1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #ifdef CONFIG_NET_RX_BUSY_POLL 114 unsigned int sysctl_net_busy_read __read_mostly; 115 unsigned int sysctl_net_busy_poll __read_mostly; 116 #endif 117 118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 120 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 121 122 static int sock_close(struct inode *inode, struct file *file); 123 static __poll_t sock_poll(struct file *file, 124 struct poll_table_struct *wait); 125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 126 #ifdef CONFIG_COMPAT 127 static long compat_sock_ioctl(struct file *file, 128 unsigned int cmd, unsigned long arg); 129 #endif 130 static int sock_fasync(int fd, struct file *filp, int on); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 static void sock_splice_eof(struct file *file); 135 136 #ifdef CONFIG_PROC_FS 137 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 138 { 139 struct socket *sock = f->private_data; 140 const struct proto_ops *ops = READ_ONCE(sock->ops); 141 142 if (ops->show_fdinfo) 143 ops->show_fdinfo(m, sock); 144 } 145 #else 146 #define sock_show_fdinfo NULL 147 #endif 148 149 /* 150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 151 * in the operation structures but are done directly via the socketcall() multiplexor. 152 */ 153 154 static const struct file_operations socket_file_ops = { 155 .owner = THIS_MODULE, 156 .llseek = no_llseek, 157 .read_iter = sock_read_iter, 158 .write_iter = sock_write_iter, 159 .poll = sock_poll, 160 .unlocked_ioctl = sock_ioctl, 161 #ifdef CONFIG_COMPAT 162 .compat_ioctl = compat_sock_ioctl, 163 #endif 164 .uring_cmd = io_uring_cmd_sock, 165 .mmap = sock_mmap, 166 .release = sock_close, 167 .fasync = sock_fasync, 168 .splice_write = splice_to_socket, 169 .splice_read = sock_splice_read, 170 .splice_eof = sock_splice_eof, 171 .show_fdinfo = sock_show_fdinfo, 172 }; 173 174 static const char * const pf_family_names[] = { 175 [PF_UNSPEC] = "PF_UNSPEC", 176 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 177 [PF_INET] = "PF_INET", 178 [PF_AX25] = "PF_AX25", 179 [PF_IPX] = "PF_IPX", 180 [PF_APPLETALK] = "PF_APPLETALK", 181 [PF_NETROM] = "PF_NETROM", 182 [PF_BRIDGE] = "PF_BRIDGE", 183 [PF_ATMPVC] = "PF_ATMPVC", 184 [PF_X25] = "PF_X25", 185 [PF_INET6] = "PF_INET6", 186 [PF_ROSE] = "PF_ROSE", 187 [PF_DECnet] = "PF_DECnet", 188 [PF_NETBEUI] = "PF_NETBEUI", 189 [PF_SECURITY] = "PF_SECURITY", 190 [PF_KEY] = "PF_KEY", 191 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 192 [PF_PACKET] = "PF_PACKET", 193 [PF_ASH] = "PF_ASH", 194 [PF_ECONET] = "PF_ECONET", 195 [PF_ATMSVC] = "PF_ATMSVC", 196 [PF_RDS] = "PF_RDS", 197 [PF_SNA] = "PF_SNA", 198 [PF_IRDA] = "PF_IRDA", 199 [PF_PPPOX] = "PF_PPPOX", 200 [PF_WANPIPE] = "PF_WANPIPE", 201 [PF_LLC] = "PF_LLC", 202 [PF_IB] = "PF_IB", 203 [PF_MPLS] = "PF_MPLS", 204 [PF_CAN] = "PF_CAN", 205 [PF_TIPC] = "PF_TIPC", 206 [PF_BLUETOOTH] = "PF_BLUETOOTH", 207 [PF_IUCV] = "PF_IUCV", 208 [PF_RXRPC] = "PF_RXRPC", 209 [PF_ISDN] = "PF_ISDN", 210 [PF_PHONET] = "PF_PHONET", 211 [PF_IEEE802154] = "PF_IEEE802154", 212 [PF_CAIF] = "PF_CAIF", 213 [PF_ALG] = "PF_ALG", 214 [PF_NFC] = "PF_NFC", 215 [PF_VSOCK] = "PF_VSOCK", 216 [PF_KCM] = "PF_KCM", 217 [PF_QIPCRTR] = "PF_QIPCRTR", 218 [PF_SMC] = "PF_SMC", 219 [PF_XDP] = "PF_XDP", 220 [PF_MCTP] = "PF_MCTP", 221 }; 222 223 /* 224 * The protocol list. Each protocol is registered in here. 225 */ 226 227 static DEFINE_SPINLOCK(net_family_lock); 228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 229 230 /* 231 * Support routines. 232 * Move socket addresses back and forth across the kernel/user 233 * divide and look after the messy bits. 234 */ 235 236 /** 237 * move_addr_to_kernel - copy a socket address into kernel space 238 * @uaddr: Address in user space 239 * @kaddr: Address in kernel space 240 * @ulen: Length in user space 241 * 242 * The address is copied into kernel space. If the provided address is 243 * too long an error code of -EINVAL is returned. If the copy gives 244 * invalid addresses -EFAULT is returned. On a success 0 is returned. 245 */ 246 247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 248 { 249 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 250 return -EINVAL; 251 if (ulen == 0) 252 return 0; 253 if (copy_from_user(kaddr, uaddr, ulen)) 254 return -EFAULT; 255 return audit_sockaddr(ulen, kaddr); 256 } 257 258 /** 259 * move_addr_to_user - copy an address to user space 260 * @kaddr: kernel space address 261 * @klen: length of address in kernel 262 * @uaddr: user space address 263 * @ulen: pointer to user length field 264 * 265 * The value pointed to by ulen on entry is the buffer length available. 266 * This is overwritten with the buffer space used. -EINVAL is returned 267 * if an overlong buffer is specified or a negative buffer size. -EFAULT 268 * is returned if either the buffer or the length field are not 269 * accessible. 270 * After copying the data up to the limit the user specifies, the true 271 * length of the data is written over the length limit the user 272 * specified. Zero is returned for a success. 273 */ 274 275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 276 void __user *uaddr, int __user *ulen) 277 { 278 int err; 279 int len; 280 281 BUG_ON(klen > sizeof(struct sockaddr_storage)); 282 err = get_user(len, ulen); 283 if (err) 284 return err; 285 if (len > klen) 286 len = klen; 287 if (len < 0) 288 return -EINVAL; 289 if (len) { 290 if (audit_sockaddr(klen, kaddr)) 291 return -ENOMEM; 292 if (copy_to_user(uaddr, kaddr, len)) 293 return -EFAULT; 294 } 295 /* 296 * "fromlen shall refer to the value before truncation.." 297 * 1003.1g 298 */ 299 return __put_user(klen, ulen); 300 } 301 302 static struct kmem_cache *sock_inode_cachep __ro_after_init; 303 304 static struct inode *sock_alloc_inode(struct super_block *sb) 305 { 306 struct socket_alloc *ei; 307 308 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 309 if (!ei) 310 return NULL; 311 init_waitqueue_head(&ei->socket.wq.wait); 312 ei->socket.wq.fasync_list = NULL; 313 ei->socket.wq.flags = 0; 314 315 ei->socket.state = SS_UNCONNECTED; 316 ei->socket.flags = 0; 317 ei->socket.ops = NULL; 318 ei->socket.sk = NULL; 319 ei->socket.file = NULL; 320 321 return &ei->vfs_inode; 322 } 323 324 static void sock_free_inode(struct inode *inode) 325 { 326 struct socket_alloc *ei; 327 328 ei = container_of(inode, struct socket_alloc, vfs_inode); 329 kmem_cache_free(sock_inode_cachep, ei); 330 } 331 332 static void init_once(void *foo) 333 { 334 struct socket_alloc *ei = (struct socket_alloc *)foo; 335 336 inode_init_once(&ei->vfs_inode); 337 } 338 339 static void init_inodecache(void) 340 { 341 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 342 sizeof(struct socket_alloc), 343 0, 344 (SLAB_HWCACHE_ALIGN | 345 SLAB_RECLAIM_ACCOUNT | 346 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 347 init_once); 348 BUG_ON(sock_inode_cachep == NULL); 349 } 350 351 static const struct super_operations sockfs_ops = { 352 .alloc_inode = sock_alloc_inode, 353 .free_inode = sock_free_inode, 354 .statfs = simple_statfs, 355 }; 356 357 /* 358 * sockfs_dname() is called from d_path(). 359 */ 360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 361 { 362 return dynamic_dname(buffer, buflen, "socket:[%lu]", 363 d_inode(dentry)->i_ino); 364 } 365 366 static const struct dentry_operations sockfs_dentry_operations = { 367 .d_dname = sockfs_dname, 368 }; 369 370 static int sockfs_xattr_get(const struct xattr_handler *handler, 371 struct dentry *dentry, struct inode *inode, 372 const char *suffix, void *value, size_t size) 373 { 374 if (value) { 375 if (dentry->d_name.len + 1 > size) 376 return -ERANGE; 377 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 378 } 379 return dentry->d_name.len + 1; 380 } 381 382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 385 386 static const struct xattr_handler sockfs_xattr_handler = { 387 .name = XATTR_NAME_SOCKPROTONAME, 388 .get = sockfs_xattr_get, 389 }; 390 391 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 392 struct mnt_idmap *idmap, 393 struct dentry *dentry, struct inode *inode, 394 const char *suffix, const void *value, 395 size_t size, int flags) 396 { 397 /* Handled by LSM. */ 398 return -EAGAIN; 399 } 400 401 static const struct xattr_handler sockfs_security_xattr_handler = { 402 .prefix = XATTR_SECURITY_PREFIX, 403 .set = sockfs_security_xattr_set, 404 }; 405 406 static const struct xattr_handler * const sockfs_xattr_handlers[] = { 407 &sockfs_xattr_handler, 408 &sockfs_security_xattr_handler, 409 NULL 410 }; 411 412 static int sockfs_init_fs_context(struct fs_context *fc) 413 { 414 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 415 if (!ctx) 416 return -ENOMEM; 417 ctx->ops = &sockfs_ops; 418 ctx->dops = &sockfs_dentry_operations; 419 ctx->xattr = sockfs_xattr_handlers; 420 return 0; 421 } 422 423 static struct vfsmount *sock_mnt __read_mostly; 424 425 static struct file_system_type sock_fs_type = { 426 .name = "sockfs", 427 .init_fs_context = sockfs_init_fs_context, 428 .kill_sb = kill_anon_super, 429 }; 430 431 /* 432 * Obtains the first available file descriptor and sets it up for use. 433 * 434 * These functions create file structures and maps them to fd space 435 * of the current process. On success it returns file descriptor 436 * and file struct implicitly stored in sock->file. 437 * Note that another thread may close file descriptor before we return 438 * from this function. We use the fact that now we do not refer 439 * to socket after mapping. If one day we will need it, this 440 * function will increment ref. count on file by 1. 441 * 442 * In any case returned fd MAY BE not valid! 443 * This race condition is unavoidable 444 * with shared fd spaces, we cannot solve it inside kernel, 445 * but we take care of internal coherence yet. 446 */ 447 448 /** 449 * sock_alloc_file - Bind a &socket to a &file 450 * @sock: socket 451 * @flags: file status flags 452 * @dname: protocol name 453 * 454 * Returns the &file bound with @sock, implicitly storing it 455 * in sock->file. If dname is %NULL, sets to "". 456 * 457 * On failure @sock is released, and an ERR pointer is returned. 458 * 459 * This function uses GFP_KERNEL internally. 460 */ 461 462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 463 { 464 struct file *file; 465 466 if (!dname) 467 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 468 469 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 470 O_RDWR | (flags & O_NONBLOCK), 471 &socket_file_ops); 472 if (IS_ERR(file)) { 473 sock_release(sock); 474 return file; 475 } 476 477 file->f_mode |= FMODE_NOWAIT; 478 sock->file = file; 479 file->private_data = sock; 480 stream_open(SOCK_INODE(sock), file); 481 return file; 482 } 483 EXPORT_SYMBOL(sock_alloc_file); 484 485 static int sock_map_fd(struct socket *sock, int flags) 486 { 487 struct file *newfile; 488 int fd = get_unused_fd_flags(flags); 489 if (unlikely(fd < 0)) { 490 sock_release(sock); 491 return fd; 492 } 493 494 newfile = sock_alloc_file(sock, flags, NULL); 495 if (!IS_ERR(newfile)) { 496 fd_install(fd, newfile); 497 return fd; 498 } 499 500 put_unused_fd(fd); 501 return PTR_ERR(newfile); 502 } 503 504 /** 505 * sock_from_file - Return the &socket bounded to @file. 506 * @file: file 507 * 508 * On failure returns %NULL. 509 */ 510 511 struct socket *sock_from_file(struct file *file) 512 { 513 if (file->f_op == &socket_file_ops) 514 return file->private_data; /* set in sock_alloc_file */ 515 516 return NULL; 517 } 518 EXPORT_SYMBOL(sock_from_file); 519 520 /** 521 * sockfd_lookup - Go from a file number to its socket slot 522 * @fd: file handle 523 * @err: pointer to an error code return 524 * 525 * The file handle passed in is locked and the socket it is bound 526 * to is returned. If an error occurs the err pointer is overwritten 527 * with a negative errno code and NULL is returned. The function checks 528 * for both invalid handles and passing a handle which is not a socket. 529 * 530 * On a success the socket object pointer is returned. 531 */ 532 533 struct socket *sockfd_lookup(int fd, int *err) 534 { 535 struct file *file; 536 struct socket *sock; 537 538 file = fget(fd); 539 if (!file) { 540 *err = -EBADF; 541 return NULL; 542 } 543 544 sock = sock_from_file(file); 545 if (!sock) { 546 *err = -ENOTSOCK; 547 fput(file); 548 } 549 return sock; 550 } 551 EXPORT_SYMBOL(sockfd_lookup); 552 553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 554 { 555 struct fd f = fdget(fd); 556 struct socket *sock; 557 558 *err = -EBADF; 559 if (f.file) { 560 sock = sock_from_file(f.file); 561 if (likely(sock)) { 562 *fput_needed = f.flags & FDPUT_FPUT; 563 return sock; 564 } 565 *err = -ENOTSOCK; 566 fdput(f); 567 } 568 return NULL; 569 } 570 571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 572 size_t size) 573 { 574 ssize_t len; 575 ssize_t used = 0; 576 577 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 578 if (len < 0) 579 return len; 580 used += len; 581 if (buffer) { 582 if (size < used) 583 return -ERANGE; 584 buffer += len; 585 } 586 587 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 588 used += len; 589 if (buffer) { 590 if (size < used) 591 return -ERANGE; 592 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 593 buffer += len; 594 } 595 596 return used; 597 } 598 599 static int sockfs_setattr(struct mnt_idmap *idmap, 600 struct dentry *dentry, struct iattr *iattr) 601 { 602 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 603 604 if (!err && (iattr->ia_valid & ATTR_UID)) { 605 struct socket *sock = SOCKET_I(d_inode(dentry)); 606 607 if (sock->sk) 608 sock->sk->sk_uid = iattr->ia_uid; 609 else 610 err = -ENOENT; 611 } 612 613 return err; 614 } 615 616 static const struct inode_operations sockfs_inode_ops = { 617 .listxattr = sockfs_listxattr, 618 .setattr = sockfs_setattr, 619 }; 620 621 /** 622 * sock_alloc - allocate a socket 623 * 624 * Allocate a new inode and socket object. The two are bound together 625 * and initialised. The socket is then returned. If we are out of inodes 626 * NULL is returned. This functions uses GFP_KERNEL internally. 627 */ 628 629 struct socket *sock_alloc(void) 630 { 631 struct inode *inode; 632 struct socket *sock; 633 634 inode = new_inode_pseudo(sock_mnt->mnt_sb); 635 if (!inode) 636 return NULL; 637 638 sock = SOCKET_I(inode); 639 640 inode->i_ino = get_next_ino(); 641 inode->i_mode = S_IFSOCK | S_IRWXUGO; 642 inode->i_uid = current_fsuid(); 643 inode->i_gid = current_fsgid(); 644 inode->i_op = &sockfs_inode_ops; 645 646 return sock; 647 } 648 EXPORT_SYMBOL(sock_alloc); 649 650 static void __sock_release(struct socket *sock, struct inode *inode) 651 { 652 const struct proto_ops *ops = READ_ONCE(sock->ops); 653 654 if (ops) { 655 struct module *owner = ops->owner; 656 657 if (inode) 658 inode_lock(inode); 659 ops->release(sock); 660 sock->sk = NULL; 661 if (inode) 662 inode_unlock(inode); 663 sock->ops = NULL; 664 module_put(owner); 665 } 666 667 if (sock->wq.fasync_list) 668 pr_err("%s: fasync list not empty!\n", __func__); 669 670 if (!sock->file) { 671 iput(SOCK_INODE(sock)); 672 return; 673 } 674 sock->file = NULL; 675 } 676 677 /** 678 * sock_release - close a socket 679 * @sock: socket to close 680 * 681 * The socket is released from the protocol stack if it has a release 682 * callback, and the inode is then released if the socket is bound to 683 * an inode not a file. 684 */ 685 void sock_release(struct socket *sock) 686 { 687 __sock_release(sock, NULL); 688 } 689 EXPORT_SYMBOL(sock_release); 690 691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 692 { 693 u8 flags = *tx_flags; 694 695 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) { 696 flags |= SKBTX_HW_TSTAMP; 697 698 /* PTP hardware clocks can provide a free running cycle counter 699 * as a time base for virtual clocks. Tell driver to use the 700 * free running cycle counter for timestamp if socket is bound 701 * to virtual clock. 702 */ 703 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 704 flags |= SKBTX_HW_TSTAMP_USE_CYCLES; 705 } 706 707 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 708 flags |= SKBTX_SW_TSTAMP; 709 710 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 711 flags |= SKBTX_SCHED_TSTAMP; 712 713 *tx_flags = flags; 714 } 715 EXPORT_SYMBOL(__sock_tx_timestamp); 716 717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 718 size_t)); 719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 720 size_t)); 721 722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 723 int flags) 724 { 725 trace_sock_send_length(sk, ret, 0); 726 } 727 728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 729 { 730 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 731 inet_sendmsg, sock, msg, 732 msg_data_left(msg)); 733 BUG_ON(ret == -EIOCBQUEUED); 734 735 if (trace_sock_send_length_enabled()) 736 call_trace_sock_send_length(sock->sk, ret, 0); 737 return ret; 738 } 739 740 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) 741 { 742 int err = security_socket_sendmsg(sock, msg, 743 msg_data_left(msg)); 744 745 return err ?: sock_sendmsg_nosec(sock, msg); 746 } 747 748 /** 749 * sock_sendmsg - send a message through @sock 750 * @sock: socket 751 * @msg: message to send 752 * 753 * Sends @msg through @sock, passing through LSM. 754 * Returns the number of bytes sent, or an error code. 755 */ 756 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 757 { 758 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; 759 struct sockaddr_storage address; 760 int ret; 761 762 if (msg->msg_name) { 763 memcpy(&address, msg->msg_name, msg->msg_namelen); 764 msg->msg_name = &address; 765 } 766 767 ret = __sock_sendmsg(sock, msg); 768 msg->msg_name = save_addr; 769 770 return ret; 771 } 772 EXPORT_SYMBOL(sock_sendmsg); 773 774 /** 775 * kernel_sendmsg - send a message through @sock (kernel-space) 776 * @sock: socket 777 * @msg: message header 778 * @vec: kernel vec 779 * @num: vec array length 780 * @size: total message data size 781 * 782 * Builds the message data with @vec and sends it through @sock. 783 * Returns the number of bytes sent, or an error code. 784 */ 785 786 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 787 struct kvec *vec, size_t num, size_t size) 788 { 789 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 790 return sock_sendmsg(sock, msg); 791 } 792 EXPORT_SYMBOL(kernel_sendmsg); 793 794 /** 795 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 796 * @sk: sock 797 * @msg: message header 798 * @vec: output s/g array 799 * @num: output s/g array length 800 * @size: total message data size 801 * 802 * Builds the message data with @vec and sends it through @sock. 803 * Returns the number of bytes sent, or an error code. 804 * Caller must hold @sk. 805 */ 806 807 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 808 struct kvec *vec, size_t num, size_t size) 809 { 810 struct socket *sock = sk->sk_socket; 811 const struct proto_ops *ops = READ_ONCE(sock->ops); 812 813 if (!ops->sendmsg_locked) 814 return sock_no_sendmsg_locked(sk, msg, size); 815 816 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 817 818 return ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 819 } 820 EXPORT_SYMBOL(kernel_sendmsg_locked); 821 822 static bool skb_is_err_queue(const struct sk_buff *skb) 823 { 824 /* pkt_type of skbs enqueued on the error queue are set to 825 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 826 * in recvmsg, since skbs received on a local socket will never 827 * have a pkt_type of PACKET_OUTGOING. 828 */ 829 return skb->pkt_type == PACKET_OUTGOING; 830 } 831 832 /* On transmit, software and hardware timestamps are returned independently. 833 * As the two skb clones share the hardware timestamp, which may be updated 834 * before the software timestamp is received, a hardware TX timestamp may be 835 * returned only if there is no software TX timestamp. Ignore false software 836 * timestamps, which may be made in the __sock_recv_timestamp() call when the 837 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 838 * hardware timestamp. 839 */ 840 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 841 { 842 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 843 } 844 845 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 846 { 847 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 848 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 849 struct net_device *orig_dev; 850 ktime_t hwtstamp; 851 852 rcu_read_lock(); 853 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 854 if (orig_dev) { 855 *if_index = orig_dev->ifindex; 856 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 857 } else { 858 hwtstamp = shhwtstamps->hwtstamp; 859 } 860 rcu_read_unlock(); 861 862 return hwtstamp; 863 } 864 865 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 866 int if_index) 867 { 868 struct scm_ts_pktinfo ts_pktinfo; 869 struct net_device *orig_dev; 870 871 if (!skb_mac_header_was_set(skb)) 872 return; 873 874 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 875 876 if (!if_index) { 877 rcu_read_lock(); 878 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 879 if (orig_dev) 880 if_index = orig_dev->ifindex; 881 rcu_read_unlock(); 882 } 883 ts_pktinfo.if_index = if_index; 884 885 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 886 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 887 sizeof(ts_pktinfo), &ts_pktinfo); 888 } 889 890 /* 891 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 892 */ 893 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 894 struct sk_buff *skb) 895 { 896 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 897 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 898 struct scm_timestamping_internal tss; 899 int empty = 1, false_tstamp = 0; 900 struct skb_shared_hwtstamps *shhwtstamps = 901 skb_hwtstamps(skb); 902 int if_index; 903 ktime_t hwtstamp; 904 u32 tsflags; 905 906 /* Race occurred between timestamp enabling and packet 907 receiving. Fill in the current time for now. */ 908 if (need_software_tstamp && skb->tstamp == 0) { 909 __net_timestamp(skb); 910 false_tstamp = 1; 911 } 912 913 if (need_software_tstamp) { 914 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 915 if (new_tstamp) { 916 struct __kernel_sock_timeval tv; 917 918 skb_get_new_timestamp(skb, &tv); 919 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 920 sizeof(tv), &tv); 921 } else { 922 struct __kernel_old_timeval tv; 923 924 skb_get_timestamp(skb, &tv); 925 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 926 sizeof(tv), &tv); 927 } 928 } else { 929 if (new_tstamp) { 930 struct __kernel_timespec ts; 931 932 skb_get_new_timestampns(skb, &ts); 933 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 934 sizeof(ts), &ts); 935 } else { 936 struct __kernel_old_timespec ts; 937 938 skb_get_timestampns(skb, &ts); 939 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 940 sizeof(ts), &ts); 941 } 942 } 943 } 944 945 memset(&tss, 0, sizeof(tss)); 946 tsflags = READ_ONCE(sk->sk_tsflags); 947 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) && 948 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 949 empty = 0; 950 if (shhwtstamps && 951 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 952 !skb_is_swtx_tstamp(skb, false_tstamp)) { 953 if_index = 0; 954 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 955 hwtstamp = get_timestamp(sk, skb, &if_index); 956 else 957 hwtstamp = shhwtstamps->hwtstamp; 958 959 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 960 hwtstamp = ptp_convert_timestamp(&hwtstamp, 961 READ_ONCE(sk->sk_bind_phc)); 962 963 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 964 empty = 0; 965 966 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 967 !skb_is_err_queue(skb)) 968 put_ts_pktinfo(msg, skb, if_index); 969 } 970 } 971 if (!empty) { 972 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 973 put_cmsg_scm_timestamping64(msg, &tss); 974 else 975 put_cmsg_scm_timestamping(msg, &tss); 976 977 if (skb_is_err_queue(skb) && skb->len && 978 SKB_EXT_ERR(skb)->opt_stats) 979 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 980 skb->len, skb->data); 981 } 982 } 983 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 984 985 #ifdef CONFIG_WIRELESS 986 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 987 struct sk_buff *skb) 988 { 989 int ack; 990 991 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 992 return; 993 if (!skb->wifi_acked_valid) 994 return; 995 996 ack = skb->wifi_acked; 997 998 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 999 } 1000 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 1001 #endif 1002 1003 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 1004 struct sk_buff *skb) 1005 { 1006 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 1007 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 1008 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 1009 } 1010 1011 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 1012 struct sk_buff *skb) 1013 { 1014 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 1015 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 1016 __u32 mark = skb->mark; 1017 1018 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 1019 } 1020 } 1021 1022 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 1023 struct sk_buff *skb) 1024 { 1025 sock_recv_timestamp(msg, sk, skb); 1026 sock_recv_drops(msg, sk, skb); 1027 sock_recv_mark(msg, sk, skb); 1028 } 1029 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1030 1031 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1032 size_t, int)); 1033 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1034 size_t, int)); 1035 1036 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1037 { 1038 trace_sock_recv_length(sk, ret, flags); 1039 } 1040 1041 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1042 int flags) 1043 { 1044 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1045 inet6_recvmsg, 1046 inet_recvmsg, sock, msg, 1047 msg_data_left(msg), flags); 1048 if (trace_sock_recv_length_enabled()) 1049 call_trace_sock_recv_length(sock->sk, ret, flags); 1050 return ret; 1051 } 1052 1053 /** 1054 * sock_recvmsg - receive a message from @sock 1055 * @sock: socket 1056 * @msg: message to receive 1057 * @flags: message flags 1058 * 1059 * Receives @msg from @sock, passing through LSM. Returns the total number 1060 * of bytes received, or an error. 1061 */ 1062 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1063 { 1064 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1065 1066 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1067 } 1068 EXPORT_SYMBOL(sock_recvmsg); 1069 1070 /** 1071 * kernel_recvmsg - Receive a message from a socket (kernel space) 1072 * @sock: The socket to receive the message from 1073 * @msg: Received message 1074 * @vec: Input s/g array for message data 1075 * @num: Size of input s/g array 1076 * @size: Number of bytes to read 1077 * @flags: Message flags (MSG_DONTWAIT, etc...) 1078 * 1079 * On return the msg structure contains the scatter/gather array passed in the 1080 * vec argument. The array is modified so that it consists of the unfilled 1081 * portion of the original array. 1082 * 1083 * The returned value is the total number of bytes received, or an error. 1084 */ 1085 1086 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1087 struct kvec *vec, size_t num, size_t size, int flags) 1088 { 1089 msg->msg_control_is_user = false; 1090 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1091 return sock_recvmsg(sock, msg, flags); 1092 } 1093 EXPORT_SYMBOL(kernel_recvmsg); 1094 1095 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1096 struct pipe_inode_info *pipe, size_t len, 1097 unsigned int flags) 1098 { 1099 struct socket *sock = file->private_data; 1100 const struct proto_ops *ops; 1101 1102 ops = READ_ONCE(sock->ops); 1103 if (unlikely(!ops->splice_read)) 1104 return copy_splice_read(file, ppos, pipe, len, flags); 1105 1106 return ops->splice_read(sock, ppos, pipe, len, flags); 1107 } 1108 1109 static void sock_splice_eof(struct file *file) 1110 { 1111 struct socket *sock = file->private_data; 1112 const struct proto_ops *ops; 1113 1114 ops = READ_ONCE(sock->ops); 1115 if (ops->splice_eof) 1116 ops->splice_eof(sock); 1117 } 1118 1119 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1120 { 1121 struct file *file = iocb->ki_filp; 1122 struct socket *sock = file->private_data; 1123 struct msghdr msg = {.msg_iter = *to, 1124 .msg_iocb = iocb}; 1125 ssize_t res; 1126 1127 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1128 msg.msg_flags = MSG_DONTWAIT; 1129 1130 if (iocb->ki_pos != 0) 1131 return -ESPIPE; 1132 1133 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1134 return 0; 1135 1136 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1137 *to = msg.msg_iter; 1138 return res; 1139 } 1140 1141 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1142 { 1143 struct file *file = iocb->ki_filp; 1144 struct socket *sock = file->private_data; 1145 struct msghdr msg = {.msg_iter = *from, 1146 .msg_iocb = iocb}; 1147 ssize_t res; 1148 1149 if (iocb->ki_pos != 0) 1150 return -ESPIPE; 1151 1152 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1153 msg.msg_flags = MSG_DONTWAIT; 1154 1155 if (sock->type == SOCK_SEQPACKET) 1156 msg.msg_flags |= MSG_EOR; 1157 1158 res = __sock_sendmsg(sock, &msg); 1159 *from = msg.msg_iter; 1160 return res; 1161 } 1162 1163 /* 1164 * Atomic setting of ioctl hooks to avoid race 1165 * with module unload. 1166 */ 1167 1168 static DEFINE_MUTEX(br_ioctl_mutex); 1169 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br, 1170 unsigned int cmd, struct ifreq *ifr, 1171 void __user *uarg); 1172 1173 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br, 1174 unsigned int cmd, struct ifreq *ifr, 1175 void __user *uarg)) 1176 { 1177 mutex_lock(&br_ioctl_mutex); 1178 br_ioctl_hook = hook; 1179 mutex_unlock(&br_ioctl_mutex); 1180 } 1181 EXPORT_SYMBOL(brioctl_set); 1182 1183 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd, 1184 struct ifreq *ifr, void __user *uarg) 1185 { 1186 int err = -ENOPKG; 1187 1188 if (!br_ioctl_hook) 1189 request_module("bridge"); 1190 1191 mutex_lock(&br_ioctl_mutex); 1192 if (br_ioctl_hook) 1193 err = br_ioctl_hook(net, br, cmd, ifr, uarg); 1194 mutex_unlock(&br_ioctl_mutex); 1195 1196 return err; 1197 } 1198 1199 static DEFINE_MUTEX(vlan_ioctl_mutex); 1200 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1201 1202 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1203 { 1204 mutex_lock(&vlan_ioctl_mutex); 1205 vlan_ioctl_hook = hook; 1206 mutex_unlock(&vlan_ioctl_mutex); 1207 } 1208 EXPORT_SYMBOL(vlan_ioctl_set); 1209 1210 static long sock_do_ioctl(struct net *net, struct socket *sock, 1211 unsigned int cmd, unsigned long arg) 1212 { 1213 const struct proto_ops *ops = READ_ONCE(sock->ops); 1214 struct ifreq ifr; 1215 bool need_copyout; 1216 int err; 1217 void __user *argp = (void __user *)arg; 1218 void __user *data; 1219 1220 err = ops->ioctl(sock, cmd, arg); 1221 1222 /* 1223 * If this ioctl is unknown try to hand it down 1224 * to the NIC driver. 1225 */ 1226 if (err != -ENOIOCTLCMD) 1227 return err; 1228 1229 if (!is_socket_ioctl_cmd(cmd)) 1230 return -ENOTTY; 1231 1232 if (get_user_ifreq(&ifr, &data, argp)) 1233 return -EFAULT; 1234 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1235 if (!err && need_copyout) 1236 if (put_user_ifreq(&ifr, argp)) 1237 return -EFAULT; 1238 1239 return err; 1240 } 1241 1242 /* 1243 * With an ioctl, arg may well be a user mode pointer, but we don't know 1244 * what to do with it - that's up to the protocol still. 1245 */ 1246 1247 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1248 { 1249 const struct proto_ops *ops; 1250 struct socket *sock; 1251 struct sock *sk; 1252 void __user *argp = (void __user *)arg; 1253 int pid, err; 1254 struct net *net; 1255 1256 sock = file->private_data; 1257 ops = READ_ONCE(sock->ops); 1258 sk = sock->sk; 1259 net = sock_net(sk); 1260 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1261 struct ifreq ifr; 1262 void __user *data; 1263 bool need_copyout; 1264 if (get_user_ifreq(&ifr, &data, argp)) 1265 return -EFAULT; 1266 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1267 if (!err && need_copyout) 1268 if (put_user_ifreq(&ifr, argp)) 1269 return -EFAULT; 1270 } else 1271 #ifdef CONFIG_WEXT_CORE 1272 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1273 err = wext_handle_ioctl(net, cmd, argp); 1274 } else 1275 #endif 1276 switch (cmd) { 1277 case FIOSETOWN: 1278 case SIOCSPGRP: 1279 err = -EFAULT; 1280 if (get_user(pid, (int __user *)argp)) 1281 break; 1282 err = f_setown(sock->file, pid, 1); 1283 break; 1284 case FIOGETOWN: 1285 case SIOCGPGRP: 1286 err = put_user(f_getown(sock->file), 1287 (int __user *)argp); 1288 break; 1289 case SIOCGIFBR: 1290 case SIOCSIFBR: 1291 case SIOCBRADDBR: 1292 case SIOCBRDELBR: 1293 err = br_ioctl_call(net, NULL, cmd, NULL, argp); 1294 break; 1295 case SIOCGIFVLAN: 1296 case SIOCSIFVLAN: 1297 err = -ENOPKG; 1298 if (!vlan_ioctl_hook) 1299 request_module("8021q"); 1300 1301 mutex_lock(&vlan_ioctl_mutex); 1302 if (vlan_ioctl_hook) 1303 err = vlan_ioctl_hook(net, argp); 1304 mutex_unlock(&vlan_ioctl_mutex); 1305 break; 1306 case SIOCGSKNS: 1307 err = -EPERM; 1308 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1309 break; 1310 1311 err = open_related_ns(&net->ns, get_net_ns); 1312 break; 1313 case SIOCGSTAMP_OLD: 1314 case SIOCGSTAMPNS_OLD: 1315 if (!ops->gettstamp) { 1316 err = -ENOIOCTLCMD; 1317 break; 1318 } 1319 err = ops->gettstamp(sock, argp, 1320 cmd == SIOCGSTAMP_OLD, 1321 !IS_ENABLED(CONFIG_64BIT)); 1322 break; 1323 case SIOCGSTAMP_NEW: 1324 case SIOCGSTAMPNS_NEW: 1325 if (!ops->gettstamp) { 1326 err = -ENOIOCTLCMD; 1327 break; 1328 } 1329 err = ops->gettstamp(sock, argp, 1330 cmd == SIOCGSTAMP_NEW, 1331 false); 1332 break; 1333 1334 case SIOCGIFCONF: 1335 err = dev_ifconf(net, argp); 1336 break; 1337 1338 default: 1339 err = sock_do_ioctl(net, sock, cmd, arg); 1340 break; 1341 } 1342 return err; 1343 } 1344 1345 /** 1346 * sock_create_lite - creates a socket 1347 * @family: protocol family (AF_INET, ...) 1348 * @type: communication type (SOCK_STREAM, ...) 1349 * @protocol: protocol (0, ...) 1350 * @res: new socket 1351 * 1352 * Creates a new socket and assigns it to @res, passing through LSM. 1353 * The new socket initialization is not complete, see kernel_accept(). 1354 * Returns 0 or an error. On failure @res is set to %NULL. 1355 * This function internally uses GFP_KERNEL. 1356 */ 1357 1358 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1359 { 1360 int err; 1361 struct socket *sock = NULL; 1362 1363 err = security_socket_create(family, type, protocol, 1); 1364 if (err) 1365 goto out; 1366 1367 sock = sock_alloc(); 1368 if (!sock) { 1369 err = -ENOMEM; 1370 goto out; 1371 } 1372 1373 sock->type = type; 1374 err = security_socket_post_create(sock, family, type, protocol, 1); 1375 if (err) 1376 goto out_release; 1377 1378 out: 1379 *res = sock; 1380 return err; 1381 out_release: 1382 sock_release(sock); 1383 sock = NULL; 1384 goto out; 1385 } 1386 EXPORT_SYMBOL(sock_create_lite); 1387 1388 /* No kernel lock held - perfect */ 1389 static __poll_t sock_poll(struct file *file, poll_table *wait) 1390 { 1391 struct socket *sock = file->private_data; 1392 const struct proto_ops *ops = READ_ONCE(sock->ops); 1393 __poll_t events = poll_requested_events(wait), flag = 0; 1394 1395 if (!ops->poll) 1396 return 0; 1397 1398 if (sk_can_busy_loop(sock->sk)) { 1399 /* poll once if requested by the syscall */ 1400 if (events & POLL_BUSY_LOOP) 1401 sk_busy_loop(sock->sk, 1); 1402 1403 /* if this socket can poll_ll, tell the system call */ 1404 flag = POLL_BUSY_LOOP; 1405 } 1406 1407 return ops->poll(file, sock, wait) | flag; 1408 } 1409 1410 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1411 { 1412 struct socket *sock = file->private_data; 1413 1414 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1415 } 1416 1417 static int sock_close(struct inode *inode, struct file *filp) 1418 { 1419 __sock_release(SOCKET_I(inode), inode); 1420 return 0; 1421 } 1422 1423 /* 1424 * Update the socket async list 1425 * 1426 * Fasync_list locking strategy. 1427 * 1428 * 1. fasync_list is modified only under process context socket lock 1429 * i.e. under semaphore. 1430 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1431 * or under socket lock 1432 */ 1433 1434 static int sock_fasync(int fd, struct file *filp, int on) 1435 { 1436 struct socket *sock = filp->private_data; 1437 struct sock *sk = sock->sk; 1438 struct socket_wq *wq = &sock->wq; 1439 1440 if (sk == NULL) 1441 return -EINVAL; 1442 1443 lock_sock(sk); 1444 fasync_helper(fd, filp, on, &wq->fasync_list); 1445 1446 if (!wq->fasync_list) 1447 sock_reset_flag(sk, SOCK_FASYNC); 1448 else 1449 sock_set_flag(sk, SOCK_FASYNC); 1450 1451 release_sock(sk); 1452 return 0; 1453 } 1454 1455 /* This function may be called only under rcu_lock */ 1456 1457 int sock_wake_async(struct socket_wq *wq, int how, int band) 1458 { 1459 if (!wq || !wq->fasync_list) 1460 return -1; 1461 1462 switch (how) { 1463 case SOCK_WAKE_WAITD: 1464 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1465 break; 1466 goto call_kill; 1467 case SOCK_WAKE_SPACE: 1468 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1469 break; 1470 fallthrough; 1471 case SOCK_WAKE_IO: 1472 call_kill: 1473 kill_fasync(&wq->fasync_list, SIGIO, band); 1474 break; 1475 case SOCK_WAKE_URG: 1476 kill_fasync(&wq->fasync_list, SIGURG, band); 1477 } 1478 1479 return 0; 1480 } 1481 EXPORT_SYMBOL(sock_wake_async); 1482 1483 /** 1484 * __sock_create - creates a socket 1485 * @net: net namespace 1486 * @family: protocol family (AF_INET, ...) 1487 * @type: communication type (SOCK_STREAM, ...) 1488 * @protocol: protocol (0, ...) 1489 * @res: new socket 1490 * @kern: boolean for kernel space sockets 1491 * 1492 * Creates a new socket and assigns it to @res, passing through LSM. 1493 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1494 * be set to true if the socket resides in kernel space. 1495 * This function internally uses GFP_KERNEL. 1496 */ 1497 1498 int __sock_create(struct net *net, int family, int type, int protocol, 1499 struct socket **res, int kern) 1500 { 1501 int err; 1502 struct socket *sock; 1503 const struct net_proto_family *pf; 1504 1505 /* 1506 * Check protocol is in range 1507 */ 1508 if (family < 0 || family >= NPROTO) 1509 return -EAFNOSUPPORT; 1510 if (type < 0 || type >= SOCK_MAX) 1511 return -EINVAL; 1512 1513 /* Compatibility. 1514 1515 This uglymoron is moved from INET layer to here to avoid 1516 deadlock in module load. 1517 */ 1518 if (family == PF_INET && type == SOCK_PACKET) { 1519 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1520 current->comm); 1521 family = PF_PACKET; 1522 } 1523 1524 err = security_socket_create(family, type, protocol, kern); 1525 if (err) 1526 return err; 1527 1528 /* 1529 * Allocate the socket and allow the family to set things up. if 1530 * the protocol is 0, the family is instructed to select an appropriate 1531 * default. 1532 */ 1533 sock = sock_alloc(); 1534 if (!sock) { 1535 net_warn_ratelimited("socket: no more sockets\n"); 1536 return -ENFILE; /* Not exactly a match, but its the 1537 closest posix thing */ 1538 } 1539 1540 sock->type = type; 1541 1542 #ifdef CONFIG_MODULES 1543 /* Attempt to load a protocol module if the find failed. 1544 * 1545 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1546 * requested real, full-featured networking support upon configuration. 1547 * Otherwise module support will break! 1548 */ 1549 if (rcu_access_pointer(net_families[family]) == NULL) 1550 request_module("net-pf-%d", family); 1551 #endif 1552 1553 rcu_read_lock(); 1554 pf = rcu_dereference(net_families[family]); 1555 err = -EAFNOSUPPORT; 1556 if (!pf) 1557 goto out_release; 1558 1559 /* 1560 * We will call the ->create function, that possibly is in a loadable 1561 * module, so we have to bump that loadable module refcnt first. 1562 */ 1563 if (!try_module_get(pf->owner)) 1564 goto out_release; 1565 1566 /* Now protected by module ref count */ 1567 rcu_read_unlock(); 1568 1569 err = pf->create(net, sock, protocol, kern); 1570 if (err < 0) 1571 goto out_module_put; 1572 1573 /* 1574 * Now to bump the refcnt of the [loadable] module that owns this 1575 * socket at sock_release time we decrement its refcnt. 1576 */ 1577 if (!try_module_get(sock->ops->owner)) 1578 goto out_module_busy; 1579 1580 /* 1581 * Now that we're done with the ->create function, the [loadable] 1582 * module can have its refcnt decremented 1583 */ 1584 module_put(pf->owner); 1585 err = security_socket_post_create(sock, family, type, protocol, kern); 1586 if (err) 1587 goto out_sock_release; 1588 *res = sock; 1589 1590 return 0; 1591 1592 out_module_busy: 1593 err = -EAFNOSUPPORT; 1594 out_module_put: 1595 sock->ops = NULL; 1596 module_put(pf->owner); 1597 out_sock_release: 1598 sock_release(sock); 1599 return err; 1600 1601 out_release: 1602 rcu_read_unlock(); 1603 goto out_sock_release; 1604 } 1605 EXPORT_SYMBOL(__sock_create); 1606 1607 /** 1608 * sock_create - creates a socket 1609 * @family: protocol family (AF_INET, ...) 1610 * @type: communication type (SOCK_STREAM, ...) 1611 * @protocol: protocol (0, ...) 1612 * @res: new socket 1613 * 1614 * A wrapper around __sock_create(). 1615 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1616 */ 1617 1618 int sock_create(int family, int type, int protocol, struct socket **res) 1619 { 1620 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1621 } 1622 EXPORT_SYMBOL(sock_create); 1623 1624 /** 1625 * sock_create_kern - creates a socket (kernel space) 1626 * @net: net namespace 1627 * @family: protocol family (AF_INET, ...) 1628 * @type: communication type (SOCK_STREAM, ...) 1629 * @protocol: protocol (0, ...) 1630 * @res: new socket 1631 * 1632 * A wrapper around __sock_create(). 1633 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1634 */ 1635 1636 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1637 { 1638 return __sock_create(net, family, type, protocol, res, 1); 1639 } 1640 EXPORT_SYMBOL(sock_create_kern); 1641 1642 static struct socket *__sys_socket_create(int family, int type, int protocol) 1643 { 1644 struct socket *sock; 1645 int retval; 1646 1647 /* Check the SOCK_* constants for consistency. */ 1648 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1649 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1650 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1651 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1652 1653 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1654 return ERR_PTR(-EINVAL); 1655 type &= SOCK_TYPE_MASK; 1656 1657 retval = sock_create(family, type, protocol, &sock); 1658 if (retval < 0) 1659 return ERR_PTR(retval); 1660 1661 return sock; 1662 } 1663 1664 struct file *__sys_socket_file(int family, int type, int protocol) 1665 { 1666 struct socket *sock; 1667 int flags; 1668 1669 sock = __sys_socket_create(family, type, protocol); 1670 if (IS_ERR(sock)) 1671 return ERR_CAST(sock); 1672 1673 flags = type & ~SOCK_TYPE_MASK; 1674 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1675 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1676 1677 return sock_alloc_file(sock, flags, NULL); 1678 } 1679 1680 /* A hook for bpf progs to attach to and update socket protocol. 1681 * 1682 * A static noinline declaration here could cause the compiler to 1683 * optimize away the function. A global noinline declaration will 1684 * keep the definition, but may optimize away the callsite. 1685 * Therefore, __weak is needed to ensure that the call is still 1686 * emitted, by telling the compiler that we don't know what the 1687 * function might eventually be. 1688 * 1689 * __diag_* below are needed to dismiss the missing prototype warning. 1690 */ 1691 1692 __diag_push(); 1693 __diag_ignore_all("-Wmissing-prototypes", 1694 "A fmod_ret entry point for BPF programs"); 1695 1696 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1697 { 1698 return protocol; 1699 } 1700 1701 __diag_pop(); 1702 1703 int __sys_socket(int family, int type, int protocol) 1704 { 1705 struct socket *sock; 1706 int flags; 1707 1708 sock = __sys_socket_create(family, type, 1709 update_socket_protocol(family, type, protocol)); 1710 if (IS_ERR(sock)) 1711 return PTR_ERR(sock); 1712 1713 flags = type & ~SOCK_TYPE_MASK; 1714 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1715 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1716 1717 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1718 } 1719 1720 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1721 { 1722 return __sys_socket(family, type, protocol); 1723 } 1724 1725 /* 1726 * Create a pair of connected sockets. 1727 */ 1728 1729 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1730 { 1731 struct socket *sock1, *sock2; 1732 int fd1, fd2, err; 1733 struct file *newfile1, *newfile2; 1734 int flags; 1735 1736 flags = type & ~SOCK_TYPE_MASK; 1737 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1738 return -EINVAL; 1739 type &= SOCK_TYPE_MASK; 1740 1741 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1742 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1743 1744 /* 1745 * reserve descriptors and make sure we won't fail 1746 * to return them to userland. 1747 */ 1748 fd1 = get_unused_fd_flags(flags); 1749 if (unlikely(fd1 < 0)) 1750 return fd1; 1751 1752 fd2 = get_unused_fd_flags(flags); 1753 if (unlikely(fd2 < 0)) { 1754 put_unused_fd(fd1); 1755 return fd2; 1756 } 1757 1758 err = put_user(fd1, &usockvec[0]); 1759 if (err) 1760 goto out; 1761 1762 err = put_user(fd2, &usockvec[1]); 1763 if (err) 1764 goto out; 1765 1766 /* 1767 * Obtain the first socket and check if the underlying protocol 1768 * supports the socketpair call. 1769 */ 1770 1771 err = sock_create(family, type, protocol, &sock1); 1772 if (unlikely(err < 0)) 1773 goto out; 1774 1775 err = sock_create(family, type, protocol, &sock2); 1776 if (unlikely(err < 0)) { 1777 sock_release(sock1); 1778 goto out; 1779 } 1780 1781 err = security_socket_socketpair(sock1, sock2); 1782 if (unlikely(err)) { 1783 sock_release(sock2); 1784 sock_release(sock1); 1785 goto out; 1786 } 1787 1788 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1789 if (unlikely(err < 0)) { 1790 sock_release(sock2); 1791 sock_release(sock1); 1792 goto out; 1793 } 1794 1795 newfile1 = sock_alloc_file(sock1, flags, NULL); 1796 if (IS_ERR(newfile1)) { 1797 err = PTR_ERR(newfile1); 1798 sock_release(sock2); 1799 goto out; 1800 } 1801 1802 newfile2 = sock_alloc_file(sock2, flags, NULL); 1803 if (IS_ERR(newfile2)) { 1804 err = PTR_ERR(newfile2); 1805 fput(newfile1); 1806 goto out; 1807 } 1808 1809 audit_fd_pair(fd1, fd2); 1810 1811 fd_install(fd1, newfile1); 1812 fd_install(fd2, newfile2); 1813 return 0; 1814 1815 out: 1816 put_unused_fd(fd2); 1817 put_unused_fd(fd1); 1818 return err; 1819 } 1820 1821 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1822 int __user *, usockvec) 1823 { 1824 return __sys_socketpair(family, type, protocol, usockvec); 1825 } 1826 1827 /* 1828 * Bind a name to a socket. Nothing much to do here since it's 1829 * the protocol's responsibility to handle the local address. 1830 * 1831 * We move the socket address to kernel space before we call 1832 * the protocol layer (having also checked the address is ok). 1833 */ 1834 1835 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1836 { 1837 struct socket *sock; 1838 struct sockaddr_storage address; 1839 int err, fput_needed; 1840 1841 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1842 if (sock) { 1843 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1844 if (!err) { 1845 err = security_socket_bind(sock, 1846 (struct sockaddr *)&address, 1847 addrlen); 1848 if (!err) 1849 err = READ_ONCE(sock->ops)->bind(sock, 1850 (struct sockaddr *) 1851 &address, addrlen); 1852 } 1853 fput_light(sock->file, fput_needed); 1854 } 1855 return err; 1856 } 1857 1858 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1859 { 1860 return __sys_bind(fd, umyaddr, addrlen); 1861 } 1862 1863 /* 1864 * Perform a listen. Basically, we allow the protocol to do anything 1865 * necessary for a listen, and if that works, we mark the socket as 1866 * ready for listening. 1867 */ 1868 1869 int __sys_listen(int fd, int backlog) 1870 { 1871 struct socket *sock; 1872 int err, fput_needed; 1873 int somaxconn; 1874 1875 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1876 if (sock) { 1877 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1878 if ((unsigned int)backlog > somaxconn) 1879 backlog = somaxconn; 1880 1881 err = security_socket_listen(sock, backlog); 1882 if (!err) 1883 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1884 1885 fput_light(sock->file, fput_needed); 1886 } 1887 return err; 1888 } 1889 1890 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1891 { 1892 return __sys_listen(fd, backlog); 1893 } 1894 1895 struct file *do_accept(struct file *file, unsigned file_flags, 1896 struct sockaddr __user *upeer_sockaddr, 1897 int __user *upeer_addrlen, int flags) 1898 { 1899 struct socket *sock, *newsock; 1900 struct file *newfile; 1901 int err, len; 1902 struct sockaddr_storage address; 1903 const struct proto_ops *ops; 1904 1905 sock = sock_from_file(file); 1906 if (!sock) 1907 return ERR_PTR(-ENOTSOCK); 1908 1909 newsock = sock_alloc(); 1910 if (!newsock) 1911 return ERR_PTR(-ENFILE); 1912 ops = READ_ONCE(sock->ops); 1913 1914 newsock->type = sock->type; 1915 newsock->ops = ops; 1916 1917 /* 1918 * We don't need try_module_get here, as the listening socket (sock) 1919 * has the protocol module (sock->ops->owner) held. 1920 */ 1921 __module_get(ops->owner); 1922 1923 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1924 if (IS_ERR(newfile)) 1925 return newfile; 1926 1927 err = security_socket_accept(sock, newsock); 1928 if (err) 1929 goto out_fd; 1930 1931 err = ops->accept(sock, newsock, sock->file->f_flags | file_flags, 1932 false); 1933 if (err < 0) 1934 goto out_fd; 1935 1936 if (upeer_sockaddr) { 1937 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1938 if (len < 0) { 1939 err = -ECONNABORTED; 1940 goto out_fd; 1941 } 1942 err = move_addr_to_user(&address, 1943 len, upeer_sockaddr, upeer_addrlen); 1944 if (err < 0) 1945 goto out_fd; 1946 } 1947 1948 /* File flags are not inherited via accept() unlike another OSes. */ 1949 return newfile; 1950 out_fd: 1951 fput(newfile); 1952 return ERR_PTR(err); 1953 } 1954 1955 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1956 int __user *upeer_addrlen, int flags) 1957 { 1958 struct file *newfile; 1959 int newfd; 1960 1961 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1962 return -EINVAL; 1963 1964 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1965 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1966 1967 newfd = get_unused_fd_flags(flags); 1968 if (unlikely(newfd < 0)) 1969 return newfd; 1970 1971 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen, 1972 flags); 1973 if (IS_ERR(newfile)) { 1974 put_unused_fd(newfd); 1975 return PTR_ERR(newfile); 1976 } 1977 fd_install(newfd, newfile); 1978 return newfd; 1979 } 1980 1981 /* 1982 * For accept, we attempt to create a new socket, set up the link 1983 * with the client, wake up the client, then return the new 1984 * connected fd. We collect the address of the connector in kernel 1985 * space and move it to user at the very end. This is unclean because 1986 * we open the socket then return an error. 1987 * 1988 * 1003.1g adds the ability to recvmsg() to query connection pending 1989 * status to recvmsg. We need to add that support in a way thats 1990 * clean when we restructure accept also. 1991 */ 1992 1993 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1994 int __user *upeer_addrlen, int flags) 1995 { 1996 int ret = -EBADF; 1997 struct fd f; 1998 1999 f = fdget(fd); 2000 if (f.file) { 2001 ret = __sys_accept4_file(f.file, upeer_sockaddr, 2002 upeer_addrlen, flags); 2003 fdput(f); 2004 } 2005 2006 return ret; 2007 } 2008 2009 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 2010 int __user *, upeer_addrlen, int, flags) 2011 { 2012 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 2013 } 2014 2015 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 2016 int __user *, upeer_addrlen) 2017 { 2018 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2019 } 2020 2021 /* 2022 * Attempt to connect to a socket with the server address. The address 2023 * is in user space so we verify it is OK and move it to kernel space. 2024 * 2025 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2026 * break bindings 2027 * 2028 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2029 * other SEQPACKET protocols that take time to connect() as it doesn't 2030 * include the -EINPROGRESS status for such sockets. 2031 */ 2032 2033 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2034 int addrlen, int file_flags) 2035 { 2036 struct socket *sock; 2037 int err; 2038 2039 sock = sock_from_file(file); 2040 if (!sock) { 2041 err = -ENOTSOCK; 2042 goto out; 2043 } 2044 2045 err = 2046 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2047 if (err) 2048 goto out; 2049 2050 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2051 addrlen, sock->file->f_flags | file_flags); 2052 out: 2053 return err; 2054 } 2055 2056 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2057 { 2058 int ret = -EBADF; 2059 struct fd f; 2060 2061 f = fdget(fd); 2062 if (f.file) { 2063 struct sockaddr_storage address; 2064 2065 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2066 if (!ret) 2067 ret = __sys_connect_file(f.file, &address, addrlen, 0); 2068 fdput(f); 2069 } 2070 2071 return ret; 2072 } 2073 2074 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2075 int, addrlen) 2076 { 2077 return __sys_connect(fd, uservaddr, addrlen); 2078 } 2079 2080 /* 2081 * Get the local address ('name') of a socket object. Move the obtained 2082 * name to user space. 2083 */ 2084 2085 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2086 int __user *usockaddr_len) 2087 { 2088 struct socket *sock; 2089 struct sockaddr_storage address; 2090 int err, fput_needed; 2091 2092 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2093 if (!sock) 2094 goto out; 2095 2096 err = security_socket_getsockname(sock); 2097 if (err) 2098 goto out_put; 2099 2100 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2101 if (err < 0) 2102 goto out_put; 2103 /* "err" is actually length in this case */ 2104 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2105 2106 out_put: 2107 fput_light(sock->file, fput_needed); 2108 out: 2109 return err; 2110 } 2111 2112 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2113 int __user *, usockaddr_len) 2114 { 2115 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2116 } 2117 2118 /* 2119 * Get the remote address ('name') of a socket object. Move the obtained 2120 * name to user space. 2121 */ 2122 2123 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2124 int __user *usockaddr_len) 2125 { 2126 struct socket *sock; 2127 struct sockaddr_storage address; 2128 int err, fput_needed; 2129 2130 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2131 if (sock != NULL) { 2132 const struct proto_ops *ops = READ_ONCE(sock->ops); 2133 2134 err = security_socket_getpeername(sock); 2135 if (err) { 2136 fput_light(sock->file, fput_needed); 2137 return err; 2138 } 2139 2140 err = ops->getname(sock, (struct sockaddr *)&address, 1); 2141 if (err >= 0) 2142 /* "err" is actually length in this case */ 2143 err = move_addr_to_user(&address, err, usockaddr, 2144 usockaddr_len); 2145 fput_light(sock->file, fput_needed); 2146 } 2147 return err; 2148 } 2149 2150 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2151 int __user *, usockaddr_len) 2152 { 2153 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2154 } 2155 2156 /* 2157 * Send a datagram to a given address. We move the address into kernel 2158 * space and check the user space data area is readable before invoking 2159 * the protocol. 2160 */ 2161 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2162 struct sockaddr __user *addr, int addr_len) 2163 { 2164 struct socket *sock; 2165 struct sockaddr_storage address; 2166 int err; 2167 struct msghdr msg; 2168 struct iovec iov; 2169 int fput_needed; 2170 2171 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter); 2172 if (unlikely(err)) 2173 return err; 2174 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2175 if (!sock) 2176 goto out; 2177 2178 msg.msg_name = NULL; 2179 msg.msg_control = NULL; 2180 msg.msg_controllen = 0; 2181 msg.msg_namelen = 0; 2182 msg.msg_ubuf = NULL; 2183 if (addr) { 2184 err = move_addr_to_kernel(addr, addr_len, &address); 2185 if (err < 0) 2186 goto out_put; 2187 msg.msg_name = (struct sockaddr *)&address; 2188 msg.msg_namelen = addr_len; 2189 } 2190 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2191 if (sock->file->f_flags & O_NONBLOCK) 2192 flags |= MSG_DONTWAIT; 2193 msg.msg_flags = flags; 2194 err = __sock_sendmsg(sock, &msg); 2195 2196 out_put: 2197 fput_light(sock->file, fput_needed); 2198 out: 2199 return err; 2200 } 2201 2202 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2203 unsigned int, flags, struct sockaddr __user *, addr, 2204 int, addr_len) 2205 { 2206 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2207 } 2208 2209 /* 2210 * Send a datagram down a socket. 2211 */ 2212 2213 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2214 unsigned int, flags) 2215 { 2216 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2217 } 2218 2219 /* 2220 * Receive a frame from the socket and optionally record the address of the 2221 * sender. We verify the buffers are writable and if needed move the 2222 * sender address from kernel to user space. 2223 */ 2224 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2225 struct sockaddr __user *addr, int __user *addr_len) 2226 { 2227 struct sockaddr_storage address; 2228 struct msghdr msg = { 2229 /* Save some cycles and don't copy the address if not needed */ 2230 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2231 }; 2232 struct socket *sock; 2233 struct iovec iov; 2234 int err, err2; 2235 int fput_needed; 2236 2237 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter); 2238 if (unlikely(err)) 2239 return err; 2240 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2241 if (!sock) 2242 goto out; 2243 2244 if (sock->file->f_flags & O_NONBLOCK) 2245 flags |= MSG_DONTWAIT; 2246 err = sock_recvmsg(sock, &msg, flags); 2247 2248 if (err >= 0 && addr != NULL) { 2249 err2 = move_addr_to_user(&address, 2250 msg.msg_namelen, addr, addr_len); 2251 if (err2 < 0) 2252 err = err2; 2253 } 2254 2255 fput_light(sock->file, fput_needed); 2256 out: 2257 return err; 2258 } 2259 2260 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2261 unsigned int, flags, struct sockaddr __user *, addr, 2262 int __user *, addr_len) 2263 { 2264 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2265 } 2266 2267 /* 2268 * Receive a datagram from a socket. 2269 */ 2270 2271 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2272 unsigned int, flags) 2273 { 2274 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2275 } 2276 2277 static bool sock_use_custom_sol_socket(const struct socket *sock) 2278 { 2279 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2280 } 2281 2282 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 2283 int optname, sockptr_t optval, int optlen) 2284 { 2285 const struct proto_ops *ops; 2286 char *kernel_optval = NULL; 2287 int err; 2288 2289 if (optlen < 0) 2290 return -EINVAL; 2291 2292 err = security_socket_setsockopt(sock, level, optname); 2293 if (err) 2294 goto out_put; 2295 2296 if (!compat) 2297 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2298 optval, &optlen, 2299 &kernel_optval); 2300 if (err < 0) 2301 goto out_put; 2302 if (err > 0) { 2303 err = 0; 2304 goto out_put; 2305 } 2306 2307 if (kernel_optval) 2308 optval = KERNEL_SOCKPTR(kernel_optval); 2309 ops = READ_ONCE(sock->ops); 2310 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2311 err = sock_setsockopt(sock, level, optname, optval, optlen); 2312 else if (unlikely(!ops->setsockopt)) 2313 err = -EOPNOTSUPP; 2314 else 2315 err = ops->setsockopt(sock, level, optname, optval, 2316 optlen); 2317 kfree(kernel_optval); 2318 out_put: 2319 return err; 2320 } 2321 EXPORT_SYMBOL(do_sock_setsockopt); 2322 2323 /* Set a socket option. Because we don't know the option lengths we have 2324 * to pass the user mode parameter for the protocols to sort out. 2325 */ 2326 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2327 int optlen) 2328 { 2329 sockptr_t optval = USER_SOCKPTR(user_optval); 2330 bool compat = in_compat_syscall(); 2331 int err, fput_needed; 2332 struct socket *sock; 2333 2334 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2335 if (!sock) 2336 return err; 2337 2338 err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen); 2339 2340 fput_light(sock->file, fput_needed); 2341 return err; 2342 } 2343 2344 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2345 char __user *, optval, int, optlen) 2346 { 2347 return __sys_setsockopt(fd, level, optname, optval, optlen); 2348 } 2349 2350 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2351 int optname)); 2352 2353 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 2354 int optname, sockptr_t optval, sockptr_t optlen) 2355 { 2356 int max_optlen __maybe_unused; 2357 const struct proto_ops *ops; 2358 int err; 2359 2360 err = security_socket_getsockopt(sock, level, optname); 2361 if (err) 2362 return err; 2363 2364 if (!compat) 2365 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen); 2366 2367 ops = READ_ONCE(sock->ops); 2368 if (level == SOL_SOCKET) { 2369 err = sk_getsockopt(sock->sk, level, optname, optval, optlen); 2370 } else if (unlikely(!ops->getsockopt)) { 2371 err = -EOPNOTSUPP; 2372 } else { 2373 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, 2374 "Invalid argument type")) 2375 return -EOPNOTSUPP; 2376 2377 err = ops->getsockopt(sock, level, optname, optval.user, 2378 optlen.user); 2379 } 2380 2381 if (!compat) 2382 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2383 optval, optlen, max_optlen, 2384 err); 2385 2386 return err; 2387 } 2388 EXPORT_SYMBOL(do_sock_getsockopt); 2389 2390 /* 2391 * Get a socket option. Because we don't know the option lengths we have 2392 * to pass a user mode parameter for the protocols to sort out. 2393 */ 2394 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2395 int __user *optlen) 2396 { 2397 int err, fput_needed; 2398 struct socket *sock; 2399 bool compat; 2400 2401 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2402 if (!sock) 2403 return err; 2404 2405 compat = in_compat_syscall(); 2406 err = do_sock_getsockopt(sock, compat, level, optname, 2407 USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); 2408 2409 fput_light(sock->file, fput_needed); 2410 return err; 2411 } 2412 2413 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2414 char __user *, optval, int __user *, optlen) 2415 { 2416 return __sys_getsockopt(fd, level, optname, optval, optlen); 2417 } 2418 2419 /* 2420 * Shutdown a socket. 2421 */ 2422 2423 int __sys_shutdown_sock(struct socket *sock, int how) 2424 { 2425 int err; 2426 2427 err = security_socket_shutdown(sock, how); 2428 if (!err) 2429 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2430 2431 return err; 2432 } 2433 2434 int __sys_shutdown(int fd, int how) 2435 { 2436 int err, fput_needed; 2437 struct socket *sock; 2438 2439 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2440 if (sock != NULL) { 2441 err = __sys_shutdown_sock(sock, how); 2442 fput_light(sock->file, fput_needed); 2443 } 2444 return err; 2445 } 2446 2447 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2448 { 2449 return __sys_shutdown(fd, how); 2450 } 2451 2452 /* A couple of helpful macros for getting the address of the 32/64 bit 2453 * fields which are the same type (int / unsigned) on our platforms. 2454 */ 2455 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2456 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2457 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2458 2459 struct used_address { 2460 struct sockaddr_storage name; 2461 unsigned int name_len; 2462 }; 2463 2464 int __copy_msghdr(struct msghdr *kmsg, 2465 struct user_msghdr *msg, 2466 struct sockaddr __user **save_addr) 2467 { 2468 ssize_t err; 2469 2470 kmsg->msg_control_is_user = true; 2471 kmsg->msg_get_inq = 0; 2472 kmsg->msg_control_user = msg->msg_control; 2473 kmsg->msg_controllen = msg->msg_controllen; 2474 kmsg->msg_flags = msg->msg_flags; 2475 2476 kmsg->msg_namelen = msg->msg_namelen; 2477 if (!msg->msg_name) 2478 kmsg->msg_namelen = 0; 2479 2480 if (kmsg->msg_namelen < 0) 2481 return -EINVAL; 2482 2483 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2484 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2485 2486 if (save_addr) 2487 *save_addr = msg->msg_name; 2488 2489 if (msg->msg_name && kmsg->msg_namelen) { 2490 if (!save_addr) { 2491 err = move_addr_to_kernel(msg->msg_name, 2492 kmsg->msg_namelen, 2493 kmsg->msg_name); 2494 if (err < 0) 2495 return err; 2496 } 2497 } else { 2498 kmsg->msg_name = NULL; 2499 kmsg->msg_namelen = 0; 2500 } 2501 2502 if (msg->msg_iovlen > UIO_MAXIOV) 2503 return -EMSGSIZE; 2504 2505 kmsg->msg_iocb = NULL; 2506 kmsg->msg_ubuf = NULL; 2507 return 0; 2508 } 2509 2510 static int copy_msghdr_from_user(struct msghdr *kmsg, 2511 struct user_msghdr __user *umsg, 2512 struct sockaddr __user **save_addr, 2513 struct iovec **iov) 2514 { 2515 struct user_msghdr msg; 2516 ssize_t err; 2517 2518 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2519 return -EFAULT; 2520 2521 err = __copy_msghdr(kmsg, &msg, save_addr); 2522 if (err) 2523 return err; 2524 2525 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2526 msg.msg_iov, msg.msg_iovlen, 2527 UIO_FASTIOV, iov, &kmsg->msg_iter); 2528 return err < 0 ? err : 0; 2529 } 2530 2531 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2532 unsigned int flags, struct used_address *used_address, 2533 unsigned int allowed_msghdr_flags) 2534 { 2535 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2536 __aligned(sizeof(__kernel_size_t)); 2537 /* 20 is size of ipv6_pktinfo */ 2538 unsigned char *ctl_buf = ctl; 2539 int ctl_len; 2540 ssize_t err; 2541 2542 err = -ENOBUFS; 2543 2544 if (msg_sys->msg_controllen > INT_MAX) 2545 goto out; 2546 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2547 ctl_len = msg_sys->msg_controllen; 2548 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2549 err = 2550 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2551 sizeof(ctl)); 2552 if (err) 2553 goto out; 2554 ctl_buf = msg_sys->msg_control; 2555 ctl_len = msg_sys->msg_controllen; 2556 } else if (ctl_len) { 2557 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2558 CMSG_ALIGN(sizeof(struct cmsghdr))); 2559 if (ctl_len > sizeof(ctl)) { 2560 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2561 if (ctl_buf == NULL) 2562 goto out; 2563 } 2564 err = -EFAULT; 2565 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2566 goto out_freectl; 2567 msg_sys->msg_control = ctl_buf; 2568 msg_sys->msg_control_is_user = false; 2569 } 2570 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2571 msg_sys->msg_flags = flags; 2572 2573 if (sock->file->f_flags & O_NONBLOCK) 2574 msg_sys->msg_flags |= MSG_DONTWAIT; 2575 /* 2576 * If this is sendmmsg() and current destination address is same as 2577 * previously succeeded address, omit asking LSM's decision. 2578 * used_address->name_len is initialized to UINT_MAX so that the first 2579 * destination address never matches. 2580 */ 2581 if (used_address && msg_sys->msg_name && 2582 used_address->name_len == msg_sys->msg_namelen && 2583 !memcmp(&used_address->name, msg_sys->msg_name, 2584 used_address->name_len)) { 2585 err = sock_sendmsg_nosec(sock, msg_sys); 2586 goto out_freectl; 2587 } 2588 err = __sock_sendmsg(sock, msg_sys); 2589 /* 2590 * If this is sendmmsg() and sending to current destination address was 2591 * successful, remember it. 2592 */ 2593 if (used_address && err >= 0) { 2594 used_address->name_len = msg_sys->msg_namelen; 2595 if (msg_sys->msg_name) 2596 memcpy(&used_address->name, msg_sys->msg_name, 2597 used_address->name_len); 2598 } 2599 2600 out_freectl: 2601 if (ctl_buf != ctl) 2602 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2603 out: 2604 return err; 2605 } 2606 2607 int sendmsg_copy_msghdr(struct msghdr *msg, 2608 struct user_msghdr __user *umsg, unsigned flags, 2609 struct iovec **iov) 2610 { 2611 int err; 2612 2613 if (flags & MSG_CMSG_COMPAT) { 2614 struct compat_msghdr __user *msg_compat; 2615 2616 msg_compat = (struct compat_msghdr __user *) umsg; 2617 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2618 } else { 2619 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2620 } 2621 if (err < 0) 2622 return err; 2623 2624 return 0; 2625 } 2626 2627 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2628 struct msghdr *msg_sys, unsigned int flags, 2629 struct used_address *used_address, 2630 unsigned int allowed_msghdr_flags) 2631 { 2632 struct sockaddr_storage address; 2633 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2634 ssize_t err; 2635 2636 msg_sys->msg_name = &address; 2637 2638 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2639 if (err < 0) 2640 return err; 2641 2642 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2643 allowed_msghdr_flags); 2644 kfree(iov); 2645 return err; 2646 } 2647 2648 /* 2649 * BSD sendmsg interface 2650 */ 2651 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2652 unsigned int flags) 2653 { 2654 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2655 } 2656 2657 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2658 bool forbid_cmsg_compat) 2659 { 2660 int fput_needed, err; 2661 struct msghdr msg_sys; 2662 struct socket *sock; 2663 2664 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2665 return -EINVAL; 2666 2667 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2668 if (!sock) 2669 goto out; 2670 2671 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2672 2673 fput_light(sock->file, fput_needed); 2674 out: 2675 return err; 2676 } 2677 2678 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2679 { 2680 return __sys_sendmsg(fd, msg, flags, true); 2681 } 2682 2683 /* 2684 * Linux sendmmsg interface 2685 */ 2686 2687 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2688 unsigned int flags, bool forbid_cmsg_compat) 2689 { 2690 int fput_needed, err, datagrams; 2691 struct socket *sock; 2692 struct mmsghdr __user *entry; 2693 struct compat_mmsghdr __user *compat_entry; 2694 struct msghdr msg_sys; 2695 struct used_address used_address; 2696 unsigned int oflags = flags; 2697 2698 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2699 return -EINVAL; 2700 2701 if (vlen > UIO_MAXIOV) 2702 vlen = UIO_MAXIOV; 2703 2704 datagrams = 0; 2705 2706 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2707 if (!sock) 2708 return err; 2709 2710 used_address.name_len = UINT_MAX; 2711 entry = mmsg; 2712 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2713 err = 0; 2714 flags |= MSG_BATCH; 2715 2716 while (datagrams < vlen) { 2717 if (datagrams == vlen - 1) 2718 flags = oflags; 2719 2720 if (MSG_CMSG_COMPAT & flags) { 2721 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2722 &msg_sys, flags, &used_address, MSG_EOR); 2723 if (err < 0) 2724 break; 2725 err = __put_user(err, &compat_entry->msg_len); 2726 ++compat_entry; 2727 } else { 2728 err = ___sys_sendmsg(sock, 2729 (struct user_msghdr __user *)entry, 2730 &msg_sys, flags, &used_address, MSG_EOR); 2731 if (err < 0) 2732 break; 2733 err = put_user(err, &entry->msg_len); 2734 ++entry; 2735 } 2736 2737 if (err) 2738 break; 2739 ++datagrams; 2740 if (msg_data_left(&msg_sys)) 2741 break; 2742 cond_resched(); 2743 } 2744 2745 fput_light(sock->file, fput_needed); 2746 2747 /* We only return an error if no datagrams were able to be sent */ 2748 if (datagrams != 0) 2749 return datagrams; 2750 2751 return err; 2752 } 2753 2754 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2755 unsigned int, vlen, unsigned int, flags) 2756 { 2757 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2758 } 2759 2760 int recvmsg_copy_msghdr(struct msghdr *msg, 2761 struct user_msghdr __user *umsg, unsigned flags, 2762 struct sockaddr __user **uaddr, 2763 struct iovec **iov) 2764 { 2765 ssize_t err; 2766 2767 if (MSG_CMSG_COMPAT & flags) { 2768 struct compat_msghdr __user *msg_compat; 2769 2770 msg_compat = (struct compat_msghdr __user *) umsg; 2771 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2772 } else { 2773 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2774 } 2775 if (err < 0) 2776 return err; 2777 2778 return 0; 2779 } 2780 2781 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2782 struct user_msghdr __user *msg, 2783 struct sockaddr __user *uaddr, 2784 unsigned int flags, int nosec) 2785 { 2786 struct compat_msghdr __user *msg_compat = 2787 (struct compat_msghdr __user *) msg; 2788 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2789 struct sockaddr_storage addr; 2790 unsigned long cmsg_ptr; 2791 int len; 2792 ssize_t err; 2793 2794 msg_sys->msg_name = &addr; 2795 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2796 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2797 2798 /* We assume all kernel code knows the size of sockaddr_storage */ 2799 msg_sys->msg_namelen = 0; 2800 2801 if (sock->file->f_flags & O_NONBLOCK) 2802 flags |= MSG_DONTWAIT; 2803 2804 if (unlikely(nosec)) 2805 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2806 else 2807 err = sock_recvmsg(sock, msg_sys, flags); 2808 2809 if (err < 0) 2810 goto out; 2811 len = err; 2812 2813 if (uaddr != NULL) { 2814 err = move_addr_to_user(&addr, 2815 msg_sys->msg_namelen, uaddr, 2816 uaddr_len); 2817 if (err < 0) 2818 goto out; 2819 } 2820 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2821 COMPAT_FLAGS(msg)); 2822 if (err) 2823 goto out; 2824 if (MSG_CMSG_COMPAT & flags) 2825 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2826 &msg_compat->msg_controllen); 2827 else 2828 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2829 &msg->msg_controllen); 2830 if (err) 2831 goto out; 2832 err = len; 2833 out: 2834 return err; 2835 } 2836 2837 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2838 struct msghdr *msg_sys, unsigned int flags, int nosec) 2839 { 2840 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2841 /* user mode address pointers */ 2842 struct sockaddr __user *uaddr; 2843 ssize_t err; 2844 2845 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2846 if (err < 0) 2847 return err; 2848 2849 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2850 kfree(iov); 2851 return err; 2852 } 2853 2854 /* 2855 * BSD recvmsg interface 2856 */ 2857 2858 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2859 struct user_msghdr __user *umsg, 2860 struct sockaddr __user *uaddr, unsigned int flags) 2861 { 2862 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2863 } 2864 2865 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2866 bool forbid_cmsg_compat) 2867 { 2868 int fput_needed, err; 2869 struct msghdr msg_sys; 2870 struct socket *sock; 2871 2872 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2873 return -EINVAL; 2874 2875 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2876 if (!sock) 2877 goto out; 2878 2879 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2880 2881 fput_light(sock->file, fput_needed); 2882 out: 2883 return err; 2884 } 2885 2886 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2887 unsigned int, flags) 2888 { 2889 return __sys_recvmsg(fd, msg, flags, true); 2890 } 2891 2892 /* 2893 * Linux recvmmsg interface 2894 */ 2895 2896 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2897 unsigned int vlen, unsigned int flags, 2898 struct timespec64 *timeout) 2899 { 2900 int fput_needed, err, datagrams; 2901 struct socket *sock; 2902 struct mmsghdr __user *entry; 2903 struct compat_mmsghdr __user *compat_entry; 2904 struct msghdr msg_sys; 2905 struct timespec64 end_time; 2906 struct timespec64 timeout64; 2907 2908 if (timeout && 2909 poll_select_set_timeout(&end_time, timeout->tv_sec, 2910 timeout->tv_nsec)) 2911 return -EINVAL; 2912 2913 datagrams = 0; 2914 2915 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2916 if (!sock) 2917 return err; 2918 2919 if (likely(!(flags & MSG_ERRQUEUE))) { 2920 err = sock_error(sock->sk); 2921 if (err) { 2922 datagrams = err; 2923 goto out_put; 2924 } 2925 } 2926 2927 entry = mmsg; 2928 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2929 2930 while (datagrams < vlen) { 2931 /* 2932 * No need to ask LSM for more than the first datagram. 2933 */ 2934 if (MSG_CMSG_COMPAT & flags) { 2935 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2936 &msg_sys, flags & ~MSG_WAITFORONE, 2937 datagrams); 2938 if (err < 0) 2939 break; 2940 err = __put_user(err, &compat_entry->msg_len); 2941 ++compat_entry; 2942 } else { 2943 err = ___sys_recvmsg(sock, 2944 (struct user_msghdr __user *)entry, 2945 &msg_sys, flags & ~MSG_WAITFORONE, 2946 datagrams); 2947 if (err < 0) 2948 break; 2949 err = put_user(err, &entry->msg_len); 2950 ++entry; 2951 } 2952 2953 if (err) 2954 break; 2955 ++datagrams; 2956 2957 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2958 if (flags & MSG_WAITFORONE) 2959 flags |= MSG_DONTWAIT; 2960 2961 if (timeout) { 2962 ktime_get_ts64(&timeout64); 2963 *timeout = timespec64_sub(end_time, timeout64); 2964 if (timeout->tv_sec < 0) { 2965 timeout->tv_sec = timeout->tv_nsec = 0; 2966 break; 2967 } 2968 2969 /* Timeout, return less than vlen datagrams */ 2970 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2971 break; 2972 } 2973 2974 /* Out of band data, return right away */ 2975 if (msg_sys.msg_flags & MSG_OOB) 2976 break; 2977 cond_resched(); 2978 } 2979 2980 if (err == 0) 2981 goto out_put; 2982 2983 if (datagrams == 0) { 2984 datagrams = err; 2985 goto out_put; 2986 } 2987 2988 /* 2989 * We may return less entries than requested (vlen) if the 2990 * sock is non block and there aren't enough datagrams... 2991 */ 2992 if (err != -EAGAIN) { 2993 /* 2994 * ... or if recvmsg returns an error after we 2995 * received some datagrams, where we record the 2996 * error to return on the next call or if the 2997 * app asks about it using getsockopt(SO_ERROR). 2998 */ 2999 WRITE_ONCE(sock->sk->sk_err, -err); 3000 } 3001 out_put: 3002 fput_light(sock->file, fput_needed); 3003 3004 return datagrams; 3005 } 3006 3007 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 3008 unsigned int vlen, unsigned int flags, 3009 struct __kernel_timespec __user *timeout, 3010 struct old_timespec32 __user *timeout32) 3011 { 3012 int datagrams; 3013 struct timespec64 timeout_sys; 3014 3015 if (timeout && get_timespec64(&timeout_sys, timeout)) 3016 return -EFAULT; 3017 3018 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 3019 return -EFAULT; 3020 3021 if (!timeout && !timeout32) 3022 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 3023 3024 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 3025 3026 if (datagrams <= 0) 3027 return datagrams; 3028 3029 if (timeout && put_timespec64(&timeout_sys, timeout)) 3030 datagrams = -EFAULT; 3031 3032 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 3033 datagrams = -EFAULT; 3034 3035 return datagrams; 3036 } 3037 3038 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 3039 unsigned int, vlen, unsigned int, flags, 3040 struct __kernel_timespec __user *, timeout) 3041 { 3042 if (flags & MSG_CMSG_COMPAT) 3043 return -EINVAL; 3044 3045 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 3046 } 3047 3048 #ifdef CONFIG_COMPAT_32BIT_TIME 3049 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3050 unsigned int, vlen, unsigned int, flags, 3051 struct old_timespec32 __user *, timeout) 3052 { 3053 if (flags & MSG_CMSG_COMPAT) 3054 return -EINVAL; 3055 3056 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3057 } 3058 #endif 3059 3060 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3061 /* Argument list sizes for sys_socketcall */ 3062 #define AL(x) ((x) * sizeof(unsigned long)) 3063 static const unsigned char nargs[21] = { 3064 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3065 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3066 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3067 AL(4), AL(5), AL(4) 3068 }; 3069 3070 #undef AL 3071 3072 /* 3073 * System call vectors. 3074 * 3075 * Argument checking cleaned up. Saved 20% in size. 3076 * This function doesn't need to set the kernel lock because 3077 * it is set by the callees. 3078 */ 3079 3080 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3081 { 3082 unsigned long a[AUDITSC_ARGS]; 3083 unsigned long a0, a1; 3084 int err; 3085 unsigned int len; 3086 3087 if (call < 1 || call > SYS_SENDMMSG) 3088 return -EINVAL; 3089 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3090 3091 len = nargs[call]; 3092 if (len > sizeof(a)) 3093 return -EINVAL; 3094 3095 /* copy_from_user should be SMP safe. */ 3096 if (copy_from_user(a, args, len)) 3097 return -EFAULT; 3098 3099 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3100 if (err) 3101 return err; 3102 3103 a0 = a[0]; 3104 a1 = a[1]; 3105 3106 switch (call) { 3107 case SYS_SOCKET: 3108 err = __sys_socket(a0, a1, a[2]); 3109 break; 3110 case SYS_BIND: 3111 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3112 break; 3113 case SYS_CONNECT: 3114 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3115 break; 3116 case SYS_LISTEN: 3117 err = __sys_listen(a0, a1); 3118 break; 3119 case SYS_ACCEPT: 3120 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3121 (int __user *)a[2], 0); 3122 break; 3123 case SYS_GETSOCKNAME: 3124 err = 3125 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3126 (int __user *)a[2]); 3127 break; 3128 case SYS_GETPEERNAME: 3129 err = 3130 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3131 (int __user *)a[2]); 3132 break; 3133 case SYS_SOCKETPAIR: 3134 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3135 break; 3136 case SYS_SEND: 3137 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3138 NULL, 0); 3139 break; 3140 case SYS_SENDTO: 3141 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3142 (struct sockaddr __user *)a[4], a[5]); 3143 break; 3144 case SYS_RECV: 3145 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3146 NULL, NULL); 3147 break; 3148 case SYS_RECVFROM: 3149 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3150 (struct sockaddr __user *)a[4], 3151 (int __user *)a[5]); 3152 break; 3153 case SYS_SHUTDOWN: 3154 err = __sys_shutdown(a0, a1); 3155 break; 3156 case SYS_SETSOCKOPT: 3157 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3158 a[4]); 3159 break; 3160 case SYS_GETSOCKOPT: 3161 err = 3162 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3163 (int __user *)a[4]); 3164 break; 3165 case SYS_SENDMSG: 3166 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3167 a[2], true); 3168 break; 3169 case SYS_SENDMMSG: 3170 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3171 a[3], true); 3172 break; 3173 case SYS_RECVMSG: 3174 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3175 a[2], true); 3176 break; 3177 case SYS_RECVMMSG: 3178 if (IS_ENABLED(CONFIG_64BIT)) 3179 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3180 a[2], a[3], 3181 (struct __kernel_timespec __user *)a[4], 3182 NULL); 3183 else 3184 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3185 a[2], a[3], NULL, 3186 (struct old_timespec32 __user *)a[4]); 3187 break; 3188 case SYS_ACCEPT4: 3189 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3190 (int __user *)a[2], a[3]); 3191 break; 3192 default: 3193 err = -EINVAL; 3194 break; 3195 } 3196 return err; 3197 } 3198 3199 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3200 3201 /** 3202 * sock_register - add a socket protocol handler 3203 * @ops: description of protocol 3204 * 3205 * This function is called by a protocol handler that wants to 3206 * advertise its address family, and have it linked into the 3207 * socket interface. The value ops->family corresponds to the 3208 * socket system call protocol family. 3209 */ 3210 int sock_register(const struct net_proto_family *ops) 3211 { 3212 int err; 3213 3214 if (ops->family >= NPROTO) { 3215 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3216 return -ENOBUFS; 3217 } 3218 3219 spin_lock(&net_family_lock); 3220 if (rcu_dereference_protected(net_families[ops->family], 3221 lockdep_is_held(&net_family_lock))) 3222 err = -EEXIST; 3223 else { 3224 rcu_assign_pointer(net_families[ops->family], ops); 3225 err = 0; 3226 } 3227 spin_unlock(&net_family_lock); 3228 3229 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3230 return err; 3231 } 3232 EXPORT_SYMBOL(sock_register); 3233 3234 /** 3235 * sock_unregister - remove a protocol handler 3236 * @family: protocol family to remove 3237 * 3238 * This function is called by a protocol handler that wants to 3239 * remove its address family, and have it unlinked from the 3240 * new socket creation. 3241 * 3242 * If protocol handler is a module, then it can use module reference 3243 * counts to protect against new references. If protocol handler is not 3244 * a module then it needs to provide its own protection in 3245 * the ops->create routine. 3246 */ 3247 void sock_unregister(int family) 3248 { 3249 BUG_ON(family < 0 || family >= NPROTO); 3250 3251 spin_lock(&net_family_lock); 3252 RCU_INIT_POINTER(net_families[family], NULL); 3253 spin_unlock(&net_family_lock); 3254 3255 synchronize_rcu(); 3256 3257 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3258 } 3259 EXPORT_SYMBOL(sock_unregister); 3260 3261 bool sock_is_registered(int family) 3262 { 3263 return family < NPROTO && rcu_access_pointer(net_families[family]); 3264 } 3265 3266 static int __init sock_init(void) 3267 { 3268 int err; 3269 /* 3270 * Initialize the network sysctl infrastructure. 3271 */ 3272 err = net_sysctl_init(); 3273 if (err) 3274 goto out; 3275 3276 /* 3277 * Initialize skbuff SLAB cache 3278 */ 3279 skb_init(); 3280 3281 /* 3282 * Initialize the protocols module. 3283 */ 3284 3285 init_inodecache(); 3286 3287 err = register_filesystem(&sock_fs_type); 3288 if (err) 3289 goto out; 3290 sock_mnt = kern_mount(&sock_fs_type); 3291 if (IS_ERR(sock_mnt)) { 3292 err = PTR_ERR(sock_mnt); 3293 goto out_mount; 3294 } 3295 3296 /* The real protocol initialization is performed in later initcalls. 3297 */ 3298 3299 #ifdef CONFIG_NETFILTER 3300 err = netfilter_init(); 3301 if (err) 3302 goto out; 3303 #endif 3304 3305 ptp_classifier_init(); 3306 3307 out: 3308 return err; 3309 3310 out_mount: 3311 unregister_filesystem(&sock_fs_type); 3312 goto out; 3313 } 3314 3315 core_initcall(sock_init); /* early initcall */ 3316 3317 #ifdef CONFIG_PROC_FS 3318 void socket_seq_show(struct seq_file *seq) 3319 { 3320 seq_printf(seq, "sockets: used %d\n", 3321 sock_inuse_get(seq->private)); 3322 } 3323 #endif /* CONFIG_PROC_FS */ 3324 3325 /* Handle the fact that while struct ifreq has the same *layout* on 3326 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3327 * which are handled elsewhere, it still has different *size* due to 3328 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3329 * resulting in struct ifreq being 32 and 40 bytes respectively). 3330 * As a result, if the struct happens to be at the end of a page and 3331 * the next page isn't readable/writable, we get a fault. To prevent 3332 * that, copy back and forth to the full size. 3333 */ 3334 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3335 { 3336 if (in_compat_syscall()) { 3337 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3338 3339 memset(ifr, 0, sizeof(*ifr)); 3340 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3341 return -EFAULT; 3342 3343 if (ifrdata) 3344 *ifrdata = compat_ptr(ifr32->ifr_data); 3345 3346 return 0; 3347 } 3348 3349 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3350 return -EFAULT; 3351 3352 if (ifrdata) 3353 *ifrdata = ifr->ifr_data; 3354 3355 return 0; 3356 } 3357 EXPORT_SYMBOL(get_user_ifreq); 3358 3359 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3360 { 3361 size_t size = sizeof(*ifr); 3362 3363 if (in_compat_syscall()) 3364 size = sizeof(struct compat_ifreq); 3365 3366 if (copy_to_user(arg, ifr, size)) 3367 return -EFAULT; 3368 3369 return 0; 3370 } 3371 EXPORT_SYMBOL(put_user_ifreq); 3372 3373 #ifdef CONFIG_COMPAT 3374 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3375 { 3376 compat_uptr_t uptr32; 3377 struct ifreq ifr; 3378 void __user *saved; 3379 int err; 3380 3381 if (get_user_ifreq(&ifr, NULL, uifr32)) 3382 return -EFAULT; 3383 3384 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3385 return -EFAULT; 3386 3387 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3388 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3389 3390 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3391 if (!err) { 3392 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3393 if (put_user_ifreq(&ifr, uifr32)) 3394 err = -EFAULT; 3395 } 3396 return err; 3397 } 3398 3399 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3400 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3401 struct compat_ifreq __user *u_ifreq32) 3402 { 3403 struct ifreq ifreq; 3404 void __user *data; 3405 3406 if (!is_socket_ioctl_cmd(cmd)) 3407 return -ENOTTY; 3408 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3409 return -EFAULT; 3410 ifreq.ifr_data = data; 3411 3412 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3413 } 3414 3415 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3416 unsigned int cmd, unsigned long arg) 3417 { 3418 void __user *argp = compat_ptr(arg); 3419 struct sock *sk = sock->sk; 3420 struct net *net = sock_net(sk); 3421 const struct proto_ops *ops; 3422 3423 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3424 return sock_ioctl(file, cmd, (unsigned long)argp); 3425 3426 switch (cmd) { 3427 case SIOCWANDEV: 3428 return compat_siocwandev(net, argp); 3429 case SIOCGSTAMP_OLD: 3430 case SIOCGSTAMPNS_OLD: 3431 ops = READ_ONCE(sock->ops); 3432 if (!ops->gettstamp) 3433 return -ENOIOCTLCMD; 3434 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3435 !COMPAT_USE_64BIT_TIME); 3436 3437 case SIOCETHTOOL: 3438 case SIOCBONDSLAVEINFOQUERY: 3439 case SIOCBONDINFOQUERY: 3440 case SIOCSHWTSTAMP: 3441 case SIOCGHWTSTAMP: 3442 return compat_ifr_data_ioctl(net, cmd, argp); 3443 3444 case FIOSETOWN: 3445 case SIOCSPGRP: 3446 case FIOGETOWN: 3447 case SIOCGPGRP: 3448 case SIOCBRADDBR: 3449 case SIOCBRDELBR: 3450 case SIOCGIFVLAN: 3451 case SIOCSIFVLAN: 3452 case SIOCGSKNS: 3453 case SIOCGSTAMP_NEW: 3454 case SIOCGSTAMPNS_NEW: 3455 case SIOCGIFCONF: 3456 case SIOCSIFBR: 3457 case SIOCGIFBR: 3458 return sock_ioctl(file, cmd, arg); 3459 3460 case SIOCGIFFLAGS: 3461 case SIOCSIFFLAGS: 3462 case SIOCGIFMAP: 3463 case SIOCSIFMAP: 3464 case SIOCGIFMETRIC: 3465 case SIOCSIFMETRIC: 3466 case SIOCGIFMTU: 3467 case SIOCSIFMTU: 3468 case SIOCGIFMEM: 3469 case SIOCSIFMEM: 3470 case SIOCGIFHWADDR: 3471 case SIOCSIFHWADDR: 3472 case SIOCADDMULTI: 3473 case SIOCDELMULTI: 3474 case SIOCGIFINDEX: 3475 case SIOCGIFADDR: 3476 case SIOCSIFADDR: 3477 case SIOCSIFHWBROADCAST: 3478 case SIOCDIFADDR: 3479 case SIOCGIFBRDADDR: 3480 case SIOCSIFBRDADDR: 3481 case SIOCGIFDSTADDR: 3482 case SIOCSIFDSTADDR: 3483 case SIOCGIFNETMASK: 3484 case SIOCSIFNETMASK: 3485 case SIOCSIFPFLAGS: 3486 case SIOCGIFPFLAGS: 3487 case SIOCGIFTXQLEN: 3488 case SIOCSIFTXQLEN: 3489 case SIOCBRADDIF: 3490 case SIOCBRDELIF: 3491 case SIOCGIFNAME: 3492 case SIOCSIFNAME: 3493 case SIOCGMIIPHY: 3494 case SIOCGMIIREG: 3495 case SIOCSMIIREG: 3496 case SIOCBONDENSLAVE: 3497 case SIOCBONDRELEASE: 3498 case SIOCBONDSETHWADDR: 3499 case SIOCBONDCHANGEACTIVE: 3500 case SIOCSARP: 3501 case SIOCGARP: 3502 case SIOCDARP: 3503 case SIOCOUTQ: 3504 case SIOCOUTQNSD: 3505 case SIOCATMARK: 3506 return sock_do_ioctl(net, sock, cmd, arg); 3507 } 3508 3509 return -ENOIOCTLCMD; 3510 } 3511 3512 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3513 unsigned long arg) 3514 { 3515 struct socket *sock = file->private_data; 3516 const struct proto_ops *ops = READ_ONCE(sock->ops); 3517 int ret = -ENOIOCTLCMD; 3518 struct sock *sk; 3519 struct net *net; 3520 3521 sk = sock->sk; 3522 net = sock_net(sk); 3523 3524 if (ops->compat_ioctl) 3525 ret = ops->compat_ioctl(sock, cmd, arg); 3526 3527 if (ret == -ENOIOCTLCMD && 3528 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3529 ret = compat_wext_handle_ioctl(net, cmd, arg); 3530 3531 if (ret == -ENOIOCTLCMD) 3532 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3533 3534 return ret; 3535 } 3536 #endif 3537 3538 /** 3539 * kernel_bind - bind an address to a socket (kernel space) 3540 * @sock: socket 3541 * @addr: address 3542 * @addrlen: length of address 3543 * 3544 * Returns 0 or an error. 3545 */ 3546 3547 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3548 { 3549 struct sockaddr_storage address; 3550 3551 memcpy(&address, addr, addrlen); 3552 3553 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, 3554 addrlen); 3555 } 3556 EXPORT_SYMBOL(kernel_bind); 3557 3558 /** 3559 * kernel_listen - move socket to listening state (kernel space) 3560 * @sock: socket 3561 * @backlog: pending connections queue size 3562 * 3563 * Returns 0 or an error. 3564 */ 3565 3566 int kernel_listen(struct socket *sock, int backlog) 3567 { 3568 return READ_ONCE(sock->ops)->listen(sock, backlog); 3569 } 3570 EXPORT_SYMBOL(kernel_listen); 3571 3572 /** 3573 * kernel_accept - accept a connection (kernel space) 3574 * @sock: listening socket 3575 * @newsock: new connected socket 3576 * @flags: flags 3577 * 3578 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3579 * If it fails, @newsock is guaranteed to be %NULL. 3580 * Returns 0 or an error. 3581 */ 3582 3583 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3584 { 3585 struct sock *sk = sock->sk; 3586 const struct proto_ops *ops = READ_ONCE(sock->ops); 3587 int err; 3588 3589 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3590 newsock); 3591 if (err < 0) 3592 goto done; 3593 3594 err = ops->accept(sock, *newsock, flags, true); 3595 if (err < 0) { 3596 sock_release(*newsock); 3597 *newsock = NULL; 3598 goto done; 3599 } 3600 3601 (*newsock)->ops = ops; 3602 __module_get(ops->owner); 3603 3604 done: 3605 return err; 3606 } 3607 EXPORT_SYMBOL(kernel_accept); 3608 3609 /** 3610 * kernel_connect - connect a socket (kernel space) 3611 * @sock: socket 3612 * @addr: address 3613 * @addrlen: address length 3614 * @flags: flags (O_NONBLOCK, ...) 3615 * 3616 * For datagram sockets, @addr is the address to which datagrams are sent 3617 * by default, and the only address from which datagrams are received. 3618 * For stream sockets, attempts to connect to @addr. 3619 * Returns 0 or an error code. 3620 */ 3621 3622 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3623 int flags) 3624 { 3625 struct sockaddr_storage address; 3626 3627 memcpy(&address, addr, addrlen); 3628 3629 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3630 addrlen, flags); 3631 } 3632 EXPORT_SYMBOL(kernel_connect); 3633 3634 /** 3635 * kernel_getsockname - get the address which the socket is bound (kernel space) 3636 * @sock: socket 3637 * @addr: address holder 3638 * 3639 * Fills the @addr pointer with the address which the socket is bound. 3640 * Returns the length of the address in bytes or an error code. 3641 */ 3642 3643 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3644 { 3645 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3646 } 3647 EXPORT_SYMBOL(kernel_getsockname); 3648 3649 /** 3650 * kernel_getpeername - get the address which the socket is connected (kernel space) 3651 * @sock: socket 3652 * @addr: address holder 3653 * 3654 * Fills the @addr pointer with the address which the socket is connected. 3655 * Returns the length of the address in bytes or an error code. 3656 */ 3657 3658 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3659 { 3660 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3661 } 3662 EXPORT_SYMBOL(kernel_getpeername); 3663 3664 /** 3665 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3666 * @sock: socket 3667 * @how: connection part 3668 * 3669 * Returns 0 or an error. 3670 */ 3671 3672 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3673 { 3674 return READ_ONCE(sock->ops)->shutdown(sock, how); 3675 } 3676 EXPORT_SYMBOL(kernel_sock_shutdown); 3677 3678 /** 3679 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3680 * @sk: socket 3681 * 3682 * This routine returns the IP overhead imposed by a socket i.e. 3683 * the length of the underlying IP header, depending on whether 3684 * this is an IPv4 or IPv6 socket and the length from IP options turned 3685 * on at the socket. Assumes that the caller has a lock on the socket. 3686 */ 3687 3688 u32 kernel_sock_ip_overhead(struct sock *sk) 3689 { 3690 struct inet_sock *inet; 3691 struct ip_options_rcu *opt; 3692 u32 overhead = 0; 3693 #if IS_ENABLED(CONFIG_IPV6) 3694 struct ipv6_pinfo *np; 3695 struct ipv6_txoptions *optv6 = NULL; 3696 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3697 3698 if (!sk) 3699 return overhead; 3700 3701 switch (sk->sk_family) { 3702 case AF_INET: 3703 inet = inet_sk(sk); 3704 overhead += sizeof(struct iphdr); 3705 opt = rcu_dereference_protected(inet->inet_opt, 3706 sock_owned_by_user(sk)); 3707 if (opt) 3708 overhead += opt->opt.optlen; 3709 return overhead; 3710 #if IS_ENABLED(CONFIG_IPV6) 3711 case AF_INET6: 3712 np = inet6_sk(sk); 3713 overhead += sizeof(struct ipv6hdr); 3714 if (np) 3715 optv6 = rcu_dereference_protected(np->opt, 3716 sock_owned_by_user(sk)); 3717 if (optv6) 3718 overhead += (optv6->opt_flen + optv6->opt_nflen); 3719 return overhead; 3720 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3721 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3722 return overhead; 3723 } 3724 } 3725 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3726