xref: /linux/net/socket.c (revision bd49666974a12f39eb9c74044e0b1753efcd94c4)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
91 
92 #include <net/compat.h>
93 
94 #include <net/sock.h>
95 #include <linux/netfilter.h>
96 
97 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
98 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
99 			 unsigned long nr_segs, loff_t pos);
100 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
101 			  unsigned long nr_segs, loff_t pos);
102 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
103 
104 static int sock_close(struct inode *inode, struct file *file);
105 static unsigned int sock_poll(struct file *file,
106 			      struct poll_table_struct *wait);
107 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
108 #ifdef CONFIG_COMPAT
109 static long compat_sock_ioctl(struct file *file,
110 			      unsigned int cmd, unsigned long arg);
111 #endif
112 static int sock_fasync(int fd, struct file *filp, int on);
113 static ssize_t sock_sendpage(struct file *file, struct page *page,
114 			     int offset, size_t size, loff_t *ppos, int more);
115 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
116 			        struct pipe_inode_info *pipe, size_t len,
117 				unsigned int flags);
118 
119 /*
120  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
121  *	in the operation structures but are done directly via the socketcall() multiplexor.
122  */
123 
124 static const struct file_operations socket_file_ops = {
125 	.owner =	THIS_MODULE,
126 	.llseek =	no_llseek,
127 	.aio_read =	sock_aio_read,
128 	.aio_write =	sock_aio_write,
129 	.poll =		sock_poll,
130 	.unlocked_ioctl = sock_ioctl,
131 #ifdef CONFIG_COMPAT
132 	.compat_ioctl = compat_sock_ioctl,
133 #endif
134 	.mmap =		sock_mmap,
135 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
136 	.release =	sock_close,
137 	.fasync =	sock_fasync,
138 	.sendpage =	sock_sendpage,
139 	.splice_write = generic_splice_sendpage,
140 	.splice_read =	sock_splice_read,
141 };
142 
143 /*
144  *	The protocol list. Each protocol is registered in here.
145  */
146 
147 static DEFINE_SPINLOCK(net_family_lock);
148 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
149 
150 /*
151  *	Statistics counters of the socket lists
152  */
153 
154 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
155 
156 /*
157  * Support routines.
158  * Move socket addresses back and forth across the kernel/user
159  * divide and look after the messy bits.
160  */
161 
162 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
163 					   16 for IP, 16 for IPX,
164 					   24 for IPv6,
165 					   about 80 for AX.25
166 					   must be at least one bigger than
167 					   the AF_UNIX size (see net/unix/af_unix.c
168 					   :unix_mkname()).
169 					 */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
183 {
184 	if (ulen < 0 || ulen > MAX_SOCK_ADDR)
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
210 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
211 		      int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	err = get_user(len, ulen);
217 	if (err)
218 		return err;
219 	if (len > klen)
220 		len = klen;
221 	if (len < 0 || len > MAX_SOCK_ADDR)
222 		return -EINVAL;
223 	if (len) {
224 		if (audit_sockaddr(klen, kaddr))
225 			return -ENOMEM;
226 		if (copy_to_user(uaddr, kaddr, len))
227 			return -EFAULT;
228 	}
229 	/*
230 	 *      "fromlen shall refer to the value before truncation.."
231 	 *                      1003.1g
232 	 */
233 	return __put_user(klen, ulen);
234 }
235 
236 #define SOCKFS_MAGIC 0x534F434B
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	init_waitqueue_head(&ei->socket.wait);
248 
249 	ei->socket.fasync_list = NULL;
250 	ei->socket.state = SS_UNCONNECTED;
251 	ei->socket.flags = 0;
252 	ei->socket.ops = NULL;
253 	ei->socket.sk = NULL;
254 	ei->socket.file = NULL;
255 
256 	return &ei->vfs_inode;
257 }
258 
259 static void sock_destroy_inode(struct inode *inode)
260 {
261 	kmem_cache_free(sock_inode_cachep,
262 			container_of(inode, struct socket_alloc, vfs_inode));
263 }
264 
265 static void init_once(struct kmem_cache *cachep, void *foo)
266 {
267 	struct socket_alloc *ei = (struct socket_alloc *)foo;
268 
269 	inode_init_once(&ei->vfs_inode);
270 }
271 
272 static int init_inodecache(void)
273 {
274 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
275 					      sizeof(struct socket_alloc),
276 					      0,
277 					      (SLAB_HWCACHE_ALIGN |
278 					       SLAB_RECLAIM_ACCOUNT |
279 					       SLAB_MEM_SPREAD),
280 					      init_once);
281 	if (sock_inode_cachep == NULL)
282 		return -ENOMEM;
283 	return 0;
284 }
285 
286 static struct super_operations sockfs_ops = {
287 	.alloc_inode =	sock_alloc_inode,
288 	.destroy_inode =sock_destroy_inode,
289 	.statfs =	simple_statfs,
290 };
291 
292 static int sockfs_get_sb(struct file_system_type *fs_type,
293 			 int flags, const char *dev_name, void *data,
294 			 struct vfsmount *mnt)
295 {
296 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
297 			     mnt);
298 }
299 
300 static struct vfsmount *sock_mnt __read_mostly;
301 
302 static struct file_system_type sock_fs_type = {
303 	.name =		"sockfs",
304 	.get_sb =	sockfs_get_sb,
305 	.kill_sb =	kill_anon_super,
306 };
307 
308 static int sockfs_delete_dentry(struct dentry *dentry)
309 {
310 	/*
311 	 * At creation time, we pretended this dentry was hashed
312 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
313 	 * At delete time, we restore the truth : not hashed.
314 	 * (so that dput() can proceed correctly)
315 	 */
316 	dentry->d_flags |= DCACHE_UNHASHED;
317 	return 0;
318 }
319 
320 /*
321  * sockfs_dname() is called from d_path().
322  */
323 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
324 {
325 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
326 				dentry->d_inode->i_ino);
327 }
328 
329 static struct dentry_operations sockfs_dentry_operations = {
330 	.d_delete = sockfs_delete_dentry,
331 	.d_dname  = sockfs_dname,
332 };
333 
334 /*
335  *	Obtains the first available file descriptor and sets it up for use.
336  *
337  *	These functions create file structures and maps them to fd space
338  *	of the current process. On success it returns file descriptor
339  *	and file struct implicitly stored in sock->file.
340  *	Note that another thread may close file descriptor before we return
341  *	from this function. We use the fact that now we do not refer
342  *	to socket after mapping. If one day we will need it, this
343  *	function will increment ref. count on file by 1.
344  *
345  *	In any case returned fd MAY BE not valid!
346  *	This race condition is unavoidable
347  *	with shared fd spaces, we cannot solve it inside kernel,
348  *	but we take care of internal coherence yet.
349  */
350 
351 static int sock_alloc_fd(struct file **filep)
352 {
353 	int fd;
354 
355 	fd = get_unused_fd();
356 	if (likely(fd >= 0)) {
357 		struct file *file = get_empty_filp();
358 
359 		*filep = file;
360 		if (unlikely(!file)) {
361 			put_unused_fd(fd);
362 			return -ENFILE;
363 		}
364 	} else
365 		*filep = NULL;
366 	return fd;
367 }
368 
369 static int sock_attach_fd(struct socket *sock, struct file *file)
370 {
371 	struct dentry *dentry;
372 	struct qstr name = { .name = "" };
373 
374 	dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
375 	if (unlikely(!dentry))
376 		return -ENOMEM;
377 
378 	dentry->d_op = &sockfs_dentry_operations;
379 	/*
380 	 * We dont want to push this dentry into global dentry hash table.
381 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
382 	 * This permits a working /proc/$pid/fd/XXX on sockets
383 	 */
384 	dentry->d_flags &= ~DCACHE_UNHASHED;
385 	d_instantiate(dentry, SOCK_INODE(sock));
386 
387 	sock->file = file;
388 	init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
389 		  &socket_file_ops);
390 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
391 	file->f_flags = O_RDWR;
392 	file->f_pos = 0;
393 	file->private_data = sock;
394 
395 	return 0;
396 }
397 
398 int sock_map_fd(struct socket *sock)
399 {
400 	struct file *newfile;
401 	int fd = sock_alloc_fd(&newfile);
402 
403 	if (likely(fd >= 0)) {
404 		int err = sock_attach_fd(sock, newfile);
405 
406 		if (unlikely(err < 0)) {
407 			put_filp(newfile);
408 			put_unused_fd(fd);
409 			return err;
410 		}
411 		fd_install(fd, newfile);
412 	}
413 	return fd;
414 }
415 
416 static struct socket *sock_from_file(struct file *file, int *err)
417 {
418 	if (file->f_op == &socket_file_ops)
419 		return file->private_data;	/* set in sock_map_fd */
420 
421 	*err = -ENOTSOCK;
422 	return NULL;
423 }
424 
425 /**
426  *	sockfd_lookup	- 	Go from a file number to its socket slot
427  *	@fd: file handle
428  *	@err: pointer to an error code return
429  *
430  *	The file handle passed in is locked and the socket it is bound
431  *	too is returned. If an error occurs the err pointer is overwritten
432  *	with a negative errno code and NULL is returned. The function checks
433  *	for both invalid handles and passing a handle which is not a socket.
434  *
435  *	On a success the socket object pointer is returned.
436  */
437 
438 struct socket *sockfd_lookup(int fd, int *err)
439 {
440 	struct file *file;
441 	struct socket *sock;
442 
443 	file = fget(fd);
444 	if (!file) {
445 		*err = -EBADF;
446 		return NULL;
447 	}
448 
449 	sock = sock_from_file(file, err);
450 	if (!sock)
451 		fput(file);
452 	return sock;
453 }
454 
455 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
456 {
457 	struct file *file;
458 	struct socket *sock;
459 
460 	*err = -EBADF;
461 	file = fget_light(fd, fput_needed);
462 	if (file) {
463 		sock = sock_from_file(file, err);
464 		if (sock)
465 			return sock;
466 		fput_light(file, *fput_needed);
467 	}
468 	return NULL;
469 }
470 
471 /**
472  *	sock_alloc	-	allocate a socket
473  *
474  *	Allocate a new inode and socket object. The two are bound together
475  *	and initialised. The socket is then returned. If we are out of inodes
476  *	NULL is returned.
477  */
478 
479 static struct socket *sock_alloc(void)
480 {
481 	struct inode *inode;
482 	struct socket *sock;
483 
484 	inode = new_inode(sock_mnt->mnt_sb);
485 	if (!inode)
486 		return NULL;
487 
488 	sock = SOCKET_I(inode);
489 
490 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
491 	inode->i_uid = current->fsuid;
492 	inode->i_gid = current->fsgid;
493 
494 	get_cpu_var(sockets_in_use)++;
495 	put_cpu_var(sockets_in_use);
496 	return sock;
497 }
498 
499 /*
500  *	In theory you can't get an open on this inode, but /proc provides
501  *	a back door. Remember to keep it shut otherwise you'll let the
502  *	creepy crawlies in.
503  */
504 
505 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
506 {
507 	return -ENXIO;
508 }
509 
510 const struct file_operations bad_sock_fops = {
511 	.owner = THIS_MODULE,
512 	.open = sock_no_open,
513 };
514 
515 /**
516  *	sock_release	-	close a socket
517  *	@sock: socket to close
518  *
519  *	The socket is released from the protocol stack if it has a release
520  *	callback, and the inode is then released if the socket is bound to
521  *	an inode not a file.
522  */
523 
524 void sock_release(struct socket *sock)
525 {
526 	if (sock->ops) {
527 		struct module *owner = sock->ops->owner;
528 
529 		sock->ops->release(sock);
530 		sock->ops = NULL;
531 		module_put(owner);
532 	}
533 
534 	if (sock->fasync_list)
535 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
536 
537 	get_cpu_var(sockets_in_use)--;
538 	put_cpu_var(sockets_in_use);
539 	if (!sock->file) {
540 		iput(SOCK_INODE(sock));
541 		return;
542 	}
543 	sock->file = NULL;
544 }
545 
546 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
547 				 struct msghdr *msg, size_t size)
548 {
549 	struct sock_iocb *si = kiocb_to_siocb(iocb);
550 	int err;
551 
552 	si->sock = sock;
553 	si->scm = NULL;
554 	si->msg = msg;
555 	si->size = size;
556 
557 	err = security_socket_sendmsg(sock, msg, size);
558 	if (err)
559 		return err;
560 
561 	return sock->ops->sendmsg(iocb, sock, msg, size);
562 }
563 
564 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
565 {
566 	struct kiocb iocb;
567 	struct sock_iocb siocb;
568 	int ret;
569 
570 	init_sync_kiocb(&iocb, NULL);
571 	iocb.private = &siocb;
572 	ret = __sock_sendmsg(&iocb, sock, msg, size);
573 	if (-EIOCBQUEUED == ret)
574 		ret = wait_on_sync_kiocb(&iocb);
575 	return ret;
576 }
577 
578 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
579 		   struct kvec *vec, size_t num, size_t size)
580 {
581 	mm_segment_t oldfs = get_fs();
582 	int result;
583 
584 	set_fs(KERNEL_DS);
585 	/*
586 	 * the following is safe, since for compiler definitions of kvec and
587 	 * iovec are identical, yielding the same in-core layout and alignment
588 	 */
589 	msg->msg_iov = (struct iovec *)vec;
590 	msg->msg_iovlen = num;
591 	result = sock_sendmsg(sock, msg, size);
592 	set_fs(oldfs);
593 	return result;
594 }
595 
596 /*
597  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
598  */
599 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
600 	struct sk_buff *skb)
601 {
602 	ktime_t kt = skb->tstamp;
603 
604 	if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
605 		struct timeval tv;
606 		/* Race occurred between timestamp enabling and packet
607 		   receiving.  Fill in the current time for now. */
608 		if (kt.tv64 == 0)
609 			kt = ktime_get_real();
610 		skb->tstamp = kt;
611 		tv = ktime_to_timeval(kt);
612 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
613 	} else {
614 		struct timespec ts;
615 		/* Race occurred between timestamp enabling and packet
616 		   receiving.  Fill in the current time for now. */
617 		if (kt.tv64 == 0)
618 			kt = ktime_get_real();
619 		skb->tstamp = kt;
620 		ts = ktime_to_timespec(kt);
621 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
622 	}
623 }
624 
625 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
626 
627 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
628 				 struct msghdr *msg, size_t size, int flags)
629 {
630 	int err;
631 	struct sock_iocb *si = kiocb_to_siocb(iocb);
632 
633 	si->sock = sock;
634 	si->scm = NULL;
635 	si->msg = msg;
636 	si->size = size;
637 	si->flags = flags;
638 
639 	err = security_socket_recvmsg(sock, msg, size, flags);
640 	if (err)
641 		return err;
642 
643 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
644 }
645 
646 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
647 		 size_t size, int flags)
648 {
649 	struct kiocb iocb;
650 	struct sock_iocb siocb;
651 	int ret;
652 
653 	init_sync_kiocb(&iocb, NULL);
654 	iocb.private = &siocb;
655 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
656 	if (-EIOCBQUEUED == ret)
657 		ret = wait_on_sync_kiocb(&iocb);
658 	return ret;
659 }
660 
661 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
662 		   struct kvec *vec, size_t num, size_t size, int flags)
663 {
664 	mm_segment_t oldfs = get_fs();
665 	int result;
666 
667 	set_fs(KERNEL_DS);
668 	/*
669 	 * the following is safe, since for compiler definitions of kvec and
670 	 * iovec are identical, yielding the same in-core layout and alignment
671 	 */
672 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
673 	result = sock_recvmsg(sock, msg, size, flags);
674 	set_fs(oldfs);
675 	return result;
676 }
677 
678 static void sock_aio_dtor(struct kiocb *iocb)
679 {
680 	kfree(iocb->private);
681 }
682 
683 static ssize_t sock_sendpage(struct file *file, struct page *page,
684 			     int offset, size_t size, loff_t *ppos, int more)
685 {
686 	struct socket *sock;
687 	int flags;
688 
689 	sock = file->private_data;
690 
691 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
692 	if (more)
693 		flags |= MSG_MORE;
694 
695 	return sock->ops->sendpage(sock, page, offset, size, flags);
696 }
697 
698 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
699 			        struct pipe_inode_info *pipe, size_t len,
700 				unsigned int flags)
701 {
702 	struct socket *sock = file->private_data;
703 
704 	if (unlikely(!sock->ops->splice_read))
705 		return -EINVAL;
706 
707 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
708 }
709 
710 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
711 					 struct sock_iocb *siocb)
712 {
713 	if (!is_sync_kiocb(iocb)) {
714 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
715 		if (!siocb)
716 			return NULL;
717 		iocb->ki_dtor = sock_aio_dtor;
718 	}
719 
720 	siocb->kiocb = iocb;
721 	iocb->private = siocb;
722 	return siocb;
723 }
724 
725 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
726 		struct file *file, const struct iovec *iov,
727 		unsigned long nr_segs)
728 {
729 	struct socket *sock = file->private_data;
730 	size_t size = 0;
731 	int i;
732 
733 	for (i = 0; i < nr_segs; i++)
734 		size += iov[i].iov_len;
735 
736 	msg->msg_name = NULL;
737 	msg->msg_namelen = 0;
738 	msg->msg_control = NULL;
739 	msg->msg_controllen = 0;
740 	msg->msg_iov = (struct iovec *)iov;
741 	msg->msg_iovlen = nr_segs;
742 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
743 
744 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
745 }
746 
747 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
748 				unsigned long nr_segs, loff_t pos)
749 {
750 	struct sock_iocb siocb, *x;
751 
752 	if (pos != 0)
753 		return -ESPIPE;
754 
755 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
756 		return 0;
757 
758 
759 	x = alloc_sock_iocb(iocb, &siocb);
760 	if (!x)
761 		return -ENOMEM;
762 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
763 }
764 
765 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
766 			struct file *file, const struct iovec *iov,
767 			unsigned long nr_segs)
768 {
769 	struct socket *sock = file->private_data;
770 	size_t size = 0;
771 	int i;
772 
773 	for (i = 0; i < nr_segs; i++)
774 		size += iov[i].iov_len;
775 
776 	msg->msg_name = NULL;
777 	msg->msg_namelen = 0;
778 	msg->msg_control = NULL;
779 	msg->msg_controllen = 0;
780 	msg->msg_iov = (struct iovec *)iov;
781 	msg->msg_iovlen = nr_segs;
782 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
783 	if (sock->type == SOCK_SEQPACKET)
784 		msg->msg_flags |= MSG_EOR;
785 
786 	return __sock_sendmsg(iocb, sock, msg, size);
787 }
788 
789 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
790 			  unsigned long nr_segs, loff_t pos)
791 {
792 	struct sock_iocb siocb, *x;
793 
794 	if (pos != 0)
795 		return -ESPIPE;
796 
797 	x = alloc_sock_iocb(iocb, &siocb);
798 	if (!x)
799 		return -ENOMEM;
800 
801 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
802 }
803 
804 /*
805  * Atomic setting of ioctl hooks to avoid race
806  * with module unload.
807  */
808 
809 static DEFINE_MUTEX(br_ioctl_mutex);
810 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
811 
812 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
813 {
814 	mutex_lock(&br_ioctl_mutex);
815 	br_ioctl_hook = hook;
816 	mutex_unlock(&br_ioctl_mutex);
817 }
818 
819 EXPORT_SYMBOL(brioctl_set);
820 
821 static DEFINE_MUTEX(vlan_ioctl_mutex);
822 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
823 
824 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
825 {
826 	mutex_lock(&vlan_ioctl_mutex);
827 	vlan_ioctl_hook = hook;
828 	mutex_unlock(&vlan_ioctl_mutex);
829 }
830 
831 EXPORT_SYMBOL(vlan_ioctl_set);
832 
833 static DEFINE_MUTEX(dlci_ioctl_mutex);
834 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
835 
836 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
837 {
838 	mutex_lock(&dlci_ioctl_mutex);
839 	dlci_ioctl_hook = hook;
840 	mutex_unlock(&dlci_ioctl_mutex);
841 }
842 
843 EXPORT_SYMBOL(dlci_ioctl_set);
844 
845 /*
846  *	With an ioctl, arg may well be a user mode pointer, but we don't know
847  *	what to do with it - that's up to the protocol still.
848  */
849 
850 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
851 {
852 	struct socket *sock;
853 	struct sock *sk;
854 	void __user *argp = (void __user *)arg;
855 	int pid, err;
856 	struct net *net;
857 
858 	sock = file->private_data;
859 	sk = sock->sk;
860 	net = sk->sk_net;
861 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
862 		err = dev_ioctl(net, cmd, argp);
863 	} else
864 #ifdef CONFIG_WIRELESS_EXT
865 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
866 		err = dev_ioctl(net, cmd, argp);
867 	} else
868 #endif				/* CONFIG_WIRELESS_EXT */
869 		switch (cmd) {
870 		case FIOSETOWN:
871 		case SIOCSPGRP:
872 			err = -EFAULT;
873 			if (get_user(pid, (int __user *)argp))
874 				break;
875 			err = f_setown(sock->file, pid, 1);
876 			break;
877 		case FIOGETOWN:
878 		case SIOCGPGRP:
879 			err = put_user(f_getown(sock->file),
880 				       (int __user *)argp);
881 			break;
882 		case SIOCGIFBR:
883 		case SIOCSIFBR:
884 		case SIOCBRADDBR:
885 		case SIOCBRDELBR:
886 			err = -ENOPKG;
887 			if (!br_ioctl_hook)
888 				request_module("bridge");
889 
890 			mutex_lock(&br_ioctl_mutex);
891 			if (br_ioctl_hook)
892 				err = br_ioctl_hook(net, cmd, argp);
893 			mutex_unlock(&br_ioctl_mutex);
894 			break;
895 		case SIOCGIFVLAN:
896 		case SIOCSIFVLAN:
897 			err = -ENOPKG;
898 			if (!vlan_ioctl_hook)
899 				request_module("8021q");
900 
901 			mutex_lock(&vlan_ioctl_mutex);
902 			if (vlan_ioctl_hook)
903 				err = vlan_ioctl_hook(net, argp);
904 			mutex_unlock(&vlan_ioctl_mutex);
905 			break;
906 		case SIOCADDDLCI:
907 		case SIOCDELDLCI:
908 			err = -ENOPKG;
909 			if (!dlci_ioctl_hook)
910 				request_module("dlci");
911 
912 			if (dlci_ioctl_hook) {
913 				mutex_lock(&dlci_ioctl_mutex);
914 				err = dlci_ioctl_hook(cmd, argp);
915 				mutex_unlock(&dlci_ioctl_mutex);
916 			}
917 			break;
918 		default:
919 			err = sock->ops->ioctl(sock, cmd, arg);
920 
921 			/*
922 			 * If this ioctl is unknown try to hand it down
923 			 * to the NIC driver.
924 			 */
925 			if (err == -ENOIOCTLCMD)
926 				err = dev_ioctl(net, cmd, argp);
927 			break;
928 		}
929 	return err;
930 }
931 
932 int sock_create_lite(int family, int type, int protocol, struct socket **res)
933 {
934 	int err;
935 	struct socket *sock = NULL;
936 
937 	err = security_socket_create(family, type, protocol, 1);
938 	if (err)
939 		goto out;
940 
941 	sock = sock_alloc();
942 	if (!sock) {
943 		err = -ENOMEM;
944 		goto out;
945 	}
946 
947 	sock->type = type;
948 	err = security_socket_post_create(sock, family, type, protocol, 1);
949 	if (err)
950 		goto out_release;
951 
952 out:
953 	*res = sock;
954 	return err;
955 out_release:
956 	sock_release(sock);
957 	sock = NULL;
958 	goto out;
959 }
960 
961 /* No kernel lock held - perfect */
962 static unsigned int sock_poll(struct file *file, poll_table *wait)
963 {
964 	struct socket *sock;
965 
966 	/*
967 	 *      We can't return errors to poll, so it's either yes or no.
968 	 */
969 	sock = file->private_data;
970 	return sock->ops->poll(file, sock, wait);
971 }
972 
973 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
974 {
975 	struct socket *sock = file->private_data;
976 
977 	return sock->ops->mmap(file, sock, vma);
978 }
979 
980 static int sock_close(struct inode *inode, struct file *filp)
981 {
982 	/*
983 	 *      It was possible the inode is NULL we were
984 	 *      closing an unfinished socket.
985 	 */
986 
987 	if (!inode) {
988 		printk(KERN_DEBUG "sock_close: NULL inode\n");
989 		return 0;
990 	}
991 	sock_fasync(-1, filp, 0);
992 	sock_release(SOCKET_I(inode));
993 	return 0;
994 }
995 
996 /*
997  *	Update the socket async list
998  *
999  *	Fasync_list locking strategy.
1000  *
1001  *	1. fasync_list is modified only under process context socket lock
1002  *	   i.e. under semaphore.
1003  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1004  *	   or under socket lock.
1005  *	3. fasync_list can be used from softirq context, so that
1006  *	   modification under socket lock have to be enhanced with
1007  *	   write_lock_bh(&sk->sk_callback_lock).
1008  *							--ANK (990710)
1009  */
1010 
1011 static int sock_fasync(int fd, struct file *filp, int on)
1012 {
1013 	struct fasync_struct *fa, *fna = NULL, **prev;
1014 	struct socket *sock;
1015 	struct sock *sk;
1016 
1017 	if (on) {
1018 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1019 		if (fna == NULL)
1020 			return -ENOMEM;
1021 	}
1022 
1023 	sock = filp->private_data;
1024 
1025 	sk = sock->sk;
1026 	if (sk == NULL) {
1027 		kfree(fna);
1028 		return -EINVAL;
1029 	}
1030 
1031 	lock_sock(sk);
1032 
1033 	prev = &(sock->fasync_list);
1034 
1035 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1036 		if (fa->fa_file == filp)
1037 			break;
1038 
1039 	if (on) {
1040 		if (fa != NULL) {
1041 			write_lock_bh(&sk->sk_callback_lock);
1042 			fa->fa_fd = fd;
1043 			write_unlock_bh(&sk->sk_callback_lock);
1044 
1045 			kfree(fna);
1046 			goto out;
1047 		}
1048 		fna->fa_file = filp;
1049 		fna->fa_fd = fd;
1050 		fna->magic = FASYNC_MAGIC;
1051 		fna->fa_next = sock->fasync_list;
1052 		write_lock_bh(&sk->sk_callback_lock);
1053 		sock->fasync_list = fna;
1054 		write_unlock_bh(&sk->sk_callback_lock);
1055 	} else {
1056 		if (fa != NULL) {
1057 			write_lock_bh(&sk->sk_callback_lock);
1058 			*prev = fa->fa_next;
1059 			write_unlock_bh(&sk->sk_callback_lock);
1060 			kfree(fa);
1061 		}
1062 	}
1063 
1064 out:
1065 	release_sock(sock->sk);
1066 	return 0;
1067 }
1068 
1069 /* This function may be called only under socket lock or callback_lock */
1070 
1071 int sock_wake_async(struct socket *sock, int how, int band)
1072 {
1073 	if (!sock || !sock->fasync_list)
1074 		return -1;
1075 	switch (how) {
1076 	case SOCK_WAKE_WAITD:
1077 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1078 			break;
1079 		goto call_kill;
1080 	case SOCK_WAKE_SPACE:
1081 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1082 			break;
1083 		/* fall through */
1084 	case SOCK_WAKE_IO:
1085 call_kill:
1086 		__kill_fasync(sock->fasync_list, SIGIO, band);
1087 		break;
1088 	case SOCK_WAKE_URG:
1089 		__kill_fasync(sock->fasync_list, SIGURG, band);
1090 	}
1091 	return 0;
1092 }
1093 
1094 static int __sock_create(struct net *net, int family, int type, int protocol,
1095 			 struct socket **res, int kern)
1096 {
1097 	int err;
1098 	struct socket *sock;
1099 	const struct net_proto_family *pf;
1100 
1101 	/*
1102 	 *      Check protocol is in range
1103 	 */
1104 	if (family < 0 || family >= NPROTO)
1105 		return -EAFNOSUPPORT;
1106 	if (type < 0 || type >= SOCK_MAX)
1107 		return -EINVAL;
1108 
1109 	/* Compatibility.
1110 
1111 	   This uglymoron is moved from INET layer to here to avoid
1112 	   deadlock in module load.
1113 	 */
1114 	if (family == PF_INET && type == SOCK_PACKET) {
1115 		static int warned;
1116 		if (!warned) {
1117 			warned = 1;
1118 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1119 			       current->comm);
1120 		}
1121 		family = PF_PACKET;
1122 	}
1123 
1124 	err = security_socket_create(family, type, protocol, kern);
1125 	if (err)
1126 		return err;
1127 
1128 	/*
1129 	 *	Allocate the socket and allow the family to set things up. if
1130 	 *	the protocol is 0, the family is instructed to select an appropriate
1131 	 *	default.
1132 	 */
1133 	sock = sock_alloc();
1134 	if (!sock) {
1135 		if (net_ratelimit())
1136 			printk(KERN_WARNING "socket: no more sockets\n");
1137 		return -ENFILE;	/* Not exactly a match, but its the
1138 				   closest posix thing */
1139 	}
1140 
1141 	sock->type = type;
1142 
1143 #if defined(CONFIG_KMOD)
1144 	/* Attempt to load a protocol module if the find failed.
1145 	 *
1146 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1147 	 * requested real, full-featured networking support upon configuration.
1148 	 * Otherwise module support will break!
1149 	 */
1150 	if (net_families[family] == NULL)
1151 		request_module("net-pf-%d", family);
1152 #endif
1153 
1154 	rcu_read_lock();
1155 	pf = rcu_dereference(net_families[family]);
1156 	err = -EAFNOSUPPORT;
1157 	if (!pf)
1158 		goto out_release;
1159 
1160 	/*
1161 	 * We will call the ->create function, that possibly is in a loadable
1162 	 * module, so we have to bump that loadable module refcnt first.
1163 	 */
1164 	if (!try_module_get(pf->owner))
1165 		goto out_release;
1166 
1167 	/* Now protected by module ref count */
1168 	rcu_read_unlock();
1169 
1170 	err = pf->create(net, sock, protocol);
1171 	if (err < 0)
1172 		goto out_module_put;
1173 
1174 	/*
1175 	 * Now to bump the refcnt of the [loadable] module that owns this
1176 	 * socket at sock_release time we decrement its refcnt.
1177 	 */
1178 	if (!try_module_get(sock->ops->owner))
1179 		goto out_module_busy;
1180 
1181 	/*
1182 	 * Now that we're done with the ->create function, the [loadable]
1183 	 * module can have its refcnt decremented
1184 	 */
1185 	module_put(pf->owner);
1186 	err = security_socket_post_create(sock, family, type, protocol, kern);
1187 	if (err)
1188 		goto out_sock_release;
1189 	*res = sock;
1190 
1191 	return 0;
1192 
1193 out_module_busy:
1194 	err = -EAFNOSUPPORT;
1195 out_module_put:
1196 	sock->ops = NULL;
1197 	module_put(pf->owner);
1198 out_sock_release:
1199 	sock_release(sock);
1200 	return err;
1201 
1202 out_release:
1203 	rcu_read_unlock();
1204 	goto out_sock_release;
1205 }
1206 
1207 int sock_create(int family, int type, int protocol, struct socket **res)
1208 {
1209 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1210 }
1211 
1212 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1213 {
1214 	return __sock_create(&init_net, family, type, protocol, res, 1);
1215 }
1216 
1217 asmlinkage long sys_socket(int family, int type, int protocol)
1218 {
1219 	int retval;
1220 	struct socket *sock;
1221 
1222 	retval = sock_create(family, type, protocol, &sock);
1223 	if (retval < 0)
1224 		goto out;
1225 
1226 	retval = sock_map_fd(sock);
1227 	if (retval < 0)
1228 		goto out_release;
1229 
1230 out:
1231 	/* It may be already another descriptor 8) Not kernel problem. */
1232 	return retval;
1233 
1234 out_release:
1235 	sock_release(sock);
1236 	return retval;
1237 }
1238 
1239 /*
1240  *	Create a pair of connected sockets.
1241  */
1242 
1243 asmlinkage long sys_socketpair(int family, int type, int protocol,
1244 			       int __user *usockvec)
1245 {
1246 	struct socket *sock1, *sock2;
1247 	int fd1, fd2, err;
1248 	struct file *newfile1, *newfile2;
1249 
1250 	/*
1251 	 * Obtain the first socket and check if the underlying protocol
1252 	 * supports the socketpair call.
1253 	 */
1254 
1255 	err = sock_create(family, type, protocol, &sock1);
1256 	if (err < 0)
1257 		goto out;
1258 
1259 	err = sock_create(family, type, protocol, &sock2);
1260 	if (err < 0)
1261 		goto out_release_1;
1262 
1263 	err = sock1->ops->socketpair(sock1, sock2);
1264 	if (err < 0)
1265 		goto out_release_both;
1266 
1267 	fd1 = sock_alloc_fd(&newfile1);
1268 	if (unlikely(fd1 < 0)) {
1269 		err = fd1;
1270 		goto out_release_both;
1271 	}
1272 
1273 	fd2 = sock_alloc_fd(&newfile2);
1274 	if (unlikely(fd2 < 0)) {
1275 		err = fd2;
1276 		put_filp(newfile1);
1277 		put_unused_fd(fd1);
1278 		goto out_release_both;
1279 	}
1280 
1281 	err = sock_attach_fd(sock1, newfile1);
1282 	if (unlikely(err < 0)) {
1283 		goto out_fd2;
1284 	}
1285 
1286 	err = sock_attach_fd(sock2, newfile2);
1287 	if (unlikely(err < 0)) {
1288 		fput(newfile1);
1289 		goto out_fd1;
1290 	}
1291 
1292 	err = audit_fd_pair(fd1, fd2);
1293 	if (err < 0) {
1294 		fput(newfile1);
1295 		fput(newfile2);
1296 		goto out_fd;
1297 	}
1298 
1299 	fd_install(fd1, newfile1);
1300 	fd_install(fd2, newfile2);
1301 	/* fd1 and fd2 may be already another descriptors.
1302 	 * Not kernel problem.
1303 	 */
1304 
1305 	err = put_user(fd1, &usockvec[0]);
1306 	if (!err)
1307 		err = put_user(fd2, &usockvec[1]);
1308 	if (!err)
1309 		return 0;
1310 
1311 	sys_close(fd2);
1312 	sys_close(fd1);
1313 	return err;
1314 
1315 out_release_both:
1316 	sock_release(sock2);
1317 out_release_1:
1318 	sock_release(sock1);
1319 out:
1320 	return err;
1321 
1322 out_fd2:
1323 	put_filp(newfile1);
1324 	sock_release(sock1);
1325 out_fd1:
1326 	put_filp(newfile2);
1327 	sock_release(sock2);
1328 out_fd:
1329 	put_unused_fd(fd1);
1330 	put_unused_fd(fd2);
1331 	goto out;
1332 }
1333 
1334 /*
1335  *	Bind a name to a socket. Nothing much to do here since it's
1336  *	the protocol's responsibility to handle the local address.
1337  *
1338  *	We move the socket address to kernel space before we call
1339  *	the protocol layer (having also checked the address is ok).
1340  */
1341 
1342 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1343 {
1344 	struct socket *sock;
1345 	char address[MAX_SOCK_ADDR];
1346 	int err, fput_needed;
1347 
1348 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1349 	if (sock) {
1350 		err = move_addr_to_kernel(umyaddr, addrlen, address);
1351 		if (err >= 0) {
1352 			err = security_socket_bind(sock,
1353 						   (struct sockaddr *)address,
1354 						   addrlen);
1355 			if (!err)
1356 				err = sock->ops->bind(sock,
1357 						      (struct sockaddr *)
1358 						      address, addrlen);
1359 		}
1360 		fput_light(sock->file, fput_needed);
1361 	}
1362 	return err;
1363 }
1364 
1365 /*
1366  *	Perform a listen. Basically, we allow the protocol to do anything
1367  *	necessary for a listen, and if that works, we mark the socket as
1368  *	ready for listening.
1369  */
1370 
1371 asmlinkage long sys_listen(int fd, int backlog)
1372 {
1373 	struct socket *sock;
1374 	int err, fput_needed;
1375 	int somaxconn;
1376 
1377 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1378 	if (sock) {
1379 		somaxconn = sock->sk->sk_net->sysctl_somaxconn;
1380 		if ((unsigned)backlog > somaxconn)
1381 			backlog = somaxconn;
1382 
1383 		err = security_socket_listen(sock, backlog);
1384 		if (!err)
1385 			err = sock->ops->listen(sock, backlog);
1386 
1387 		fput_light(sock->file, fput_needed);
1388 	}
1389 	return err;
1390 }
1391 
1392 /*
1393  *	For accept, we attempt to create a new socket, set up the link
1394  *	with the client, wake up the client, then return the new
1395  *	connected fd. We collect the address of the connector in kernel
1396  *	space and move it to user at the very end. This is unclean because
1397  *	we open the socket then return an error.
1398  *
1399  *	1003.1g adds the ability to recvmsg() to query connection pending
1400  *	status to recvmsg. We need to add that support in a way thats
1401  *	clean when we restucture accept also.
1402  */
1403 
1404 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1405 			   int __user *upeer_addrlen)
1406 {
1407 	struct socket *sock, *newsock;
1408 	struct file *newfile;
1409 	int err, len, newfd, fput_needed;
1410 	char address[MAX_SOCK_ADDR];
1411 
1412 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1413 	if (!sock)
1414 		goto out;
1415 
1416 	err = -ENFILE;
1417 	if (!(newsock = sock_alloc()))
1418 		goto out_put;
1419 
1420 	newsock->type = sock->type;
1421 	newsock->ops = sock->ops;
1422 
1423 	/*
1424 	 * We don't need try_module_get here, as the listening socket (sock)
1425 	 * has the protocol module (sock->ops->owner) held.
1426 	 */
1427 	__module_get(newsock->ops->owner);
1428 
1429 	newfd = sock_alloc_fd(&newfile);
1430 	if (unlikely(newfd < 0)) {
1431 		err = newfd;
1432 		sock_release(newsock);
1433 		goto out_put;
1434 	}
1435 
1436 	err = sock_attach_fd(newsock, newfile);
1437 	if (err < 0)
1438 		goto out_fd_simple;
1439 
1440 	err = security_socket_accept(sock, newsock);
1441 	if (err)
1442 		goto out_fd;
1443 
1444 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1445 	if (err < 0)
1446 		goto out_fd;
1447 
1448 	if (upeer_sockaddr) {
1449 		if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1450 					  &len, 2) < 0) {
1451 			err = -ECONNABORTED;
1452 			goto out_fd;
1453 		}
1454 		err = move_addr_to_user(address, len, upeer_sockaddr,
1455 					upeer_addrlen);
1456 		if (err < 0)
1457 			goto out_fd;
1458 	}
1459 
1460 	/* File flags are not inherited via accept() unlike another OSes. */
1461 
1462 	fd_install(newfd, newfile);
1463 	err = newfd;
1464 
1465 	security_socket_post_accept(sock, newsock);
1466 
1467 out_put:
1468 	fput_light(sock->file, fput_needed);
1469 out:
1470 	return err;
1471 out_fd_simple:
1472 	sock_release(newsock);
1473 	put_filp(newfile);
1474 	put_unused_fd(newfd);
1475 	goto out_put;
1476 out_fd:
1477 	fput(newfile);
1478 	put_unused_fd(newfd);
1479 	goto out_put;
1480 }
1481 
1482 /*
1483  *	Attempt to connect to a socket with the server address.  The address
1484  *	is in user space so we verify it is OK and move it to kernel space.
1485  *
1486  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1487  *	break bindings
1488  *
1489  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1490  *	other SEQPACKET protocols that take time to connect() as it doesn't
1491  *	include the -EINPROGRESS status for such sockets.
1492  */
1493 
1494 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1495 			    int addrlen)
1496 {
1497 	struct socket *sock;
1498 	char address[MAX_SOCK_ADDR];
1499 	int err, fput_needed;
1500 
1501 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1502 	if (!sock)
1503 		goto out;
1504 	err = move_addr_to_kernel(uservaddr, addrlen, address);
1505 	if (err < 0)
1506 		goto out_put;
1507 
1508 	err =
1509 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1510 	if (err)
1511 		goto out_put;
1512 
1513 	err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1514 				 sock->file->f_flags);
1515 out_put:
1516 	fput_light(sock->file, fput_needed);
1517 out:
1518 	return err;
1519 }
1520 
1521 /*
1522  *	Get the local address ('name') of a socket object. Move the obtained
1523  *	name to user space.
1524  */
1525 
1526 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1527 				int __user *usockaddr_len)
1528 {
1529 	struct socket *sock;
1530 	char address[MAX_SOCK_ADDR];
1531 	int len, err, fput_needed;
1532 
1533 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1534 	if (!sock)
1535 		goto out;
1536 
1537 	err = security_socket_getsockname(sock);
1538 	if (err)
1539 		goto out_put;
1540 
1541 	err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1542 	if (err)
1543 		goto out_put;
1544 	err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1545 
1546 out_put:
1547 	fput_light(sock->file, fput_needed);
1548 out:
1549 	return err;
1550 }
1551 
1552 /*
1553  *	Get the remote address ('name') of a socket object. Move the obtained
1554  *	name to user space.
1555  */
1556 
1557 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1558 				int __user *usockaddr_len)
1559 {
1560 	struct socket *sock;
1561 	char address[MAX_SOCK_ADDR];
1562 	int len, err, fput_needed;
1563 
1564 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1565 	if (sock != NULL) {
1566 		err = security_socket_getpeername(sock);
1567 		if (err) {
1568 			fput_light(sock->file, fput_needed);
1569 			return err;
1570 		}
1571 
1572 		err =
1573 		    sock->ops->getname(sock, (struct sockaddr *)address, &len,
1574 				       1);
1575 		if (!err)
1576 			err = move_addr_to_user(address, len, usockaddr,
1577 						usockaddr_len);
1578 		fput_light(sock->file, fput_needed);
1579 	}
1580 	return err;
1581 }
1582 
1583 /*
1584  *	Send a datagram to a given address. We move the address into kernel
1585  *	space and check the user space data area is readable before invoking
1586  *	the protocol.
1587  */
1588 
1589 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1590 			   unsigned flags, struct sockaddr __user *addr,
1591 			   int addr_len)
1592 {
1593 	struct socket *sock;
1594 	char address[MAX_SOCK_ADDR];
1595 	int err;
1596 	struct msghdr msg;
1597 	struct iovec iov;
1598 	int fput_needed;
1599 
1600 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1601 	if (!sock)
1602 		goto out;
1603 
1604 	iov.iov_base = buff;
1605 	iov.iov_len = len;
1606 	msg.msg_name = NULL;
1607 	msg.msg_iov = &iov;
1608 	msg.msg_iovlen = 1;
1609 	msg.msg_control = NULL;
1610 	msg.msg_controllen = 0;
1611 	msg.msg_namelen = 0;
1612 	if (addr) {
1613 		err = move_addr_to_kernel(addr, addr_len, address);
1614 		if (err < 0)
1615 			goto out_put;
1616 		msg.msg_name = address;
1617 		msg.msg_namelen = addr_len;
1618 	}
1619 	if (sock->file->f_flags & O_NONBLOCK)
1620 		flags |= MSG_DONTWAIT;
1621 	msg.msg_flags = flags;
1622 	err = sock_sendmsg(sock, &msg, len);
1623 
1624 out_put:
1625 	fput_light(sock->file, fput_needed);
1626 out:
1627 	return err;
1628 }
1629 
1630 /*
1631  *	Send a datagram down a socket.
1632  */
1633 
1634 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1635 {
1636 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1637 }
1638 
1639 /*
1640  *	Receive a frame from the socket and optionally record the address of the
1641  *	sender. We verify the buffers are writable and if needed move the
1642  *	sender address from kernel to user space.
1643  */
1644 
1645 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1646 			     unsigned flags, struct sockaddr __user *addr,
1647 			     int __user *addr_len)
1648 {
1649 	struct socket *sock;
1650 	struct iovec iov;
1651 	struct msghdr msg;
1652 	char address[MAX_SOCK_ADDR];
1653 	int err, err2;
1654 	int fput_needed;
1655 
1656 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1657 	if (!sock)
1658 		goto out;
1659 
1660 	msg.msg_control = NULL;
1661 	msg.msg_controllen = 0;
1662 	msg.msg_iovlen = 1;
1663 	msg.msg_iov = &iov;
1664 	iov.iov_len = size;
1665 	iov.iov_base = ubuf;
1666 	msg.msg_name = address;
1667 	msg.msg_namelen = MAX_SOCK_ADDR;
1668 	if (sock->file->f_flags & O_NONBLOCK)
1669 		flags |= MSG_DONTWAIT;
1670 	err = sock_recvmsg(sock, &msg, size, flags);
1671 
1672 	if (err >= 0 && addr != NULL) {
1673 		err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1674 		if (err2 < 0)
1675 			err = err2;
1676 	}
1677 
1678 	fput_light(sock->file, fput_needed);
1679 out:
1680 	return err;
1681 }
1682 
1683 /*
1684  *	Receive a datagram from a socket.
1685  */
1686 
1687 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1688 			 unsigned flags)
1689 {
1690 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1691 }
1692 
1693 /*
1694  *	Set a socket option. Because we don't know the option lengths we have
1695  *	to pass the user mode parameter for the protocols to sort out.
1696  */
1697 
1698 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1699 			       char __user *optval, int optlen)
1700 {
1701 	int err, fput_needed;
1702 	struct socket *sock;
1703 
1704 	if (optlen < 0)
1705 		return -EINVAL;
1706 
1707 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708 	if (sock != NULL) {
1709 		err = security_socket_setsockopt(sock, level, optname);
1710 		if (err)
1711 			goto out_put;
1712 
1713 		if (level == SOL_SOCKET)
1714 			err =
1715 			    sock_setsockopt(sock, level, optname, optval,
1716 					    optlen);
1717 		else
1718 			err =
1719 			    sock->ops->setsockopt(sock, level, optname, optval,
1720 						  optlen);
1721 out_put:
1722 		fput_light(sock->file, fput_needed);
1723 	}
1724 	return err;
1725 }
1726 
1727 /*
1728  *	Get a socket option. Because we don't know the option lengths we have
1729  *	to pass a user mode parameter for the protocols to sort out.
1730  */
1731 
1732 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1733 			       char __user *optval, int __user *optlen)
1734 {
1735 	int err, fput_needed;
1736 	struct socket *sock;
1737 
1738 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1739 	if (sock != NULL) {
1740 		err = security_socket_getsockopt(sock, level, optname);
1741 		if (err)
1742 			goto out_put;
1743 
1744 		if (level == SOL_SOCKET)
1745 			err =
1746 			    sock_getsockopt(sock, level, optname, optval,
1747 					    optlen);
1748 		else
1749 			err =
1750 			    sock->ops->getsockopt(sock, level, optname, optval,
1751 						  optlen);
1752 out_put:
1753 		fput_light(sock->file, fput_needed);
1754 	}
1755 	return err;
1756 }
1757 
1758 /*
1759  *	Shutdown a socket.
1760  */
1761 
1762 asmlinkage long sys_shutdown(int fd, int how)
1763 {
1764 	int err, fput_needed;
1765 	struct socket *sock;
1766 
1767 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1768 	if (sock != NULL) {
1769 		err = security_socket_shutdown(sock, how);
1770 		if (!err)
1771 			err = sock->ops->shutdown(sock, how);
1772 		fput_light(sock->file, fput_needed);
1773 	}
1774 	return err;
1775 }
1776 
1777 /* A couple of helpful macros for getting the address of the 32/64 bit
1778  * fields which are the same type (int / unsigned) on our platforms.
1779  */
1780 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1781 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1782 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1783 
1784 /*
1785  *	BSD sendmsg interface
1786  */
1787 
1788 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1789 {
1790 	struct compat_msghdr __user *msg_compat =
1791 	    (struct compat_msghdr __user *)msg;
1792 	struct socket *sock;
1793 	char address[MAX_SOCK_ADDR];
1794 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1795 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1796 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1797 	/* 20 is size of ipv6_pktinfo */
1798 	unsigned char *ctl_buf = ctl;
1799 	struct msghdr msg_sys;
1800 	int err, ctl_len, iov_size, total_len;
1801 	int fput_needed;
1802 
1803 	err = -EFAULT;
1804 	if (MSG_CMSG_COMPAT & flags) {
1805 		if (get_compat_msghdr(&msg_sys, msg_compat))
1806 			return -EFAULT;
1807 	}
1808 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1809 		return -EFAULT;
1810 
1811 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1812 	if (!sock)
1813 		goto out;
1814 
1815 	/* do not move before msg_sys is valid */
1816 	err = -EMSGSIZE;
1817 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1818 		goto out_put;
1819 
1820 	/* Check whether to allocate the iovec area */
1821 	err = -ENOMEM;
1822 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1823 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1824 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1825 		if (!iov)
1826 			goto out_put;
1827 	}
1828 
1829 	/* This will also move the address data into kernel space */
1830 	if (MSG_CMSG_COMPAT & flags) {
1831 		err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1832 	} else
1833 		err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1834 	if (err < 0)
1835 		goto out_freeiov;
1836 	total_len = err;
1837 
1838 	err = -ENOBUFS;
1839 
1840 	if (msg_sys.msg_controllen > INT_MAX)
1841 		goto out_freeiov;
1842 	ctl_len = msg_sys.msg_controllen;
1843 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1844 		err =
1845 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1846 						     sizeof(ctl));
1847 		if (err)
1848 			goto out_freeiov;
1849 		ctl_buf = msg_sys.msg_control;
1850 		ctl_len = msg_sys.msg_controllen;
1851 	} else if (ctl_len) {
1852 		if (ctl_len > sizeof(ctl)) {
1853 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1854 			if (ctl_buf == NULL)
1855 				goto out_freeiov;
1856 		}
1857 		err = -EFAULT;
1858 		/*
1859 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1860 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1861 		 * checking falls down on this.
1862 		 */
1863 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1864 				   ctl_len))
1865 			goto out_freectl;
1866 		msg_sys.msg_control = ctl_buf;
1867 	}
1868 	msg_sys.msg_flags = flags;
1869 
1870 	if (sock->file->f_flags & O_NONBLOCK)
1871 		msg_sys.msg_flags |= MSG_DONTWAIT;
1872 	err = sock_sendmsg(sock, &msg_sys, total_len);
1873 
1874 out_freectl:
1875 	if (ctl_buf != ctl)
1876 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1877 out_freeiov:
1878 	if (iov != iovstack)
1879 		sock_kfree_s(sock->sk, iov, iov_size);
1880 out_put:
1881 	fput_light(sock->file, fput_needed);
1882 out:
1883 	return err;
1884 }
1885 
1886 /*
1887  *	BSD recvmsg interface
1888  */
1889 
1890 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1891 			    unsigned int flags)
1892 {
1893 	struct compat_msghdr __user *msg_compat =
1894 	    (struct compat_msghdr __user *)msg;
1895 	struct socket *sock;
1896 	struct iovec iovstack[UIO_FASTIOV];
1897 	struct iovec *iov = iovstack;
1898 	struct msghdr msg_sys;
1899 	unsigned long cmsg_ptr;
1900 	int err, iov_size, total_len, len;
1901 	int fput_needed;
1902 
1903 	/* kernel mode address */
1904 	char addr[MAX_SOCK_ADDR];
1905 
1906 	/* user mode address pointers */
1907 	struct sockaddr __user *uaddr;
1908 	int __user *uaddr_len;
1909 
1910 	if (MSG_CMSG_COMPAT & flags) {
1911 		if (get_compat_msghdr(&msg_sys, msg_compat))
1912 			return -EFAULT;
1913 	}
1914 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1915 		return -EFAULT;
1916 
1917 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1918 	if (!sock)
1919 		goto out;
1920 
1921 	err = -EMSGSIZE;
1922 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1923 		goto out_put;
1924 
1925 	/* Check whether to allocate the iovec area */
1926 	err = -ENOMEM;
1927 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1928 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1929 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1930 		if (!iov)
1931 			goto out_put;
1932 	}
1933 
1934 	/*
1935 	 *      Save the user-mode address (verify_iovec will change the
1936 	 *      kernel msghdr to use the kernel address space)
1937 	 */
1938 
1939 	uaddr = (__force void __user *)msg_sys.msg_name;
1940 	uaddr_len = COMPAT_NAMELEN(msg);
1941 	if (MSG_CMSG_COMPAT & flags) {
1942 		err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1943 	} else
1944 		err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1945 	if (err < 0)
1946 		goto out_freeiov;
1947 	total_len = err;
1948 
1949 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1950 	msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1951 
1952 	if (sock->file->f_flags & O_NONBLOCK)
1953 		flags |= MSG_DONTWAIT;
1954 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1955 	if (err < 0)
1956 		goto out_freeiov;
1957 	len = err;
1958 
1959 	if (uaddr != NULL) {
1960 		err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1961 					uaddr_len);
1962 		if (err < 0)
1963 			goto out_freeiov;
1964 	}
1965 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1966 			 COMPAT_FLAGS(msg));
1967 	if (err)
1968 		goto out_freeiov;
1969 	if (MSG_CMSG_COMPAT & flags)
1970 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1971 				 &msg_compat->msg_controllen);
1972 	else
1973 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1974 				 &msg->msg_controllen);
1975 	if (err)
1976 		goto out_freeiov;
1977 	err = len;
1978 
1979 out_freeiov:
1980 	if (iov != iovstack)
1981 		sock_kfree_s(sock->sk, iov, iov_size);
1982 out_put:
1983 	fput_light(sock->file, fput_needed);
1984 out:
1985 	return err;
1986 }
1987 
1988 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1989 
1990 /* Argument list sizes for sys_socketcall */
1991 #define AL(x) ((x) * sizeof(unsigned long))
1992 static const unsigned char nargs[18]={
1993 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1994 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1995 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1996 };
1997 
1998 #undef AL
1999 
2000 /*
2001  *	System call vectors.
2002  *
2003  *	Argument checking cleaned up. Saved 20% in size.
2004  *  This function doesn't need to set the kernel lock because
2005  *  it is set by the callees.
2006  */
2007 
2008 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2009 {
2010 	unsigned long a[6];
2011 	unsigned long a0, a1;
2012 	int err;
2013 
2014 	if (call < 1 || call > SYS_RECVMSG)
2015 		return -EINVAL;
2016 
2017 	/* copy_from_user should be SMP safe. */
2018 	if (copy_from_user(a, args, nargs[call]))
2019 		return -EFAULT;
2020 
2021 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2022 	if (err)
2023 		return err;
2024 
2025 	a0 = a[0];
2026 	a1 = a[1];
2027 
2028 	switch (call) {
2029 	case SYS_SOCKET:
2030 		err = sys_socket(a0, a1, a[2]);
2031 		break;
2032 	case SYS_BIND:
2033 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2034 		break;
2035 	case SYS_CONNECT:
2036 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2037 		break;
2038 	case SYS_LISTEN:
2039 		err = sys_listen(a0, a1);
2040 		break;
2041 	case SYS_ACCEPT:
2042 		err =
2043 		    sys_accept(a0, (struct sockaddr __user *)a1,
2044 			       (int __user *)a[2]);
2045 		break;
2046 	case SYS_GETSOCKNAME:
2047 		err =
2048 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2049 				    (int __user *)a[2]);
2050 		break;
2051 	case SYS_GETPEERNAME:
2052 		err =
2053 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2054 				    (int __user *)a[2]);
2055 		break;
2056 	case SYS_SOCKETPAIR:
2057 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2058 		break;
2059 	case SYS_SEND:
2060 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2061 		break;
2062 	case SYS_SENDTO:
2063 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2064 				 (struct sockaddr __user *)a[4], a[5]);
2065 		break;
2066 	case SYS_RECV:
2067 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2068 		break;
2069 	case SYS_RECVFROM:
2070 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2071 				   (struct sockaddr __user *)a[4],
2072 				   (int __user *)a[5]);
2073 		break;
2074 	case SYS_SHUTDOWN:
2075 		err = sys_shutdown(a0, a1);
2076 		break;
2077 	case SYS_SETSOCKOPT:
2078 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2079 		break;
2080 	case SYS_GETSOCKOPT:
2081 		err =
2082 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2083 				   (int __user *)a[4]);
2084 		break;
2085 	case SYS_SENDMSG:
2086 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2087 		break;
2088 	case SYS_RECVMSG:
2089 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2090 		break;
2091 	default:
2092 		err = -EINVAL;
2093 		break;
2094 	}
2095 	return err;
2096 }
2097 
2098 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2099 
2100 /**
2101  *	sock_register - add a socket protocol handler
2102  *	@ops: description of protocol
2103  *
2104  *	This function is called by a protocol handler that wants to
2105  *	advertise its address family, and have it linked into the
2106  *	socket interface. The value ops->family coresponds to the
2107  *	socket system call protocol family.
2108  */
2109 int sock_register(const struct net_proto_family *ops)
2110 {
2111 	int err;
2112 
2113 	if (ops->family >= NPROTO) {
2114 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2115 		       NPROTO);
2116 		return -ENOBUFS;
2117 	}
2118 
2119 	spin_lock(&net_family_lock);
2120 	if (net_families[ops->family])
2121 		err = -EEXIST;
2122 	else {
2123 		net_families[ops->family] = ops;
2124 		err = 0;
2125 	}
2126 	spin_unlock(&net_family_lock);
2127 
2128 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2129 	return err;
2130 }
2131 
2132 /**
2133  *	sock_unregister - remove a protocol handler
2134  *	@family: protocol family to remove
2135  *
2136  *	This function is called by a protocol handler that wants to
2137  *	remove its address family, and have it unlinked from the
2138  *	new socket creation.
2139  *
2140  *	If protocol handler is a module, then it can use module reference
2141  *	counts to protect against new references. If protocol handler is not
2142  *	a module then it needs to provide its own protection in
2143  *	the ops->create routine.
2144  */
2145 void sock_unregister(int family)
2146 {
2147 	BUG_ON(family < 0 || family >= NPROTO);
2148 
2149 	spin_lock(&net_family_lock);
2150 	net_families[family] = NULL;
2151 	spin_unlock(&net_family_lock);
2152 
2153 	synchronize_rcu();
2154 
2155 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2156 }
2157 
2158 static int __init sock_init(void)
2159 {
2160 	/*
2161 	 *      Initialize sock SLAB cache.
2162 	 */
2163 
2164 	sk_init();
2165 
2166 	/*
2167 	 *      Initialize skbuff SLAB cache
2168 	 */
2169 	skb_init();
2170 
2171 	/*
2172 	 *      Initialize the protocols module.
2173 	 */
2174 
2175 	init_inodecache();
2176 	register_filesystem(&sock_fs_type);
2177 	sock_mnt = kern_mount(&sock_fs_type);
2178 
2179 	/* The real protocol initialization is performed in later initcalls.
2180 	 */
2181 
2182 #ifdef CONFIG_NETFILTER
2183 	netfilter_init();
2184 #endif
2185 
2186 	return 0;
2187 }
2188 
2189 core_initcall(sock_init);	/* early initcall */
2190 
2191 #ifdef CONFIG_PROC_FS
2192 void socket_seq_show(struct seq_file *seq)
2193 {
2194 	int cpu;
2195 	int counter = 0;
2196 
2197 	for_each_possible_cpu(cpu)
2198 	    counter += per_cpu(sockets_in_use, cpu);
2199 
2200 	/* It can be negative, by the way. 8) */
2201 	if (counter < 0)
2202 		counter = 0;
2203 
2204 	seq_printf(seq, "sockets: used %d\n", counter);
2205 }
2206 #endif				/* CONFIG_PROC_FS */
2207 
2208 #ifdef CONFIG_COMPAT
2209 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2210 			      unsigned long arg)
2211 {
2212 	struct socket *sock = file->private_data;
2213 	int ret = -ENOIOCTLCMD;
2214 
2215 	if (sock->ops->compat_ioctl)
2216 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2217 
2218 	return ret;
2219 }
2220 #endif
2221 
2222 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2223 {
2224 	return sock->ops->bind(sock, addr, addrlen);
2225 }
2226 
2227 int kernel_listen(struct socket *sock, int backlog)
2228 {
2229 	return sock->ops->listen(sock, backlog);
2230 }
2231 
2232 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2233 {
2234 	struct sock *sk = sock->sk;
2235 	int err;
2236 
2237 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2238 			       newsock);
2239 	if (err < 0)
2240 		goto done;
2241 
2242 	err = sock->ops->accept(sock, *newsock, flags);
2243 	if (err < 0) {
2244 		sock_release(*newsock);
2245 		*newsock = NULL;
2246 		goto done;
2247 	}
2248 
2249 	(*newsock)->ops = sock->ops;
2250 
2251 done:
2252 	return err;
2253 }
2254 
2255 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2256 		   int flags)
2257 {
2258 	return sock->ops->connect(sock, addr, addrlen, flags);
2259 }
2260 
2261 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2262 			 int *addrlen)
2263 {
2264 	return sock->ops->getname(sock, addr, addrlen, 0);
2265 }
2266 
2267 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2268 			 int *addrlen)
2269 {
2270 	return sock->ops->getname(sock, addr, addrlen, 1);
2271 }
2272 
2273 int kernel_getsockopt(struct socket *sock, int level, int optname,
2274 			char *optval, int *optlen)
2275 {
2276 	mm_segment_t oldfs = get_fs();
2277 	int err;
2278 
2279 	set_fs(KERNEL_DS);
2280 	if (level == SOL_SOCKET)
2281 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2282 	else
2283 		err = sock->ops->getsockopt(sock, level, optname, optval,
2284 					    optlen);
2285 	set_fs(oldfs);
2286 	return err;
2287 }
2288 
2289 int kernel_setsockopt(struct socket *sock, int level, int optname,
2290 			char *optval, int optlen)
2291 {
2292 	mm_segment_t oldfs = get_fs();
2293 	int err;
2294 
2295 	set_fs(KERNEL_DS);
2296 	if (level == SOL_SOCKET)
2297 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2298 	else
2299 		err = sock->ops->setsockopt(sock, level, optname, optval,
2300 					    optlen);
2301 	set_fs(oldfs);
2302 	return err;
2303 }
2304 
2305 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2306 		    size_t size, int flags)
2307 {
2308 	if (sock->ops->sendpage)
2309 		return sock->ops->sendpage(sock, page, offset, size, flags);
2310 
2311 	return sock_no_sendpage(sock, page, offset, size, flags);
2312 }
2313 
2314 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2315 {
2316 	mm_segment_t oldfs = get_fs();
2317 	int err;
2318 
2319 	set_fs(KERNEL_DS);
2320 	err = sock->ops->ioctl(sock, cmd, arg);
2321 	set_fs(oldfs);
2322 
2323 	return err;
2324 }
2325 
2326 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2327 {
2328 	return sock->ops->shutdown(sock, how);
2329 }
2330 
2331 /* ABI emulation layers need these two */
2332 EXPORT_SYMBOL(move_addr_to_kernel);
2333 EXPORT_SYMBOL(move_addr_to_user);
2334 EXPORT_SYMBOL(sock_create);
2335 EXPORT_SYMBOL(sock_create_kern);
2336 EXPORT_SYMBOL(sock_create_lite);
2337 EXPORT_SYMBOL(sock_map_fd);
2338 EXPORT_SYMBOL(sock_recvmsg);
2339 EXPORT_SYMBOL(sock_register);
2340 EXPORT_SYMBOL(sock_release);
2341 EXPORT_SYMBOL(sock_sendmsg);
2342 EXPORT_SYMBOL(sock_unregister);
2343 EXPORT_SYMBOL(sock_wake_async);
2344 EXPORT_SYMBOL(sockfd_lookup);
2345 EXPORT_SYMBOL(kernel_sendmsg);
2346 EXPORT_SYMBOL(kernel_recvmsg);
2347 EXPORT_SYMBOL(kernel_bind);
2348 EXPORT_SYMBOL(kernel_listen);
2349 EXPORT_SYMBOL(kernel_accept);
2350 EXPORT_SYMBOL(kernel_connect);
2351 EXPORT_SYMBOL(kernel_getsockname);
2352 EXPORT_SYMBOL(kernel_getpeername);
2353 EXPORT_SYMBOL(kernel_getsockopt);
2354 EXPORT_SYMBOL(kernel_setsockopt);
2355 EXPORT_SYMBOL(kernel_sendpage);
2356 EXPORT_SYMBOL(kernel_sock_ioctl);
2357 EXPORT_SYMBOL(kernel_sock_shutdown);
2358