sock *sk = sock->sk; 2864 struct net *net = sock_net(sk); 2865 2866 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 2867 return siocdevprivate_ioctl(net, cmd, argp); 2868 2869 switch (cmd) { 2870 case SIOCSIFBR: 2871 case SIOCGIFBR: 2872 return old_bridge_ioctl(argp); 2873 case SIOCGIFNAME: 2874 return dev_ifname32(net, argp); 2875 case SIOCGIFCONF: 2876 return dev_ifconf(net, argp); 2877 case SIOCETHTOOL: 2878 return ethtool_ioctl(net, argp); 2879 case SIOCWANDEV: 2880 return compat_siocwandev(net, argp); 2881 case SIOCGIFMAP: 2882 case SIOCSIFMAP: 2883 return compat_sioc_ifmap(net, cmd, argp); 2884 case SIOCBONDENSLAVE: 2885 case SIOCBONDRELEASE: 2886 case SIOCBONDSETHWADDR: 2887 case SIOCBONDSLAVEINFOQUERY: 2888 case SIOCBONDINFOQUERY: 2889 case SIOCBONDCHANGEACTIVE: 2890 return bond_ioctl(net, cmd, argp); 2891 case SIOCADDRT: 2892 case SIOCDELRT: 2893 return routing_ioctl(net, sock, cmd, argp); 2894 case SIOCGSTAMP: 2895 return do_siocgstamp(net, sock, cmd, argp); 2896 case SIOCGSTAMPNS: 2897 return do_siocgstampns(net, sock, cmd, argp); 2898 case SIOCSHWTSTAMP: 2899 return compat_siocshwtstamp(net, argp); 2900 2901 case FIOSETOWN: 2902 case SIOCSPGRP: 2903 case FIOGETOWN: 2904 case SIOCGPGRP: 2905 case SIOCBRADDBR: 2906 case SIOCBRDELBR: 2907 case SIOCGIFVLAN: 2908 case SIOCSIFVLAN: 2909 case SIOCADDDLCI: 2910 case SIOCDELDLCI: 2911 return sock_ioctl(file, cmd, arg); 2912 2913 case SIOCGIFFLAGS: 2914 case SIOCSIFFLAGS: 2915 case SIOCGIFMETRIC: 2916 case SIOCSIFMETRIC: 2917 case SIOCGIFMTU: 2918 case SIOCSIFMTU: 2919 case SIOCGIFMEM: 2920 case SIOCSIFMEM: 2921 case SIOCGIFHWADDR: 2922 case SIOCSIFHWADDR: 2923 case SIOCADDMULTI: 2924 case SIOCDELMULTI: 2925 case SIOCGIFINDEX: 2926 case SIOCGIFADDR: 2927 case SIOCSIFADDR: 2928 case SIOCSIFHWBROADCAST: 2929 case SIOCDIFADDR: 2930 case SIOCGIFBRDADDR: 2931 case SIOCSIFBRDADDR: 2932 case SIOCGIFDSTADDR: 2933 case SIOCSIFDSTADDR: 2934 case SIOCGIFNETMASK: 2935 case SIOCSIFNETMASK: 2936 case SIOCSIFPFLAGS: 2937 case SIOCGIFPFLAGS: 2938 case SIOCGIFTXQLEN: 2939 case SIOCSIFTXQLEN: 2940 case SIOCBRADDIF: 2941 case SIOCBRDELIF: 2942 case SIOCSIFNAME: 2943 case SIOCGMIIPHY: 2944 case SIOCGMIIREG: 2945 case SIOCSMIIREG: 2946 return dev_ifsioc(net, sock, cmd, argp); 2947 2948 case SIOCSARP: 2949 case SIOCGARP: 2950 case SIOCDARP: 2951 case SIOCATMARK: 2952 return sock_do_ioctl(net, sock, cmd, arg); 2953 } 2954 2955 /* Prevent warning from compat_sys_ioctl, these always 2956 * result in -EINVAL in the native case anyway. */ 2957 switch (cmd) { 2958 case SIOCRTMSG: 2959 case SIOCGIFCOUNT: 2960 case SIOCSRARP: 2961 case SIOCGRARP: 2962 case SIOCDRARP: 2963 case SIOCSIFLINK: 2964 case SIOCGIFSLAVE: 2965 case SIOCSIFSLAVE: 2966 return -EINVAL; 2967 } 2968 2969 return -ENOIOCTLCMD; 2970 } 2971 2972 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2973 unsigned long arg) 2974 { 2975 struct socket *sock = file->private_data; 2976 int ret = -ENOIOCTLCMD; 2977 struct sock *sk; 2978 struct net *net; 2979 2980 sk = sock->sk; 2981 net = sock_net(sk); 2982 2983 if (sock->ops->compat_ioctl) 2984 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2985 2986 if (ret == -ENOIOCTLCMD && 2987 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 2988 ret = compat_wext_handle_ioctl(net, cmd, arg); 2989 2990 if (ret == -ENOIOCTLCMD) 2991 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 2992 2993 return ret; 2994 } 2995 #endif 2996 2997 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2998 { 2999 return sock->ops->bind(sock, addr, addrlen); 3000 } 3001 EXPORT_SYMBOL(kernel_bind); 3002 3003 int kernel_listen(struct socket *sock, int backlog) 3004 { 3005 return sock->ops->listen(sock, backlog); 3006 } 3007 EXPORT_SYMBOL(kernel_listen); 3008 3009 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3010 { 3011 struct sock *sk = sock->sk; 3012 int err; 3013 3014 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3015 newsock); 3016 if (err < 0) 3017 goto done; 3018 3019 err = sock->ops->accept(sock, *newsock, flags); 3020 if (err < 0) { 3021 sock_release(*newsock); 3022 *newsock = NULL; 3023 goto done; 3024 } 3025 3026 (*newsock)->ops = sock->ops; 3027 __module_get((*newsock)->ops->owner); 3028 3029 done: 3030 return err; 3031 } 3032 EXPORT_SYMBOL(kernel_accept); 3033 3034 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3035 int flags) 3036 { 3037 return sock->ops->connect(sock, addr, addrlen, flags); 3038 } 3039 EXPORT_SYMBOL(kernel_connect); 3040 3041 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3042 int *addrlen) 3043 { 3044 return sock->ops->getname(sock, addr, addrlen, 0); 3045 } 3046 EXPORT_SYMBOL(kernel_getsockname); 3047 3048 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3049 int *addrlen) 3050 { 3051 return sock->ops->getname(sock, addr, addrlen, 1); 3052 } 3053 EXPORT_SYMBOL(kernel_getpeername); 3054 3055 int kernel_getsockopt(struct socket *sock, int level, int optname, 3056 char *optval, int *optlen) 3057 { 3058 mm_segment_t oldfs = get_fs(); 3059 char __user *uoptval; 3060 int __user *uoptlen; 3061 int err; 3062 3063 uoptval = (char __user __force *) optval; 3064 uoptlen = (int __user __force *) optlen; 3065 3066 set_fs(KERNEL_DS); 3067 if (level == SOL_SOCKET) 3068 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3069 else 3070 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3071 uoptlen); 3072 set_fs(oldfs); 3073 return err; 3074 } 3075 EXPORT_SYMBOL(kernel_getsockopt); 3076 3077 int kernel_setsockopt(struct socket *sock, int level, int optname, 3078 char *optval, unsigned int optlen) 3079 { 3080 mm_segment_t oldfs = get_fs(); 3081 char __user *uoptval; 3082 int err; 3083 3084 uoptval = (char __user __force *) optval; 3085 3086 set_fs(KERNEL_DS); 3087 if (level == SOL_SOCKET) 3088 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3089 else 3090 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3091 optlen); 3092 set_fs(oldfs); 3093 return err; 3094 } 3095 EXPORT_SYMBOL(kernel_setsockopt); 3096 3097 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3098 size_t size, int flags) 3099 { 3100 sock_update_classid(sock->sk); 3101 3102 if (sock->ops->sendpage) 3103 return sock->ops->sendpage(sock, page, offset, size, flags); 3104 3105 return sock_no_sendpage(sock, page, offset, size, flags); 3106 } 3107 EXPORT_SYMBOL(kernel_sendpage); 3108 3109 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3110 { 3111 mm_segment_t oldfs = get_fs(); 3112 int err; 3113 3114 set_fs(KERNEL_DS); 3115 err = sock->ops->ioctl(sock, cmd, arg); 3116 set_fs(oldfs); 3117 3118 return err; 3119 } 3120 EXPORT_SYMBOL(kernel_sock_ioctl); 3121 3122 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3123 { 3124 return sock->ops->shutdown(sock, how); 3125 } 3126 EXPORT_SYMBOL(kernel_sock_shutdown); 3127