1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/rcupdate.h> 67 #include <linux/netdevice.h> 68 #include <linux/proc_fs.h> 69 #include <linux/seq_file.h> 70 #include <linux/mutex.h> 71 #include <linux/wanrouter.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/init.h> 76 #include <linux/poll.h> 77 #include <linux/cache.h> 78 #include <linux/module.h> 79 #include <linux/highmem.h> 80 #include <linux/mount.h> 81 #include <linux/security.h> 82 #include <linux/syscalls.h> 83 #include <linux/compat.h> 84 #include <linux/kmod.h> 85 #include <linux/audit.h> 86 #include <linux/wireless.h> 87 #include <linux/nsproxy.h> 88 89 #include <asm/uaccess.h> 90 #include <asm/unistd.h> 91 92 #include <net/compat.h> 93 94 #include <net/sock.h> 95 #include <linux/netfilter.h> 96 97 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 98 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 99 unsigned long nr_segs, loff_t pos); 100 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 101 unsigned long nr_segs, loff_t pos); 102 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 103 104 static int sock_close(struct inode *inode, struct file *file); 105 static unsigned int sock_poll(struct file *file, 106 struct poll_table_struct *wait); 107 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 108 #ifdef CONFIG_COMPAT 109 static long compat_sock_ioctl(struct file *file, 110 unsigned int cmd, unsigned long arg); 111 #endif 112 static int sock_fasync(int fd, struct file *filp, int on); 113 static ssize_t sock_sendpage(struct file *file, struct page *page, 114 int offset, size_t size, loff_t *ppos, int more); 115 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 116 struct pipe_inode_info *pipe, size_t len, 117 unsigned int flags); 118 119 /* 120 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 121 * in the operation structures but are done directly via the socketcall() multiplexor. 122 */ 123 124 static const struct file_operations socket_file_ops = { 125 .owner = THIS_MODULE, 126 .llseek = no_llseek, 127 .aio_read = sock_aio_read, 128 .aio_write = sock_aio_write, 129 .poll = sock_poll, 130 .unlocked_ioctl = sock_ioctl, 131 #ifdef CONFIG_COMPAT 132 .compat_ioctl = compat_sock_ioctl, 133 #endif 134 .mmap = sock_mmap, 135 .open = sock_no_open, /* special open code to disallow open via /proc */ 136 .release = sock_close, 137 .fasync = sock_fasync, 138 .sendpage = sock_sendpage, 139 .splice_write = generic_splice_sendpage, 140 .splice_read = sock_splice_read, 141 }; 142 143 /* 144 * The protocol list. Each protocol is registered in here. 145 */ 146 147 static DEFINE_SPINLOCK(net_family_lock); 148 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 149 150 /* 151 * Statistics counters of the socket lists 152 */ 153 154 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 155 156 /* 157 * Support routines. 158 * Move socket addresses back and forth across the kernel/user 159 * divide and look after the messy bits. 160 */ 161 162 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 163 16 for IP, 16 for IPX, 164 24 for IPv6, 165 about 80 for AX.25 166 must be at least one bigger than 167 the AF_UNIX size (see net/unix/af_unix.c 168 :unix_mkname()). 169 */ 170 171 /** 172 * move_addr_to_kernel - copy a socket address into kernel space 173 * @uaddr: Address in user space 174 * @kaddr: Address in kernel space 175 * @ulen: Length in user space 176 * 177 * The address is copied into kernel space. If the provided address is 178 * too long an error code of -EINVAL is returned. If the copy gives 179 * invalid addresses -EFAULT is returned. On a success 0 is returned. 180 */ 181 182 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 183 { 184 if (ulen < 0 || ulen > MAX_SOCK_ADDR) 185 return -EINVAL; 186 if (ulen == 0) 187 return 0; 188 if (copy_from_user(kaddr, uaddr, ulen)) 189 return -EFAULT; 190 return audit_sockaddr(ulen, kaddr); 191 } 192 193 /** 194 * move_addr_to_user - copy an address to user space 195 * @kaddr: kernel space address 196 * @klen: length of address in kernel 197 * @uaddr: user space address 198 * @ulen: pointer to user length field 199 * 200 * The value pointed to by ulen on entry is the buffer length available. 201 * This is overwritten with the buffer space used. -EINVAL is returned 202 * if an overlong buffer is specified or a negative buffer size. -EFAULT 203 * is returned if either the buffer or the length field are not 204 * accessible. 205 * After copying the data up to the limit the user specifies, the true 206 * length of the data is written over the length limit the user 207 * specified. Zero is returned for a success. 208 */ 209 210 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, 211 int __user *ulen) 212 { 213 int err; 214 int len; 215 216 err = get_user(len, ulen); 217 if (err) 218 return err; 219 if (len > klen) 220 len = klen; 221 if (len < 0 || len > MAX_SOCK_ADDR) 222 return -EINVAL; 223 if (len) { 224 if (audit_sockaddr(klen, kaddr)) 225 return -ENOMEM; 226 if (copy_to_user(uaddr, kaddr, len)) 227 return -EFAULT; 228 } 229 /* 230 * "fromlen shall refer to the value before truncation.." 231 * 1003.1g 232 */ 233 return __put_user(klen, ulen); 234 } 235 236 #define SOCKFS_MAGIC 0x534F434B 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 init_waitqueue_head(&ei->socket.wait); 248 249 ei->socket.fasync_list = NULL; 250 ei->socket.state = SS_UNCONNECTED; 251 ei->socket.flags = 0; 252 ei->socket.ops = NULL; 253 ei->socket.sk = NULL; 254 ei->socket.file = NULL; 255 256 return &ei->vfs_inode; 257 } 258 259 static void sock_destroy_inode(struct inode *inode) 260 { 261 kmem_cache_free(sock_inode_cachep, 262 container_of(inode, struct socket_alloc, vfs_inode)); 263 } 264 265 static void init_once(struct kmem_cache *cachep, void *foo) 266 { 267 struct socket_alloc *ei = (struct socket_alloc *)foo; 268 269 inode_init_once(&ei->vfs_inode); 270 } 271 272 static int init_inodecache(void) 273 { 274 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 275 sizeof(struct socket_alloc), 276 0, 277 (SLAB_HWCACHE_ALIGN | 278 SLAB_RECLAIM_ACCOUNT | 279 SLAB_MEM_SPREAD), 280 init_once); 281 if (sock_inode_cachep == NULL) 282 return -ENOMEM; 283 return 0; 284 } 285 286 static struct super_operations sockfs_ops = { 287 .alloc_inode = sock_alloc_inode, 288 .destroy_inode =sock_destroy_inode, 289 .statfs = simple_statfs, 290 }; 291 292 static int sockfs_get_sb(struct file_system_type *fs_type, 293 int flags, const char *dev_name, void *data, 294 struct vfsmount *mnt) 295 { 296 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 297 mnt); 298 } 299 300 static struct vfsmount *sock_mnt __read_mostly; 301 302 static struct file_system_type sock_fs_type = { 303 .name = "sockfs", 304 .get_sb = sockfs_get_sb, 305 .kill_sb = kill_anon_super, 306 }; 307 308 static int sockfs_delete_dentry(struct dentry *dentry) 309 { 310 /* 311 * At creation time, we pretended this dentry was hashed 312 * (by clearing DCACHE_UNHASHED bit in d_flags) 313 * At delete time, we restore the truth : not hashed. 314 * (so that dput() can proceed correctly) 315 */ 316 dentry->d_flags |= DCACHE_UNHASHED; 317 return 0; 318 } 319 320 /* 321 * sockfs_dname() is called from d_path(). 322 */ 323 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 324 { 325 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 326 dentry->d_inode->i_ino); 327 } 328 329 static struct dentry_operations sockfs_dentry_operations = { 330 .d_delete = sockfs_delete_dentry, 331 .d_dname = sockfs_dname, 332 }; 333 334 /* 335 * Obtains the first available file descriptor and sets it up for use. 336 * 337 * These functions create file structures and maps them to fd space 338 * of the current process. On success it returns file descriptor 339 * and file struct implicitly stored in sock->file. 340 * Note that another thread may close file descriptor before we return 341 * from this function. We use the fact that now we do not refer 342 * to socket after mapping. If one day we will need it, this 343 * function will increment ref. count on file by 1. 344 * 345 * In any case returned fd MAY BE not valid! 346 * This race condition is unavoidable 347 * with shared fd spaces, we cannot solve it inside kernel, 348 * but we take care of internal coherence yet. 349 */ 350 351 static int sock_alloc_fd(struct file **filep) 352 { 353 int fd; 354 355 fd = get_unused_fd(); 356 if (likely(fd >= 0)) { 357 struct file *file = get_empty_filp(); 358 359 *filep = file; 360 if (unlikely(!file)) { 361 put_unused_fd(fd); 362 return -ENFILE; 363 } 364 } else 365 *filep = NULL; 366 return fd; 367 } 368 369 static int sock_attach_fd(struct socket *sock, struct file *file) 370 { 371 struct dentry *dentry; 372 struct qstr name = { .name = "" }; 373 374 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 375 if (unlikely(!dentry)) 376 return -ENOMEM; 377 378 dentry->d_op = &sockfs_dentry_operations; 379 /* 380 * We dont want to push this dentry into global dentry hash table. 381 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 382 * This permits a working /proc/$pid/fd/XXX on sockets 383 */ 384 dentry->d_flags &= ~DCACHE_UNHASHED; 385 d_instantiate(dentry, SOCK_INODE(sock)); 386 387 sock->file = file; 388 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE, 389 &socket_file_ops); 390 SOCK_INODE(sock)->i_fop = &socket_file_ops; 391 file->f_flags = O_RDWR; 392 file->f_pos = 0; 393 file->private_data = sock; 394 395 return 0; 396 } 397 398 int sock_map_fd(struct socket *sock) 399 { 400 struct file *newfile; 401 int fd = sock_alloc_fd(&newfile); 402 403 if (likely(fd >= 0)) { 404 int err = sock_attach_fd(sock, newfile); 405 406 if (unlikely(err < 0)) { 407 put_filp(newfile); 408 put_unused_fd(fd); 409 return err; 410 } 411 fd_install(fd, newfile); 412 } 413 return fd; 414 } 415 416 static struct socket *sock_from_file(struct file *file, int *err) 417 { 418 if (file->f_op == &socket_file_ops) 419 return file->private_data; /* set in sock_map_fd */ 420 421 *err = -ENOTSOCK; 422 return NULL; 423 } 424 425 /** 426 * sockfd_lookup - Go from a file number to its socket slot 427 * @fd: file handle 428 * @err: pointer to an error code return 429 * 430 * The file handle passed in is locked and the socket it is bound 431 * too is returned. If an error occurs the err pointer is overwritten 432 * with a negative errno code and NULL is returned. The function checks 433 * for both invalid handles and passing a handle which is not a socket. 434 * 435 * On a success the socket object pointer is returned. 436 */ 437 438 struct socket *sockfd_lookup(int fd, int *err) 439 { 440 struct file *file; 441 struct socket *sock; 442 443 file = fget(fd); 444 if (!file) { 445 *err = -EBADF; 446 return NULL; 447 } 448 449 sock = sock_from_file(file, err); 450 if (!sock) 451 fput(file); 452 return sock; 453 } 454 455 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 456 { 457 struct file *file; 458 struct socket *sock; 459 460 *err = -EBADF; 461 file = fget_light(fd, fput_needed); 462 if (file) { 463 sock = sock_from_file(file, err); 464 if (sock) 465 return sock; 466 fput_light(file, *fput_needed); 467 } 468 return NULL; 469 } 470 471 /** 472 * sock_alloc - allocate a socket 473 * 474 * Allocate a new inode and socket object. The two are bound together 475 * and initialised. The socket is then returned. If we are out of inodes 476 * NULL is returned. 477 */ 478 479 static struct socket *sock_alloc(void) 480 { 481 struct inode *inode; 482 struct socket *sock; 483 484 inode = new_inode(sock_mnt->mnt_sb); 485 if (!inode) 486 return NULL; 487 488 sock = SOCKET_I(inode); 489 490 inode->i_mode = S_IFSOCK | S_IRWXUGO; 491 inode->i_uid = current->fsuid; 492 inode->i_gid = current->fsgid; 493 494 get_cpu_var(sockets_in_use)++; 495 put_cpu_var(sockets_in_use); 496 return sock; 497 } 498 499 /* 500 * In theory you can't get an open on this inode, but /proc provides 501 * a back door. Remember to keep it shut otherwise you'll let the 502 * creepy crawlies in. 503 */ 504 505 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 506 { 507 return -ENXIO; 508 } 509 510 const struct file_operations bad_sock_fops = { 511 .owner = THIS_MODULE, 512 .open = sock_no_open, 513 }; 514 515 /** 516 * sock_release - close a socket 517 * @sock: socket to close 518 * 519 * The socket is released from the protocol stack if it has a release 520 * callback, and the inode is then released if the socket is bound to 521 * an inode not a file. 522 */ 523 524 void sock_release(struct socket *sock) 525 { 526 if (sock->ops) { 527 struct module *owner = sock->ops->owner; 528 529 sock->ops->release(sock); 530 sock->ops = NULL; 531 module_put(owner); 532 } 533 534 if (sock->fasync_list) 535 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 536 537 get_cpu_var(sockets_in_use)--; 538 put_cpu_var(sockets_in_use); 539 if (!sock->file) { 540 iput(SOCK_INODE(sock)); 541 return; 542 } 543 sock->file = NULL; 544 } 545 546 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 547 struct msghdr *msg, size_t size) 548 { 549 struct sock_iocb *si = kiocb_to_siocb(iocb); 550 int err; 551 552 si->sock = sock; 553 si->scm = NULL; 554 si->msg = msg; 555 si->size = size; 556 557 err = security_socket_sendmsg(sock, msg, size); 558 if (err) 559 return err; 560 561 return sock->ops->sendmsg(iocb, sock, msg, size); 562 } 563 564 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 565 { 566 struct kiocb iocb; 567 struct sock_iocb siocb; 568 int ret; 569 570 init_sync_kiocb(&iocb, NULL); 571 iocb.private = &siocb; 572 ret = __sock_sendmsg(&iocb, sock, msg, size); 573 if (-EIOCBQUEUED == ret) 574 ret = wait_on_sync_kiocb(&iocb); 575 return ret; 576 } 577 578 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 579 struct kvec *vec, size_t num, size_t size) 580 { 581 mm_segment_t oldfs = get_fs(); 582 int result; 583 584 set_fs(KERNEL_DS); 585 /* 586 * the following is safe, since for compiler definitions of kvec and 587 * iovec are identical, yielding the same in-core layout and alignment 588 */ 589 msg->msg_iov = (struct iovec *)vec; 590 msg->msg_iovlen = num; 591 result = sock_sendmsg(sock, msg, size); 592 set_fs(oldfs); 593 return result; 594 } 595 596 /* 597 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 598 */ 599 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 600 struct sk_buff *skb) 601 { 602 ktime_t kt = skb->tstamp; 603 604 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 605 struct timeval tv; 606 /* Race occurred between timestamp enabling and packet 607 receiving. Fill in the current time for now. */ 608 if (kt.tv64 == 0) 609 kt = ktime_get_real(); 610 skb->tstamp = kt; 611 tv = ktime_to_timeval(kt); 612 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv); 613 } else { 614 struct timespec ts; 615 /* Race occurred between timestamp enabling and packet 616 receiving. Fill in the current time for now. */ 617 if (kt.tv64 == 0) 618 kt = ktime_get_real(); 619 skb->tstamp = kt; 620 ts = ktime_to_timespec(kt); 621 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts); 622 } 623 } 624 625 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 626 627 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 628 struct msghdr *msg, size_t size, int flags) 629 { 630 int err; 631 struct sock_iocb *si = kiocb_to_siocb(iocb); 632 633 si->sock = sock; 634 si->scm = NULL; 635 si->msg = msg; 636 si->size = size; 637 si->flags = flags; 638 639 err = security_socket_recvmsg(sock, msg, size, flags); 640 if (err) 641 return err; 642 643 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 644 } 645 646 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 647 size_t size, int flags) 648 { 649 struct kiocb iocb; 650 struct sock_iocb siocb; 651 int ret; 652 653 init_sync_kiocb(&iocb, NULL); 654 iocb.private = &siocb; 655 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 656 if (-EIOCBQUEUED == ret) 657 ret = wait_on_sync_kiocb(&iocb); 658 return ret; 659 } 660 661 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 662 struct kvec *vec, size_t num, size_t size, int flags) 663 { 664 mm_segment_t oldfs = get_fs(); 665 int result; 666 667 set_fs(KERNEL_DS); 668 /* 669 * the following is safe, since for compiler definitions of kvec and 670 * iovec are identical, yielding the same in-core layout and alignment 671 */ 672 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 673 result = sock_recvmsg(sock, msg, size, flags); 674 set_fs(oldfs); 675 return result; 676 } 677 678 static void sock_aio_dtor(struct kiocb *iocb) 679 { 680 kfree(iocb->private); 681 } 682 683 static ssize_t sock_sendpage(struct file *file, struct page *page, 684 int offset, size_t size, loff_t *ppos, int more) 685 { 686 struct socket *sock; 687 int flags; 688 689 sock = file->private_data; 690 691 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 692 if (more) 693 flags |= MSG_MORE; 694 695 return sock->ops->sendpage(sock, page, offset, size, flags); 696 } 697 698 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 699 struct pipe_inode_info *pipe, size_t len, 700 unsigned int flags) 701 { 702 struct socket *sock = file->private_data; 703 704 if (unlikely(!sock->ops->splice_read)) 705 return -EINVAL; 706 707 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 708 } 709 710 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 711 struct sock_iocb *siocb) 712 { 713 if (!is_sync_kiocb(iocb)) { 714 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 715 if (!siocb) 716 return NULL; 717 iocb->ki_dtor = sock_aio_dtor; 718 } 719 720 siocb->kiocb = iocb; 721 iocb->private = siocb; 722 return siocb; 723 } 724 725 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 726 struct file *file, const struct iovec *iov, 727 unsigned long nr_segs) 728 { 729 struct socket *sock = file->private_data; 730 size_t size = 0; 731 int i; 732 733 for (i = 0; i < nr_segs; i++) 734 size += iov[i].iov_len; 735 736 msg->msg_name = NULL; 737 msg->msg_namelen = 0; 738 msg->msg_control = NULL; 739 msg->msg_controllen = 0; 740 msg->msg_iov = (struct iovec *)iov; 741 msg->msg_iovlen = nr_segs; 742 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 743 744 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 745 } 746 747 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 748 unsigned long nr_segs, loff_t pos) 749 { 750 struct sock_iocb siocb, *x; 751 752 if (pos != 0) 753 return -ESPIPE; 754 755 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 756 return 0; 757 758 759 x = alloc_sock_iocb(iocb, &siocb); 760 if (!x) 761 return -ENOMEM; 762 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 763 } 764 765 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 766 struct file *file, const struct iovec *iov, 767 unsigned long nr_segs) 768 { 769 struct socket *sock = file->private_data; 770 size_t size = 0; 771 int i; 772 773 for (i = 0; i < nr_segs; i++) 774 size += iov[i].iov_len; 775 776 msg->msg_name = NULL; 777 msg->msg_namelen = 0; 778 msg->msg_control = NULL; 779 msg->msg_controllen = 0; 780 msg->msg_iov = (struct iovec *)iov; 781 msg->msg_iovlen = nr_segs; 782 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 783 if (sock->type == SOCK_SEQPACKET) 784 msg->msg_flags |= MSG_EOR; 785 786 return __sock_sendmsg(iocb, sock, msg, size); 787 } 788 789 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 790 unsigned long nr_segs, loff_t pos) 791 { 792 struct sock_iocb siocb, *x; 793 794 if (pos != 0) 795 return -ESPIPE; 796 797 x = alloc_sock_iocb(iocb, &siocb); 798 if (!x) 799 return -ENOMEM; 800 801 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 802 } 803 804 /* 805 * Atomic setting of ioctl hooks to avoid race 806 * with module unload. 807 */ 808 809 static DEFINE_MUTEX(br_ioctl_mutex); 810 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL; 811 812 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 813 { 814 mutex_lock(&br_ioctl_mutex); 815 br_ioctl_hook = hook; 816 mutex_unlock(&br_ioctl_mutex); 817 } 818 819 EXPORT_SYMBOL(brioctl_set); 820 821 static DEFINE_MUTEX(vlan_ioctl_mutex); 822 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 823 824 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 825 { 826 mutex_lock(&vlan_ioctl_mutex); 827 vlan_ioctl_hook = hook; 828 mutex_unlock(&vlan_ioctl_mutex); 829 } 830 831 EXPORT_SYMBOL(vlan_ioctl_set); 832 833 static DEFINE_MUTEX(dlci_ioctl_mutex); 834 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 835 836 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 837 { 838 mutex_lock(&dlci_ioctl_mutex); 839 dlci_ioctl_hook = hook; 840 mutex_unlock(&dlci_ioctl_mutex); 841 } 842 843 EXPORT_SYMBOL(dlci_ioctl_set); 844 845 /* 846 * With an ioctl, arg may well be a user mode pointer, but we don't know 847 * what to do with it - that's up to the protocol still. 848 */ 849 850 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 851 { 852 struct socket *sock; 853 struct sock *sk; 854 void __user *argp = (void __user *)arg; 855 int pid, err; 856 struct net *net; 857 858 sock = file->private_data; 859 sk = sock->sk; 860 net = sk->sk_net; 861 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 862 err = dev_ioctl(net, cmd, argp); 863 } else 864 #ifdef CONFIG_WIRELESS_EXT 865 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 866 err = dev_ioctl(net, cmd, argp); 867 } else 868 #endif /* CONFIG_WIRELESS_EXT */ 869 switch (cmd) { 870 case FIOSETOWN: 871 case SIOCSPGRP: 872 err = -EFAULT; 873 if (get_user(pid, (int __user *)argp)) 874 break; 875 err = f_setown(sock->file, pid, 1); 876 break; 877 case FIOGETOWN: 878 case SIOCGPGRP: 879 err = put_user(f_getown(sock->file), 880 (int __user *)argp); 881 break; 882 case SIOCGIFBR: 883 case SIOCSIFBR: 884 case SIOCBRADDBR: 885 case SIOCBRDELBR: 886 err = -ENOPKG; 887 if (!br_ioctl_hook) 888 request_module("bridge"); 889 890 mutex_lock(&br_ioctl_mutex); 891 if (br_ioctl_hook) 892 err = br_ioctl_hook(net, cmd, argp); 893 mutex_unlock(&br_ioctl_mutex); 894 break; 895 case SIOCGIFVLAN: 896 case SIOCSIFVLAN: 897 err = -ENOPKG; 898 if (!vlan_ioctl_hook) 899 request_module("8021q"); 900 901 mutex_lock(&vlan_ioctl_mutex); 902 if (vlan_ioctl_hook) 903 err = vlan_ioctl_hook(net, argp); 904 mutex_unlock(&vlan_ioctl_mutex); 905 break; 906 case SIOCADDDLCI: 907 case SIOCDELDLCI: 908 err = -ENOPKG; 909 if (!dlci_ioctl_hook) 910 request_module("dlci"); 911 912 if (dlci_ioctl_hook) { 913 mutex_lock(&dlci_ioctl_mutex); 914 err = dlci_ioctl_hook(cmd, argp); 915 mutex_unlock(&dlci_ioctl_mutex); 916 } 917 break; 918 default: 919 err = sock->ops->ioctl(sock, cmd, arg); 920 921 /* 922 * If this ioctl is unknown try to hand it down 923 * to the NIC driver. 924 */ 925 if (err == -ENOIOCTLCMD) 926 err = dev_ioctl(net, cmd, argp); 927 break; 928 } 929 return err; 930 } 931 932 int sock_create_lite(int family, int type, int protocol, struct socket **res) 933 { 934 int err; 935 struct socket *sock = NULL; 936 937 err = security_socket_create(family, type, protocol, 1); 938 if (err) 939 goto out; 940 941 sock = sock_alloc(); 942 if (!sock) { 943 err = -ENOMEM; 944 goto out; 945 } 946 947 sock->type = type; 948 err = security_socket_post_create(sock, family, type, protocol, 1); 949 if (err) 950 goto out_release; 951 952 out: 953 *res = sock; 954 return err; 955 out_release: 956 sock_release(sock); 957 sock = NULL; 958 goto out; 959 } 960 961 /* No kernel lock held - perfect */ 962 static unsigned int sock_poll(struct file *file, poll_table *wait) 963 { 964 struct socket *sock; 965 966 /* 967 * We can't return errors to poll, so it's either yes or no. 968 */ 969 sock = file->private_data; 970 return sock->ops->poll(file, sock, wait); 971 } 972 973 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 974 { 975 struct socket *sock = file->private_data; 976 977 return sock->ops->mmap(file, sock, vma); 978 } 979 980 static int sock_close(struct inode *inode, struct file *filp) 981 { 982 /* 983 * It was possible the inode is NULL we were 984 * closing an unfinished socket. 985 */ 986 987 if (!inode) { 988 printk(KERN_DEBUG "sock_close: NULL inode\n"); 989 return 0; 990 } 991 sock_fasync(-1, filp, 0); 992 sock_release(SOCKET_I(inode)); 993 return 0; 994 } 995 996 /* 997 * Update the socket async list 998 * 999 * Fasync_list locking strategy. 1000 * 1001 * 1. fasync_list is modified only under process context socket lock 1002 * i.e. under semaphore. 1003 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1004 * or under socket lock. 1005 * 3. fasync_list can be used from softirq context, so that 1006 * modification under socket lock have to be enhanced with 1007 * write_lock_bh(&sk->sk_callback_lock). 1008 * --ANK (990710) 1009 */ 1010 1011 static int sock_fasync(int fd, struct file *filp, int on) 1012 { 1013 struct fasync_struct *fa, *fna = NULL, **prev; 1014 struct socket *sock; 1015 struct sock *sk; 1016 1017 if (on) { 1018 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1019 if (fna == NULL) 1020 return -ENOMEM; 1021 } 1022 1023 sock = filp->private_data; 1024 1025 sk = sock->sk; 1026 if (sk == NULL) { 1027 kfree(fna); 1028 return -EINVAL; 1029 } 1030 1031 lock_sock(sk); 1032 1033 prev = &(sock->fasync_list); 1034 1035 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 1036 if (fa->fa_file == filp) 1037 break; 1038 1039 if (on) { 1040 if (fa != NULL) { 1041 write_lock_bh(&sk->sk_callback_lock); 1042 fa->fa_fd = fd; 1043 write_unlock_bh(&sk->sk_callback_lock); 1044 1045 kfree(fna); 1046 goto out; 1047 } 1048 fna->fa_file = filp; 1049 fna->fa_fd = fd; 1050 fna->magic = FASYNC_MAGIC; 1051 fna->fa_next = sock->fasync_list; 1052 write_lock_bh(&sk->sk_callback_lock); 1053 sock->fasync_list = fna; 1054 write_unlock_bh(&sk->sk_callback_lock); 1055 } else { 1056 if (fa != NULL) { 1057 write_lock_bh(&sk->sk_callback_lock); 1058 *prev = fa->fa_next; 1059 write_unlock_bh(&sk->sk_callback_lock); 1060 kfree(fa); 1061 } 1062 } 1063 1064 out: 1065 release_sock(sock->sk); 1066 return 0; 1067 } 1068 1069 /* This function may be called only under socket lock or callback_lock */ 1070 1071 int sock_wake_async(struct socket *sock, int how, int band) 1072 { 1073 if (!sock || !sock->fasync_list) 1074 return -1; 1075 switch (how) { 1076 case SOCK_WAKE_WAITD: 1077 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1078 break; 1079 goto call_kill; 1080 case SOCK_WAKE_SPACE: 1081 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1082 break; 1083 /* fall through */ 1084 case SOCK_WAKE_IO: 1085 call_kill: 1086 __kill_fasync(sock->fasync_list, SIGIO, band); 1087 break; 1088 case SOCK_WAKE_URG: 1089 __kill_fasync(sock->fasync_list, SIGURG, band); 1090 } 1091 return 0; 1092 } 1093 1094 static int __sock_create(struct net *net, int family, int type, int protocol, 1095 struct socket **res, int kern) 1096 { 1097 int err; 1098 struct socket *sock; 1099 const struct net_proto_family *pf; 1100 1101 /* 1102 * Check protocol is in range 1103 */ 1104 if (family < 0 || family >= NPROTO) 1105 return -EAFNOSUPPORT; 1106 if (type < 0 || type >= SOCK_MAX) 1107 return -EINVAL; 1108 1109 /* Compatibility. 1110 1111 This uglymoron is moved from INET layer to here to avoid 1112 deadlock in module load. 1113 */ 1114 if (family == PF_INET && type == SOCK_PACKET) { 1115 static int warned; 1116 if (!warned) { 1117 warned = 1; 1118 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1119 current->comm); 1120 } 1121 family = PF_PACKET; 1122 } 1123 1124 err = security_socket_create(family, type, protocol, kern); 1125 if (err) 1126 return err; 1127 1128 /* 1129 * Allocate the socket and allow the family to set things up. if 1130 * the protocol is 0, the family is instructed to select an appropriate 1131 * default. 1132 */ 1133 sock = sock_alloc(); 1134 if (!sock) { 1135 if (net_ratelimit()) 1136 printk(KERN_WARNING "socket: no more sockets\n"); 1137 return -ENFILE; /* Not exactly a match, but its the 1138 closest posix thing */ 1139 } 1140 1141 sock->type = type; 1142 1143 #if defined(CONFIG_KMOD) 1144 /* Attempt to load a protocol module if the find failed. 1145 * 1146 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1147 * requested real, full-featured networking support upon configuration. 1148 * Otherwise module support will break! 1149 */ 1150 if (net_families[family] == NULL) 1151 request_module("net-pf-%d", family); 1152 #endif 1153 1154 rcu_read_lock(); 1155 pf = rcu_dereference(net_families[family]); 1156 err = -EAFNOSUPPORT; 1157 if (!pf) 1158 goto out_release; 1159 1160 /* 1161 * We will call the ->create function, that possibly is in a loadable 1162 * module, so we have to bump that loadable module refcnt first. 1163 */ 1164 if (!try_module_get(pf->owner)) 1165 goto out_release; 1166 1167 /* Now protected by module ref count */ 1168 rcu_read_unlock(); 1169 1170 err = pf->create(net, sock, protocol); 1171 if (err < 0) 1172 goto out_module_put; 1173 1174 /* 1175 * Now to bump the refcnt of the [loadable] module that owns this 1176 * socket at sock_release time we decrement its refcnt. 1177 */ 1178 if (!try_module_get(sock->ops->owner)) 1179 goto out_module_busy; 1180 1181 /* 1182 * Now that we're done with the ->create function, the [loadable] 1183 * module can have its refcnt decremented 1184 */ 1185 module_put(pf->owner); 1186 err = security_socket_post_create(sock, family, type, protocol, kern); 1187 if (err) 1188 goto out_sock_release; 1189 *res = sock; 1190 1191 return 0; 1192 1193 out_module_busy: 1194 err = -EAFNOSUPPORT; 1195 out_module_put: 1196 sock->ops = NULL; 1197 module_put(pf->owner); 1198 out_sock_release: 1199 sock_release(sock); 1200 return err; 1201 1202 out_release: 1203 rcu_read_unlock(); 1204 goto out_sock_release; 1205 } 1206 1207 int sock_create(int family, int type, int protocol, struct socket **res) 1208 { 1209 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1210 } 1211 1212 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1213 { 1214 return __sock_create(&init_net, family, type, protocol, res, 1); 1215 } 1216 1217 asmlinkage long sys_socket(int family, int type, int protocol) 1218 { 1219 int retval; 1220 struct socket *sock; 1221 1222 retval = sock_create(family, type, protocol, &sock); 1223 if (retval < 0) 1224 goto out; 1225 1226 retval = sock_map_fd(sock); 1227 if (retval < 0) 1228 goto out_release; 1229 1230 out: 1231 /* It may be already another descriptor 8) Not kernel problem. */ 1232 return retval; 1233 1234 out_release: 1235 sock_release(sock); 1236 return retval; 1237 } 1238 1239 /* 1240 * Create a pair of connected sockets. 1241 */ 1242 1243 asmlinkage long sys_socketpair(int family, int type, int protocol, 1244 int __user *usockvec) 1245 { 1246 struct socket *sock1, *sock2; 1247 int fd1, fd2, err; 1248 struct file *newfile1, *newfile2; 1249 1250 /* 1251 * Obtain the first socket and check if the underlying protocol 1252 * supports the socketpair call. 1253 */ 1254 1255 err = sock_create(family, type, protocol, &sock1); 1256 if (err < 0) 1257 goto out; 1258 1259 err = sock_create(family, type, protocol, &sock2); 1260 if (err < 0) 1261 goto out_release_1; 1262 1263 err = sock1->ops->socketpair(sock1, sock2); 1264 if (err < 0) 1265 goto out_release_both; 1266 1267 fd1 = sock_alloc_fd(&newfile1); 1268 if (unlikely(fd1 < 0)) { 1269 err = fd1; 1270 goto out_release_both; 1271 } 1272 1273 fd2 = sock_alloc_fd(&newfile2); 1274 if (unlikely(fd2 < 0)) { 1275 err = fd2; 1276 put_filp(newfile1); 1277 put_unused_fd(fd1); 1278 goto out_release_both; 1279 } 1280 1281 err = sock_attach_fd(sock1, newfile1); 1282 if (unlikely(err < 0)) { 1283 goto out_fd2; 1284 } 1285 1286 err = sock_attach_fd(sock2, newfile2); 1287 if (unlikely(err < 0)) { 1288 fput(newfile1); 1289 goto out_fd1; 1290 } 1291 1292 err = audit_fd_pair(fd1, fd2); 1293 if (err < 0) { 1294 fput(newfile1); 1295 fput(newfile2); 1296 goto out_fd; 1297 } 1298 1299 fd_install(fd1, newfile1); 1300 fd_install(fd2, newfile2); 1301 /* fd1 and fd2 may be already another descriptors. 1302 * Not kernel problem. 1303 */ 1304 1305 err = put_user(fd1, &usockvec[0]); 1306 if (!err) 1307 err = put_user(fd2, &usockvec[1]); 1308 if (!err) 1309 return 0; 1310 1311 sys_close(fd2); 1312 sys_close(fd1); 1313 return err; 1314 1315 out_release_both: 1316 sock_release(sock2); 1317 out_release_1: 1318 sock_release(sock1); 1319 out: 1320 return err; 1321 1322 out_fd2: 1323 put_filp(newfile1); 1324 sock_release(sock1); 1325 out_fd1: 1326 put_filp(newfile2); 1327 sock_release(sock2); 1328 out_fd: 1329 put_unused_fd(fd1); 1330 put_unused_fd(fd2); 1331 goto out; 1332 } 1333 1334 /* 1335 * Bind a name to a socket. Nothing much to do here since it's 1336 * the protocol's responsibility to handle the local address. 1337 * 1338 * We move the socket address to kernel space before we call 1339 * the protocol layer (having also checked the address is ok). 1340 */ 1341 1342 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1343 { 1344 struct socket *sock; 1345 char address[MAX_SOCK_ADDR]; 1346 int err, fput_needed; 1347 1348 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1349 if (sock) { 1350 err = move_addr_to_kernel(umyaddr, addrlen, address); 1351 if (err >= 0) { 1352 err = security_socket_bind(sock, 1353 (struct sockaddr *)address, 1354 addrlen); 1355 if (!err) 1356 err = sock->ops->bind(sock, 1357 (struct sockaddr *) 1358 address, addrlen); 1359 } 1360 fput_light(sock->file, fput_needed); 1361 } 1362 return err; 1363 } 1364 1365 /* 1366 * Perform a listen. Basically, we allow the protocol to do anything 1367 * necessary for a listen, and if that works, we mark the socket as 1368 * ready for listening. 1369 */ 1370 1371 asmlinkage long sys_listen(int fd, int backlog) 1372 { 1373 struct socket *sock; 1374 int err, fput_needed; 1375 int somaxconn; 1376 1377 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1378 if (sock) { 1379 somaxconn = sock->sk->sk_net->sysctl_somaxconn; 1380 if ((unsigned)backlog > somaxconn) 1381 backlog = somaxconn; 1382 1383 err = security_socket_listen(sock, backlog); 1384 if (!err) 1385 err = sock->ops->listen(sock, backlog); 1386 1387 fput_light(sock->file, fput_needed); 1388 } 1389 return err; 1390 } 1391 1392 /* 1393 * For accept, we attempt to create a new socket, set up the link 1394 * with the client, wake up the client, then return the new 1395 * connected fd. We collect the address of the connector in kernel 1396 * space and move it to user at the very end. This is unclean because 1397 * we open the socket then return an error. 1398 * 1399 * 1003.1g adds the ability to recvmsg() to query connection pending 1400 * status to recvmsg. We need to add that support in a way thats 1401 * clean when we restucture accept also. 1402 */ 1403 1404 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1405 int __user *upeer_addrlen) 1406 { 1407 struct socket *sock, *newsock; 1408 struct file *newfile; 1409 int err, len, newfd, fput_needed; 1410 char address[MAX_SOCK_ADDR]; 1411 1412 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1413 if (!sock) 1414 goto out; 1415 1416 err = -ENFILE; 1417 if (!(newsock = sock_alloc())) 1418 goto out_put; 1419 1420 newsock->type = sock->type; 1421 newsock->ops = sock->ops; 1422 1423 /* 1424 * We don't need try_module_get here, as the listening socket (sock) 1425 * has the protocol module (sock->ops->owner) held. 1426 */ 1427 __module_get(newsock->ops->owner); 1428 1429 newfd = sock_alloc_fd(&newfile); 1430 if (unlikely(newfd < 0)) { 1431 err = newfd; 1432 sock_release(newsock); 1433 goto out_put; 1434 } 1435 1436 err = sock_attach_fd(newsock, newfile); 1437 if (err < 0) 1438 goto out_fd_simple; 1439 1440 err = security_socket_accept(sock, newsock); 1441 if (err) 1442 goto out_fd; 1443 1444 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1445 if (err < 0) 1446 goto out_fd; 1447 1448 if (upeer_sockaddr) { 1449 if (newsock->ops->getname(newsock, (struct sockaddr *)address, 1450 &len, 2) < 0) { 1451 err = -ECONNABORTED; 1452 goto out_fd; 1453 } 1454 err = move_addr_to_user(address, len, upeer_sockaddr, 1455 upeer_addrlen); 1456 if (err < 0) 1457 goto out_fd; 1458 } 1459 1460 /* File flags are not inherited via accept() unlike another OSes. */ 1461 1462 fd_install(newfd, newfile); 1463 err = newfd; 1464 1465 security_socket_post_accept(sock, newsock); 1466 1467 out_put: 1468 fput_light(sock->file, fput_needed); 1469 out: 1470 return err; 1471 out_fd_simple: 1472 sock_release(newsock); 1473 put_filp(newfile); 1474 put_unused_fd(newfd); 1475 goto out_put; 1476 out_fd: 1477 fput(newfile); 1478 put_unused_fd(newfd); 1479 goto out_put; 1480 } 1481 1482 /* 1483 * Attempt to connect to a socket with the server address. The address 1484 * is in user space so we verify it is OK and move it to kernel space. 1485 * 1486 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1487 * break bindings 1488 * 1489 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1490 * other SEQPACKET protocols that take time to connect() as it doesn't 1491 * include the -EINPROGRESS status for such sockets. 1492 */ 1493 1494 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, 1495 int addrlen) 1496 { 1497 struct socket *sock; 1498 char address[MAX_SOCK_ADDR]; 1499 int err, fput_needed; 1500 1501 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1502 if (!sock) 1503 goto out; 1504 err = move_addr_to_kernel(uservaddr, addrlen, address); 1505 if (err < 0) 1506 goto out_put; 1507 1508 err = 1509 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1510 if (err) 1511 goto out_put; 1512 1513 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen, 1514 sock->file->f_flags); 1515 out_put: 1516 fput_light(sock->file, fput_needed); 1517 out: 1518 return err; 1519 } 1520 1521 /* 1522 * Get the local address ('name') of a socket object. Move the obtained 1523 * name to user space. 1524 */ 1525 1526 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1527 int __user *usockaddr_len) 1528 { 1529 struct socket *sock; 1530 char address[MAX_SOCK_ADDR]; 1531 int len, err, fput_needed; 1532 1533 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1534 if (!sock) 1535 goto out; 1536 1537 err = security_socket_getsockname(sock); 1538 if (err) 1539 goto out_put; 1540 1541 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1542 if (err) 1543 goto out_put; 1544 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1545 1546 out_put: 1547 fput_light(sock->file, fput_needed); 1548 out: 1549 return err; 1550 } 1551 1552 /* 1553 * Get the remote address ('name') of a socket object. Move the obtained 1554 * name to user space. 1555 */ 1556 1557 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1558 int __user *usockaddr_len) 1559 { 1560 struct socket *sock; 1561 char address[MAX_SOCK_ADDR]; 1562 int len, err, fput_needed; 1563 1564 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1565 if (sock != NULL) { 1566 err = security_socket_getpeername(sock); 1567 if (err) { 1568 fput_light(sock->file, fput_needed); 1569 return err; 1570 } 1571 1572 err = 1573 sock->ops->getname(sock, (struct sockaddr *)address, &len, 1574 1); 1575 if (!err) 1576 err = move_addr_to_user(address, len, usockaddr, 1577 usockaddr_len); 1578 fput_light(sock->file, fput_needed); 1579 } 1580 return err; 1581 } 1582 1583 /* 1584 * Send a datagram to a given address. We move the address into kernel 1585 * space and check the user space data area is readable before invoking 1586 * the protocol. 1587 */ 1588 1589 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len, 1590 unsigned flags, struct sockaddr __user *addr, 1591 int addr_len) 1592 { 1593 struct socket *sock; 1594 char address[MAX_SOCK_ADDR]; 1595 int err; 1596 struct msghdr msg; 1597 struct iovec iov; 1598 int fput_needed; 1599 1600 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1601 if (!sock) 1602 goto out; 1603 1604 iov.iov_base = buff; 1605 iov.iov_len = len; 1606 msg.msg_name = NULL; 1607 msg.msg_iov = &iov; 1608 msg.msg_iovlen = 1; 1609 msg.msg_control = NULL; 1610 msg.msg_controllen = 0; 1611 msg.msg_namelen = 0; 1612 if (addr) { 1613 err = move_addr_to_kernel(addr, addr_len, address); 1614 if (err < 0) 1615 goto out_put; 1616 msg.msg_name = address; 1617 msg.msg_namelen = addr_len; 1618 } 1619 if (sock->file->f_flags & O_NONBLOCK) 1620 flags |= MSG_DONTWAIT; 1621 msg.msg_flags = flags; 1622 err = sock_sendmsg(sock, &msg, len); 1623 1624 out_put: 1625 fput_light(sock->file, fput_needed); 1626 out: 1627 return err; 1628 } 1629 1630 /* 1631 * Send a datagram down a socket. 1632 */ 1633 1634 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags) 1635 { 1636 return sys_sendto(fd, buff, len, flags, NULL, 0); 1637 } 1638 1639 /* 1640 * Receive a frame from the socket and optionally record the address of the 1641 * sender. We verify the buffers are writable and if needed move the 1642 * sender address from kernel to user space. 1643 */ 1644 1645 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size, 1646 unsigned flags, struct sockaddr __user *addr, 1647 int __user *addr_len) 1648 { 1649 struct socket *sock; 1650 struct iovec iov; 1651 struct msghdr msg; 1652 char address[MAX_SOCK_ADDR]; 1653 int err, err2; 1654 int fput_needed; 1655 1656 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1657 if (!sock) 1658 goto out; 1659 1660 msg.msg_control = NULL; 1661 msg.msg_controllen = 0; 1662 msg.msg_iovlen = 1; 1663 msg.msg_iov = &iov; 1664 iov.iov_len = size; 1665 iov.iov_base = ubuf; 1666 msg.msg_name = address; 1667 msg.msg_namelen = MAX_SOCK_ADDR; 1668 if (sock->file->f_flags & O_NONBLOCK) 1669 flags |= MSG_DONTWAIT; 1670 err = sock_recvmsg(sock, &msg, size, flags); 1671 1672 if (err >= 0 && addr != NULL) { 1673 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1674 if (err2 < 0) 1675 err = err2; 1676 } 1677 1678 fput_light(sock->file, fput_needed); 1679 out: 1680 return err; 1681 } 1682 1683 /* 1684 * Receive a datagram from a socket. 1685 */ 1686 1687 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1688 unsigned flags) 1689 { 1690 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1691 } 1692 1693 /* 1694 * Set a socket option. Because we don't know the option lengths we have 1695 * to pass the user mode parameter for the protocols to sort out. 1696 */ 1697 1698 asmlinkage long sys_setsockopt(int fd, int level, int optname, 1699 char __user *optval, int optlen) 1700 { 1701 int err, fput_needed; 1702 struct socket *sock; 1703 1704 if (optlen < 0) 1705 return -EINVAL; 1706 1707 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1708 if (sock != NULL) { 1709 err = security_socket_setsockopt(sock, level, optname); 1710 if (err) 1711 goto out_put; 1712 1713 if (level == SOL_SOCKET) 1714 err = 1715 sock_setsockopt(sock, level, optname, optval, 1716 optlen); 1717 else 1718 err = 1719 sock->ops->setsockopt(sock, level, optname, optval, 1720 optlen); 1721 out_put: 1722 fput_light(sock->file, fput_needed); 1723 } 1724 return err; 1725 } 1726 1727 /* 1728 * Get a socket option. Because we don't know the option lengths we have 1729 * to pass a user mode parameter for the protocols to sort out. 1730 */ 1731 1732 asmlinkage long sys_getsockopt(int fd, int level, int optname, 1733 char __user *optval, int __user *optlen) 1734 { 1735 int err, fput_needed; 1736 struct socket *sock; 1737 1738 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1739 if (sock != NULL) { 1740 err = security_socket_getsockopt(sock, level, optname); 1741 if (err) 1742 goto out_put; 1743 1744 if (level == SOL_SOCKET) 1745 err = 1746 sock_getsockopt(sock, level, optname, optval, 1747 optlen); 1748 else 1749 err = 1750 sock->ops->getsockopt(sock, level, optname, optval, 1751 optlen); 1752 out_put: 1753 fput_light(sock->file, fput_needed); 1754 } 1755 return err; 1756 } 1757 1758 /* 1759 * Shutdown a socket. 1760 */ 1761 1762 asmlinkage long sys_shutdown(int fd, int how) 1763 { 1764 int err, fput_needed; 1765 struct socket *sock; 1766 1767 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1768 if (sock != NULL) { 1769 err = security_socket_shutdown(sock, how); 1770 if (!err) 1771 err = sock->ops->shutdown(sock, how); 1772 fput_light(sock->file, fput_needed); 1773 } 1774 return err; 1775 } 1776 1777 /* A couple of helpful macros for getting the address of the 32/64 bit 1778 * fields which are the same type (int / unsigned) on our platforms. 1779 */ 1780 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1781 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1782 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1783 1784 /* 1785 * BSD sendmsg interface 1786 */ 1787 1788 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1789 { 1790 struct compat_msghdr __user *msg_compat = 1791 (struct compat_msghdr __user *)msg; 1792 struct socket *sock; 1793 char address[MAX_SOCK_ADDR]; 1794 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1795 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1796 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1797 /* 20 is size of ipv6_pktinfo */ 1798 unsigned char *ctl_buf = ctl; 1799 struct msghdr msg_sys; 1800 int err, ctl_len, iov_size, total_len; 1801 int fput_needed; 1802 1803 err = -EFAULT; 1804 if (MSG_CMSG_COMPAT & flags) { 1805 if (get_compat_msghdr(&msg_sys, msg_compat)) 1806 return -EFAULT; 1807 } 1808 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1809 return -EFAULT; 1810 1811 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1812 if (!sock) 1813 goto out; 1814 1815 /* do not move before msg_sys is valid */ 1816 err = -EMSGSIZE; 1817 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1818 goto out_put; 1819 1820 /* Check whether to allocate the iovec area */ 1821 err = -ENOMEM; 1822 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1823 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1824 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1825 if (!iov) 1826 goto out_put; 1827 } 1828 1829 /* This will also move the address data into kernel space */ 1830 if (MSG_CMSG_COMPAT & flags) { 1831 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1832 } else 1833 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1834 if (err < 0) 1835 goto out_freeiov; 1836 total_len = err; 1837 1838 err = -ENOBUFS; 1839 1840 if (msg_sys.msg_controllen > INT_MAX) 1841 goto out_freeiov; 1842 ctl_len = msg_sys.msg_controllen; 1843 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1844 err = 1845 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1846 sizeof(ctl)); 1847 if (err) 1848 goto out_freeiov; 1849 ctl_buf = msg_sys.msg_control; 1850 ctl_len = msg_sys.msg_controllen; 1851 } else if (ctl_len) { 1852 if (ctl_len > sizeof(ctl)) { 1853 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1854 if (ctl_buf == NULL) 1855 goto out_freeiov; 1856 } 1857 err = -EFAULT; 1858 /* 1859 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1860 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1861 * checking falls down on this. 1862 */ 1863 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1864 ctl_len)) 1865 goto out_freectl; 1866 msg_sys.msg_control = ctl_buf; 1867 } 1868 msg_sys.msg_flags = flags; 1869 1870 if (sock->file->f_flags & O_NONBLOCK) 1871 msg_sys.msg_flags |= MSG_DONTWAIT; 1872 err = sock_sendmsg(sock, &msg_sys, total_len); 1873 1874 out_freectl: 1875 if (ctl_buf != ctl) 1876 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1877 out_freeiov: 1878 if (iov != iovstack) 1879 sock_kfree_s(sock->sk, iov, iov_size); 1880 out_put: 1881 fput_light(sock->file, fput_needed); 1882 out: 1883 return err; 1884 } 1885 1886 /* 1887 * BSD recvmsg interface 1888 */ 1889 1890 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, 1891 unsigned int flags) 1892 { 1893 struct compat_msghdr __user *msg_compat = 1894 (struct compat_msghdr __user *)msg; 1895 struct socket *sock; 1896 struct iovec iovstack[UIO_FASTIOV]; 1897 struct iovec *iov = iovstack; 1898 struct msghdr msg_sys; 1899 unsigned long cmsg_ptr; 1900 int err, iov_size, total_len, len; 1901 int fput_needed; 1902 1903 /* kernel mode address */ 1904 char addr[MAX_SOCK_ADDR]; 1905 1906 /* user mode address pointers */ 1907 struct sockaddr __user *uaddr; 1908 int __user *uaddr_len; 1909 1910 if (MSG_CMSG_COMPAT & flags) { 1911 if (get_compat_msghdr(&msg_sys, msg_compat)) 1912 return -EFAULT; 1913 } 1914 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1915 return -EFAULT; 1916 1917 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1918 if (!sock) 1919 goto out; 1920 1921 err = -EMSGSIZE; 1922 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1923 goto out_put; 1924 1925 /* Check whether to allocate the iovec area */ 1926 err = -ENOMEM; 1927 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1928 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1929 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1930 if (!iov) 1931 goto out_put; 1932 } 1933 1934 /* 1935 * Save the user-mode address (verify_iovec will change the 1936 * kernel msghdr to use the kernel address space) 1937 */ 1938 1939 uaddr = (__force void __user *)msg_sys.msg_name; 1940 uaddr_len = COMPAT_NAMELEN(msg); 1941 if (MSG_CMSG_COMPAT & flags) { 1942 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1943 } else 1944 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1945 if (err < 0) 1946 goto out_freeiov; 1947 total_len = err; 1948 1949 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1950 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 1951 1952 if (sock->file->f_flags & O_NONBLOCK) 1953 flags |= MSG_DONTWAIT; 1954 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1955 if (err < 0) 1956 goto out_freeiov; 1957 len = err; 1958 1959 if (uaddr != NULL) { 1960 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, 1961 uaddr_len); 1962 if (err < 0) 1963 goto out_freeiov; 1964 } 1965 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1966 COMPAT_FLAGS(msg)); 1967 if (err) 1968 goto out_freeiov; 1969 if (MSG_CMSG_COMPAT & flags) 1970 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1971 &msg_compat->msg_controllen); 1972 else 1973 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 1974 &msg->msg_controllen); 1975 if (err) 1976 goto out_freeiov; 1977 err = len; 1978 1979 out_freeiov: 1980 if (iov != iovstack) 1981 sock_kfree_s(sock->sk, iov, iov_size); 1982 out_put: 1983 fput_light(sock->file, fput_needed); 1984 out: 1985 return err; 1986 } 1987 1988 #ifdef __ARCH_WANT_SYS_SOCKETCALL 1989 1990 /* Argument list sizes for sys_socketcall */ 1991 #define AL(x) ((x) * sizeof(unsigned long)) 1992 static const unsigned char nargs[18]={ 1993 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1994 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1995 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3) 1996 }; 1997 1998 #undef AL 1999 2000 /* 2001 * System call vectors. 2002 * 2003 * Argument checking cleaned up. Saved 20% in size. 2004 * This function doesn't need to set the kernel lock because 2005 * it is set by the callees. 2006 */ 2007 2008 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 2009 { 2010 unsigned long a[6]; 2011 unsigned long a0, a1; 2012 int err; 2013 2014 if (call < 1 || call > SYS_RECVMSG) 2015 return -EINVAL; 2016 2017 /* copy_from_user should be SMP safe. */ 2018 if (copy_from_user(a, args, nargs[call])) 2019 return -EFAULT; 2020 2021 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2022 if (err) 2023 return err; 2024 2025 a0 = a[0]; 2026 a1 = a[1]; 2027 2028 switch (call) { 2029 case SYS_SOCKET: 2030 err = sys_socket(a0, a1, a[2]); 2031 break; 2032 case SYS_BIND: 2033 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2034 break; 2035 case SYS_CONNECT: 2036 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2037 break; 2038 case SYS_LISTEN: 2039 err = sys_listen(a0, a1); 2040 break; 2041 case SYS_ACCEPT: 2042 err = 2043 sys_accept(a0, (struct sockaddr __user *)a1, 2044 (int __user *)a[2]); 2045 break; 2046 case SYS_GETSOCKNAME: 2047 err = 2048 sys_getsockname(a0, (struct sockaddr __user *)a1, 2049 (int __user *)a[2]); 2050 break; 2051 case SYS_GETPEERNAME: 2052 err = 2053 sys_getpeername(a0, (struct sockaddr __user *)a1, 2054 (int __user *)a[2]); 2055 break; 2056 case SYS_SOCKETPAIR: 2057 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2058 break; 2059 case SYS_SEND: 2060 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2061 break; 2062 case SYS_SENDTO: 2063 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2064 (struct sockaddr __user *)a[4], a[5]); 2065 break; 2066 case SYS_RECV: 2067 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2068 break; 2069 case SYS_RECVFROM: 2070 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2071 (struct sockaddr __user *)a[4], 2072 (int __user *)a[5]); 2073 break; 2074 case SYS_SHUTDOWN: 2075 err = sys_shutdown(a0, a1); 2076 break; 2077 case SYS_SETSOCKOPT: 2078 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2079 break; 2080 case SYS_GETSOCKOPT: 2081 err = 2082 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2083 (int __user *)a[4]); 2084 break; 2085 case SYS_SENDMSG: 2086 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2087 break; 2088 case SYS_RECVMSG: 2089 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2090 break; 2091 default: 2092 err = -EINVAL; 2093 break; 2094 } 2095 return err; 2096 } 2097 2098 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2099 2100 /** 2101 * sock_register - add a socket protocol handler 2102 * @ops: description of protocol 2103 * 2104 * This function is called by a protocol handler that wants to 2105 * advertise its address family, and have it linked into the 2106 * socket interface. The value ops->family coresponds to the 2107 * socket system call protocol family. 2108 */ 2109 int sock_register(const struct net_proto_family *ops) 2110 { 2111 int err; 2112 2113 if (ops->family >= NPROTO) { 2114 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2115 NPROTO); 2116 return -ENOBUFS; 2117 } 2118 2119 spin_lock(&net_family_lock); 2120 if (net_families[ops->family]) 2121 err = -EEXIST; 2122 else { 2123 net_families[ops->family] = ops; 2124 err = 0; 2125 } 2126 spin_unlock(&net_family_lock); 2127 2128 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2129 return err; 2130 } 2131 2132 /** 2133 * sock_unregister - remove a protocol handler 2134 * @family: protocol family to remove 2135 * 2136 * This function is called by a protocol handler that wants to 2137 * remove its address family, and have it unlinked from the 2138 * new socket creation. 2139 * 2140 * If protocol handler is a module, then it can use module reference 2141 * counts to protect against new references. If protocol handler is not 2142 * a module then it needs to provide its own protection in 2143 * the ops->create routine. 2144 */ 2145 void sock_unregister(int family) 2146 { 2147 BUG_ON(family < 0 || family >= NPROTO); 2148 2149 spin_lock(&net_family_lock); 2150 net_families[family] = NULL; 2151 spin_unlock(&net_family_lock); 2152 2153 synchronize_rcu(); 2154 2155 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2156 } 2157 2158 static int __init sock_init(void) 2159 { 2160 /* 2161 * Initialize sock SLAB cache. 2162 */ 2163 2164 sk_init(); 2165 2166 /* 2167 * Initialize skbuff SLAB cache 2168 */ 2169 skb_init(); 2170 2171 /* 2172 * Initialize the protocols module. 2173 */ 2174 2175 init_inodecache(); 2176 register_filesystem(&sock_fs_type); 2177 sock_mnt = kern_mount(&sock_fs_type); 2178 2179 /* The real protocol initialization is performed in later initcalls. 2180 */ 2181 2182 #ifdef CONFIG_NETFILTER 2183 netfilter_init(); 2184 #endif 2185 2186 return 0; 2187 } 2188 2189 core_initcall(sock_init); /* early initcall */ 2190 2191 #ifdef CONFIG_PROC_FS 2192 void socket_seq_show(struct seq_file *seq) 2193 { 2194 int cpu; 2195 int counter = 0; 2196 2197 for_each_possible_cpu(cpu) 2198 counter += per_cpu(sockets_in_use, cpu); 2199 2200 /* It can be negative, by the way. 8) */ 2201 if (counter < 0) 2202 counter = 0; 2203 2204 seq_printf(seq, "sockets: used %d\n", counter); 2205 } 2206 #endif /* CONFIG_PROC_FS */ 2207 2208 #ifdef CONFIG_COMPAT 2209 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2210 unsigned long arg) 2211 { 2212 struct socket *sock = file->private_data; 2213 int ret = -ENOIOCTLCMD; 2214 2215 if (sock->ops->compat_ioctl) 2216 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2217 2218 return ret; 2219 } 2220 #endif 2221 2222 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2223 { 2224 return sock->ops->bind(sock, addr, addrlen); 2225 } 2226 2227 int kernel_listen(struct socket *sock, int backlog) 2228 { 2229 return sock->ops->listen(sock, backlog); 2230 } 2231 2232 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2233 { 2234 struct sock *sk = sock->sk; 2235 int err; 2236 2237 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 2238 newsock); 2239 if (err < 0) 2240 goto done; 2241 2242 err = sock->ops->accept(sock, *newsock, flags); 2243 if (err < 0) { 2244 sock_release(*newsock); 2245 *newsock = NULL; 2246 goto done; 2247 } 2248 2249 (*newsock)->ops = sock->ops; 2250 2251 done: 2252 return err; 2253 } 2254 2255 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 2256 int flags) 2257 { 2258 return sock->ops->connect(sock, addr, addrlen, flags); 2259 } 2260 2261 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 2262 int *addrlen) 2263 { 2264 return sock->ops->getname(sock, addr, addrlen, 0); 2265 } 2266 2267 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 2268 int *addrlen) 2269 { 2270 return sock->ops->getname(sock, addr, addrlen, 1); 2271 } 2272 2273 int kernel_getsockopt(struct socket *sock, int level, int optname, 2274 char *optval, int *optlen) 2275 { 2276 mm_segment_t oldfs = get_fs(); 2277 int err; 2278 2279 set_fs(KERNEL_DS); 2280 if (level == SOL_SOCKET) 2281 err = sock_getsockopt(sock, level, optname, optval, optlen); 2282 else 2283 err = sock->ops->getsockopt(sock, level, optname, optval, 2284 optlen); 2285 set_fs(oldfs); 2286 return err; 2287 } 2288 2289 int kernel_setsockopt(struct socket *sock, int level, int optname, 2290 char *optval, int optlen) 2291 { 2292 mm_segment_t oldfs = get_fs(); 2293 int err; 2294 2295 set_fs(KERNEL_DS); 2296 if (level == SOL_SOCKET) 2297 err = sock_setsockopt(sock, level, optname, optval, optlen); 2298 else 2299 err = sock->ops->setsockopt(sock, level, optname, optval, 2300 optlen); 2301 set_fs(oldfs); 2302 return err; 2303 } 2304 2305 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 2306 size_t size, int flags) 2307 { 2308 if (sock->ops->sendpage) 2309 return sock->ops->sendpage(sock, page, offset, size, flags); 2310 2311 return sock_no_sendpage(sock, page, offset, size, flags); 2312 } 2313 2314 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 2315 { 2316 mm_segment_t oldfs = get_fs(); 2317 int err; 2318 2319 set_fs(KERNEL_DS); 2320 err = sock->ops->ioctl(sock, cmd, arg); 2321 set_fs(oldfs); 2322 2323 return err; 2324 } 2325 2326 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 2327 { 2328 return sock->ops->shutdown(sock, how); 2329 } 2330 2331 /* ABI emulation layers need these two */ 2332 EXPORT_SYMBOL(move_addr_to_kernel); 2333 EXPORT_SYMBOL(move_addr_to_user); 2334 EXPORT_SYMBOL(sock_create); 2335 EXPORT_SYMBOL(sock_create_kern); 2336 EXPORT_SYMBOL(sock_create_lite); 2337 EXPORT_SYMBOL(sock_map_fd); 2338 EXPORT_SYMBOL(sock_recvmsg); 2339 EXPORT_SYMBOL(sock_register); 2340 EXPORT_SYMBOL(sock_release); 2341 EXPORT_SYMBOL(sock_sendmsg); 2342 EXPORT_SYMBOL(sock_unregister); 2343 EXPORT_SYMBOL(sock_wake_async); 2344 EXPORT_SYMBOL(sockfd_lookup); 2345 EXPORT_SYMBOL(kernel_sendmsg); 2346 EXPORT_SYMBOL(kernel_recvmsg); 2347 EXPORT_SYMBOL(kernel_bind); 2348 EXPORT_SYMBOL(kernel_listen); 2349 EXPORT_SYMBOL(kernel_accept); 2350 EXPORT_SYMBOL(kernel_connect); 2351 EXPORT_SYMBOL(kernel_getsockname); 2352 EXPORT_SYMBOL(kernel_getpeername); 2353 EXPORT_SYMBOL(kernel_getsockopt); 2354 EXPORT_SYMBOL(kernel_setsockopt); 2355 EXPORT_SYMBOL(kernel_sendpage); 2356 EXPORT_SYMBOL(kernel_sock_ioctl); 2357 EXPORT_SYMBOL(kernel_sock_shutdown); 2358