xref: /linux/net/socket.c (revision bf070bb0e6c62ba3075db0a666763ba52c677102)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  *	Statistics counters of the socket lists
167  */
168 
169 static DEFINE_PER_CPU(int, sockets_in_use);
170 
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176 
177 /**
178  *	move_addr_to_kernel	-	copy a socket address into kernel space
179  *	@uaddr: Address in user space
180  *	@kaddr: Address in kernel space
181  *	@ulen: Length in user space
182  *
183  *	The address is copied into kernel space. If the provided address is
184  *	too long an error code of -EINVAL is returned. If the copy gives
185  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187 
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 		return -EINVAL;
192 	if (ulen == 0)
193 		return 0;
194 	if (copy_from_user(kaddr, uaddr, ulen))
195 		return -EFAULT;
196 	return audit_sockaddr(ulen, kaddr);
197 }
198 
199 /**
200  *	move_addr_to_user	-	copy an address to user space
201  *	@kaddr: kernel space address
202  *	@klen: length of address in kernel
203  *	@uaddr: user space address
204  *	@ulen: pointer to user length field
205  *
206  *	The value pointed to by ulen on entry is the buffer length available.
207  *	This is overwritten with the buffer space used. -EINVAL is returned
208  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *	is returned if either the buffer or the length field are not
210  *	accessible.
211  *	After copying the data up to the limit the user specifies, the true
212  *	length of the data is written over the length limit the user
213  *	specified. Zero is returned for a success.
214  */
215 
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 			     void __user *uaddr, int __user *ulen)
218 {
219 	int err;
220 	int len;
221 
222 	BUG_ON(klen > sizeof(struct sockaddr_storage));
223 	err = get_user(len, ulen);
224 	if (err)
225 		return err;
226 	if (len > klen)
227 		len = klen;
228 	if (len < 0)
229 		return -EINVAL;
230 	if (len) {
231 		if (audit_sockaddr(klen, kaddr))
232 			return -ENOMEM;
233 		if (copy_to_user(uaddr, kaddr, len))
234 			return -EFAULT;
235 	}
236 	/*
237 	 *      "fromlen shall refer to the value before truncation.."
238 	 *                      1003.1g
239 	 */
240 	return __put_user(klen, ulen);
241 }
242 
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244 
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 	struct socket_alloc *ei;
248 	struct socket_wq *wq;
249 
250 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 	if (!ei)
252 		return NULL;
253 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 	if (!wq) {
255 		kmem_cache_free(sock_inode_cachep, ei);
256 		return NULL;
257 	}
258 	init_waitqueue_head(&wq->wait);
259 	wq->fasync_list = NULL;
260 	wq->flags = 0;
261 	RCU_INIT_POINTER(ei->socket.wq, wq);
262 
263 	ei->socket.state = SS_UNCONNECTED;
264 	ei->socket.flags = 0;
265 	ei->socket.ops = NULL;
266 	ei->socket.sk = NULL;
267 	ei->socket.file = NULL;
268 
269 	return &ei->vfs_inode;
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 	struct socket_wq *wq;
276 
277 	ei = container_of(inode, struct socket_alloc, vfs_inode);
278 	wq = rcu_dereference_protected(ei->socket.wq, 1);
279 	kfree_rcu(wq, rcu);
280 	kmem_cache_free(sock_inode_cachep, ei);
281 }
282 
283 static void init_once(void *foo)
284 {
285 	struct socket_alloc *ei = (struct socket_alloc *)foo;
286 
287 	inode_init_once(&ei->vfs_inode);
288 }
289 
290 static void init_inodecache(void)
291 {
292 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 					      sizeof(struct socket_alloc),
294 					      0,
295 					      (SLAB_HWCACHE_ALIGN |
296 					       SLAB_RECLAIM_ACCOUNT |
297 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 					      init_once);
299 	BUG_ON(sock_inode_cachep == NULL);
300 }
301 
302 static const struct super_operations sockfs_ops = {
303 	.alloc_inode	= sock_alloc_inode,
304 	.destroy_inode	= sock_destroy_inode,
305 	.statfs		= simple_statfs,
306 };
307 
308 /*
309  * sockfs_dname() is called from d_path().
310  */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 				d_inode(dentry)->i_ino);
315 }
316 
317 static const struct dentry_operations sockfs_dentry_operations = {
318 	.d_dname  = sockfs_dname,
319 };
320 
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 			    struct dentry *dentry, struct inode *inode,
323 			    const char *suffix, void *value, size_t size)
324 {
325 	if (value) {
326 		if (dentry->d_name.len + 1 > size)
327 			return -ERANGE;
328 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 	}
330 	return dentry->d_name.len + 1;
331 }
332 
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336 
337 static const struct xattr_handler sockfs_xattr_handler = {
338 	.name = XATTR_NAME_SOCKPROTONAME,
339 	.get = sockfs_xattr_get,
340 };
341 
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 				     struct dentry *dentry, struct inode *inode,
344 				     const char *suffix, const void *value,
345 				     size_t size, int flags)
346 {
347 	/* Handled by LSM. */
348 	return -EAGAIN;
349 }
350 
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 	.prefix = XATTR_SECURITY_PREFIX,
353 	.set = sockfs_security_xattr_set,
354 };
355 
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 	&sockfs_xattr_handler,
358 	&sockfs_security_xattr_handler,
359 	NULL
360 };
361 
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 			 int flags, const char *dev_name, void *data)
364 {
365 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 				  sockfs_xattr_handlers,
367 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369 
370 static struct vfsmount *sock_mnt __read_mostly;
371 
372 static struct file_system_type sock_fs_type = {
373 	.name =		"sockfs",
374 	.mount =	sockfs_mount,
375 	.kill_sb =	kill_anon_super,
376 };
377 
378 /*
379  *	Obtains the first available file descriptor and sets it up for use.
380  *
381  *	These functions create file structures and maps them to fd space
382  *	of the current process. On success it returns file descriptor
383  *	and file struct implicitly stored in sock->file.
384  *	Note that another thread may close file descriptor before we return
385  *	from this function. We use the fact that now we do not refer
386  *	to socket after mapping. If one day we will need it, this
387  *	function will increment ref. count on file by 1.
388  *
389  *	In any case returned fd MAY BE not valid!
390  *	This race condition is unavoidable
391  *	with shared fd spaces, we cannot solve it inside kernel,
392  *	but we take care of internal coherence yet.
393  */
394 
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 	struct qstr name = { .name = "" };
398 	struct path path;
399 	struct file *file;
400 
401 	if (dname) {
402 		name.name = dname;
403 		name.len = strlen(name.name);
404 	} else if (sock->sk) {
405 		name.name = sock->sk->sk_prot_creator->name;
406 		name.len = strlen(name.name);
407 	}
408 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 	if (unlikely(!path.dentry))
410 		return ERR_PTR(-ENOMEM);
411 	path.mnt = mntget(sock_mnt);
412 
413 	d_instantiate(path.dentry, SOCK_INODE(sock));
414 
415 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
416 		  &socket_file_ops);
417 	if (IS_ERR(file)) {
418 		/* drop dentry, keep inode */
419 		ihold(d_inode(path.dentry));
420 		path_put(&path);
421 		return file;
422 	}
423 
424 	sock->file = file;
425 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 	file->private_data = sock;
427 	return file;
428 }
429 EXPORT_SYMBOL(sock_alloc_file);
430 
431 static int sock_map_fd(struct socket *sock, int flags)
432 {
433 	struct file *newfile;
434 	int fd = get_unused_fd_flags(flags);
435 	if (unlikely(fd < 0))
436 		return fd;
437 
438 	newfile = sock_alloc_file(sock, flags, NULL);
439 	if (likely(!IS_ERR(newfile))) {
440 		fd_install(fd, newfile);
441 		return fd;
442 	}
443 
444 	put_unused_fd(fd);
445 	return PTR_ERR(newfile);
446 }
447 
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 	if (file->f_op == &socket_file_ops)
451 		return file->private_data;	/* set in sock_map_fd */
452 
453 	*err = -ENOTSOCK;
454 	return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457 
458 /**
459  *	sockfd_lookup - Go from a file number to its socket slot
460  *	@fd: file handle
461  *	@err: pointer to an error code return
462  *
463  *	The file handle passed in is locked and the socket it is bound
464  *	to is returned. If an error occurs the err pointer is overwritten
465  *	with a negative errno code and NULL is returned. The function checks
466  *	for both invalid handles and passing a handle which is not a socket.
467  *
468  *	On a success the socket object pointer is returned.
469  */
470 
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 	struct file *file;
474 	struct socket *sock;
475 
476 	file = fget(fd);
477 	if (!file) {
478 		*err = -EBADF;
479 		return NULL;
480 	}
481 
482 	sock = sock_from_file(file, err);
483 	if (!sock)
484 		fput(file);
485 	return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488 
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 	struct fd f = fdget(fd);
492 	struct socket *sock;
493 
494 	*err = -EBADF;
495 	if (f.file) {
496 		sock = sock_from_file(f.file, err);
497 		if (likely(sock)) {
498 			*fput_needed = f.flags;
499 			return sock;
500 		}
501 		fdput(f);
502 	}
503 	return NULL;
504 }
505 
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 				size_t size)
508 {
509 	ssize_t len;
510 	ssize_t used = 0;
511 
512 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 	if (len < 0)
514 		return len;
515 	used += len;
516 	if (buffer) {
517 		if (size < used)
518 			return -ERANGE;
519 		buffer += len;
520 	}
521 
522 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 	used += len;
524 	if (buffer) {
525 		if (size < used)
526 			return -ERANGE;
527 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 		buffer += len;
529 	}
530 
531 	return used;
532 }
533 
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 	int err = simple_setattr(dentry, iattr);
537 
538 	if (!err && (iattr->ia_valid & ATTR_UID)) {
539 		struct socket *sock = SOCKET_I(d_inode(dentry));
540 
541 		sock->sk->sk_uid = iattr->ia_uid;
542 	}
543 
544 	return err;
545 }
546 
547 static const struct inode_operations sockfs_inode_ops = {
548 	.listxattr = sockfs_listxattr,
549 	.setattr = sockfs_setattr,
550 };
551 
552 /**
553  *	sock_alloc	-	allocate a socket
554  *
555  *	Allocate a new inode and socket object. The two are bound together
556  *	and initialised. The socket is then returned. If we are out of inodes
557  *	NULL is returned.
558  */
559 
560 struct socket *sock_alloc(void)
561 {
562 	struct inode *inode;
563 	struct socket *sock;
564 
565 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 	if (!inode)
567 		return NULL;
568 
569 	sock = SOCKET_I(inode);
570 
571 	inode->i_ino = get_next_ino();
572 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
573 	inode->i_uid = current_fsuid();
574 	inode->i_gid = current_fsgid();
575 	inode->i_op = &sockfs_inode_ops;
576 
577 	this_cpu_add(sockets_in_use, 1);
578 	return sock;
579 }
580 EXPORT_SYMBOL(sock_alloc);
581 
582 /**
583  *	sock_release	-	close a socket
584  *	@sock: socket to close
585  *
586  *	The socket is released from the protocol stack if it has a release
587  *	callback, and the inode is then released if the socket is bound to
588  *	an inode not a file.
589  */
590 
591 void sock_release(struct socket *sock)
592 {
593 	if (sock->ops) {
594 		struct module *owner = sock->ops->owner;
595 
596 		sock->ops->release(sock);
597 		sock->ops = NULL;
598 		module_put(owner);
599 	}
600 
601 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
602 		pr_err("%s: fasync list not empty!\n", __func__);
603 
604 	this_cpu_sub(sockets_in_use, 1);
605 	if (!sock->file) {
606 		iput(SOCK_INODE(sock));
607 		return;
608 	}
609 	sock->file = NULL;
610 }
611 EXPORT_SYMBOL(sock_release);
612 
613 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
614 {
615 	u8 flags = *tx_flags;
616 
617 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
618 		flags |= SKBTX_HW_TSTAMP;
619 
620 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
621 		flags |= SKBTX_SW_TSTAMP;
622 
623 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
624 		flags |= SKBTX_SCHED_TSTAMP;
625 
626 	*tx_flags = flags;
627 }
628 EXPORT_SYMBOL(__sock_tx_timestamp);
629 
630 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
631 {
632 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
633 	BUG_ON(ret == -EIOCBQUEUED);
634 	return ret;
635 }
636 
637 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
638 {
639 	int err = security_socket_sendmsg(sock, msg,
640 					  msg_data_left(msg));
641 
642 	return err ?: sock_sendmsg_nosec(sock, msg);
643 }
644 EXPORT_SYMBOL(sock_sendmsg);
645 
646 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
647 		   struct kvec *vec, size_t num, size_t size)
648 {
649 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
650 	return sock_sendmsg(sock, msg);
651 }
652 EXPORT_SYMBOL(kernel_sendmsg);
653 
654 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
655 			  struct kvec *vec, size_t num, size_t size)
656 {
657 	struct socket *sock = sk->sk_socket;
658 
659 	if (!sock->ops->sendmsg_locked)
660 		return sock_no_sendmsg_locked(sk, msg, size);
661 
662 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
663 
664 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
665 }
666 EXPORT_SYMBOL(kernel_sendmsg_locked);
667 
668 static bool skb_is_err_queue(const struct sk_buff *skb)
669 {
670 	/* pkt_type of skbs enqueued on the error queue are set to
671 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
672 	 * in recvmsg, since skbs received on a local socket will never
673 	 * have a pkt_type of PACKET_OUTGOING.
674 	 */
675 	return skb->pkt_type == PACKET_OUTGOING;
676 }
677 
678 /* On transmit, software and hardware timestamps are returned independently.
679  * As the two skb clones share the hardware timestamp, which may be updated
680  * before the software timestamp is received, a hardware TX timestamp may be
681  * returned only if there is no software TX timestamp. Ignore false software
682  * timestamps, which may be made in the __sock_recv_timestamp() call when the
683  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
684  * hardware timestamp.
685  */
686 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
687 {
688 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
689 }
690 
691 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
692 {
693 	struct scm_ts_pktinfo ts_pktinfo;
694 	struct net_device *orig_dev;
695 
696 	if (!skb_mac_header_was_set(skb))
697 		return;
698 
699 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
700 
701 	rcu_read_lock();
702 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
703 	if (orig_dev)
704 		ts_pktinfo.if_index = orig_dev->ifindex;
705 	rcu_read_unlock();
706 
707 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
708 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
709 		 sizeof(ts_pktinfo), &ts_pktinfo);
710 }
711 
712 /*
713  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
714  */
715 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
716 	struct sk_buff *skb)
717 {
718 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
719 	struct scm_timestamping tss;
720 	int empty = 1, false_tstamp = 0;
721 	struct skb_shared_hwtstamps *shhwtstamps =
722 		skb_hwtstamps(skb);
723 
724 	/* Race occurred between timestamp enabling and packet
725 	   receiving.  Fill in the current time for now. */
726 	if (need_software_tstamp && skb->tstamp == 0) {
727 		__net_timestamp(skb);
728 		false_tstamp = 1;
729 	}
730 
731 	if (need_software_tstamp) {
732 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
733 			struct timeval tv;
734 			skb_get_timestamp(skb, &tv);
735 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
736 				 sizeof(tv), &tv);
737 		} else {
738 			struct timespec ts;
739 			skb_get_timestampns(skb, &ts);
740 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
741 				 sizeof(ts), &ts);
742 		}
743 	}
744 
745 	memset(&tss, 0, sizeof(tss));
746 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
747 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
748 		empty = 0;
749 	if (shhwtstamps &&
750 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
751 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
752 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
753 		empty = 0;
754 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
755 		    !skb_is_err_queue(skb))
756 			put_ts_pktinfo(msg, skb);
757 	}
758 	if (!empty) {
759 		put_cmsg(msg, SOL_SOCKET,
760 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
761 
762 		if (skb_is_err_queue(skb) && skb->len &&
763 		    SKB_EXT_ERR(skb)->opt_stats)
764 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
765 				 skb->len, skb->data);
766 	}
767 }
768 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
769 
770 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
771 	struct sk_buff *skb)
772 {
773 	int ack;
774 
775 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
776 		return;
777 	if (!skb->wifi_acked_valid)
778 		return;
779 
780 	ack = skb->wifi_acked;
781 
782 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
783 }
784 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
785 
786 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
787 				   struct sk_buff *skb)
788 {
789 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
790 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
791 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
792 }
793 
794 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
795 	struct sk_buff *skb)
796 {
797 	sock_recv_timestamp(msg, sk, skb);
798 	sock_recv_drops(msg, sk, skb);
799 }
800 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
801 
802 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
803 				     int flags)
804 {
805 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
806 }
807 
808 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
809 {
810 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
811 
812 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
813 }
814 EXPORT_SYMBOL(sock_recvmsg);
815 
816 /**
817  * kernel_recvmsg - Receive a message from a socket (kernel space)
818  * @sock:       The socket to receive the message from
819  * @msg:        Received message
820  * @vec:        Input s/g array for message data
821  * @num:        Size of input s/g array
822  * @size:       Number of bytes to read
823  * @flags:      Message flags (MSG_DONTWAIT, etc...)
824  *
825  * On return the msg structure contains the scatter/gather array passed in the
826  * vec argument. The array is modified so that it consists of the unfilled
827  * portion of the original array.
828  *
829  * The returned value is the total number of bytes received, or an error.
830  */
831 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
832 		   struct kvec *vec, size_t num, size_t size, int flags)
833 {
834 	mm_segment_t oldfs = get_fs();
835 	int result;
836 
837 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
838 	set_fs(KERNEL_DS);
839 	result = sock_recvmsg(sock, msg, flags);
840 	set_fs(oldfs);
841 	return result;
842 }
843 EXPORT_SYMBOL(kernel_recvmsg);
844 
845 static ssize_t sock_sendpage(struct file *file, struct page *page,
846 			     int offset, size_t size, loff_t *ppos, int more)
847 {
848 	struct socket *sock;
849 	int flags;
850 
851 	sock = file->private_data;
852 
853 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
854 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
855 	flags |= more;
856 
857 	return kernel_sendpage(sock, page, offset, size, flags);
858 }
859 
860 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
861 				struct pipe_inode_info *pipe, size_t len,
862 				unsigned int flags)
863 {
864 	struct socket *sock = file->private_data;
865 
866 	if (unlikely(!sock->ops->splice_read))
867 		return -EINVAL;
868 
869 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
870 }
871 
872 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
873 {
874 	struct file *file = iocb->ki_filp;
875 	struct socket *sock = file->private_data;
876 	struct msghdr msg = {.msg_iter = *to,
877 			     .msg_iocb = iocb};
878 	ssize_t res;
879 
880 	if (file->f_flags & O_NONBLOCK)
881 		msg.msg_flags = MSG_DONTWAIT;
882 
883 	if (iocb->ki_pos != 0)
884 		return -ESPIPE;
885 
886 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
887 		return 0;
888 
889 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
890 	*to = msg.msg_iter;
891 	return res;
892 }
893 
894 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
895 {
896 	struct file *file = iocb->ki_filp;
897 	struct socket *sock = file->private_data;
898 	struct msghdr msg = {.msg_iter = *from,
899 			     .msg_iocb = iocb};
900 	ssize_t res;
901 
902 	if (iocb->ki_pos != 0)
903 		return -ESPIPE;
904 
905 	if (file->f_flags & O_NONBLOCK)
906 		msg.msg_flags = MSG_DONTWAIT;
907 
908 	if (sock->type == SOCK_SEQPACKET)
909 		msg.msg_flags |= MSG_EOR;
910 
911 	res = sock_sendmsg(sock, &msg);
912 	*from = msg.msg_iter;
913 	return res;
914 }
915 
916 /*
917  * Atomic setting of ioctl hooks to avoid race
918  * with module unload.
919  */
920 
921 static DEFINE_MUTEX(br_ioctl_mutex);
922 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
923 
924 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
925 {
926 	mutex_lock(&br_ioctl_mutex);
927 	br_ioctl_hook = hook;
928 	mutex_unlock(&br_ioctl_mutex);
929 }
930 EXPORT_SYMBOL(brioctl_set);
931 
932 static DEFINE_MUTEX(vlan_ioctl_mutex);
933 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
934 
935 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
936 {
937 	mutex_lock(&vlan_ioctl_mutex);
938 	vlan_ioctl_hook = hook;
939 	mutex_unlock(&vlan_ioctl_mutex);
940 }
941 EXPORT_SYMBOL(vlan_ioctl_set);
942 
943 static DEFINE_MUTEX(dlci_ioctl_mutex);
944 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
945 
946 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
947 {
948 	mutex_lock(&dlci_ioctl_mutex);
949 	dlci_ioctl_hook = hook;
950 	mutex_unlock(&dlci_ioctl_mutex);
951 }
952 EXPORT_SYMBOL(dlci_ioctl_set);
953 
954 static long sock_do_ioctl(struct net *net, struct socket *sock,
955 				 unsigned int cmd, unsigned long arg)
956 {
957 	int err;
958 	void __user *argp = (void __user *)arg;
959 
960 	err = sock->ops->ioctl(sock, cmd, arg);
961 
962 	/*
963 	 * If this ioctl is unknown try to hand it down
964 	 * to the NIC driver.
965 	 */
966 	if (err == -ENOIOCTLCMD)
967 		err = dev_ioctl(net, cmd, argp);
968 
969 	return err;
970 }
971 
972 /*
973  *	With an ioctl, arg may well be a user mode pointer, but we don't know
974  *	what to do with it - that's up to the protocol still.
975  */
976 
977 static struct ns_common *get_net_ns(struct ns_common *ns)
978 {
979 	return &get_net(container_of(ns, struct net, ns))->ns;
980 }
981 
982 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
983 {
984 	struct socket *sock;
985 	struct sock *sk;
986 	void __user *argp = (void __user *)arg;
987 	int pid, err;
988 	struct net *net;
989 
990 	sock = file->private_data;
991 	sk = sock->sk;
992 	net = sock_net(sk);
993 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
994 		err = dev_ioctl(net, cmd, argp);
995 	} else
996 #ifdef CONFIG_WEXT_CORE
997 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
998 		err = dev_ioctl(net, cmd, argp);
999 	} else
1000 #endif
1001 		switch (cmd) {
1002 		case FIOSETOWN:
1003 		case SIOCSPGRP:
1004 			err = -EFAULT;
1005 			if (get_user(pid, (int __user *)argp))
1006 				break;
1007 			err = f_setown(sock->file, pid, 1);
1008 			break;
1009 		case FIOGETOWN:
1010 		case SIOCGPGRP:
1011 			err = put_user(f_getown(sock->file),
1012 				       (int __user *)argp);
1013 			break;
1014 		case SIOCGIFBR:
1015 		case SIOCSIFBR:
1016 		case SIOCBRADDBR:
1017 		case SIOCBRDELBR:
1018 			err = -ENOPKG;
1019 			if (!br_ioctl_hook)
1020 				request_module("bridge");
1021 
1022 			mutex_lock(&br_ioctl_mutex);
1023 			if (br_ioctl_hook)
1024 				err = br_ioctl_hook(net, cmd, argp);
1025 			mutex_unlock(&br_ioctl_mutex);
1026 			break;
1027 		case SIOCGIFVLAN:
1028 		case SIOCSIFVLAN:
1029 			err = -ENOPKG;
1030 			if (!vlan_ioctl_hook)
1031 				request_module("8021q");
1032 
1033 			mutex_lock(&vlan_ioctl_mutex);
1034 			if (vlan_ioctl_hook)
1035 				err = vlan_ioctl_hook(net, argp);
1036 			mutex_unlock(&vlan_ioctl_mutex);
1037 			break;
1038 		case SIOCADDDLCI:
1039 		case SIOCDELDLCI:
1040 			err = -ENOPKG;
1041 			if (!dlci_ioctl_hook)
1042 				request_module("dlci");
1043 
1044 			mutex_lock(&dlci_ioctl_mutex);
1045 			if (dlci_ioctl_hook)
1046 				err = dlci_ioctl_hook(cmd, argp);
1047 			mutex_unlock(&dlci_ioctl_mutex);
1048 			break;
1049 		case SIOCGSKNS:
1050 			err = -EPERM;
1051 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1052 				break;
1053 
1054 			err = open_related_ns(&net->ns, get_net_ns);
1055 			break;
1056 		default:
1057 			err = sock_do_ioctl(net, sock, cmd, arg);
1058 			break;
1059 		}
1060 	return err;
1061 }
1062 
1063 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1064 {
1065 	int err;
1066 	struct socket *sock = NULL;
1067 
1068 	err = security_socket_create(family, type, protocol, 1);
1069 	if (err)
1070 		goto out;
1071 
1072 	sock = sock_alloc();
1073 	if (!sock) {
1074 		err = -ENOMEM;
1075 		goto out;
1076 	}
1077 
1078 	sock->type = type;
1079 	err = security_socket_post_create(sock, family, type, protocol, 1);
1080 	if (err)
1081 		goto out_release;
1082 
1083 out:
1084 	*res = sock;
1085 	return err;
1086 out_release:
1087 	sock_release(sock);
1088 	sock = NULL;
1089 	goto out;
1090 }
1091 EXPORT_SYMBOL(sock_create_lite);
1092 
1093 /* No kernel lock held - perfect */
1094 static unsigned int sock_poll(struct file *file, poll_table *wait)
1095 {
1096 	unsigned int busy_flag = 0;
1097 	struct socket *sock;
1098 
1099 	/*
1100 	 *      We can't return errors to poll, so it's either yes or no.
1101 	 */
1102 	sock = file->private_data;
1103 
1104 	if (sk_can_busy_loop(sock->sk)) {
1105 		/* this socket can poll_ll so tell the system call */
1106 		busy_flag = POLL_BUSY_LOOP;
1107 
1108 		/* once, only if requested by syscall */
1109 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1110 			sk_busy_loop(sock->sk, 1);
1111 	}
1112 
1113 	return busy_flag | sock->ops->poll(file, sock, wait);
1114 }
1115 
1116 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1117 {
1118 	struct socket *sock = file->private_data;
1119 
1120 	return sock->ops->mmap(file, sock, vma);
1121 }
1122 
1123 static int sock_close(struct inode *inode, struct file *filp)
1124 {
1125 	sock_release(SOCKET_I(inode));
1126 	return 0;
1127 }
1128 
1129 /*
1130  *	Update the socket async list
1131  *
1132  *	Fasync_list locking strategy.
1133  *
1134  *	1. fasync_list is modified only under process context socket lock
1135  *	   i.e. under semaphore.
1136  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1137  *	   or under socket lock
1138  */
1139 
1140 static int sock_fasync(int fd, struct file *filp, int on)
1141 {
1142 	struct socket *sock = filp->private_data;
1143 	struct sock *sk = sock->sk;
1144 	struct socket_wq *wq;
1145 
1146 	if (sk == NULL)
1147 		return -EINVAL;
1148 
1149 	lock_sock(sk);
1150 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1151 	fasync_helper(fd, filp, on, &wq->fasync_list);
1152 
1153 	if (!wq->fasync_list)
1154 		sock_reset_flag(sk, SOCK_FASYNC);
1155 	else
1156 		sock_set_flag(sk, SOCK_FASYNC);
1157 
1158 	release_sock(sk);
1159 	return 0;
1160 }
1161 
1162 /* This function may be called only under rcu_lock */
1163 
1164 int sock_wake_async(struct socket_wq *wq, int how, int band)
1165 {
1166 	if (!wq || !wq->fasync_list)
1167 		return -1;
1168 
1169 	switch (how) {
1170 	case SOCK_WAKE_WAITD:
1171 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1172 			break;
1173 		goto call_kill;
1174 	case SOCK_WAKE_SPACE:
1175 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1176 			break;
1177 		/* fall through */
1178 	case SOCK_WAKE_IO:
1179 call_kill:
1180 		kill_fasync(&wq->fasync_list, SIGIO, band);
1181 		break;
1182 	case SOCK_WAKE_URG:
1183 		kill_fasync(&wq->fasync_list, SIGURG, band);
1184 	}
1185 
1186 	return 0;
1187 }
1188 EXPORT_SYMBOL(sock_wake_async);
1189 
1190 int __sock_create(struct net *net, int family, int type, int protocol,
1191 			 struct socket **res, int kern)
1192 {
1193 	int err;
1194 	struct socket *sock;
1195 	const struct net_proto_family *pf;
1196 
1197 	/*
1198 	 *      Check protocol is in range
1199 	 */
1200 	if (family < 0 || family >= NPROTO)
1201 		return -EAFNOSUPPORT;
1202 	if (type < 0 || type >= SOCK_MAX)
1203 		return -EINVAL;
1204 
1205 	/* Compatibility.
1206 
1207 	   This uglymoron is moved from INET layer to here to avoid
1208 	   deadlock in module load.
1209 	 */
1210 	if (family == PF_INET && type == SOCK_PACKET) {
1211 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1212 			     current->comm);
1213 		family = PF_PACKET;
1214 	}
1215 
1216 	err = security_socket_create(family, type, protocol, kern);
1217 	if (err)
1218 		return err;
1219 
1220 	/*
1221 	 *	Allocate the socket and allow the family to set things up. if
1222 	 *	the protocol is 0, the family is instructed to select an appropriate
1223 	 *	default.
1224 	 */
1225 	sock = sock_alloc();
1226 	if (!sock) {
1227 		net_warn_ratelimited("socket: no more sockets\n");
1228 		return -ENFILE;	/* Not exactly a match, but its the
1229 				   closest posix thing */
1230 	}
1231 
1232 	sock->type = type;
1233 
1234 #ifdef CONFIG_MODULES
1235 	/* Attempt to load a protocol module if the find failed.
1236 	 *
1237 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1238 	 * requested real, full-featured networking support upon configuration.
1239 	 * Otherwise module support will break!
1240 	 */
1241 	if (rcu_access_pointer(net_families[family]) == NULL)
1242 		request_module("net-pf-%d", family);
1243 #endif
1244 
1245 	rcu_read_lock();
1246 	pf = rcu_dereference(net_families[family]);
1247 	err = -EAFNOSUPPORT;
1248 	if (!pf)
1249 		goto out_release;
1250 
1251 	/*
1252 	 * We will call the ->create function, that possibly is in a loadable
1253 	 * module, so we have to bump that loadable module refcnt first.
1254 	 */
1255 	if (!try_module_get(pf->owner))
1256 		goto out_release;
1257 
1258 	/* Now protected by module ref count */
1259 	rcu_read_unlock();
1260 
1261 	err = pf->create(net, sock, protocol, kern);
1262 	if (err < 0)
1263 		goto out_module_put;
1264 
1265 	/*
1266 	 * Now to bump the refcnt of the [loadable] module that owns this
1267 	 * socket at sock_release time we decrement its refcnt.
1268 	 */
1269 	if (!try_module_get(sock->ops->owner))
1270 		goto out_module_busy;
1271 
1272 	/*
1273 	 * Now that we're done with the ->create function, the [loadable]
1274 	 * module can have its refcnt decremented
1275 	 */
1276 	module_put(pf->owner);
1277 	err = security_socket_post_create(sock, family, type, protocol, kern);
1278 	if (err)
1279 		goto out_sock_release;
1280 	*res = sock;
1281 
1282 	return 0;
1283 
1284 out_module_busy:
1285 	err = -EAFNOSUPPORT;
1286 out_module_put:
1287 	sock->ops = NULL;
1288 	module_put(pf->owner);
1289 out_sock_release:
1290 	sock_release(sock);
1291 	return err;
1292 
1293 out_release:
1294 	rcu_read_unlock();
1295 	goto out_sock_release;
1296 }
1297 EXPORT_SYMBOL(__sock_create);
1298 
1299 int sock_create(int family, int type, int protocol, struct socket **res)
1300 {
1301 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1302 }
1303 EXPORT_SYMBOL(sock_create);
1304 
1305 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1306 {
1307 	return __sock_create(net, family, type, protocol, res, 1);
1308 }
1309 EXPORT_SYMBOL(sock_create_kern);
1310 
1311 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1312 {
1313 	int retval;
1314 	struct socket *sock;
1315 	int flags;
1316 
1317 	/* Check the SOCK_* constants for consistency.  */
1318 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1319 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1320 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1321 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1322 
1323 	flags = type & ~SOCK_TYPE_MASK;
1324 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1325 		return -EINVAL;
1326 	type &= SOCK_TYPE_MASK;
1327 
1328 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1329 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1330 
1331 	retval = sock_create(family, type, protocol, &sock);
1332 	if (retval < 0)
1333 		goto out;
1334 
1335 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1336 	if (retval < 0)
1337 		goto out_release;
1338 
1339 out:
1340 	/* It may be already another descriptor 8) Not kernel problem. */
1341 	return retval;
1342 
1343 out_release:
1344 	sock_release(sock);
1345 	return retval;
1346 }
1347 
1348 /*
1349  *	Create a pair of connected sockets.
1350  */
1351 
1352 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1353 		int __user *, usockvec)
1354 {
1355 	struct socket *sock1, *sock2;
1356 	int fd1, fd2, err;
1357 	struct file *newfile1, *newfile2;
1358 	int flags;
1359 
1360 	flags = type & ~SOCK_TYPE_MASK;
1361 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1362 		return -EINVAL;
1363 	type &= SOCK_TYPE_MASK;
1364 
1365 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1366 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1367 
1368 	/*
1369 	 * Obtain the first socket and check if the underlying protocol
1370 	 * supports the socketpair call.
1371 	 */
1372 
1373 	err = sock_create(family, type, protocol, &sock1);
1374 	if (err < 0)
1375 		goto out;
1376 
1377 	err = sock_create(family, type, protocol, &sock2);
1378 	if (err < 0)
1379 		goto out_release_1;
1380 
1381 	err = sock1->ops->socketpair(sock1, sock2);
1382 	if (err < 0)
1383 		goto out_release_both;
1384 
1385 	fd1 = get_unused_fd_flags(flags);
1386 	if (unlikely(fd1 < 0)) {
1387 		err = fd1;
1388 		goto out_release_both;
1389 	}
1390 
1391 	fd2 = get_unused_fd_flags(flags);
1392 	if (unlikely(fd2 < 0)) {
1393 		err = fd2;
1394 		goto out_put_unused_1;
1395 	}
1396 
1397 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1398 	if (IS_ERR(newfile1)) {
1399 		err = PTR_ERR(newfile1);
1400 		goto out_put_unused_both;
1401 	}
1402 
1403 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1404 	if (IS_ERR(newfile2)) {
1405 		err = PTR_ERR(newfile2);
1406 		goto out_fput_1;
1407 	}
1408 
1409 	err = put_user(fd1, &usockvec[0]);
1410 	if (err)
1411 		goto out_fput_both;
1412 
1413 	err = put_user(fd2, &usockvec[1]);
1414 	if (err)
1415 		goto out_fput_both;
1416 
1417 	audit_fd_pair(fd1, fd2);
1418 
1419 	fd_install(fd1, newfile1);
1420 	fd_install(fd2, newfile2);
1421 	/* fd1 and fd2 may be already another descriptors.
1422 	 * Not kernel problem.
1423 	 */
1424 
1425 	return 0;
1426 
1427 out_fput_both:
1428 	fput(newfile2);
1429 	fput(newfile1);
1430 	put_unused_fd(fd2);
1431 	put_unused_fd(fd1);
1432 	goto out;
1433 
1434 out_fput_1:
1435 	fput(newfile1);
1436 	put_unused_fd(fd2);
1437 	put_unused_fd(fd1);
1438 	sock_release(sock2);
1439 	goto out;
1440 
1441 out_put_unused_both:
1442 	put_unused_fd(fd2);
1443 out_put_unused_1:
1444 	put_unused_fd(fd1);
1445 out_release_both:
1446 	sock_release(sock2);
1447 out_release_1:
1448 	sock_release(sock1);
1449 out:
1450 	return err;
1451 }
1452 
1453 /*
1454  *	Bind a name to a socket. Nothing much to do here since it's
1455  *	the protocol's responsibility to handle the local address.
1456  *
1457  *	We move the socket address to kernel space before we call
1458  *	the protocol layer (having also checked the address is ok).
1459  */
1460 
1461 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1462 {
1463 	struct socket *sock;
1464 	struct sockaddr_storage address;
1465 	int err, fput_needed;
1466 
1467 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1468 	if (sock) {
1469 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1470 		if (err >= 0) {
1471 			err = security_socket_bind(sock,
1472 						   (struct sockaddr *)&address,
1473 						   addrlen);
1474 			if (!err)
1475 				err = sock->ops->bind(sock,
1476 						      (struct sockaddr *)
1477 						      &address, addrlen);
1478 		}
1479 		fput_light(sock->file, fput_needed);
1480 	}
1481 	return err;
1482 }
1483 
1484 /*
1485  *	Perform a listen. Basically, we allow the protocol to do anything
1486  *	necessary for a listen, and if that works, we mark the socket as
1487  *	ready for listening.
1488  */
1489 
1490 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1491 {
1492 	struct socket *sock;
1493 	int err, fput_needed;
1494 	int somaxconn;
1495 
1496 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1497 	if (sock) {
1498 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1499 		if ((unsigned int)backlog > somaxconn)
1500 			backlog = somaxconn;
1501 
1502 		err = security_socket_listen(sock, backlog);
1503 		if (!err)
1504 			err = sock->ops->listen(sock, backlog);
1505 
1506 		fput_light(sock->file, fput_needed);
1507 	}
1508 	return err;
1509 }
1510 
1511 /*
1512  *	For accept, we attempt to create a new socket, set up the link
1513  *	with the client, wake up the client, then return the new
1514  *	connected fd. We collect the address of the connector in kernel
1515  *	space and move it to user at the very end. This is unclean because
1516  *	we open the socket then return an error.
1517  *
1518  *	1003.1g adds the ability to recvmsg() to query connection pending
1519  *	status to recvmsg. We need to add that support in a way thats
1520  *	clean when we restucture accept also.
1521  */
1522 
1523 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1524 		int __user *, upeer_addrlen, int, flags)
1525 {
1526 	struct socket *sock, *newsock;
1527 	struct file *newfile;
1528 	int err, len, newfd, fput_needed;
1529 	struct sockaddr_storage address;
1530 
1531 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1532 		return -EINVAL;
1533 
1534 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1535 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1536 
1537 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1538 	if (!sock)
1539 		goto out;
1540 
1541 	err = -ENFILE;
1542 	newsock = sock_alloc();
1543 	if (!newsock)
1544 		goto out_put;
1545 
1546 	newsock->type = sock->type;
1547 	newsock->ops = sock->ops;
1548 
1549 	/*
1550 	 * We don't need try_module_get here, as the listening socket (sock)
1551 	 * has the protocol module (sock->ops->owner) held.
1552 	 */
1553 	__module_get(newsock->ops->owner);
1554 
1555 	newfd = get_unused_fd_flags(flags);
1556 	if (unlikely(newfd < 0)) {
1557 		err = newfd;
1558 		sock_release(newsock);
1559 		goto out_put;
1560 	}
1561 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1562 	if (IS_ERR(newfile)) {
1563 		err = PTR_ERR(newfile);
1564 		put_unused_fd(newfd);
1565 		sock_release(newsock);
1566 		goto out_put;
1567 	}
1568 
1569 	err = security_socket_accept(sock, newsock);
1570 	if (err)
1571 		goto out_fd;
1572 
1573 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1574 	if (err < 0)
1575 		goto out_fd;
1576 
1577 	if (upeer_sockaddr) {
1578 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1579 					  &len, 2) < 0) {
1580 			err = -ECONNABORTED;
1581 			goto out_fd;
1582 		}
1583 		err = move_addr_to_user(&address,
1584 					len, upeer_sockaddr, upeer_addrlen);
1585 		if (err < 0)
1586 			goto out_fd;
1587 	}
1588 
1589 	/* File flags are not inherited via accept() unlike another OSes. */
1590 
1591 	fd_install(newfd, newfile);
1592 	err = newfd;
1593 
1594 out_put:
1595 	fput_light(sock->file, fput_needed);
1596 out:
1597 	return err;
1598 out_fd:
1599 	fput(newfile);
1600 	put_unused_fd(newfd);
1601 	goto out_put;
1602 }
1603 
1604 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1605 		int __user *, upeer_addrlen)
1606 {
1607 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1608 }
1609 
1610 /*
1611  *	Attempt to connect to a socket with the server address.  The address
1612  *	is in user space so we verify it is OK and move it to kernel space.
1613  *
1614  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1615  *	break bindings
1616  *
1617  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1618  *	other SEQPACKET protocols that take time to connect() as it doesn't
1619  *	include the -EINPROGRESS status for such sockets.
1620  */
1621 
1622 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1623 		int, addrlen)
1624 {
1625 	struct socket *sock;
1626 	struct sockaddr_storage address;
1627 	int err, fput_needed;
1628 
1629 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1630 	if (!sock)
1631 		goto out;
1632 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1633 	if (err < 0)
1634 		goto out_put;
1635 
1636 	err =
1637 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1638 	if (err)
1639 		goto out_put;
1640 
1641 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1642 				 sock->file->f_flags);
1643 out_put:
1644 	fput_light(sock->file, fput_needed);
1645 out:
1646 	return err;
1647 }
1648 
1649 /*
1650  *	Get the local address ('name') of a socket object. Move the obtained
1651  *	name to user space.
1652  */
1653 
1654 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1655 		int __user *, usockaddr_len)
1656 {
1657 	struct socket *sock;
1658 	struct sockaddr_storage address;
1659 	int len, err, fput_needed;
1660 
1661 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1662 	if (!sock)
1663 		goto out;
1664 
1665 	err = security_socket_getsockname(sock);
1666 	if (err)
1667 		goto out_put;
1668 
1669 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1670 	if (err)
1671 		goto out_put;
1672 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1673 
1674 out_put:
1675 	fput_light(sock->file, fput_needed);
1676 out:
1677 	return err;
1678 }
1679 
1680 /*
1681  *	Get the remote address ('name') of a socket object. Move the obtained
1682  *	name to user space.
1683  */
1684 
1685 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1686 		int __user *, usockaddr_len)
1687 {
1688 	struct socket *sock;
1689 	struct sockaddr_storage address;
1690 	int len, err, fput_needed;
1691 
1692 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1693 	if (sock != NULL) {
1694 		err = security_socket_getpeername(sock);
1695 		if (err) {
1696 			fput_light(sock->file, fput_needed);
1697 			return err;
1698 		}
1699 
1700 		err =
1701 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1702 				       1);
1703 		if (!err)
1704 			err = move_addr_to_user(&address, len, usockaddr,
1705 						usockaddr_len);
1706 		fput_light(sock->file, fput_needed);
1707 	}
1708 	return err;
1709 }
1710 
1711 /*
1712  *	Send a datagram to a given address. We move the address into kernel
1713  *	space and check the user space data area is readable before invoking
1714  *	the protocol.
1715  */
1716 
1717 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1718 		unsigned int, flags, struct sockaddr __user *, addr,
1719 		int, addr_len)
1720 {
1721 	struct socket *sock;
1722 	struct sockaddr_storage address;
1723 	int err;
1724 	struct msghdr msg;
1725 	struct iovec iov;
1726 	int fput_needed;
1727 
1728 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1729 	if (unlikely(err))
1730 		return err;
1731 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1732 	if (!sock)
1733 		goto out;
1734 
1735 	msg.msg_name = NULL;
1736 	msg.msg_control = NULL;
1737 	msg.msg_controllen = 0;
1738 	msg.msg_namelen = 0;
1739 	if (addr) {
1740 		err = move_addr_to_kernel(addr, addr_len, &address);
1741 		if (err < 0)
1742 			goto out_put;
1743 		msg.msg_name = (struct sockaddr *)&address;
1744 		msg.msg_namelen = addr_len;
1745 	}
1746 	if (sock->file->f_flags & O_NONBLOCK)
1747 		flags |= MSG_DONTWAIT;
1748 	msg.msg_flags = flags;
1749 	err = sock_sendmsg(sock, &msg);
1750 
1751 out_put:
1752 	fput_light(sock->file, fput_needed);
1753 out:
1754 	return err;
1755 }
1756 
1757 /*
1758  *	Send a datagram down a socket.
1759  */
1760 
1761 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1762 		unsigned int, flags)
1763 {
1764 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1765 }
1766 
1767 /*
1768  *	Receive a frame from the socket and optionally record the address of the
1769  *	sender. We verify the buffers are writable and if needed move the
1770  *	sender address from kernel to user space.
1771  */
1772 
1773 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1774 		unsigned int, flags, struct sockaddr __user *, addr,
1775 		int __user *, addr_len)
1776 {
1777 	struct socket *sock;
1778 	struct iovec iov;
1779 	struct msghdr msg;
1780 	struct sockaddr_storage address;
1781 	int err, err2;
1782 	int fput_needed;
1783 
1784 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1785 	if (unlikely(err))
1786 		return err;
1787 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1788 	if (!sock)
1789 		goto out;
1790 
1791 	msg.msg_control = NULL;
1792 	msg.msg_controllen = 0;
1793 	/* Save some cycles and don't copy the address if not needed */
1794 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1795 	/* We assume all kernel code knows the size of sockaddr_storage */
1796 	msg.msg_namelen = 0;
1797 	msg.msg_iocb = NULL;
1798 	msg.msg_flags = 0;
1799 	if (sock->file->f_flags & O_NONBLOCK)
1800 		flags |= MSG_DONTWAIT;
1801 	err = sock_recvmsg(sock, &msg, flags);
1802 
1803 	if (err >= 0 && addr != NULL) {
1804 		err2 = move_addr_to_user(&address,
1805 					 msg.msg_namelen, addr, addr_len);
1806 		if (err2 < 0)
1807 			err = err2;
1808 	}
1809 
1810 	fput_light(sock->file, fput_needed);
1811 out:
1812 	return err;
1813 }
1814 
1815 /*
1816  *	Receive a datagram from a socket.
1817  */
1818 
1819 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1820 		unsigned int, flags)
1821 {
1822 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1823 }
1824 
1825 /*
1826  *	Set a socket option. Because we don't know the option lengths we have
1827  *	to pass the user mode parameter for the protocols to sort out.
1828  */
1829 
1830 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1831 		char __user *, optval, int, optlen)
1832 {
1833 	int err, fput_needed;
1834 	struct socket *sock;
1835 
1836 	if (optlen < 0)
1837 		return -EINVAL;
1838 
1839 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1840 	if (sock != NULL) {
1841 		err = security_socket_setsockopt(sock, level, optname);
1842 		if (err)
1843 			goto out_put;
1844 
1845 		if (level == SOL_SOCKET)
1846 			err =
1847 			    sock_setsockopt(sock, level, optname, optval,
1848 					    optlen);
1849 		else
1850 			err =
1851 			    sock->ops->setsockopt(sock, level, optname, optval,
1852 						  optlen);
1853 out_put:
1854 		fput_light(sock->file, fput_needed);
1855 	}
1856 	return err;
1857 }
1858 
1859 /*
1860  *	Get a socket option. Because we don't know the option lengths we have
1861  *	to pass a user mode parameter for the protocols to sort out.
1862  */
1863 
1864 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1865 		char __user *, optval, int __user *, optlen)
1866 {
1867 	int err, fput_needed;
1868 	struct socket *sock;
1869 
1870 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1871 	if (sock != NULL) {
1872 		err = security_socket_getsockopt(sock, level, optname);
1873 		if (err)
1874 			goto out_put;
1875 
1876 		if (level == SOL_SOCKET)
1877 			err =
1878 			    sock_getsockopt(sock, level, optname, optval,
1879 					    optlen);
1880 		else
1881 			err =
1882 			    sock->ops->getsockopt(sock, level, optname, optval,
1883 						  optlen);
1884 out_put:
1885 		fput_light(sock->file, fput_needed);
1886 	}
1887 	return err;
1888 }
1889 
1890 /*
1891  *	Shutdown a socket.
1892  */
1893 
1894 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1895 {
1896 	int err, fput_needed;
1897 	struct socket *sock;
1898 
1899 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1900 	if (sock != NULL) {
1901 		err = security_socket_shutdown(sock, how);
1902 		if (!err)
1903 			err = sock->ops->shutdown(sock, how);
1904 		fput_light(sock->file, fput_needed);
1905 	}
1906 	return err;
1907 }
1908 
1909 /* A couple of helpful macros for getting the address of the 32/64 bit
1910  * fields which are the same type (int / unsigned) on our platforms.
1911  */
1912 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1913 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1914 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1915 
1916 struct used_address {
1917 	struct sockaddr_storage name;
1918 	unsigned int name_len;
1919 };
1920 
1921 static int copy_msghdr_from_user(struct msghdr *kmsg,
1922 				 struct user_msghdr __user *umsg,
1923 				 struct sockaddr __user **save_addr,
1924 				 struct iovec **iov)
1925 {
1926 	struct user_msghdr msg;
1927 	ssize_t err;
1928 
1929 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1930 		return -EFAULT;
1931 
1932 	kmsg->msg_control = (void __force *)msg.msg_control;
1933 	kmsg->msg_controllen = msg.msg_controllen;
1934 	kmsg->msg_flags = msg.msg_flags;
1935 
1936 	kmsg->msg_namelen = msg.msg_namelen;
1937 	if (!msg.msg_name)
1938 		kmsg->msg_namelen = 0;
1939 
1940 	if (kmsg->msg_namelen < 0)
1941 		return -EINVAL;
1942 
1943 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1944 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1945 
1946 	if (save_addr)
1947 		*save_addr = msg.msg_name;
1948 
1949 	if (msg.msg_name && kmsg->msg_namelen) {
1950 		if (!save_addr) {
1951 			err = move_addr_to_kernel(msg.msg_name,
1952 						  kmsg->msg_namelen,
1953 						  kmsg->msg_name);
1954 			if (err < 0)
1955 				return err;
1956 		}
1957 	} else {
1958 		kmsg->msg_name = NULL;
1959 		kmsg->msg_namelen = 0;
1960 	}
1961 
1962 	if (msg.msg_iovlen > UIO_MAXIOV)
1963 		return -EMSGSIZE;
1964 
1965 	kmsg->msg_iocb = NULL;
1966 
1967 	return import_iovec(save_addr ? READ : WRITE,
1968 			    msg.msg_iov, msg.msg_iovlen,
1969 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1970 }
1971 
1972 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1973 			 struct msghdr *msg_sys, unsigned int flags,
1974 			 struct used_address *used_address,
1975 			 unsigned int allowed_msghdr_flags)
1976 {
1977 	struct compat_msghdr __user *msg_compat =
1978 	    (struct compat_msghdr __user *)msg;
1979 	struct sockaddr_storage address;
1980 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1981 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1982 				__aligned(sizeof(__kernel_size_t));
1983 	/* 20 is size of ipv6_pktinfo */
1984 	unsigned char *ctl_buf = ctl;
1985 	int ctl_len;
1986 	ssize_t err;
1987 
1988 	msg_sys->msg_name = &address;
1989 
1990 	if (MSG_CMSG_COMPAT & flags)
1991 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1992 	else
1993 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1994 	if (err < 0)
1995 		return err;
1996 
1997 	err = -ENOBUFS;
1998 
1999 	if (msg_sys->msg_controllen > INT_MAX)
2000 		goto out_freeiov;
2001 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2002 	ctl_len = msg_sys->msg_controllen;
2003 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2004 		err =
2005 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2006 						     sizeof(ctl));
2007 		if (err)
2008 			goto out_freeiov;
2009 		ctl_buf = msg_sys->msg_control;
2010 		ctl_len = msg_sys->msg_controllen;
2011 	} else if (ctl_len) {
2012 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2013 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2014 		if (ctl_len > sizeof(ctl)) {
2015 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2016 			if (ctl_buf == NULL)
2017 				goto out_freeiov;
2018 		}
2019 		err = -EFAULT;
2020 		/*
2021 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2022 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2023 		 * checking falls down on this.
2024 		 */
2025 		if (copy_from_user(ctl_buf,
2026 				   (void __user __force *)msg_sys->msg_control,
2027 				   ctl_len))
2028 			goto out_freectl;
2029 		msg_sys->msg_control = ctl_buf;
2030 	}
2031 	msg_sys->msg_flags = flags;
2032 
2033 	if (sock->file->f_flags & O_NONBLOCK)
2034 		msg_sys->msg_flags |= MSG_DONTWAIT;
2035 	/*
2036 	 * If this is sendmmsg() and current destination address is same as
2037 	 * previously succeeded address, omit asking LSM's decision.
2038 	 * used_address->name_len is initialized to UINT_MAX so that the first
2039 	 * destination address never matches.
2040 	 */
2041 	if (used_address && msg_sys->msg_name &&
2042 	    used_address->name_len == msg_sys->msg_namelen &&
2043 	    !memcmp(&used_address->name, msg_sys->msg_name,
2044 		    used_address->name_len)) {
2045 		err = sock_sendmsg_nosec(sock, msg_sys);
2046 		goto out_freectl;
2047 	}
2048 	err = sock_sendmsg(sock, msg_sys);
2049 	/*
2050 	 * If this is sendmmsg() and sending to current destination address was
2051 	 * successful, remember it.
2052 	 */
2053 	if (used_address && err >= 0) {
2054 		used_address->name_len = msg_sys->msg_namelen;
2055 		if (msg_sys->msg_name)
2056 			memcpy(&used_address->name, msg_sys->msg_name,
2057 			       used_address->name_len);
2058 	}
2059 
2060 out_freectl:
2061 	if (ctl_buf != ctl)
2062 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2063 out_freeiov:
2064 	kfree(iov);
2065 	return err;
2066 }
2067 
2068 /*
2069  *	BSD sendmsg interface
2070  */
2071 
2072 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2073 {
2074 	int fput_needed, err;
2075 	struct msghdr msg_sys;
2076 	struct socket *sock;
2077 
2078 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2079 	if (!sock)
2080 		goto out;
2081 
2082 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2083 
2084 	fput_light(sock->file, fput_needed);
2085 out:
2086 	return err;
2087 }
2088 
2089 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2090 {
2091 	if (flags & MSG_CMSG_COMPAT)
2092 		return -EINVAL;
2093 	return __sys_sendmsg(fd, msg, flags);
2094 }
2095 
2096 /*
2097  *	Linux sendmmsg interface
2098  */
2099 
2100 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2101 		   unsigned int flags)
2102 {
2103 	int fput_needed, err, datagrams;
2104 	struct socket *sock;
2105 	struct mmsghdr __user *entry;
2106 	struct compat_mmsghdr __user *compat_entry;
2107 	struct msghdr msg_sys;
2108 	struct used_address used_address;
2109 	unsigned int oflags = flags;
2110 
2111 	if (vlen > UIO_MAXIOV)
2112 		vlen = UIO_MAXIOV;
2113 
2114 	datagrams = 0;
2115 
2116 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2117 	if (!sock)
2118 		return err;
2119 
2120 	used_address.name_len = UINT_MAX;
2121 	entry = mmsg;
2122 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2123 	err = 0;
2124 	flags |= MSG_BATCH;
2125 
2126 	while (datagrams < vlen) {
2127 		if (datagrams == vlen - 1)
2128 			flags = oflags;
2129 
2130 		if (MSG_CMSG_COMPAT & flags) {
2131 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2132 					     &msg_sys, flags, &used_address, MSG_EOR);
2133 			if (err < 0)
2134 				break;
2135 			err = __put_user(err, &compat_entry->msg_len);
2136 			++compat_entry;
2137 		} else {
2138 			err = ___sys_sendmsg(sock,
2139 					     (struct user_msghdr __user *)entry,
2140 					     &msg_sys, flags, &used_address, MSG_EOR);
2141 			if (err < 0)
2142 				break;
2143 			err = put_user(err, &entry->msg_len);
2144 			++entry;
2145 		}
2146 
2147 		if (err)
2148 			break;
2149 		++datagrams;
2150 		if (msg_data_left(&msg_sys))
2151 			break;
2152 		cond_resched();
2153 	}
2154 
2155 	fput_light(sock->file, fput_needed);
2156 
2157 	/* We only return an error if no datagrams were able to be sent */
2158 	if (datagrams != 0)
2159 		return datagrams;
2160 
2161 	return err;
2162 }
2163 
2164 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2165 		unsigned int, vlen, unsigned int, flags)
2166 {
2167 	if (flags & MSG_CMSG_COMPAT)
2168 		return -EINVAL;
2169 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2170 }
2171 
2172 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2173 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2174 {
2175 	struct compat_msghdr __user *msg_compat =
2176 	    (struct compat_msghdr __user *)msg;
2177 	struct iovec iovstack[UIO_FASTIOV];
2178 	struct iovec *iov = iovstack;
2179 	unsigned long cmsg_ptr;
2180 	int len;
2181 	ssize_t err;
2182 
2183 	/* kernel mode address */
2184 	struct sockaddr_storage addr;
2185 
2186 	/* user mode address pointers */
2187 	struct sockaddr __user *uaddr;
2188 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2189 
2190 	msg_sys->msg_name = &addr;
2191 
2192 	if (MSG_CMSG_COMPAT & flags)
2193 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2194 	else
2195 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2196 	if (err < 0)
2197 		return err;
2198 
2199 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2200 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2201 
2202 	/* We assume all kernel code knows the size of sockaddr_storage */
2203 	msg_sys->msg_namelen = 0;
2204 
2205 	if (sock->file->f_flags & O_NONBLOCK)
2206 		flags |= MSG_DONTWAIT;
2207 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2208 	if (err < 0)
2209 		goto out_freeiov;
2210 	len = err;
2211 
2212 	if (uaddr != NULL) {
2213 		err = move_addr_to_user(&addr,
2214 					msg_sys->msg_namelen, uaddr,
2215 					uaddr_len);
2216 		if (err < 0)
2217 			goto out_freeiov;
2218 	}
2219 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2220 			 COMPAT_FLAGS(msg));
2221 	if (err)
2222 		goto out_freeiov;
2223 	if (MSG_CMSG_COMPAT & flags)
2224 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2225 				 &msg_compat->msg_controllen);
2226 	else
2227 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2228 				 &msg->msg_controllen);
2229 	if (err)
2230 		goto out_freeiov;
2231 	err = len;
2232 
2233 out_freeiov:
2234 	kfree(iov);
2235 	return err;
2236 }
2237 
2238 /*
2239  *	BSD recvmsg interface
2240  */
2241 
2242 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2243 {
2244 	int fput_needed, err;
2245 	struct msghdr msg_sys;
2246 	struct socket *sock;
2247 
2248 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2249 	if (!sock)
2250 		goto out;
2251 
2252 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2253 
2254 	fput_light(sock->file, fput_needed);
2255 out:
2256 	return err;
2257 }
2258 
2259 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2260 		unsigned int, flags)
2261 {
2262 	if (flags & MSG_CMSG_COMPAT)
2263 		return -EINVAL;
2264 	return __sys_recvmsg(fd, msg, flags);
2265 }
2266 
2267 /*
2268  *     Linux recvmmsg interface
2269  */
2270 
2271 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2272 		   unsigned int flags, struct timespec *timeout)
2273 {
2274 	int fput_needed, err, datagrams;
2275 	struct socket *sock;
2276 	struct mmsghdr __user *entry;
2277 	struct compat_mmsghdr __user *compat_entry;
2278 	struct msghdr msg_sys;
2279 	struct timespec64 end_time;
2280 	struct timespec64 timeout64;
2281 
2282 	if (timeout &&
2283 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2284 				    timeout->tv_nsec))
2285 		return -EINVAL;
2286 
2287 	datagrams = 0;
2288 
2289 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2290 	if (!sock)
2291 		return err;
2292 
2293 	err = sock_error(sock->sk);
2294 	if (err) {
2295 		datagrams = err;
2296 		goto out_put;
2297 	}
2298 
2299 	entry = mmsg;
2300 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2301 
2302 	while (datagrams < vlen) {
2303 		/*
2304 		 * No need to ask LSM for more than the first datagram.
2305 		 */
2306 		if (MSG_CMSG_COMPAT & flags) {
2307 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2308 					     &msg_sys, flags & ~MSG_WAITFORONE,
2309 					     datagrams);
2310 			if (err < 0)
2311 				break;
2312 			err = __put_user(err, &compat_entry->msg_len);
2313 			++compat_entry;
2314 		} else {
2315 			err = ___sys_recvmsg(sock,
2316 					     (struct user_msghdr __user *)entry,
2317 					     &msg_sys, flags & ~MSG_WAITFORONE,
2318 					     datagrams);
2319 			if (err < 0)
2320 				break;
2321 			err = put_user(err, &entry->msg_len);
2322 			++entry;
2323 		}
2324 
2325 		if (err)
2326 			break;
2327 		++datagrams;
2328 
2329 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2330 		if (flags & MSG_WAITFORONE)
2331 			flags |= MSG_DONTWAIT;
2332 
2333 		if (timeout) {
2334 			ktime_get_ts64(&timeout64);
2335 			*timeout = timespec64_to_timespec(
2336 					timespec64_sub(end_time, timeout64));
2337 			if (timeout->tv_sec < 0) {
2338 				timeout->tv_sec = timeout->tv_nsec = 0;
2339 				break;
2340 			}
2341 
2342 			/* Timeout, return less than vlen datagrams */
2343 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2344 				break;
2345 		}
2346 
2347 		/* Out of band data, return right away */
2348 		if (msg_sys.msg_flags & MSG_OOB)
2349 			break;
2350 		cond_resched();
2351 	}
2352 
2353 	if (err == 0)
2354 		goto out_put;
2355 
2356 	if (datagrams == 0) {
2357 		datagrams = err;
2358 		goto out_put;
2359 	}
2360 
2361 	/*
2362 	 * We may return less entries than requested (vlen) if the
2363 	 * sock is non block and there aren't enough datagrams...
2364 	 */
2365 	if (err != -EAGAIN) {
2366 		/*
2367 		 * ... or  if recvmsg returns an error after we
2368 		 * received some datagrams, where we record the
2369 		 * error to return on the next call or if the
2370 		 * app asks about it using getsockopt(SO_ERROR).
2371 		 */
2372 		sock->sk->sk_err = -err;
2373 	}
2374 out_put:
2375 	fput_light(sock->file, fput_needed);
2376 
2377 	return datagrams;
2378 }
2379 
2380 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2381 		unsigned int, vlen, unsigned int, flags,
2382 		struct timespec __user *, timeout)
2383 {
2384 	int datagrams;
2385 	struct timespec timeout_sys;
2386 
2387 	if (flags & MSG_CMSG_COMPAT)
2388 		return -EINVAL;
2389 
2390 	if (!timeout)
2391 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2392 
2393 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2394 		return -EFAULT;
2395 
2396 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2397 
2398 	if (datagrams > 0 &&
2399 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2400 		datagrams = -EFAULT;
2401 
2402 	return datagrams;
2403 }
2404 
2405 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2406 /* Argument list sizes for sys_socketcall */
2407 #define AL(x) ((x) * sizeof(unsigned long))
2408 static const unsigned char nargs[21] = {
2409 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2410 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2411 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2412 	AL(4), AL(5), AL(4)
2413 };
2414 
2415 #undef AL
2416 
2417 /*
2418  *	System call vectors.
2419  *
2420  *	Argument checking cleaned up. Saved 20% in size.
2421  *  This function doesn't need to set the kernel lock because
2422  *  it is set by the callees.
2423  */
2424 
2425 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2426 {
2427 	unsigned long a[AUDITSC_ARGS];
2428 	unsigned long a0, a1;
2429 	int err;
2430 	unsigned int len;
2431 
2432 	if (call < 1 || call > SYS_SENDMMSG)
2433 		return -EINVAL;
2434 
2435 	len = nargs[call];
2436 	if (len > sizeof(a))
2437 		return -EINVAL;
2438 
2439 	/* copy_from_user should be SMP safe. */
2440 	if (copy_from_user(a, args, len))
2441 		return -EFAULT;
2442 
2443 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2444 	if (err)
2445 		return err;
2446 
2447 	a0 = a[0];
2448 	a1 = a[1];
2449 
2450 	switch (call) {
2451 	case SYS_SOCKET:
2452 		err = sys_socket(a0, a1, a[2]);
2453 		break;
2454 	case SYS_BIND:
2455 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2456 		break;
2457 	case SYS_CONNECT:
2458 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2459 		break;
2460 	case SYS_LISTEN:
2461 		err = sys_listen(a0, a1);
2462 		break;
2463 	case SYS_ACCEPT:
2464 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2465 				  (int __user *)a[2], 0);
2466 		break;
2467 	case SYS_GETSOCKNAME:
2468 		err =
2469 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2470 				    (int __user *)a[2]);
2471 		break;
2472 	case SYS_GETPEERNAME:
2473 		err =
2474 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2475 				    (int __user *)a[2]);
2476 		break;
2477 	case SYS_SOCKETPAIR:
2478 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2479 		break;
2480 	case SYS_SEND:
2481 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2482 		break;
2483 	case SYS_SENDTO:
2484 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2485 				 (struct sockaddr __user *)a[4], a[5]);
2486 		break;
2487 	case SYS_RECV:
2488 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2489 		break;
2490 	case SYS_RECVFROM:
2491 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2492 				   (struct sockaddr __user *)a[4],
2493 				   (int __user *)a[5]);
2494 		break;
2495 	case SYS_SHUTDOWN:
2496 		err = sys_shutdown(a0, a1);
2497 		break;
2498 	case SYS_SETSOCKOPT:
2499 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2500 		break;
2501 	case SYS_GETSOCKOPT:
2502 		err =
2503 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2504 				   (int __user *)a[4]);
2505 		break;
2506 	case SYS_SENDMSG:
2507 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2508 		break;
2509 	case SYS_SENDMMSG:
2510 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2511 		break;
2512 	case SYS_RECVMSG:
2513 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2514 		break;
2515 	case SYS_RECVMMSG:
2516 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2517 				   (struct timespec __user *)a[4]);
2518 		break;
2519 	case SYS_ACCEPT4:
2520 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2521 				  (int __user *)a[2], a[3]);
2522 		break;
2523 	default:
2524 		err = -EINVAL;
2525 		break;
2526 	}
2527 	return err;
2528 }
2529 
2530 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2531 
2532 /**
2533  *	sock_register - add a socket protocol handler
2534  *	@ops: description of protocol
2535  *
2536  *	This function is called by a protocol handler that wants to
2537  *	advertise its address family, and have it linked into the
2538  *	socket interface. The value ops->family corresponds to the
2539  *	socket system call protocol family.
2540  */
2541 int sock_register(const struct net_proto_family *ops)
2542 {
2543 	int err;
2544 
2545 	if (ops->family >= NPROTO) {
2546 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2547 		return -ENOBUFS;
2548 	}
2549 
2550 	spin_lock(&net_family_lock);
2551 	if (rcu_dereference_protected(net_families[ops->family],
2552 				      lockdep_is_held(&net_family_lock)))
2553 		err = -EEXIST;
2554 	else {
2555 		rcu_assign_pointer(net_families[ops->family], ops);
2556 		err = 0;
2557 	}
2558 	spin_unlock(&net_family_lock);
2559 
2560 	pr_info("NET: Registered protocol family %d\n", ops->family);
2561 	return err;
2562 }
2563 EXPORT_SYMBOL(sock_register);
2564 
2565 /**
2566  *	sock_unregister - remove a protocol handler
2567  *	@family: protocol family to remove
2568  *
2569  *	This function is called by a protocol handler that wants to
2570  *	remove its address family, and have it unlinked from the
2571  *	new socket creation.
2572  *
2573  *	If protocol handler is a module, then it can use module reference
2574  *	counts to protect against new references. If protocol handler is not
2575  *	a module then it needs to provide its own protection in
2576  *	the ops->create routine.
2577  */
2578 void sock_unregister(int family)
2579 {
2580 	BUG_ON(family < 0 || family >= NPROTO);
2581 
2582 	spin_lock(&net_family_lock);
2583 	RCU_INIT_POINTER(net_families[family], NULL);
2584 	spin_unlock(&net_family_lock);
2585 
2586 	synchronize_rcu();
2587 
2588 	pr_info("NET: Unregistered protocol family %d\n", family);
2589 }
2590 EXPORT_SYMBOL(sock_unregister);
2591 
2592 static int __init sock_init(void)
2593 {
2594 	int err;
2595 	/*
2596 	 *      Initialize the network sysctl infrastructure.
2597 	 */
2598 	err = net_sysctl_init();
2599 	if (err)
2600 		goto out;
2601 
2602 	/*
2603 	 *      Initialize skbuff SLAB cache
2604 	 */
2605 	skb_init();
2606 
2607 	/*
2608 	 *      Initialize the protocols module.
2609 	 */
2610 
2611 	init_inodecache();
2612 
2613 	err = register_filesystem(&sock_fs_type);
2614 	if (err)
2615 		goto out_fs;
2616 	sock_mnt = kern_mount(&sock_fs_type);
2617 	if (IS_ERR(sock_mnt)) {
2618 		err = PTR_ERR(sock_mnt);
2619 		goto out_mount;
2620 	}
2621 
2622 	/* The real protocol initialization is performed in later initcalls.
2623 	 */
2624 
2625 #ifdef CONFIG_NETFILTER
2626 	err = netfilter_init();
2627 	if (err)
2628 		goto out;
2629 #endif
2630 
2631 	ptp_classifier_init();
2632 
2633 out:
2634 	return err;
2635 
2636 out_mount:
2637 	unregister_filesystem(&sock_fs_type);
2638 out_fs:
2639 	goto out;
2640 }
2641 
2642 core_initcall(sock_init);	/* early initcall */
2643 
2644 #ifdef CONFIG_PROC_FS
2645 void socket_seq_show(struct seq_file *seq)
2646 {
2647 	int cpu;
2648 	int counter = 0;
2649 
2650 	for_each_possible_cpu(cpu)
2651 	    counter += per_cpu(sockets_in_use, cpu);
2652 
2653 	/* It can be negative, by the way. 8) */
2654 	if (counter < 0)
2655 		counter = 0;
2656 
2657 	seq_printf(seq, "sockets: used %d\n", counter);
2658 }
2659 #endif				/* CONFIG_PROC_FS */
2660 
2661 #ifdef CONFIG_COMPAT
2662 static int do_siocgstamp(struct net *net, struct socket *sock,
2663 			 unsigned int cmd, void __user *up)
2664 {
2665 	mm_segment_t old_fs = get_fs();
2666 	struct timeval ktv;
2667 	int err;
2668 
2669 	set_fs(KERNEL_DS);
2670 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2671 	set_fs(old_fs);
2672 	if (!err)
2673 		err = compat_put_timeval(&ktv, up);
2674 
2675 	return err;
2676 }
2677 
2678 static int do_siocgstampns(struct net *net, struct socket *sock,
2679 			   unsigned int cmd, void __user *up)
2680 {
2681 	mm_segment_t old_fs = get_fs();
2682 	struct timespec kts;
2683 	int err;
2684 
2685 	set_fs(KERNEL_DS);
2686 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2687 	set_fs(old_fs);
2688 	if (!err)
2689 		err = compat_put_timespec(&kts, up);
2690 
2691 	return err;
2692 }
2693 
2694 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2695 {
2696 	struct ifreq __user *uifr;
2697 	int err;
2698 
2699 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2700 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2701 		return -EFAULT;
2702 
2703 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2704 	if (err)
2705 		return err;
2706 
2707 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2708 		return -EFAULT;
2709 
2710 	return 0;
2711 }
2712 
2713 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2714 {
2715 	struct compat_ifconf ifc32;
2716 	struct ifconf ifc;
2717 	struct ifconf __user *uifc;
2718 	struct compat_ifreq __user *ifr32;
2719 	struct ifreq __user *ifr;
2720 	unsigned int i, j;
2721 	int err;
2722 
2723 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2724 		return -EFAULT;
2725 
2726 	memset(&ifc, 0, sizeof(ifc));
2727 	if (ifc32.ifcbuf == 0) {
2728 		ifc32.ifc_len = 0;
2729 		ifc.ifc_len = 0;
2730 		ifc.ifc_req = NULL;
2731 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2732 	} else {
2733 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2734 			sizeof(struct ifreq);
2735 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2736 		ifc.ifc_len = len;
2737 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2738 		ifr32 = compat_ptr(ifc32.ifcbuf);
2739 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2740 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2741 				return -EFAULT;
2742 			ifr++;
2743 			ifr32++;
2744 		}
2745 	}
2746 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2747 		return -EFAULT;
2748 
2749 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2750 	if (err)
2751 		return err;
2752 
2753 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2754 		return -EFAULT;
2755 
2756 	ifr = ifc.ifc_req;
2757 	ifr32 = compat_ptr(ifc32.ifcbuf);
2758 	for (i = 0, j = 0;
2759 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2760 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2761 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2762 			return -EFAULT;
2763 		ifr32++;
2764 		ifr++;
2765 	}
2766 
2767 	if (ifc32.ifcbuf == 0) {
2768 		/* Translate from 64-bit structure multiple to
2769 		 * a 32-bit one.
2770 		 */
2771 		i = ifc.ifc_len;
2772 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2773 		ifc32.ifc_len = i;
2774 	} else {
2775 		ifc32.ifc_len = i;
2776 	}
2777 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2778 		return -EFAULT;
2779 
2780 	return 0;
2781 }
2782 
2783 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2784 {
2785 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2786 	bool convert_in = false, convert_out = false;
2787 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2788 	struct ethtool_rxnfc __user *rxnfc;
2789 	struct ifreq __user *ifr;
2790 	u32 rule_cnt = 0, actual_rule_cnt;
2791 	u32 ethcmd;
2792 	u32 data;
2793 	int ret;
2794 
2795 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2796 		return -EFAULT;
2797 
2798 	compat_rxnfc = compat_ptr(data);
2799 
2800 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2801 		return -EFAULT;
2802 
2803 	/* Most ethtool structures are defined without padding.
2804 	 * Unfortunately struct ethtool_rxnfc is an exception.
2805 	 */
2806 	switch (ethcmd) {
2807 	default:
2808 		break;
2809 	case ETHTOOL_GRXCLSRLALL:
2810 		/* Buffer size is variable */
2811 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2812 			return -EFAULT;
2813 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2814 			return -ENOMEM;
2815 		buf_size += rule_cnt * sizeof(u32);
2816 		/* fall through */
2817 	case ETHTOOL_GRXRINGS:
2818 	case ETHTOOL_GRXCLSRLCNT:
2819 	case ETHTOOL_GRXCLSRULE:
2820 	case ETHTOOL_SRXCLSRLINS:
2821 		convert_out = true;
2822 		/* fall through */
2823 	case ETHTOOL_SRXCLSRLDEL:
2824 		buf_size += sizeof(struct ethtool_rxnfc);
2825 		convert_in = true;
2826 		break;
2827 	}
2828 
2829 	ifr = compat_alloc_user_space(buf_size);
2830 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2831 
2832 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2833 		return -EFAULT;
2834 
2835 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2836 		     &ifr->ifr_ifru.ifru_data))
2837 		return -EFAULT;
2838 
2839 	if (convert_in) {
2840 		/* We expect there to be holes between fs.m_ext and
2841 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2842 		 */
2843 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2844 			     sizeof(compat_rxnfc->fs.m_ext) !=
2845 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2846 			     sizeof(rxnfc->fs.m_ext));
2847 		BUILD_BUG_ON(
2848 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2849 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2850 			offsetof(struct ethtool_rxnfc, fs.location) -
2851 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2852 
2853 		if (copy_in_user(rxnfc, compat_rxnfc,
2854 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2855 				 (void __user *)rxnfc) ||
2856 		    copy_in_user(&rxnfc->fs.ring_cookie,
2857 				 &compat_rxnfc->fs.ring_cookie,
2858 				 (void __user *)(&rxnfc->fs.location + 1) -
2859 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2860 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2861 				 sizeof(rxnfc->rule_cnt)))
2862 			return -EFAULT;
2863 	}
2864 
2865 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2866 	if (ret)
2867 		return ret;
2868 
2869 	if (convert_out) {
2870 		if (copy_in_user(compat_rxnfc, rxnfc,
2871 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2872 				 (const void __user *)rxnfc) ||
2873 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2874 				 &rxnfc->fs.ring_cookie,
2875 				 (const void __user *)(&rxnfc->fs.location + 1) -
2876 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2877 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2878 				 sizeof(rxnfc->rule_cnt)))
2879 			return -EFAULT;
2880 
2881 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2882 			/* As an optimisation, we only copy the actual
2883 			 * number of rules that the underlying
2884 			 * function returned.  Since Mallory might
2885 			 * change the rule count in user memory, we
2886 			 * check that it is less than the rule count
2887 			 * originally given (as the user buffer size),
2888 			 * which has been range-checked.
2889 			 */
2890 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2891 				return -EFAULT;
2892 			if (actual_rule_cnt < rule_cnt)
2893 				rule_cnt = actual_rule_cnt;
2894 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2895 					 &rxnfc->rule_locs[0],
2896 					 rule_cnt * sizeof(u32)))
2897 				return -EFAULT;
2898 		}
2899 	}
2900 
2901 	return 0;
2902 }
2903 
2904 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2905 {
2906 	void __user *uptr;
2907 	compat_uptr_t uptr32;
2908 	struct ifreq __user *uifr;
2909 
2910 	uifr = compat_alloc_user_space(sizeof(*uifr));
2911 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2912 		return -EFAULT;
2913 
2914 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2915 		return -EFAULT;
2916 
2917 	uptr = compat_ptr(uptr32);
2918 
2919 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2920 		return -EFAULT;
2921 
2922 	return dev_ioctl(net, SIOCWANDEV, uifr);
2923 }
2924 
2925 static int bond_ioctl(struct net *net, unsigned int cmd,
2926 			 struct compat_ifreq __user *ifr32)
2927 {
2928 	struct ifreq kifr;
2929 	mm_segment_t old_fs;
2930 	int err;
2931 
2932 	switch (cmd) {
2933 	case SIOCBONDENSLAVE:
2934 	case SIOCBONDRELEASE:
2935 	case SIOCBONDSETHWADDR:
2936 	case SIOCBONDCHANGEACTIVE:
2937 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2938 			return -EFAULT;
2939 
2940 		old_fs = get_fs();
2941 		set_fs(KERNEL_DS);
2942 		err = dev_ioctl(net, cmd,
2943 				(struct ifreq __user __force *) &kifr);
2944 		set_fs(old_fs);
2945 
2946 		return err;
2947 	default:
2948 		return -ENOIOCTLCMD;
2949 	}
2950 }
2951 
2952 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2953 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2954 				 struct compat_ifreq __user *u_ifreq32)
2955 {
2956 	struct ifreq __user *u_ifreq64;
2957 	char tmp_buf[IFNAMSIZ];
2958 	void __user *data64;
2959 	u32 data32;
2960 
2961 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2962 			   IFNAMSIZ))
2963 		return -EFAULT;
2964 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2965 		return -EFAULT;
2966 	data64 = compat_ptr(data32);
2967 
2968 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2969 
2970 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2971 			 IFNAMSIZ))
2972 		return -EFAULT;
2973 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2974 		return -EFAULT;
2975 
2976 	return dev_ioctl(net, cmd, u_ifreq64);
2977 }
2978 
2979 static int dev_ifsioc(struct net *net, struct socket *sock,
2980 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2981 {
2982 	struct ifreq __user *uifr;
2983 	int err;
2984 
2985 	uifr = compat_alloc_user_space(sizeof(*uifr));
2986 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2987 		return -EFAULT;
2988 
2989 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2990 
2991 	if (!err) {
2992 		switch (cmd) {
2993 		case SIOCGIFFLAGS:
2994 		case SIOCGIFMETRIC:
2995 		case SIOCGIFMTU:
2996 		case SIOCGIFMEM:
2997 		case SIOCGIFHWADDR:
2998 		case SIOCGIFINDEX:
2999 		case SIOCGIFADDR:
3000 		case SIOCGIFBRDADDR:
3001 		case SIOCGIFDSTADDR:
3002 		case SIOCGIFNETMASK:
3003 		case SIOCGIFPFLAGS:
3004 		case SIOCGIFTXQLEN:
3005 		case SIOCGMIIPHY:
3006 		case SIOCGMIIREG:
3007 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3008 				err = -EFAULT;
3009 			break;
3010 		}
3011 	}
3012 	return err;
3013 }
3014 
3015 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3016 			struct compat_ifreq __user *uifr32)
3017 {
3018 	struct ifreq ifr;
3019 	struct compat_ifmap __user *uifmap32;
3020 	mm_segment_t old_fs;
3021 	int err;
3022 
3023 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3024 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3025 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3026 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3027 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3028 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3029 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3030 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3031 	if (err)
3032 		return -EFAULT;
3033 
3034 	old_fs = get_fs();
3035 	set_fs(KERNEL_DS);
3036 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3037 	set_fs(old_fs);
3038 
3039 	if (cmd == SIOCGIFMAP && !err) {
3040 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3041 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3042 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3043 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3044 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3045 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3046 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3047 		if (err)
3048 			err = -EFAULT;
3049 	}
3050 	return err;
3051 }
3052 
3053 struct rtentry32 {
3054 	u32		rt_pad1;
3055 	struct sockaddr rt_dst;         /* target address               */
3056 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3057 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3058 	unsigned short	rt_flags;
3059 	short		rt_pad2;
3060 	u32		rt_pad3;
3061 	unsigned char	rt_tos;
3062 	unsigned char	rt_class;
3063 	short		rt_pad4;
3064 	short		rt_metric;      /* +1 for binary compatibility! */
3065 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3066 	u32		rt_mtu;         /* per route MTU/Window         */
3067 	u32		rt_window;      /* Window clamping              */
3068 	unsigned short  rt_irtt;        /* Initial RTT                  */
3069 };
3070 
3071 struct in6_rtmsg32 {
3072 	struct in6_addr		rtmsg_dst;
3073 	struct in6_addr		rtmsg_src;
3074 	struct in6_addr		rtmsg_gateway;
3075 	u32			rtmsg_type;
3076 	u16			rtmsg_dst_len;
3077 	u16			rtmsg_src_len;
3078 	u32			rtmsg_metric;
3079 	u32			rtmsg_info;
3080 	u32			rtmsg_flags;
3081 	s32			rtmsg_ifindex;
3082 };
3083 
3084 static int routing_ioctl(struct net *net, struct socket *sock,
3085 			 unsigned int cmd, void __user *argp)
3086 {
3087 	int ret;
3088 	void *r = NULL;
3089 	struct in6_rtmsg r6;
3090 	struct rtentry r4;
3091 	char devname[16];
3092 	u32 rtdev;
3093 	mm_segment_t old_fs = get_fs();
3094 
3095 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3096 		struct in6_rtmsg32 __user *ur6 = argp;
3097 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3098 			3 * sizeof(struct in6_addr));
3099 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3100 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3101 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3102 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3103 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3104 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3105 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3106 
3107 		r = (void *) &r6;
3108 	} else { /* ipv4 */
3109 		struct rtentry32 __user *ur4 = argp;
3110 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3111 					3 * sizeof(struct sockaddr));
3112 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3113 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3114 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3115 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3116 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3117 		ret |= get_user(rtdev, &(ur4->rt_dev));
3118 		if (rtdev) {
3119 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3120 			r4.rt_dev = (char __user __force *)devname;
3121 			devname[15] = 0;
3122 		} else
3123 			r4.rt_dev = NULL;
3124 
3125 		r = (void *) &r4;
3126 	}
3127 
3128 	if (ret) {
3129 		ret = -EFAULT;
3130 		goto out;
3131 	}
3132 
3133 	set_fs(KERNEL_DS);
3134 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3135 	set_fs(old_fs);
3136 
3137 out:
3138 	return ret;
3139 }
3140 
3141 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3142  * for some operations; this forces use of the newer bridge-utils that
3143  * use compatible ioctls
3144  */
3145 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3146 {
3147 	compat_ulong_t tmp;
3148 
3149 	if (get_user(tmp, argp))
3150 		return -EFAULT;
3151 	if (tmp == BRCTL_GET_VERSION)
3152 		return BRCTL_VERSION + 1;
3153 	return -EINVAL;
3154 }
3155 
3156 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3157 			 unsigned int cmd, unsigned long arg)
3158 {
3159 	void __user *argp = compat_ptr(arg);
3160 	struct sock *sk = sock->sk;
3161 	struct net *net = sock_net(sk);
3162 
3163 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3164 		return compat_ifr_data_ioctl(net, cmd, argp);
3165 
3166 	switch (cmd) {
3167 	case SIOCSIFBR:
3168 	case SIOCGIFBR:
3169 		return old_bridge_ioctl(argp);
3170 	case SIOCGIFNAME:
3171 		return dev_ifname32(net, argp);
3172 	case SIOCGIFCONF:
3173 		return dev_ifconf(net, argp);
3174 	case SIOCETHTOOL:
3175 		return ethtool_ioctl(net, argp);
3176 	case SIOCWANDEV:
3177 		return compat_siocwandev(net, argp);
3178 	case SIOCGIFMAP:
3179 	case SIOCSIFMAP:
3180 		return compat_sioc_ifmap(net, cmd, argp);
3181 	case SIOCBONDENSLAVE:
3182 	case SIOCBONDRELEASE:
3183 	case SIOCBONDSETHWADDR:
3184 	case SIOCBONDCHANGEACTIVE:
3185 		return bond_ioctl(net, cmd, argp);
3186 	case SIOCADDRT:
3187 	case SIOCDELRT:
3188 		return routing_ioctl(net, sock, cmd, argp);
3189 	case SIOCGSTAMP:
3190 		return do_siocgstamp(net, sock, cmd, argp);
3191 	case SIOCGSTAMPNS:
3192 		return do_siocgstampns(net, sock, cmd, argp);
3193 	case SIOCBONDSLAVEINFOQUERY:
3194 	case SIOCBONDINFOQUERY:
3195 	case SIOCSHWTSTAMP:
3196 	case SIOCGHWTSTAMP:
3197 		return compat_ifr_data_ioctl(net, cmd, argp);
3198 
3199 	case FIOSETOWN:
3200 	case SIOCSPGRP:
3201 	case FIOGETOWN:
3202 	case SIOCGPGRP:
3203 	case SIOCBRADDBR:
3204 	case SIOCBRDELBR:
3205 	case SIOCGIFVLAN:
3206 	case SIOCSIFVLAN:
3207 	case SIOCADDDLCI:
3208 	case SIOCDELDLCI:
3209 	case SIOCGSKNS:
3210 		return sock_ioctl(file, cmd, arg);
3211 
3212 	case SIOCGIFFLAGS:
3213 	case SIOCSIFFLAGS:
3214 	case SIOCGIFMETRIC:
3215 	case SIOCSIFMETRIC:
3216 	case SIOCGIFMTU:
3217 	case SIOCSIFMTU:
3218 	case SIOCGIFMEM:
3219 	case SIOCSIFMEM:
3220 	case SIOCGIFHWADDR:
3221 	case SIOCSIFHWADDR:
3222 	case SIOCADDMULTI:
3223 	case SIOCDELMULTI:
3224 	case SIOCGIFINDEX:
3225 	case SIOCGIFADDR:
3226 	case SIOCSIFADDR:
3227 	case SIOCSIFHWBROADCAST:
3228 	case SIOCDIFADDR:
3229 	case SIOCGIFBRDADDR:
3230 	case SIOCSIFBRDADDR:
3231 	case SIOCGIFDSTADDR:
3232 	case SIOCSIFDSTADDR:
3233 	case SIOCGIFNETMASK:
3234 	case SIOCSIFNETMASK:
3235 	case SIOCSIFPFLAGS:
3236 	case SIOCGIFPFLAGS:
3237 	case SIOCGIFTXQLEN:
3238 	case SIOCSIFTXQLEN:
3239 	case SIOCBRADDIF:
3240 	case SIOCBRDELIF:
3241 	case SIOCSIFNAME:
3242 	case SIOCGMIIPHY:
3243 	case SIOCGMIIREG:
3244 	case SIOCSMIIREG:
3245 		return dev_ifsioc(net, sock, cmd, argp);
3246 
3247 	case SIOCSARP:
3248 	case SIOCGARP:
3249 	case SIOCDARP:
3250 	case SIOCATMARK:
3251 		return sock_do_ioctl(net, sock, cmd, arg);
3252 	}
3253 
3254 	return -ENOIOCTLCMD;
3255 }
3256 
3257 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3258 			      unsigned long arg)
3259 {
3260 	struct socket *sock = file->private_data;
3261 	int ret = -ENOIOCTLCMD;
3262 	struct sock *sk;
3263 	struct net *net;
3264 
3265 	sk = sock->sk;
3266 	net = sock_net(sk);
3267 
3268 	if (sock->ops->compat_ioctl)
3269 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3270 
3271 	if (ret == -ENOIOCTLCMD &&
3272 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3273 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3274 
3275 	if (ret == -ENOIOCTLCMD)
3276 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3277 
3278 	return ret;
3279 }
3280 #endif
3281 
3282 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3283 {
3284 	return sock->ops->bind(sock, addr, addrlen);
3285 }
3286 EXPORT_SYMBOL(kernel_bind);
3287 
3288 int kernel_listen(struct socket *sock, int backlog)
3289 {
3290 	return sock->ops->listen(sock, backlog);
3291 }
3292 EXPORT_SYMBOL(kernel_listen);
3293 
3294 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3295 {
3296 	struct sock *sk = sock->sk;
3297 	int err;
3298 
3299 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3300 			       newsock);
3301 	if (err < 0)
3302 		goto done;
3303 
3304 	err = sock->ops->accept(sock, *newsock, flags, true);
3305 	if (err < 0) {
3306 		sock_release(*newsock);
3307 		*newsock = NULL;
3308 		goto done;
3309 	}
3310 
3311 	(*newsock)->ops = sock->ops;
3312 	__module_get((*newsock)->ops->owner);
3313 
3314 done:
3315 	return err;
3316 }
3317 EXPORT_SYMBOL(kernel_accept);
3318 
3319 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3320 		   int flags)
3321 {
3322 	return sock->ops->connect(sock, addr, addrlen, flags);
3323 }
3324 EXPORT_SYMBOL(kernel_connect);
3325 
3326 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3327 			 int *addrlen)
3328 {
3329 	return sock->ops->getname(sock, addr, addrlen, 0);
3330 }
3331 EXPORT_SYMBOL(kernel_getsockname);
3332 
3333 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3334 			 int *addrlen)
3335 {
3336 	return sock->ops->getname(sock, addr, addrlen, 1);
3337 }
3338 EXPORT_SYMBOL(kernel_getpeername);
3339 
3340 int kernel_getsockopt(struct socket *sock, int level, int optname,
3341 			char *optval, int *optlen)
3342 {
3343 	mm_segment_t oldfs = get_fs();
3344 	char __user *uoptval;
3345 	int __user *uoptlen;
3346 	int err;
3347 
3348 	uoptval = (char __user __force *) optval;
3349 	uoptlen = (int __user __force *) optlen;
3350 
3351 	set_fs(KERNEL_DS);
3352 	if (level == SOL_SOCKET)
3353 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3354 	else
3355 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3356 					    uoptlen);
3357 	set_fs(oldfs);
3358 	return err;
3359 }
3360 EXPORT_SYMBOL(kernel_getsockopt);
3361 
3362 int kernel_setsockopt(struct socket *sock, int level, int optname,
3363 			char *optval, unsigned int optlen)
3364 {
3365 	mm_segment_t oldfs = get_fs();
3366 	char __user *uoptval;
3367 	int err;
3368 
3369 	uoptval = (char __user __force *) optval;
3370 
3371 	set_fs(KERNEL_DS);
3372 	if (level == SOL_SOCKET)
3373 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3374 	else
3375 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3376 					    optlen);
3377 	set_fs(oldfs);
3378 	return err;
3379 }
3380 EXPORT_SYMBOL(kernel_setsockopt);
3381 
3382 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3383 		    size_t size, int flags)
3384 {
3385 	if (sock->ops->sendpage)
3386 		return sock->ops->sendpage(sock, page, offset, size, flags);
3387 
3388 	return sock_no_sendpage(sock, page, offset, size, flags);
3389 }
3390 EXPORT_SYMBOL(kernel_sendpage);
3391 
3392 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3393 			   size_t size, int flags)
3394 {
3395 	struct socket *sock = sk->sk_socket;
3396 
3397 	if (sock->ops->sendpage_locked)
3398 		return sock->ops->sendpage_locked(sk, page, offset, size,
3399 						  flags);
3400 
3401 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3402 }
3403 EXPORT_SYMBOL(kernel_sendpage_locked);
3404 
3405 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3406 {
3407 	mm_segment_t oldfs = get_fs();
3408 	int err;
3409 
3410 	set_fs(KERNEL_DS);
3411 	err = sock->ops->ioctl(sock, cmd, arg);
3412 	set_fs(oldfs);
3413 
3414 	return err;
3415 }
3416 EXPORT_SYMBOL(kernel_sock_ioctl);
3417 
3418 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3419 {
3420 	return sock->ops->shutdown(sock, how);
3421 }
3422 EXPORT_SYMBOL(kernel_sock_shutdown);
3423 
3424 /* This routine returns the IP overhead imposed by a socket i.e.
3425  * the length of the underlying IP header, depending on whether
3426  * this is an IPv4 or IPv6 socket and the length from IP options turned
3427  * on at the socket. Assumes that the caller has a lock on the socket.
3428  */
3429 u32 kernel_sock_ip_overhead(struct sock *sk)
3430 {
3431 	struct inet_sock *inet;
3432 	struct ip_options_rcu *opt;
3433 	u32 overhead = 0;
3434 #if IS_ENABLED(CONFIG_IPV6)
3435 	struct ipv6_pinfo *np;
3436 	struct ipv6_txoptions *optv6 = NULL;
3437 #endif /* IS_ENABLED(CONFIG_IPV6) */
3438 
3439 	if (!sk)
3440 		return overhead;
3441 
3442 	switch (sk->sk_family) {
3443 	case AF_INET:
3444 		inet = inet_sk(sk);
3445 		overhead += sizeof(struct iphdr);
3446 		opt = rcu_dereference_protected(inet->inet_opt,
3447 						sock_owned_by_user(sk));
3448 		if (opt)
3449 			overhead += opt->opt.optlen;
3450 		return overhead;
3451 #if IS_ENABLED(CONFIG_IPV6)
3452 	case AF_INET6:
3453 		np = inet6_sk(sk);
3454 		overhead += sizeof(struct ipv6hdr);
3455 		if (np)
3456 			optv6 = rcu_dereference_protected(np->opt,
3457 							  sock_owned_by_user(sk));
3458 		if (optv6)
3459 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3460 		return overhead;
3461 #endif /* IS_ENABLED(CONFIG_IPV6) */
3462 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3463 		return overhead;
3464 	}
3465 }
3466 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3467