1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Statistics counters of the socket lists 167 */ 168 169 static DEFINE_PER_CPU(int, sockets_in_use); 170 171 /* 172 * Support routines. 173 * Move socket addresses back and forth across the kernel/user 174 * divide and look after the messy bits. 175 */ 176 177 /** 178 * move_addr_to_kernel - copy a socket address into kernel space 179 * @uaddr: Address in user space 180 * @kaddr: Address in kernel space 181 * @ulen: Length in user space 182 * 183 * The address is copied into kernel space. If the provided address is 184 * too long an error code of -EINVAL is returned. If the copy gives 185 * invalid addresses -EFAULT is returned. On a success 0 is returned. 186 */ 187 188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 189 { 190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 191 return -EINVAL; 192 if (ulen == 0) 193 return 0; 194 if (copy_from_user(kaddr, uaddr, ulen)) 195 return -EFAULT; 196 return audit_sockaddr(ulen, kaddr); 197 } 198 199 /** 200 * move_addr_to_user - copy an address to user space 201 * @kaddr: kernel space address 202 * @klen: length of address in kernel 203 * @uaddr: user space address 204 * @ulen: pointer to user length field 205 * 206 * The value pointed to by ulen on entry is the buffer length available. 207 * This is overwritten with the buffer space used. -EINVAL is returned 208 * if an overlong buffer is specified or a negative buffer size. -EFAULT 209 * is returned if either the buffer or the length field are not 210 * accessible. 211 * After copying the data up to the limit the user specifies, the true 212 * length of the data is written over the length limit the user 213 * specified. Zero is returned for a success. 214 */ 215 216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 217 void __user *uaddr, int __user *ulen) 218 { 219 int err; 220 int len; 221 222 BUG_ON(klen > sizeof(struct sockaddr_storage)); 223 err = get_user(len, ulen); 224 if (err) 225 return err; 226 if (len > klen) 227 len = klen; 228 if (len < 0) 229 return -EINVAL; 230 if (len) { 231 if (audit_sockaddr(klen, kaddr)) 232 return -ENOMEM; 233 if (copy_to_user(uaddr, kaddr, len)) 234 return -EFAULT; 235 } 236 /* 237 * "fromlen shall refer to the value before truncation.." 238 * 1003.1g 239 */ 240 return __put_user(klen, ulen); 241 } 242 243 static struct kmem_cache *sock_inode_cachep __read_mostly; 244 245 static struct inode *sock_alloc_inode(struct super_block *sb) 246 { 247 struct socket_alloc *ei; 248 struct socket_wq *wq; 249 250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 251 if (!ei) 252 return NULL; 253 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 254 if (!wq) { 255 kmem_cache_free(sock_inode_cachep, ei); 256 return NULL; 257 } 258 init_waitqueue_head(&wq->wait); 259 wq->fasync_list = NULL; 260 wq->flags = 0; 261 RCU_INIT_POINTER(ei->socket.wq, wq); 262 263 ei->socket.state = SS_UNCONNECTED; 264 ei->socket.flags = 0; 265 ei->socket.ops = NULL; 266 ei->socket.sk = NULL; 267 ei->socket.file = NULL; 268 269 return &ei->vfs_inode; 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 struct socket_wq *wq; 276 277 ei = container_of(inode, struct socket_alloc, vfs_inode); 278 wq = rcu_dereference_protected(ei->socket.wq, 1); 279 kfree_rcu(wq, rcu); 280 kmem_cache_free(sock_inode_cachep, ei); 281 } 282 283 static void init_once(void *foo) 284 { 285 struct socket_alloc *ei = (struct socket_alloc *)foo; 286 287 inode_init_once(&ei->vfs_inode); 288 } 289 290 static void init_inodecache(void) 291 { 292 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 293 sizeof(struct socket_alloc), 294 0, 295 (SLAB_HWCACHE_ALIGN | 296 SLAB_RECLAIM_ACCOUNT | 297 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 298 init_once); 299 BUG_ON(sock_inode_cachep == NULL); 300 } 301 302 static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306 }; 307 308 /* 309 * sockfs_dname() is called from d_path(). 310 */ 311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 312 { 313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 314 d_inode(dentry)->i_ino); 315 } 316 317 static const struct dentry_operations sockfs_dentry_operations = { 318 .d_dname = sockfs_dname, 319 }; 320 321 static int sockfs_xattr_get(const struct xattr_handler *handler, 322 struct dentry *dentry, struct inode *inode, 323 const char *suffix, void *value, size_t size) 324 { 325 if (value) { 326 if (dentry->d_name.len + 1 > size) 327 return -ERANGE; 328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 329 } 330 return dentry->d_name.len + 1; 331 } 332 333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 336 337 static const struct xattr_handler sockfs_xattr_handler = { 338 .name = XATTR_NAME_SOCKPROTONAME, 339 .get = sockfs_xattr_get, 340 }; 341 342 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 343 struct dentry *dentry, struct inode *inode, 344 const char *suffix, const void *value, 345 size_t size, int flags) 346 { 347 /* Handled by LSM. */ 348 return -EAGAIN; 349 } 350 351 static const struct xattr_handler sockfs_security_xattr_handler = { 352 .prefix = XATTR_SECURITY_PREFIX, 353 .set = sockfs_security_xattr_set, 354 }; 355 356 static const struct xattr_handler *sockfs_xattr_handlers[] = { 357 &sockfs_xattr_handler, 358 &sockfs_security_xattr_handler, 359 NULL 360 }; 361 362 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 363 int flags, const char *dev_name, void *data) 364 { 365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 366 sockfs_xattr_handlers, 367 &sockfs_dentry_operations, SOCKFS_MAGIC); 368 } 369 370 static struct vfsmount *sock_mnt __read_mostly; 371 372 static struct file_system_type sock_fs_type = { 373 .name = "sockfs", 374 .mount = sockfs_mount, 375 .kill_sb = kill_anon_super, 376 }; 377 378 /* 379 * Obtains the first available file descriptor and sets it up for use. 380 * 381 * These functions create file structures and maps them to fd space 382 * of the current process. On success it returns file descriptor 383 * and file struct implicitly stored in sock->file. 384 * Note that another thread may close file descriptor before we return 385 * from this function. We use the fact that now we do not refer 386 * to socket after mapping. If one day we will need it, this 387 * function will increment ref. count on file by 1. 388 * 389 * In any case returned fd MAY BE not valid! 390 * This race condition is unavoidable 391 * with shared fd spaces, we cannot solve it inside kernel, 392 * but we take care of internal coherence yet. 393 */ 394 395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 396 { 397 struct qstr name = { .name = "" }; 398 struct path path; 399 struct file *file; 400 401 if (dname) { 402 name.name = dname; 403 name.len = strlen(name.name); 404 } else if (sock->sk) { 405 name.name = sock->sk->sk_prot_creator->name; 406 name.len = strlen(name.name); 407 } 408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 409 if (unlikely(!path.dentry)) 410 return ERR_PTR(-ENOMEM); 411 path.mnt = mntget(sock_mnt); 412 413 d_instantiate(path.dentry, SOCK_INODE(sock)); 414 415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 416 &socket_file_ops); 417 if (IS_ERR(file)) { 418 /* drop dentry, keep inode */ 419 ihold(d_inode(path.dentry)); 420 path_put(&path); 421 return file; 422 } 423 424 sock->file = file; 425 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 426 file->private_data = sock; 427 return file; 428 } 429 EXPORT_SYMBOL(sock_alloc_file); 430 431 static int sock_map_fd(struct socket *sock, int flags) 432 { 433 struct file *newfile; 434 int fd = get_unused_fd_flags(flags); 435 if (unlikely(fd < 0)) 436 return fd; 437 438 newfile = sock_alloc_file(sock, flags, NULL); 439 if (likely(!IS_ERR(newfile))) { 440 fd_install(fd, newfile); 441 return fd; 442 } 443 444 put_unused_fd(fd); 445 return PTR_ERR(newfile); 446 } 447 448 struct socket *sock_from_file(struct file *file, int *err) 449 { 450 if (file->f_op == &socket_file_ops) 451 return file->private_data; /* set in sock_map_fd */ 452 453 *err = -ENOTSOCK; 454 return NULL; 455 } 456 EXPORT_SYMBOL(sock_from_file); 457 458 /** 459 * sockfd_lookup - Go from a file number to its socket slot 460 * @fd: file handle 461 * @err: pointer to an error code return 462 * 463 * The file handle passed in is locked and the socket it is bound 464 * to is returned. If an error occurs the err pointer is overwritten 465 * with a negative errno code and NULL is returned. The function checks 466 * for both invalid handles and passing a handle which is not a socket. 467 * 468 * On a success the socket object pointer is returned. 469 */ 470 471 struct socket *sockfd_lookup(int fd, int *err) 472 { 473 struct file *file; 474 struct socket *sock; 475 476 file = fget(fd); 477 if (!file) { 478 *err = -EBADF; 479 return NULL; 480 } 481 482 sock = sock_from_file(file, err); 483 if (!sock) 484 fput(file); 485 return sock; 486 } 487 EXPORT_SYMBOL(sockfd_lookup); 488 489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 490 { 491 struct fd f = fdget(fd); 492 struct socket *sock; 493 494 *err = -EBADF; 495 if (f.file) { 496 sock = sock_from_file(f.file, err); 497 if (likely(sock)) { 498 *fput_needed = f.flags; 499 return sock; 500 } 501 fdput(f); 502 } 503 return NULL; 504 } 505 506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 507 size_t size) 508 { 509 ssize_t len; 510 ssize_t used = 0; 511 512 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 513 if (len < 0) 514 return len; 515 used += len; 516 if (buffer) { 517 if (size < used) 518 return -ERANGE; 519 buffer += len; 520 } 521 522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 523 used += len; 524 if (buffer) { 525 if (size < used) 526 return -ERANGE; 527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 528 buffer += len; 529 } 530 531 return used; 532 } 533 534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 535 { 536 int err = simple_setattr(dentry, iattr); 537 538 if (!err && (iattr->ia_valid & ATTR_UID)) { 539 struct socket *sock = SOCKET_I(d_inode(dentry)); 540 541 sock->sk->sk_uid = iattr->ia_uid; 542 } 543 544 return err; 545 } 546 547 static const struct inode_operations sockfs_inode_ops = { 548 .listxattr = sockfs_listxattr, 549 .setattr = sockfs_setattr, 550 }; 551 552 /** 553 * sock_alloc - allocate a socket 554 * 555 * Allocate a new inode and socket object. The two are bound together 556 * and initialised. The socket is then returned. If we are out of inodes 557 * NULL is returned. 558 */ 559 560 struct socket *sock_alloc(void) 561 { 562 struct inode *inode; 563 struct socket *sock; 564 565 inode = new_inode_pseudo(sock_mnt->mnt_sb); 566 if (!inode) 567 return NULL; 568 569 sock = SOCKET_I(inode); 570 571 inode->i_ino = get_next_ino(); 572 inode->i_mode = S_IFSOCK | S_IRWXUGO; 573 inode->i_uid = current_fsuid(); 574 inode->i_gid = current_fsgid(); 575 inode->i_op = &sockfs_inode_ops; 576 577 this_cpu_add(sockets_in_use, 1); 578 return sock; 579 } 580 EXPORT_SYMBOL(sock_alloc); 581 582 /** 583 * sock_release - close a socket 584 * @sock: socket to close 585 * 586 * The socket is released from the protocol stack if it has a release 587 * callback, and the inode is then released if the socket is bound to 588 * an inode not a file. 589 */ 590 591 void sock_release(struct socket *sock) 592 { 593 if (sock->ops) { 594 struct module *owner = sock->ops->owner; 595 596 sock->ops->release(sock); 597 sock->ops = NULL; 598 module_put(owner); 599 } 600 601 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 602 pr_err("%s: fasync list not empty!\n", __func__); 603 604 this_cpu_sub(sockets_in_use, 1); 605 if (!sock->file) { 606 iput(SOCK_INODE(sock)); 607 return; 608 } 609 sock->file = NULL; 610 } 611 EXPORT_SYMBOL(sock_release); 612 613 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 614 { 615 u8 flags = *tx_flags; 616 617 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 618 flags |= SKBTX_HW_TSTAMP; 619 620 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 621 flags |= SKBTX_SW_TSTAMP; 622 623 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 624 flags |= SKBTX_SCHED_TSTAMP; 625 626 *tx_flags = flags; 627 } 628 EXPORT_SYMBOL(__sock_tx_timestamp); 629 630 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 631 { 632 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 633 BUG_ON(ret == -EIOCBQUEUED); 634 return ret; 635 } 636 637 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 638 { 639 int err = security_socket_sendmsg(sock, msg, 640 msg_data_left(msg)); 641 642 return err ?: sock_sendmsg_nosec(sock, msg); 643 } 644 EXPORT_SYMBOL(sock_sendmsg); 645 646 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 647 struct kvec *vec, size_t num, size_t size) 648 { 649 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 650 return sock_sendmsg(sock, msg); 651 } 652 EXPORT_SYMBOL(kernel_sendmsg); 653 654 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 655 struct kvec *vec, size_t num, size_t size) 656 { 657 struct socket *sock = sk->sk_socket; 658 659 if (!sock->ops->sendmsg_locked) 660 return sock_no_sendmsg_locked(sk, msg, size); 661 662 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 663 664 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 665 } 666 EXPORT_SYMBOL(kernel_sendmsg_locked); 667 668 static bool skb_is_err_queue(const struct sk_buff *skb) 669 { 670 /* pkt_type of skbs enqueued on the error queue are set to 671 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 672 * in recvmsg, since skbs received on a local socket will never 673 * have a pkt_type of PACKET_OUTGOING. 674 */ 675 return skb->pkt_type == PACKET_OUTGOING; 676 } 677 678 /* On transmit, software and hardware timestamps are returned independently. 679 * As the two skb clones share the hardware timestamp, which may be updated 680 * before the software timestamp is received, a hardware TX timestamp may be 681 * returned only if there is no software TX timestamp. Ignore false software 682 * timestamps, which may be made in the __sock_recv_timestamp() call when the 683 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 684 * hardware timestamp. 685 */ 686 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 687 { 688 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 689 } 690 691 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 692 { 693 struct scm_ts_pktinfo ts_pktinfo; 694 struct net_device *orig_dev; 695 696 if (!skb_mac_header_was_set(skb)) 697 return; 698 699 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 700 701 rcu_read_lock(); 702 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 703 if (orig_dev) 704 ts_pktinfo.if_index = orig_dev->ifindex; 705 rcu_read_unlock(); 706 707 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 708 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 709 sizeof(ts_pktinfo), &ts_pktinfo); 710 } 711 712 /* 713 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 714 */ 715 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 716 struct sk_buff *skb) 717 { 718 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 719 struct scm_timestamping tss; 720 int empty = 1, false_tstamp = 0; 721 struct skb_shared_hwtstamps *shhwtstamps = 722 skb_hwtstamps(skb); 723 724 /* Race occurred between timestamp enabling and packet 725 receiving. Fill in the current time for now. */ 726 if (need_software_tstamp && skb->tstamp == 0) { 727 __net_timestamp(skb); 728 false_tstamp = 1; 729 } 730 731 if (need_software_tstamp) { 732 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 733 struct timeval tv; 734 skb_get_timestamp(skb, &tv); 735 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 736 sizeof(tv), &tv); 737 } else { 738 struct timespec ts; 739 skb_get_timestampns(skb, &ts); 740 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 741 sizeof(ts), &ts); 742 } 743 } 744 745 memset(&tss, 0, sizeof(tss)); 746 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 747 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 748 empty = 0; 749 if (shhwtstamps && 750 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 751 !skb_is_swtx_tstamp(skb, false_tstamp) && 752 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 753 empty = 0; 754 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 755 !skb_is_err_queue(skb)) 756 put_ts_pktinfo(msg, skb); 757 } 758 if (!empty) { 759 put_cmsg(msg, SOL_SOCKET, 760 SCM_TIMESTAMPING, sizeof(tss), &tss); 761 762 if (skb_is_err_queue(skb) && skb->len && 763 SKB_EXT_ERR(skb)->opt_stats) 764 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 765 skb->len, skb->data); 766 } 767 } 768 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 769 770 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 771 struct sk_buff *skb) 772 { 773 int ack; 774 775 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 776 return; 777 if (!skb->wifi_acked_valid) 778 return; 779 780 ack = skb->wifi_acked; 781 782 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 783 } 784 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 785 786 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 787 struct sk_buff *skb) 788 { 789 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 790 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 791 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 792 } 793 794 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 795 struct sk_buff *skb) 796 { 797 sock_recv_timestamp(msg, sk, skb); 798 sock_recv_drops(msg, sk, skb); 799 } 800 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 801 802 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 803 int flags) 804 { 805 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 806 } 807 808 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 809 { 810 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 811 812 return err ?: sock_recvmsg_nosec(sock, msg, flags); 813 } 814 EXPORT_SYMBOL(sock_recvmsg); 815 816 /** 817 * kernel_recvmsg - Receive a message from a socket (kernel space) 818 * @sock: The socket to receive the message from 819 * @msg: Received message 820 * @vec: Input s/g array for message data 821 * @num: Size of input s/g array 822 * @size: Number of bytes to read 823 * @flags: Message flags (MSG_DONTWAIT, etc...) 824 * 825 * On return the msg structure contains the scatter/gather array passed in the 826 * vec argument. The array is modified so that it consists of the unfilled 827 * portion of the original array. 828 * 829 * The returned value is the total number of bytes received, or an error. 830 */ 831 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 832 struct kvec *vec, size_t num, size_t size, int flags) 833 { 834 mm_segment_t oldfs = get_fs(); 835 int result; 836 837 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 838 set_fs(KERNEL_DS); 839 result = sock_recvmsg(sock, msg, flags); 840 set_fs(oldfs); 841 return result; 842 } 843 EXPORT_SYMBOL(kernel_recvmsg); 844 845 static ssize_t sock_sendpage(struct file *file, struct page *page, 846 int offset, size_t size, loff_t *ppos, int more) 847 { 848 struct socket *sock; 849 int flags; 850 851 sock = file->private_data; 852 853 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 854 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 855 flags |= more; 856 857 return kernel_sendpage(sock, page, offset, size, flags); 858 } 859 860 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 861 struct pipe_inode_info *pipe, size_t len, 862 unsigned int flags) 863 { 864 struct socket *sock = file->private_data; 865 866 if (unlikely(!sock->ops->splice_read)) 867 return -EINVAL; 868 869 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 870 } 871 872 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 873 { 874 struct file *file = iocb->ki_filp; 875 struct socket *sock = file->private_data; 876 struct msghdr msg = {.msg_iter = *to, 877 .msg_iocb = iocb}; 878 ssize_t res; 879 880 if (file->f_flags & O_NONBLOCK) 881 msg.msg_flags = MSG_DONTWAIT; 882 883 if (iocb->ki_pos != 0) 884 return -ESPIPE; 885 886 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 887 return 0; 888 889 res = sock_recvmsg(sock, &msg, msg.msg_flags); 890 *to = msg.msg_iter; 891 return res; 892 } 893 894 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 895 { 896 struct file *file = iocb->ki_filp; 897 struct socket *sock = file->private_data; 898 struct msghdr msg = {.msg_iter = *from, 899 .msg_iocb = iocb}; 900 ssize_t res; 901 902 if (iocb->ki_pos != 0) 903 return -ESPIPE; 904 905 if (file->f_flags & O_NONBLOCK) 906 msg.msg_flags = MSG_DONTWAIT; 907 908 if (sock->type == SOCK_SEQPACKET) 909 msg.msg_flags |= MSG_EOR; 910 911 res = sock_sendmsg(sock, &msg); 912 *from = msg.msg_iter; 913 return res; 914 } 915 916 /* 917 * Atomic setting of ioctl hooks to avoid race 918 * with module unload. 919 */ 920 921 static DEFINE_MUTEX(br_ioctl_mutex); 922 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 923 924 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 925 { 926 mutex_lock(&br_ioctl_mutex); 927 br_ioctl_hook = hook; 928 mutex_unlock(&br_ioctl_mutex); 929 } 930 EXPORT_SYMBOL(brioctl_set); 931 932 static DEFINE_MUTEX(vlan_ioctl_mutex); 933 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 934 935 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 936 { 937 mutex_lock(&vlan_ioctl_mutex); 938 vlan_ioctl_hook = hook; 939 mutex_unlock(&vlan_ioctl_mutex); 940 } 941 EXPORT_SYMBOL(vlan_ioctl_set); 942 943 static DEFINE_MUTEX(dlci_ioctl_mutex); 944 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 945 946 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 947 { 948 mutex_lock(&dlci_ioctl_mutex); 949 dlci_ioctl_hook = hook; 950 mutex_unlock(&dlci_ioctl_mutex); 951 } 952 EXPORT_SYMBOL(dlci_ioctl_set); 953 954 static long sock_do_ioctl(struct net *net, struct socket *sock, 955 unsigned int cmd, unsigned long arg) 956 { 957 int err; 958 void __user *argp = (void __user *)arg; 959 960 err = sock->ops->ioctl(sock, cmd, arg); 961 962 /* 963 * If this ioctl is unknown try to hand it down 964 * to the NIC driver. 965 */ 966 if (err == -ENOIOCTLCMD) 967 err = dev_ioctl(net, cmd, argp); 968 969 return err; 970 } 971 972 /* 973 * With an ioctl, arg may well be a user mode pointer, but we don't know 974 * what to do with it - that's up to the protocol still. 975 */ 976 977 static struct ns_common *get_net_ns(struct ns_common *ns) 978 { 979 return &get_net(container_of(ns, struct net, ns))->ns; 980 } 981 982 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 983 { 984 struct socket *sock; 985 struct sock *sk; 986 void __user *argp = (void __user *)arg; 987 int pid, err; 988 struct net *net; 989 990 sock = file->private_data; 991 sk = sock->sk; 992 net = sock_net(sk); 993 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 994 err = dev_ioctl(net, cmd, argp); 995 } else 996 #ifdef CONFIG_WEXT_CORE 997 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 998 err = dev_ioctl(net, cmd, argp); 999 } else 1000 #endif 1001 switch (cmd) { 1002 case FIOSETOWN: 1003 case SIOCSPGRP: 1004 err = -EFAULT; 1005 if (get_user(pid, (int __user *)argp)) 1006 break; 1007 err = f_setown(sock->file, pid, 1); 1008 break; 1009 case FIOGETOWN: 1010 case SIOCGPGRP: 1011 err = put_user(f_getown(sock->file), 1012 (int __user *)argp); 1013 break; 1014 case SIOCGIFBR: 1015 case SIOCSIFBR: 1016 case SIOCBRADDBR: 1017 case SIOCBRDELBR: 1018 err = -ENOPKG; 1019 if (!br_ioctl_hook) 1020 request_module("bridge"); 1021 1022 mutex_lock(&br_ioctl_mutex); 1023 if (br_ioctl_hook) 1024 err = br_ioctl_hook(net, cmd, argp); 1025 mutex_unlock(&br_ioctl_mutex); 1026 break; 1027 case SIOCGIFVLAN: 1028 case SIOCSIFVLAN: 1029 err = -ENOPKG; 1030 if (!vlan_ioctl_hook) 1031 request_module("8021q"); 1032 1033 mutex_lock(&vlan_ioctl_mutex); 1034 if (vlan_ioctl_hook) 1035 err = vlan_ioctl_hook(net, argp); 1036 mutex_unlock(&vlan_ioctl_mutex); 1037 break; 1038 case SIOCADDDLCI: 1039 case SIOCDELDLCI: 1040 err = -ENOPKG; 1041 if (!dlci_ioctl_hook) 1042 request_module("dlci"); 1043 1044 mutex_lock(&dlci_ioctl_mutex); 1045 if (dlci_ioctl_hook) 1046 err = dlci_ioctl_hook(cmd, argp); 1047 mutex_unlock(&dlci_ioctl_mutex); 1048 break; 1049 case SIOCGSKNS: 1050 err = -EPERM; 1051 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1052 break; 1053 1054 err = open_related_ns(&net->ns, get_net_ns); 1055 break; 1056 default: 1057 err = sock_do_ioctl(net, sock, cmd, arg); 1058 break; 1059 } 1060 return err; 1061 } 1062 1063 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1064 { 1065 int err; 1066 struct socket *sock = NULL; 1067 1068 err = security_socket_create(family, type, protocol, 1); 1069 if (err) 1070 goto out; 1071 1072 sock = sock_alloc(); 1073 if (!sock) { 1074 err = -ENOMEM; 1075 goto out; 1076 } 1077 1078 sock->type = type; 1079 err = security_socket_post_create(sock, family, type, protocol, 1); 1080 if (err) 1081 goto out_release; 1082 1083 out: 1084 *res = sock; 1085 return err; 1086 out_release: 1087 sock_release(sock); 1088 sock = NULL; 1089 goto out; 1090 } 1091 EXPORT_SYMBOL(sock_create_lite); 1092 1093 /* No kernel lock held - perfect */ 1094 static unsigned int sock_poll(struct file *file, poll_table *wait) 1095 { 1096 unsigned int busy_flag = 0; 1097 struct socket *sock; 1098 1099 /* 1100 * We can't return errors to poll, so it's either yes or no. 1101 */ 1102 sock = file->private_data; 1103 1104 if (sk_can_busy_loop(sock->sk)) { 1105 /* this socket can poll_ll so tell the system call */ 1106 busy_flag = POLL_BUSY_LOOP; 1107 1108 /* once, only if requested by syscall */ 1109 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1110 sk_busy_loop(sock->sk, 1); 1111 } 1112 1113 return busy_flag | sock->ops->poll(file, sock, wait); 1114 } 1115 1116 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1117 { 1118 struct socket *sock = file->private_data; 1119 1120 return sock->ops->mmap(file, sock, vma); 1121 } 1122 1123 static int sock_close(struct inode *inode, struct file *filp) 1124 { 1125 sock_release(SOCKET_I(inode)); 1126 return 0; 1127 } 1128 1129 /* 1130 * Update the socket async list 1131 * 1132 * Fasync_list locking strategy. 1133 * 1134 * 1. fasync_list is modified only under process context socket lock 1135 * i.e. under semaphore. 1136 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1137 * or under socket lock 1138 */ 1139 1140 static int sock_fasync(int fd, struct file *filp, int on) 1141 { 1142 struct socket *sock = filp->private_data; 1143 struct sock *sk = sock->sk; 1144 struct socket_wq *wq; 1145 1146 if (sk == NULL) 1147 return -EINVAL; 1148 1149 lock_sock(sk); 1150 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1151 fasync_helper(fd, filp, on, &wq->fasync_list); 1152 1153 if (!wq->fasync_list) 1154 sock_reset_flag(sk, SOCK_FASYNC); 1155 else 1156 sock_set_flag(sk, SOCK_FASYNC); 1157 1158 release_sock(sk); 1159 return 0; 1160 } 1161 1162 /* This function may be called only under rcu_lock */ 1163 1164 int sock_wake_async(struct socket_wq *wq, int how, int band) 1165 { 1166 if (!wq || !wq->fasync_list) 1167 return -1; 1168 1169 switch (how) { 1170 case SOCK_WAKE_WAITD: 1171 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1172 break; 1173 goto call_kill; 1174 case SOCK_WAKE_SPACE: 1175 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1176 break; 1177 /* fall through */ 1178 case SOCK_WAKE_IO: 1179 call_kill: 1180 kill_fasync(&wq->fasync_list, SIGIO, band); 1181 break; 1182 case SOCK_WAKE_URG: 1183 kill_fasync(&wq->fasync_list, SIGURG, band); 1184 } 1185 1186 return 0; 1187 } 1188 EXPORT_SYMBOL(sock_wake_async); 1189 1190 int __sock_create(struct net *net, int family, int type, int protocol, 1191 struct socket **res, int kern) 1192 { 1193 int err; 1194 struct socket *sock; 1195 const struct net_proto_family *pf; 1196 1197 /* 1198 * Check protocol is in range 1199 */ 1200 if (family < 0 || family >= NPROTO) 1201 return -EAFNOSUPPORT; 1202 if (type < 0 || type >= SOCK_MAX) 1203 return -EINVAL; 1204 1205 /* Compatibility. 1206 1207 This uglymoron is moved from INET layer to here to avoid 1208 deadlock in module load. 1209 */ 1210 if (family == PF_INET && type == SOCK_PACKET) { 1211 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1212 current->comm); 1213 family = PF_PACKET; 1214 } 1215 1216 err = security_socket_create(family, type, protocol, kern); 1217 if (err) 1218 return err; 1219 1220 /* 1221 * Allocate the socket and allow the family to set things up. if 1222 * the protocol is 0, the family is instructed to select an appropriate 1223 * default. 1224 */ 1225 sock = sock_alloc(); 1226 if (!sock) { 1227 net_warn_ratelimited("socket: no more sockets\n"); 1228 return -ENFILE; /* Not exactly a match, but its the 1229 closest posix thing */ 1230 } 1231 1232 sock->type = type; 1233 1234 #ifdef CONFIG_MODULES 1235 /* Attempt to load a protocol module if the find failed. 1236 * 1237 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1238 * requested real, full-featured networking support upon configuration. 1239 * Otherwise module support will break! 1240 */ 1241 if (rcu_access_pointer(net_families[family]) == NULL) 1242 request_module("net-pf-%d", family); 1243 #endif 1244 1245 rcu_read_lock(); 1246 pf = rcu_dereference(net_families[family]); 1247 err = -EAFNOSUPPORT; 1248 if (!pf) 1249 goto out_release; 1250 1251 /* 1252 * We will call the ->create function, that possibly is in a loadable 1253 * module, so we have to bump that loadable module refcnt first. 1254 */ 1255 if (!try_module_get(pf->owner)) 1256 goto out_release; 1257 1258 /* Now protected by module ref count */ 1259 rcu_read_unlock(); 1260 1261 err = pf->create(net, sock, protocol, kern); 1262 if (err < 0) 1263 goto out_module_put; 1264 1265 /* 1266 * Now to bump the refcnt of the [loadable] module that owns this 1267 * socket at sock_release time we decrement its refcnt. 1268 */ 1269 if (!try_module_get(sock->ops->owner)) 1270 goto out_module_busy; 1271 1272 /* 1273 * Now that we're done with the ->create function, the [loadable] 1274 * module can have its refcnt decremented 1275 */ 1276 module_put(pf->owner); 1277 err = security_socket_post_create(sock, family, type, protocol, kern); 1278 if (err) 1279 goto out_sock_release; 1280 *res = sock; 1281 1282 return 0; 1283 1284 out_module_busy: 1285 err = -EAFNOSUPPORT; 1286 out_module_put: 1287 sock->ops = NULL; 1288 module_put(pf->owner); 1289 out_sock_release: 1290 sock_release(sock); 1291 return err; 1292 1293 out_release: 1294 rcu_read_unlock(); 1295 goto out_sock_release; 1296 } 1297 EXPORT_SYMBOL(__sock_create); 1298 1299 int sock_create(int family, int type, int protocol, struct socket **res) 1300 { 1301 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1302 } 1303 EXPORT_SYMBOL(sock_create); 1304 1305 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1306 { 1307 return __sock_create(net, family, type, protocol, res, 1); 1308 } 1309 EXPORT_SYMBOL(sock_create_kern); 1310 1311 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1312 { 1313 int retval; 1314 struct socket *sock; 1315 int flags; 1316 1317 /* Check the SOCK_* constants for consistency. */ 1318 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1319 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1320 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1321 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1322 1323 flags = type & ~SOCK_TYPE_MASK; 1324 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1325 return -EINVAL; 1326 type &= SOCK_TYPE_MASK; 1327 1328 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1329 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1330 1331 retval = sock_create(family, type, protocol, &sock); 1332 if (retval < 0) 1333 goto out; 1334 1335 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1336 if (retval < 0) 1337 goto out_release; 1338 1339 out: 1340 /* It may be already another descriptor 8) Not kernel problem. */ 1341 return retval; 1342 1343 out_release: 1344 sock_release(sock); 1345 return retval; 1346 } 1347 1348 /* 1349 * Create a pair of connected sockets. 1350 */ 1351 1352 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1353 int __user *, usockvec) 1354 { 1355 struct socket *sock1, *sock2; 1356 int fd1, fd2, err; 1357 struct file *newfile1, *newfile2; 1358 int flags; 1359 1360 flags = type & ~SOCK_TYPE_MASK; 1361 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1362 return -EINVAL; 1363 type &= SOCK_TYPE_MASK; 1364 1365 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1366 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1367 1368 /* 1369 * Obtain the first socket and check if the underlying protocol 1370 * supports the socketpair call. 1371 */ 1372 1373 err = sock_create(family, type, protocol, &sock1); 1374 if (err < 0) 1375 goto out; 1376 1377 err = sock_create(family, type, protocol, &sock2); 1378 if (err < 0) 1379 goto out_release_1; 1380 1381 err = sock1->ops->socketpair(sock1, sock2); 1382 if (err < 0) 1383 goto out_release_both; 1384 1385 fd1 = get_unused_fd_flags(flags); 1386 if (unlikely(fd1 < 0)) { 1387 err = fd1; 1388 goto out_release_both; 1389 } 1390 1391 fd2 = get_unused_fd_flags(flags); 1392 if (unlikely(fd2 < 0)) { 1393 err = fd2; 1394 goto out_put_unused_1; 1395 } 1396 1397 newfile1 = sock_alloc_file(sock1, flags, NULL); 1398 if (IS_ERR(newfile1)) { 1399 err = PTR_ERR(newfile1); 1400 goto out_put_unused_both; 1401 } 1402 1403 newfile2 = sock_alloc_file(sock2, flags, NULL); 1404 if (IS_ERR(newfile2)) { 1405 err = PTR_ERR(newfile2); 1406 goto out_fput_1; 1407 } 1408 1409 err = put_user(fd1, &usockvec[0]); 1410 if (err) 1411 goto out_fput_both; 1412 1413 err = put_user(fd2, &usockvec[1]); 1414 if (err) 1415 goto out_fput_both; 1416 1417 audit_fd_pair(fd1, fd2); 1418 1419 fd_install(fd1, newfile1); 1420 fd_install(fd2, newfile2); 1421 /* fd1 and fd2 may be already another descriptors. 1422 * Not kernel problem. 1423 */ 1424 1425 return 0; 1426 1427 out_fput_both: 1428 fput(newfile2); 1429 fput(newfile1); 1430 put_unused_fd(fd2); 1431 put_unused_fd(fd1); 1432 goto out; 1433 1434 out_fput_1: 1435 fput(newfile1); 1436 put_unused_fd(fd2); 1437 put_unused_fd(fd1); 1438 sock_release(sock2); 1439 goto out; 1440 1441 out_put_unused_both: 1442 put_unused_fd(fd2); 1443 out_put_unused_1: 1444 put_unused_fd(fd1); 1445 out_release_both: 1446 sock_release(sock2); 1447 out_release_1: 1448 sock_release(sock1); 1449 out: 1450 return err; 1451 } 1452 1453 /* 1454 * Bind a name to a socket. Nothing much to do here since it's 1455 * the protocol's responsibility to handle the local address. 1456 * 1457 * We move the socket address to kernel space before we call 1458 * the protocol layer (having also checked the address is ok). 1459 */ 1460 1461 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1462 { 1463 struct socket *sock; 1464 struct sockaddr_storage address; 1465 int err, fput_needed; 1466 1467 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1468 if (sock) { 1469 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1470 if (err >= 0) { 1471 err = security_socket_bind(sock, 1472 (struct sockaddr *)&address, 1473 addrlen); 1474 if (!err) 1475 err = sock->ops->bind(sock, 1476 (struct sockaddr *) 1477 &address, addrlen); 1478 } 1479 fput_light(sock->file, fput_needed); 1480 } 1481 return err; 1482 } 1483 1484 /* 1485 * Perform a listen. Basically, we allow the protocol to do anything 1486 * necessary for a listen, and if that works, we mark the socket as 1487 * ready for listening. 1488 */ 1489 1490 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1491 { 1492 struct socket *sock; 1493 int err, fput_needed; 1494 int somaxconn; 1495 1496 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1497 if (sock) { 1498 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1499 if ((unsigned int)backlog > somaxconn) 1500 backlog = somaxconn; 1501 1502 err = security_socket_listen(sock, backlog); 1503 if (!err) 1504 err = sock->ops->listen(sock, backlog); 1505 1506 fput_light(sock->file, fput_needed); 1507 } 1508 return err; 1509 } 1510 1511 /* 1512 * For accept, we attempt to create a new socket, set up the link 1513 * with the client, wake up the client, then return the new 1514 * connected fd. We collect the address of the connector in kernel 1515 * space and move it to user at the very end. This is unclean because 1516 * we open the socket then return an error. 1517 * 1518 * 1003.1g adds the ability to recvmsg() to query connection pending 1519 * status to recvmsg. We need to add that support in a way thats 1520 * clean when we restucture accept also. 1521 */ 1522 1523 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1524 int __user *, upeer_addrlen, int, flags) 1525 { 1526 struct socket *sock, *newsock; 1527 struct file *newfile; 1528 int err, len, newfd, fput_needed; 1529 struct sockaddr_storage address; 1530 1531 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1532 return -EINVAL; 1533 1534 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1535 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1536 1537 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1538 if (!sock) 1539 goto out; 1540 1541 err = -ENFILE; 1542 newsock = sock_alloc(); 1543 if (!newsock) 1544 goto out_put; 1545 1546 newsock->type = sock->type; 1547 newsock->ops = sock->ops; 1548 1549 /* 1550 * We don't need try_module_get here, as the listening socket (sock) 1551 * has the protocol module (sock->ops->owner) held. 1552 */ 1553 __module_get(newsock->ops->owner); 1554 1555 newfd = get_unused_fd_flags(flags); 1556 if (unlikely(newfd < 0)) { 1557 err = newfd; 1558 sock_release(newsock); 1559 goto out_put; 1560 } 1561 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1562 if (IS_ERR(newfile)) { 1563 err = PTR_ERR(newfile); 1564 put_unused_fd(newfd); 1565 sock_release(newsock); 1566 goto out_put; 1567 } 1568 1569 err = security_socket_accept(sock, newsock); 1570 if (err) 1571 goto out_fd; 1572 1573 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1574 if (err < 0) 1575 goto out_fd; 1576 1577 if (upeer_sockaddr) { 1578 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1579 &len, 2) < 0) { 1580 err = -ECONNABORTED; 1581 goto out_fd; 1582 } 1583 err = move_addr_to_user(&address, 1584 len, upeer_sockaddr, upeer_addrlen); 1585 if (err < 0) 1586 goto out_fd; 1587 } 1588 1589 /* File flags are not inherited via accept() unlike another OSes. */ 1590 1591 fd_install(newfd, newfile); 1592 err = newfd; 1593 1594 out_put: 1595 fput_light(sock->file, fput_needed); 1596 out: 1597 return err; 1598 out_fd: 1599 fput(newfile); 1600 put_unused_fd(newfd); 1601 goto out_put; 1602 } 1603 1604 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1605 int __user *, upeer_addrlen) 1606 { 1607 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1608 } 1609 1610 /* 1611 * Attempt to connect to a socket with the server address. The address 1612 * is in user space so we verify it is OK and move it to kernel space. 1613 * 1614 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1615 * break bindings 1616 * 1617 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1618 * other SEQPACKET protocols that take time to connect() as it doesn't 1619 * include the -EINPROGRESS status for such sockets. 1620 */ 1621 1622 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1623 int, addrlen) 1624 { 1625 struct socket *sock; 1626 struct sockaddr_storage address; 1627 int err, fput_needed; 1628 1629 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1630 if (!sock) 1631 goto out; 1632 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1633 if (err < 0) 1634 goto out_put; 1635 1636 err = 1637 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1638 if (err) 1639 goto out_put; 1640 1641 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1642 sock->file->f_flags); 1643 out_put: 1644 fput_light(sock->file, fput_needed); 1645 out: 1646 return err; 1647 } 1648 1649 /* 1650 * Get the local address ('name') of a socket object. Move the obtained 1651 * name to user space. 1652 */ 1653 1654 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1655 int __user *, usockaddr_len) 1656 { 1657 struct socket *sock; 1658 struct sockaddr_storage address; 1659 int len, err, fput_needed; 1660 1661 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1662 if (!sock) 1663 goto out; 1664 1665 err = security_socket_getsockname(sock); 1666 if (err) 1667 goto out_put; 1668 1669 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1670 if (err) 1671 goto out_put; 1672 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1673 1674 out_put: 1675 fput_light(sock->file, fput_needed); 1676 out: 1677 return err; 1678 } 1679 1680 /* 1681 * Get the remote address ('name') of a socket object. Move the obtained 1682 * name to user space. 1683 */ 1684 1685 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1686 int __user *, usockaddr_len) 1687 { 1688 struct socket *sock; 1689 struct sockaddr_storage address; 1690 int len, err, fput_needed; 1691 1692 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1693 if (sock != NULL) { 1694 err = security_socket_getpeername(sock); 1695 if (err) { 1696 fput_light(sock->file, fput_needed); 1697 return err; 1698 } 1699 1700 err = 1701 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1702 1); 1703 if (!err) 1704 err = move_addr_to_user(&address, len, usockaddr, 1705 usockaddr_len); 1706 fput_light(sock->file, fput_needed); 1707 } 1708 return err; 1709 } 1710 1711 /* 1712 * Send a datagram to a given address. We move the address into kernel 1713 * space and check the user space data area is readable before invoking 1714 * the protocol. 1715 */ 1716 1717 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1718 unsigned int, flags, struct sockaddr __user *, addr, 1719 int, addr_len) 1720 { 1721 struct socket *sock; 1722 struct sockaddr_storage address; 1723 int err; 1724 struct msghdr msg; 1725 struct iovec iov; 1726 int fput_needed; 1727 1728 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1729 if (unlikely(err)) 1730 return err; 1731 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1732 if (!sock) 1733 goto out; 1734 1735 msg.msg_name = NULL; 1736 msg.msg_control = NULL; 1737 msg.msg_controllen = 0; 1738 msg.msg_namelen = 0; 1739 if (addr) { 1740 err = move_addr_to_kernel(addr, addr_len, &address); 1741 if (err < 0) 1742 goto out_put; 1743 msg.msg_name = (struct sockaddr *)&address; 1744 msg.msg_namelen = addr_len; 1745 } 1746 if (sock->file->f_flags & O_NONBLOCK) 1747 flags |= MSG_DONTWAIT; 1748 msg.msg_flags = flags; 1749 err = sock_sendmsg(sock, &msg); 1750 1751 out_put: 1752 fput_light(sock->file, fput_needed); 1753 out: 1754 return err; 1755 } 1756 1757 /* 1758 * Send a datagram down a socket. 1759 */ 1760 1761 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1762 unsigned int, flags) 1763 { 1764 return sys_sendto(fd, buff, len, flags, NULL, 0); 1765 } 1766 1767 /* 1768 * Receive a frame from the socket and optionally record the address of the 1769 * sender. We verify the buffers are writable and if needed move the 1770 * sender address from kernel to user space. 1771 */ 1772 1773 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1774 unsigned int, flags, struct sockaddr __user *, addr, 1775 int __user *, addr_len) 1776 { 1777 struct socket *sock; 1778 struct iovec iov; 1779 struct msghdr msg; 1780 struct sockaddr_storage address; 1781 int err, err2; 1782 int fput_needed; 1783 1784 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1785 if (unlikely(err)) 1786 return err; 1787 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1788 if (!sock) 1789 goto out; 1790 1791 msg.msg_control = NULL; 1792 msg.msg_controllen = 0; 1793 /* Save some cycles and don't copy the address if not needed */ 1794 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1795 /* We assume all kernel code knows the size of sockaddr_storage */ 1796 msg.msg_namelen = 0; 1797 msg.msg_iocb = NULL; 1798 msg.msg_flags = 0; 1799 if (sock->file->f_flags & O_NONBLOCK) 1800 flags |= MSG_DONTWAIT; 1801 err = sock_recvmsg(sock, &msg, flags); 1802 1803 if (err >= 0 && addr != NULL) { 1804 err2 = move_addr_to_user(&address, 1805 msg.msg_namelen, addr, addr_len); 1806 if (err2 < 0) 1807 err = err2; 1808 } 1809 1810 fput_light(sock->file, fput_needed); 1811 out: 1812 return err; 1813 } 1814 1815 /* 1816 * Receive a datagram from a socket. 1817 */ 1818 1819 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1820 unsigned int, flags) 1821 { 1822 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1823 } 1824 1825 /* 1826 * Set a socket option. Because we don't know the option lengths we have 1827 * to pass the user mode parameter for the protocols to sort out. 1828 */ 1829 1830 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1831 char __user *, optval, int, optlen) 1832 { 1833 int err, fput_needed; 1834 struct socket *sock; 1835 1836 if (optlen < 0) 1837 return -EINVAL; 1838 1839 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1840 if (sock != NULL) { 1841 err = security_socket_setsockopt(sock, level, optname); 1842 if (err) 1843 goto out_put; 1844 1845 if (level == SOL_SOCKET) 1846 err = 1847 sock_setsockopt(sock, level, optname, optval, 1848 optlen); 1849 else 1850 err = 1851 sock->ops->setsockopt(sock, level, optname, optval, 1852 optlen); 1853 out_put: 1854 fput_light(sock->file, fput_needed); 1855 } 1856 return err; 1857 } 1858 1859 /* 1860 * Get a socket option. Because we don't know the option lengths we have 1861 * to pass a user mode parameter for the protocols to sort out. 1862 */ 1863 1864 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1865 char __user *, optval, int __user *, optlen) 1866 { 1867 int err, fput_needed; 1868 struct socket *sock; 1869 1870 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1871 if (sock != NULL) { 1872 err = security_socket_getsockopt(sock, level, optname); 1873 if (err) 1874 goto out_put; 1875 1876 if (level == SOL_SOCKET) 1877 err = 1878 sock_getsockopt(sock, level, optname, optval, 1879 optlen); 1880 else 1881 err = 1882 sock->ops->getsockopt(sock, level, optname, optval, 1883 optlen); 1884 out_put: 1885 fput_light(sock->file, fput_needed); 1886 } 1887 return err; 1888 } 1889 1890 /* 1891 * Shutdown a socket. 1892 */ 1893 1894 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1895 { 1896 int err, fput_needed; 1897 struct socket *sock; 1898 1899 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1900 if (sock != NULL) { 1901 err = security_socket_shutdown(sock, how); 1902 if (!err) 1903 err = sock->ops->shutdown(sock, how); 1904 fput_light(sock->file, fput_needed); 1905 } 1906 return err; 1907 } 1908 1909 /* A couple of helpful macros for getting the address of the 32/64 bit 1910 * fields which are the same type (int / unsigned) on our platforms. 1911 */ 1912 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1913 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1914 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1915 1916 struct used_address { 1917 struct sockaddr_storage name; 1918 unsigned int name_len; 1919 }; 1920 1921 static int copy_msghdr_from_user(struct msghdr *kmsg, 1922 struct user_msghdr __user *umsg, 1923 struct sockaddr __user **save_addr, 1924 struct iovec **iov) 1925 { 1926 struct user_msghdr msg; 1927 ssize_t err; 1928 1929 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 1930 return -EFAULT; 1931 1932 kmsg->msg_control = (void __force *)msg.msg_control; 1933 kmsg->msg_controllen = msg.msg_controllen; 1934 kmsg->msg_flags = msg.msg_flags; 1935 1936 kmsg->msg_namelen = msg.msg_namelen; 1937 if (!msg.msg_name) 1938 kmsg->msg_namelen = 0; 1939 1940 if (kmsg->msg_namelen < 0) 1941 return -EINVAL; 1942 1943 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1944 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1945 1946 if (save_addr) 1947 *save_addr = msg.msg_name; 1948 1949 if (msg.msg_name && kmsg->msg_namelen) { 1950 if (!save_addr) { 1951 err = move_addr_to_kernel(msg.msg_name, 1952 kmsg->msg_namelen, 1953 kmsg->msg_name); 1954 if (err < 0) 1955 return err; 1956 } 1957 } else { 1958 kmsg->msg_name = NULL; 1959 kmsg->msg_namelen = 0; 1960 } 1961 1962 if (msg.msg_iovlen > UIO_MAXIOV) 1963 return -EMSGSIZE; 1964 1965 kmsg->msg_iocb = NULL; 1966 1967 return import_iovec(save_addr ? READ : WRITE, 1968 msg.msg_iov, msg.msg_iovlen, 1969 UIO_FASTIOV, iov, &kmsg->msg_iter); 1970 } 1971 1972 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1973 struct msghdr *msg_sys, unsigned int flags, 1974 struct used_address *used_address, 1975 unsigned int allowed_msghdr_flags) 1976 { 1977 struct compat_msghdr __user *msg_compat = 1978 (struct compat_msghdr __user *)msg; 1979 struct sockaddr_storage address; 1980 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1981 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1982 __aligned(sizeof(__kernel_size_t)); 1983 /* 20 is size of ipv6_pktinfo */ 1984 unsigned char *ctl_buf = ctl; 1985 int ctl_len; 1986 ssize_t err; 1987 1988 msg_sys->msg_name = &address; 1989 1990 if (MSG_CMSG_COMPAT & flags) 1991 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1992 else 1993 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1994 if (err < 0) 1995 return err; 1996 1997 err = -ENOBUFS; 1998 1999 if (msg_sys->msg_controllen > INT_MAX) 2000 goto out_freeiov; 2001 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2002 ctl_len = msg_sys->msg_controllen; 2003 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2004 err = 2005 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2006 sizeof(ctl)); 2007 if (err) 2008 goto out_freeiov; 2009 ctl_buf = msg_sys->msg_control; 2010 ctl_len = msg_sys->msg_controllen; 2011 } else if (ctl_len) { 2012 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2013 CMSG_ALIGN(sizeof(struct cmsghdr))); 2014 if (ctl_len > sizeof(ctl)) { 2015 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2016 if (ctl_buf == NULL) 2017 goto out_freeiov; 2018 } 2019 err = -EFAULT; 2020 /* 2021 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2022 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2023 * checking falls down on this. 2024 */ 2025 if (copy_from_user(ctl_buf, 2026 (void __user __force *)msg_sys->msg_control, 2027 ctl_len)) 2028 goto out_freectl; 2029 msg_sys->msg_control = ctl_buf; 2030 } 2031 msg_sys->msg_flags = flags; 2032 2033 if (sock->file->f_flags & O_NONBLOCK) 2034 msg_sys->msg_flags |= MSG_DONTWAIT; 2035 /* 2036 * If this is sendmmsg() and current destination address is same as 2037 * previously succeeded address, omit asking LSM's decision. 2038 * used_address->name_len is initialized to UINT_MAX so that the first 2039 * destination address never matches. 2040 */ 2041 if (used_address && msg_sys->msg_name && 2042 used_address->name_len == msg_sys->msg_namelen && 2043 !memcmp(&used_address->name, msg_sys->msg_name, 2044 used_address->name_len)) { 2045 err = sock_sendmsg_nosec(sock, msg_sys); 2046 goto out_freectl; 2047 } 2048 err = sock_sendmsg(sock, msg_sys); 2049 /* 2050 * If this is sendmmsg() and sending to current destination address was 2051 * successful, remember it. 2052 */ 2053 if (used_address && err >= 0) { 2054 used_address->name_len = msg_sys->msg_namelen; 2055 if (msg_sys->msg_name) 2056 memcpy(&used_address->name, msg_sys->msg_name, 2057 used_address->name_len); 2058 } 2059 2060 out_freectl: 2061 if (ctl_buf != ctl) 2062 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2063 out_freeiov: 2064 kfree(iov); 2065 return err; 2066 } 2067 2068 /* 2069 * BSD sendmsg interface 2070 */ 2071 2072 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2073 { 2074 int fput_needed, err; 2075 struct msghdr msg_sys; 2076 struct socket *sock; 2077 2078 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2079 if (!sock) 2080 goto out; 2081 2082 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2083 2084 fput_light(sock->file, fput_needed); 2085 out: 2086 return err; 2087 } 2088 2089 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2090 { 2091 if (flags & MSG_CMSG_COMPAT) 2092 return -EINVAL; 2093 return __sys_sendmsg(fd, msg, flags); 2094 } 2095 2096 /* 2097 * Linux sendmmsg interface 2098 */ 2099 2100 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2101 unsigned int flags) 2102 { 2103 int fput_needed, err, datagrams; 2104 struct socket *sock; 2105 struct mmsghdr __user *entry; 2106 struct compat_mmsghdr __user *compat_entry; 2107 struct msghdr msg_sys; 2108 struct used_address used_address; 2109 unsigned int oflags = flags; 2110 2111 if (vlen > UIO_MAXIOV) 2112 vlen = UIO_MAXIOV; 2113 2114 datagrams = 0; 2115 2116 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2117 if (!sock) 2118 return err; 2119 2120 used_address.name_len = UINT_MAX; 2121 entry = mmsg; 2122 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2123 err = 0; 2124 flags |= MSG_BATCH; 2125 2126 while (datagrams < vlen) { 2127 if (datagrams == vlen - 1) 2128 flags = oflags; 2129 2130 if (MSG_CMSG_COMPAT & flags) { 2131 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2132 &msg_sys, flags, &used_address, MSG_EOR); 2133 if (err < 0) 2134 break; 2135 err = __put_user(err, &compat_entry->msg_len); 2136 ++compat_entry; 2137 } else { 2138 err = ___sys_sendmsg(sock, 2139 (struct user_msghdr __user *)entry, 2140 &msg_sys, flags, &used_address, MSG_EOR); 2141 if (err < 0) 2142 break; 2143 err = put_user(err, &entry->msg_len); 2144 ++entry; 2145 } 2146 2147 if (err) 2148 break; 2149 ++datagrams; 2150 if (msg_data_left(&msg_sys)) 2151 break; 2152 cond_resched(); 2153 } 2154 2155 fput_light(sock->file, fput_needed); 2156 2157 /* We only return an error if no datagrams were able to be sent */ 2158 if (datagrams != 0) 2159 return datagrams; 2160 2161 return err; 2162 } 2163 2164 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2165 unsigned int, vlen, unsigned int, flags) 2166 { 2167 if (flags & MSG_CMSG_COMPAT) 2168 return -EINVAL; 2169 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2170 } 2171 2172 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2173 struct msghdr *msg_sys, unsigned int flags, int nosec) 2174 { 2175 struct compat_msghdr __user *msg_compat = 2176 (struct compat_msghdr __user *)msg; 2177 struct iovec iovstack[UIO_FASTIOV]; 2178 struct iovec *iov = iovstack; 2179 unsigned long cmsg_ptr; 2180 int len; 2181 ssize_t err; 2182 2183 /* kernel mode address */ 2184 struct sockaddr_storage addr; 2185 2186 /* user mode address pointers */ 2187 struct sockaddr __user *uaddr; 2188 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2189 2190 msg_sys->msg_name = &addr; 2191 2192 if (MSG_CMSG_COMPAT & flags) 2193 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2194 else 2195 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2196 if (err < 0) 2197 return err; 2198 2199 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2200 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2201 2202 /* We assume all kernel code knows the size of sockaddr_storage */ 2203 msg_sys->msg_namelen = 0; 2204 2205 if (sock->file->f_flags & O_NONBLOCK) 2206 flags |= MSG_DONTWAIT; 2207 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2208 if (err < 0) 2209 goto out_freeiov; 2210 len = err; 2211 2212 if (uaddr != NULL) { 2213 err = move_addr_to_user(&addr, 2214 msg_sys->msg_namelen, uaddr, 2215 uaddr_len); 2216 if (err < 0) 2217 goto out_freeiov; 2218 } 2219 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2220 COMPAT_FLAGS(msg)); 2221 if (err) 2222 goto out_freeiov; 2223 if (MSG_CMSG_COMPAT & flags) 2224 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2225 &msg_compat->msg_controllen); 2226 else 2227 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2228 &msg->msg_controllen); 2229 if (err) 2230 goto out_freeiov; 2231 err = len; 2232 2233 out_freeiov: 2234 kfree(iov); 2235 return err; 2236 } 2237 2238 /* 2239 * BSD recvmsg interface 2240 */ 2241 2242 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2243 { 2244 int fput_needed, err; 2245 struct msghdr msg_sys; 2246 struct socket *sock; 2247 2248 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2249 if (!sock) 2250 goto out; 2251 2252 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2253 2254 fput_light(sock->file, fput_needed); 2255 out: 2256 return err; 2257 } 2258 2259 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2260 unsigned int, flags) 2261 { 2262 if (flags & MSG_CMSG_COMPAT) 2263 return -EINVAL; 2264 return __sys_recvmsg(fd, msg, flags); 2265 } 2266 2267 /* 2268 * Linux recvmmsg interface 2269 */ 2270 2271 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2272 unsigned int flags, struct timespec *timeout) 2273 { 2274 int fput_needed, err, datagrams; 2275 struct socket *sock; 2276 struct mmsghdr __user *entry; 2277 struct compat_mmsghdr __user *compat_entry; 2278 struct msghdr msg_sys; 2279 struct timespec64 end_time; 2280 struct timespec64 timeout64; 2281 2282 if (timeout && 2283 poll_select_set_timeout(&end_time, timeout->tv_sec, 2284 timeout->tv_nsec)) 2285 return -EINVAL; 2286 2287 datagrams = 0; 2288 2289 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2290 if (!sock) 2291 return err; 2292 2293 err = sock_error(sock->sk); 2294 if (err) { 2295 datagrams = err; 2296 goto out_put; 2297 } 2298 2299 entry = mmsg; 2300 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2301 2302 while (datagrams < vlen) { 2303 /* 2304 * No need to ask LSM for more than the first datagram. 2305 */ 2306 if (MSG_CMSG_COMPAT & flags) { 2307 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2308 &msg_sys, flags & ~MSG_WAITFORONE, 2309 datagrams); 2310 if (err < 0) 2311 break; 2312 err = __put_user(err, &compat_entry->msg_len); 2313 ++compat_entry; 2314 } else { 2315 err = ___sys_recvmsg(sock, 2316 (struct user_msghdr __user *)entry, 2317 &msg_sys, flags & ~MSG_WAITFORONE, 2318 datagrams); 2319 if (err < 0) 2320 break; 2321 err = put_user(err, &entry->msg_len); 2322 ++entry; 2323 } 2324 2325 if (err) 2326 break; 2327 ++datagrams; 2328 2329 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2330 if (flags & MSG_WAITFORONE) 2331 flags |= MSG_DONTWAIT; 2332 2333 if (timeout) { 2334 ktime_get_ts64(&timeout64); 2335 *timeout = timespec64_to_timespec( 2336 timespec64_sub(end_time, timeout64)); 2337 if (timeout->tv_sec < 0) { 2338 timeout->tv_sec = timeout->tv_nsec = 0; 2339 break; 2340 } 2341 2342 /* Timeout, return less than vlen datagrams */ 2343 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2344 break; 2345 } 2346 2347 /* Out of band data, return right away */ 2348 if (msg_sys.msg_flags & MSG_OOB) 2349 break; 2350 cond_resched(); 2351 } 2352 2353 if (err == 0) 2354 goto out_put; 2355 2356 if (datagrams == 0) { 2357 datagrams = err; 2358 goto out_put; 2359 } 2360 2361 /* 2362 * We may return less entries than requested (vlen) if the 2363 * sock is non block and there aren't enough datagrams... 2364 */ 2365 if (err != -EAGAIN) { 2366 /* 2367 * ... or if recvmsg returns an error after we 2368 * received some datagrams, where we record the 2369 * error to return on the next call or if the 2370 * app asks about it using getsockopt(SO_ERROR). 2371 */ 2372 sock->sk->sk_err = -err; 2373 } 2374 out_put: 2375 fput_light(sock->file, fput_needed); 2376 2377 return datagrams; 2378 } 2379 2380 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2381 unsigned int, vlen, unsigned int, flags, 2382 struct timespec __user *, timeout) 2383 { 2384 int datagrams; 2385 struct timespec timeout_sys; 2386 2387 if (flags & MSG_CMSG_COMPAT) 2388 return -EINVAL; 2389 2390 if (!timeout) 2391 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2392 2393 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2394 return -EFAULT; 2395 2396 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2397 2398 if (datagrams > 0 && 2399 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2400 datagrams = -EFAULT; 2401 2402 return datagrams; 2403 } 2404 2405 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2406 /* Argument list sizes for sys_socketcall */ 2407 #define AL(x) ((x) * sizeof(unsigned long)) 2408 static const unsigned char nargs[21] = { 2409 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2410 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2411 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2412 AL(4), AL(5), AL(4) 2413 }; 2414 2415 #undef AL 2416 2417 /* 2418 * System call vectors. 2419 * 2420 * Argument checking cleaned up. Saved 20% in size. 2421 * This function doesn't need to set the kernel lock because 2422 * it is set by the callees. 2423 */ 2424 2425 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2426 { 2427 unsigned long a[AUDITSC_ARGS]; 2428 unsigned long a0, a1; 2429 int err; 2430 unsigned int len; 2431 2432 if (call < 1 || call > SYS_SENDMMSG) 2433 return -EINVAL; 2434 2435 len = nargs[call]; 2436 if (len > sizeof(a)) 2437 return -EINVAL; 2438 2439 /* copy_from_user should be SMP safe. */ 2440 if (copy_from_user(a, args, len)) 2441 return -EFAULT; 2442 2443 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2444 if (err) 2445 return err; 2446 2447 a0 = a[0]; 2448 a1 = a[1]; 2449 2450 switch (call) { 2451 case SYS_SOCKET: 2452 err = sys_socket(a0, a1, a[2]); 2453 break; 2454 case SYS_BIND: 2455 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2456 break; 2457 case SYS_CONNECT: 2458 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2459 break; 2460 case SYS_LISTEN: 2461 err = sys_listen(a0, a1); 2462 break; 2463 case SYS_ACCEPT: 2464 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2465 (int __user *)a[2], 0); 2466 break; 2467 case SYS_GETSOCKNAME: 2468 err = 2469 sys_getsockname(a0, (struct sockaddr __user *)a1, 2470 (int __user *)a[2]); 2471 break; 2472 case SYS_GETPEERNAME: 2473 err = 2474 sys_getpeername(a0, (struct sockaddr __user *)a1, 2475 (int __user *)a[2]); 2476 break; 2477 case SYS_SOCKETPAIR: 2478 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2479 break; 2480 case SYS_SEND: 2481 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2482 break; 2483 case SYS_SENDTO: 2484 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2485 (struct sockaddr __user *)a[4], a[5]); 2486 break; 2487 case SYS_RECV: 2488 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2489 break; 2490 case SYS_RECVFROM: 2491 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2492 (struct sockaddr __user *)a[4], 2493 (int __user *)a[5]); 2494 break; 2495 case SYS_SHUTDOWN: 2496 err = sys_shutdown(a0, a1); 2497 break; 2498 case SYS_SETSOCKOPT: 2499 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2500 break; 2501 case SYS_GETSOCKOPT: 2502 err = 2503 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2504 (int __user *)a[4]); 2505 break; 2506 case SYS_SENDMSG: 2507 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2508 break; 2509 case SYS_SENDMMSG: 2510 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2511 break; 2512 case SYS_RECVMSG: 2513 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2514 break; 2515 case SYS_RECVMMSG: 2516 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2517 (struct timespec __user *)a[4]); 2518 break; 2519 case SYS_ACCEPT4: 2520 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2521 (int __user *)a[2], a[3]); 2522 break; 2523 default: 2524 err = -EINVAL; 2525 break; 2526 } 2527 return err; 2528 } 2529 2530 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2531 2532 /** 2533 * sock_register - add a socket protocol handler 2534 * @ops: description of protocol 2535 * 2536 * This function is called by a protocol handler that wants to 2537 * advertise its address family, and have it linked into the 2538 * socket interface. The value ops->family corresponds to the 2539 * socket system call protocol family. 2540 */ 2541 int sock_register(const struct net_proto_family *ops) 2542 { 2543 int err; 2544 2545 if (ops->family >= NPROTO) { 2546 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2547 return -ENOBUFS; 2548 } 2549 2550 spin_lock(&net_family_lock); 2551 if (rcu_dereference_protected(net_families[ops->family], 2552 lockdep_is_held(&net_family_lock))) 2553 err = -EEXIST; 2554 else { 2555 rcu_assign_pointer(net_families[ops->family], ops); 2556 err = 0; 2557 } 2558 spin_unlock(&net_family_lock); 2559 2560 pr_info("NET: Registered protocol family %d\n", ops->family); 2561 return err; 2562 } 2563 EXPORT_SYMBOL(sock_register); 2564 2565 /** 2566 * sock_unregister - remove a protocol handler 2567 * @family: protocol family to remove 2568 * 2569 * This function is called by a protocol handler that wants to 2570 * remove its address family, and have it unlinked from the 2571 * new socket creation. 2572 * 2573 * If protocol handler is a module, then it can use module reference 2574 * counts to protect against new references. If protocol handler is not 2575 * a module then it needs to provide its own protection in 2576 * the ops->create routine. 2577 */ 2578 void sock_unregister(int family) 2579 { 2580 BUG_ON(family < 0 || family >= NPROTO); 2581 2582 spin_lock(&net_family_lock); 2583 RCU_INIT_POINTER(net_families[family], NULL); 2584 spin_unlock(&net_family_lock); 2585 2586 synchronize_rcu(); 2587 2588 pr_info("NET: Unregistered protocol family %d\n", family); 2589 } 2590 EXPORT_SYMBOL(sock_unregister); 2591 2592 static int __init sock_init(void) 2593 { 2594 int err; 2595 /* 2596 * Initialize the network sysctl infrastructure. 2597 */ 2598 err = net_sysctl_init(); 2599 if (err) 2600 goto out; 2601 2602 /* 2603 * Initialize skbuff SLAB cache 2604 */ 2605 skb_init(); 2606 2607 /* 2608 * Initialize the protocols module. 2609 */ 2610 2611 init_inodecache(); 2612 2613 err = register_filesystem(&sock_fs_type); 2614 if (err) 2615 goto out_fs; 2616 sock_mnt = kern_mount(&sock_fs_type); 2617 if (IS_ERR(sock_mnt)) { 2618 err = PTR_ERR(sock_mnt); 2619 goto out_mount; 2620 } 2621 2622 /* The real protocol initialization is performed in later initcalls. 2623 */ 2624 2625 #ifdef CONFIG_NETFILTER 2626 err = netfilter_init(); 2627 if (err) 2628 goto out; 2629 #endif 2630 2631 ptp_classifier_init(); 2632 2633 out: 2634 return err; 2635 2636 out_mount: 2637 unregister_filesystem(&sock_fs_type); 2638 out_fs: 2639 goto out; 2640 } 2641 2642 core_initcall(sock_init); /* early initcall */ 2643 2644 #ifdef CONFIG_PROC_FS 2645 void socket_seq_show(struct seq_file *seq) 2646 { 2647 int cpu; 2648 int counter = 0; 2649 2650 for_each_possible_cpu(cpu) 2651 counter += per_cpu(sockets_in_use, cpu); 2652 2653 /* It can be negative, by the way. 8) */ 2654 if (counter < 0) 2655 counter = 0; 2656 2657 seq_printf(seq, "sockets: used %d\n", counter); 2658 } 2659 #endif /* CONFIG_PROC_FS */ 2660 2661 #ifdef CONFIG_COMPAT 2662 static int do_siocgstamp(struct net *net, struct socket *sock, 2663 unsigned int cmd, void __user *up) 2664 { 2665 mm_segment_t old_fs = get_fs(); 2666 struct timeval ktv; 2667 int err; 2668 2669 set_fs(KERNEL_DS); 2670 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2671 set_fs(old_fs); 2672 if (!err) 2673 err = compat_put_timeval(&ktv, up); 2674 2675 return err; 2676 } 2677 2678 static int do_siocgstampns(struct net *net, struct socket *sock, 2679 unsigned int cmd, void __user *up) 2680 { 2681 mm_segment_t old_fs = get_fs(); 2682 struct timespec kts; 2683 int err; 2684 2685 set_fs(KERNEL_DS); 2686 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2687 set_fs(old_fs); 2688 if (!err) 2689 err = compat_put_timespec(&kts, up); 2690 2691 return err; 2692 } 2693 2694 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2695 { 2696 struct ifreq __user *uifr; 2697 int err; 2698 2699 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2700 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2701 return -EFAULT; 2702 2703 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2704 if (err) 2705 return err; 2706 2707 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2708 return -EFAULT; 2709 2710 return 0; 2711 } 2712 2713 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2714 { 2715 struct compat_ifconf ifc32; 2716 struct ifconf ifc; 2717 struct ifconf __user *uifc; 2718 struct compat_ifreq __user *ifr32; 2719 struct ifreq __user *ifr; 2720 unsigned int i, j; 2721 int err; 2722 2723 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2724 return -EFAULT; 2725 2726 memset(&ifc, 0, sizeof(ifc)); 2727 if (ifc32.ifcbuf == 0) { 2728 ifc32.ifc_len = 0; 2729 ifc.ifc_len = 0; 2730 ifc.ifc_req = NULL; 2731 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2732 } else { 2733 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2734 sizeof(struct ifreq); 2735 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2736 ifc.ifc_len = len; 2737 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2738 ifr32 = compat_ptr(ifc32.ifcbuf); 2739 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2740 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2741 return -EFAULT; 2742 ifr++; 2743 ifr32++; 2744 } 2745 } 2746 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2747 return -EFAULT; 2748 2749 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2750 if (err) 2751 return err; 2752 2753 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2754 return -EFAULT; 2755 2756 ifr = ifc.ifc_req; 2757 ifr32 = compat_ptr(ifc32.ifcbuf); 2758 for (i = 0, j = 0; 2759 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2760 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2761 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2762 return -EFAULT; 2763 ifr32++; 2764 ifr++; 2765 } 2766 2767 if (ifc32.ifcbuf == 0) { 2768 /* Translate from 64-bit structure multiple to 2769 * a 32-bit one. 2770 */ 2771 i = ifc.ifc_len; 2772 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2773 ifc32.ifc_len = i; 2774 } else { 2775 ifc32.ifc_len = i; 2776 } 2777 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2778 return -EFAULT; 2779 2780 return 0; 2781 } 2782 2783 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2784 { 2785 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2786 bool convert_in = false, convert_out = false; 2787 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2788 struct ethtool_rxnfc __user *rxnfc; 2789 struct ifreq __user *ifr; 2790 u32 rule_cnt = 0, actual_rule_cnt; 2791 u32 ethcmd; 2792 u32 data; 2793 int ret; 2794 2795 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2796 return -EFAULT; 2797 2798 compat_rxnfc = compat_ptr(data); 2799 2800 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2801 return -EFAULT; 2802 2803 /* Most ethtool structures are defined without padding. 2804 * Unfortunately struct ethtool_rxnfc is an exception. 2805 */ 2806 switch (ethcmd) { 2807 default: 2808 break; 2809 case ETHTOOL_GRXCLSRLALL: 2810 /* Buffer size is variable */ 2811 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2812 return -EFAULT; 2813 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2814 return -ENOMEM; 2815 buf_size += rule_cnt * sizeof(u32); 2816 /* fall through */ 2817 case ETHTOOL_GRXRINGS: 2818 case ETHTOOL_GRXCLSRLCNT: 2819 case ETHTOOL_GRXCLSRULE: 2820 case ETHTOOL_SRXCLSRLINS: 2821 convert_out = true; 2822 /* fall through */ 2823 case ETHTOOL_SRXCLSRLDEL: 2824 buf_size += sizeof(struct ethtool_rxnfc); 2825 convert_in = true; 2826 break; 2827 } 2828 2829 ifr = compat_alloc_user_space(buf_size); 2830 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2831 2832 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2833 return -EFAULT; 2834 2835 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2836 &ifr->ifr_ifru.ifru_data)) 2837 return -EFAULT; 2838 2839 if (convert_in) { 2840 /* We expect there to be holes between fs.m_ext and 2841 * fs.ring_cookie and at the end of fs, but nowhere else. 2842 */ 2843 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2844 sizeof(compat_rxnfc->fs.m_ext) != 2845 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2846 sizeof(rxnfc->fs.m_ext)); 2847 BUILD_BUG_ON( 2848 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2849 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2850 offsetof(struct ethtool_rxnfc, fs.location) - 2851 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2852 2853 if (copy_in_user(rxnfc, compat_rxnfc, 2854 (void __user *)(&rxnfc->fs.m_ext + 1) - 2855 (void __user *)rxnfc) || 2856 copy_in_user(&rxnfc->fs.ring_cookie, 2857 &compat_rxnfc->fs.ring_cookie, 2858 (void __user *)(&rxnfc->fs.location + 1) - 2859 (void __user *)&rxnfc->fs.ring_cookie) || 2860 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2861 sizeof(rxnfc->rule_cnt))) 2862 return -EFAULT; 2863 } 2864 2865 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2866 if (ret) 2867 return ret; 2868 2869 if (convert_out) { 2870 if (copy_in_user(compat_rxnfc, rxnfc, 2871 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2872 (const void __user *)rxnfc) || 2873 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2874 &rxnfc->fs.ring_cookie, 2875 (const void __user *)(&rxnfc->fs.location + 1) - 2876 (const void __user *)&rxnfc->fs.ring_cookie) || 2877 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2878 sizeof(rxnfc->rule_cnt))) 2879 return -EFAULT; 2880 2881 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2882 /* As an optimisation, we only copy the actual 2883 * number of rules that the underlying 2884 * function returned. Since Mallory might 2885 * change the rule count in user memory, we 2886 * check that it is less than the rule count 2887 * originally given (as the user buffer size), 2888 * which has been range-checked. 2889 */ 2890 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2891 return -EFAULT; 2892 if (actual_rule_cnt < rule_cnt) 2893 rule_cnt = actual_rule_cnt; 2894 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2895 &rxnfc->rule_locs[0], 2896 rule_cnt * sizeof(u32))) 2897 return -EFAULT; 2898 } 2899 } 2900 2901 return 0; 2902 } 2903 2904 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2905 { 2906 void __user *uptr; 2907 compat_uptr_t uptr32; 2908 struct ifreq __user *uifr; 2909 2910 uifr = compat_alloc_user_space(sizeof(*uifr)); 2911 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2912 return -EFAULT; 2913 2914 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2915 return -EFAULT; 2916 2917 uptr = compat_ptr(uptr32); 2918 2919 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2920 return -EFAULT; 2921 2922 return dev_ioctl(net, SIOCWANDEV, uifr); 2923 } 2924 2925 static int bond_ioctl(struct net *net, unsigned int cmd, 2926 struct compat_ifreq __user *ifr32) 2927 { 2928 struct ifreq kifr; 2929 mm_segment_t old_fs; 2930 int err; 2931 2932 switch (cmd) { 2933 case SIOCBONDENSLAVE: 2934 case SIOCBONDRELEASE: 2935 case SIOCBONDSETHWADDR: 2936 case SIOCBONDCHANGEACTIVE: 2937 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2938 return -EFAULT; 2939 2940 old_fs = get_fs(); 2941 set_fs(KERNEL_DS); 2942 err = dev_ioctl(net, cmd, 2943 (struct ifreq __user __force *) &kifr); 2944 set_fs(old_fs); 2945 2946 return err; 2947 default: 2948 return -ENOIOCTLCMD; 2949 } 2950 } 2951 2952 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2953 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2954 struct compat_ifreq __user *u_ifreq32) 2955 { 2956 struct ifreq __user *u_ifreq64; 2957 char tmp_buf[IFNAMSIZ]; 2958 void __user *data64; 2959 u32 data32; 2960 2961 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2962 IFNAMSIZ)) 2963 return -EFAULT; 2964 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2965 return -EFAULT; 2966 data64 = compat_ptr(data32); 2967 2968 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2969 2970 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2971 IFNAMSIZ)) 2972 return -EFAULT; 2973 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2974 return -EFAULT; 2975 2976 return dev_ioctl(net, cmd, u_ifreq64); 2977 } 2978 2979 static int dev_ifsioc(struct net *net, struct socket *sock, 2980 unsigned int cmd, struct compat_ifreq __user *uifr32) 2981 { 2982 struct ifreq __user *uifr; 2983 int err; 2984 2985 uifr = compat_alloc_user_space(sizeof(*uifr)); 2986 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2987 return -EFAULT; 2988 2989 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2990 2991 if (!err) { 2992 switch (cmd) { 2993 case SIOCGIFFLAGS: 2994 case SIOCGIFMETRIC: 2995 case SIOCGIFMTU: 2996 case SIOCGIFMEM: 2997 case SIOCGIFHWADDR: 2998 case SIOCGIFINDEX: 2999 case SIOCGIFADDR: 3000 case SIOCGIFBRDADDR: 3001 case SIOCGIFDSTADDR: 3002 case SIOCGIFNETMASK: 3003 case SIOCGIFPFLAGS: 3004 case SIOCGIFTXQLEN: 3005 case SIOCGMIIPHY: 3006 case SIOCGMIIREG: 3007 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3008 err = -EFAULT; 3009 break; 3010 } 3011 } 3012 return err; 3013 } 3014 3015 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3016 struct compat_ifreq __user *uifr32) 3017 { 3018 struct ifreq ifr; 3019 struct compat_ifmap __user *uifmap32; 3020 mm_segment_t old_fs; 3021 int err; 3022 3023 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3024 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3025 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3026 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3027 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3028 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3029 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3030 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3031 if (err) 3032 return -EFAULT; 3033 3034 old_fs = get_fs(); 3035 set_fs(KERNEL_DS); 3036 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3037 set_fs(old_fs); 3038 3039 if (cmd == SIOCGIFMAP && !err) { 3040 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3041 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3042 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3043 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3044 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3045 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3046 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3047 if (err) 3048 err = -EFAULT; 3049 } 3050 return err; 3051 } 3052 3053 struct rtentry32 { 3054 u32 rt_pad1; 3055 struct sockaddr rt_dst; /* target address */ 3056 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3057 struct sockaddr rt_genmask; /* target network mask (IP) */ 3058 unsigned short rt_flags; 3059 short rt_pad2; 3060 u32 rt_pad3; 3061 unsigned char rt_tos; 3062 unsigned char rt_class; 3063 short rt_pad4; 3064 short rt_metric; /* +1 for binary compatibility! */ 3065 /* char * */ u32 rt_dev; /* forcing the device at add */ 3066 u32 rt_mtu; /* per route MTU/Window */ 3067 u32 rt_window; /* Window clamping */ 3068 unsigned short rt_irtt; /* Initial RTT */ 3069 }; 3070 3071 struct in6_rtmsg32 { 3072 struct in6_addr rtmsg_dst; 3073 struct in6_addr rtmsg_src; 3074 struct in6_addr rtmsg_gateway; 3075 u32 rtmsg_type; 3076 u16 rtmsg_dst_len; 3077 u16 rtmsg_src_len; 3078 u32 rtmsg_metric; 3079 u32 rtmsg_info; 3080 u32 rtmsg_flags; 3081 s32 rtmsg_ifindex; 3082 }; 3083 3084 static int routing_ioctl(struct net *net, struct socket *sock, 3085 unsigned int cmd, void __user *argp) 3086 { 3087 int ret; 3088 void *r = NULL; 3089 struct in6_rtmsg r6; 3090 struct rtentry r4; 3091 char devname[16]; 3092 u32 rtdev; 3093 mm_segment_t old_fs = get_fs(); 3094 3095 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3096 struct in6_rtmsg32 __user *ur6 = argp; 3097 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3098 3 * sizeof(struct in6_addr)); 3099 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3100 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3101 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3102 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3103 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3104 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3105 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3106 3107 r = (void *) &r6; 3108 } else { /* ipv4 */ 3109 struct rtentry32 __user *ur4 = argp; 3110 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3111 3 * sizeof(struct sockaddr)); 3112 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3113 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3114 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3115 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3116 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3117 ret |= get_user(rtdev, &(ur4->rt_dev)); 3118 if (rtdev) { 3119 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3120 r4.rt_dev = (char __user __force *)devname; 3121 devname[15] = 0; 3122 } else 3123 r4.rt_dev = NULL; 3124 3125 r = (void *) &r4; 3126 } 3127 3128 if (ret) { 3129 ret = -EFAULT; 3130 goto out; 3131 } 3132 3133 set_fs(KERNEL_DS); 3134 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3135 set_fs(old_fs); 3136 3137 out: 3138 return ret; 3139 } 3140 3141 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3142 * for some operations; this forces use of the newer bridge-utils that 3143 * use compatible ioctls 3144 */ 3145 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3146 { 3147 compat_ulong_t tmp; 3148 3149 if (get_user(tmp, argp)) 3150 return -EFAULT; 3151 if (tmp == BRCTL_GET_VERSION) 3152 return BRCTL_VERSION + 1; 3153 return -EINVAL; 3154 } 3155 3156 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3157 unsigned int cmd, unsigned long arg) 3158 { 3159 void __user *argp = compat_ptr(arg); 3160 struct sock *sk = sock->sk; 3161 struct net *net = sock_net(sk); 3162 3163 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3164 return compat_ifr_data_ioctl(net, cmd, argp); 3165 3166 switch (cmd) { 3167 case SIOCSIFBR: 3168 case SIOCGIFBR: 3169 return old_bridge_ioctl(argp); 3170 case SIOCGIFNAME: 3171 return dev_ifname32(net, argp); 3172 case SIOCGIFCONF: 3173 return dev_ifconf(net, argp); 3174 case SIOCETHTOOL: 3175 return ethtool_ioctl(net, argp); 3176 case SIOCWANDEV: 3177 return compat_siocwandev(net, argp); 3178 case SIOCGIFMAP: 3179 case SIOCSIFMAP: 3180 return compat_sioc_ifmap(net, cmd, argp); 3181 case SIOCBONDENSLAVE: 3182 case SIOCBONDRELEASE: 3183 case SIOCBONDSETHWADDR: 3184 case SIOCBONDCHANGEACTIVE: 3185 return bond_ioctl(net, cmd, argp); 3186 case SIOCADDRT: 3187 case SIOCDELRT: 3188 return routing_ioctl(net, sock, cmd, argp); 3189 case SIOCGSTAMP: 3190 return do_siocgstamp(net, sock, cmd, argp); 3191 case SIOCGSTAMPNS: 3192 return do_siocgstampns(net, sock, cmd, argp); 3193 case SIOCBONDSLAVEINFOQUERY: 3194 case SIOCBONDINFOQUERY: 3195 case SIOCSHWTSTAMP: 3196 case SIOCGHWTSTAMP: 3197 return compat_ifr_data_ioctl(net, cmd, argp); 3198 3199 case FIOSETOWN: 3200 case SIOCSPGRP: 3201 case FIOGETOWN: 3202 case SIOCGPGRP: 3203 case SIOCBRADDBR: 3204 case SIOCBRDELBR: 3205 case SIOCGIFVLAN: 3206 case SIOCSIFVLAN: 3207 case SIOCADDDLCI: 3208 case SIOCDELDLCI: 3209 case SIOCGSKNS: 3210 return sock_ioctl(file, cmd, arg); 3211 3212 case SIOCGIFFLAGS: 3213 case SIOCSIFFLAGS: 3214 case SIOCGIFMETRIC: 3215 case SIOCSIFMETRIC: 3216 case SIOCGIFMTU: 3217 case SIOCSIFMTU: 3218 case SIOCGIFMEM: 3219 case SIOCSIFMEM: 3220 case SIOCGIFHWADDR: 3221 case SIOCSIFHWADDR: 3222 case SIOCADDMULTI: 3223 case SIOCDELMULTI: 3224 case SIOCGIFINDEX: 3225 case SIOCGIFADDR: 3226 case SIOCSIFADDR: 3227 case SIOCSIFHWBROADCAST: 3228 case SIOCDIFADDR: 3229 case SIOCGIFBRDADDR: 3230 case SIOCSIFBRDADDR: 3231 case SIOCGIFDSTADDR: 3232 case SIOCSIFDSTADDR: 3233 case SIOCGIFNETMASK: 3234 case SIOCSIFNETMASK: 3235 case SIOCSIFPFLAGS: 3236 case SIOCGIFPFLAGS: 3237 case SIOCGIFTXQLEN: 3238 case SIOCSIFTXQLEN: 3239 case SIOCBRADDIF: 3240 case SIOCBRDELIF: 3241 case SIOCSIFNAME: 3242 case SIOCGMIIPHY: 3243 case SIOCGMIIREG: 3244 case SIOCSMIIREG: 3245 return dev_ifsioc(net, sock, cmd, argp); 3246 3247 case SIOCSARP: 3248 case SIOCGARP: 3249 case SIOCDARP: 3250 case SIOCATMARK: 3251 return sock_do_ioctl(net, sock, cmd, arg); 3252 } 3253 3254 return -ENOIOCTLCMD; 3255 } 3256 3257 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3258 unsigned long arg) 3259 { 3260 struct socket *sock = file->private_data; 3261 int ret = -ENOIOCTLCMD; 3262 struct sock *sk; 3263 struct net *net; 3264 3265 sk = sock->sk; 3266 net = sock_net(sk); 3267 3268 if (sock->ops->compat_ioctl) 3269 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3270 3271 if (ret == -ENOIOCTLCMD && 3272 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3273 ret = compat_wext_handle_ioctl(net, cmd, arg); 3274 3275 if (ret == -ENOIOCTLCMD) 3276 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3277 3278 return ret; 3279 } 3280 #endif 3281 3282 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3283 { 3284 return sock->ops->bind(sock, addr, addrlen); 3285 } 3286 EXPORT_SYMBOL(kernel_bind); 3287 3288 int kernel_listen(struct socket *sock, int backlog) 3289 { 3290 return sock->ops->listen(sock, backlog); 3291 } 3292 EXPORT_SYMBOL(kernel_listen); 3293 3294 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3295 { 3296 struct sock *sk = sock->sk; 3297 int err; 3298 3299 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3300 newsock); 3301 if (err < 0) 3302 goto done; 3303 3304 err = sock->ops->accept(sock, *newsock, flags, true); 3305 if (err < 0) { 3306 sock_release(*newsock); 3307 *newsock = NULL; 3308 goto done; 3309 } 3310 3311 (*newsock)->ops = sock->ops; 3312 __module_get((*newsock)->ops->owner); 3313 3314 done: 3315 return err; 3316 } 3317 EXPORT_SYMBOL(kernel_accept); 3318 3319 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3320 int flags) 3321 { 3322 return sock->ops->connect(sock, addr, addrlen, flags); 3323 } 3324 EXPORT_SYMBOL(kernel_connect); 3325 3326 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3327 int *addrlen) 3328 { 3329 return sock->ops->getname(sock, addr, addrlen, 0); 3330 } 3331 EXPORT_SYMBOL(kernel_getsockname); 3332 3333 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3334 int *addrlen) 3335 { 3336 return sock->ops->getname(sock, addr, addrlen, 1); 3337 } 3338 EXPORT_SYMBOL(kernel_getpeername); 3339 3340 int kernel_getsockopt(struct socket *sock, int level, int optname, 3341 char *optval, int *optlen) 3342 { 3343 mm_segment_t oldfs = get_fs(); 3344 char __user *uoptval; 3345 int __user *uoptlen; 3346 int err; 3347 3348 uoptval = (char __user __force *) optval; 3349 uoptlen = (int __user __force *) optlen; 3350 3351 set_fs(KERNEL_DS); 3352 if (level == SOL_SOCKET) 3353 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3354 else 3355 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3356 uoptlen); 3357 set_fs(oldfs); 3358 return err; 3359 } 3360 EXPORT_SYMBOL(kernel_getsockopt); 3361 3362 int kernel_setsockopt(struct socket *sock, int level, int optname, 3363 char *optval, unsigned int optlen) 3364 { 3365 mm_segment_t oldfs = get_fs(); 3366 char __user *uoptval; 3367 int err; 3368 3369 uoptval = (char __user __force *) optval; 3370 3371 set_fs(KERNEL_DS); 3372 if (level == SOL_SOCKET) 3373 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3374 else 3375 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3376 optlen); 3377 set_fs(oldfs); 3378 return err; 3379 } 3380 EXPORT_SYMBOL(kernel_setsockopt); 3381 3382 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3383 size_t size, int flags) 3384 { 3385 if (sock->ops->sendpage) 3386 return sock->ops->sendpage(sock, page, offset, size, flags); 3387 3388 return sock_no_sendpage(sock, page, offset, size, flags); 3389 } 3390 EXPORT_SYMBOL(kernel_sendpage); 3391 3392 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3393 size_t size, int flags) 3394 { 3395 struct socket *sock = sk->sk_socket; 3396 3397 if (sock->ops->sendpage_locked) 3398 return sock->ops->sendpage_locked(sk, page, offset, size, 3399 flags); 3400 3401 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3402 } 3403 EXPORT_SYMBOL(kernel_sendpage_locked); 3404 3405 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3406 { 3407 mm_segment_t oldfs = get_fs(); 3408 int err; 3409 3410 set_fs(KERNEL_DS); 3411 err = sock->ops->ioctl(sock, cmd, arg); 3412 set_fs(oldfs); 3413 3414 return err; 3415 } 3416 EXPORT_SYMBOL(kernel_sock_ioctl); 3417 3418 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3419 { 3420 return sock->ops->shutdown(sock, how); 3421 } 3422 EXPORT_SYMBOL(kernel_sock_shutdown); 3423 3424 /* This routine returns the IP overhead imposed by a socket i.e. 3425 * the length of the underlying IP header, depending on whether 3426 * this is an IPv4 or IPv6 socket and the length from IP options turned 3427 * on at the socket. Assumes that the caller has a lock on the socket. 3428 */ 3429 u32 kernel_sock_ip_overhead(struct sock *sk) 3430 { 3431 struct inet_sock *inet; 3432 struct ip_options_rcu *opt; 3433 u32 overhead = 0; 3434 #if IS_ENABLED(CONFIG_IPV6) 3435 struct ipv6_pinfo *np; 3436 struct ipv6_txoptions *optv6 = NULL; 3437 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3438 3439 if (!sk) 3440 return overhead; 3441 3442 switch (sk->sk_family) { 3443 case AF_INET: 3444 inet = inet_sk(sk); 3445 overhead += sizeof(struct iphdr); 3446 opt = rcu_dereference_protected(inet->inet_opt, 3447 sock_owned_by_user(sk)); 3448 if (opt) 3449 overhead += opt->opt.optlen; 3450 return overhead; 3451 #if IS_ENABLED(CONFIG_IPV6) 3452 case AF_INET6: 3453 np = inet6_sk(sk); 3454 overhead += sizeof(struct ipv6hdr); 3455 if (np) 3456 optv6 = rcu_dereference_protected(np->opt, 3457 sock_owned_by_user(sk)); 3458 if (optv6) 3459 overhead += (optv6->opt_flen + optv6->opt_nflen); 3460 return overhead; 3461 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3462 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3463 return overhead; 3464 } 3465 } 3466 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3467