xref: /linux/net/socket.c (revision c053784454550cf750399caa65482b31ffbe3c57)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 			 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 			  unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 				struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.aio_read =	sock_aio_read,
139 	.aio_write =	sock_aio_write,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
160 
161 /*
162  *	Statistics counters of the socket lists
163  */
164 
165 static DEFINE_PER_CPU(int, sockets_in_use);
166 
167 /*
168  * Support routines.
169  * Move socket addresses back and forth across the kernel/user
170  * divide and look after the messy bits.
171  */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 static int move_addr_to_user(struct sockaddr *kaddr, int klen,
213 			     void __user *uaddr, int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
248 	if (!ei->socket.wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&ei->socket.wq->wait);
253 	ei->socket.wq->fasync_list = NULL;
254 
255 	ei->socket.state = SS_UNCONNECTED;
256 	ei->socket.flags = 0;
257 	ei->socket.ops = NULL;
258 	ei->socket.sk = NULL;
259 	ei->socket.file = NULL;
260 
261 	return &ei->vfs_inode;
262 }
263 
264 
265 static void wq_free_rcu(struct rcu_head *head)
266 {
267 	struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
268 
269 	kfree(wq);
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 
276 	ei = container_of(inode, struct socket_alloc, vfs_inode);
277 	call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
278 	kmem_cache_free(sock_inode_cachep, ei);
279 }
280 
281 static void init_once(void *foo)
282 {
283 	struct socket_alloc *ei = (struct socket_alloc *)foo;
284 
285 	inode_init_once(&ei->vfs_inode);
286 }
287 
288 static int init_inodecache(void)
289 {
290 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
291 					      sizeof(struct socket_alloc),
292 					      0,
293 					      (SLAB_HWCACHE_ALIGN |
294 					       SLAB_RECLAIM_ACCOUNT |
295 					       SLAB_MEM_SPREAD),
296 					      init_once);
297 	if (sock_inode_cachep == NULL)
298 		return -ENOMEM;
299 	return 0;
300 }
301 
302 static const struct super_operations sockfs_ops = {
303 	.alloc_inode	= sock_alloc_inode,
304 	.destroy_inode	= sock_destroy_inode,
305 	.statfs		= simple_statfs,
306 };
307 
308 static int sockfs_get_sb(struct file_system_type *fs_type,
309 			 int flags, const char *dev_name, void *data,
310 			 struct vfsmount *mnt)
311 {
312 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
313 			     mnt);
314 }
315 
316 static struct vfsmount *sock_mnt __read_mostly;
317 
318 static struct file_system_type sock_fs_type = {
319 	.name =		"sockfs",
320 	.get_sb =	sockfs_get_sb,
321 	.kill_sb =	kill_anon_super,
322 };
323 
324 /*
325  * sockfs_dname() is called from d_path().
326  */
327 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
328 {
329 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
330 				dentry->d_inode->i_ino);
331 }
332 
333 static const struct dentry_operations sockfs_dentry_operations = {
334 	.d_dname  = sockfs_dname,
335 };
336 
337 /*
338  *	Obtains the first available file descriptor and sets it up for use.
339  *
340  *	These functions create file structures and maps them to fd space
341  *	of the current process. On success it returns file descriptor
342  *	and file struct implicitly stored in sock->file.
343  *	Note that another thread may close file descriptor before we return
344  *	from this function. We use the fact that now we do not refer
345  *	to socket after mapping. If one day we will need it, this
346  *	function will increment ref. count on file by 1.
347  *
348  *	In any case returned fd MAY BE not valid!
349  *	This race condition is unavoidable
350  *	with shared fd spaces, we cannot solve it inside kernel,
351  *	but we take care of internal coherence yet.
352  */
353 
354 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
355 {
356 	struct qstr name = { .name = "" };
357 	struct path path;
358 	struct file *file;
359 	int fd;
360 
361 	fd = get_unused_fd_flags(flags);
362 	if (unlikely(fd < 0))
363 		return fd;
364 
365 	path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
366 	if (unlikely(!path.dentry)) {
367 		put_unused_fd(fd);
368 		return -ENOMEM;
369 	}
370 	path.mnt = mntget(sock_mnt);
371 
372 	path.dentry->d_op = &sockfs_dentry_operations;
373 	d_instantiate(path.dentry, SOCK_INODE(sock));
374 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
375 
376 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 		  &socket_file_ops);
378 	if (unlikely(!file)) {
379 		/* drop dentry, keep inode */
380 		atomic_inc(&path.dentry->d_inode->i_count);
381 		path_put(&path);
382 		put_unused_fd(fd);
383 		return -ENFILE;
384 	}
385 
386 	sock->file = file;
387 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
388 	file->f_pos = 0;
389 	file->private_data = sock;
390 
391 	*f = file;
392 	return fd;
393 }
394 
395 int sock_map_fd(struct socket *sock, int flags)
396 {
397 	struct file *newfile;
398 	int fd = sock_alloc_file(sock, &newfile, flags);
399 
400 	if (likely(fd >= 0))
401 		fd_install(fd, newfile);
402 
403 	return fd;
404 }
405 EXPORT_SYMBOL(sock_map_fd);
406 
407 static struct socket *sock_from_file(struct file *file, int *err)
408 {
409 	if (file->f_op == &socket_file_ops)
410 		return file->private_data;	/* set in sock_map_fd */
411 
412 	*err = -ENOTSOCK;
413 	return NULL;
414 }
415 
416 /**
417  *	sockfd_lookup - Go from a file number to its socket slot
418  *	@fd: file handle
419  *	@err: pointer to an error code return
420  *
421  *	The file handle passed in is locked and the socket it is bound
422  *	too is returned. If an error occurs the err pointer is overwritten
423  *	with a negative errno code and NULL is returned. The function checks
424  *	for both invalid handles and passing a handle which is not a socket.
425  *
426  *	On a success the socket object pointer is returned.
427  */
428 
429 struct socket *sockfd_lookup(int fd, int *err)
430 {
431 	struct file *file;
432 	struct socket *sock;
433 
434 	file = fget(fd);
435 	if (!file) {
436 		*err = -EBADF;
437 		return NULL;
438 	}
439 
440 	sock = sock_from_file(file, err);
441 	if (!sock)
442 		fput(file);
443 	return sock;
444 }
445 EXPORT_SYMBOL(sockfd_lookup);
446 
447 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
448 {
449 	struct file *file;
450 	struct socket *sock;
451 
452 	*err = -EBADF;
453 	file = fget_light(fd, fput_needed);
454 	if (file) {
455 		sock = sock_from_file(file, err);
456 		if (sock)
457 			return sock;
458 		fput_light(file, *fput_needed);
459 	}
460 	return NULL;
461 }
462 
463 /**
464  *	sock_alloc	-	allocate a socket
465  *
466  *	Allocate a new inode and socket object. The two are bound together
467  *	and initialised. The socket is then returned. If we are out of inodes
468  *	NULL is returned.
469  */
470 
471 static struct socket *sock_alloc(void)
472 {
473 	struct inode *inode;
474 	struct socket *sock;
475 
476 	inode = new_inode(sock_mnt->mnt_sb);
477 	if (!inode)
478 		return NULL;
479 
480 	sock = SOCKET_I(inode);
481 
482 	kmemcheck_annotate_bitfield(sock, type);
483 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
484 	inode->i_uid = current_fsuid();
485 	inode->i_gid = current_fsgid();
486 
487 	percpu_add(sockets_in_use, 1);
488 	return sock;
489 }
490 
491 /*
492  *	In theory you can't get an open on this inode, but /proc provides
493  *	a back door. Remember to keep it shut otherwise you'll let the
494  *	creepy crawlies in.
495  */
496 
497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
498 {
499 	return -ENXIO;
500 }
501 
502 const struct file_operations bad_sock_fops = {
503 	.owner = THIS_MODULE,
504 	.open = sock_no_open,
505 	.llseek = noop_llseek,
506 };
507 
508 /**
509  *	sock_release	-	close a socket
510  *	@sock: socket to close
511  *
512  *	The socket is released from the protocol stack if it has a release
513  *	callback, and the inode is then released if the socket is bound to
514  *	an inode not a file.
515  */
516 
517 void sock_release(struct socket *sock)
518 {
519 	if (sock->ops) {
520 		struct module *owner = sock->ops->owner;
521 
522 		sock->ops->release(sock);
523 		sock->ops = NULL;
524 		module_put(owner);
525 	}
526 
527 	if (sock->wq->fasync_list)
528 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
529 
530 	percpu_sub(sockets_in_use, 1);
531 	if (!sock->file) {
532 		iput(SOCK_INODE(sock));
533 		return;
534 	}
535 	sock->file = NULL;
536 }
537 EXPORT_SYMBOL(sock_release);
538 
539 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
540 {
541 	*tx_flags = 0;
542 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
543 		*tx_flags |= SKBTX_HW_TSTAMP;
544 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
545 		*tx_flags |= SKBTX_SW_TSTAMP;
546 	return 0;
547 }
548 EXPORT_SYMBOL(sock_tx_timestamp);
549 
550 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
551 				 struct msghdr *msg, size_t size)
552 {
553 	struct sock_iocb *si = kiocb_to_siocb(iocb);
554 	int err;
555 
556 	sock_update_classid(sock->sk);
557 
558 	si->sock = sock;
559 	si->scm = NULL;
560 	si->msg = msg;
561 	si->size = size;
562 
563 	err = security_socket_sendmsg(sock, msg, size);
564 	if (err)
565 		return err;
566 
567 	return sock->ops->sendmsg(iocb, sock, msg, size);
568 }
569 
570 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
571 {
572 	struct kiocb iocb;
573 	struct sock_iocb siocb;
574 	int ret;
575 
576 	init_sync_kiocb(&iocb, NULL);
577 	iocb.private = &siocb;
578 	ret = __sock_sendmsg(&iocb, sock, msg, size);
579 	if (-EIOCBQUEUED == ret)
580 		ret = wait_on_sync_kiocb(&iocb);
581 	return ret;
582 }
583 EXPORT_SYMBOL(sock_sendmsg);
584 
585 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
586 		   struct kvec *vec, size_t num, size_t size)
587 {
588 	mm_segment_t oldfs = get_fs();
589 	int result;
590 
591 	set_fs(KERNEL_DS);
592 	/*
593 	 * the following is safe, since for compiler definitions of kvec and
594 	 * iovec are identical, yielding the same in-core layout and alignment
595 	 */
596 	msg->msg_iov = (struct iovec *)vec;
597 	msg->msg_iovlen = num;
598 	result = sock_sendmsg(sock, msg, size);
599 	set_fs(oldfs);
600 	return result;
601 }
602 EXPORT_SYMBOL(kernel_sendmsg);
603 
604 static int ktime2ts(ktime_t kt, struct timespec *ts)
605 {
606 	if (kt.tv64) {
607 		*ts = ktime_to_timespec(kt);
608 		return 1;
609 	} else {
610 		return 0;
611 	}
612 }
613 
614 /*
615  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
616  */
617 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
618 	struct sk_buff *skb)
619 {
620 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
621 	struct timespec ts[3];
622 	int empty = 1;
623 	struct skb_shared_hwtstamps *shhwtstamps =
624 		skb_hwtstamps(skb);
625 
626 	/* Race occurred between timestamp enabling and packet
627 	   receiving.  Fill in the current time for now. */
628 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
629 		__net_timestamp(skb);
630 
631 	if (need_software_tstamp) {
632 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
633 			struct timeval tv;
634 			skb_get_timestamp(skb, &tv);
635 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
636 				 sizeof(tv), &tv);
637 		} else {
638 			skb_get_timestampns(skb, &ts[0]);
639 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
640 				 sizeof(ts[0]), &ts[0]);
641 		}
642 	}
643 
644 
645 	memset(ts, 0, sizeof(ts));
646 	if (skb->tstamp.tv64 &&
647 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
648 		skb_get_timestampns(skb, ts + 0);
649 		empty = 0;
650 	}
651 	if (shhwtstamps) {
652 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
653 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
654 			empty = 0;
655 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
656 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
657 			empty = 0;
658 	}
659 	if (!empty)
660 		put_cmsg(msg, SOL_SOCKET,
661 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
662 }
663 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
664 
665 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
666 				   struct sk_buff *skb)
667 {
668 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
669 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
670 			sizeof(__u32), &skb->dropcount);
671 }
672 
673 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
674 	struct sk_buff *skb)
675 {
676 	sock_recv_timestamp(msg, sk, skb);
677 	sock_recv_drops(msg, sk, skb);
678 }
679 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
680 
681 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
682 				       struct msghdr *msg, size_t size, int flags)
683 {
684 	struct sock_iocb *si = kiocb_to_siocb(iocb);
685 
686 	sock_update_classid(sock->sk);
687 
688 	si->sock = sock;
689 	si->scm = NULL;
690 	si->msg = msg;
691 	si->size = size;
692 	si->flags = flags;
693 
694 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
695 }
696 
697 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
698 				 struct msghdr *msg, size_t size, int flags)
699 {
700 	int err = security_socket_recvmsg(sock, msg, size, flags);
701 
702 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
703 }
704 
705 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
706 		 size_t size, int flags)
707 {
708 	struct kiocb iocb;
709 	struct sock_iocb siocb;
710 	int ret;
711 
712 	init_sync_kiocb(&iocb, NULL);
713 	iocb.private = &siocb;
714 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
715 	if (-EIOCBQUEUED == ret)
716 		ret = wait_on_sync_kiocb(&iocb);
717 	return ret;
718 }
719 EXPORT_SYMBOL(sock_recvmsg);
720 
721 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
722 			      size_t size, int flags)
723 {
724 	struct kiocb iocb;
725 	struct sock_iocb siocb;
726 	int ret;
727 
728 	init_sync_kiocb(&iocb, NULL);
729 	iocb.private = &siocb;
730 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
731 	if (-EIOCBQUEUED == ret)
732 		ret = wait_on_sync_kiocb(&iocb);
733 	return ret;
734 }
735 
736 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
737 		   struct kvec *vec, size_t num, size_t size, int flags)
738 {
739 	mm_segment_t oldfs = get_fs();
740 	int result;
741 
742 	set_fs(KERNEL_DS);
743 	/*
744 	 * the following is safe, since for compiler definitions of kvec and
745 	 * iovec are identical, yielding the same in-core layout and alignment
746 	 */
747 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
748 	result = sock_recvmsg(sock, msg, size, flags);
749 	set_fs(oldfs);
750 	return result;
751 }
752 EXPORT_SYMBOL(kernel_recvmsg);
753 
754 static void sock_aio_dtor(struct kiocb *iocb)
755 {
756 	kfree(iocb->private);
757 }
758 
759 static ssize_t sock_sendpage(struct file *file, struct page *page,
760 			     int offset, size_t size, loff_t *ppos, int more)
761 {
762 	struct socket *sock;
763 	int flags;
764 
765 	sock = file->private_data;
766 
767 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
768 	if (more)
769 		flags |= MSG_MORE;
770 
771 	return kernel_sendpage(sock, page, offset, size, flags);
772 }
773 
774 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
775 				struct pipe_inode_info *pipe, size_t len,
776 				unsigned int flags)
777 {
778 	struct socket *sock = file->private_data;
779 
780 	if (unlikely(!sock->ops->splice_read))
781 		return -EINVAL;
782 
783 	sock_update_classid(sock->sk);
784 
785 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
786 }
787 
788 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
789 					 struct sock_iocb *siocb)
790 {
791 	if (!is_sync_kiocb(iocb)) {
792 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
793 		if (!siocb)
794 			return NULL;
795 		iocb->ki_dtor = sock_aio_dtor;
796 	}
797 
798 	siocb->kiocb = iocb;
799 	iocb->private = siocb;
800 	return siocb;
801 }
802 
803 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
804 		struct file *file, const struct iovec *iov,
805 		unsigned long nr_segs)
806 {
807 	struct socket *sock = file->private_data;
808 	size_t size = 0;
809 	int i;
810 
811 	for (i = 0; i < nr_segs; i++)
812 		size += iov[i].iov_len;
813 
814 	msg->msg_name = NULL;
815 	msg->msg_namelen = 0;
816 	msg->msg_control = NULL;
817 	msg->msg_controllen = 0;
818 	msg->msg_iov = (struct iovec *)iov;
819 	msg->msg_iovlen = nr_segs;
820 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
821 
822 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
823 }
824 
825 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
826 				unsigned long nr_segs, loff_t pos)
827 {
828 	struct sock_iocb siocb, *x;
829 
830 	if (pos != 0)
831 		return -ESPIPE;
832 
833 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
834 		return 0;
835 
836 
837 	x = alloc_sock_iocb(iocb, &siocb);
838 	if (!x)
839 		return -ENOMEM;
840 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
841 }
842 
843 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
844 			struct file *file, const struct iovec *iov,
845 			unsigned long nr_segs)
846 {
847 	struct socket *sock = file->private_data;
848 	size_t size = 0;
849 	int i;
850 
851 	for (i = 0; i < nr_segs; i++)
852 		size += iov[i].iov_len;
853 
854 	msg->msg_name = NULL;
855 	msg->msg_namelen = 0;
856 	msg->msg_control = NULL;
857 	msg->msg_controllen = 0;
858 	msg->msg_iov = (struct iovec *)iov;
859 	msg->msg_iovlen = nr_segs;
860 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
861 	if (sock->type == SOCK_SEQPACKET)
862 		msg->msg_flags |= MSG_EOR;
863 
864 	return __sock_sendmsg(iocb, sock, msg, size);
865 }
866 
867 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
868 			  unsigned long nr_segs, loff_t pos)
869 {
870 	struct sock_iocb siocb, *x;
871 
872 	if (pos != 0)
873 		return -ESPIPE;
874 
875 	x = alloc_sock_iocb(iocb, &siocb);
876 	if (!x)
877 		return -ENOMEM;
878 
879 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
880 }
881 
882 /*
883  * Atomic setting of ioctl hooks to avoid race
884  * with module unload.
885  */
886 
887 static DEFINE_MUTEX(br_ioctl_mutex);
888 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
889 
890 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
891 {
892 	mutex_lock(&br_ioctl_mutex);
893 	br_ioctl_hook = hook;
894 	mutex_unlock(&br_ioctl_mutex);
895 }
896 EXPORT_SYMBOL(brioctl_set);
897 
898 static DEFINE_MUTEX(vlan_ioctl_mutex);
899 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
900 
901 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
902 {
903 	mutex_lock(&vlan_ioctl_mutex);
904 	vlan_ioctl_hook = hook;
905 	mutex_unlock(&vlan_ioctl_mutex);
906 }
907 EXPORT_SYMBOL(vlan_ioctl_set);
908 
909 static DEFINE_MUTEX(dlci_ioctl_mutex);
910 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
911 
912 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
913 {
914 	mutex_lock(&dlci_ioctl_mutex);
915 	dlci_ioctl_hook = hook;
916 	mutex_unlock(&dlci_ioctl_mutex);
917 }
918 EXPORT_SYMBOL(dlci_ioctl_set);
919 
920 static long sock_do_ioctl(struct net *net, struct socket *sock,
921 				 unsigned int cmd, unsigned long arg)
922 {
923 	int err;
924 	void __user *argp = (void __user *)arg;
925 
926 	err = sock->ops->ioctl(sock, cmd, arg);
927 
928 	/*
929 	 * If this ioctl is unknown try to hand it down
930 	 * to the NIC driver.
931 	 */
932 	if (err == -ENOIOCTLCMD)
933 		err = dev_ioctl(net, cmd, argp);
934 
935 	return err;
936 }
937 
938 /*
939  *	With an ioctl, arg may well be a user mode pointer, but we don't know
940  *	what to do with it - that's up to the protocol still.
941  */
942 
943 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
944 {
945 	struct socket *sock;
946 	struct sock *sk;
947 	void __user *argp = (void __user *)arg;
948 	int pid, err;
949 	struct net *net;
950 
951 	sock = file->private_data;
952 	sk = sock->sk;
953 	net = sock_net(sk);
954 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
955 		err = dev_ioctl(net, cmd, argp);
956 	} else
957 #ifdef CONFIG_WEXT_CORE
958 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
959 		err = dev_ioctl(net, cmd, argp);
960 	} else
961 #endif
962 		switch (cmd) {
963 		case FIOSETOWN:
964 		case SIOCSPGRP:
965 			err = -EFAULT;
966 			if (get_user(pid, (int __user *)argp))
967 				break;
968 			err = f_setown(sock->file, pid, 1);
969 			break;
970 		case FIOGETOWN:
971 		case SIOCGPGRP:
972 			err = put_user(f_getown(sock->file),
973 				       (int __user *)argp);
974 			break;
975 		case SIOCGIFBR:
976 		case SIOCSIFBR:
977 		case SIOCBRADDBR:
978 		case SIOCBRDELBR:
979 			err = -ENOPKG;
980 			if (!br_ioctl_hook)
981 				request_module("bridge");
982 
983 			mutex_lock(&br_ioctl_mutex);
984 			if (br_ioctl_hook)
985 				err = br_ioctl_hook(net, cmd, argp);
986 			mutex_unlock(&br_ioctl_mutex);
987 			break;
988 		case SIOCGIFVLAN:
989 		case SIOCSIFVLAN:
990 			err = -ENOPKG;
991 			if (!vlan_ioctl_hook)
992 				request_module("8021q");
993 
994 			mutex_lock(&vlan_ioctl_mutex);
995 			if (vlan_ioctl_hook)
996 				err = vlan_ioctl_hook(net, argp);
997 			mutex_unlock(&vlan_ioctl_mutex);
998 			break;
999 		case SIOCADDDLCI:
1000 		case SIOCDELDLCI:
1001 			err = -ENOPKG;
1002 			if (!dlci_ioctl_hook)
1003 				request_module("dlci");
1004 
1005 			mutex_lock(&dlci_ioctl_mutex);
1006 			if (dlci_ioctl_hook)
1007 				err = dlci_ioctl_hook(cmd, argp);
1008 			mutex_unlock(&dlci_ioctl_mutex);
1009 			break;
1010 		default:
1011 			err = sock_do_ioctl(net, sock, cmd, arg);
1012 			break;
1013 		}
1014 	return err;
1015 }
1016 
1017 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1018 {
1019 	int err;
1020 	struct socket *sock = NULL;
1021 
1022 	err = security_socket_create(family, type, protocol, 1);
1023 	if (err)
1024 		goto out;
1025 
1026 	sock = sock_alloc();
1027 	if (!sock) {
1028 		err = -ENOMEM;
1029 		goto out;
1030 	}
1031 
1032 	sock->type = type;
1033 	err = security_socket_post_create(sock, family, type, protocol, 1);
1034 	if (err)
1035 		goto out_release;
1036 
1037 out:
1038 	*res = sock;
1039 	return err;
1040 out_release:
1041 	sock_release(sock);
1042 	sock = NULL;
1043 	goto out;
1044 }
1045 EXPORT_SYMBOL(sock_create_lite);
1046 
1047 /* No kernel lock held - perfect */
1048 static unsigned int sock_poll(struct file *file, poll_table *wait)
1049 {
1050 	struct socket *sock;
1051 
1052 	/*
1053 	 *      We can't return errors to poll, so it's either yes or no.
1054 	 */
1055 	sock = file->private_data;
1056 	return sock->ops->poll(file, sock, wait);
1057 }
1058 
1059 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1060 {
1061 	struct socket *sock = file->private_data;
1062 
1063 	return sock->ops->mmap(file, sock, vma);
1064 }
1065 
1066 static int sock_close(struct inode *inode, struct file *filp)
1067 {
1068 	/*
1069 	 *      It was possible the inode is NULL we were
1070 	 *      closing an unfinished socket.
1071 	 */
1072 
1073 	if (!inode) {
1074 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1075 		return 0;
1076 	}
1077 	sock_release(SOCKET_I(inode));
1078 	return 0;
1079 }
1080 
1081 /*
1082  *	Update the socket async list
1083  *
1084  *	Fasync_list locking strategy.
1085  *
1086  *	1. fasync_list is modified only under process context socket lock
1087  *	   i.e. under semaphore.
1088  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1089  *	   or under socket lock
1090  */
1091 
1092 static int sock_fasync(int fd, struct file *filp, int on)
1093 {
1094 	struct socket *sock = filp->private_data;
1095 	struct sock *sk = sock->sk;
1096 
1097 	if (sk == NULL)
1098 		return -EINVAL;
1099 
1100 	lock_sock(sk);
1101 
1102 	fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1103 
1104 	if (!sock->wq->fasync_list)
1105 		sock_reset_flag(sk, SOCK_FASYNC);
1106 	else
1107 		sock_set_flag(sk, SOCK_FASYNC);
1108 
1109 	release_sock(sk);
1110 	return 0;
1111 }
1112 
1113 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1114 
1115 int sock_wake_async(struct socket *sock, int how, int band)
1116 {
1117 	struct socket_wq *wq;
1118 
1119 	if (!sock)
1120 		return -1;
1121 	rcu_read_lock();
1122 	wq = rcu_dereference(sock->wq);
1123 	if (!wq || !wq->fasync_list) {
1124 		rcu_read_unlock();
1125 		return -1;
1126 	}
1127 	switch (how) {
1128 	case SOCK_WAKE_WAITD:
1129 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1130 			break;
1131 		goto call_kill;
1132 	case SOCK_WAKE_SPACE:
1133 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1134 			break;
1135 		/* fall through */
1136 	case SOCK_WAKE_IO:
1137 call_kill:
1138 		kill_fasync(&wq->fasync_list, SIGIO, band);
1139 		break;
1140 	case SOCK_WAKE_URG:
1141 		kill_fasync(&wq->fasync_list, SIGURG, band);
1142 	}
1143 	rcu_read_unlock();
1144 	return 0;
1145 }
1146 EXPORT_SYMBOL(sock_wake_async);
1147 
1148 static int __sock_create(struct net *net, int family, int type, int protocol,
1149 			 struct socket **res, int kern)
1150 {
1151 	int err;
1152 	struct socket *sock;
1153 	const struct net_proto_family *pf;
1154 
1155 	/*
1156 	 *      Check protocol is in range
1157 	 */
1158 	if (family < 0 || family >= NPROTO)
1159 		return -EAFNOSUPPORT;
1160 	if (type < 0 || type >= SOCK_MAX)
1161 		return -EINVAL;
1162 
1163 	/* Compatibility.
1164 
1165 	   This uglymoron is moved from INET layer to here to avoid
1166 	   deadlock in module load.
1167 	 */
1168 	if (family == PF_INET && type == SOCK_PACKET) {
1169 		static int warned;
1170 		if (!warned) {
1171 			warned = 1;
1172 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1173 			       current->comm);
1174 		}
1175 		family = PF_PACKET;
1176 	}
1177 
1178 	err = security_socket_create(family, type, protocol, kern);
1179 	if (err)
1180 		return err;
1181 
1182 	/*
1183 	 *	Allocate the socket and allow the family to set things up. if
1184 	 *	the protocol is 0, the family is instructed to select an appropriate
1185 	 *	default.
1186 	 */
1187 	sock = sock_alloc();
1188 	if (!sock) {
1189 		if (net_ratelimit())
1190 			printk(KERN_WARNING "socket: no more sockets\n");
1191 		return -ENFILE;	/* Not exactly a match, but its the
1192 				   closest posix thing */
1193 	}
1194 
1195 	sock->type = type;
1196 
1197 #ifdef CONFIG_MODULES
1198 	/* Attempt to load a protocol module if the find failed.
1199 	 *
1200 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1201 	 * requested real, full-featured networking support upon configuration.
1202 	 * Otherwise module support will break!
1203 	 */
1204 	if (net_families[family] == NULL)
1205 		request_module("net-pf-%d", family);
1206 #endif
1207 
1208 	rcu_read_lock();
1209 	pf = rcu_dereference(net_families[family]);
1210 	err = -EAFNOSUPPORT;
1211 	if (!pf)
1212 		goto out_release;
1213 
1214 	/*
1215 	 * We will call the ->create function, that possibly is in a loadable
1216 	 * module, so we have to bump that loadable module refcnt first.
1217 	 */
1218 	if (!try_module_get(pf->owner))
1219 		goto out_release;
1220 
1221 	/* Now protected by module ref count */
1222 	rcu_read_unlock();
1223 
1224 	err = pf->create(net, sock, protocol, kern);
1225 	if (err < 0)
1226 		goto out_module_put;
1227 
1228 	/*
1229 	 * Now to bump the refcnt of the [loadable] module that owns this
1230 	 * socket at sock_release time we decrement its refcnt.
1231 	 */
1232 	if (!try_module_get(sock->ops->owner))
1233 		goto out_module_busy;
1234 
1235 	/*
1236 	 * Now that we're done with the ->create function, the [loadable]
1237 	 * module can have its refcnt decremented
1238 	 */
1239 	module_put(pf->owner);
1240 	err = security_socket_post_create(sock, family, type, protocol, kern);
1241 	if (err)
1242 		goto out_sock_release;
1243 	*res = sock;
1244 
1245 	return 0;
1246 
1247 out_module_busy:
1248 	err = -EAFNOSUPPORT;
1249 out_module_put:
1250 	sock->ops = NULL;
1251 	module_put(pf->owner);
1252 out_sock_release:
1253 	sock_release(sock);
1254 	return err;
1255 
1256 out_release:
1257 	rcu_read_unlock();
1258 	goto out_sock_release;
1259 }
1260 
1261 int sock_create(int family, int type, int protocol, struct socket **res)
1262 {
1263 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1264 }
1265 EXPORT_SYMBOL(sock_create);
1266 
1267 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1268 {
1269 	return __sock_create(&init_net, family, type, protocol, res, 1);
1270 }
1271 EXPORT_SYMBOL(sock_create_kern);
1272 
1273 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1274 {
1275 	int retval;
1276 	struct socket *sock;
1277 	int flags;
1278 
1279 	/* Check the SOCK_* constants for consistency.  */
1280 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1281 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1282 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1283 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1284 
1285 	flags = type & ~SOCK_TYPE_MASK;
1286 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1287 		return -EINVAL;
1288 	type &= SOCK_TYPE_MASK;
1289 
1290 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1291 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1292 
1293 	retval = sock_create(family, type, protocol, &sock);
1294 	if (retval < 0)
1295 		goto out;
1296 
1297 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1298 	if (retval < 0)
1299 		goto out_release;
1300 
1301 out:
1302 	/* It may be already another descriptor 8) Not kernel problem. */
1303 	return retval;
1304 
1305 out_release:
1306 	sock_release(sock);
1307 	return retval;
1308 }
1309 
1310 /*
1311  *	Create a pair of connected sockets.
1312  */
1313 
1314 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1315 		int __user *, usockvec)
1316 {
1317 	struct socket *sock1, *sock2;
1318 	int fd1, fd2, err;
1319 	struct file *newfile1, *newfile2;
1320 	int flags;
1321 
1322 	flags = type & ~SOCK_TYPE_MASK;
1323 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1324 		return -EINVAL;
1325 	type &= SOCK_TYPE_MASK;
1326 
1327 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1328 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1329 
1330 	/*
1331 	 * Obtain the first socket and check if the underlying protocol
1332 	 * supports the socketpair call.
1333 	 */
1334 
1335 	err = sock_create(family, type, protocol, &sock1);
1336 	if (err < 0)
1337 		goto out;
1338 
1339 	err = sock_create(family, type, protocol, &sock2);
1340 	if (err < 0)
1341 		goto out_release_1;
1342 
1343 	err = sock1->ops->socketpair(sock1, sock2);
1344 	if (err < 0)
1345 		goto out_release_both;
1346 
1347 	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1348 	if (unlikely(fd1 < 0)) {
1349 		err = fd1;
1350 		goto out_release_both;
1351 	}
1352 
1353 	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1354 	if (unlikely(fd2 < 0)) {
1355 		err = fd2;
1356 		fput(newfile1);
1357 		put_unused_fd(fd1);
1358 		sock_release(sock2);
1359 		goto out;
1360 	}
1361 
1362 	audit_fd_pair(fd1, fd2);
1363 	fd_install(fd1, newfile1);
1364 	fd_install(fd2, newfile2);
1365 	/* fd1 and fd2 may be already another descriptors.
1366 	 * Not kernel problem.
1367 	 */
1368 
1369 	err = put_user(fd1, &usockvec[0]);
1370 	if (!err)
1371 		err = put_user(fd2, &usockvec[1]);
1372 	if (!err)
1373 		return 0;
1374 
1375 	sys_close(fd2);
1376 	sys_close(fd1);
1377 	return err;
1378 
1379 out_release_both:
1380 	sock_release(sock2);
1381 out_release_1:
1382 	sock_release(sock1);
1383 out:
1384 	return err;
1385 }
1386 
1387 /*
1388  *	Bind a name to a socket. Nothing much to do here since it's
1389  *	the protocol's responsibility to handle the local address.
1390  *
1391  *	We move the socket address to kernel space before we call
1392  *	the protocol layer (having also checked the address is ok).
1393  */
1394 
1395 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1396 {
1397 	struct socket *sock;
1398 	struct sockaddr_storage address;
1399 	int err, fput_needed;
1400 
1401 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1402 	if (sock) {
1403 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1404 		if (err >= 0) {
1405 			err = security_socket_bind(sock,
1406 						   (struct sockaddr *)&address,
1407 						   addrlen);
1408 			if (!err)
1409 				err = sock->ops->bind(sock,
1410 						      (struct sockaddr *)
1411 						      &address, addrlen);
1412 		}
1413 		fput_light(sock->file, fput_needed);
1414 	}
1415 	return err;
1416 }
1417 
1418 /*
1419  *	Perform a listen. Basically, we allow the protocol to do anything
1420  *	necessary for a listen, and if that works, we mark the socket as
1421  *	ready for listening.
1422  */
1423 
1424 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1425 {
1426 	struct socket *sock;
1427 	int err, fput_needed;
1428 	int somaxconn;
1429 
1430 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1431 	if (sock) {
1432 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1433 		if ((unsigned)backlog > somaxconn)
1434 			backlog = somaxconn;
1435 
1436 		err = security_socket_listen(sock, backlog);
1437 		if (!err)
1438 			err = sock->ops->listen(sock, backlog);
1439 
1440 		fput_light(sock->file, fput_needed);
1441 	}
1442 	return err;
1443 }
1444 
1445 /*
1446  *	For accept, we attempt to create a new socket, set up the link
1447  *	with the client, wake up the client, then return the new
1448  *	connected fd. We collect the address of the connector in kernel
1449  *	space and move it to user at the very end. This is unclean because
1450  *	we open the socket then return an error.
1451  *
1452  *	1003.1g adds the ability to recvmsg() to query connection pending
1453  *	status to recvmsg. We need to add that support in a way thats
1454  *	clean when we restucture accept also.
1455  */
1456 
1457 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1458 		int __user *, upeer_addrlen, int, flags)
1459 {
1460 	struct socket *sock, *newsock;
1461 	struct file *newfile;
1462 	int err, len, newfd, fput_needed;
1463 	struct sockaddr_storage address;
1464 
1465 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1466 		return -EINVAL;
1467 
1468 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1469 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1470 
1471 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1472 	if (!sock)
1473 		goto out;
1474 
1475 	err = -ENFILE;
1476 	newsock = sock_alloc();
1477 	if (!newsock)
1478 		goto out_put;
1479 
1480 	newsock->type = sock->type;
1481 	newsock->ops = sock->ops;
1482 
1483 	/*
1484 	 * We don't need try_module_get here, as the listening socket (sock)
1485 	 * has the protocol module (sock->ops->owner) held.
1486 	 */
1487 	__module_get(newsock->ops->owner);
1488 
1489 	newfd = sock_alloc_file(newsock, &newfile, flags);
1490 	if (unlikely(newfd < 0)) {
1491 		err = newfd;
1492 		sock_release(newsock);
1493 		goto out_put;
1494 	}
1495 
1496 	err = security_socket_accept(sock, newsock);
1497 	if (err)
1498 		goto out_fd;
1499 
1500 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1501 	if (err < 0)
1502 		goto out_fd;
1503 
1504 	if (upeer_sockaddr) {
1505 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1506 					  &len, 2) < 0) {
1507 			err = -ECONNABORTED;
1508 			goto out_fd;
1509 		}
1510 		err = move_addr_to_user((struct sockaddr *)&address,
1511 					len, upeer_sockaddr, upeer_addrlen);
1512 		if (err < 0)
1513 			goto out_fd;
1514 	}
1515 
1516 	/* File flags are not inherited via accept() unlike another OSes. */
1517 
1518 	fd_install(newfd, newfile);
1519 	err = newfd;
1520 
1521 out_put:
1522 	fput_light(sock->file, fput_needed);
1523 out:
1524 	return err;
1525 out_fd:
1526 	fput(newfile);
1527 	put_unused_fd(newfd);
1528 	goto out_put;
1529 }
1530 
1531 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1532 		int __user *, upeer_addrlen)
1533 {
1534 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1535 }
1536 
1537 /*
1538  *	Attempt to connect to a socket with the server address.  The address
1539  *	is in user space so we verify it is OK and move it to kernel space.
1540  *
1541  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1542  *	break bindings
1543  *
1544  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1545  *	other SEQPACKET protocols that take time to connect() as it doesn't
1546  *	include the -EINPROGRESS status for such sockets.
1547  */
1548 
1549 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1550 		int, addrlen)
1551 {
1552 	struct socket *sock;
1553 	struct sockaddr_storage address;
1554 	int err, fput_needed;
1555 
1556 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557 	if (!sock)
1558 		goto out;
1559 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1560 	if (err < 0)
1561 		goto out_put;
1562 
1563 	err =
1564 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1565 	if (err)
1566 		goto out_put;
1567 
1568 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1569 				 sock->file->f_flags);
1570 out_put:
1571 	fput_light(sock->file, fput_needed);
1572 out:
1573 	return err;
1574 }
1575 
1576 /*
1577  *	Get the local address ('name') of a socket object. Move the obtained
1578  *	name to user space.
1579  */
1580 
1581 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1582 		int __user *, usockaddr_len)
1583 {
1584 	struct socket *sock;
1585 	struct sockaddr_storage address;
1586 	int len, err, fput_needed;
1587 
1588 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1589 	if (!sock)
1590 		goto out;
1591 
1592 	err = security_socket_getsockname(sock);
1593 	if (err)
1594 		goto out_put;
1595 
1596 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1597 	if (err)
1598 		goto out_put;
1599 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1600 
1601 out_put:
1602 	fput_light(sock->file, fput_needed);
1603 out:
1604 	return err;
1605 }
1606 
1607 /*
1608  *	Get the remote address ('name') of a socket object. Move the obtained
1609  *	name to user space.
1610  */
1611 
1612 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1613 		int __user *, usockaddr_len)
1614 {
1615 	struct socket *sock;
1616 	struct sockaddr_storage address;
1617 	int len, err, fput_needed;
1618 
1619 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1620 	if (sock != NULL) {
1621 		err = security_socket_getpeername(sock);
1622 		if (err) {
1623 			fput_light(sock->file, fput_needed);
1624 			return err;
1625 		}
1626 
1627 		err =
1628 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1629 				       1);
1630 		if (!err)
1631 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1632 						usockaddr_len);
1633 		fput_light(sock->file, fput_needed);
1634 	}
1635 	return err;
1636 }
1637 
1638 /*
1639  *	Send a datagram to a given address. We move the address into kernel
1640  *	space and check the user space data area is readable before invoking
1641  *	the protocol.
1642  */
1643 
1644 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1645 		unsigned, flags, struct sockaddr __user *, addr,
1646 		int, addr_len)
1647 {
1648 	struct socket *sock;
1649 	struct sockaddr_storage address;
1650 	int err;
1651 	struct msghdr msg;
1652 	struct iovec iov;
1653 	int fput_needed;
1654 
1655 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1656 	if (!sock)
1657 		goto out;
1658 
1659 	iov.iov_base = buff;
1660 	iov.iov_len = len;
1661 	msg.msg_name = NULL;
1662 	msg.msg_iov = &iov;
1663 	msg.msg_iovlen = 1;
1664 	msg.msg_control = NULL;
1665 	msg.msg_controllen = 0;
1666 	msg.msg_namelen = 0;
1667 	if (addr) {
1668 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1669 		if (err < 0)
1670 			goto out_put;
1671 		msg.msg_name = (struct sockaddr *)&address;
1672 		msg.msg_namelen = addr_len;
1673 	}
1674 	if (sock->file->f_flags & O_NONBLOCK)
1675 		flags |= MSG_DONTWAIT;
1676 	msg.msg_flags = flags;
1677 	err = sock_sendmsg(sock, &msg, len);
1678 
1679 out_put:
1680 	fput_light(sock->file, fput_needed);
1681 out:
1682 	return err;
1683 }
1684 
1685 /*
1686  *	Send a datagram down a socket.
1687  */
1688 
1689 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1690 		unsigned, flags)
1691 {
1692 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1693 }
1694 
1695 /*
1696  *	Receive a frame from the socket and optionally record the address of the
1697  *	sender. We verify the buffers are writable and if needed move the
1698  *	sender address from kernel to user space.
1699  */
1700 
1701 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1702 		unsigned, flags, struct sockaddr __user *, addr,
1703 		int __user *, addr_len)
1704 {
1705 	struct socket *sock;
1706 	struct iovec iov;
1707 	struct msghdr msg;
1708 	struct sockaddr_storage address;
1709 	int err, err2;
1710 	int fput_needed;
1711 
1712 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1713 	if (!sock)
1714 		goto out;
1715 
1716 	msg.msg_control = NULL;
1717 	msg.msg_controllen = 0;
1718 	msg.msg_iovlen = 1;
1719 	msg.msg_iov = &iov;
1720 	iov.iov_len = size;
1721 	iov.iov_base = ubuf;
1722 	msg.msg_name = (struct sockaddr *)&address;
1723 	msg.msg_namelen = sizeof(address);
1724 	if (sock->file->f_flags & O_NONBLOCK)
1725 		flags |= MSG_DONTWAIT;
1726 	err = sock_recvmsg(sock, &msg, size, flags);
1727 
1728 	if (err >= 0 && addr != NULL) {
1729 		err2 = move_addr_to_user((struct sockaddr *)&address,
1730 					 msg.msg_namelen, addr, addr_len);
1731 		if (err2 < 0)
1732 			err = err2;
1733 	}
1734 
1735 	fput_light(sock->file, fput_needed);
1736 out:
1737 	return err;
1738 }
1739 
1740 /*
1741  *	Receive a datagram from a socket.
1742  */
1743 
1744 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1745 			 unsigned flags)
1746 {
1747 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1748 }
1749 
1750 /*
1751  *	Set a socket option. Because we don't know the option lengths we have
1752  *	to pass the user mode parameter for the protocols to sort out.
1753  */
1754 
1755 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1756 		char __user *, optval, int, optlen)
1757 {
1758 	int err, fput_needed;
1759 	struct socket *sock;
1760 
1761 	if (optlen < 0)
1762 		return -EINVAL;
1763 
1764 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1765 	if (sock != NULL) {
1766 		err = security_socket_setsockopt(sock, level, optname);
1767 		if (err)
1768 			goto out_put;
1769 
1770 		if (level == SOL_SOCKET)
1771 			err =
1772 			    sock_setsockopt(sock, level, optname, optval,
1773 					    optlen);
1774 		else
1775 			err =
1776 			    sock->ops->setsockopt(sock, level, optname, optval,
1777 						  optlen);
1778 out_put:
1779 		fput_light(sock->file, fput_needed);
1780 	}
1781 	return err;
1782 }
1783 
1784 /*
1785  *	Get a socket option. Because we don't know the option lengths we have
1786  *	to pass a user mode parameter for the protocols to sort out.
1787  */
1788 
1789 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1790 		char __user *, optval, int __user *, optlen)
1791 {
1792 	int err, fput_needed;
1793 	struct socket *sock;
1794 
1795 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1796 	if (sock != NULL) {
1797 		err = security_socket_getsockopt(sock, level, optname);
1798 		if (err)
1799 			goto out_put;
1800 
1801 		if (level == SOL_SOCKET)
1802 			err =
1803 			    sock_getsockopt(sock, level, optname, optval,
1804 					    optlen);
1805 		else
1806 			err =
1807 			    sock->ops->getsockopt(sock, level, optname, optval,
1808 						  optlen);
1809 out_put:
1810 		fput_light(sock->file, fput_needed);
1811 	}
1812 	return err;
1813 }
1814 
1815 /*
1816  *	Shutdown a socket.
1817  */
1818 
1819 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1820 {
1821 	int err, fput_needed;
1822 	struct socket *sock;
1823 
1824 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1825 	if (sock != NULL) {
1826 		err = security_socket_shutdown(sock, how);
1827 		if (!err)
1828 			err = sock->ops->shutdown(sock, how);
1829 		fput_light(sock->file, fput_needed);
1830 	}
1831 	return err;
1832 }
1833 
1834 /* A couple of helpful macros for getting the address of the 32/64 bit
1835  * fields which are the same type (int / unsigned) on our platforms.
1836  */
1837 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1838 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1839 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1840 
1841 /*
1842  *	BSD sendmsg interface
1843  */
1844 
1845 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1846 {
1847 	struct compat_msghdr __user *msg_compat =
1848 	    (struct compat_msghdr __user *)msg;
1849 	struct socket *sock;
1850 	struct sockaddr_storage address;
1851 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1852 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1853 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1854 	/* 20 is size of ipv6_pktinfo */
1855 	unsigned char *ctl_buf = ctl;
1856 	struct msghdr msg_sys;
1857 	int err, ctl_len, iov_size, total_len;
1858 	int fput_needed;
1859 
1860 	err = -EFAULT;
1861 	if (MSG_CMSG_COMPAT & flags) {
1862 		if (get_compat_msghdr(&msg_sys, msg_compat))
1863 			return -EFAULT;
1864 	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1865 		return -EFAULT;
1866 
1867 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1868 	if (!sock)
1869 		goto out;
1870 
1871 	/* do not move before msg_sys is valid */
1872 	err = -EMSGSIZE;
1873 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1874 		goto out_put;
1875 
1876 	/* Check whether to allocate the iovec area */
1877 	err = -ENOMEM;
1878 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1879 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1880 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1881 		if (!iov)
1882 			goto out_put;
1883 	}
1884 
1885 	/* This will also move the address data into kernel space */
1886 	if (MSG_CMSG_COMPAT & flags) {
1887 		err = verify_compat_iovec(&msg_sys, iov,
1888 					  (struct sockaddr *)&address,
1889 					  VERIFY_READ);
1890 	} else
1891 		err = verify_iovec(&msg_sys, iov,
1892 				   (struct sockaddr *)&address,
1893 				   VERIFY_READ);
1894 	if (err < 0)
1895 		goto out_freeiov;
1896 	total_len = err;
1897 
1898 	err = -ENOBUFS;
1899 
1900 	if (msg_sys.msg_controllen > INT_MAX)
1901 		goto out_freeiov;
1902 	ctl_len = msg_sys.msg_controllen;
1903 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1904 		err =
1905 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1906 						     sizeof(ctl));
1907 		if (err)
1908 			goto out_freeiov;
1909 		ctl_buf = msg_sys.msg_control;
1910 		ctl_len = msg_sys.msg_controllen;
1911 	} else if (ctl_len) {
1912 		if (ctl_len > sizeof(ctl)) {
1913 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1914 			if (ctl_buf == NULL)
1915 				goto out_freeiov;
1916 		}
1917 		err = -EFAULT;
1918 		/*
1919 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1920 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1921 		 * checking falls down on this.
1922 		 */
1923 		if (copy_from_user(ctl_buf,
1924 				   (void __user __force *)msg_sys.msg_control,
1925 				   ctl_len))
1926 			goto out_freectl;
1927 		msg_sys.msg_control = ctl_buf;
1928 	}
1929 	msg_sys.msg_flags = flags;
1930 
1931 	if (sock->file->f_flags & O_NONBLOCK)
1932 		msg_sys.msg_flags |= MSG_DONTWAIT;
1933 	err = sock_sendmsg(sock, &msg_sys, total_len);
1934 
1935 out_freectl:
1936 	if (ctl_buf != ctl)
1937 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1938 out_freeiov:
1939 	if (iov != iovstack)
1940 		sock_kfree_s(sock->sk, iov, iov_size);
1941 out_put:
1942 	fput_light(sock->file, fput_needed);
1943 out:
1944 	return err;
1945 }
1946 
1947 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1948 			 struct msghdr *msg_sys, unsigned flags, int nosec)
1949 {
1950 	struct compat_msghdr __user *msg_compat =
1951 	    (struct compat_msghdr __user *)msg;
1952 	struct iovec iovstack[UIO_FASTIOV];
1953 	struct iovec *iov = iovstack;
1954 	unsigned long cmsg_ptr;
1955 	int err, iov_size, total_len, len;
1956 
1957 	/* kernel mode address */
1958 	struct sockaddr_storage addr;
1959 
1960 	/* user mode address pointers */
1961 	struct sockaddr __user *uaddr;
1962 	int __user *uaddr_len;
1963 
1964 	if (MSG_CMSG_COMPAT & flags) {
1965 		if (get_compat_msghdr(msg_sys, msg_compat))
1966 			return -EFAULT;
1967 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1968 		return -EFAULT;
1969 
1970 	err = -EMSGSIZE;
1971 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
1972 		goto out;
1973 
1974 	/* Check whether to allocate the iovec area */
1975 	err = -ENOMEM;
1976 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1977 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1978 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1979 		if (!iov)
1980 			goto out;
1981 	}
1982 
1983 	/*
1984 	 *      Save the user-mode address (verify_iovec will change the
1985 	 *      kernel msghdr to use the kernel address space)
1986 	 */
1987 
1988 	uaddr = (__force void __user *)msg_sys->msg_name;
1989 	uaddr_len = COMPAT_NAMELEN(msg);
1990 	if (MSG_CMSG_COMPAT & flags) {
1991 		err = verify_compat_iovec(msg_sys, iov,
1992 					  (struct sockaddr *)&addr,
1993 					  VERIFY_WRITE);
1994 	} else
1995 		err = verify_iovec(msg_sys, iov,
1996 				   (struct sockaddr *)&addr,
1997 				   VERIFY_WRITE);
1998 	if (err < 0)
1999 		goto out_freeiov;
2000 	total_len = err;
2001 
2002 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2003 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2004 
2005 	if (sock->file->f_flags & O_NONBLOCK)
2006 		flags |= MSG_DONTWAIT;
2007 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2008 							  total_len, flags);
2009 	if (err < 0)
2010 		goto out_freeiov;
2011 	len = err;
2012 
2013 	if (uaddr != NULL) {
2014 		err = move_addr_to_user((struct sockaddr *)&addr,
2015 					msg_sys->msg_namelen, uaddr,
2016 					uaddr_len);
2017 		if (err < 0)
2018 			goto out_freeiov;
2019 	}
2020 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2021 			 COMPAT_FLAGS(msg));
2022 	if (err)
2023 		goto out_freeiov;
2024 	if (MSG_CMSG_COMPAT & flags)
2025 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2026 				 &msg_compat->msg_controllen);
2027 	else
2028 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2029 				 &msg->msg_controllen);
2030 	if (err)
2031 		goto out_freeiov;
2032 	err = len;
2033 
2034 out_freeiov:
2035 	if (iov != iovstack)
2036 		sock_kfree_s(sock->sk, iov, iov_size);
2037 out:
2038 	return err;
2039 }
2040 
2041 /*
2042  *	BSD recvmsg interface
2043  */
2044 
2045 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2046 		unsigned int, flags)
2047 {
2048 	int fput_needed, err;
2049 	struct msghdr msg_sys;
2050 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2051 
2052 	if (!sock)
2053 		goto out;
2054 
2055 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2056 
2057 	fput_light(sock->file, fput_needed);
2058 out:
2059 	return err;
2060 }
2061 
2062 /*
2063  *     Linux recvmmsg interface
2064  */
2065 
2066 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2067 		   unsigned int flags, struct timespec *timeout)
2068 {
2069 	int fput_needed, err, datagrams;
2070 	struct socket *sock;
2071 	struct mmsghdr __user *entry;
2072 	struct compat_mmsghdr __user *compat_entry;
2073 	struct msghdr msg_sys;
2074 	struct timespec end_time;
2075 
2076 	if (timeout &&
2077 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2078 				    timeout->tv_nsec))
2079 		return -EINVAL;
2080 
2081 	datagrams = 0;
2082 
2083 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2084 	if (!sock)
2085 		return err;
2086 
2087 	err = sock_error(sock->sk);
2088 	if (err)
2089 		goto out_put;
2090 
2091 	entry = mmsg;
2092 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2093 
2094 	while (datagrams < vlen) {
2095 		/*
2096 		 * No need to ask LSM for more than the first datagram.
2097 		 */
2098 		if (MSG_CMSG_COMPAT & flags) {
2099 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2100 					    &msg_sys, flags, datagrams);
2101 			if (err < 0)
2102 				break;
2103 			err = __put_user(err, &compat_entry->msg_len);
2104 			++compat_entry;
2105 		} else {
2106 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2107 					    &msg_sys, flags, datagrams);
2108 			if (err < 0)
2109 				break;
2110 			err = put_user(err, &entry->msg_len);
2111 			++entry;
2112 		}
2113 
2114 		if (err)
2115 			break;
2116 		++datagrams;
2117 
2118 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2119 		if (flags & MSG_WAITFORONE)
2120 			flags |= MSG_DONTWAIT;
2121 
2122 		if (timeout) {
2123 			ktime_get_ts(timeout);
2124 			*timeout = timespec_sub(end_time, *timeout);
2125 			if (timeout->tv_sec < 0) {
2126 				timeout->tv_sec = timeout->tv_nsec = 0;
2127 				break;
2128 			}
2129 
2130 			/* Timeout, return less than vlen datagrams */
2131 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2132 				break;
2133 		}
2134 
2135 		/* Out of band data, return right away */
2136 		if (msg_sys.msg_flags & MSG_OOB)
2137 			break;
2138 	}
2139 
2140 out_put:
2141 	fput_light(sock->file, fput_needed);
2142 
2143 	if (err == 0)
2144 		return datagrams;
2145 
2146 	if (datagrams != 0) {
2147 		/*
2148 		 * We may return less entries than requested (vlen) if the
2149 		 * sock is non block and there aren't enough datagrams...
2150 		 */
2151 		if (err != -EAGAIN) {
2152 			/*
2153 			 * ... or  if recvmsg returns an error after we
2154 			 * received some datagrams, where we record the
2155 			 * error to return on the next call or if the
2156 			 * app asks about it using getsockopt(SO_ERROR).
2157 			 */
2158 			sock->sk->sk_err = -err;
2159 		}
2160 
2161 		return datagrams;
2162 	}
2163 
2164 	return err;
2165 }
2166 
2167 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2168 		unsigned int, vlen, unsigned int, flags,
2169 		struct timespec __user *, timeout)
2170 {
2171 	int datagrams;
2172 	struct timespec timeout_sys;
2173 
2174 	if (!timeout)
2175 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2176 
2177 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2178 		return -EFAULT;
2179 
2180 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2181 
2182 	if (datagrams > 0 &&
2183 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2184 		datagrams = -EFAULT;
2185 
2186 	return datagrams;
2187 }
2188 
2189 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2190 /* Argument list sizes for sys_socketcall */
2191 #define AL(x) ((x) * sizeof(unsigned long))
2192 static const unsigned char nargs[20] = {
2193 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2194 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2195 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2196 	AL(4), AL(5)
2197 };
2198 
2199 #undef AL
2200 
2201 /*
2202  *	System call vectors.
2203  *
2204  *	Argument checking cleaned up. Saved 20% in size.
2205  *  This function doesn't need to set the kernel lock because
2206  *  it is set by the callees.
2207  */
2208 
2209 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2210 {
2211 	unsigned long a[6];
2212 	unsigned long a0, a1;
2213 	int err;
2214 	unsigned int len;
2215 
2216 	if (call < 1 || call > SYS_RECVMMSG)
2217 		return -EINVAL;
2218 
2219 	len = nargs[call];
2220 	if (len > sizeof(a))
2221 		return -EINVAL;
2222 
2223 	/* copy_from_user should be SMP safe. */
2224 	if (copy_from_user(a, args, len))
2225 		return -EFAULT;
2226 
2227 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2228 
2229 	a0 = a[0];
2230 	a1 = a[1];
2231 
2232 	switch (call) {
2233 	case SYS_SOCKET:
2234 		err = sys_socket(a0, a1, a[2]);
2235 		break;
2236 	case SYS_BIND:
2237 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2238 		break;
2239 	case SYS_CONNECT:
2240 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2241 		break;
2242 	case SYS_LISTEN:
2243 		err = sys_listen(a0, a1);
2244 		break;
2245 	case SYS_ACCEPT:
2246 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2247 				  (int __user *)a[2], 0);
2248 		break;
2249 	case SYS_GETSOCKNAME:
2250 		err =
2251 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2252 				    (int __user *)a[2]);
2253 		break;
2254 	case SYS_GETPEERNAME:
2255 		err =
2256 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2257 				    (int __user *)a[2]);
2258 		break;
2259 	case SYS_SOCKETPAIR:
2260 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2261 		break;
2262 	case SYS_SEND:
2263 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2264 		break;
2265 	case SYS_SENDTO:
2266 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2267 				 (struct sockaddr __user *)a[4], a[5]);
2268 		break;
2269 	case SYS_RECV:
2270 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2271 		break;
2272 	case SYS_RECVFROM:
2273 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2274 				   (struct sockaddr __user *)a[4],
2275 				   (int __user *)a[5]);
2276 		break;
2277 	case SYS_SHUTDOWN:
2278 		err = sys_shutdown(a0, a1);
2279 		break;
2280 	case SYS_SETSOCKOPT:
2281 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2282 		break;
2283 	case SYS_GETSOCKOPT:
2284 		err =
2285 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2286 				   (int __user *)a[4]);
2287 		break;
2288 	case SYS_SENDMSG:
2289 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2290 		break;
2291 	case SYS_RECVMSG:
2292 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2293 		break;
2294 	case SYS_RECVMMSG:
2295 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2296 				   (struct timespec __user *)a[4]);
2297 		break;
2298 	case SYS_ACCEPT4:
2299 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2300 				  (int __user *)a[2], a[3]);
2301 		break;
2302 	default:
2303 		err = -EINVAL;
2304 		break;
2305 	}
2306 	return err;
2307 }
2308 
2309 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2310 
2311 /**
2312  *	sock_register - add a socket protocol handler
2313  *	@ops: description of protocol
2314  *
2315  *	This function is called by a protocol handler that wants to
2316  *	advertise its address family, and have it linked into the
2317  *	socket interface. The value ops->family coresponds to the
2318  *	socket system call protocol family.
2319  */
2320 int sock_register(const struct net_proto_family *ops)
2321 {
2322 	int err;
2323 
2324 	if (ops->family >= NPROTO) {
2325 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2326 		       NPROTO);
2327 		return -ENOBUFS;
2328 	}
2329 
2330 	spin_lock(&net_family_lock);
2331 	if (net_families[ops->family])
2332 		err = -EEXIST;
2333 	else {
2334 		net_families[ops->family] = ops;
2335 		err = 0;
2336 	}
2337 	spin_unlock(&net_family_lock);
2338 
2339 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2340 	return err;
2341 }
2342 EXPORT_SYMBOL(sock_register);
2343 
2344 /**
2345  *	sock_unregister - remove a protocol handler
2346  *	@family: protocol family to remove
2347  *
2348  *	This function is called by a protocol handler that wants to
2349  *	remove its address family, and have it unlinked from the
2350  *	new socket creation.
2351  *
2352  *	If protocol handler is a module, then it can use module reference
2353  *	counts to protect against new references. If protocol handler is not
2354  *	a module then it needs to provide its own protection in
2355  *	the ops->create routine.
2356  */
2357 void sock_unregister(int family)
2358 {
2359 	BUG_ON(family < 0 || family >= NPROTO);
2360 
2361 	spin_lock(&net_family_lock);
2362 	net_families[family] = NULL;
2363 	spin_unlock(&net_family_lock);
2364 
2365 	synchronize_rcu();
2366 
2367 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2368 }
2369 EXPORT_SYMBOL(sock_unregister);
2370 
2371 static int __init sock_init(void)
2372 {
2373 	/*
2374 	 *      Initialize sock SLAB cache.
2375 	 */
2376 
2377 	sk_init();
2378 
2379 	/*
2380 	 *      Initialize skbuff SLAB cache
2381 	 */
2382 	skb_init();
2383 
2384 	/*
2385 	 *      Initialize the protocols module.
2386 	 */
2387 
2388 	init_inodecache();
2389 	register_filesystem(&sock_fs_type);
2390 	sock_mnt = kern_mount(&sock_fs_type);
2391 
2392 	/* The real protocol initialization is performed in later initcalls.
2393 	 */
2394 
2395 #ifdef CONFIG_NETFILTER
2396 	netfilter_init();
2397 #endif
2398 
2399 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2400 	skb_timestamping_init();
2401 #endif
2402 
2403 	return 0;
2404 }
2405 
2406 core_initcall(sock_init);	/* early initcall */
2407 
2408 #ifdef CONFIG_PROC_FS
2409 void socket_seq_show(struct seq_file *seq)
2410 {
2411 	int cpu;
2412 	int counter = 0;
2413 
2414 	for_each_possible_cpu(cpu)
2415 	    counter += per_cpu(sockets_in_use, cpu);
2416 
2417 	/* It can be negative, by the way. 8) */
2418 	if (counter < 0)
2419 		counter = 0;
2420 
2421 	seq_printf(seq, "sockets: used %d\n", counter);
2422 }
2423 #endif				/* CONFIG_PROC_FS */
2424 
2425 #ifdef CONFIG_COMPAT
2426 static int do_siocgstamp(struct net *net, struct socket *sock,
2427 			 unsigned int cmd, struct compat_timeval __user *up)
2428 {
2429 	mm_segment_t old_fs = get_fs();
2430 	struct timeval ktv;
2431 	int err;
2432 
2433 	set_fs(KERNEL_DS);
2434 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2435 	set_fs(old_fs);
2436 	if (!err) {
2437 		err = put_user(ktv.tv_sec, &up->tv_sec);
2438 		err |= __put_user(ktv.tv_usec, &up->tv_usec);
2439 	}
2440 	return err;
2441 }
2442 
2443 static int do_siocgstampns(struct net *net, struct socket *sock,
2444 			 unsigned int cmd, struct compat_timespec __user *up)
2445 {
2446 	mm_segment_t old_fs = get_fs();
2447 	struct timespec kts;
2448 	int err;
2449 
2450 	set_fs(KERNEL_DS);
2451 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2452 	set_fs(old_fs);
2453 	if (!err) {
2454 		err = put_user(kts.tv_sec, &up->tv_sec);
2455 		err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2456 	}
2457 	return err;
2458 }
2459 
2460 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2461 {
2462 	struct ifreq __user *uifr;
2463 	int err;
2464 
2465 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2466 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2467 		return -EFAULT;
2468 
2469 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2470 	if (err)
2471 		return err;
2472 
2473 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2474 		return -EFAULT;
2475 
2476 	return 0;
2477 }
2478 
2479 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2480 {
2481 	struct compat_ifconf ifc32;
2482 	struct ifconf ifc;
2483 	struct ifconf __user *uifc;
2484 	struct compat_ifreq __user *ifr32;
2485 	struct ifreq __user *ifr;
2486 	unsigned int i, j;
2487 	int err;
2488 
2489 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2490 		return -EFAULT;
2491 
2492 	if (ifc32.ifcbuf == 0) {
2493 		ifc32.ifc_len = 0;
2494 		ifc.ifc_len = 0;
2495 		ifc.ifc_req = NULL;
2496 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2497 	} else {
2498 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2499 			sizeof(struct ifreq);
2500 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2501 		ifc.ifc_len = len;
2502 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2503 		ifr32 = compat_ptr(ifc32.ifcbuf);
2504 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2505 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2506 				return -EFAULT;
2507 			ifr++;
2508 			ifr32++;
2509 		}
2510 	}
2511 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2512 		return -EFAULT;
2513 
2514 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2515 	if (err)
2516 		return err;
2517 
2518 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2519 		return -EFAULT;
2520 
2521 	ifr = ifc.ifc_req;
2522 	ifr32 = compat_ptr(ifc32.ifcbuf);
2523 	for (i = 0, j = 0;
2524 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2525 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2526 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2527 			return -EFAULT;
2528 		ifr32++;
2529 		ifr++;
2530 	}
2531 
2532 	if (ifc32.ifcbuf == 0) {
2533 		/* Translate from 64-bit structure multiple to
2534 		 * a 32-bit one.
2535 		 */
2536 		i = ifc.ifc_len;
2537 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2538 		ifc32.ifc_len = i;
2539 	} else {
2540 		ifc32.ifc_len = i;
2541 	}
2542 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2543 		return -EFAULT;
2544 
2545 	return 0;
2546 }
2547 
2548 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2549 {
2550 	struct ifreq __user *ifr;
2551 	u32 data;
2552 	void __user *datap;
2553 
2554 	ifr = compat_alloc_user_space(sizeof(*ifr));
2555 
2556 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2557 		return -EFAULT;
2558 
2559 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2560 		return -EFAULT;
2561 
2562 	datap = compat_ptr(data);
2563 	if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2564 		return -EFAULT;
2565 
2566 	return dev_ioctl(net, SIOCETHTOOL, ifr);
2567 }
2568 
2569 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2570 {
2571 	void __user *uptr;
2572 	compat_uptr_t uptr32;
2573 	struct ifreq __user *uifr;
2574 
2575 	uifr = compat_alloc_user_space(sizeof(*uifr));
2576 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2577 		return -EFAULT;
2578 
2579 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2580 		return -EFAULT;
2581 
2582 	uptr = compat_ptr(uptr32);
2583 
2584 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2585 		return -EFAULT;
2586 
2587 	return dev_ioctl(net, SIOCWANDEV, uifr);
2588 }
2589 
2590 static int bond_ioctl(struct net *net, unsigned int cmd,
2591 			 struct compat_ifreq __user *ifr32)
2592 {
2593 	struct ifreq kifr;
2594 	struct ifreq __user *uifr;
2595 	mm_segment_t old_fs;
2596 	int err;
2597 	u32 data;
2598 	void __user *datap;
2599 
2600 	switch (cmd) {
2601 	case SIOCBONDENSLAVE:
2602 	case SIOCBONDRELEASE:
2603 	case SIOCBONDSETHWADDR:
2604 	case SIOCBONDCHANGEACTIVE:
2605 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2606 			return -EFAULT;
2607 
2608 		old_fs = get_fs();
2609 		set_fs(KERNEL_DS);
2610 		err = dev_ioctl(net, cmd, &kifr);
2611 		set_fs(old_fs);
2612 
2613 		return err;
2614 	case SIOCBONDSLAVEINFOQUERY:
2615 	case SIOCBONDINFOQUERY:
2616 		uifr = compat_alloc_user_space(sizeof(*uifr));
2617 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2618 			return -EFAULT;
2619 
2620 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2621 			return -EFAULT;
2622 
2623 		datap = compat_ptr(data);
2624 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2625 			return -EFAULT;
2626 
2627 		return dev_ioctl(net, cmd, uifr);
2628 	default:
2629 		return -EINVAL;
2630 	}
2631 }
2632 
2633 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2634 				 struct compat_ifreq __user *u_ifreq32)
2635 {
2636 	struct ifreq __user *u_ifreq64;
2637 	char tmp_buf[IFNAMSIZ];
2638 	void __user *data64;
2639 	u32 data32;
2640 
2641 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2642 			   IFNAMSIZ))
2643 		return -EFAULT;
2644 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2645 		return -EFAULT;
2646 	data64 = compat_ptr(data32);
2647 
2648 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2649 
2650 	/* Don't check these user accesses, just let that get trapped
2651 	 * in the ioctl handler instead.
2652 	 */
2653 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2654 			 IFNAMSIZ))
2655 		return -EFAULT;
2656 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2657 		return -EFAULT;
2658 
2659 	return dev_ioctl(net, cmd, u_ifreq64);
2660 }
2661 
2662 static int dev_ifsioc(struct net *net, struct socket *sock,
2663 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2664 {
2665 	struct ifreq __user *uifr;
2666 	int err;
2667 
2668 	uifr = compat_alloc_user_space(sizeof(*uifr));
2669 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2670 		return -EFAULT;
2671 
2672 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2673 
2674 	if (!err) {
2675 		switch (cmd) {
2676 		case SIOCGIFFLAGS:
2677 		case SIOCGIFMETRIC:
2678 		case SIOCGIFMTU:
2679 		case SIOCGIFMEM:
2680 		case SIOCGIFHWADDR:
2681 		case SIOCGIFINDEX:
2682 		case SIOCGIFADDR:
2683 		case SIOCGIFBRDADDR:
2684 		case SIOCGIFDSTADDR:
2685 		case SIOCGIFNETMASK:
2686 		case SIOCGIFPFLAGS:
2687 		case SIOCGIFTXQLEN:
2688 		case SIOCGMIIPHY:
2689 		case SIOCGMIIREG:
2690 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2691 				err = -EFAULT;
2692 			break;
2693 		}
2694 	}
2695 	return err;
2696 }
2697 
2698 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2699 			struct compat_ifreq __user *uifr32)
2700 {
2701 	struct ifreq ifr;
2702 	struct compat_ifmap __user *uifmap32;
2703 	mm_segment_t old_fs;
2704 	int err;
2705 
2706 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2707 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2708 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2709 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2710 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2711 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2712 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2713 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2714 	if (err)
2715 		return -EFAULT;
2716 
2717 	old_fs = get_fs();
2718 	set_fs(KERNEL_DS);
2719 	err = dev_ioctl(net, cmd, (void __user *)&ifr);
2720 	set_fs(old_fs);
2721 
2722 	if (cmd == SIOCGIFMAP && !err) {
2723 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2724 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2725 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2726 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2727 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2728 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2729 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2730 		if (err)
2731 			err = -EFAULT;
2732 	}
2733 	return err;
2734 }
2735 
2736 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2737 {
2738 	void __user *uptr;
2739 	compat_uptr_t uptr32;
2740 	struct ifreq __user *uifr;
2741 
2742 	uifr = compat_alloc_user_space(sizeof(*uifr));
2743 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2744 		return -EFAULT;
2745 
2746 	if (get_user(uptr32, &uifr32->ifr_data))
2747 		return -EFAULT;
2748 
2749 	uptr = compat_ptr(uptr32);
2750 
2751 	if (put_user(uptr, &uifr->ifr_data))
2752 		return -EFAULT;
2753 
2754 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2755 }
2756 
2757 struct rtentry32 {
2758 	u32		rt_pad1;
2759 	struct sockaddr rt_dst;         /* target address               */
2760 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2761 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2762 	unsigned short	rt_flags;
2763 	short		rt_pad2;
2764 	u32		rt_pad3;
2765 	unsigned char	rt_tos;
2766 	unsigned char	rt_class;
2767 	short		rt_pad4;
2768 	short		rt_metric;      /* +1 for binary compatibility! */
2769 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2770 	u32		rt_mtu;         /* per route MTU/Window         */
2771 	u32		rt_window;      /* Window clamping              */
2772 	unsigned short  rt_irtt;        /* Initial RTT                  */
2773 };
2774 
2775 struct in6_rtmsg32 {
2776 	struct in6_addr		rtmsg_dst;
2777 	struct in6_addr		rtmsg_src;
2778 	struct in6_addr		rtmsg_gateway;
2779 	u32			rtmsg_type;
2780 	u16			rtmsg_dst_len;
2781 	u16			rtmsg_src_len;
2782 	u32			rtmsg_metric;
2783 	u32			rtmsg_info;
2784 	u32			rtmsg_flags;
2785 	s32			rtmsg_ifindex;
2786 };
2787 
2788 static int routing_ioctl(struct net *net, struct socket *sock,
2789 			 unsigned int cmd, void __user *argp)
2790 {
2791 	int ret;
2792 	void *r = NULL;
2793 	struct in6_rtmsg r6;
2794 	struct rtentry r4;
2795 	char devname[16];
2796 	u32 rtdev;
2797 	mm_segment_t old_fs = get_fs();
2798 
2799 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2800 		struct in6_rtmsg32 __user *ur6 = argp;
2801 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2802 			3 * sizeof(struct in6_addr));
2803 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2804 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2805 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2806 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2807 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2808 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2809 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2810 
2811 		r = (void *) &r6;
2812 	} else { /* ipv4 */
2813 		struct rtentry32 __user *ur4 = argp;
2814 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2815 					3 * sizeof(struct sockaddr));
2816 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2817 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2818 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2819 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2820 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2821 		ret |= __get_user(rtdev, &(ur4->rt_dev));
2822 		if (rtdev) {
2823 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2824 			r4.rt_dev = devname; devname[15] = 0;
2825 		} else
2826 			r4.rt_dev = NULL;
2827 
2828 		r = (void *) &r4;
2829 	}
2830 
2831 	if (ret) {
2832 		ret = -EFAULT;
2833 		goto out;
2834 	}
2835 
2836 	set_fs(KERNEL_DS);
2837 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2838 	set_fs(old_fs);
2839 
2840 out:
2841 	return ret;
2842 }
2843 
2844 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2845  * for some operations; this forces use of the newer bridge-utils that
2846  * use compatiable ioctls
2847  */
2848 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2849 {
2850 	compat_ulong_t tmp;
2851 
2852 	if (get_user(tmp, argp))
2853 		return -EFAULT;
2854 	if (tmp == BRCTL_GET_VERSION)
2855 		return BRCTL_VERSION + 1;
2856 	return -EINVAL;
2857 }
2858 
2859 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2860 			 unsigned int cmd, unsigned long arg)
2861 {
2862 	void __user *argp = compat_ptr(arg);
2863 	struct sock *sk = sock->sk;
2864 	struct net *net = sock_net(sk);
2865 
2866 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2867 		return siocdevprivate_ioctl(net, cmd, argp);
2868 
2869 	switch (cmd) {
2870 	case SIOCSIFBR:
2871 	case SIOCGIFBR:
2872 		return old_bridge_ioctl(argp);
2873 	case SIOCGIFNAME:
2874 		return dev_ifname32(net, argp);
2875 	case SIOCGIFCONF:
2876 		return dev_ifconf(net, argp);
2877 	case SIOCETHTOOL:
2878 		return ethtool_ioctl(net, argp);
2879 	case SIOCWANDEV:
2880 		return compat_siocwandev(net, argp);
2881 	case SIOCGIFMAP:
2882 	case SIOCSIFMAP:
2883 		return compat_sioc_ifmap(net, cmd, argp);
2884 	case SIOCBONDENSLAVE:
2885 	case SIOCBONDRELEASE:
2886 	case SIOCBONDSETHWADDR:
2887 	case SIOCBONDSLAVEINFOQUERY:
2888 	case SIOCBONDINFOQUERY:
2889 	case SIOCBONDCHANGEACTIVE:
2890 		return bond_ioctl(net, cmd, argp);
2891 	case SIOCADDRT:
2892 	case SIOCDELRT:
2893 		return routing_ioctl(net, sock, cmd, argp);
2894 	case SIOCGSTAMP:
2895 		return do_siocgstamp(net, sock, cmd, argp);
2896 	case SIOCGSTAMPNS:
2897 		return do_siocgstampns(net, sock, cmd, argp);
2898 	case SIOCSHWTSTAMP:
2899 		return compat_siocshwtstamp(net, argp);
2900 
2901 	case FIOSETOWN:
2902 	case SIOCSPGRP:
2903 	case FIOGETOWN:
2904 	case SIOCGPGRP:
2905 	case SIOCBRADDBR:
2906 	case SIOCBRDELBR:
2907 	case SIOCGIFVLAN:
2908 	case SIOCSIFVLAN:
2909 	case SIOCADDDLCI:
2910 	case SIOCDELDLCI:
2911 		return sock_ioctl(file, cmd, arg);
2912 
2913 	case SIOCGIFFLAGS:
2914 	case SIOCSIFFLAGS:
2915 	case SIOCGIFMETRIC:
2916 	case SIOCSIFMETRIC:
2917 	case SIOCGIFMTU:
2918 	case SIOCSIFMTU:
2919 	case SIOCGIFMEM:
2920 	case SIOCSIFMEM:
2921 	case SIOCGIFHWADDR:
2922 	case SIOCSIFHWADDR:
2923 	case SIOCADDMULTI:
2924 	case SIOCDELMULTI:
2925 	case SIOCGIFINDEX:
2926 	case SIOCGIFADDR:
2927 	case SIOCSIFADDR:
2928 	case SIOCSIFHWBROADCAST:
2929 	case SIOCDIFADDR:
2930 	case SIOCGIFBRDADDR:
2931 	case SIOCSIFBRDADDR:
2932 	case SIOCGIFDSTADDR:
2933 	case SIOCSIFDSTADDR:
2934 	case SIOCGIFNETMASK:
2935 	case SIOCSIFNETMASK:
2936 	case SIOCSIFPFLAGS:
2937 	case SIOCGIFPFLAGS:
2938 	case SIOCGIFTXQLEN:
2939 	case SIOCSIFTXQLEN:
2940 	case SIOCBRADDIF:
2941 	case SIOCBRDELIF:
2942 	case SIOCSIFNAME:
2943 	case SIOCGMIIPHY:
2944 	case SIOCGMIIREG:
2945 	case SIOCSMIIREG:
2946 		return dev_ifsioc(net, sock, cmd, argp);
2947 
2948 	case SIOCSARP:
2949 	case SIOCGARP:
2950 	case SIOCDARP:
2951 	case SIOCATMARK:
2952 		return sock_do_ioctl(net, sock, cmd, arg);
2953 	}
2954 
2955 	/* Prevent warning from compat_sys_ioctl, these always
2956 	 * result in -EINVAL in the native case anyway. */
2957 	switch (cmd) {
2958 	case SIOCRTMSG:
2959 	case SIOCGIFCOUNT:
2960 	case SIOCSRARP:
2961 	case SIOCGRARP:
2962 	case SIOCDRARP:
2963 	case SIOCSIFLINK:
2964 	case SIOCGIFSLAVE:
2965 	case SIOCSIFSLAVE:
2966 		return -EINVAL;
2967 	}
2968 
2969 	return -ENOIOCTLCMD;
2970 }
2971 
2972 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2973 			      unsigned long arg)
2974 {
2975 	struct socket *sock = file->private_data;
2976 	int ret = -ENOIOCTLCMD;
2977 	struct sock *sk;
2978 	struct net *net;
2979 
2980 	sk = sock->sk;
2981 	net = sock_net(sk);
2982 
2983 	if (sock->ops->compat_ioctl)
2984 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2985 
2986 	if (ret == -ENOIOCTLCMD &&
2987 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2988 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2989 
2990 	if (ret == -ENOIOCTLCMD)
2991 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2992 
2993 	return ret;
2994 }
2995 #endif
2996 
2997 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2998 {
2999 	return sock->ops->bind(sock, addr, addrlen);
3000 }
3001 EXPORT_SYMBOL(kernel_bind);
3002 
3003 int kernel_listen(struct socket *sock, int backlog)
3004 {
3005 	return sock->ops->listen(sock, backlog);
3006 }
3007 EXPORT_SYMBOL(kernel_listen);
3008 
3009 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3010 {
3011 	struct sock *sk = sock->sk;
3012 	int err;
3013 
3014 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3015 			       newsock);
3016 	if (err < 0)
3017 		goto done;
3018 
3019 	err = sock->ops->accept(sock, *newsock, flags);
3020 	if (err < 0) {
3021 		sock_release(*newsock);
3022 		*newsock = NULL;
3023 		goto done;
3024 	}
3025 
3026 	(*newsock)->ops = sock->ops;
3027 	__module_get((*newsock)->ops->owner);
3028 
3029 done:
3030 	return err;
3031 }
3032 EXPORT_SYMBOL(kernel_accept);
3033 
3034 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3035 		   int flags)
3036 {
3037 	return sock->ops->connect(sock, addr, addrlen, flags);
3038 }
3039 EXPORT_SYMBOL(kernel_connect);
3040 
3041 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3042 			 int *addrlen)
3043 {
3044 	return sock->ops->getname(sock, addr, addrlen, 0);
3045 }
3046 EXPORT_SYMBOL(kernel_getsockname);
3047 
3048 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3049 			 int *addrlen)
3050 {
3051 	return sock->ops->getname(sock, addr, addrlen, 1);
3052 }
3053 EXPORT_SYMBOL(kernel_getpeername);
3054 
3055 int kernel_getsockopt(struct socket *sock, int level, int optname,
3056 			char *optval, int *optlen)
3057 {
3058 	mm_segment_t oldfs = get_fs();
3059 	char __user *uoptval;
3060 	int __user *uoptlen;
3061 	int err;
3062 
3063 	uoptval = (char __user __force *) optval;
3064 	uoptlen = (int __user __force *) optlen;
3065 
3066 	set_fs(KERNEL_DS);
3067 	if (level == SOL_SOCKET)
3068 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3069 	else
3070 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3071 					    uoptlen);
3072 	set_fs(oldfs);
3073 	return err;
3074 }
3075 EXPORT_SYMBOL(kernel_getsockopt);
3076 
3077 int kernel_setsockopt(struct socket *sock, int level, int optname,
3078 			char *optval, unsigned int optlen)
3079 {
3080 	mm_segment_t oldfs = get_fs();
3081 	char __user *uoptval;
3082 	int err;
3083 
3084 	uoptval = (char __user __force *) optval;
3085 
3086 	set_fs(KERNEL_DS);
3087 	if (level == SOL_SOCKET)
3088 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3089 	else
3090 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3091 					    optlen);
3092 	set_fs(oldfs);
3093 	return err;
3094 }
3095 EXPORT_SYMBOL(kernel_setsockopt);
3096 
3097 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3098 		    size_t size, int flags)
3099 {
3100 	sock_update_classid(sock->sk);
3101 
3102 	if (sock->ops->sendpage)
3103 		return sock->ops->sendpage(sock, page, offset, size, flags);
3104 
3105 	return sock_no_sendpage(sock, page, offset, size, flags);
3106 }
3107 EXPORT_SYMBOL(kernel_sendpage);
3108 
3109 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3110 {
3111 	mm_segment_t oldfs = get_fs();
3112 	int err;
3113 
3114 	set_fs(KERNEL_DS);
3115 	err = sock->ops->ioctl(sock, cmd, arg);
3116 	set_fs(oldfs);
3117 
3118 	return err;
3119 }
3120 EXPORT_SYMBOL(kernel_sock_ioctl);
3121 
3122 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3123 {
3124 	return sock->ops->shutdown(sock, how);
3125 }
3126 EXPORT_SYMBOL(kernel_sock_shutdown);
3127